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Dominance and innovation: a returns-based
beliefs approach

Chander Velu**', Sriya Iyer® and Jonathan R. Gair®

Do dominant or less dominant firms innovate more? There is considerable research on this question, with theoretical studies based
on game theory and empirical evidence often divided. We provide a new theory that the decisions that concern strategic choice
in innovation may be influenced by expected relative returns. Our approach, which we call the returns-based beliefs approach, is
based upon subjective probabilities. It combines a decision analytic solution concept and Luce’s (Individual Choice Behavior, Wiley:
New York, 1959) probabilistic choice model. We show that the returns-based beliefs approach provides support for the thesis that
dominant firms invest more in research and development (R&D) within an asymmetric mixed-strategy game. Consequently, the
returns-based beliefs approach accords better with recent empirical studies of innovation. Using R&D data across a range of indus-
tries in the UK from 2001 to 2006, we show that firms’ spending on R&D is related more to their own profitability than to that of
their competitors, which is consistent with the returns-based beliefs approach. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

Microsoft, the largest firm in the software industry, is often regarded as one of the most aggressive innovators. It can be
argued that its aggressive innovative stance is partly responsible for the persistence of its large market share in the soft-
ware industry. On the other hand, Kodak, the most dominant firm in traditional film photography, was relatively slow in
embracing the innovations in photography due to digital technology. The relatively lethargic response of Kodak enabled
Canon and Sony to capture the initial market for digital photography [1]. These observations show that the relationship
between dominance and innovation is not intuitively obvious. The academic literature on this topic reflects this. One of the
most contentious and widely debated issues is whether dominant firms will innovate in order to maintain their dominant
position [2]. On this issue, the academic literature depicts sharply contrasting theoretical and empirical evidence.

Arrow [3] postulated that dominant firms are less innovative because of the incentive not to cannibalize their profit
stream. Moorthy [4] showed that a monopolist serving multiple segments might maximize profits by offering fewer prod-
ucts than the available customer segments even if the fixed cost of an additional product offering is zero because of the fear
of cannibalizing its existing profits. On the other hand, Schumpeter [5] had argued that the incentive to innovate is more
than proportionately larger for bigger firms as they have better capability to exploit an innovation. In a similar vein, studies
have shown that a large incumbent might be more innovative in order to preempt a potential entrant from competing away
future profits ([6]; see also the review in [7]). In an attempt to reconcile these competing views, Henderson [8] showed
that the cannibalization effect dominates if the innovation is radical and the preemptive effect dominates if the innovation
is incremental.

Research also shows that there are other factors that might affect the decision of dominant incumbent firms to innovate.
For example, Ghemawat [9] argued that incumbent firms might be reluctant to innovate when there is a high likelihood of
spillover effects in the industry. Amaldoss and Jain [10] showed using a patent race game that in equilibrium a new entrant
firm who has less to benefit from the innovation will invest more aggressively than an incumbent who has more to gain
from the innovation in order to keep the latter indifferent to its different strategies. Recent research shows that whether
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dominant or less dominant firms innovate first depends on whether firms are myopic, if the investments are strategic sub-
stitutes or complements, and if there is free entry into the market [11, 12]. Moreover, empirical evidence on this issue is
divided: Some researchers have shown that dominant firms are more innovative [13] whereas others have shown that less
dominant firms are more innovative [2, 14]. In addition, empirical research on the relationship between dominance and
innovation shows that it is a multifaceted construct where technological expectations can generate differing propensities
to innovate among dominant and less dominant firms [15].

Here, we review how firms allocate resources for innovation. A recent empirical survey that examined firms’ motives
for innovation showed that firms allocate resources for innovation mainly on the basis of the goals set for the year and
available opportunities, followed by the relative attractiveness of individual projects [16]. Competitors’ spending comes a
long way behind at sixth place with only 2% of firms saying that it is important to their decision making (Figure 1). Many
analyses of innovation using game theory use the concept of the Nash equilibrium, which emphasizes strategic interactions
in the presence of competition. In the Nash equilibrium, each firm chooses the action that maximizes their returns subject
to the opponent’s choice and no firm can gain by changing their strategy unilaterally. By contrast, in this paper, we use
an alternative concept. We use a decision theoretic approach where firms form subjective probabilities over the actions of
the firm’s opponent and then choose a mixed-strategy profile over the actions on the basis of the relative returns. In doing
so, we follow the previous research that proposes a decision theoretic solution concept for game theory [17-19]. We use
the probabilistic choice model developed axiomatically by Luce [20]. In particular, we call this the ‘returns-based beliefs’
approach, which is both more sympathetic to and more consistent with the results of the innovation survey. Returns-based
beliefs bring squarely into the picture the emphasis on the relative attractiveness of the firm’s own returns in choosing the
optimal level of investments in innovation projects within a competitive setting. In doing so, we are able to provide an
alternative explanation to the extant literature in game theory that shows why dominant incumbent firms might be more
innovative [13].

Game theory typically describes how managers ought to behave rather than how managers should behave given the
nature of the game and their experiences [18, 21]. Recognizing this weakness, some scholars have argued that what is
needed is an empirically supported psychological theory that makes probabilistic predictions about strategies firms are
likely to use given the nature of the firm and the managers’ psychological makeup [22]. This psychological makeup might
be conditioned by the past experience of managers’ beliefs about an opponent’s play. The managers’ past experience
influences the psychological makeup, which in turn affects how the manager perceives their opponent. This is termed the
‘subjective’ or personal interpretation of probability. Subjective probability is the probability that a manager assigns to
a possible outcome, through some process based on his own judgment [23, p. 4; 24]. An implication of the subjective
probability approach is that the chosen strategy might not be consistent with the equilibrium predictions of an objectively
rational outcome [25]. The firm’s experience is an important determinant of the firm’s expectations, which might lead to
strategies being chosen that are not the Nash equilibrium prediction.

Our returns-based beliefs approach treats beliefs rather than strategies as the primary concept [26, p. 139; 27]. In doing
so, we assume that firms’ subjective beliefs are mutually consistent (coherent). Therefore, consistent with a decision theo-
retic perspective, firms adopt strategies on the basis of their respective subjective beliefs. Our approach weights the firm’s
own returns more than the opponent’s returns in the response function. This is in contrast to the Nash equilibrium where
the best response results in an equilibrium where the opponent’s returns determine the optimal investment decision and
not the firm’s own returns. The returns-based beliefs approach provides support for the thesis that dominant firms invest
more in research and development (R&D) within an asymmetric mixed-strategy game. The returns-based beliefs approach
accords better with the results of the innovation survey shown in Figure 1. We also provide empirical evidence using UK

How innovation money is allocated?

Based on this year's goals and available opportunitites

Based on the relative attra ndividual projects

Based on previous year's innovation spending B % of respondents whose organ-
ization formally assess innova-
tions, n=860

As a percentage of the pre: les

Based on the previous year's performance against innovation metrics

Relative to competitor's spending

Figure 1. Allocation of innovation spending. Source: McKinsey [16].

Copyright © 2011 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2011



Applied Stochastic
Models in Business

C. VELU, S. IYER AND I. R. GAIR and Industry
_____________________________________________________________________________________________________________________________________________|]

R&D data in support of our returns-based beliefs approach and present the implications of our approach for innovation
decisions within a competitive setting.

The next section revisits the patent race game between competitive firms. Section 3 discusses our concept of returns-
based beliefs. In Section 4, we provide an empirical analysis of R&D spending. Section 5 compares the returns-based
beliefs model with other non-Nash equilibrium models. Section 6 discusses the main implications and concludes.

2. Patent race between asymmetric firms

In this section, we develop a simple model of a patent race on the basis of the game discussed by Amaldoss and Jain [10].
Let us assume that there are two firms, a dominant and less dominant firm, i = {H, L}, respectively. The dominant and
less dominant firms are currently earning profits of ey and ey, respectively, where ey > er. The firms can invest in R&D
to win a patent. The maximum amount they can invest is s €(0, ¢/2, ¢), where ¢ is the constraint imposed by the capital
markets [10]. Similar to the seminal paper by Gilbert and Newbery [6], we assume that the firm that invests more wins the
patent. If the dominant firm wins the patent, it makes a profit of ry, and if the less dominant firm wins the patent, it makes
a profit of i, where ryy > r.. In addition, we assume the following: (1) rgy—c > ey and (2) rp —c¢ > er. We assume that the
dominant firm is able to profit more from the innovation because of the existence of complementary assets such as a better
brand name, distribution channels, or better marketing ability [28,29] and therefore assume that ry — ey > 1, —ep. We
assume the Bertrand competition whereby if both firms invest the same amount in R&D, they earn zero profits. Therefore,
firm i’s profits if it invests s; are w; = r; — s; if 8; > s, i # k, or m; = e; — s; otherwise. We assume that all profits and
costs are common knowledge. The profits with respect to the various levels of investments are shown in Table 1.

There is no pure-strategy equilibrium for the game (similar to [10]). If both firms invest zero, then one firm can be better
off investing ¢ /2 and winning the patent. Therefore, investing zero is not a pure-strategy equilibrium. If both firms invest
a positive amount, then the losing firm is better off not investing and deviating to zero investment. Therefore, both firms
investing a positive amount is not a pure-strategy equilibrium either. Now consider the case when one firm does not invest
whereas the other firm invests a positive amount. The firm that invests could win the patent by incurring a cost of ¢/2.
However, this cannot be an equilibrium because the firm that has not invested could win the patent by investing c. There-
fore, we do not have a pure-strategy equilibrium for this game. The equilibrium must involve a mixed-strategy equilibrium
whereby each firm invests in the three choices with some probability. Randomization in the mixed-strategy Nash equilib-
rium analysis requires that the firms choose their probabilities in such as way as to make the other firm indifferent between
the different strategic choices. Let us assume that the dominant firm chooses probabilities y; , y» , and y3 for investment
of 0, ¢/2, and ¢, respectively, where y; + y, + y3 = 1. Similarly, the less dominant firm chooses probabilities x1, x,, and
x3 for investment of 0, ¢ /2, and ¢, respectively, where x; + x, + x3 = 1. For the less dominant firm, equilibrium implies
the following:

1 1 1
enxi + eyxs + epxz = (ry — EC)Xl + (en — Ec)xz + (en — EC)Xs, (D
enXx1 +enxs + euxs = (rq — ¢)x1 + (ry — ¢)x2 + (en — ¢)x3, (2)
X1+ xp +x3 =1. 3)

It can be shown from Equations (1)—(3) that

X1 =Xy = , @
T T 2 —en)
X3 = TH—en—¢ (5)
’'H — €H

Table 1. Payoff matrix for various levels of investment in research and development.

Less dominant firm

0 c/2 c
0 (em.ev) (en, . —¢/2) (em,rL—¢)
Dominant firm c/2 (ra—c/2,eL) (en—c/2,eL—c/2) (en—c/2,rL—c)
c (ru—c,er) (rg—c,eL —c¢/2) (eg —c,ep —c¢)
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Similarly, the dominant firm will choose its mixed-strategy equilibrium in such a way as to make the less dominant firm
indifferent between its strategic choices. It can be shown that

c

S 2(rL—ey)’
rn,—eL—c
y3=— . ©

r, —ep

y1=D)2 (6)

Let us assume that the following holds, ¢ = 2, ry = 20, ey = 8, r. = 10, and e;, = 4, which gives the payoff as in Table 2.
According to Equations (4) to (7), the corresponding equilibrium values for the less dominant firm are as follows:

X1 = xp = 0.08, x3 = 0.84, (8)
and the corresponding equilibrium values for the dominant firm are as follows:
yi=y2=0.17, y3 = 0.66. 9)

It is clear that the less dominant firm invests more in R&D compared with the dominant firm [10]. To see why this is the
case, we must examine the conditions for equilibrium in asymmetric mixed-strategy equilibria such as the patent game
being examined. The firms have a choice of either investing in R&D to discover the patent or not investing. In equilibrium,
the firms must be indifferent between these two choices. Let us consider the returns for the dominant firm. The dominant
firm has more to gain from winning the patent compared with the less dominant firm because of advantages stemming
from complementary assets and superior marketing advantages. Therefore, the dominant firm needs to invest less and
win the patent less often compared with the less dominant firm in order to make it indifferent between investing and not
investing (see [10, p. 976]). On the other hand, the less dominant firm needs to invest more and win the patent more often
to make it indifferent between investing and not investing compared with the dominant firm. Therefore, in the asymmetric
mixed-strategy equilibrium, the less dominant firm invests more in R&D compared with the dominant firm.

It is clear from the above results, Equations (4)—(7), that the mixed-strategy equilibrium of the dominant firm, H, does
not depend on its own returns from innovation but rather on the less dominant firm’s returns, r;, and ey, (we show a more
general case of this result using the mixed-strategy Nash equilibrium in Appendix A). Similarly, the mixed-strategy equi-
librium of the less dominant firm, L, does not depend on its own returns from innovation but rather on the dominant firm’s
returns, ry and ey. However, this seems not in accord with the survey in Figure 1 on innovation, which shows that firms
allocate resources for innovation according to the goals set for the year and available opportunities followed by relative
attractiveness of individual projects rather than the actions of their competitors [16]. In that survey, competitors’ spending
comes in a mere sixth place, with only 2% saying that it is important (Figure 1). Consequently, we think it important to
ask whether it is possible that the mixed-strategy Nash equilibrium approach does not capture the essence of the intuition
for how firms really make decisions about innovation.

The next section elaborates an alternative approach that combines a decision analytic solution concept and Luce’s [20]
probabilistic choice model. This is the returns-based beliefs approach [30], which accords better with the results of the
survey and does indeed provide outcomes that are different to the mixed-strategy equilibrium approach, adding to the
debate about whether dominant or less dominant firms are more apt at innovation.

3. Returns-based beliefs and innovation
In the following discussion, we assume that firms are expected profit maximizers. We argue that, driven by the desire to

want to avoid either both firms investing or both firms not investing in R&D in the patent race game in order to max-
imize expected profits, there is ‘strategic uncertainty’ regarding the conjecture about the choice of the other firm. We

Table 2. Numerical payoff matrix for various levels of investment in research and
development.
Less dominant firm
0 c/2 ¢
0 (8.4) (8.9) (8.8)
Dominant firm c/2 (19,4) (7,3) (7,8)
c (18,4) (18,3) (6,2)

Copyright © 2011 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2011



Applied Stochastic
Models in Business

C. VELU, S. IYER AND I. R. GAIR and Industry
_____________________________________________________________________________________________________________________________________________|]

define strategic uncertainty as uncertainty that concerns the actions and beliefs (and beliefs about the beliefs) of others
[31]. Researchers have argued that strategic uncertainty can arise even in cases when all possible actions and returns are
completely specified and are common knowledge [32]. In such a situation, the rational firm has to form beliefs about the
strategy that the other firm will adopt as a result of strategic uncertainty. As a consequence, firms form their beliefs about
the probabilities that other firms play in order to determine in turn their best-response strategy. Hence, the best-response
strategy of one firm is likely to be based upon the mixed strategy of the other firm. The mixture is a result of the uncer-
tainty regarding the conjecture about the choice by the other firms [33].* This notion has been summarized as follows: ‘In
psychological games, there can be a difference between interpreting mixed strategies literally as purposeful mixing by a
player versus interpreting them as uncertainty by other players’ [34, p. 1286].

As discussed earlier, when randomized mixed strategies are used, a firm chooses probabilities (over their own strategies)
in such a manner as to make the other firm indifferent between the different strategies. The implication of this is that each
firm’s equilibrium strategy depends only on the other firms’ payoff and not their own. This randomized mixed-strategy
approach to choosing the probabilities of the focal firm makes the other firm indifferent between the different strategies
[35]. However, this approach of randomized mixed strategy would not be appropriate in the case when strategies are cho-
sen via the use of subjective probabilities. This is because, when such outcomes are chosen, each firm maximizes their
own expected values according to their conjecture of what the opponent is likely to do. Therefore, the probabilities are
chosen by the focal firm over their strategies according to their conjecture of what the other firm is likely to do. Hence,
because of strategic uncertainty regarding the conjecture about the choice of the other firm, the focal firm holds an opinion
on the basis of the subjective probability with respect to all of the unknown contingencies affecting its payoffs. In partic-
ular, the firm is assumed to have a view about the major contingency faced, namely what the opposing firm is likely to
do [18, p. 115]. Kadane and Larkey [18, p. 115] expressed the implications of this line of thinking very neatly as follows:
‘If I think my opponent will choose strategy i (i = 1, --- 1) with probability p;, I will choose any strategy j maximizing
Zil=1 piuij, where u;; is the utility to me of the situation in which my opponent has chosen i and I have chosen j ...the
opponent’s utilities are important only in that they affect my views {p; } of what my opponent may do...”.

Therefore, it follows that if firm 2 is not expected to play the mixed-strategy Nash equilibrium, then it might be optimal
for firm 1 also not to play the mixed-strategy Nash equilibrium. This is because doing so could give firm 1 a better payoff
as it has a profitable deviation from not playing the mixed-strategy Nash equilibrium when the other firm also does not play
the mixed-strategy Nash equilibrium. The implication of this is that the Nash equilibrium is a special case when each firm
is assumed to believe that the other is sure to play the Nash equilibrium strategy. The concept of objective and subjective
probabilities helps to make clear the context of this discussion: the Nash equilibrium solution concept assumes rationality
from the perspective of an external observer, which in effect implies objective probabilities. However, at the level of the
individual firm, assumptions about the opponent’s beliefs may be conditioned by the accepted management practice and
value systems of the firm and hence might be different from the priors held by the rational external observer. Therefore, a
focal firm who knows that the non-Nash equilibrium belief is held by the other firm could be deemed to be rational when
forming a subjective assessment of the other firm’s action by taking this belief into account [36]. In situations of strategic
interaction such as the patent race game, the firms might hold subjective probabilities that are different from the objective
probabilities demanded by the Nash equilibrium solution concept. When the subjective and objective probabilities are the
same, we get the special case of the Nash equilibrium. However, there is no compelling reason a priori for the subjective
and objective probabilities to definitely be the same. Although any distribution of probabilities could be possible on the
basis of the subjective method of forming them, we shall try to propose a reasonable subjective probability belief that the
firms might use when they do not know each other’s respective histories. We call this the returns-based beliefs.

We posit that the firms want to cooperate in order to achieve an outcome whereby one firm invests whereas the other
stays out. The disadvantage of the mutual investment outcome by both firms in the patent race game comes about from
each firm trying to defend against the worst case and not considering the possibility for cooperation. However, the rational
firm has to form beliefs about the opponent’s strategies because of the strategic uncertainty about what the opponent is
likely to invest. Velu et al. [30] showed that the Luce® [20] rule encapsulates the tendency for decision makers to coop-
erate by taking each other’s tendency to want to cooperate into account and avoid trying to defend against the worst-case

# We are not assuming that the opponent is using a randomized strategy. The mixture merely reflects the representation of the dominant firm’s belief
about the less dominant firm and vice versa. As Wilson [37, p. 47] pointed out, although it makes little difference to the mathematics, conceptually
this distinction between randomization and subjective beliefs to explain the mixed strategies is an important one to consider. This interpretation is
also in line with Harsanyi’s [38] purification interpretation of mixed strategy where mixing represents uncertainty in a player’s mind about how
other players will choose their strategies, rather than deliberate randomization [39]. For the purpose of our game, we exclude the consideration of
cooperation between a large dominant firm and a less dominant firm whereby the former outsources its R&D to the latter with a view of buying the
invention later.

§ In the case of an individual choice behavior, the Luce [20] rule implies that the individual maximizes a constant utility function subject to
uncertainty in the decision process.
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outcome. Following the probabilistic choice model of Luce [20], we assume that firms form beliefs on the basis of the
expected returns for a particular strategy over the total expected returns of all strategies. Therefore, it is reasonable to
assume that the firm would assign probabilities on the basis of the expected returns from playing the different strategies.
Similarly, we assume that the other firm also assigns probabilities on the basis of the other firm’s expected returns given the
probabilities of the focal firm. Following this logic, our analysis is based on a model for which the decision probabilities
are proportional to the expected returns.

Our proposed approach has both theoretical and empirical support. First, for the theoretical merit, we defer to Luce [20]
who showed using probability axioms that if the ratio of probabilities associated with any two decisions is independent of
the payoff of any other decisions, then the choice probabilities for decision i can be expressed as a ratio of the expected
payoff for that decision over the total expected payoff for all decisions: TT1§/ " j H‘;, where Hj is the expected return
associated with decision j. Second, this method of arriving at decision probabilities has been justified by empirical work
that provides empirical support for our approach. In particular, empirical research for paired comparison data provides
support for the Luce [20] method of arriving at decision probabilities such that the probability for choosing x over y,
P(x,y) = v(x)/[v(x) + v(y)], where v(x) and v(y) are the scale values of choosing x and y, respectively [40]. Our
model has similarities with the logit equilibrium version of the quantal response equilibrium (QRE) model proposed by
McKelvey and Palfrey [41] and the bounded rationality Nash equilibrium (BRNE) model of Chen et al. [42] in that all
strategies with positive payoffs are played with positive probabilities in proportion to their expected payoffs. Although
there are similarities, our reasoning for the decision-making process is very different to other models. We discuss these
points further in the section on comparing the returns-based belief model with other non-Nash equilibrium models. We
operationalize our model as follows. In this model, each firm chooses among n = 3 (s; = 0,c¢/2, ¢) possible strategies,
and the expected payoffs are given by the following summation:

n

i (s) = Z u' (s, m) pi(m) (s; =0,¢/2,¢), (10)

m=1

where v’ (s, m) is firm i’s payoff from investing s5; when the other firm invests 7 and p; (m) is the belief probabilities
held by firm i about the other firm playing strategy m. In turn, the decision probabilities follow the specification outlined
above, which is proportional to the expected returns as follows:

S0,

Y om=1 ”ie(m).

In our model, we assume a Nash-like equilibrium in belief formation such that the belief probabilities match the decision
probabilities for both the dominant firm and the less dominant firm. This symmetry between these belief probabilities is
achieved by iterating between the expected payoff in Equation (10) and the decision probabilities in Equation (11). The
idea is that firm i computes the expected payoff IT’ (s;, o) of each pure action s; given a mixed action oy of the other
firm. Firm i would play the mixed action,

Di(s) = an

o ' (s;, om)
oi(si) = I (0, o) + 1T (¢/2, om) + T2 (¢, on) (12)

if it knew that the opponent played oy. This defines a mapping from j’s mixed action to i ’s mixed actions, M;; : om — 0;.
The mapping M j; of player j from i’s mixed actions to j’s mixed actions can be defined analogously. This leads us to
define the notion of a returns-based beliefs equilibrium (RBBE) as follows.

Definition 1

An RBBE is a pair of mixed actions (07, 0), such that M;; (o) = 0; and M ;; (0;) = 0. In other words, this is a solution
in which both players play the Luce-type response, and each player’s belief about their opponent coincides with the actual
strategy the opponent adopts.

We now prove some properties of the RBBE.

Proposition 1
Any game (i, s, u), with non-negative payoffs u, has an RBBE.

Proof
The composite map M;; (M j;) is a map from mixed strategies of player i onto mixed strategies of player i and therefore
has a fixed point from the fixed-point theorem. McKelvey and Palfrey [41] demonstrated in the same way that a fixed-point
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equilibrium exists for the logit equilibrium (where the errors have a log Weibull distribution) version of the QRE mode.
Chen et al. [42] provided a more general setup of the logit equilibrium model and noted that all McKelvey and Palfrey
[41] results carried over to the more general case. Although the basis for our model is rather different, in that it is not based
on a model of player errors, it can be seen to be equivalent to the Chen et al. [42] model when the error parameter is set to
u=1

The requirement that the payoffs be non-negative follows from the fact that the mixed strategies of the players must be
non-negative, that is, o, > OV i. If there are negative payoffs, then M,; (M ;;) can map mixed strategies onto vectors with
negative entries, which are not valid mixed strategies. However, these entries can always be made positive by replacing
them with utilities. Even with negative entries, this problem can be avoided by using a modification of the Luce rule in
which 77 (s) = 0 when St (s,m)p;(m) <0 but wi(s) = St (s, m) p; (m) otherwise. |

Although the preceding proposition has been described for games between two players, it can be straightforwardly
generalized to games involving an arbitrary number of players. However, in the case of two-player games, the RBBE has
some nice properties by virtue of the following proposition.

Proposition 2
In games between two players, the RBBEs are given by eigenvectors of the matrix u' (u?), where T denotes the transpose,
u' = {uilj}, w = {uiz]-}, and u;; is the payoff to player n when player 1 chooses move i and player 2 chooses move ;.

Z)T

Proof
We denote the strategies of player 1 and 2 by o'! and o2, such that ol.l is the probability that player I chooses move i. The
equilibrium conditions 0! = M5(0?) and 62 = M>;(c!) can then be written as

O,il — A'ulljo—jz’ 0—12 = lu’uizjo—il’ Wherek = 1/ Zulljo—jz’ ,LL = 1/ Zu?jail, (13)
i J

These can be rearranged to give

u-u 0o =vo, u -u-0°=vo”", (14)
where v = 1/(Au1). These are eigenvector equations for the matrices u! (u?)™ and (u?)T u', but we only need to consider
one or the other because the solutions are simply related.! In general, an N x N matrix has N eigenvalues, but the RBBE
solution must have ail > 0 Vi, which means we require the eigenvalue v > 0 and the eigenvector v to satisfy v; > 0 Vi
andZu?ivj >0 Vi. O

We can use the preceding proposition to prove a uniqueness theorem for games with positive payoffs.

Proposition 3
In a game between two players in which all the payoffs to both players are positive, that is, ul-lj > 0, uizj >0Vi,j,and
there are no completely dominated strategies, the returns-based equilibrium is unique.

Proof

Suppose that there are two RBBE solutions that are eigenstates of the matrix U = u' (u?)T with eigenvalues v, /vj and

eigenvectors v, /v, and we label the solutions such that v, > vj. We will first prove that the RBBE solution cannot lie on

the boundary of the space of probability vectors, that is, v* > 0 for all i. Suppose, without loss of generality, that v! = 0.
I

Then Zj k u}juij vk = 0, but because u;; > 0Vi,jand vk >0 V k, we need vk =0 V k, which is a contradiction.

Now define x = min {v,’; / vfl;i el,---,N } and denote by K the value of i at which the minimum is realized. From
the preceding result, this must be non-zero. If we then define the vector x = v, — kv,, we have x! > 0 Vi. Because
Ui; >0 Vi, j, wealso have yi >0 Vi fory=Ux. Buty = vpvy — kv,V,, and so yK < 0, which is a contradiction.

In the above, we assumed that v, # vp. If we supposed instead that v, = vy, then any linear combination of v, and vy,
is also an eigenvector. Defining  as above, the vector x = v — kv, now has xX = 0 and so lies on the boundary of the
space of probability vectors, but it is also an RBBE, which is another contradiction. So we deduce that there is exactly one
RBBE solution. O

2)T

T Given two matrices A and B, the eigenvalues of AB and BA are equal, and if x is an eigenvector of AB, then Bx is the corresponding eigen-
vector of BA with the same eigenvalue. We therefore obtain the same RBBE solution whether we consider eigenvectors of u! (u?)" or u?)"u!, as
we would expect.
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For the example game given in Table 2, the matrix U is

168 120 72
U=]| 195 153 111 |, (15)
282 174 138

which has only one real eigenvalue, v = 444.115, with corresponding RBBE eigenvectors
ol =(0.25215,0.32871,0.41913), 0% = (0.28575,0.32240, 0.39185). (16)

This is the unique RBBE for that particular specification of the patent race game.

It would be unreasonable to suppose that players in a game would be computing eigenstates of matrices in order to
decide on their best move. However, the RBBE solution can also be derived iteratively. If a player is returns based, that
is, places the Luce-type response in proportion to the expected return, and believes that his opponent is also returns based,
then if he began with a guess o7 of his opponent’s mixed strategy, he would play o) o u'cg. From his belief that his
opponent is returns based, the player is led to the belief that his opponent will play an alternative strategy 012 (% (uz)To(},
so he can update his guess and repeat, iterating until he converges to a solution. The first stage of this process in the game
of Table 2 is illustrated in Table 3, assuming that the player takes the initial guess 03 = (0.33,0.33,0.33), that is, random
choice. The far-left columns show the expected return to the dominant firm from each of his possible moves, based on this
initial guess for 03, and the returns-based move probabilities the player then adopts. Even after a single iteration, these are
very close to the RBBE solution.

Our initial definition of the RBBE assumed that beliefs and strategies coincided. However, this iterative convergence to
the RBBE suggests an alternative, equivalent, definition for the equilibrium.

Definition 2
An RBBE is a solution in which each player plays the Luce-type response and believes that their opponent will play the
Luce-type response to their strategy, that is, each player is ‘returns based’ and believes his opponent is also returns based.

Hence, the equilibrium can also be thought of as an equilibrium in beliefs. This is similar to Binmore’s [26, p. 135]
‘subjective probabilities whereby beliefs rather than strategies are treated as primary’. Camerer [43, p. 150] made a sim-
ilar point that mixed-strategy equilibrium can be seen as an equilibrium in beliefs. The returns-based beliefs approach is
different from the Nash equilibrium because players respond to their beliefs by placing probability on strategies in pro-
portion to their expected payoff. The equivalence of these two definitions of the RBBE is demonstrated by the following
proposition.

Proposition 4
In a game between two players in which all the payoffs to both players are positive, the iterative algorithm always converges
to the unique RBBE.

Proof
To prove this, we will first prove an intermediate result: the RBBE corresponds to the largest eigenvalue of the matrix
U=u! (u»)T.

Proof: We denote the RBBE eigenvalue by v and the eigenvector by v. Suppose there is another eigenvector v/ with
eigenvalue v’ and v’ > v. From the uniqueness proof 3i for which (v < 0 and therefore x = min {vi/(v’i;i (' < 0}
is well-defined and non-zero. We denote the value of i at which the minimum occurs by K. The vector x = v — kv’ has
xt>0Vi,but y = Ux = vv—kV'V has yK < 0, which is a contradiction because Ux has to have non-negative elements.
We can also prove that there cannot be v’ < 0 with |v/| > v by applying the above argument to the matrix U?, exploiting
the fact that if A x = Ax then A%x = A2x.

Table 3. Dominant firm’s probabilities during the first iteration of beliefs
for the game described in Table 2.

Less dominant firm

0 c/2 ¢ Total Prob.

0 2.67 2.67 2.67 8.00 0.24

Dominant firm c/2 6.33 2.33 2.33 11.00 0.33
c 6.00 6.00 2.00 14.00 0.43

33.00 1.00
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We can now prove the proposition. At each stage, k, of the iteration, the player updates his strategy according to
O'lg = Uo’,i_1 and hence o,i =UF 0(}. The eigenvectors of a matrix corresponding to distinct eigenvalues are linearly inde-
pendent. If an eigenvalue, A, is repeated with multiplicity m > 1, then it may be possible to find m orthogonal eigenvectors.
However, this is not always possible, and if it is not, the matrix is defective. For a defective matrix, A, it is possible to find

generalized eigenvectors satisfying (A — A1 )k Vi = Vi1, fork = 1,--- ,m with the v;’s orthogonal. Hence, in this way,
we can construct a basis for the vector space comprising eigenvectors and generalized eigenvectors, {e1,--- ,en}.
The initial strategy o4 can therefore be written as a sum o) = ) w;e;. For an eigenvector e with eigenvalue v,

UVe = vVe. For a generalized eigenvector €, corresponding to the eigenvector e and satisfying (U — vl)e’ = e, we
see that UV e’N=1(e + (A/N)e'), which is parallel to e in the limit N — oo. Therefore, 01{, ~ alvael + ozzvévez + -
where the sum extends only over distinct eigenvectors of U. As N — oo, this sum is dominated by the largest eigen-
value, which by previous results is the RBBE eigenvalue and is non-degenerate. We conclude that the iterative algorithm
converges to the RBBE.

This argument requires the RBBE eigenvector to have a non-zero coefficient in the expansion o, = Y «;€;. However,
if oy has strictly positive elements, this is guaranteed by the uniqueness of the RBBE. O

For the general patent race game defined in Table 1, we can eliminate one of the variables without any loss of generality
by working in units of ¢/2, that is, redefining ey — ey/(c/2) and so on, which is equivalent to setting ¢ = 2 in Table 1.
The characteristic equation for the eigenvalues v of the matrix U is then

0=13— (94+r.(Beg — 1) —ry — 8er + 3ryer + e (BeL — 8))\)2

+ (rn—en)(rL — eL) (1 + eLen)v — ener (ru — en)* (rL —e1)?
=v3—a2v2—|—a1v—a0, (17)
where the last line defines the parameters a; and the signs are chosen such thata; >0 V1.

Proposition 5
For the patent race game, with parameters satisfying {ey, e.} € [2, 00]; {ru, 1L} € [4, 00]; ey > e and ry—ey > 1. —ep > 2,
the matrix determining the RBBE has only one real eigenvalue and eigenvector, which is therefore the unique RBBE.

The stated restrictions on the parameters are a reasonable restriction of the game. We would expect ey > ¢ = 2 (for
X € {L, H}) because a firm will not be able to spend more on innovation than its current profit levels. Similarly, rp, > e +c¢
merely states that a firm will not innovate if the cost of innovation is more than the potential increase in profits due to the
innovation (the constraint ry > ey + ¢ must hold for the same reason, but this is implied by the other conditions). The
constraint that ry — ey > rp, — ey, is the statement that dominant firms can profit more from innovation as described earlier.
The final constraint, ey > ey, follows from the stipulation that H is the dominant firm. The proof is straightforward.

Proof
We denote the characteristic equation by f(v) = 0. The cubic polynomial f(v) has turning points at v = (ap +

,/a% —3ay)/2. If the discriminant d? = a% —3a; < 0, there are no turning points, and so the characteristic equation has

exactly one real root, and the proposition holds trivially. If d > 0, then there will only be one real root if

a»ai 2 4
3 27

azdjg
3

2 2
fv)<0=ae> —E(ag—d3): +E(a§—3a1)d. (18)

The term a? — 3a; = d? > 0 by the assumption that the discriminant is positive. Thus, if we can find d; > d such that

asdq 2 2
3 —Ea§+2—7(a§—3a1)d. (19)

dardq 2 2
3 —2—7a§+ﬁ(a%—3a1)d1 = ap >

ag >

By expanding d for a, > a1, we obtain the guess di = as —(3/2)a; /az, and we see that d? = a3 —3ay +(9/4)a? /a3 =
d? + (9/4)a? /a3 > d?. For this choice of dy,
dardq 2 3

2 1
T Gt E(a% —3ay)d; = (3apaz —a?)/(3ay) = " (20)

ag —

For the patent race game, we find

(Bagar —ai) = (2lener, — 24enef + 3enerrr(3en — 1) + 3eneLrn(3er — 1) —24efer — 1) . 1)
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We now use the fact that ry > ey +2 and ri, > ey, + 2 to replace ry and ry, in the right-hand side of this equation, deducing
that

(3agar —at) > (2leyer — 24enel + 3ener(eL +2)(3en — 1)
+3€H€L(€H + 2)(3€L — 1) — 24€I%I€L — 1)
=9ener(en(er — 1) +eclfen—D+ 1) —1, (22)
and the latter function is clearly positive because ey > 1 and e > 1. |

This proposition allows us to write down the solution for the eigenvalue in the RBBE, using the general expression for
the roots of a cubic polynomial (see, for instance, [44])

v=0+ V@R +r)YP 4 (r = VP + 1) +ay/3,
where ¢ =a,/3 +a5/9, r=ae/2—ajax/6+a3/27, (23)

where the a;’s are the functions of ey, ey, ry, and rp. defined by Equation (17). The corresponding choice probabilities in
the RBBE are

ol — (GH(3U(€L— 1) + (ru —en)(rL —ep)er) 24)
v(v 4+ rp — 3rpeg —eL + 3ener)
v(3 +ep(ru —3) + en(2eL —3)) — 2ener (ru —en)(rL —e)
v(v + . — 3rLen —er, + 3ener) ’
v2 + eger (ry — en) (rp —er) + v(r — 3 + 6ey — 3enry, + 2ep — 2eyer, — ryer)
v(v + rp — 3rLeg — eL + 3ener) )
o2 — ( e (v +r, —3rLey — e + 3eyer) , (25)
3v(ep — 1) + (ru —en)(rL —eL)eL

v2(eL — 1) + v(rL —ep)(eL — 1) + ener (ra — en) (r, — ep)?
3v(eL—1) + (ru —en)(rL —eL)eL
v2(er —2) — ener(ru —en) (r, —e)* + v(r. — e ) ((2en + ry — 2)er, — 1))
3v(e—1) + (ru —en)(rL —eL)ev

’

in which v denotes the eigenvalue given in Equation (23).

The above expressions give us the location of the RBBE as an analytic function of the parameters. Because the parame-
ter space is four dimensional, it is difficult to plot quantities as functions of all the parameters. Instead, we will use a Monte
Carlo approach. We generate samples of the game parameters {ey, ry, er, r.} uniformly within the range {ey, eL} € [2, 10],
{ru.r.} €[4,30], ey > ey, and ryg — ey > 1. — e > 2." We will then plot interesting quantities for all of the games in this
sample. The following figures use 10,000 samples.

In Figure 2, we show, in the left-hand panel, the probability that each firm innovates in the RBBE (probability of invest-
ing in both ¢ and ¢/2), defined as prnov.x = 0% (c/2) + 0% (c), for X = {H,L}, computed for 10,000 Monte Carlo
samples obtained as described above. The right-hand panel shows the corresponding results for the Nash equilibrium. As
discussed earlier, in the Nash equilibrium, the less dominant firm always has a greater probability of investment in innova-
tion, Pmnov > PmnovH- In the RBBE, this trend is reversed, and the more dominant firm generally has a greater probability
of investment—there are more points (71%) with pmnovr > Pmnov than vice versa. It is informative to consider how
these probabilities relate to the game parameters. In particular, the quantity (r, — er)/er represents the fractional increase
in profit to the less dominant firm from innovation and is therefore a measure of the incentive to innovate. In Figure 3,
we show how the ratio of the innovation probability, prnov../ Pinov., Varies with the ratio of the incentive to innovate,
(r/eL — 1)/(ru/eq — 1). In the RBBE, the trend is that a firm will innovate more when it has a greater incentive for
innovation, which is what we would expect to be the case and consistent with the survey findings in Figure 1. In particular,
the less dominant firm only invests more in innovation when it has a greater incentive to innovate than the dominant firm
(as the left-hand panel of Figure 3 does not have any points where (rr./e;, —1)/(ru/eq—1) < 1 and p mnov.L/ PianovH > 1).
On the other hand, in the RBBE, it is not necessarily the case that the dominant firm invests more in innovation only when

" This is achieved by rejection sampling—we draw points uniformly from the box {ey, e.} € [2,10] and {ry, r.} € [4, 30] and discard points that
violate the constraints ey > e, or ry— ey > 1, — e, > 2.
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Figure 2. Probability of innovating for the dominant firm (horizontal axis) and the less dominant firm (vertical axis) in the RBBE

(left panel) and the Nash equilibrium (right panel). The diagonal line in each panel corresponds to equal innovation probability
Plnnov,H = Plnnov,L-

Pinnov.L
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Figure 3. Ratio of innovation probabilities piynov../ P mnov.n Versus ratio of incentives to innovate (r./e;, —1)/(ry/ey— 1) in the RBBE
(left panel) and in the Nash equilibrium (right panel).

it has a greater incentive to innovate than the less dominant firm (as the left-hand panel of Figure 3 does not have some
points where (r./e.—1)/(ru/en—1) > 1 and p mnov.L./ Pinnov,. < 1). In contrast, the right-hand panel of Figure 3 shows the
corresponding trend in the Nash equilibrium. In the Nash equilibrium, the results are reversed with respect to the RBBE
as the firm innovates less when it has a greater incentive to innovate. As discussed earlier, the Nash equilibrium results
appear to be inconsistent with the survey findings in Figure 1. Thus, we have the following result.

Result 1
In the RBBE, the dominant firm tends to invest more in innovation than the less dominant firm. The less dominant firm
only invests more when it has a greater incentive to innovate, measured as the fractional increase in profits from innovation.

Moreover, the value of the RBBE for both firms is usually higher than the corresponding value of the mixed Nash equi-
librium. In the game shown in Table 2, the values of the Nash equilibrium for the dominant firm and the less dominant firm
are 8.0 and 4.0, respectively. In contrast, the expected values under the returns-based beliefs approach for the dominant
firm and the less dominant firm are higher at 11.0 and 4.7, respectively. Therefore, the dominant firm and the less dominant
firm have profitable deviations from not playing the mixed-strategy Nash equilibrium, when the other firms do not play the
mixed-strategy Nash equilibrium. In Figure 4, we show how the ratio of the value of the equilibrium to a firm in the RBBE
to that in the Nash equilibrium varies as we make random choices of the game parameters as before, denoting by Py y the
value to firm X in the equilibrium computed using approach Y. We see that in 85% of cases, both firms are better off in
the RBBE than in the Nash equilibrium. In most of the remaining 15% of cases, the dominant firm is better off, whereas
the less dominant firm is marginally worse off. Only in a tiny fraction of cases, < 0.2%, are both firms worse off.

We can now ask the question as to whether the probability that a firm’s innovation depends more on the firm’s own
payoff than that of their opponent. The derivative dpmney,x /0 Inry encapsulates this because it indicates how much the
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Figure 4. Ratio of the value in the RBBE to that in the Nash equilibrium for the dominant firm (horizontal axis) and the less dominant

firm (vertical axis). We use Px y to denote the value to firm X in the equilibrium computed using approach Y. The vertical and

horizontal lines show Viy = Pyrep/Pu.Nash = 1 and Vi = P rpp/PL.Nash = 1. If Vg > 1, the dominant firm is better off in the

RBBE than in the Nash equilibrium, and if Vi, > 1, the less dominant firm is better off; 85% of the points lie in the region with
Vua > 1 and V1, > 1, in which both firms are better off in the RBBE.

probability that firm X innovates changes for a unit fractional change in the reward of innovation to firm Y. Therefore, we
can define a firm’s sensitivity to reward, Sy, as

Iaplnnov,H /aplnnov,H

Sy =
H BlnrH 8111}’L

(26)

'aplnnov,L /aplnnov,L
S =

alnr]_ 8lnrH

This can be computed analytically by differentiating the RBBE choice probabilities given in Equations (24) and (25).
Because the eigenvalue v enters these equations explicitly, we will also need dv/dX, which can be found easily from

Equation (23) as
av dar , Oap dag 5
—=|—=v'—— — 3p° -2 . 27
X (E)XU o’ T oy (3v axv +ay) (27)
In Figure 5, we show how these sensitivities to reward vary as a function of the game parameters. Each point on the figure
represents a different random choice of the game parameters, as described before. The horizontal and vertical lines indicate

x = 1and y = 1. We see that all the points lie in the quadrant (x > 1, y > 1), so we conclude that Sy > 1 and S;, > 1 for
all these games and therefore have the following result.

Result 2
In the RBBE, the investment of firm H (firm L) depends more on its own returns, ry (71), than the other firm’s returns, rp,

(rn).

5

- 5
2 4 6 e

Figure 5. The sensitivity to reward of the dominant firm Sy (horizontal axis) and the less dominant firm Sy (vertical axis). Each point
represents a particular choice of game parameters, chosen at random as described in the text. The vertical and horizontal lines show
x =1 and y = 1. All points lie in the region x > 1 and y > 1.
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These results are in better accord with the McKinsey [16] survey on innovation spending, which highlights that the
primary drivers for innovation spending are opportunities and the relative attractiveness of the innovation, consequently
with a much lower emphasis on the competitor’s spending (as shown in Figure 1).

Figure 5 conceals another important observation because we have defined the sensitivity as the absolute value
of the derivative ratio. In fact, at all points, the derivatives take opposite signs because 0pnoy,x/dInry > 0 and
OPmnov,x /0Inry <O0for{X,Y}e {H,L}and X # Y. We therefore have an additional result.

Result 3
In the RBBE, an increase in the reward to a firm leads to an increase in their probability of innovating, whereas an increase
in the reward to their opponent leads to a decrease in the innovation probability.

4. Empirical analysis of the determinants of research and development investments

Our empirical analysis consists of testing whether the mixed-strategy Nash equilibrium or the returns-based beliefs
approach provides a better explanation for how firms determine their R&D spending. Recall that under the mixed-strategy
Nash equilibrium firms would change their R&D spending on the basis of the R&D spending of their competitors. On the
other hand, the McKinsey survey [16] on innovation spending showed that R&D spending of firms are driven less by the
competitors’ spending but more by the available opportunities and the attractiveness of individual projects. Our proposed
returns-based beliefs approach provides a closer theoretical explanation for the result of the McKinsey [16] survey than
the mixed-strategy Nash equilibrium. However, in order to test the validity of these two approaches, we performed an
empirical analysis on the basis of the R&D spending of 182 UK companies across 24 industry sectors.

We obtained data from the UK R&D scoreboard between 2001 and 2006, which is published jointly by the Depart-
ment for Innovation, Universities, and Skills and the Department for Business, Enterprise, and Regulatory Reform. The
dependent variable of interest is the annual percentage change in R&D over sales. To operationalize the competitors’ R&D
spending, we used the annual change in industry R&D spending excluding the individual firm’s own R&D spending. To
operationalize available opportunities and the attractiveness of the individual projects, we constructed a measure that cap-
tures the annual change in the difference between the industry return on sales (the industry’s total operating profits for the
year over the industry’s total sales for the year), less the firm level return on sales (an individual firm’s operating profit
for the year over its sales for the year). This excess return on sales measure provides a proxy for the opportunities that
the firm has to innovate its products and processes to be in line with the level of profitability of other firms in its industry.
When the measure is positive, there are more opportunities to innovate to catch up with the other firms in its industry
compared with when the measure is negative. For our model specifications, we use a random effects model and estimate
the parameters while controlling for the size of the firm (by using the logarithm of the number of employees) and industry.
Table 4 provides a summary of the measures.

Table 5 provides the correlation matrix. Table 5 shows that there are no major correlations that might contribute to
multicollinearity in the explanatory variables. We also checked for scale issues with respect to the relative size of firms in
the sectors. The coefficient of variation (standard deviation over mean of the log of employees) is 0.29, which provides an

Table 4. Summary of the measures.

Summary of the measures

Conceptual variable Measure Variable type

Firm’s innovation spending Annual percentage change in Dependent variable
R&D over sales

Competitors’ innovation spending Annual change in industry R&D Explanatory variable

spending excluding the individual
firm’s own R&D spending

Available opportunities and the Excess return on sales—annual Explanatory variable
attractiveness of the individual change in the difference between the industry return on sales
projects (the industry’s total operating profits for the year over

the industry’s total sales for the year), less the firm level

return on sales (an individual firm’s operating profit for the

year over its sales for the year)
Firm size Log of the number of employees Control variable
Type of industry Type of industry Control variable
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Table 5. Correlation matrix (N = 1092).

No. 1 2 3 4

1 Firm’s spending — — — —

2 Competitors’ spending —0.021 — — —

3 Available opportunities 0.134* —0.022 — —

4 Firm size —0.007 —0.199* 0.036 —
*p <0.05.

indication that although there are variations in size among the firms they are not too large to make competition in R&D
not worth pursuing. Formally, the model specification can be written as follows:

Vit = Bx{; + it and Hir =0 + Vi, (28)

where y;; is the dependent variable, xlf ; 1s the set of regressors (independent variables), 7;, is the unobserved individual
effects, and v;; is the error term. In addition, we assume that E(v;;) = 0; E(vi;/xi;) = 0and E(n;;) = 0; E(ni¢/xi:) = 0.
The results of the regression analysis are shown in Table 6.

We find a significant positive relationship between the change in R&D over sales for an individual firm and the oppor-
tunities and the attractiveness of the individual projects (8 = 0.024, p < 0.01). On the other hand, there is no significant
relationship between change in R&D over sales for an individual firm and the competitors’ R&D spending. We generated
standardized residuals from the regression. We examined the residual graphs and checked for the existence of outliers.
We do not find evidence of a significant number of outliers or residuals that stand out. Therefore, we can be confi-
dent of the robustness of our regression results. The empirical analysis provides support for the returns-based beliefs
approach compared with the theoretical predictions of the mixed-strategy Nash equilibrium for the patent-race-based
innovation game.

In addition, we test the robustness of our results with some alternative specifications. It is possible that a firm’s rela-
tively high spending on R&D in the past could influence its spending in the future. One explanation for this is that as a
consequence of having spent a relatively high amount on R&D in the past the firm’s managerial experiences and knowl-
edge are altered, which could then affect future R&D decisions. A second explanation is that firms might differ in some
unmeasured variables that influence the probability of spending on R&D but that are not influenced by the R&D spending
in the past. These two factors need to be accounted for in our analysis [45]. Arulampalam and Stewart [46] suggested
using the Heckman estimator of the dynamic probit model to correct for these effects by incorporating lagged dependent
variables. In order to perform the estimation, we coded the dependent variable as a dichotomous variable taking the value
1 if the firm’s annual percentage change in R&D over sales was larger than 3.6% (3.6% is the 50 percentile level for the
distribution of the dependent variable) and O otherwise. Following Arulampalam and Stewart [46], formally the model
specification can be written as follows where y;; = 1[y/, = 0]:

Yit =Y Vit +,3Xl{t + Orct; + s, t=1,---,T, (29)

Table 6. Determinants of R&D investments.

Dependent variable: percentage change in R&D over sales

Industry R&D 0.025 (0.016)
Excess return on sales 0.024*** (0.004)
Employee size —9.066™** (1.670)
Year 1.352 (1.144)
Industry 0.744 (0.054)
Intercept —2642.651 (2293.515)

No. of observations = 1092
p-value, chi squared test = 0.000
R? =0.21

Note: Standard errors in parentheses.

R&D, research and development.
L p<0.01,**: p<0.05,*p <0.1.
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where «; denote unmeasured variables. We set 67 = 1 for identification (of 03), and the equation for the first period using
error component structure is

yio = Azj + boai + po, (30)

where z; is the vector of exogenous covariates and p;, are independent of «;. The results are robust to this alternative
specification whereby we find a significant positive relationship between the change in R&D over sales for an individual
firm and the opportunities and the attractiveness of the individual projects (8 = 0.001, p < 0.01 ). On the other hand, the
coefficient on competitor’s R&D spend is not significant. Moreover, we also ran the model by including a time-invariant
exogenous instrument, that is, the industry profitability variable as at the initial year for the sample. Our results remain
the same with this alternative specification. These alternative specifications provide further support for the returns-based
beliefs approach.
In the next section, we compare the returns-based beliefs approach with other non-Nash equilibrium models.

5. Comparing returns-based beliefs to alternative non-Nash equilibrium models

In this section, we compare our model on the basis of the returns-based beliefs to several alternative models that explain
non-Nash equilibrium outcomes. The three models that are relevant include the QRE [41], the cognitive hierarchy (CH)
model [47], and level-k models [48], which all have their foundations on cognitive limitations. The QRE can be interpreted
as an application of stochastic choice theory to strategic games or as a generalization of the Nash equilibrium that incor-
porates noisy optimization [49]. The QRE assumes that the decision maker might take an action that is suboptimal and
that the probability of doing so increases with the expected payoff of that action. In this model, the decision maker adopts
strategies proportional to the expected payoff with some error. The error the decision maker makes could be seen as either
unmodeled costs of information processing [41] or unmodeled determinants of utility from any particular strategy [42].
The use of QRE and the BRNE of Chen et al. [42] requires the specification of an error distribution. Many applications in
the literature of such QRE models assume logit choice probabilities. It has been shown that the QRE and BRNE models’
prediction converge to the Nash equilibrium as the error goes to zero for a logit specification. Our model’s main similarity
to the QRE and BRNE model is that all strategies with positive payoffs are played with positive probabilities in proportion
to their expected payoffs. However, we do not assume that the decision maker is making errors or mistakes. Rather in the
returns-based beliefs model, managers need to form subjective beliefs about each other’s possible strategies. We invoke the
concept of subjective probabilities and the willingness of firms to cooperate, which differs inherently from the unmodeled
costs of information processing [41] or unmodeled determinants of utility from any particular strategy [42].

The level-k and CH models explain the payoff sensitivity of the deviations from equilibrium by incorporating them
within the structure of the game as opposed to responses to errors. The level-k and CH models allow heterogeneous
behavior in that the levels of sophistication of the decision makers can vary across the decision makers. Some decision
makers are very simplistic and non-strategic. On the other hand, others are more sophisticated and best respond to the
distribution of less sophisticated decision makers. The non-Nash equilibrium outcome of the game is determined by the
level of sophistication of the decision makers and the proportion of decision makers at each level of sophistication. The
level-k and CH models differ principally in their assumptions about how the more sophisticated decision makers respond
to decision makers with sophistication levels below them. In the case of the level-k model, the more sophisticated decision
maker responds only to decision makers that are one level of sophistication below them. In contrast, in the CH model,
the more sophisticated decision makers respond to the distribution of decision makers at all levels of sophistication below
them. The returns-based model differs from the level-k and CH models in that the former does not assume heterogeneity in
the levels of sophistication in thinking by decision makers. On the other hand, the returns-based model assumes symmetry
in the ability of decision makers to iterate strategically until the belief probabilities converge to the decision probabilities.

6. Discussion and conclusion

The debate about whether dominant firms or less dominant firms are more innovative is at the heart of research on innova-
tion. Both the theoretical and empirical research on this question is still subject to great debate. We provide an additional
explanation that supports the thesis that dominant firms are more innovative than less dominant firms.

Prior research on dominance and innovation using the Nash equilibrium analysis has shown that either dominant firms
or less dominant firms might invest more in innovation [6,7,9, 10] . In this paper, we provide an explanation that is based
on a non-Nash equilibrium analysis. We invoke the concept of subjective beliefs to derive our results and argue that there
is an equilibrium in such beliefs when choosing actions. The basic premise of our argument is that managers’ past expe-
rience might influence their subjective beliefs of what the other firm is likely to do. Therefore, managers will take these
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beliefs into account in making their decisions. The challenge arises as to what is a reasonable basis for forming such
subjective beliefs. In this paper, we have assumed that in order to maximize expected profits, the managers formed the
beliefs in order to avoid either both firms investing or both firms not investing in R&D in the patent race game. In doing
so, we have assumed that this conjecture is encapsulated in the Luce [20] rule whereby beliefs are formed on the basis of
the expected returns for a particular strategy over the total expected returns of all strategies. The Luce rule assumes that
managers’ decisions between any two actions will be determined by their relative returns and, hence, are independent of
any other choice. Although we recognize that alternative beliefs are possible, our results are derived on the premise that
the Luce-rule-based belief structure holds.

In assuming such a belief structure, we argue that not only is it important to understand the possible Nash solutions in
formulating strategy (which frequently act as benchmarks) but equally that it is also of fundamental importance to under-
stand the expected relative returns that could potentially influence decisions that concern strategic choice in innovation.
Our approach as explained above, which we call the returns-based beliefs approach, is based on a combination of decision
analytic solution concepts and Luce’s [20] probabilistic choice model. The returns-based beliefs approach provides support
for the argument that explains why dominant firms might innovate more—market advantage might induce the dominant
firm to invest more although competition might encourage the less dominant firm to invest; this competitive effect might
not be large enough to overcome the dominant firm’s incentive to leverage its market advantage. Our approach accords
better with the innovation survey and general observations on how firms allocate their innovation spending.

We also provide empirical evidence using UK R&D data that show support for the returns-based beliefs approach.
The returns-based beliefs approach starts with the premise that firms might form subjective probabilities and hence could
generate results that are out of equilibrium in actions (i.e., in the sense that they are not Nash equilibrium) but are in
equilibrium in beliefs. One of the managerial implications of this view is that it is important to understand when a market
could be out of equilibrium in actions. With this line of reasoning, it could be argued that industries that display continuous
productivity improvements operate out of equilibrium, and hence in these contexts an approach such as the returns-based
beliefs might be more appropriate than the Nash equilibrium concept. Moreover, in such industries, the past experience of
managers could inform the formation of subjective probabilities. The knowledge and experience of the organization could
affect the innovation strategy as the cognitive frames could impede innovation [50,51]. For example, it has been argued in
other research that Xerox did not commercialize many of its inventions from its research lab Palo Alto Research Center
because the new business model that was required to commercialize these inventions did not conform to the historical
business model of Xerox [50]. Therefore, the relative profitability of these innovations is what drove the investment of
innovation dollars more than the desire to keep competitors indifferent to their different strategies. Finally, it is important
for firms to understand how competitors might allocate resources for innovation on the basis of the relative attractiveness
of the competitor’s own opportunities rather than on the basis of any notion of the other firms’ opportunities. Thus, the
empirical study of innovation could be supported by more relevant theory, such as the returns-based beliefs approach, that
establishes more accurately the theoretical underpinnings for the links between a firm’s dominance and its likelihood of
undertaking innovation in the market.

Finally, our returns-based beliefs approach provides a step forward in understanding innovation decisions by incumbent
firms. However, a review of the innovation literature highlights that top management team decision making about resource
allocation for innovation is a very complex phenomenon [52]. In particular, there are other factors, such as social and
contagion effects, technological inertia, management cognition, and organizational routines, that might drive the invest-
ment decision in innovation. We hope that our approach enables more nuanced psychological aspects of management to
be considered more comprehensively by using tools from game theory to analyze investment in innovation.

APPENDIX A. Mixed Nash equilibrium

We assume that there are two firms, firm 1 (dominant) and firm 2 (less dominant), and that the payoffs for firm 1 and
firm 2, given move i for firm 1 and move j for firm 2, are uilj and uizj, respectively. Note that firm 1/2 is always the
row/column firm with this convention. We assume that the firms both play mixed strategies, which we denote by p! for
firm 1 and p? for firm 2. The notation p' is a vector with components {p;}, which are the probabilities that firm 1 will
play move i and similarly for firm 2. The expected payoffs for firms 1 and 2, which we denote by E; and E,, respectively,

are then
E, =ZU,~IJ-IJ,~1P§, Ez=Zu,~2jp}pf. (A1)
i,j i,j

In a Nash equilibrium, no firm can improve their expected return by varying their own strategy while their opponents
keep their strategies fixed. Mathematically, this means that the Nash equilibrium is a turning point of E; with respect to
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variations in the pil ’s only, subject to the constraint that the pi1 ’s represent a probability distribution, that is, ), pé.1 =1,
and it is a simultaneous turning point of E, with respect to variations in the pl.z’s only, with the constraint ) ; p; 1
Maximization subject to constraints is achieved using Lagrange multipliers, that is, we extremize the function

d_uipiv; =AYy pi (A2)
i i

with respect to the pi1 ’s and extremize the function
douiplpi—wy  p} (A3)
i i

with respect to the p;’s. Differentiation of these two equations with respect to the relevant variables yields the equations

dulpi=A=0 Vi 3 ugpi-pn=0 V] (Ad)
J k

We eliminate the Lagrange multipliers A and p using the probability condition ) ; pi1 =) pi2 =1 to deduce

pi= 2 AT /| et p=| )T D whit | (AS)
J ij J ij

We can see that the mixed-strategy Nash equilibrium for firms 1 and 2 depends on the other firm’s payoffs and not its own
profits.
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