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Abstract

The theory of network formation yields sharp predictions on network structure.

Existing experiments on network formation generally reject these predictions. These

findings raise a question mark about the validity of an economic approach to under-

standing networks.

The present paper develops a new experimental platform to study network for-

mation. The platform integrates a network visualization tool with interactive asyn-

chronous choices in continuous time. The platform allows for large groups of up to 100

subjects in the laboratory.

The platform is used to test a model of linking formation and efforts. This model

predicts that equilibrium networks have a ‘star’ like structure and that individual

efforts are highly specialized. Our experiments offer robust evidence in support of

these predictions.
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1 Introduction

Large scale social networks are a defining feature of contemporary economy and society.

Empirical research suggests that such networks exhibit a law of the few : the distribution

of links is very unequal.1 Given the social and economic implications of this inequality, it

is important to understand the principles underlying the formation of these networks.

The economic approach takes the view that individuals compare the costs and benefits

of linking. Beginning with the early work of Bala and Goyal [2000] and Jackson and

Wolinsky [1996], this idea has been explored in a number of papers on network formation.

A general take away from this literature is that purposeful linking activity leads to the ‘law

of the few’.2 This result has been the subject of extended experimental investigation: in a

test of the Bala and Goyal [2000] model, Falk and Kosfeld [2012] and Goeree, Riedl, and Ule

[2009] show that experimental subjects do not create such networks; in a recent paper, van

Leeuwen, Offerman, and Schram [2019] report that the specialization in linking and efforts

predicted by the Galeotti and Goyal [2010] model is not observed in the laboratory. These

experimental findings raise a question mark about the validity of an economic approach to

understanding networks.

A common feature of existing experiments is that the number of subjects is small

(typically ranging between 4 and 8). Moreover, practically all the experiments require

subjects to make simultaneous choices in discrete time. In a real world setting, groups are

very large and individuals typically choose effort and linking at different points in time.

The individual decision problem is complicated because the attractiveness of links depends

on the efforts of individuals and also on the efforts by the neighbours of these individuals.

As group size grows, these informational requirements become more demanding. So it

is quite unclear if we can extend the findings from the small group experiments to more

realistic settings. The work of Berninghaus, Ehrhart, and Ott [2006], Friedman and Oprea

[2012] and Goyal et al. [2017] suggests that continuous time experiments offer subjects

more opportunities for choice and for learning and that they may offer better prospects

for convergence to equilibrium than discrete time experiments. Our paper builds on this

insight.

A large-scale continuous-time experiment on network formation generates a great deal

of information that is in principle relevant for decision making. This may be cognitively too

1See Barabási and Albert [1999], Goyal, Moraga, and van der Leij [2006], and Jackson and Rogers [2007].
2See e.g., Hojman and Szeidl [2008]; Bramoulle, Galeotti, and Rogers [2016] survey the literature.
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demanding for individuals and can undermine the rationale for controlled experimentation.

In order to handle such concerns, we develop a new experimental platform. Three aspects

of the platform are worth noting. Firstly, it includes a network visualization tool that

uses the Barnes-Hut approximation algorithm (Barnes and Hut [1986]). This algorithm

allocates nodes and edges in a two-dimensional space to improve visual clarity of network

presentation. Secondly, we integrate this tool for network visualization with the interac-

tive tool of dynamic choices. This feature allows individuals to form and remove links and

change effort levels instantly. The integration enables us to update rapidly evolving net-

works in real time on the computer screen. Finally, the platform is flexible in information

provision both with regard to what subjects know about the network and what they know

about the actions and payoffs of different subjects.

The design of the experiment builds on a model of linking and efforts taken from

Galeotti and Goyal [2010]. The theory predicts that every (strict Nash) equilibrium of this

game is a ‘star’ network in which the spokes pay for links with a single hub. There are

two equilibrium effort configurations: the center makes all the effort (the pure influencer

outcome) and the hub makes zero effort (the pure connector outcome). The goal of the

paper is to test these predictions. There are four group sizes 4, 8, 50, 100 and each of

these groups plays the linking and effort game over 6 minutes. There are two information

treatments: in the baseline treatment, subjects observe only their own payoffs, while in the

payoff information treatment a subject observes the payoffs of everyone. Taken together,

we therefore have a 4× 2 design. This design enables us to vary the strategic uncertainty

and cognitive complexity facing subjects and therefore offers a general environment to test

the theory.

We start with the baseline information treatment. Figures 1 and 2 present snapshots

taken from the experiment with a hundred subjects. Initially, at minute 1, subject P26

emerges as a hub with the maximum effort 20. There are other subjects who make maximal

effort (such as P97). At minute 3, P26 continues to be a hub but has substantially lowered

her effort. Due to this shading of effort, she starts to lose some of her links to subject P97,

who has kept her effort at 20. The transition becomes clearer in Figure 2a at the 5 minute

mark, when the initial hub subject P26 has lost most of her links to the emerging hub P97.

Figure 2b confirms that this transition is stable until the end of the game.

Our first finding is that, in all four group sizes, there is specialization in linking and

efforts. This manifests itself in the clearest form in the large groups (as in the 100 subject

experiment reported above). Our second finding concerns individual behavior. In all four
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(a) At minute 1

(b) at minute 3

Figure 1: Snap shots of a dynamic game

3



(a) At minute 5

(b) At minute 6

Figure 2: Snap shots of a dynamic game (cont.)
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group sizes, highly connected individuals exert large efforts. In particular, in small groups

the efforts of the most connected individual are close to the equilibrium prediction of the

static model. By contrast, in the large groups of fifty and hundred subjects the most

connected subject chose efforts that are far higher than the equilibrium prediction. As a

consequence, in the large groups, the hubs earn less than the peripheral nodes.

One possible explanation for the high efforts is that individuals enjoy non-monetary

benefits from being a hub, and this incentive is reinforced in larger groups. An alternative

hypothesis is that in larger groups, the complexity of the dynamics overwhelms individuals

and they are led into large efforts, in spite of the lower payoffs. To examine these expla-

nations, we design a treatment in which subjects are shown the payoffs of everyone. The

provision of payoff information on everyone facilitates comparison of payoff performances

with others. This may make it easier for subjects to understand the payoff implications of

their own choices. Availability of such information may also alter individual behavior due

to imitation possibilities (Schlag [1998], Huck et al. [1999], and Camerer [2003]).

Figures 3 and 4 present snapshots taken in the payoff information treatment with a

hundred subjects. Observe that the specialization in linking continues to hold in this

setting. However, there is a major change in the behavior of individuals seeking to become

a hub: the most connected individual (P23) starts at a high effort 14, but then shades

her efforts. The key difference with the baseline is that the outcome is closer to a “pure

connector outcome” in some groups and, in most groups, the most connected individual

earns much more than the peripheral individuals.

Our third finding is that, in all four group sizes, there is specialization in linking and in

efforts, and this specialization is more transparent in the large groups. Our fourth finding

is that, in the payoff information treatment, in small groups there is a strong positive

correlation while in large groups there is a weak correlation between connectedness and

effort. Indeed, in some large groups the most connected individual puts in 0 effort leading

to the pure connector outcome (as in Figures 3 and 4). The pure connector outcome is in

sharp contrast to the pure influencer outcome observed in the baseline treatment.

These powerful treatment effects motivate an examination of individual decision rules.

We study the behavior of three types of subjects: most connected, 2nd most connected,

and the others. The effort dynamics bring out two broad patterns: one, they show large

effects of group size and payoff information on the behavior of the two most connected

individuals. Two, other—poorly connected—subjects behave similarly across the group

sizes and information treatments: they make low effort that is declining over time and
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(a) At minute 1

(b) at minute 3

Figure 3: Snap shots with payoff information
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(a) At minute 5

(b) At minute 6

Figure 4: Snap shots with payoff information (cont.)
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somewhat close to myopic best response efforts.

In order to accommodate the differential effort choices of the two most connected sub-

jects across treatments, we propose a learning rule that combines myopic best response and

competition for hub status. We find that the learning rule we propose provides a coherent

account of the effects of group size and payoff information on effort dynamics, whereas the

myopic best response rule alone performs poorly in fitting effort dynamics. Therefore it

suggests that given the heterogeneity in subjects’ desire of competing for connection, scale

and payoff information change the behavior of highly connected individuals and lead to

different patterns of specialization in linking and efforts.

The paper makes several contributions to the economics of networks: one, it presents a

new platform for large scale network formation experiments in continuous time.3 Two, we

run an experiment on the model of Galeotti and Goyal [2010] on this platform and present

robust experimental evidence in support of the ‘law of the few’ property of networks.

Furthermore, we show how information and scale jointly shape the selection of the pure

influencer and the pure connector equilibrium, respectively. Our findings mark a major

departure from the literature: they offer the first robust evidence in support for a standard

economic model of network formation; earlier experimental papers reject this theory, see

Falk and Kosfeld [2012], Goeree, Riedl, and Ule [2009] and van Leeuwen, Offerman, and

Schram [2019]. The present paper is the first paper to report evidence of the pure connector

outcome. Finally, our work reveals that scale has a bearing on the decision rules that

individuals use. Taken together, these points make a powerful argument for the use of

large scale continuous time experiments in the study of network problems.4

The paper also contributes to the experimental investigation of group size effects in

economic environments. The seminal study by Isaac and Walker [1988] shows that group

size plays an important role on allocative efficiency in a voluntary contribution game.

However, subsequent experimental studies have found that there are no ‘pure’ scale effects,

once we control for the marginal per capita return, [Isaac et al., 1994]. There is experimental

evidence for more aggressive bidding in auctions as the number of bidders grows, giving

3Our platform will soon be made public and we expect it will help in advancing experimental study of
network questions more generally.

4There is also a related experimental literature on games in networks (see e.g., Leider, Mobius, Rosenblat,
and Do [2009], Charness, Feri, Meléndez-Jiménez, and Sutter [2014], Chandrasekhar, Larreguy, and Xandri
[2019]) and on games in which players choose partners and then play a coordination game (see e.g., Riedl,
Rohde, and Strobel [2016], Kearns, Judd, and Vorobeychik [2012]). The interest is on how networks affect
behavior and on how allowing for endogenous networks affects behavior. These experiments also involve a
relatively small number of subjects (the maximum group size was 36).
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rise to larger winner’s curse, Kagel and Levin [1986]. Our results on the effects of scale

and its interaction with the knowledge of others’ payoffs supplement these findings.

Finally, our paper contributes to the experimental literature of continuous time games.

Existing studies are built on the development of an experimental software, called ConG

(Pettit, Friedman, Kephart, and Oprea [2014]) and have focused on small group interaction

(see e.g., Friedman and Oprea [2012]; Calford and Oprea [2017]). The novelty of our

paper is that we develop an experimental software that is well suited for the study large

group interaction. In order to overcome information overload of evolving networks and

relax subjects’ cognitive bounds in information processing, our software integrates the

network visualization tool with the interactive tool of asynchronous choices in real time.

This is achieved by adopting an enhanced communication protocol between the server

and subjects’ computers. It allows us to run both network visualization and asynchronous

dynamic choices in real time without communication congestion and lagged responses, even

when participants are interacting remotely from different physical locations.

2 Theory

We present a model of linking and efforts taken from Galeotti and Goyal [2010].

Let N = {1, 2, . . . , n} with n ≥ 3. Each player i ∈ N simultaneously and independently

chooses a level of effort xi ∈ R and a set of links gi with others to access their efforts

such that gi = (gi1, . . . , gii−1, gii+1, . . . , gin), and gij ∈ {0, 1} for any j ∈ N\{i}. Let

Gi = {0, 1}n−1. We define the set of strategies of player i as Si = R × Gi, and the set

of strategies for all players as S = S1 × . . . × Sn. A strategy profile s = (x, g) specifies

efforts and the links made by every player. Observe that g is a directed graph; the closure

of g is an undirected network denoted by ḡ where ḡij = max(gij , gji) for every i, j ∈ N .

The undirected link between two players reflects exchange of benefits from efforts. Let

ηi(g) = |{j ∈ N : gij = 1}| be the number of links i has formed. For any pair of players

i and j in g, the geodesic distance, denoted by d(i, j; ḡ), is the length of the shortest

path between i and j in ḡ. If no such path exists, the distance is set to infinity. Define

N l
i (ḡ) = {j ∈ N : d(i, j; ḡ) = l} to be set of players at distance l from i in ḡ.

Given a strategy profile s = (x, g), the payoffs of player i are:

Πi(x, g) = f(xi +
n−1∑
l=1

al(
∑

j∈N l
i (ḡ)

xj))− cxi − ηi(g)k (1)

9



where c denotes the constant marginal cost of efforts, k the cost of linking with another

player, and al reflects the spillover across players who are at distance l. So if j ∈ N l
i (ḡ), then

the value of agent j’s effort to i is given by alxj . Throughout, it is assumed that a1 = 1,

a2 ∈ (0, 1), and al = 0, for all l ≥ 3. The benefit function f(y) is twice continuously

differentiable, increasing, and strictly concave in y. For simplicity, also assume that f(0) =

0, f ′(0) > c, and limy→∞ f
′(y) = m < c. Under these assumptions, there exists a number

ŷ ∈ X such that f ′(ŷ) = c.

There are no general equilibrium characterization results available for this model.5. The

following result characterizes equilibrium when linking costs are relatively large.

Proposition 1. Suppose payoffs are given by (1), and that a1 = 1, and a2 ∈ (0, 1). Then

there exists a k̂, such that for k ∈ (k̂, cŷ) the following is true. The equilibrium network is

a periphery sponsored star. There exist two possible effort equilibrium configurations:

• the pure influencer outcome: the hub invests ŷ and everyone else invests 0.

• the pure connector outcome: the hub invests 0 and everyone else invests ŷ/(1 + (n−
2)a2).

Proof. The first step is to observe that in equilibrium, every individual must access at least

ŷ. This is true because if someone is accessing less than ŷ, then due to the concavity of the

f(.) function, she can simply increase her utility by raising effort so that the total access

equals ŷ.

The second step is to show that players will form one link or zero link, for sufficiently

large linking costs. Observe that an isolated individual will choose ŷ. So it follows that in a

network with connections, no one will ever choose more than ŷ. Note that if link costs are

close to cŷ then it is not profitable to form links with two individuals who each chooses ŷ.

So the only situation in which an individual, A, may choose two or more links arises if an

individual accesses significantly more than ŷ through each link. Consider a link between

A and B. Iterating on optimal effort, it is true that if B chooses ŷ then every neighbor of

B must choose 0. So A accesses more than ŷ only if B chooses strictly less than ŷ. If a

neighbour of B chooses a positive effort, then it must be the case that this person must

meet the first order condition on optimal efforts: her total efforts invested and accessed

5The analysis of Galeotti and Goyal [2010] focuses on polar cases in which a1 = 1 and al = 0, for all
l ≥ 2 and the case where al = 1, for all l. Our formulation allows for indirect flow of benefits with decay;
this appears to be a natural case.
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must equal ŷ. As this person is a neighbour of B, it follows that A cannot access more

than ŷ via the link with B. So, A will form at most one link in equilibrium.

The third step considers effort configurations. Take the situation in which some indi-

vidual (say) A chooses ŷ. It is optimal for everyone else to choose effort 0 and form a link

with this person. And it is clearly optimal for A to choose ŷ when faced with zero efforts

by everyone else.

To conclude the proof, we need to show that the pure connector outcome is the only

possible equilibrium in a situation where no player chooses ŷ. Observe first that the pure

connector outcome is an equilibrium so long as k < cŷ(n− 2)a2/(1 + (n− 2)a2). Observe

that cŷ(n− 2)a2/(1 + (n− 2)a2) converges to cŷ, as n gets large.

The next step is to rule out any other possible equilibrium. The key observation here

is that any equilibrium network must have diameter less than or equal to 2. Suppose the

diameter of a component is 3 or more. We know from step 2 that the component must be

acyclic. So consider two furthest apart leaf nodes. A variant of the ‘switching’ argument,

developed in Bala and Goyal [2000], shows that one of the two leaf players has a strict

incentive to deviate. So every component must have diameter 2. Given that the network is

acyclic, this implies it must be a star. It is now possible to apply standard agglomeration

arguments to deduce that multiple components cannot be sustained in equilibrium.

Finally, the hub player must choose zero. Suppose not. By hypothesis the hub chooses

less than ŷ. Given that a1 and a2 < 1, both the hub and the spokes cannot be accessing

exactly ŷ. A contradiction that implies that the hub must choose zero effort.

In the pure influencer equilibrium, we witness an extreme version of the ‘law of the few’:

a single person receives all the links formed in society and also carries out all the efforts.

The pure connector equilibrium retains the specialization in links: a single person receives

all links, but the efforts are evenly spread out. Interestingly, in both equilibria the creation

of links is basically egalitarian – n− 1 players each form one link. For large k values, the

payoff distribution is only slightly unequal in the pure influencer equilibrium. However,

the payoff inequality can be very large in the pure connector equilibrium (especially if k

is large and a2 is small). We note that the pure connector equilibrium holds only for a

sufficiently large group size n, i.e., n ≥ 2 + k/(a2(cŷ − k)).

We now specify the parameters used in the experiment. The function f(.) is taken from
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Goyal et al. [2017].

f(y) =

y(29− y) if y ≤ 14

196 + y else
(2)

For simplicity, the efforts are assumed to take on integer values only and there is an

upper bound, x = 20. So the efforts set is given by X = [0, 20]. The cost of effort c = 11 and

the cost of a link k = 95; finally, the decay parameter a2 = 1/2. Given these parameters,

it can be checked that ŷ = 9.

There exists a pure influencer equilibrium in which a single individual chooses 9, all

other individuals choose 0 and form a link with the positive effort player. In principle,

there exists a pure connector equilibrium in which the periphery players each choose 18/n,

for any n ≥ 50.6 Given the integer constraints, this equilibrium is no longer feasible (for

n ≥ 50, 0 < 18/n < 1 is not an integer). In the treatments with 50 and 100 subjects,

the periphery sponsored star where 18 peripheral individuals choose 1 and the rest of

the subjects choose 0 constitutes an ‘approximate’ equilibrium (for details see Online Ap-

pendix A).7 Figure 5 illustrates the pure influencer equilibrium and the pure connector

(approximate-)equilibrium.

To summarize, in the pure influencer equilibrium, the hub chooses effort 9, while the

spokes choose 0. The hub earns 81, while the spokes each earn 85. In the pure connector

equilibrium, the hub chooses effort 0, eighteen spokes choose 1 each, while the other spokes

choose 0. The hub earns 198, the active spokes 74, and the inactive spokes 85.

6The pure connector equilibrium does not hold in the experimental setting for any n < 50.
7The periphery player who chooses effort 1 and forms a link with the hub earns 79.25. This person could

earn 81 by deleting the link and instead choosing effort level 9.
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Figure 5: Pure influencer and pure connector equilibrium, n = 50

3 Experiment

3.1 Challenges and methodology

As the complexity of subjects’ decision making increases in scale, large-scale experiments

on network formation pose several major challenges. This section discusses these challenges

and explains how our experimental software and design addresses each of them.

Network visualization. Existing studies of network formation in economics have con-

sidered small group sizes such as 4 or 8 people and visualized evolving networks with fixed

positions of nodes (e.g., Goyal et al. [2017]; van Leeuwen et al. [2019]). When the group

size increases, such a representation of networks with fixed positions of nodes makes it

very difficult for subjects to perceive network features. For example, consider a group

of 20 people with fixed positions of nodes in a circle as depicted in Figure 6a; the exact

network is barely perceptible by observing this figure. The same network structure can be

represented in a transparent manner in Figure 6b.

For subjects to learn their optimal choices, they must have a good idea of the evolving

networks. An appropriate tool for visualizing networks is thus critical in running the

experiment in continuous time. This leads us to develop an experimental software including

an interactive network visualization tool that allows the network to automatically reshape
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(a) Fixed visualization (b) Adaptive visualization

Figure 6: Examples of network visualization

itself based on the evolving structure. We use the Barnes-Hut approximation algorithm

[Barnes and Hut, 1986] for grouping nodes in a network that are sufficiently nearby and

adjust their relative positions on the subject’s computer screen. This algorithm enables us

to apply repulsion forces between nodes so that they are sufficiently separated from one

another, attractive forces to nodes that are directly linked with each other, and gravity to

all the nodes with respect to a central origin on the screen such that nodes not linked with

each other remain within reasonable distance from each other.

The network visualization in Figure 6b was made using this algorithm. In our large-

scale experiment, this visualization tool improves graphical clarity of evolving networks

and helps subjects distinguish between those who are more connected and those who are

less connected. More details regarding the specifics of this visualization tool (including

model parameters characterizing attraction and repulsion forces) can be found in Online

Appendix B. It is important to emphasize that this tool allows interaction between the

subject and the network: while the nodes are subject to the above attraction and repulsion

forces, they can also be freely manipulated by the participant through the usual drag-

select functionality. The creation and removal of links is also interactive through double-

clicking on corresponding nodes. This network visualization tool is built on the open source
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Javascript library vis.js.

Learning and dynamics. It is important to offer subjects adequate opportunities to

learn about the environment of decision making, other subjects’ behaviors, and how to

respond optimally to them. In view of the strategic complexity alluded to above, the issues

of learning and behavioral convergence are particularly complicated. To address them, we

build on the work of Berninghaus et al. [2006], Friedman and Oprea [2012] and Goyal et al.

[2017], and run the experiment in continuous time with near real time updating—of all

actions and linking by everyone.8

In our experiment, the game is played in continuous time for 6 minutes during which

every subject is free to asynchronously adjust their actions of efforts and linking. Because

subjects face a complex problem of decision making and need some time to figure out the

game and coordinate their actions, a trial time of one minute is provided (during which

subjects start choosing their actions with no monetary consequences). After the trial period

is over, the subsequent 5 minutes are payoff relevant and one second is randomly chosen

to determine subjects’ earnings in the game. The structure of the experiment is publicly

known to subjects.

Running the continuous time experiments in large groups poses a number of technical

challenges. First, every action made by a subject on her computer must be updated

instantly on the computer screens of all other participants through the server computer.

Network visualization must also be correspondingly updated in real time. As the group size

increases, the information flows across the computer network increases dramatically. This

can cause communication congestion and lagged responses. Another challenge with a large

scale experiment is that it is constrained by the limited capacity of existing laboratories.

Large groups that cannot fit into a single lab therefore require remote interactions between

subjects in different geographical locations (that is, across different labs). In order to

handle both of these technical challenges, we use a Websocket protocol with enhanced

two-way communication between the server and subjects’ computers. It fits naturally

into the environment of asychronous choices in real time and the updates are made only

when necessary. Our Websocket technology relies on the Javascript run-time environment

Node.js. 9

8Although the experimental software allows for real time updating of actions, we voluntarily introduce
some latency in our experiment to avoid any possible confusion caused by some overload of activity on the
subjects’ screen. More precisely, the network depicted on any subject’s screen is updated every 5 seconds
or whenever the subject makes a decision.

9Since it only requires an internet connection and is compatible with most existing web browsers (e.g.,
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Network information. In addition to the issue of network visualization, there is the

issue of network information available to individual subjects. To get a sense of the range of

possibilities, consider two extreme scenarios: one, subjects only observe their own neighbors

in the current network, and two, subjects get to see the entire network. The information

and cognitive load implied by the latter scenario grows rapidly in size of the group. In view

of this potential trade-off between transparency of network change and information and

cognitive overload, we choose to inform each subject of a local structure of the network

within a (geodesic) distance 3.

So given a fixed network, for every subject, we can partition the entire group of subjects

into two mutually exclusive subgroups: those who are located within distance 3 from the

subject, and those who are located outside this set. Figure 7 provides an illustration of

network visualization and information in the experiment with 50 subjects. The left side

of Figure 7 shows the group of subjects within distance 3 (and all their links with other

subjects within distance 3). The right side of Figure 7 collects the subjects who lie at a

distance greater than 3. Observe that in addition to local network information, subjects

are informed about every subject’s effort—presented as a number within the corresponding

node along with that subject’s ID. A node’s total access to public goods is captured by the

size of that node.

Information on Payoffs. We now turn to information on payoffs: clearly subjects need

to be able to see their own payoffs in order to learn the profitability of different linking

and effort combinations.10 What about the information on others’ payoffs?

The literature of learning in games provides some guidance on this question, see Camerer

[2003] for a survey. In adaptive models such as reinforcement learning and experience-

weighted attraction learning (Camerer and Ho [1999]), players ignore information on pay-

offs of other individuals. In models of imitation learning (Schlag [1998]) and sophisticated

learning (Camerer et al. [2002]), players would behave differently if the payoffs of others are

known. In the recent body of network experiments (e.g., Goeree et al. [2009] and Falk and

Kosfeld [2012]), researchers have tended not to show subjects the payoffs of others. How-

ever, when information on others’ payoffs is available in particular in large groups where

it is difficult to infer such information, subjects may follow a different behavioral rule. In

Google Chrome, Mozilla Firefox, Internet Explorer), this technology makes no specific restriction on the
physical location of every participant.

10Details about the costs and benefits are provided to the subjects to facilitate their comprehension of
their own payoff, as illustrated in Online Appendix D

16



Figure 7: Network information
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fact, the experimental literature documents that human subjects may behave differently

when information on the payoffs of other individuals is available (e.g., Huck et al. [1999]).

Building on these strands of research, it is possible to argue that in games with small

groups of subjects, showing the payoffs of others may not be a first order issue, as subjects

can compute these payoffs themselves in a fairly straightforward manner. However, in a

dynamic game with a hundred subjects—and with the network and efforts configuration

constantly evolving—an individual may find it much harder to compute the payoffs of other

subjects. The knowledge of others’ payoffs may be an important factor in experimental

design. The first reason is learning dynamics: observing the others’ payoffs could assist

subjects in better appreciating the trade-offs associated with different courses of action.

The second reason is fairness considerations: the two equilibria described in Proposition

1 exhibit very different level of payoff inequality across players. The pure-influencer equi-

librium exhibits a minor payoff difference between the hub player and the spoke players,

whereas the pure-connector equilibrium yields a much larger payoff difference between the

hub player and the spokes players. These considerations motivate treatments in which we

vary the level of information on others’ payoff.

In the baseline treatments, subjects are shown their own payoffs but not others’ payoffs.

A subject is also shown the efforts and public good access for all other subjects, as shown

in Figure 7. In principle, therefore, a subject can infer the gross payoffs of any subject.

But we believe that such inference would be challenging for subjects during a large scale

continuous-time game, where the network and effort levels are evolving rapidly. To facilitate

learning, we add information about every player’s payoff through a set of color codes as

illustrated by Figure 8. Specifically, the border of every node is coloured: the colour varies

from green (high positive payoff) to red (high negative payoff). The scale of the colour

code is presented at all times on the left hand side, as in Figure 8.

3.2 Treatments and design details

We vary the group size N ∈ {4, 8, 50, 100} and the visibility of others’ payoff. Table 1

summarizes the 4 × 2 structure of our experiment.

All the treatments are based on the payoff function (1). Recall that the marginal cost

of effort is set to c = 11. This implies an optimal effort of ŷ = 9. The cost of linking

k = 95. We restrict effort x as any positive integer value not exceeding 20, i.e., x = 20.

Finally, we set a1 = 1, a2 = 0.5, and al = 0, for all l ≥ 3.
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Figure 8: Screen shot of the Payoff Information Treatment
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Group size
N = 4 N = 8 N = 50 N = 100

Others’ payoff
NO

Baseline4 Baseline8 Baseline50 Baseline100

information
YES

PayInfo4 PayInfo8 PayInfo50 PayInfo100

Table 1: Experimental Treatments

At any instant in the 6 minutes game, a subject can form or delete a link with any other

subject by simply double-clicking on the corresponding node in the computer screen. If

the subject forms a link with another subject on the right side of the screen (i.e., someone

who is in more than 3 geodesic distance away), that subject along with his neighbors and

neighbors’ neighbors would be transferred to the left side of the computer screen. In a case

where the subject removes a link with another subject on the left side of the screen, that

subject would be transferred to the right side of the computer screen if they go more than

3 links apart and would remain in the left side of the screen otherwise.

During the experiment, each subject can also choose any level of effort by moving a

slider varying from 0 to 20 by increments of 1. This slider is provided on top of the decision

screen along with other payoff-relevant information including the subject’s gross earnings

(i.e., the benefit f(x) where x is the total amount of information the subject has access

to), cost of effort, cost of linking, and resulting earnings (i.e., payoff Πi(xg)). Further

information on the screen is provided in Online Appendix D.

3.3 Experimental procedures

The experiment was conducted at the Laboratory for Research in Experimental and Be-

havioral Economics (LINEEX) located in University of Valencia and at the Laboratory for

Experimental Economics (LEE) that is located at the University Jaume I of Castellón .

All the treatments except for N = 100 treatments were conducted at the LINEEX. The ex-

perimental sessions with N = 100 subjects were conducted through an internet connection

between LINEEX and LEE (the number of subjects was then evenly distributed across the

two locations). Subjects in the experiment were recruited from online recruitment systems

of the two laboratories. A subject participated in only one of the experimental sessions.

After subjects read the instructions, the instructions were read aloud by an experimenter
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to guarantee that they all received the same information. While reading the instructions,

the subjects were provided with a step by step interactive tutorial which allowed them to

get familiarized with the experimental software and the game. Subjects interacted through

a web browser (Google Chrome) on computer terminals and the experimental software was

programmed using HTML, PHP, Javascript, and SQL. Sample instructions and interactive

tutorials are available in Online Appendix C.

There were in total 18 sessions: 1 session of 16 subjects for each of the Baseline4

and PayInfo4 treatments, 1 session of 32 subjects for each of the Baseline8 and PayInfo8

treatments, 4 sessions of 50 subjects for each of the Baseline50 and PayInfo50 treatments,

and 3 sessions of 100 subjects for each of the Baseline100 and PayInfo100 treatments. In

each experimental session, subjects were (randomly) matched into a fixed group (if there

were more than one group in a session) and interacted with the same subjects throughout

the experiment. Therefore, there are 4 independent groups for each of the N = 4, N = 8,

and N = 50 treatments and 3 independent groups for each of the N = 100 treatments. A

total of 1096 subjects participated in the experiment.

The experiment consists of 6 rounds of the continuous-time game, each of which lasted

for 6 minutes with the first minute as a trial period and the subsequent 5 minutes as the

game with payment consequence. At the end of each round every subject was informed,

using the same computer screen, of a moment randomly chosen for payment, detailed

information on subjects’ behavior at the chosen moment including a network structure and

all subjects’ efforts, and the resulting earning of the subject. While the membership of a

group was fixed within a session, subjects’ identification numbers were randomly reassigned

at the beginning of every round in order to reduce potential reputation effects. The first

round was a trial round with no payoff relevance and the subsequent 5 rounds were effective

for subjects’ earnings. In analyzing the data, we will focus on subjects’ behavior and group

outcomes from the last 5 rounds. At the beginning of the experiment, each subject was

endowed with an initial balance of 500 points and added positive earnings to or subtracted

negative earnings from that initial balance. Subjects’ total earnings in the experiment

amounted to the sum of earnings across the last 5 rounds and the initial endowment.

Earnings were calculated in terms of experimental points and then exchanged into euros

at the rate of 100 points being equal to 1 euro. Each session lasted on average 90 minutes,

and subjects earned on average about 18 euros (including a 5 euros show-up fee).

At the end of the experiment, subjects took incentivized tasks to elicit social preferences

and risk preferences. They are a modified version of Andreoni and Miller [2002] and Holt
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and Laury [2002], respectively. In addition, subjects answered a brief version of the Big Five

personality inventory test adapted from Rammstedt and John [2007], a comprehension test

related to the experimental game, and a debriefing questionnaire including demographic

information. More details about these facts can be found in Online Appendix E.

3.4 Connecting theory and experiment

The static model focuses on the trade-off between personal efforts and linking with others.

The analysis reveals that individual incentives and strategic interaction lead to a fairly clear

cut resolution of these trade-offs: the network has a very specific structure and there are

only two possible configurations of efforts possible. This sets a clear line for the experiment.

Our interest is in understanding network formation in large groups. To facilitate individual

experimentation and learning, we consider a design in continuous time with asynchronous

choice: this offers ample scope for experimentation and learning. However, this dynamic

game opens the possibility of signalling, cheap talk, and reputation building, forces that go

far beyond the original static game. The mapping from the static theory to the experiment

is not straightforward.

Our philosophy is that if the arguments in the static model are robust, then subjects

should abide by the predictions of the theory in an experimental setting that incorporates

realistic elements – such as dynamic linking and effort choice – more accurately. Keeping

this in mind, for the purposes of the experiment, we take the following ‘high level’ view of

the predictions of the theory:

1. Law of the Few : a small fraction of individuals receive most of the links and carry

out most of the efforts. An increase in group size leads to greater specialization in

linking and efforts.

2. Strategic uncertainty : there exist multiple equilibria; these equilibria differ in actions,

linking and payoffs across individuals.

4 Results: Baseline Treatments

We highlighted three key points from Figures 1 and 2: (i) extreme specialization in linking

and efforts; (ii) very large efforts and intense competition among a few subjects to become
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the hub; and (iii) the emergence of the pure influencer outcome. In this section, we examine

the experimental data more systematically.

For simplicity in all the data analyses that follow, the data used from every round of

the game consists of 360 observations (snapshots of every subject’s choices in the group)

selected at regular time intervals of one second. Although some information about choice

dynamics between two time intervals may be lost, we consider the possible impact of such a

simplification as negligible to our analyses. Moreover, unless stated otherwise, all analyses

are focused on data from the last 5 minutes of each round of the game.

4.1 Macroscopic Patterns

The first statistic we consider is the number of connections. For any individual, their

indegree is the number of incoming links from other individuals. The interest is in the

specialization/inequality in the indegree. We present two different ways of looking at

this issue. The Lorenz curve plots the cumulative fraction of subjects, ranked from least

connected to most connected, against the cumulative fraction of total indegrees. The

(instantaneous) Lorenz curves are then averaged across seconds of the last five minutes,

across rounds, and across groups in each treatment. Figure 9a presents these (averaged)

Lorenz curves and the corresponding Gini coefficients of indegree across different group

sizes. They reveal that specialization is present in every group size, but that it becomes

especially striking as the group size increases. This is well reflected in the Gini coefficient

measure: it is 0.61 for Baseline4, 0.70 for Baseline8, 0.86 for Baseline50, and 0.89 for

Baseline100. By organizing the group-level average data, we conduct t-test for the null

hypothesis on the equality of Gini coefficients between a small group (N = 4 or N = 8)

and a large group (N = 50 and N = 100). We reject it with 5% significance level.

Consider next the number of individuals who become hubs. Specifically, we consider

the time fraction (number of seconds out of 5 minutes) for which the individual is most

connected. Figure 9b shows the cumulative distributions of time fraction of being most

connected and mean indegree ratio. The fraction of subjects who never become the most

connected player are very high for the large group treatments—0.97 for Baseline100 and

0.93 for Baseline50; this fraction is significantly lower for the smaller groups—0.31 for

Baseline8 and 0.06 for Baseline4. It suggests that only a few subjects had any chance

of being most connected in the large group treatments, whereas most of the subjects in

the small group treatments experienced moments when they were most connected. In this
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(a) Lorenz Curves and Gini Coefficient of Linking (b) Time fraction

Figure 9: Linking in the baseline treatments

sense, specialization grows with scale.

We turn to efforts. Again, the main indicator is the Lorenz curve and Gini-coefficient.

Figure 10a presents (averaged) Lorenz curves and Gini coefficients, across different group

sizes. Specialization in efforts is present in every group size and it is especially striking in

larger groups. This is well reflected in the Gini coefficient of efforts: 0.48 for Baseline4,

0.58 for Baseline8, 0.75 for Baseline50, and 0.75 for Baseline100. The difference between

Gini coefficient in the small group treatment (N = 4 and N = 8) and that in the large

group treatment is statistically significant (p-values < 0.01 from t-test with the group-level

data).

In order to look further into the details of specialization, consider a variable of mean

effort ratio. An individual’s effort ratio at every second is defined as her effort divided

by the sum of efforts across individuals at that second. We compute the mean of effort

ratios across the five minutes for each individual. With this variable, we compute its

cumulative distribution in any round and consider the average across rounds and groups.

Specialization in efforts becomes substantially more pronounced in large groups. The

fraction of subjects whose mean effort ratio is low increases significantly in group size.

For instance, relative frequencies of subjects with mean effort ratio being less than or

equal to 0.05 are 0.19 for Baseline4, 0.42 for Baseline8, 0.91 for Baseline50, and 0.99 for

Baseline100. The distribution of mean effort ratio for a small group treatment first order

dominates that for a large group treatment at the usual significance level (p-value < 0.01
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(a) Lorenz curves and Gini coefficients of Efforts

Figure 10: Distribution of Efforts

from the Kolmogorov-Smirnov test).

Result 1 Specialization in linking and efforts is present in all group sizes and becomes

significantly higher as group size increases.

We consider the relation between indegrees, efforts and payoffs. Recall from Propo-

sition 1, that there are two equilibria, corresponding to the pure influencer and the pure

connector outcomes. In the former, there is a positive correlation between efforts and

indegrees and a (weak) negative relation between indegrees and payoffs. By contrast, in

the latter equilibrium, there is a negative correlation between indegrees and efforts, and

a positive correlation between indegrees and payoffs. We run linear regression analysis of

mean indegree ratio on efforts interacted with the dummies for small group (N = 4 and

N = 8) and large group (N = 50 and N = 100) and a median regression of (median)

payoffs on mean indegree ratio interacted with the dummies for small group and large

group. Table 2 reports the regression results with and without controlling demographic in-

formation, comprehension test score, experimental measures of risk aversion and altruism,

and Big 5 personality. All regressions include a constant, a dummy for large group, and

dummies for rounds. Robust standard errors, clustered by individual subject, are reported

in parenthesis. We use the median regression analysis to minimize the impact of outliers
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Table 2: Regression analysis in the baseline treatments

Indegree ratio (%) Median payoff

(1) (2) (1) (2)

Effort × Small group 4.47*** 4.48***
(0.43) (0.43)

Effort × Large group 0.62*** 0.62***
(0.07) (0.07)

Indegree ratio (%) × Small group -0.05 -0.03
(0.14) (0.16)

Indegree ratio (%) × Large group -2.79*** -2.75***
(0.61) (0.51)

Additional controls No Yes No Yes

Number of observations 2740 2740 2740 2740
R-squared 0.580 0.581 0.109 0.157

Notes: Robust standard errors, clustered by individual subject, are reported in parenthesis. *, **, and
*** represent significance at the 10%, 5%, and 1% levels, respectively. All regressions include a constant,
a dummy for large group, and dummies for rounds. Additional controls include age, female, education,
comprehension test score, experimental measures of risk aversion and altruism, and Big 5 personality.

in payoffs.11

This regression brings out the positive correlation between efforts and indegree: this re-

lation is statistically significant and positive in the baseline treatments of small groups and

large groups. The regression coefficient for efforts is smaller in the large group treatments

than in the small group treatments. This is partly because the range of effort is wider

in the large group treatments while the range of the indegree ratio is similar across the

treatments. Next, we note that the association between indegree and payoffs is weak and

insignificant in the small group baseline treatments. There is, however, a strong negative

and significant correlation between linking and payoff in the large group baseline treat-

ments. A one percent increase in mean indegree ratio is associated with 2.75 decrease in

median payoff for the large group baseline treatments. These associations are robust to

the inclusion of additional controls. We summarize the discussion on the relation among

effort, linking and payoff as follows.

11In Online Appendix F.1 we report the same regression analysis by replacing mean indegree ratio with
time fraction of being most connected. The regression results with both variables are quite similar.
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Result 2 There is a positive correlation between effort and indegrees in all group sizes.

The correlation between indegrees and payoffs is insignificant in the small groups and

significantly negative in the large groups.

4.2 Individual Behavior and Competition Dynamics

This section examines the effects of group size more closely through a study of individual

level behavior. The snapshots in Figures 1 and 2 suggest that there are different types

of subjects with distinct dynamics of efforts during the game—the two most connected

subjects who are competing with each other and the rest of the subjects.

We start with an examination of the dynamics of efforts made by the three different

types of subjects identified at every second of the experiment—most connected, 2nd most

connected, and the others. Figure 11 presents the average time series of effort for each of

the group sizes. The end of the trial minute is represented by the vertical dotted line. We

observe very sharp increase in effort by the most connected individual as we move from

group size 8 to 50. The other interesting feature of the data is the relative levels of effort

between the top two connected individuals: in the small groups there is a persistent gap

between their efforts; in the large groups there is a very small gap in effort levels between

the top two connected individuals. On the other hand, the average level of effort made

by the others is low in all group sizes and steadily decreases over time. These time series

patterns suggest that an increase in group size leads to significantly greater competition

to become a hub.

We next look at the dynamics of median payoffs obtained by the three different types

of subjects in Figure 12. The two most connected subjects do not perform better than the

other subjects in the large groups. In particular, the 2nd most connected subjects in both

Baseline50 and Baseline100 obtain persistently lower payoffs over time than those of the

other subjects. This is a consequence of the high efforts. The most connected subjects in

the Baseline50 also get persistently lower payoffs than the other subjects except for the

last 10 seconds. In the Baseline100, they earn as much as the others for brief periods but

the average payoffs are lower than others’ payoffs. By contrast, in small groups, the payoffs

earned are stable and very similar among the three different types of subjects.

In order to make a statistical assessment on the treatment effects on subjects’ behavior,

we conduct linear regression analyses of mean efforts and oudegree (the number of links)

made by each type of subjects—most connected, 2nd most connected, and the others—on
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(a) Baseline4 (b) Baseline8

(c) Baseline50 (d) Baseline100

Figure 11: Time series of efforts for the three different types of subjects
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(a) Baseline4 (b) Baseline8

(c) Baseline50 (d) Baseline100

Figure 12: Time series of median payoffs for the three different types of subjects
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the dummy of large groups (N = 50 or 100). In this analysis, we define the types of subjects

with the ranking of the fraction of time (across the five minutes) in which a subject is most

connected in a round.12 The most connected individual is the subject who receives the

most links for the largest fraction of time. The 2nd most connected individual is similarly

defined. We refer to the rest of subjects as the ‘others’.

Table 3 reports the regression results after controlling for round dummies, demographic

information, comprehension test score, experimental measures of risk aversion and altruism,

and personality. Robust standard errors clustered by individual subject are reported.

Average efforts and outdegrees for each type of subjects in the small groups (N = 4 and

8) are also reported for comparison.

We observe statistically significant and large treatment effect on efforts and outdegree.

The most connected subject chose 68% more effort and about one link more in the large

groups as compared to the small groups. The 2nd most connected subject made 173%

more effort in the large groups than in the small groups. These patterns confirm that

competition is more intense in the large groups.13

These effects of group size on subjects’ behavior in turn have large effects on their

payoffs. Table 4 reports median regression results on the effects of scale on individual

median payoffs.14 As expected, the two most connected subjects earned substantially less

in the large groups than in the small groups: 27% less for the most connected subject,

albeit less strongly significant, and 55% less for the 2nd most connected subject. 15 And

thanks to the intense competition of the two most connected subjects, the other subjects

earned 44% more in the large groups than in the small groups.

The discussion on individual behavior, the competition dynamics, and payoffs is sum-

marized as follows.

Result 3 An increase in group size intensifies the competition between the two most

12Figure 21 in Online Appendix F.2 presents histograms showing the time fraction of different efforts over
5 minutes for the three different types of subjects across group sizes in the baseline treatment. The two
most connected subjects in the large groups chose the maximum effort level, 20, for the majority of time,
whereas they in the small groups chose significantly less with the mode of the most connected subject’s
effort being around the equilibrium effort level, 9

13Tables 9 and 10 in Online Appendix F.1 report the replications of Table 3 by splitting the two large
groups. The results remain similar with each of the large groups.

14Due to outliers of payoffs, we conduct median regression analysis with median payoffs.
15Tables 11 and 12 in Online Appendix F.1 report the replications of Table 4 by splitting the two large

groups. The negative effects of large group on median payoffs for the two most connected subjects are
stronger in N = 50 than in N = 100.
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Table 3: Scale effects on effort and outdegree in the baseline treatments

Mean effort Mean outdegree

most 2nd most others most 2nd most others
connected connected connected connected

Large group 6.00*** 9.04*** 0.62* 1.03*** 0.75* 0.24***
(1.05) (1.10) (0.32) (0.35) (0.40) (0.05)

Average in
small group 8.77 5.24 2.65 0.20 0.62 0.90
Number of
observations 75 75 2590 75 75 2590
R-squared 0.59 0.64 0.04 0.38 0.41 0.03

Notes: Robust standard errors, clustered by individual subject, are reported in parenthesis. *, **, and
*** represent significance at the 10%, 5%, and 1% levels, respectively. All regressions include a constant,
round dummies, age, female, education, comprehension test score, experimental measures of risk aversion
and altruism, and Big 5 personality.

Table 4: Scale effects on payoffs in the baseline treatments

Median payoff

most 2nd most others
connected connected

Large group -23.75* -44.94** 37.12***
(13.25) (18.13) (2.90)

Median in
small group 86.50 81.00 85.00
Number of
observations 75 75 2590
R-squared 0.19 0.23 0.08

Notes: Robust standard errors are reported in parenthesis. *, **, and *** represent significance at the 10%,
5%, and 1% levels, respectively. All regressions include a constant, round dummies, age, female, education,
comprehension test score, experimental measures of risk aversion and altruism, and Big 5 personality.
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connected subjects. It leads to a significant increase in their efforts and outdegree. A

consequence of this is a decline in their payoffs, relative to the other subjects.

5 Payoff Information

We found that, as the group size grows, individuals compete fiercely to become hubs. This

leads them to invest very large amounts and, as a result, their earnings suffer. Indeed, in

some cases the hubs actually make negative earnings!16 This is a striking and somewhat

unexpected outcome. An obvious concern is that the game becomes very complex with the

increased number of players and individuals may not understand the payoff implications of

different choices. To examine the scope of this idea, we consider a design in which subjects

are shown the payoffs of everyone. This section presents the findings for this treatment.

5.1 Macroscopic Patterns

Figure 13 begins by presenting the average of Lorenz curves and Gini coefficients of indegree

across seconds of the last five minutes of the game, across rounds, and across groups in the

payoff information treatment. We again observe the aggregate effect of scale on indegree

distribution in the payoff information treatment, albeit to a lesser degree compared to

the baseline treatments. The Gini coefficients are larger in the large group sizes than

in the small group sizes: 61% for PayInfo4, 77% for PayInfo8, 84% for PayInfo50, and

81% for PayInfo100. Comparing these statistics from the baseline treatments, we observe

an increase of Gini coefficient in PayInfo8 relative to Baseline8 and a decrease of this in

PayInfo100 relative to Baseline100. In spite of this, we observe a statistical difference

in this measure of specialization of linking between PayInfo4 and each of PayInfo50 and

PayInfo100 (p-value < 0.01 from t-test with the group-level average data). These scale

effects are also seen in the cumulative distributions of the time fraction of being most

connected and mean indegree ratio (see Online Appendix F.2).

Turning to efforts, Figure 14 presents the (averaged) Lorenz curves and Gini coefficients

across groups. The scale effects we see are similar to what we observed for the baseline

treatment. The Gini coefficient increases in group size: 38% for PayInfo4, 57% for PayInfo8,

74% for PayInfo50, and 74% for PayInfo100. We observe a statistical difference in this

16We observe that 25% (13%) of the 1st most connected subject’s sample in the Baseline50 (Baseline100)
earned negative earnings. There is no incidence of negative earnings for the most connected subject in the
small group treatments. Negative earnings are often made by excessive efforts and multiple links.
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Figure 13: Lorenz curves and Gini coefficients of indegrees: Payoff Information treatments

measure of specialization of efforts between PayInfo4 and each of PayInfo50 and PayInfo100

(p-value < 0.01 from t-test with the group-level average data) and between PayInfo8 and

PayInfo50 (p-value < 0.04). We also observe similar scale effects with the cumulative

distributions of mean effort ratio (see Online Appendix F.2).

We next consider the relation between efforts and linking and the relation between

linking and payoff in the payoff information treatments. As in the baseline treatments in

Section 4.1, we run linear regression analysis of mean indegree ratio on efforts interacted

with the dummies for small groups and large groups and a median regression of (median)

payoffs on mean indegree ratio interacted with the same dummies for small groups and

large groups. Table 5 reports the regression results with and without controlling the set of

additional variables. Robust standard errors, clustered by individual subject, are reported

in parenthesis.

Firstly, starting with the regression results about the large group payoff information

treatments, we find that the relation between efforts and linking is significantly positive

but relatively weak. On the other hand, the relation between linking and payoff in the

large group treatments is strongly positive. Overall, we interpret that showing information

on others’ payoff makes subjects choose efforts cautiously and leads to the relation between
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Figure 14: Lorenz curves and Gini coefficients of Efforts: Payoff Information treatment

Table 5: Regression analysis when information on others’ payoff is observable

Indegree ratio (%) Median payoff

(1) (2) (1) (2)

Effort × Small group 5.42*** 5.37***
(0.55) (0.55)

Effort × Large group 0.32*** 0.32***
(0.06) (0.06)

Indegree ratio (%) × Small group 0.26** 0.28***
(0.12) (0.11)

Indegree ratio (%) × Large group 1.81*** 1.75***
(0.16) (0.12)

Additional controls No Yes No Yes

Number of observations 2740 2740 2740 2740
R-squared 0.521 0.523 0.002 0.015

Notes: Robust standard errors, clustered by individual subject, are reported in parenthesis. *, **, and
*** represent significance at the 10%, 5%, and 1% levels, respectively. All regressions include a constant,
a dummy for large group, and dummies for rounds. Additional controls include age, female, education,
comprehension test score, experimental measures of risk aversion and altruism, and Big 5 personality.
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linking and payoff which is predicted by the pure-connector equilibrium.

We next look at the regression results about the small group payoff information treat-

ments. As in the baseline treatments, we find a strong and positive association between

efforts and linking in the small group payoff information treatment. This pattern is in line

with the corresponding prediction of the pure-influencer equilibrium. When we analyze

the relation between linking and payoff, we observe a relatively weak and positive relation

between linking and payoff.

These observations are summarized as follows.

Result 4 (i) Specialization in linking and efforts continues to hold in the payoff informa-

tion treatments. (ii) In the small groups, the correlation between linking and effort

is strongly positive, while the correlation between linking and payoff is weak. (iii) In

the large groups, there is a strongly positive correlation between linking and payoffs,

while the correlation between efforts and linking is weak.

A comparison of Result 4 with Result 2 reveals that growing group size increases spe-

cialization in linking and efforts under both the baseline and the payoff treatment. The

second finding is that payoff information interacts powerfully with scale: the negative cor-

relation between degrees and payoffs is reversed, subjects make more cautious effort choices

and move away from a pure influencer outcome towards a pure connector outcome.

We now examine the decision rules that give rise to these scale and payoff information

effects.

5.2 Individual Behavior and Competition Dynamics

We start with Figure 15 that presents the time series of average efforts (the end of the trial

minute is represented by the vertical dotted line) for the three different types of subjects

identified at every second in each of the group sizes. Compared to Figure 11 in the baseline

treatments, we observe that competition dynamics in the large group payoff information

treatments is quite different: the time series of efforts made by two most connected subjects

are substantially lower when information on others’ payoffs is visible. By contrast, in the

small groups, the dynamics of efforts is similar across the payoff information treatment

and the baseline. The behavior of ‘other’ subjects is similar across the two information

treatment and across different group sizes.
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(a) PayInfo4 (b) PayInfo8

(c) PayInfo50 (d) PayInfo100

Figure 15: Time series of efforts in the payoff information treatment
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(a) PayInfo4 (b) PayInfo8

(c) PayInfo50 (d) PayInfo100

Figure 16: Time series of median payoffs in the payoff information treatment

Figure 16 presents time series of median payoffs for the three types of subjects in the

payoff information treatment. We would like to compare this figure with Figure 12 that

summarizes the outcomes in the baseline treatments: this comparison reveals that there is a

sharp increase in the payoffs of the most connected subjects in the large groups. In the small

groups, the payoffs are similar across the two information treatments. Putting together

the observations from Figure 15 and Figure 16, we are led to conclude that the availability

of information on others’ payoffs leads to lower efforts by the two most connected subjects

and this in turn creates large payoff gains for them.

We next conduct linear regression analyses of mean efforts and outdegree made by each
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type of subjects on the dummies of payoff information and large group (N = 50 or 100)

and their interaction dummy. As was done in Table 3, we define each type using the time

fraction of being most connected in the 5 minutes.17

Table 6 reports the regression results controlling for round dummies, demographic in-

formation, comprehension test score, experimental measures of risk aversion and altruism,

and personality. Average efforts and outdegrees for each type of subjects in the large groups

(N = 50 or 100) baseline treatment are also reported for comparison. The coefficient of the

interaction dummy captures the difference-in-differences effect for the treatments of large

group and payoff information. On the other hand, the coefficient of the payoff information

describes the payoff information effect in the small groups.

In large groups, we observe a significantly negative effect of payoff information on efforts.

Compared to the corresponding subject type in the large group baseline treatments, the

most connected subject makes 61% less effort and the 2nd most connected subject makes

68% less effort. The rest of subjects also made 28% less effort in the large group payoff

information treatments.18 Hence, all the subjects in the large groups lowered their efforts

when information on others’ payoffs is available. In contrast, in the small groups, subjects’

efforts did not respond to the availability of information on others’ payoffs.

We then proceed to check the effect of payoff information on subjects’ payoffs. Table

7 reports the median regression results of payoffs on the dummies of payoff information

and large group as well as their interaction with the same set of control variables as in

Table 6. We observe substantial impacts of payoff information on subjects’ earnings in the

large groups. The median payoffs increase by 202% and 260%, respectively, for the most

connected subject and the 2nd most connected subject. In contrast, we observe a 11%

drop of the payoffs for the other subjects.19

Result 5 (i). In the small groups, subjects do not change efforts and linking behavior

17Figure 22 in Online Appendix F presents histograms showing the time fraction of different efforts over
5 minutes for the three different types of subjects across group sizes in the payoff information treatment.
We observe a drastic change of efforts in the large groups: in the payoff information treatments, the two
most connected subjects substantially lower their level of efforts and the unique mode of the distribution
is at zero effort. On the other hand, we observe little change of efforts in the small group sizes by showing
information on others’ payoffs.

18Tables 14 and 15 in Online Appendix F.1 replicate Table 6 by considering N = 50 and N = 100
separately. The negative effect of payoff information remain similar in each case.

19Tables 16 and 17 in Online Appendix F.1 report the replication of Table 7 by considering the cases
of N = 50 and N = 100 separately. The results remain overall similar although the negative effect of
payoff information for the most connected subject in N = 100 is only about 61% increase and imprecised
estimated.
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Table 6: Treatment effects on effort and outdegree

Mean effort Mean outdegree

most 2nd most others most 2nd most others
connected connected connected connected

Payoff info -0.75 0.52 0.00 -0.05 0.24 0.05
(0.77) (0.70) (0.36) (0.84) (0.18) (0.07)

Large group 6.30*** 8.41*** 0.62** 1.14 0.94*** 0.25***
(1.04) (1.19) (0.30) (0.93) (0.33) (0.05)

Payoff info × Large group -9.24*** -9.00*** -0.91** 2.34 -0.80** -0.01
(1.41) (1.63) (0.39) (2.42) (0.39) (0.07)

Average in
large group baseline 15.12 13.22 3.22 1.90 1.32 1.12
Number of
observations 150 150 5180 150 150 5180
R-squared 0.53 0.51 0.05 0.43 0.34 0.04

Notes: Robust standard errors, clustered by individual subject, are reported in parenthesis. *, **, and
*** represent significance at the 10%, 5%, and 1% levels, respectively. All regressions include a constant,
round dummies, age, female, education, comprehension test score, experimental measures of risk aversion
and altruism, and Big 5 personality.
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Table 7: Treatment effects on payoffs

Median payoff

most 2nd most others
connected connected

Payoff info 6.71 -12.75*** -10.56***
(11.54) (4.53) (1.97)

Large group -30.33* -42.76** 36.20***
(17.08) (17.34) (1.90)

Payoff info × Large group 119.24*** 120.76*** -14.07***
(29.18) (29.02) (2.30)

Median in
large group baseline 59.00 47.00 126.50
Number of
observations 150 150 5180
R-squared 0.09 0.17 0.09

Notes: Robust standard errors are reported in parenthesis. *, **, and *** represent significance at the 10%,
5%, and 1% levels, respectively. All regressions include a constant, round dummies, age, female, education,
comprehension test score, experimental measures of risk aversion and altruism, and Big 5 personality.
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significantly in response to the availability of information on others’ subjects. (ii).

In the large groups, the two most connected individuals make substantially lower

efforts in the payoff information treatment as compared to the baseline treatment.

This results in large payoff gains for them.

We are led to the view that, when groups are large, it is difficult for a subject to keep

track of the payoff implications of different choices. When information on payoffs of others

is not directly shown, some subjects are willing to make large efforts in order to attract

links from others. In doing so, these subjects appear not to understand that these large

efforts lead to much lower payoffs. However, when information on others’ payoffs is made

directly observable, individuals become more cautious in their effort decisions. This is in

contrast with what we observe in small groups: there subjects are able to keep track of the

payoff implications of their effort more accurately and the impact of showing information

on everyone’s payoffs has relatively small impact on subjects’ effort behavior.

6 Matching Effort Dynamics with Learning Rules

The effort dynamics presented in Figures 11 and 15 bring out two general points: one, they

show large effects of group size and payoff information on the behavior of the two most

connected individuals. Two, these figures show that other – poorly connected – subjects

behave similarly across the group sizes and information treatments: they make low effort

that is declining over time.20 Consequently, in what follows, we focus on the behavior of

the two most connected individuals. We will argue that their behavior fits well with a

decision rule that combines myopic best response and high degree seeking.

Let {(xit, Dit)}360
t=1 denote the sample of individual i’s effort and indegree over periods,

t = 1, ..., 360. We use the sample of two most connected individuals i and j who compete

to be a hub. Because the computer screen was updated every 5 seconds or whenever the

individual made a decision, we allow 3 seconds time lag in defining effort levels predicted

by the learning rule.21 The learning rule we consider has two parameters (θ and x) to be

estimated from the data, with the following features:

20Figures 27 and 28 in the Online Appendix F.2 present the effort dynamics of less connected subjects
and compare them to their myopic best response efforts. Myopic best response (with some minor noise)
can approximate the observed behavior.

21Results presented in this section are robust to different values of time lag around 5 seconds.
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xit (θi, xi) =


xi

xjt−3

xmbr,t

if

if

if

|Di,t−3 −Dj,t−3| ≤ θi, xit−3 > xjt−3

|Di,t−3 −Dj,t−3| ≤ θi, xit−3 ≤ xjt−3

|Di,t−3 −Dj,t−3| > θi

This decision rule has two features that are worth noting. First, competition for hub

status is captured by the difference between indegrees obtained by the two individuals.

Specifically, if the gap between their indegrees is larger than θ, the competition is no

longer active, either because an individual is sufficiently ahead of the other or has fallen

too far behind. In this situation, the individual chooses an effort predicted by myopic best

response, xmbr. The second part of the rule applies when the two players are in competition

to become a hub: in this situation, the individual chooses either x if he chose a higher effort

than the other or, otherwise, imitates the other’s (higher) effort.

We estimate the two parameters, θi and xi, for each individual i by minimizing the

sum of the distance between observed efforts and those predicted by the learning rule. In

order to assess a goodness of fit of the learning rule, we compare the time series of observed

efforts with those predicted by estimated learning rules.

Figure 17 and Figure 18 present the fitting of our learning rule to observed effort

dynamics of the most connected individual during the last 5 minutes across treatments of

group size and payoff information. The black-color dashed line represents effort dynamics

observed in the experimental data. The blue-color solid line describes the dynamics of

efforts predicted by the estimated learning rules. For the purpose of comparison, we also

draw the time series of efforts predicted by myopic best response (the red-color dotted

line). These figures show that our decision rule provides a good fit for the effort dynamics

in the experiment; this is specially so if we compare it with the myopic best response rule.

In the large group baseline treatments, the two individuals compete strongly by choosing

effort close to the maximum level of effort at the start (of the payoff relevant period) and

decrease their efforts over time. The learning rule we propose captures such patterns of

effort dynamics closely. On the other hand, in the large payoff information treatments, the

two individuals tend to start with low efforts and lower their efforts slightly over time. The

learning rule captures this pattern of efforts. The close fit is obtained through different

estimates on the two parameters of the decision rule – θ and xi – as we vary scale and

payoff information.22

22Table 18 in Online Appendix F.1 presents the estimation results of the parameters governing the
learning rules across the treatments.
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(a) Baseline4 (b) PayInfo4

(c) Baseline8 (d) PayInfo8

Figure 17: Fitting effort dynamics with learning rules: most connected individual

Figure 25 and Figure 26 in Online Appendix F.2 report the same kind of figures for the

second most connected individual. The figures show that the learning rule also performs

well in fitting their effort dynamics.
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(a) Baseline50 (b) PayInfo50

(c) Baseline100 (d) PayInfo100

Figure 18: Fitting effort dynamics with learning rules: most connected individual (cont.)
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7 Conclusion

There is a large body of research that describes the structure of large empirical networks.

A recurring theme in this work is that networks exhibit great inequality in connections.

The economic theory of network formation shows that the trade-off between the costs of

linking and the benefits of direct and indirect links is resolved in strategic models in favor

of unequal networks. However, experiments on these models show that subjects do not

form such networks. This mismatch between the theory and the experimental evidence

provides the motivation for our paper.

We develop a new platform for the study of network formation. The platform allows for

continuous time linking and effort choice and it allows for large scale experiments (up to

100 subjects). The paper presents an experiment on this platform; we test the predictions

on specialization on linking and efforts in the model of Galeotti and Goyal [2010].

Our experiments provide strong support for the specialization prediction. Moreover,

and in line with the theory, the specialization is more pronounced in larger groups. The

second finding is that scale interacts powerfully with provision of information on others’s

payoffs. In the treatment where subjects see only their own payoffs as group size grows,

the most connected individuals compete fiercely—they exert large efforts and have small

earnings. By contrast, when a subject sees everyone’s payoffs, as groups size grows, there

is limited competition among highly connected subjects—they exert little effort and have

large earnings. In the former setting, subjects always pick the pure influencer outcome,

while in the latter case they often pick the pure connector outcome. We show that the

treatment effects on effort dynamics can be reconciled with the individual learning rule

that combines myopic best response and a desire to have many connections.
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ONLINE APPENDICES

A Theory

The following proposition shows that, under discrete values of personal effort, a sufficiently

high cost of linking implies a pure influencer equilibrium (for any group size n) and an

approximate pure connector equilibrium (for a sufficiently large group size).

Proposition 2. Suppose payoffs are given by (1), a1 = 1, a2 ∈ (0, 1), ŷ ∈ X = {0, 1, 2, . . . , x},
and c(ŷ + a2 − 1) < k < cŷ.

(a) Every Nash equilibrium s∗ = (x∗, g∗) is such that g∗ is a periphery sponsored star

structure where the hub is a pure influencer investing ŷ and every spoke invests 0.

(b) If n ≥ 2 + ŷ−1
a2

, there exist pure connector ε-equilibria where the hub invests 0 while

m spokes invest 1 and others invest 0 (with m s.t. (m− 1)a2 < ŷ ≤ 1 + (m− 1)a2).

Proof. It follows from Proposition 1 that the pure influencer equilibrium always hold,

regardless of n. Moreover, the pure connector equilibrium holds only if n ≥ 2 + k
a2(cŷ−k) , in

which case it requires every spoke to personally invest ŷ
1+(n−2)a2

. Since c(ŷ + a2 − 1) < k

implies ŷ < k
c +1, we have that n ≥ 2+ k

a2(cŷ−k) > 2+ ŷ−1
a2

, and consequently ŷ
1+(n−2)a2

< 1

for any n ≥ 2 + ŷ−1
a2

. However, since the lowest positive effort that can be made in the

game is 1, no more than m = ŷ−1
a2

+ 2 players (with m < n) can benefit from making such

minimum positive effort. In this case, each of those positive investors accesses (m − 1)a2

from forming a link and therefore earns f(1 + (m− 1)a2)− c−k, which is strictly less than

if they unilaterally deviate by forming no link and investing ŷ since c(ŷ + a2 − 1) < k can

be rewritten as (m−1)a2 <
k
c . As a result, the pure connector outcome is an ε-equilibrium

whenever ε > f(ŷ)− f(1 + (m−1)a2)− c(ŷ−1) where m is the number of investing spokes

such that (m− 1)a2 < ŷ ≤ 1 + (m− 1)a2.

B Network visualization

The experimental software uses the well known Barnes-Hut approximation algorithm as

introduced by Barnes and Hut [1986], which provides a low complexity simulation technique

to compute the forces applied to any node as influenced by every other node in a network.

Such forces are computed through three distinct sources:
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• All other nodes from the network: all nodes apply a repulsion force Fr to each other

to avoid overlaps and allow a sparse visualization of the network. This force is the

only used by Barnes and Hut [1986].

• Connected nodes (with direct links only) in the network: nodes that are linked with

each other apply attractive forces Fs towards each other to allow for visual proximity

of connected nodes.

• Point of origin O: nodes are applied a gravitational force Fcg to a center of origin to

pull the entire network towards the center of the screen. In particular, such a force

allows disconnected components to be within reasonable distance from each other,

and therefore more easily visualized on the screen.

In summary, nodes are attracted by gravity and other nodes they are linked with, and

repulsed by other nodes they are not directly linked with.

The Barnes-Hut algorithm consists in first constructing a quad-tree by recursively di-

viding the visual space into same size groups such that every node can eventually be

associated with exactly one group based on its visual position (leaf of the tree). Any such

group may however associate several nodes such that the aggregated forces applied from

those nodes can be approximated through a unique force (as if the group of nodes were a

single node). More precisely, starting from the largest group of the Barnes-Hut quad-tree

(the root), the algorithm assesses the distance between a given o and the center of mass

of that group of nodes: if the distance is sufficiently large (according to a given exogenous

threshold), then the group of nodes is considered as a single node, else the process is iter-

ated by considering subgroups from the tree (nodes sufficiently close to o will therefore be

considered independently). Such approximation is known to considerably reduce computa-

tional complexity for computing forces applied to every node. The root of the Barnes-Hut

quad-tree represents the whole visual space.

More formally, we define the distance between a node o and a node m (or group of

nodes represented as a single node m) as dist(o,m). The repulsion force applied to node o

by m is determined as

Fr(o,m) =
Kg.Mm

dist(o,m)3
(3)
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Where Kg captures the gravitational constant such that Kg < 0 to obtain the repulsion

effect. In Equations (3), it is assumed that the mass of every node is 1. However, the

mass Mm may be larger when representing a group of nodes (Mm represents the number of

nodes in that group, as described by the Barnes-Hut algorithm). Similarly, the attraction

force applied to node o by m corresponds to

Fs(o,m) =
Ks

dist(o,m)
.


0 if o and m are not linked

(L− dist(o,m)) if o forms a link with m

(dist(o,m)− L) if m forms a link with o

(4)

Where L defines the resting length of an edge, and Ks the spring gravity constant such

that Ks > 0 to obtain the attraction effect. Note from Equation (4) that the force applied

on two linked nodes is symmetric, i.e., both nodes are equally attracted by each other.

Finally, we define the central gravity force applied to node o as

Fcg(o) =
Kcg

dist(o,O)
(5)

Where O represents the position of the point of origin, and Kcg the central gravity

constant such that Kcg > 0 to obtain the attraction effect.

The net force vector applied to any node o resulting from the above three forces is then:

Fx(o) = dx(o,O).Fcg(o) +
∑

m∈N\{o}

dx(o,m).(Fr(o,m) + Fs(o,m)) (6)

Fy(o) = dy(o,O).Fcg(o) +
∑

m∈N\{o}

dy(o,m).(Fr(o,m) + Fs(o,m)) (7)

The above static properties describe the net forces that are applied in the network, given

the positions of all nodes and the links between nodes. The resulting dynamic update of the

network is achieved by computing the corresponding velocity of nodes on both coordinate

axes. More precisely, the velocity applied to a node o at a time t on both coordinate axes
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(x and y) is determined as follows:

Vx(o, t) = max(Vmax, (Fx(o)−D.Vx(o, t− 1)).T + Vx(o, t− 1)) (8)

Vy(o, t) = max(Vmax, (Fy(o)−D.Vy(o, t− 1)).T + Vy(o, t− 1)) (9)

Where D represents the damping factor determining how much of the velocity from the

previous physics simulation iteration carries over to the next iteration, T the time step for

the discrete simulation, and Vmax the maximum velocity of nodes (used to increase time

to stabilization). We assume no initial velocity, i.e., Vx(o, 0) = Vy(o, 0) = 0. Given such

velocity, the position update of a node o at any time t directly follows:

x(o, t) = x(o, t− 1) + Vx(o, t).T (10)

y(o, t) = y(o, t− 1) + Vy(o, t).T (11)

The discrete simulation terminates and node o stabilizes whenever the associated veloc-

ity (on both coordinate axes) becomes sufficiently low with respect to some given threshold

(Vmin). More precisely, the convergence rules are:

Vx(o, t) < Vmin (12)

Vy(o, t) < Vmin (13)

Model parameter setting used in the experiment:

• Kg = −2000

• Ks = 0.04

• Kcg = 0.3

• L = 95

• D = 0.09

• T = 0.5

• Vmin = 0.3

• Vmax = 10
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C Experimental instructions

[In the following instructions, N is to be replaced with any value from {3, 7, 49, 99} depend-

ing on the treatment]

Please read the following instructions carefully. These instructions are the same

for all the participants. The instructions state everything you need to know in order to

participate in the experiment. If you have any questions, please raise your hand. One of

the experimenters will answer your question.

You can earn money by earning points during the experiment. The number of points

that you earn depends on your own choices and the choices of other participants. At the

end of the experiment, the total number of points that you have earned will be exchanged

at the following exchange rate:

100 points = 1 Euro

The money you earn will be paid out in cash at the end of the experiment. The other

participants will not see how much you earned.

Details of the experiment

The experiment consists of 6 (six) independent rounds of the same form. The first

round is for practice and does not count for your payment. The next 5 rounds will be

counted for your payment.

At the beginning of each round, you will be grouped with N other participants. This

group will remain fixed throughout the 6 rounds. Each of the participants will be randomly

assigned an identification number of the form “Px” where x is a number between 1 and N.

Those numbers will be randomly changed across every round of the experiment. The actual

identity of the participants will not be revealed to you during or after the experiment. The

participants will always be represented as blue circles on the decision screen. You are

always represented as a yellow circle identified as “ME”.

Each round will last 6 (six) mins: the first minute will be a trial period, only

the latter 5 minutes will be relevant for the earnings. Your earnings in a given

round will be based on everyone’s choice at a randomly selected moment in the last

5 mins of the round. In other words, any decision made before or after that randomly
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chosen moment will not be used to determine your points. This precise moment will be

announced to everyone only at the end of the round, along with the corresponding behavior

and earnings.

At the beginning of the experiment, you are given an initial balance of 500 points.

Your final earnings at the end of the experiment will consist of the sum of points you earn

across the 5 last rounds plus this initial capital (the first round will be used to familiarize

yourself with the game and will have no influence on your earnings). Note that if your final

earnings (i.e., the sum of your earnings across the 5 last rounds plus the initial endowment)

go below 0, your final earnings will be simply treated as 0.

In each round, every participant will have choose two types of actions:

• How many any units to buy/invest: You may buy at most 20 units. Each unit

costs you 11 points.

• Add/delete links with other participants: You are linked with another person

if you form a link with that person or that person forms a link with you (or both).

You do not pay any fee for links formed by others. The people that you are linked

with (regardless of whether you or they form the links) are called your neighbours.

You automatically have access to all units bought by your neighbours as well

as half of the units bought by your neighbours’ neighbours (see below for an

example). Each link you form costs you 95 points.

You may revise your choices at any moment before the round ends. During a round, you

will also be informed about every other participant’s most recent decision (units bought

and formed links), which will be updated every 5 seconds or whenever you change your

own choice.

At any moment, the total number of units you have access to (i.e., units you bought +

units bought by your neighbours + units bought by your neighbours’ neighbours) generates

points for you according to the following figure (for example, accessing 4 units generates

100 points, as shown by the dotted lines):

Moreover, having access to 20+m units generates 216+m points.

The computer screen will be split into two parts:

• The middle side of the screen presents you and your local neighbourhood.

More precisely, you will see your neighbours, the neighbours of your neighbours,
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and the neighbours of neighbours’ neighbours. In other words, you will see the

participants that are up to 3 links away from you.

• The right side of the screen presents participants outside of your local

neighbourhood.

• The left side of the screen presents the code for the players’ net earn-

ings in the network. [Payoff information treatment only] The inner circle of each

node from the middle or right part side of the screen is characterized by some color,

which varies from green (high positive net payoff) to red (high negative net payoff)

depending on the player’s corresponding net earnings.

Each node is described by their identification number “Px” and the number of units

that they buy. Identification numbers “Px” are randomly assigned in every round. There-

fore, every player is likely to have a different ID in different rounds. In the initial state of

the network, nobody buys any unit and no link is formed.

Tutorial

Please follow this simple tutorial simulating a simple virtual scenario on the computer

screen. In this tutorial you are interacting with 9 other players. In the initial state, you

are not linked with anyone and you do not buy any units: you start at 0 points.

1. The slider allows you to choose how many units you wish to buy yourself. For

example, buying 4 units costs you 44 points (= 4 units × 11 points, in red on the
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screen) and generates 100 points (according to the figure from the previous page, in

green on the screen).

2. Initially, the nodes on the right side of the screen represent all other players (in this

simulation, those players are not real people). The size of node reflects the total

number of units bought by that node and the units accessed via the network. For

example, P1-P4 are the largest nodes because these players have access to the most

units.

3. You may choose to form a link with any player by simply double clicking on the

corresponding node. For example, forming a link with P4 reveals that P1, P2, and

P3 each form a link with P4, and P9 forms a link with P1. Forming a link with P4

costs you 95 points (in red on the screen), but it also gives you access to 8.5 units (7

from P4 + 0.5 × 1 from P1 + 0.5 × 1 from P2 + 0.5 × 1 from P3), which generates

174 points (according to the above figure, describing the benefit function in green on

the screen). If you do not buy any additional unit yourself, your resulting net payoff

is 79 points (= 174 points − 1 link × 95 points).

4. After forming a link with P4, you observe that some nodes remain unobserved (P5,

P6, P7, and P8 on the right side). However, forming an additional link with P9 (by

double clicking on the corresponding node) reveals that those nodes all form a link

with P9. You were not allowed to observe them before because they were 4 nodes

away from you (for example, P5 were connected to you via P4, P1, and P9). You can

now observe them because they are only 2 nodes away from you (for example, P5 is

connected to you via P9 only). Remember that you can only see players that are at

most 3 nodes away. Assuming you still do not buy any unit yourself, your resulting

net payoff is 16 points (= 206 points from accessing 12.5 units − 2 links ×
95 points).

5. Alternatively, you may choose to remove a link that you previously formed by double

clicking on the corresponding node. For example, after forming links with P4 and P9,

removing the link with P4 leads to players P2 and P3 becoming unobserved again,

as they are now more than 3 nodes away from you.

6. Note that varying the amount of units you buy directly affects the sizes of the nodes

you are linked with as well as their neighbours. Indeed, the amount of units they
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each have access to includes the units you buy (the larger this amount, the larger the

node).

7. You may also shape the visual structure of the network by dragging nodes as it pleases

you.

Summary

Here is a brief description of information available on the decision screen:

1. The timer indicates elapsed time since the beginning of the round. Any round lasts

6 mins. A moment will be randomly selected in the last 5 mins to determine

everyone’s payoff. The time displayed will turn red when entering this interval.

2. Only decisions made at the randomly selected moment in the round matter

to directly determine the earnings. The payoff may be negative at the end of a round.

However, starting from a balance of 500 pts, any negative total of points at the end

of the 5 rounds will be equivalent to 0 point.

3. The amount of units you have access is equal to the sum of (1) the units bought by

you, (2) the units bought by your neighbours, and (3) half of the units bought by

your neighbours’ neighbours.

4. You are represented as the yellow node, and your ID is “ME”.

5. Every other node’s ID is represented as “Px” (inside the node) where x is a number.

Every node has a unique ID, which is randomly reassigned in every round.

6. The size of each node determines how many units that node has access to (units

bought personally plus units accessed from others, directly and indirectly).

7. The amount of units bought personally by a player is mentioned inside the corre-

sponding node.

8. [Payoff information treatment only] The color of each node determines that node’s

net earnings according to the code depicted on the left side of the screen.
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D Network game interface

The decision making interface used in the experiment is similar across all treatments. More

specifically, Figure 19 illustrates a (fictitious) example of a subject’s computer screen in

Treatment Baseline100. The top part of the screen depicts information about the timer

indicating how much time has lapsed in the current round (the timer turns red when

payoffs become effective, i.e., after more than 1 minute), the subject’s own effort, which

can be modified via the slider, and a comprehensive description of the subject’s own payoff.

Information about payoffs include gross earnings (output of function f(.)), the cost of effort

(own effort multiplied by c), the cost of linking (number of links multiplied by k), and the

net earnings (costs substracted from gross earnings). The bottom part of the screen shows

detailed information about the network (the subject’s node is highlighted in yellow): the

subject’s local network is represented on the left, other players outside of the subject’s

local network are found on the right. Note that a scrolldown feature is available for the

subject to explore every player outside of his/her local network. Baseline treatments with

smaller group sizes use the very same interface (the scrolldown feature is not available then

because all players are then directly visible on the screen).

Similarly, Figure 20 illustrates a (fictitious) example of a subject’s computer screen

in Treatment PayInfo100. The only difference with the decision screen from Figure 19

is about the wider range of colors used to represent the border of each node depicted in

the network. Any given node’s color is directly associated with that node’s corresponding

payoff, according to the scale presented on the left part of the screen. payoff-information

treatments with smaller group sizes use the very same interface.
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Figure 19: Example of decision screen for Treatment Baseline100
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Figure 20: Example of decision screen for Treatment PayInfo100
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E Questionnaires

At the end of the experiment, subjects answered a set of surveys aiming at measuring

various types of individual differences. More precisely, incentivized measures of compre-

hension in network game, social preferences, and risk preferences were used. Finally non

incentivized personality measures were used before which subjects filled up a debriefing

questionnaire that includes demographics information.

E.1 Comprehension check

In order to assess the subjects’ comprehension of the network game played during the

experiment, we provided 5 questions, each of which with a unique correct answer. Each

correct answer was rewarded with 0.1 euro for the subject.

The following first 2 questions were used across all treatments (correct answers are “11

pts” to question 1, and “95 pts” to question 2).

The third question depicted below was used in the payoff information treatment with

n = 50 (the correct answer is “P36”). This question was adapted in all other treatments

by matching the number of nodes to the group size in the experiment, and by removing

the colors in the baseline treatments.

The following questions 4 and 5 below were also used in the payoff information treatment

with n = 50 (correct answers are “P1” for both questions 4 and 5). These questions were
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however adapted only in other treatments where n > 4 by again matching the number

of nodes to the group size in the experiment. The reason for filtering the small group

treatments (with n = 4) is that the limited number of nodes did not allow representing

the corresponding scenarios. As before, these questions were also adapted to the baseline

treatments by simply removing the colors to match the design of the actual game that

subjects played.
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E.2 Social preferences

The social preferences measure was adapted from Andreoni and Miller [2002] and involved

a series of five money allocation tasks between the decision maker and some anonymous

external participants of another experiment at the LINEEX lab (corresponding payments

were therefore made to these external passive participants). The five tasks used in our

experiment were represented through sliders as shown in the following figure:
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Note however that each question was presented in a different screen, and the order

of presentation was randomized for every subject. Furthermore, 50 points were worth 1

euro both the subject, and the other anonymous external participant. Detailed instructions

provided to the subjects, as well as a screenshot highlighting one of the above five questions

are described below.

Instructions: You are asked to answer a series of 5 questions, each of which consists of

selecting an allocation of points that you most prefer between yourself and an anonymous

randomly selected person who is participating to a different experiment in this lab. At

the end of the study, we will randomly select your allocation for 1 of the 5 questions to

determine the payments for both you and the other person in this part. Your decisions will

remain unknown to the other persons you are matched with.

E.3 Risk preferences

The risk preference measure was adapted from Holt and Laury [2002] and consisted of a

series of five binary choices between lotteries, presented as in the figure below.
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E.4 Personality test

Non incentivized measures were used through a simplified version of the Big Five person-

ality inventory test adapted from Rammstedt and John [2007], as shown below.
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F Appendix tables and figures

F.1 Regression tables

F.2 Appendix figures
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Table 8: Regression analysis in the baseline treatments: time fraction

Time fraction of being Median payoff
most connected (%)

(1) (2) (1) (2)

Effort × Small group 5.30*** 5.29***
(0.50) (0.50)

Effort × Large group 0.84*** 0.83***
(0.13) (0.13)

Indegree ratio (%) × Small group -0.02 0.04
(0.13) (0.15)

Indegree ratio (%) × Large group -1.10*** -1.15***
(0.13) (0.15)

Additional controls No Yes No Yes

Number of observations 2740 2740 2740 2740
R-squared 0.407 0.409 0.086 0.136

Notes: Robust standard errors, clustered by individual subject, are reported in parenthesis. *, **, and
*** represent significance at the 10%, 5%, and 1% levels, respectively. All regressions include a constant,
a dummy for large group, and dummies for rounds. Additional controls include age, female, education,
comprehension test score, experimental measures of risk aversion and altruism, and Big 5 personality.

Table 9: Scale effects on effort and outdegree in the baseline treatments

Mean effort Mean outdegree

most 2nd most others most 2nd most others
connected connected connected connected

N = 50 6.61*** 7.27*** 0.32 0.99*** 0.74 0.15***
(1.08) (1.41) (0.32) (0.28) (0.52) (0.06)

Average in
small group 8.77 5.24 2.65 0.20 0.62 0.90
Number of
observations 60 60 1120 60 60 1120
R-squared 0.61 0.59 0.04 0.49 0.47 0.04

Notes: Robust standard errors, clustered by individual subject, are reported in parenthesis. *, **, and
*** represent significance at the 10%, 5%, and 1% levels, respectively. All regressions include a constant,
round dummies, age, female, education, comprehension test score, experimental measures of risk aversion
and altruism, and Big 5 personality.
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Table 10: Scale effects on effort and outdegree in the baseline treatments

Mean effort Mean outdegree

most 2nd most others most 2nd most others
connected connected connected connected

N = 100 6.64*** 11.06*** 0.88*** 2.03** 0.72* 0.30***
(1.54) (1.10) (0.32) (0.77) (0.38) (0.05)

Average in
small group 8.77 5.24 2.65 0.20 0.62 0.90
Number of
observations 55 55 1630 55 55 1630
R-squared 0.62 0.83 0.04 0.53 0.46 0.06

Notes: Robust standard errors, clustered by individual subject, are reported in parenthesis. *, **, and
*** represent significance at the 10%, 5%, and 1% levels, respectively. All regressions include a constant,
round dummies, age, female, education, comprehension test score, experimental measures of risk aversion
and altruism, and Big 5 personality.

Table 11: Scale effects on payoffs in the baseline treatments

Median payoff

most 2nd most others
connected connected

N = 50 -40.81*** -51.09** 28.82***
(10.20) (23.61) (1.73)

Median in
small group 86.50 81.00 85.00
Number of
observations 60 60 1120
R-squared 0.39 0.23 0.11

Notes: Robust standard errors, clustered by individual subject, are reported in parenthesis. *, **, and
*** represent significance at the 10%, 5%, and 1% levels, respectively. All regressions include a constant,
round dummies, age, female, education, comprehension test score, experimental measures of risk aversion
and altruism, and Big 5 personality.
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Table 12: Scale effects on payoffs in the baseline treatments

Median payoff

most 2nd most others
connected connected

N = 100 16.54 -25.41* 53.20***
(29.95) (14.54) (2.77)

Median in
small group 86.50 81.00 85.00
Number of
observations 55 55 1630
R-squared 0.20 0.38 0.14

Notes: Robust standard errors, clustered by individual subject, are reported in parenthesis. *, **, and
*** represent significance at the 10%, 5%, and 1% levels, respectively. All regressions include a constant,
round dummies, age, female, education, comprehension test score, experimental measures of risk aversion
and altruism, and Big 5 personality.

Table 13: Regression analysis when information on others’ payoff is observable: time frac-
tion

Time fraction of being Median payoff
most connected (%)

(1) (2) (1) (2)

Effort × Small group 6.20*** 6.13***
(0.71) (0.71)

Effort × Large group 0.43*** 0.43***
(0.15) (0.15)

Time fraction (%) × Small group 0.24** 0.28***
(0.11) (0.07)

Time fraction (%) × Large group 1.15*** 1.13***
(0.09) (0.14)

Additional controls No Yes No Yes

Number of observations 2740 2740 2740 2740
R-squared 0.302 0.305 0.010 0.004

Notes: Robust standard errors, clustered by individual subject, are reported in parenthesis. *, **, and
*** represent significance at the 10%, 5%, and 1% levels, respectively. All regressions include a constant,
a dummy for large group, and dummies for rounds. Additional controls include age, female, education,
comprehension test score, experimental measures of risk aversion and altruism, and Big 5 personality.
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Table 14: Treatment effects on effort and outdegree

Mean effort Mean outdegree

most 2nd most others most 2nd most others
connected connected connected connected

Payoff info -1.35* 0.21 -0.04 0.74* 0.29* 0.05
(0.76) (0.65) (0.37) (0.45) (0.17) (0.07)

N = 50 6.53*** 6.48*** 0.30 1.48*** 0.95** 0.17***
(1.21) (1.37) (0.33) (0.36) (0.44) (0.06)

Payoff info × N = 50 -8.90*** -5.72*** -0.39 -0.29 0.00 -0.10
(1.83) (1.93) (0.44) (0.57) (0.54) (0.08)

Average in
Baseline50 15.70 11.33 2.84 1.18 1.28 1.04
Number of
observations 120 120 2240 120 120 2240
R-squared 0.54 0.38 0.04 0.43 0.41 0.07

Notes: Robust standard errors, clustered by individual subject, are reported in parenthesis. *, **, and
*** represent significance at the 10%, 5%, and 1% levels, respectively. All regressions include a constant,
round dummies, age, female, education, comprehension test score, experimental measures of risk aversion
and altruism, and Big 5 personality.
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Table 15: Treatment effects on effort and outdegree

Mean effort Mean outdegree

most 2nd most others most 2nd most others
connected connected connected connected

Payoff info -0.55 0.20 0.06 -0.57 0.02 0.03
(0.79) (0.70) (0.36) (0.89) (0.12) (0.07)

N = 100 6.53*** 10.26*** 0.87*** 0.75 0.86** 0.30***
(1.33) (1.48) (0.32) (1.94) (0.34) (0.06)

Payoff info × N = 100 -9.82*** -12.48*** -1.28*** 2.30 -0.89** -0.01
(1.65) (2.01) (0.41) (2.47) (0.37) (0.08)

Average in
Baseline100 14.35 15.73 3.48 2.86 1.40 1.17
Number of
observations 110 110 3260 110 110 3260
R-squared 0.53 0.68 0.07 0.54 0.32 0.04

Notes: Robust standard errors, clustered by individual subject, are reported in parenthesis. *, **, and
*** represent significance at the 10%, 5%, and 1% levels, respectively. All regressions include a constant,
round dummies, age, female, education, comprehension test score, experimental measures of risk aversion
and altruism, and Big 5 personality.
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Table 16: Treatment effects on payoffs

Median payoff

most 2nd most others
connected connected

Payoff info 0.76 -18.73*** -6.07**
(8.94) (4.04) (2.38)

N = 50 -57.53*** -48.79** 29.99***
(11.82) (19.15) (2.46)

Payoff info × N = 50 142.27*** 100.25*** -14.96***
(18.28) (29.02) (2.26)

Median in
Baseline50 48.50 51.00 118.00
Number of
observations 120 120 2240
R-squared 0.21 0.14 0.11

Notes: Robust standard errors are reported in parenthesis. *, **, and *** represent significance at the 10%,
5%, and 1% levels, respectively. All regressions include a constant, round dummies, age, female, education,
comprehension test score, experimental measures of risk aversion and altruism, and Big 5 personality.
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Table 17: Treatment effects on payoffs

Median payoff

most 2nd most others
connected connected

Payoff info -0.64 -15.63*** -11.36***
(12.59) (5.31) (2.05)

N = 100 40.61** -43.22 51.44***
(17.34) (27.99) (1.85)

Payoff info × N = 100 92.09 160.98*** -20.70***
(150.87) (29.02) (2.67)

Median in
Baseline100 153.00 42.50 140.50
Number of
observations 110 110 3260
R-squared 0.07 0.26 0.13

Notes: Robust standard errors are reported in parenthesis. *, **, and *** represent significance at the 10%,
5%, and 1% levels, respectively. All regressions include a constant, round dummies, age, female, education,
comprehension test score, experimental measures of risk aversion and altruism, and Big 5 personality.
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Table 18: Estimation of highly connected subjects’ learning rules

most connected subjects

Base4 Pay4 Base8 Pay8 Base50 Pay50 Base100 Pay100

θi 3.0 2.9 6.4 6.4 44.0 8.4 50.6 40.2
(0.00) (0.00) (0.00) (0.00) (0.00) (0.32) (0.00) (0.65)

xi 10.3 7.5 9.6 8.8 18.7 13.3 16.8 9.3
(0.02) (0.03) (0.02) (0.03) (0.02) (0.21) (0.14) (0.17)

2nd most connected subjects

θi 3.0 2.8 4.3 4.3 27.3 35.2 47.5 21
(0.00) (0.00) (0.00) (0.00) (0.00) (0.42) (0.00) (0.03)

xi 8.8 7.4 9.1 8.2 13.2 12.8 19.5 9.8
(0.01) (0.02) (0.06) (0.03) (0.13) (0.09) (0.02) (0.32)

SSR 376786 156671 306589 273231 724861 864740 1377068 459700

Notes: Bootstrapped standard errors (with 200 replications) are reported in parenthesis.
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(a) the 1st most connected

(b) the 2nd most connected

(c) the others

Figure 21: Distribution of efforts in the baseline treatment
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(a) the 1st most connected

(b) the 2nd most connected

(c) the others

Figure 22: Distribution of efforts in the payoff information treatment
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(a) Time fraction (b) Mean indegree ratio

Figure 23: Distribution of linking: information on others’ payoff

Figure 24: Distribution of Efforts in the payoff information treatments

80



(a) Baseline4 (b) PayInfo4

(c) Baseline8 (d) PayInfo8

Figure 25: Fitting effort dynamics with learning rules: 2nd most connected
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(a) Baseline50 (b) PayInfo50

(c) Baseline100 (d) PayInfo100

Figure 26: Fitting effort dynamics with learning rules: 2nd most connected (cont.)
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(a) Baseline4 (b) PayInfo4

(c) Baseline8 (d) PayInfo8

Figure 27: Fitting effort dynamics with learning rules: others
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(a) Baseline50 (b) PayInfo50

(c) Baseline100 (d) PayInfo100

Figure 28: Fitting effort dynamics with learning rules: others (cont.)
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