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– We propose an asset pricing factor model constructed with semi-parametric characteristics-

based mispricing and factor loading functions. We approximate the unknown functions by

B-splines sieve where the number of B-splines coefficients is diverging. We estimate this model

and test the existence of the mispricing function by a power enhanced hypothesis test. The

enhanced test solves the low power problem caused by diverging B-spline coefficients, with

the strengthened power approaches to one asymptotically. We also investigate the structure of

mispricing components through Hierarchical K-means Clusterings. We apply our methodology

to CRSP (Center for Research in Security Prices) and FRED (Federal Reserve Economic Data) data

for the US stock market with one-year rolling windows during 1967-2017. This empirical study

shows the presence of mispricing functions in certain time blocks. We also find that distinct

clusters of the same characteristics lead to similar arbitrage returns, forming a "peer group" of

arbitrage characteristics.
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– This paper develops a two-step semiparametric methodology for portfolio weight selection for

characteristics-based factor-tilt and factor-timing investment strategies. We build upon the

expected utility maximization framework of Brandt (1999) and Aït-sahalia and Brandt (2001). We

assume that assets returns obey a characteristics-based factor model with time-varying factor

risk premia as in Li and Linton (2020). We prove under our return-generating assumptions that

in a market with a large number of assets, an approximately optimal portfolio can be established

using a two-step procedure. The first step finds optimal factor-mimicking sub-portfolios using a

quadratic objective function over linear combinations of characteristics-based factor loadings.

The second step dynamically combines these factor-mimicking sub-portfolios based on a time-

varying signal, using the investor’s expected utility as the objective function. We develop and

implement a two-stage semiparametric estimator. We apply it to CRSP (Center for Research in

Security Prices) and FRED (Federal Reserve Economic Data) data and find excellent in-sample

and out-sample performance consistent with investors’ risk aversion levels.
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1 Introduction

Stock returns have both common and firm-specific components. Ross (1976) proposed Arbitrage Pricing Theory

(APT) to summarize that expected returns on financial assets can be modeled as a linear combination of various

factors. In such a model, each asset has a sensitivity beta to the risk factor, The APT model explains the excess

returns from both cross-sectional and time-series directions. Fama and French (1993) and Fama and French (2015)

approximated those factors by the returns on portfolios sorted by different characteristics, and they developed

three-factor and five-factor models. After extracting the common movement parts, they treated the intercept as

the mispricing alpha, which is asset-specific and cannot be explained by those risk factors. Many papers use a

similar method to present other factor models, such as the four-factor model of Carhart (1997), the q-factor model

of Hou et al. (2015), and the factor zoo by Feng et al. (2017) among others. All of above papers studied observed

factors and did not assigned characteristics-based information to either alpha or beta.

Security-specific characteristics, such as capitalization and book to market ratio, are usually documented to

explain asset-specific excess returns. Freyberger et al. (2017) analyzed the non-linear effects of 62 characteristics

through pooling regressions. This study concluded that 13 of these characterisitcs have explanatory power on

stock excess returns after selecting by adaptive group Lasso. Characterisics-based information are exploited to

develop arbitrage portfolios by directly parameterizing the portfolio weights as a linear function of characteristics,

as in Hjalmarsson and Manchev (2012) and Kim et al. (2019). Empirically, they showed that their portfolio

outperformed other baseline competitors.

This paper’s contributions are fourfold. Firstly, we build up a more flexible semi-parametric characteristics-

based asset pricing factor model with a focus on mispricing component. Secondly, we extend previous estimation

and testing methods, which can fit the current framework better. Especially, we extend the power enhanced test of

Fan et al. (2015) in a group manner to strengthen the conventional Wald test for mispricing functions. This test can

also select the characteristics that contribute to arbitrage portfolios simultaneously. Thirdly, we construct a two-

layer clusterings structure of mispricing components. Finally, our methods are applied to fifty years of monthly

US stock data. We detect distinct clusters of the same characteristics resulting in similar arbitrage returns, forming

a "peer group" of arbitrage characteristics. This finding supplements existing portfolio management techniques by

implying that the development of arbitrage portfolio through the asset weights determined by the linear mispricing

function is improvable.

This class of models has a basic regression specification in Equation 1. Consider the panel regression model

yit = αi +

J∑

j=1

βjifjt + ǫit, (1)

where yit is the excess return of security i at time t; fjt is the jth risk factor’s return at time t; βji denotes

the jth factor loading of asset i; αi represents the intercept (mispricing) of asset i; and ǫit is the mean zero
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idiosyncratic shock. In terms of factor loadings βji, Connor and Linton (2007) and Connor et al. (2012) studied a

characteristic-beta model, which bridges the beta-coefficients and firm-specific characteristics by specifying each

beta as an unknown function of one characteristic. In their model, beta functions and unobservable factors are

estimated by the backfitting iteration. They concluded that those characteristic-beta functions are significant and

non-linear. Their model can be summarized by

yit =

J∑

j=1

gj(Xji)fjt + ǫit, (2)

where Xji is the jth observable characteristic of firm i.

They restricted their beta function to be univariate and did not consider the part of factor loading function that

cannot be explained by characteristics. To overcome this limitation, Fan et al. (2016) allowed βji in Equation 1

to have a component explained by observable characteristics as well as an unexplained or stochastic part, written

as βji = gj(Xi) + uji, where uji is mean independent of Xji. They proposed the Projected Principal Component

Analysis (PPCA), which projects stocks excess returns onto the space spanned by firm-specific characteristics

and then applies Principal Component Analysis (PCA) to the projected returns to find the unobservable factors.

This method has attractive properties even under large n and small T setting. However, they did not study the

mispricing part (alpha), which is crucial to both asset pricing theories and portfolio management.

In this paper, we work on a semi-parametric characteristics-based alpha and beta model, which utilizes a set

of security-specific characteristics that are similar to Freyberger et al. (2017). We use unknown multivariate

characteristic functions to approximate both αi and βji in Equation 1. Specifically, we assume αi and βji are

functions of a large set of asset-specific characteristics as αi = h(Xi) + γi and βji = gj(Xi) + λij
1. We then

estimate h(Xi), gj(Xi) and unobservable risk factors fjt. In addition, we design a power enhanced test and

Hierarchical K-mean Clusterings for the mispricing function h(Xi) to study the non-linear behavior of arbitrage

characteristics.

Some recent papers such as Kim et al. (2019) and Kelly et al. (2019) analyzed a similar model as ours, which

assume that both h(Xi) and gj(Xi) are linear functions . They both included around 40 characteristics in Xi.

However, they drew different conclusions on the existence of h(Xi). Kim et al. (2019) determined assets weights

of arbitrage portfolios using one-year rolling window estimated 1
n
ĥ(Xi). They showed that their arbitrage port-

folios returns are statistically and economically significant. However, Kelly et al. (2019) applied instrumented

principal component analysis (IPCA) to the entire time span from 1965 to 2014, and concluded no evidence to re-

ject the null hypothesisH0 : h(Xi) = X⊺
iB = 0 through bootstrap. This dispute spurs the deveploment of a more

flexible model and reliable hypothesis tests to investigate the existence and structure of h(Xi). The introduction

of IPCA, which require both large n and T to work, was introduced at Kelly et al. (2017). This method does not

fit our setting since we apply rolling window analysis with small T . Furthermore, Kelly et al. (2019) restricted the

1
Xi is a vector of a large set of asset-specific characteristics of stock i.
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function form of h(Xi) and gj(Xi) to be time-invariant, which is not consistent with our empirical results under

a semi-parametric setting. To clarfy the differences with aforementioned research, this paper proposes a semi-

parametric model, which allows for both non-linearity and time-variation of h(Xi) and gj(Xi). Furthermore, we

consider a different economic question, namely, the existence and structure of mispricing functions. Our empir-

ical study sheds light on why Kelly et al. (2019) and Kim et al. (2019) drew different conclusions: weak, time

varying and nonlinear characteristics-based mispricing functions only appear in certain rolling windows, which

is hard to be detected without rolling window analysis. However, given the presence of some persistent arbitrage

characteristics, portfolios developed through mispricing functions can provide abitrage returns.

The unrestrictive model in this paper brings both opportunities and challenges. According to Huang et al.

(2010), the number of B-spline knots must increase in the number of observations to achieve accurate approxima-

tion and good asymptotic performance. Therefore, the dimension of B-spline bases coefficients also need to grow

with the sample size. Besides, mispricing functions are treated as anomalies. Under a correctly specified factor

model, coefficients of these B-splines bases are very likely to be sparse. All of these circumstances make the

conventional Wald tests have very low power as discussed in Fan et al. (2015). Therefore, a power enhanced test

should be developed to strengthen the power of Wald tests and to detect the most relevant characteristics among a

characteristic zoo included in h(Xi). Kock and Preinerstorfer (2019) illustrated that if the number of coefficients

diverges as the number of observations approaches infinity, the standard Wald test is power enhanceable. Fan

et al. (2015) proposed a power enhanced test by introducing a screening process on all estimated coefficients

one by one. They added significant components as a supplement to the standard Wald test. In this paper, we

extend Fan et al. (2015) to a group manner to enhance the hypothesis test on a high dimensional additive semi-

parametric function, H0 : h(Xi) = 0. This method allows all the significant components of h(Xi) to be selected

and contribute to the test statistics, with the testing power approaching to one.

The careful analysis of h(Xi) is theoretically and practically meaningful. Firstly, the presence of h(Xi) is an

important component of Arbitrage Pricing Theory (APT) and can contribute to asset pricing theories, namely,

linking the mispricing functions with security-related characteristics. Secondly, as in Hjalmarsson and Manchev

(2012) and Kim et al. (2019) , h(Xi) can be utilized to construct arbitrage portfolios through observed charac-

teristics. However, both research was built upon the condition that h(Xi) is linear over characteristics. If the

mispricing function h(Xi) is not monotonic, simply setting portfolio weights to the estimated values of h(Xi)

can be problematic. In this paper, we show that some characteristics with substantially different values give rise

to similar arbitrage returns. The distance of arbitrage returns between two assets i and j is dij = |h(Xi)−h(Xj)|
and the similarity of characteristics is ‖Xi − Xj‖2, where ‖ · ‖2 represents L2 distance. Inspired by Hoberg

and Phillips (2016) and Vogt and Linton (2017), we employ a hierarchical K-means clustering to classify these

characteristics within each mispricing return group. We present the dynamic of distinct clusters of the same

characteristics leading to similar arbitrage returns, forming a "peer group" of arbitrage characteristics. Therefore,

under the semiparametric setting, the asset weighting function should rely on these time-varying and non-linear
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peer groups.

The rest of this paper is organized as follows. Section 2 sets out the semi-parametric model. Section 3 in-

troduces the assumptions and estimation methods. Section 4 constructs a power enhanced test for high dimen-

sional additive semi-parametric functions. Section 5 employs Hierarchical K-Means Clustering to investigate

peer groups of arbitrage characteristics. Section 6 describes the asymptotic properties of our estimates and test

statistics. Section 6 simulates data to verify the performance of our methodology. Section 7 presents an empirical

study. Finally, Section 8 concludes this paper. Characteristics description tables, proofs, mispricing curves and

plots of peer groups are arranged to the Appendix.

2 Model setup

We assume that there are n securities observed over T time periods. We also assume that during a short time

window, each security has P time-invariant observed characteristics, such as market capitalization, momentum,

and book-to-market ratios. Meanwhile, we may omit heteroskedasticity by assuming that each characteristic

shares a certain form of variation within each period for all securities. We suppose that

yit = (h(Xi) + γi) +

J∑

j=1

(gj(Xi) + λij)fjt + ǫit, (3)

where yit is the monthly excess return of the ith stock at the month t; Xi is a 1 × P vector of P characteristics

of stock i during time periods t = 1, . . . T . T is a small and fixed time block. In practice, most characteristics

are updated annually. Thus, we assume Xi is time-invariant in one-year time window. h(Xi) is an unknown

mispricing function explained by a large set of characteristics whereas γi is the random intercept of the mispricing

part that cannot be explained by characteristics. Similarly, we have characteristics-beta function gj(·) to explain

the jth factor loadings and the unexplained stochastic part of the loading is λij with E(λij) = 0. λij is orthogonal

to the gj(·) function. fjt is the realization of the jth risk factor at time t. Finally, ǫit is homoskedastic zero-mean

idiosyncratic residual of the ith stock at time t. Random variables γi and λij are used to generalize our settings

and not to be estimated. They will be treated as noise in the identification assumptions.

To avoid the curse of dimensionality , we impose additive forms on both h(·) and gj(·) functions: h(Xi) =
∑P

p=1 µp(Xip) and gj(Xi) =
∑P

p=1 θjp(Xip), where µp(Xip) and θjp(Xip) are univariate unknown functions of

the pth characteristic Xp. We rewrite the model:

yit = (

P∑

p=1

µp(Xip) + γi) +

J∑

j=1

(

P∑

p=1

θjp(Xip) + λij)fjt + ǫit, (4)

Assumption 1. We suppose that:

E(ǫit|X, fjt) = 0,
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E(h(Xi)) = E(gj(Xi)) = 0,

E(γi|X) = E(λij|X) = 0,

E(h(Xi)gj(Xi)) = 0,

Similar to Connor et al. (2012) and Fan et al. (2016), Assumption 1 above is to standardize the model settings,

including the zero mean assumption for factor loadings and mispricing functions for identification purposes.

We also impose orthogonality between mispricing and factor loading parts for the identification reason. This is

because the variation of risk factors can be absorbed into the mispricing part if it is not orthogonal to the factor

loadings. More discussion can be found in Connor et al. (2012).

3 Estimation

In this section we discuss the approximation of unknown univariate functions and our estimation methods for

model Equation 3. In the semi-parametric setting, we apply the Projected-PCA following Fan et al. (2016) to work

on the common factors and characteristics-beta directly. Next, we project the residuals onto the characteristics-

based alpha space that is orthogonal to the systematic part. The second step is similar to equality constrained

OLS.

3.1 B-Splines Approximation

We use B-splines sieve to approximate unknown functions θ(·) and µ(·) in Equation 4. Similar to Huang et al.

(2010) and Chen and Pouzo (2012), we have the following procedures. Firstly, suppose that the pth covariate Xp

is in the interval [D0, D], where D0 and D are finite numbers with D0 < D. Let D = {D0, D0, . . . , D0
︸ ︷︷ ︸

l+1

< d1 <

d2 < · · · < dmn
< D,D, . . . , D

︸ ︷︷ ︸

l+1

} be a simple knot sequence on the interval [D0, D]. Here, mn = ⌊nv⌉ (⌊·⌉

gives nearest integer) is a positive integer of the number of internal knots, which is a function of security size n in

period t with 0 < v < 0.5. l is the degree of those bases. Therefore, we have Hn = l +mn bases in total, which

will diverge as n→ ∞. Following this setting, a set of B-splines can be built for the space Ωn[D].

Secondly, for the pth characteristic Xp, there is a set of Hn orthogonal bases {φ1p(Xp), . . . , φHnp(Xp)}.

Those univariate unknown functions can be approximated as linear combinations of these bases as µp(Xp) =
∑Hn

q=1 αqφqp(Xp) +Rµ
p (Xp) and θp(Xp) =

∑Hn

q=1 βjqφqp(Xp) + Rθ
p(Xp), where Rµ

p (Xp) and Rθ
p(Xp) are approx-

imation errors. It is not necessary to use the same bases for both unknown functions and the representation here

is for notational simplicity only. Therefore, the model Equation 4 can be written as:

yit =
P∑

p=1

(
Hn∑

q=1

αpqφpq(Xip) +Rµ
p (Xp)) + γi +

J∑

j=1

(
P∑

p=1

(
Hn∑

q=1

βjpqφpq(Xip) +Rθ
p(Xp)) + λij)fjt + ǫit
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For each i = 1, 2, . . . , n , p = 1, 2, . . . , P and t = 1, 2, . . . , T , we have:

1T = (1, . . . , 1)⊺ ∈ R
T ,

βj = (β1,j1, . . . , βHn,j1, . . . , β1,jP , . . . , βHn,jP )
⊺ ∈ R

HnP ,

B = (β1, . . . , βJ),

A = (α11, . . . , α1Hn
, . . . , αP1, . . . , αPHn

)⊺ ∈ R
HnP ,

Φ(X) =











φ1,11(X11) · · · φ1,1Hn
(X11) · · · φ1,P1(X1P ) . . . φ1,PHn

(X1P )

φ2,11(X21) · · · φ2,1Hn
(X21) · · · φ2,P1(X2P ) . . . φ2,PHn

(X2P )
...

...
...

. . .
...

φn,11(Xn1) · · · φn,1Hn
(Xn1) · · · φn,P1(XnP ) . . . φn,PHn

(XnP )











,

where φi,ph(Xip) is the hth basis of the pth characteristic of asset i at time t. Therefore, the original model

Y = (h(X) + Γ)1⊺
T + (G(X) +Λ)F⊺ +U,

can be represented by B-spline sieve as:

Y = (Φ(X)A+ Γ +Rµ(X))1⊺

T + (Φ(X)B+Λ+Rθ(X))F⊺ +U, (5)

Y is n× T matrix of yit; Φ(X) is the n× PHn matrix of B-Spline bases; A is a PHn × 1 matrix of mispricing

coefficients; Rµ(X) is a n×1 matrix of approximation errors; B is a PHn×J matrix factor loadings’ coefficients;

Rθ(X) is a n × J matrix of approximation errors. We have Rµ
p (Xp) →p 0 and Rθ

p(Xp) →p 0, as n → ∞ as in

Huang et al. (2010). Therefore, we omit the approximation errors for simplicity below. F is the T × J matrix of

ftj and U is a n× T matrix of ǫit. h(X) is a n× 1 vector of characteristics-based mispricing component; G(X)

is a n× J vector of characteristics-based factor loadings; 1T is a T × 1 vector of 1. The rest are defined the same

as Equation 4.

We define a projection matrix as:

P = Φ(X)(Φ(X)⊺Φ(X))−1Φ(X)⊺.

The remaining goals of this paper are to estimate both h(X) and G(X) consistently and conduct a power

enhanced test of the hypothesis H0 : h(X) = 0, i.e., to check the existence of mispricing functions under

semi-parametric settings. Finally, we cluster peer groups of arbitrage characteristics.
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3.2 Two Steps Projected-PCA

In this section, we combine and extend Projected-PCA by Fan et al. (2016) and equality constrained least squares

similar to Kim et al. (2019) to estimate the model. To facilitate the estimation, we define a T × T time series

demeaning matrix DT = IT − 1
T
1T1

⊺
T.

2 Next, we demean the equation above on both sides. Therefore we have

YDT = Ỹ = (Φ(X)B+Λ)F⊺DT +UDT.

Mispricing terms disappear since they are time-invariant by (Φ(X)A+ Γ)1⊺
TDT = 0. This helps us to work on

the systematic part directly. Henceforth, we use F to represent the time-demeaned factor matrix.

Our procedures are designed to estimate factor loadings G(X), time-demeaned unobserved factors F and

mispricing coefficients A in sequence.

Under Assumption 1, we have the following estimation procedures:

1 Projecting Ỹ onto the spline space spanned by {Xip}i6n,p6P through a n×n projection matrix P with P =

Φ(X)(Φ(X)⊺Φ(X))−1Φ(X)⊺ . We then collect the projected data Ŷ = Φ(X)(Φ(X)⊺Φ(X))−1Φ(X)⊺Ỹ.

2 Applying the Principle Component Analysis to the projected data Ŷ⊺Ŷ. This allows us to work directly on

the sample covariance of G(X)F⊺, under the condition E(gj(Xi)ǫit) = E(gj(Xi)λij) = 0.

3 Estimating F̂ as the eigenvectors corresponding to the first J (assumed given) eigenvalues of the T × T

matrix 1
n
Ŷ⊺Ŷ (covariance of projected Ŷ).

The method above substantially improves estimation accuracy and facilitates theoretical analysis even under

the large n and small T . Small T is preferable in our model setting as we use one-year rolling windows

analysis in both simulation and empirical studies, and large n is required for asymptotic analysis.

Factor loadings Ĝ(X) are estimated as:

Ĝ(X) = ŶF̂(F̂⊺F̂)−1

In the next step, we estimate the coefficients of the mispricing bases.

4 The estimator of A is

Â = argmin
A

vec(Y −Φ(X)A1⊺

T − Ĝ(X)F̂⊺)⊺vec(Y −Φ(X)A1⊺

T − Ĝ(X)F̂⊺),

subject to Ĝ(X)⊺Φ(X)A = 0J.

Let a PHn × 1 vector Â be a closed-form solution:

Â = MÃ,

2
IT is a T × T identity matrix, and 1T is a T × 1 matrix of 1.



4 POWER ENHANCED TESTS 9

where

M = I− (Φ(X)⊺Φ(X))−1Φ(X)⊺Ĝ(X)(Ĝ(X)⊺Ĝ(X))−1Ĝ(X)⊺Φ(X),

Ã =
1

T
(Φ(X)⊺Φ(X))−1Φ(X)⊺(Y − Ĝ(X)F̂⊺)1T,

given PĜ(X) = Ĝ(X).

As in Assumption 1, the h(X) is orthogonal to the characteristics-based loadings G(X).

5 We also estimate the covariance matrix of Â, i.e., Σ, by extending the methods of Liew (1976). This can

facilitate theoretical analysis in the next section. According to Liew (1976), Â is the equality constrained

least-square estimator, which has the covariance matrix as (under n 6 T and covariance shrinkage as in

Ledoit et al. (2012) and Fan et al. (2013) among others.):

Σ̂ = MΣ̂ÃM
⊺,

where:

Σ̂Ã = (Φ(X)⊺Φ(X))−1Φ(X)⊺








σ̂2
1

. . .

σ̂2
n







Φ(X)(Φ(X)⊺Φ(X))−1,

σ̂2
i =

∑T
1 ê

2
it

T − 1
,

where
∑T

1 ê
2
it =

∑T
1 (yit−

∑P
p=1

∑Hn

q=1 α̂pqφpq(xip)−
∑J

j=1(
∑P

p=1

∑H
q=1 β̂jpqφpq(xip))f̂jt)

2. Heteroskedas-

ticity is caused by γi.

4 Power Enhanced Tests

There are considerable discussions about the mispricing phenomenon under factor models while the existence of

mispricing functions remains controversial. Namely, whether there are relevant covariates explaining remaining

excess returns after subtracting co-movements components captured by risk factors. Recently, Kim et al. (2019)

found the characteristics arbitrage opportunities by estimating a linear characteristic mispricing function, without

providing theoretical results. However, Kelly et al. (2019) conducted a conventional Wald hypothesis test on the

similar mispricing function using bootstrap, concluding that there is no evidence to reject the null hypothesis

H0 : h(X) = 0. Additionally, they applied the bootstrap method to estimate the covariance matrix Σ, which

caused potential problems for theoretical analysis. Moreover, according to Fan et al. (2015), their test results may

have relatively low power when the true coefficient vector of linear mispricing function A has a sparse structure.

Both studies adopt a parametric framework, which relies on the strong assumption of linearity. However, this

assumption is not consistent with Connor et al. (2012), which showed that both characteristic-beta and mispricing
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functions are very likely to be non-linear. Therefore, we propose a semiparametric model to accommodate the

non-linearity to a great extent.

But semi-parametric framework leads to additional challenges for inference. On the one hand, as mentioned

above, the number of coefficients of mispricing B-splines diverge as n → ∞, which implies that the power of

standard Wald test can be quite low, (see Fan et al. (2015)). On the other hand, according to other research like

Fama and French (1993) and Fama and French (2015), mispricing terms can be regarded as anomalies. This

means that in our model setting, the true mispricing coefficient vector A can be high-dimensional but sparse,

reducing the power of conventional Wald test further.

According to Kock and Preinerstorfer (2019), conventional hypothesis tests under these circumstances are

power enhanceable. The power enhanced Wald test in this paper is an extension of Fan et al. (2015) to a group

manner, namely, the hypothesis test under high-dimensional additive semi-parametric settings. The proposed test

are power strengthened when the coefficients of the additive regression A is diverging as n → ∞ without size

distortion. Meanwhile, this test is robust to sparse alternatives. On top of that, the proposed test can select the

most important components from sparse additive functions. Finally, the proposed method can also be applied

when the number of characteristics is diverging, i.e., P → ∞.

We construct a new test:

H0 : h(X) = 0, H1 : h(X) 6= 0,

equivalently,

H0 : A = 0, H1 : A ∈ A,

where A ⊂ R
PHn\0.

Here, we have:

S1 =
ÂΣ̂−1Â⊺ − PHn√

2PHn

where S1 is the "original" Wald test statistics; P is the number of characteristics; PHn is the total number of

B-spline bases, and A ∈ R
PHn . The value of Hn is a function of asset number n, therefore, Hn → ∞ as n→ ∞.

Under H0, S1 has nondegenerate limiting distribution F as n → ∞. Given the significance level q, q ∈ (0, 1) as

well as the critical value Fq:

S1|H0 →d F

lim
N→∞

Pr(S1 > Fq|H0) = q.

Pesaran and Yamagata (2012) showed that:

S1|H0 →d N (0, 1),

under regularity conditions.
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Potentially, sparse and diverging PHn means that it is plausible to add a power enhanced component to S1,

which can improve the power of the hypothesis test without any size distortions.

Therefore, we can construct an extra screening component S0 as:

S0 = Hn

P∑

p=1

I(

Hn∑

h=1

|α̂ph|/σ̂ph > ηn),

where σ̂ph is the phth entry of the diagonal elements of Σ̂. I(·) is an indicator for the screening process while ηn

is a data-driven threshold value to avoid potential size-distortion.

Here we discuss the choice of ηn. By construction and assumption of independent characteristics, we assume

all B-Spline bases are orthogonal. Our goal is to bound the maximum of those standardized coefficients.

Define Z = max
{16p6P,16h6Hn}

{|α̂ph|/σ̂ph}. We have

α̂ph/σ̂ph|H0 →d N(0, 1),

E(Z) =
√

2 logPHn.

After grouping coefficients of bases used to approximate the unknown function of each characteristic, let Q =

max(
∑Hn

h=1 |α̂1h|/σ̂1h, . . . ,
∑Hn

h=1 |α̂ph|/σ̂ph . . . ,
∑Hn

h=1 |α̂Ph|/σ̂Ph). Following this, we may set the threshold as

ηn = Hn

√

2 log(PHn), where Hn = l + nv. As Hn is a slowly diverging sequence, it can control the influence

of the group size properly. Meanwhile, ηn also diverges slowly so that ηn is a conservative threshold value used

to avoid potential size distortion.

Apart from strengthening the power of conventional hypothesis test, I(·) is a screening term which can select

the most relevant characteristics at the same time.

We then define the arbitrage characteristics set, which includes the characteristics that have the strong explana-

tion power for mispricing functions:

M = {Xm ∈ M :
Hn∑

h=1

|αph|/σph > ηn, m = 1, 2, . . . ,M}

M̂ = {Xm ∈ M̂ :

Hn∑

h=1

|α̂ph|/σ̂ph > ηn, m = 1, 2, . . . ,M}

Therefore, we have M ∪ 0 = A and M ∩ 0 = ∅. When the set M is relatively small, conventional tests are

likely to suffer the lower power problem. The added S0 strengthens the power of the test and drives the power to

one since Hn is slowly diverging.

Therefore, our new test statistics is S = S0 + S1 , and asymptotic properties of S will be discussed later.

To conclude, the advantages of our new statistics S = S0 + S1 are:
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1 The power of the hypothesis test on H0 : h(X) = 0 is mainly enhanced without size distortions.

2 We can find specific characteristics which cause the mispricing by this screening mechanism.

As designed, S0 satisfies all three properties of Fan et al. (2015), as n→ ∞:

1 S0 is non-negative, Pr(S0 > 0) = 1

2 S0 does not cause size distortion: under H0, Pr(S0 = 0 | H0) → 1

3 S0 enhances test power. Under alternativeH1, S0 diverge quickly in probability given the well chosen ηn,T .

Based on properties of S0, we have three properties of S listed:

1 No size distortion lim sup
n→∞

Pr(S > Fq|H0) = q

2 Pr(S > Fq|H1) > Pr(S1 > Fq|H1). Hence, the power of S is at least as large as that of S1.

3 Pr(S > Fq|H1) → 1 when S0 diverges. This happens, especially, when the true form of Â has a sparse

structure.

5 Hierarchical K-Means Clustering

This section introduces a Herarchical K-means Clustering method to find peer groups of arbitrage characteristics

based on their arbitrage returns. We ask whether distinct groups of the same characteristics may result in similar

characteristic-based arbitrage returns in each rolling block, which is an implication for non-monotonic mispricing

function, and forms a "peer group" of arbitrage characteristics. Because arbitrage portfolios rely on the linearity

of characteristics-bases mispricing components to work, our clustering results can provide new evidence for the

effectiveness of these arbitrage porfolios. Introduction of K-means clustering can be found in Cox (1957) and

Fisher (1958).

After the screening process in section 4, we obtain the relevant components of mispricing function h(X),

which is estimated as

M̂ = {Xm ∈ M̂ :

Hn∑

h=1

|α̂ph|/σ̂ph > ηn, m = 1, 2, . . . ,M}.

We define a n×M matrix M of arbitrage characteristics at time window t as :

M = {X1,X2, . . . ,XM}, where Xm ∈ M̂.
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Note that these characteristics are time-invariant within each rolling window. We also set characteristics-based

arbitrage returns of asset i in month t as:

ÿit = φ(Mi)ÂM,

where φ(Mi) and ÂM are the corresonding parts of matrix Φ(Xi) and vector Â. For each rolling window, we

classify all n assets through a 2-layer K-means clustering. At the first layer, we cluster these assets into K groups

according to the similarity of their characteristics-based arbitrage returns ÿit. At the second layer, we divide

Rj subgroups within the jth group from the first layer by the similarity of their arbitrage characteristics, where

j = 1, 2, . . . , K . Finally, the peer groups of arbitrage characteristics can be attained. We repreat this method for

all rolling blocks to investigate dynamic patterns of these peer groups. These clusterings will provide illustrative

evidence of linear/nonlinear and time-invariant/time-varying structure of mispricing function h(X).

We give the classification procedures of both layers. We define ∆ij as the difference between characteristics-

based arbitrage returns of ÿit and ÿjt , as well as Υij as the difference between arbitrage characteristics:

∆ij = ÿit − ÿjt, where i 6= j, j = 1, 2, . . . , n.

Υij = ‖Mi −Mj‖2, where i 6= j, i, j = 1, 2, . . . , n,

Mi represents the ith row of M . We set two tolerance thresholds ψy and ψx, which are used to control the biggest

difference within each group of both layers separately. To accelerate the convergence of the K-means Clustering,

we first apply a first difference process, which is introduced below, to obtain centroids as in Vogt and Linton

(2017).

For the first layer, we have first difference process:

1. First difference: We randomly pick ith asset and then we calculate ∆ij with other assets j = 1, 2, . . . , n.

Thus we obtain ∆i(1) . . .∆i(n), with n being the total individuals for classification. Without loss of gener-

ality, we assume ∆i(1) = min{∆i(1) . . .∆i(n)}, and ∆i(n) = max{∆i(1) . . .∆i(n)}.

2. Ordering: We rank the values obtained in Step 1 as follows:

∆i(1) 6 . . . 6 ∆i(j1−1) < ∆i(j1) 6 . . . 6 ∆i(j2−1)

< ∆i(j2) 6 . . . 6 ∆i(j3−1)

...

< ∆i(jK−1) 6 . . . 6 ∆i(n).

We use the strict inequality mark to show large jumps of "first difference", all of which are larger than ψy ,

while the weak inequality means that the distance calculated is smaller than ψy. We identify K − 1 jumps

that are larger than ψy above. Thus, the initial classification is achieved, and we have a total of K groups

with j1 − 1 members in the first group C1, j2 − j1 members in the second group C2 , . . . , and n − jK + 1

members in the final group CK .
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In terms of the second layer, for the assets in the kth group Ck, we use the same method to further divide them

into r subgroups as R1k,R2k, . . . ,Rrk. Within each subgroup, we have:

Υab = ‖Ma −Mb‖2 6 ψx, where a, b ∈ Rik, i = 1, 2, . . . , r, and k = 1, 2, . . . , K.

The K-means algorithm is:

1. Step 1: Determine the starting mean values for each group ˆ̄c
[0]
1 , . . . , ˆ̄c

[0]
K and calculate the distances D̂k(i) =

∆(ÿit, ˆ̄c
[0]
k ) = |ÿit− ˆ̄c

[0]
k | for each i and k. Define the partition {C[0]

1 , . . . , C[0]
K } by assigning the ith individual

to the k-th group C[0]
k if D̂k(i) = min16k′6K D̂k′(i).

2. Step l: Let {C[l−1]
1 , . . . , C[l−1]

K } be the partition of {1, . . . , n} from the latest iteration step. Calculate mean

functions

ˆ̄c
[l]
k =

1

|C[l−1]
k |

∑

i∈C[l−1]
k

ÿit for 1 6 k 6 K

And then we calculate ∆(ÿit, ˆ̄c
[l]
k ) = |ÿit − ˆ̄c

[l]
k | for each i and k. Define the partition {C[l]

1 , . . . , C[l]
K} by

assigning the ith individual to the k-th group C[l]
k if D̂k(i) = min16k′6K0 D̂k′(i).

3. Iterate the above steps until the partition {C[w]
1 , . . . , C[w]

K } does not change anymore.

To accelerate the convergence of K-means algorithm, at the step 1, results of first difference are used. As we

have already obtained our initial grouping {C1, . . . , CK}, therefore starting values for the Step 1 is:

ˆ̄c
[0]
k =

1

|Ck|
∑

i∈Ck

ÿit for 1 6 k 6 K,

where |Ck| is the cardinality of the group Ck.

The consistency and other theoretical results of the above procedures can be found in Pollard (1981)Pollard

et al. (1982), Sun et al. (2012) and Vogt and Linton (2017).

For the second layer, we repeat the procedures within each group C[w]
k respect to Υab, and the structure of

characteristics-based arbitrage returns is:

Arbitrage returns

C[w]
1 · · ·

R11 · · · · · · · · ·Rr1

C[w]
k

R1k · · · · · · · · ·Rr′k

· · · C[w]
K

R1K · · · · · · · · ·Rr′′K
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The first layer is the structure of characteristics-based arbitrage returns, while the second layer gives peer

groups of characteristics that can provide similar characteristics-based arbitrage returns.

The number of clusterings are determined by threshold values ψy and ψx directly. ψy and ψx are chosen by the

tradeoff between the number of clusterings and total within sum of squares.

6 Asymptotic properties

This section discusses assumptions and properties of estimates and power enhanced statistics S.

6.1 Consistency Assumptions

Assumption 2. As n→ ∞, we have:
1

n
Y⊺Y →P MY,

F⊺F = IJ,

where MY is a positive definite matrix, and IJ is a J × J identity matrix.

We define λmin(M) and λmax(M) as the largest and the smallest eigenvalue of matrix M , respectively. Addi-

tionally, we define Cmin and Cmax to be positive constants such that:

Cmin 6 λmin(
1

n
Φ⊺(X)Φ(X)) < λmax(

1

n
Φ⊺(X)Φ(X)) 6 Cmax

as n→ ∞.

We impose these restrictions to avoid non-invertibility of stock returns, characteristics, and rotation indetermi-

nacy.

Assumption 3.

1

n
G(X)⊺PG(X) →P








d1
. . .

dPHn







,

as n→ ∞, where dPHn
are distinct entries.

Both Assumption 2 and 3 are similar to those in Fan et al. (2016), which are used to separately identify

risk factors and factor loadings. Given the orthogonal bases of B-splines and uncorrelated or weakly correlated

characteristics, Assumption 3 is mild.
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Assumption 4. Kmin and Kmax are positive constants such that:

Kmin 6 λmin(
1

n
G(X)⊺PG(X)) < λmin(

1

n
G(X)⊺PG(X)) 6 Kmax

as n→ ∞.

This assumption requires nonvanishing explanatory power of the B-spline bases Φ(X) on the factor loading

matrix G(X).

Assumption 5. ǫit is realized i.i.d. idiosyncratic shocks with E(ǫit) = 0 and var(ǫit) = σ2.

Heteroskedasticity is caused by γi, namely, var(γi + ǫit) = σ2
i .

6.2 Main Results

Theorem 6.1. Let F̂ be the J × T matrix estimate of latent risk factors. Under Assumption 1-4, F̂ →P F, as

n→ ∞.

Theorem 6.2. Define the n × J matrix Ĝ(X) as the estimate of factor loadings G(X). Under Assumption 1-4

and Theorem 6.1 , as n→ ∞, then Ĝ(X) →P G(X).

Theorem 6.3. Let the PHn × 1 vector Â be the solution of constrained OLS, then

Â = MÃ,

where

M = I− (Φ(X)⊺Φ(X))−1Φ(X)⊺Ĝ(X)(Ĝ(X)⊺Φ(X)(Φ(X)⊺Φ(X))−1Φ(X)⊺Ĝ(X))−1Ĝ(X)⊺Φ(X),

Ã =
1

T
(Φ(X)⊺Φ(X))−1Φ(X)⊺(Y − Ĝ(X)F̂⊺)1⊺

T.

Under Assumption 1-4, Φ(X)Â →P h(X), as n→ ∞.

Theorem 6.4. Under Assumption 3 and Assumption 5, E(Z) =
√
2 logPHn.

Theorem 6.5. Define ηn as the threshold value to control the maximum noise, then:

inf
A=0

Pr( max
p6P,h6H

|α̂ph − αph|/σ̂ph 6 ηn|A) → 1.

Under n→ ∞ and H0, given the properties of S0 and S1, then:

S →d N(0, 1),

The power of S is approaching to 1 as:

inf
A∈A

Pr(reject H0|A) → 1.
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7 Numerical Study

In this section, we use Compustat and Fama-French three and five factors data to simulate stocks returns and then

evaluate the performance of our estimation and hypothesis test procedures.

7.1 Data Generation

Firstly, we use Fama-French three factors monthly returns and all the characteristics that will be included in the

empirical study to mimic the stocks excess returns. Most of the characteristics are updated annually so we treat

those variables as time-invariant during each one-year rolling block. For the characteristics that are updated every

month, we substitute the mean values as their fixed values for each fiscal year. We use Fama-French monthly

returns from July of year t to June of year t+1 and characteristics of fiscal year t−1 to generate the stock returns

from July of year t to June of year t+1. The periods we generate are the same as the empirical study, namely, 50

years from July 1967 to June 2017. For each rolling block with 12 months we have:

yit = h(Xi) +

3∑

j=1

gj(Xj)fjt + ǫit, (6)

yit is the generated stock’s return; h(Xi) is the mispricing function consists of a non-linear characteristic function

of xi, which is to mimic the sparse structure of the mispricing function; gj(Xj) is the jth characteristics-based

factor loading, which has an additive semi-parametric structure; Xj is the jth subset consisting of 4 characteris-

tics; fjt is the jth Fama-French factor returns at time t; ǫit is the idiosyncratic shock for stock i at time t, generated

from N(0, σ2).

We generate characteristic functions:

h(Xi) = sinXi,

gj(Xj) = X2
j1 + (3X3

j2 − 2X2
j2) + (3X3

j3 − 2Xj3) +X2
j4,

Xji is a randomly picked characteristic without replacement from the data in empirical study and j = 1, 2, 3 , i =

1, . . . , 4. Description of these characteristics can be found in the Appendix. Additionally, all h(Xi), gj(Xj) are

rescaled to have zero mean and unit variance. As we use real data to conduct the simulation, the assumption

of independent Xi may not be satisfied. Although some characterisitcs are correlated, the semi-paramtric model

overcomes this problem properly when compared with the parametric model that has serious size distortion.

We do not specify h(Xi) and gj(Xj) to be orthogonal explicitly, but we draw characteristics without replace-

ment and employ sine-waves and polynomials to approximate the orthogonality as much as possible. Orthogo-

nality is a strong assumption in reality, which is required for Theorem 6.5. In this simulatin, our method can only

estimate the component of h(Xi) that is orthogonal to gj(Xj). However, results reveal that one can still select the

arbitrage characteristics even if we cannot estimate arbitrary h(Xi) unrestrictively.
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7.2 Model Misspecification

In this subsection, we show the necessity to consider semi-parametric analysis when the forms of factor loadings

and mispricing functions are nonlinear.

Under the data generation process, we consider both semi-parametric and linear analysis to compare Mean

Squared Error (MSE) and hypothesis test results under both specifications. We apply our estimation methodology

in section 3 to estimate Equation 7.1. For semi-parametric specification, we choose the number of B-Spline bases

to be ⌊n0.3⌉. n is the number of assets in each balanced rolling window, and ⌊·⌉ means the nearest integer. We

orthogonalize these bases, and then use the Projected-PCA and restricted OLS to estimate model Equation 7.1. As

for the hypothesis test part, we choose threshold value to be ηn = Hn

√

2 log(PHn) = ⌊n0.3⌉
√

2 log(P ⌊n0.3⌉),
where P is the number of characteristics, and n is the number of stocks in each rolling block. For the linear

specification, each characteristic only has one basis, which is itself. In terms of hypothesis test, we use the same

logic as in the semi-parametric settings, and we set ηn =
√

3 log(P ).

In all the estimation above, we assume we know the real number of factors, which is three. We will discuss

the situation when the number of factors is unknown in the next subsection. Mean Squared Error (MSE) is also

reported to measure the fitness of the model Equation 7.1.

From Table 1, under different noise levels, namely σ2 = 1 and σ2 = 4, the semi-parametric model outperforms

the linear model in the following aspects:

1 The fitness of the semi-parametric model is much better than the linear model, which can be illustrated from

MSE.

2 The semi-parametric model can enhance the power of S1 by non-zero S0, which can not only select the correct

mispricing characteristics but also avoid size distortions. As for the linear model, it is influenced by the

correlated characteristics. Therefore, during certain periods we even obtain the non-invertible characteristic

matrix. The linear model can also select the relevant covariates with decent probability, but it suffers from

serious size distortions. In contrast, our semi-parametric model with orthogonal bases can mitigate this

problem to a great extent.

3 Because S1 can be very small and even negative, especially when the noise σi is strong, the additional compo-

nent S0 is necessary to strengthen the power of S1 and select the relevant characteristics that can explain

the mispricing function.



7
N

U
M

E
R

IC
A

L
S

T
U

D
Y

1
9

Table 1: Simulation Results 1 Part1

σ2 = 1 σ2 = 4

Linear Model Semi-parametric Model Linear Model Semi-parametric Model

Window n S S0 S1 MSE Selected % Distortion% S S0 S1 MSE Selected % Distortion% S S0 S1 MSE Selected % Distortion% S S0 S1 MSE Selected % Distortion%

1 468 24.9 11.5 13.4 6.4 100% 100% -0.5 6.2 -5.7 6 81.2% 0% 14.2 10.8 3.4 8.6 100% 87.4% -8.2 0 -8.2 8.1 0% 0%

2 894 32.8 11.6 21.2 2 100% 100% 3.4 8 -4.6 1.6 99.9% 0% 11.4 5.8 5.6 4.3 100% 2.1% -8.5 0 -8.5 3.7 0% 0%

3 1108 34.4 5.7 28.7 11.9 100% 0% 8.6 9 -0.4 11.5 100% 0% 17.1 5.7 11.4 14.1 100% 0% -7 0.7 -7.7 13.7 7.3% 0%

4 1199 -0.57 0 -0.57 10.2 0% 0% 9.2 9.1 0.1 9.5 96.8% 4.3% -1.4 0 -1.4 12.5 0% 0% -6.1 0.06 -6.2 7% 0%

5 1333 92 19.6 72.4 2.31 100% 100% 10.6 9 1.6 2 100% 0% 28.2 6.1 22 4.5 100% 6.5% 0.2 7.4 -7.2 4.1 82.8% 0%

6 1409 90 28.5 61.5 16 100% 100% 28.6 12.6 15.9 15.8 100% 28% 45.3 16.1 29.2 18.4 100% 73.4% 16.3 10.9 5.4 17.5 68.4% 35.9%

7 1466 78.4 10.6 67.8 6.4 100% 74.2% 19.5 9 10.5 6.2 100% 0% 34.8 5.7 29.1 8.6 100% 0.02% 4.3 9 -4.7 8.4 99.9% 0%

8 1560 133 16.8 116.2 3.3 100% 100% 20.3 10 10.3 3.2 100% 0% 45.2 6.1 39.1 5.5 100% 6.9% 4.2 10 -5.8 5.4 100% 0%

9 1494 117.7 13.6 104.1 3.6 100% 100% 23.1 9 14.1 3.5 100% 0% 44.1 7.6 36.5 5.8 100% 32.4% 6 9 -3 5.6 100% 0.01%

10 1292 90.7 11.5 79.2 3.7 100% 100% 16.2 9 7.2 3.6 100% 0% 39.5 9.3 30.2 5.9 100% 61.1% 3.6 8.9 -5.3 5.7 99.7% 0%

11 1393 84.7 10.6 74.1 6.1 100% 85.1% 20.7 9.1 11.6 5.8 100% 1.1% 37.1 6.5 30.6 8.3 100% 12.9% 8.9 8.9 0 7.8 98.1% 1.3%

12 1340 83.5 28 55.5 2.38 100% 100% 10.6 9 1.6 2 100% 0% 26 6.2 19.8 4.6 100% 7.1% -1.8 5.7 -7.5 4.1 63.7 0%

13 1285 113.8 16 97.8 1.73 100% 100% 10.6 9 1.6 1.6 100% 0% 34.5 6.6 27.9 4 100% 15.3% -2.4 5.1 -7.5 3.7 57.1% 0%

14 1181 88.5 12.8 75.7 4.7 100% 100% 15.8 9 6.8 4.5 100% 0% 31.2 5.9 25.3 6.9 100% 2.3% 3.7 9 -5.3 6.6 100% 0%

15 1110 45.7 7.5 38.1 8.9 100% 30.4% 11.5 9 2.5 8.7 100% 0% 23.9 5.8 18.1 11.1 100% 0.6% -2 4.8 -6.8 10.8 0.54% 0%

16 1044 20.5 5.7 14.8 18.4 100% 0% 9.9 9 0.9 17.9 100% 0% 14.6 5.7 8.9 20.6 100% 0% 1.2 6.1 -4.9 20 68.1% 0.2%

17 1125 59.4 11.5 47.9 9.2 100% 100% 13.2 9 4.2 9 100% 0% 27.2 6.2 21 11.5 100% 8.4% 2.6 8.8 -6.2 11 97.9% 0%

18 2192 NA NA NA NA NA NA 23.2 11 12.2 4.3 100% 0% NA NA NA NA NA NA 6.7 11 -4.3 6.4 100% 0%

19 2236 56.1 11.5 44.6 5.8 100% 100% 17.8 11 6.8 5.2 100% 0% 28.3 6.3 22 8 100% 20.3% 4.3 11 -6.7 7.4 100% 0%

20 2273 43.3 5.7 37.6 3.8 100% 0% 22.4 11 11.4 3.2 100% 0% 22.4 5.7 16.7 6.1 100% 0% 5 10.2 -5.2 5.4 92.6% 0%

21 2235 59.8 11.8 48 2.7 100% 100% 20.2 11 9.2 2 100% 0% 25 7.3 17.7 4.9 100% 28.2% 4.6 11 -6.4 4.2 100% 0%

22 2270 40.2 11.5 28.7 2.78 100% 99.5% 17.2 11.6 5.6 2.1 100% 0% 17.1 5.9 11.2 5 100% 3.5% -6 0.1 -6.1 4.2 1.1% 0%

23 2405 41.4 8.9 32.5 4.1 100% 54.2% 16.3 11 5.3 3.3 100% 0% 18.7 5.8 12.9 6.3 100% 7.1% -3.3 3 -6.3 5.5 27.3% 0%

24 2376 19 9.7 9.3 1.8 100% 69.9% 23.1 11 12.1 1 100% 0% 7.5 5.7 1.8 4 100% 0% 5.6 11 -5.4 3.2 100% 0%

25 2323 15.9 9.5 6.4 3.5 66.7% 98.6% 20.6 11 9.6 2.7 100% 0% 1.1 0 1.1 5.8 0% 0% 5.3 11 -5.7 4.9 100% 0%

26 2344 NA NA NA NA NA NA 24.9 12.9 12 3.3 100% 17.1% NA NA NA NA NA NA 6.5 11 -4.5 5.4 100% 0%

27 2434 NA NA NA NA NA NA 27.3 11 16.3 1.2 100% 0% NA NA NA NA NA NA 6.9 11 -4.1 3.4 100% 0%

28 2548 0.9 0 0.9 4.2 0% 0% 26.2 11 15.2 3.3 100% 0% -1.3 0 -1.3 6.5 0% 0% 6.9 11 -4.1 5.5 100% 0%

29 2741 10.3 5.7 4.5 4.2 100% 0% 58.2 11.1 47.1 3.4 100% 1.3% 6.6 5.7 0.9 6.4 100% 0% 17.6 11 6.6 5.5 100% 0%

30 2928 5.6 4.6 1 7.1 80.4% 0% 59.2 11.8 47.4 6.3 100% 7.8% -0.4 0.1 -0.5 9.3 2.5% 0% 18.8 11 7.8 8.5 100% 0.3%

31 2894 13.4 5.7 7.7 6.4 100% 0% 61 13.4 47.6 5.7 100% 21.6% 8.1 5.7 2.3 8.6 100% 0% 17.7 11 6.7 7.8 100% 0.2%

32 2905 23.1 11.5 11.6 5.9 100% 100% 33.2 11.3 21.9 5.2 100% 3% 12.9 8.5 4.4 8.1 100% 48.2% 9.8 11 -1.2 7.4 100% 0%

33 2804 9.8 5.7 4.1 9.6 100% 0% 42.7 18.5 24.2 8.9 100% 68.5% 7.3 5.7 1.6 11.9 100% 0% 9.7 11 -1.3 11.2 100% 0%

34 2570 6.9 5.7 1.2 22 99.7% 0% 37.3 12.2 25.1 21.2 100% 10.4% 2 1.9 0.1 24 34.4% 0% 12.7 11 1.7 23.3 100% 0.2%

35 2516 8.3 5.7 2.6 7.9 100% 0% 41.3 11 30.3 7.2 100% 0.4% 5.1 5.02 0.08 10.1 87.3% 0% 12.9 11 1.9 9.4 100% 0%

36 2491 10.7 5.7 4.9 2.1 100% 0% 41.3 11 30.3 1.4 100% 0.4% 0.5 0.25 0.25 4.4 4.5% 0% 12.4 11 1.4 3.6 100% 0%

37 2402 14.1 5.7 8.4 5.6 100% 0% 26.5 11.2 15.3 4.9 100% 2.2% 8.8 5.7 3.1 7.9 100% 0% 7.9 11 -3.1 7.1 100% 0%

38 2326 19.7 9.6 10.1 3 100% 66.8% 28.9 11.3 17.6 2.3 100% 2.1% 8.1 5.8 2.3 5.3 100% 0.3% 8.7 11 -2.3 4.4 99.9% 0.1%

39 2241 17 5.7 16.1 2.9 100% 0.2% 11 11 0 1.7 100% 0% 9.1 5.8 2.3 5.3 100% 0.3% -7.5 0.1 -7.6 4 1.1% 0%

40 2178 21.8 5.7 16.1 2.9 100% 0% 9.5 11 -1.5 2.2 100% 0.3% 12.2 5.7 6.5 5.2 100% 0% -8.1 0 -8.1 4.4 0% 0%
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Table 2: Simulation Results 1 Part2

σ2 = 1 σ2 = 4

Linear Model Semi-parametric Model Linear Model Semi-parametric Model

Window n S S0 S1 MSE Selected % Distortion% S S0 S1 MSE Selected % Distortion% S S0 S1 MSE Selected % Distortion% S S0 S1 MSE Selected % Distortion%

41 2113 24.1 6.1 18 4.7 100% 7.5% 7.8 10 -2.2 3.9 100% 0% 13.9 5.7 8.2 6.9 100% 0% -8.1 0 -8.1 6.1 0% 0%

42 2023 18.4 5.7 12.7 6.8 100% 0% 11.3 10 1.3 6 100% 0% 10.8 5.8 5.1 9 100% 0% -7.1 0.3 7.4 8.2 2.7% 0%

43 2007 18.8 5.7 13.1 4.9 100% 0% 9.1 10 -0.9 4.1 100% 0% 10.5 5.7 4.8 7.1 100% 0% -8.3 0 -8.3 6.3 0% 0%

44 1924 16.6 5.8 10.8 8.18 100% 0.2% 13.6 10.8 2.8 7.5 100% 8% 11.2 5.8 5.4 10.4 100% 0.3% -3.5 2.7 -6.2 9.7 26.3% 0.2%

45 1990 27.5 5.7 21.8 2.1 100% 0% 8.1 10 -1.9 1.4 100% 0% 13.3 5.7 7.5 4.4 100% 0% -8 0 -8 3.6 0% 0%

46 1937 20.3 5.8 14.5 5.4 100% 0.9% 19.7 11.8 7.9 4.7 100% 18% 12.6 5.9 6.7 7.6 100% 3% 8 11.2 -3.2 6.8 100% 12.3%

47 1909 13.2 5.7 7.5 5.2 100% 0% 14.2 10.4 3.8 4.5 100% 3.5% 8.8 5.7 3.1 7.4 100% 0% 2.7 8.4 -5.7 6.7 84.9% 0%

48 1872 21.8 5.7 16.1 2.7 100% 0% 11.4 10 1.4 2 100% 0% 11.1 5.8 5.3 4.9 100% 0% -6.8 0.6 -7.4 4.2 5.7% 0%

49 1841 16.3 5.7 10.5 2.1 100% 0% 8.7 10 -1.3 1.4 100% 0.1% 8.1 5.7 2.4 4.4 100% 0% -8.4 0 -8.4 3.6 0% 0%

50 1826 11 5.7 5.3 4.3 100% 0% 12.6 10.6 2 3.5 100% 3.5% 6.5 5.7 0.8 6.6 99.7% 0.3% -6.9 0 -6.9 5.7 0% 0%

This table documents results under the characteristics-based beta and alpha of Fama-Frech 3 factors model. To mimic the empirical study, we simulated 50 12-month rolling windows, and each window is repeated for 1000 times. Each column summarises the mean value

of 1000 estimations and test results. S1 is the conventional Wald test while S0 is the power-strengthened component. This table also compares the performance of both semi-parametric and linear models under different noise levels, σ2 = 1 and σ2 = 4. NA results are

causes by non-invertible characteristic matrices. "Selected" means the percentage of selecting the relevant characteristic in the mispricing function in 1000 experiments. Similarly, "distortion" represents the percentage of wrongly selecting irrelevant characteristics in 1000

repetitions.
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7.3 Robustness Under Stronger Noise

In Table 1, we set two different noise levels of random shocks, namely σ2 = 1 and σ2 = 4. Although σ2 = 1 is

closer to the empirical data, we conduct this comparison to show the robustness of our methods. When the noise

level becomes three times bigger, the accuracy of power enhanced tests gets much lower for certain windows.

However, there are no size distortions under comparatively high noise level recalling that all the components of

our simulation model are rescaled to have unit variance. Another fact is that the stronger noise does deteriorate

the power of conventional Wald tests, leading to an even smaller value of S1, which can be mitigated through

adding S0.

Therefore, we conclude that our methods are robust to a higher noise level regarding no size distortions. How-

ever, the accuracy of selecting relevant components and the role of enhancing the power of hypothesis tests will

be influenced negatively.

7.4 Number of Factors

In the empirical study, the number of factors is unknown. Therefore, in this subsection we will study whether our

methodology is robust to a various numbers of factors considered.

We simulate according to another data generation process:

yit = h(Xi) +
5∑

j=1

gj(Xj)fjt + ǫit, (7)

similarly, yit is the generated stock return; h(Xi) is the mispricing function consist of a non-linear characteristic

function of Xi, to mimic the sparse structure of the mispricing function; gj(Xj) is the jth characteristics-based

factor loading, which has an additive semi-parametric structure; Xj is a subset consisting of four characteris-

tics; fjt is the j Fama-French 5-factor returns at time t; ǫit is the idiosyncratic shock, generated from N(0, σ2).

Moreover, we generate characteristic functions as:

h(Xi) = sinXi,

gj(Xj) = X2
j1 + (3X3

j2 − 2X2
j2) + (3X3

j3 − 2Xj3) +X2
j4,

where Xji is a randomly picked characteristic without replacement from the data in empirical study with j =

1, . . . , 5 , i = 1, . . . , 4. Furthermore, all h(Xi) and gj(Xj) are rescaled to have zero mean and unit variance.

Given the above data generation process, together with the data generation process in Section 6.1, we test the

influence of over and under-estimated number of factors. We choose the number of factors to be either three or

five, and compare the results in Table 3.

The first category column is the scenario of over estimating the number of factors. We simulate the data

generation process using the Fama-French three factors model but estimate the number of factors to be five.



7 NUMERICAL STUDY 22

However, this does not cause any serious problems. For some rolling blocks, the probability of mistakenly

selected irrelevant characteristics is slightly higher under over estimating the number of factors. Moreover, over

estimating the number of factors can increase the model fitting marginally. Therefore, we conclude that over

estimating the number of factors does not cause severe size distortion using our methods.

On the other hand, under estimating the number of factors can lead to misleading test results. We can conclude

this from the last column where we estimate the number of factors to be three in a five-factor model. Compared

with the correct specified model, under estimating causes not only higher MSE, but also higher distortions, which

means it is more likely to select irrelevant characteristics. Therefore, in the empirical study we prefer the five-

factor model rather than the three-factor model.
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Table 3: Simulation Results 2 Part1

Number of factors J = 3 Number of factors J = 5

Number of estimated factors Ĵ = 5 Number of estimated factors Ĵ = 3 Number of estimated factors Ĵ = 5 Number of estimated factors Ĵ = 3

Window n S S0 S1 MSE Selected % Distortion% S S0 S1 MSE Selected % Distortion% S S0 S1 MSE Selected % Distortion% S S0 S1 MSE Selected % Distortion%

1 468 2.6 7 -4.4 5.9 99.6% 0% -0.5 6.2 -5.7 6 81.2% 0% 4.5 6.9 -2.4 6 97.4% 1.3% -8.5 0 -8.5 6.9 0% 0%

2 894 6 8 -2 1.5 99.9% 0% 3.4 8 -4.6 1.6 99.9% 0% 5.5 8 -2.5 2.3 100% 0% -6.5 1 -7.5 3 12.9% 0%

3 1108 12.8 9 3.8 11.4 100% 0.1% 8.6 9 -0.4 11.5 100% 0% 14.3 9 5.3 13.6 100% 0.5% 5.3 9 -3.7 14.1 100% 0.1%

4 1199 13.5 10.3 3.2 9.4 99.8% 0% 9.2 9.1 0.1 9.5 96.8% 4.3% 16.6 11.7 4.9 9.8 99.5% 25.6% 2.3 3 -0.7 10.1 23.5% 10%

5 1333 15.4 9 6.4 1.8 100% 0.1% 10.6 9 1.6 2 100% 0% 16.7 9 7.6 2.7 100% 0% 4.5 9 -4.5 3.4 100 % 0%

6 1409 41.6 17.5 24.1 15.6 100% 51.3% 28.6 12.6 15.9 15.8 100% 28% 58.7 28.3 30.4 13.5 100% 90% 106.1 29.9 76.2 13.2 100% 100%

7 1466 26.8 9 17.8 6.1 100% 0.01% 19.5 9 10.5 6.2 100% 0% 26.3 9 17.3 9.2 100% 0.3% 3.5 9 -5.5 11.7 100% 0%

8 1560 27.6 10 17.6 3 100% 0% 20.3 10 10.3 3.2 100% 0% 30.4 10 20.4 5 100% 0.5% 26.7 24 2.7 6.7 100% 100%

9 1494 31.7 9.1 22.6 3.3 100% 0.7% 23.1 9 14.1 3.5 100% 0% 32.1 9.2 22.9 4.4 100% 1.4% 29.1 18 11.1 4.6 100% 100%

10 1292 22.5 9 13.5 3.4 100% 0.1% 16.2 9 7.2 3.6 100% 0% 26.3 10 16.3 4.3 100% 11.3% 46.7 18 28.7 4.4 100% 100%

11 1393 27.8 9.4 18.4 5.7 100% 4% 20.7 9.1 11.6 5.8 100% 1.1% 30 10.7 19.3 5.6 100% 17.2% 49 29.1 19.9 5.8 100% 100%

12 1340 15.2 9 6.2 1.8 100% 0% 10.6 9 1.6 2 100% 0% 15.2 9 6.2 1.8 100% 0% 4 9 -5 2.7 100% 0%

13 1285 15.4 9 6.4 1.4 100% 0.2% 10.6 9 1.6 1.6 100% 0% 15.1 9 6.1 1.4 100% 0.1% 3.5 9 -4.5 2.5 100% 0%

14 1181 21.9 9 12.9 4.4 100% 0.2% 15.8 9 6.8 4.5 100% 0% 21.4 9 12.4 4.7 100% 0.2% 4.5 9 -4.5 6 100% 0%

15 1110 16.4 9 7.4 8.5 100% 0% 11.5 9 2.5 8.7 100% 0% 17.1 9 8.1 9.8 100% 0.1% 5.3 9 -3.7 10.2 100% 0%

16 1044 13.3 9.1 4.3 17.8 100% 0.8 % 9.9 9 0.9 17.9 100% 0% 14.9 9.2 5.7 17.8 100% 2.1% 40 22.4 17.6 16.8 100% 100%

17 1125 18.7 9 9.7 8.8 100% 0.1% 13.2 9 4.2 9 100% 0% 24.1 9.7 14.4 10.7 100% 7.1% 101.4 27 74.4 10.3 100% 100%

18 2192 31.8 11 20.8 4.1 100% 0.2% 23.2 11 12.2 4.3 100% 0% 69.8 28.6 41.2 5.4 100% 77.6% 563.8 33 530.8 3.6 100% 100%

19 2236 24.4 11 13.4 5.1 100% 0% 17.8 11 6.8 5.2 100% 0% 25.1 11 14.1 5.4 100% 0% 10.2 11 -0.8 6.1 100% 0%

20 2273 29.4 11 18.4 3 100% 0.4% 22.4 11 11.4 3.2 100% 0% 30.3 11.1 19.2 4.2 100% 0.7% 61.1 33 28.1 5.3 100% 100%

21 2235 27.5 11 16.5 1.8 100% 0% 20.2 11 9.2 2 100% 0% 29 11 18 2.2 100% 0.3% 5.9 11 -5.1 3.3 100% 0%

22 2270 24.9 13.7 11.2 1.9 100% 23.9% 17.2 11.6 5.6 2.1 100% 0% 43.2 20.4 22.8 2.3 100% 56.7% 41.6 22.1 19.5 2.1 100% 100%

23 2405 22.5 11 11.5 3.2 100% 0.1% 16.3 11 5.3 3.3 100% 0% 21.7 11 10.7 3.3 100% 0% 10.9 11.9 -1 4.3 100% 7.8%

24 2376 30.6 11 19.6 0.8 100% 0.1% 23.1 11 12.1 1 100% 0% 30.3 11 19.3 1.2 100% 0% 20.4 21.4 -1 2.7 100% 94.8%

25 2323 27.2 11.1 16.1 2.5 100% 0.4% 20.6 11 9.6 2.7 100% 0% 26.8 11 15.8 2.8 100% 0% 8.5 11 -2.5 3.9 100% 0%

26 2344 36.4 16.7 19.7 3.1 100% 51.3% 24.9 12.9 12 3.3 100% 17.1% 36.1 17 19.1 3.2 100% 54% 47.5 23.3 24.2 4.3 100% 100%

27 2434 36.3 11.1 25.2 1 100% 0.9% 27.3 11 16.3 1.2 100% 0% 38.3 11.3 27 1.3 100% 2.6% 89.5 33 56.5 1.7 100% 100%

28 2548 34.5 11 23.5 3.2 100% 0.1% 26.2 11 15.2 3.3 100% 0% 34.8 11 23.8 3.3 0% 0.2% 50.3 22 28.3 4 100% 100%

29 2741 73 12.3 60.7 3.2 100% 10.9% 58.2 11.1 47.1 3.4 100% 1.3% 79.4 15.4 64 3.5 100% 36.8% 439.7 62.7 377 3.6 100% 100%

30 2928 73.9 13.8 60.1 6.1 24.1% 0% 59.2 11.8 47.4 6.3 100% 7.8% 84.6 18.7 65.9 7.4 100% 52.2% 94 32.6 61.4 7.2 100% 100%

31 2894 77.3 16.3 61 5.5 100% 45.4% 61 13.4 47.6 5.7 100% 21.6% 77.2 16.3 60.9 5.5 100% 45.9% 28.6 11 17.6 6.5 100% 0%

32 2905 42.4 12.9 29.5 5 100% 16% 33.2 11.3 21.9 5.2 100% 3% 41.7 12.8 28.9 6.1 100% 15.7% 8.7 11 -2.3 9.4 100% 0%

33 2804 53.8 20.5 33.3 8.8 100% 86.8% 42.7 18.5 24.2 8.9 100% 68.5% 54.1 20.4 33.6 10.1 100% 85.6% 35.5 22 13.5 12.3 100% 100%

34 2570 47.6 14.2 33.4 21.1 27.2% 0% 37.3 12.2 25.1 21.2 100% 10.4% 49.4 14.5 34.9 41.2 100% 28.9% 53.8 22 31.8 38.8 100% 100%

35 2516 50.9 11.3 39.6 7 100% 2.9% 41.3 11 30.3 7.2 100% 0.4% 38.4 11 27.4 18.4 100% 0.4% 51.2 33 18.2 20.8 100% 100%

36 2491 51.3 11.8 39.5 1.3 100% 6.8% 41.3 11 30.3 1.4 100% 0.4% 50.5 11.3 39.2 1.6 100% 3% 15.9 11 4.9 3.3 100% 0%

37 2402 34.4 12.2 22.2 4.7 100% 10.5% 26.5 11.2 15.3 4.9 100% 2.2% 37.4 14.2 23.2 5.1 100% 29.2% 68.8 22 46.8 6.1 100% 0%

38 2326 37.4 12.3 25.1 2.1 100% 10.3% 28.9 11.3 17.6 2.3 100% 2.1% 37.2 12.2 25 2.8 100% 9.4% 44.6 22 22.6 3.4 100% 0%

39 2241 14.8 11 3.8 1.6 100% 0.1% 11 11 0 1.7 100% 0% 14.9 11 3.9 1.7 100% 0% 23.4 22 1.4 2.4 100% 100%

40 2178 13.1 11.1 2 2 100% 1.1% 9.5 11 -1.5 2.2 100% 0.3% 12.9 11.2 1.8 2.2 100% 1.3% 20.4 13.1 7.3 3.4 13.3% 100%
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Table 4: Simulation Results 2 Part2

Number of factors J = 3 Number of factors J = 5

Number of estimated factors Ĵ = 5 Number of estimated factors Ĵ = 3 Number of estimated factors Ĵ = 5 Number of estimated factors Ĵ = 3

Window n S S0 S1 MSE Selected % Distortion% S S0 S1 MSE Selected % Distortion% S S0 S1 MSE Selected % Distortion% S S0 S1 MSE Selected % Distortion%

41 2113 11 10 1 3.8 100% 0.2% 7.8 10 -2.2 3.9 100% 0% 11.5 10 1.5 4.5 100% 0.2% 41.1 32.4 8.7 5.4 99.9% 100%

42 2023 15.2 10 5.2 5.9 100% 0% 11.3 10 1.3 6 100% 0% 15.7 10 5.7 6.4 100% 0% -8 0 -8 9.2 0% 0%

43 2007 12.6 10 2.6 4 100% 0.5% 9.1 10 -0.9 4.1 100% 0% 13.4 10.2 3.2 4.7 100% 1.7% -0.1 6.4 -6.5 5.6 64.4% 0%

44 1924 19.9 13.1 6.8 7.3 100% 30.7% 13.6 10.8 2.8 7.5 100% 8% 19.5 12.9 6.6 7.5 100% 28.9% 20 20 0 8.3 100% 100%

45 1990 11.4 10 1.4 1.2 100% 0.1% 8.1 10 -1.9 1.4 100% 0% 20.7 14.6 6 1.8 100% 45.2% 116 20 96 1.7 100% 100%

46 1937 27.1 14 13.1 4.5 100% 37.7% 19.7 11.8 7.9 4.7 100% 18% 28.3 14.8 13.5 5.4 100% 45.8% 24.6 20 4.6 6.2 100% 100%

47 1909 19.5 11.7 7.8 4.4 100% 16.1% 14.2 10.4 3.8 4.5 100% 3.5% 24 14 10 4.4 100% 38.1% 51.7 35.2 16.5 5.4 100% 100%

48 1872 15.2 10 5.1 1.8 100% 0.2% 11.4 10 1.4 2 100% 0% 15 10 5 2.1 100% 0.1% 5 10 -5 2.9 100% 0%

49 1841 12.3 10.1 2.2 1.2 100% 1.1% 8.7 10 -1.3 1.4 100% 0.1% 11.8 10.1 1.7 4.4 100% 0.8% -10 0 -10 4.4 0% 0%

50 1826 18.5 12.4 6.1 3.3 100% 15% 12.6 10.6 2 3.5 100% 3.5% 20.2 13.3 6.9 3.7 100% 19.3% -3.9 0.4 -4.3 4.4 3.9% 0%

This table presents results under the characteristics-based beta and alpha of both Fama-French 3 and 5 factors model. To mimic the empirical study, we simulated 50 12-month rolling windows, and each window is repeated for 1000 times. Each column summarises the mean

value of 1000 estimation and test results. We compare the results of both over and under estimating the number of factors, namely,Ĵ = 3 and Ĵ = 5. S1 is the conventional Wald test while S0 is the power-strengthened component. NA results are caused by non-invertible

characteristic matrices. "Selected" means the percentage of selecting the relevant characteristic in mispricing functions in 1000 repetitions. Similarly, "distortion" represents the percentage of wrongly selecting irrelevant characteristics in 1000 experiments.
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8 Empirical Study

8.1 Data

We use monthly stock returns from CRSP and firms’ characteristics from Compustat, ranged from 1965 to 2017.

We construct 33 characteristics following the methods of Freyberger et al. (2017). Details of these characteristics

can be found in the appendix. We use characteristics from fiscal year t− 1 to explain stock returns between July

of year t to June of year t + 1. After adjusting the dates from the balance sheet data, we merge two data sets

from CRSP and Compustat. We require all of the firms included in our analysis to have at least three years of

characteristics data in Compustat.

Data is modified with regards to the following aspects:

1 Delisting is quite common for CRSP data. We use the way of Hou et al. (2015) to correct the returns of delisting

stocks for all the delisted assets before 2018. Detailed methods can be found in the appendix.

2 Projected-PCA works well, even under small T circumstances. Thus, we choose the width of our window

to be 12 months. Another reason for the short window width is that we assume mispricing functions are

time-invariant in each window. One of the limitations of Projected-PCA is that it can only be used for a

balanced panel, which means the number of stocks will vary when we applied one-year rolling windows to

obtain a short time balanced panel. Meanwhile, we take monthly updated characteristics’ mean values of

12 months as fixed characteristic values in each window. We also use rolling window method to detect peer

groups of arbitrage characteristics.

3 B-splines are based on each time-invariant characteristic among n firms which are not delisted in each window.

4 Rolling windows are moving at a 12-month step from Jul. 1967 to Jun. 2017. The first 24 months returns are

not included as they do not have corresponding characteristics.

5 Excess returns are obtained by the difference between monthly stock returns and Fama-French risk-free monthly

returns.

8.2 Estimation

We construct B-spline bases based on evenly distributed knots, and the degree of each basis is three. We choose

v = 0.3, which means the number of bases for each characteristic in each window is ⌊n0.3⌉, and n is the number of

stocks. To get a relatively large balanced panel in each window, some characteristics with too many missing values

are eliminated. Therefore, only 33 characteristics are left. Firms kept in balanced panels in our dataset range from

468 to 2928, which means that both n and Â ∈ R
PHn are diverging. Large n can satisfy asymptotic requirements.
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These facts emphasize the necessity of introducing a power enhanced component into the hypothesis test. Before

the next step, we use time-demeaning matrix DT to demean excess return matrix in each window.

Next, we project the time-demeaned monthly excess return matrix Ỹ to the B-spline space spanned by charac-

teristics Φ(X), and then we collect the fitted value Ŷ. We apply Principle Component Analysis on 1
n
Ŷ⊺Ŷ, and

attain the first five eigenvectors corresponding to the first five biggest eigenvalues as the estimates of unobservable

factors F. We choose the number of factors to be five according to simulation results.

Then, we estimate factor loading matrix by:

Ĝ(X) = ỸF̂(F̂⊺F̂)−1.

Moveover, we use equality-constrained OLS to estimate the mispricing function. We project excess monthly

return matrix on the characteristic space Φ(X) that is orthogonal to factor loading matrix Ĝ(X).

Another goal of this paper is to conduct a power enhanced test on the mispricing function. Therefore, our final

step is to estimate covariance matrix Σ of Â.

8.3 Power Enhanced Hypothesis Tests

In this section, we conduct a power enhanced test in each rolling block. Firstly, we set threshold value for each

window, ηn = Hn

√

2 log(PHn), whereHn is the number of bases for each characteristic whereas P is the number

of total characteristics in each window, with P = 33. ηn is data-driven critical value and it diverges as the number

of firms increases. We use indicator function I(
∑Hn

h=1 |α̂ph|/σ̂ph > ηn) with critical value ηn = Hn

√

2 log(PHn)

to achieve three goals.

1 This indicator function select the most relevant characteristics that can explain the variation of the mispric-

ing function. Results of last column in Table 5 are characteristics selected in M̂ = {Xp ∈ M̂ :
∑H

h=1 |α̂ph|/σ̂ph > ηn, h = 1, 2, . . . , Hn, p = 1, 2, . . . , P}.

2 It contributes to the test statistics S by adding a diverging power enhanced component S0. As T = 12 is small

in this empirical study, we assume the homoskedasticity of ǫit. We also specify a overshrunk covariance

matrix by setting off-diagonal elements to be zeros.

3 It avoids size-distortion by the conservative critical value ηn.

The diagonal elements of Σ̂ are estimated variances of mispricing coefficients. These elements can be substi-

tuted into the indicator function I(|α̂ph|/σ̂ph > ηn), where σ̂ph is the phth diagonal element of Σ̂.

Finally, the new statistics S can be calculated as:

S = S0 + S1,
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S0 = Hn

P∑

p=1

I(
Hn∑

h=1

|α̂ph|/σ̂ph > ηn), S1 =
ÂΣ̂−1Â⊺ − PHn√

2PHn

.

8.4 Test Results

This section presents the empirical results. Details can be found in Table 5, which list the results of 50 rolling

windows from Jul.1967 to Jun.2017. Generally, the number of firms included in the 12-month rolling block is

increasing period by period. The number of our characteristic B-spline bases is a function of the number of firms

n in each block, which is ⌊n0.3⌉. Therefore, the dimension of mispricing coefficient vector Â ∈ RPHn is also

diverging. This verifies the necessity of using power enhanced component S0.

Recalling that S|H0 →d N(0, 1), some of the test statistics S are big enough to reject the null hypothesis.

However, for some testing windows, there are no strong signals showing the existence of characteristics-based

mispricing functions after subtracting systematic effects. Moreover, most S1 values are small and even negative,

which may be caused by the sparsity structure of the mispricing function or/and the low power problems due to

diverging dimension of mispricing coefficients.

The power enhanced component S0 works well in the empirical study. It selects the most important explaining

characteristics and strengthens the power of S1, mitigating the low power problem.

Apart from contributing to the power of tests, the indicator function in the power enhanced component can

also screen out the most relevant explanatory characteristics, which are concluded as "Characteristics Selected"

in Table 5.

Some empirical findings are worth discussing. Although short-term cumulative returns like r2_1 are always

selected, we cannot take this as evidence of arbitrage opportunities as we construct r2_1 as time-invariant monthly

average of the last month returns. Higher average one month lagged returns imply higher monthly returns. How-

ever, this is not the case for long-term and mid-term cumulative returns like r12_2, r12_7 and r6_2, because these

average returns of these variables contain a lot of information from another rolling window.

Apart from the cumulative returns, some other characteristics contribute to the arbitrage opportunities as well.

PCM (Price to Cost Margin) appears twice. From Figure 2, we find that the PCM mispricing curve is nonlinear

and generally decreasing as the value of PCM increases. ROA (Return-on-asset) also plays a role during 1988-

1989. It behaves like a parabola with fluctuations near zero in Figure 3. As for Lev (ratio of long-term debt and

debt in the current liabilities), it is decreasing for Lev<0 and increasing afterwards as in Figure 7. In Figure 8,

IPM (pre-tax profit margin) function behaves like a "V" shape with the turning point zero during 2004-2005.

DelGmSale (Difference in the percentage in gross margin and the percentage change in sales) experiences a

bump at the zero during 2015-2016 in Figure 9. C2D curve behaves like "V" around the zero in 2016-2017,

(see Figure 10). All characteristics in above figures are standardized as uniform distributed characteristics in the

interval [−100, 100]. This is for presentation purpose only since most characteristics are unevenly distributed.
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Table 5: Empirical Study Results

Time period n S S0 S1 MSE Characteristics Selected

Jul.1967-Jun.1968 468 -9.6 0 -9.6 0.005 NONE

Jul.1968-Jun.1969 951 -0.45 8 -8.45 0.004 r2_1

Jul.1969-Jun.1970 1108 1.7 9 -7.3 0.005 r2_1

Jul.1970-Jun.1971 1199 -8.7 0 -8.7 0.006 NONE

Jul.1971-Jun.1972 1333 -10 0 -10 0.004 NONE

Jul.1972-Jun.1973 1409 12.7 18 -5.3 0.005 r12_2,r6_2

Jul.1973-Jun.1974 1466 2.1 9 -6.9 0.005 r2_1

Jul.1974-Jun.1975 1560 -10.7 0 -10.7 0.01 NONE

Jul.1975-Jun.1976 1494 0.1 9 8.9 0.05 r2_1

Jul.1976-Jun.1977 1292 0.1 9 -9 0.004 r2_1

Jul.1977-Jun.1978 1393 -9.4 0 -9.4 0.005 NONE

Jul.1978-Jun.1979 1340 8.6 18 -9.4 0.005 r2_1,r12_7

Jul.1979-Jun.1980 1285 1 9 -8 0.005 r2_1

Jul.1980-Jun.1981 1181 9.7 18 -8.2 0.006 r12_7,r12_2

Jul.1981-Jun.1982 1110 1.2 9 -7.8 0.01 r2_1

Jul.1982-Jun.1983 1044 33.1 36 -3 0.01 r12_2,r12_7,r6_2,r2_1

Jul.1983-Jun.1984 1125 -0.9 9 -9.9 0.006 r2_1

Jul.1984-Jun.1985 2192 -0.2 11 -11.2 0.01 r2_1

Jul.1985-Jun.1986 2236 13.1 22 -8.94 0.01 r12_7,r12_2

Jul.1986-Jun.1987 2273 1.7 11 -9.3 0.01 PCM

Jul.1987-Jun.1988 2235 0.9 11 -10.1 0.01 r2_1

Jul.1988-Jun.1989 2270 1.2 11 -9.8 0.01 ROA

Jul.1989-Jun.1990 2405 -0.1 11 -11.1 0.01 r2_1

Jul.1990-Jun.1991 2376 1.1 11 -9.9 0.02 r2_1

Jul.1991-Jun.1992 2323 2.1 11 -8.9 0.02 r2_1

Jul.1992-Jun.1993 2344 12.2 22 -9.8 0.02 r12_7,r12_2

Jul.1993-Jun.1994 2434 0.4 11 -10.6 0.01 r2_1

Jul.1994-Jun.1995 2548 2.4 11 -8.6 0.01 r2_1

Jul.1995-Jun.1996 2741 14.1 22 -7.9 0.02 BEME,r2_1

Jul.1996-Jun.1997 2928 18.1 22 -3.9 0.01 BEME,r2_1

Jul.1997-Jun.1998 2894 26.5 33 -6.5 0.02 r2_1,r12_7,r12_2

Jul.1998-Jun.1999 2905 24.6 33 -8.4 0.02 AT,LME,r2_1

Jul.1999-Jun.2000 2804 13.8 22 -8.2 0.03 r2_1,r12_7

Jul.2000-Jun.2001 2570 37.7 44 -6.3 0.02 AT,LME, r2_1, r6_2

Jul.2001-Jun.2002 2516 1.3 11 -9.7 0.02 r2_1

Jul.2002-Jun.2003 2491 15 22 -7 0.02 Lev, r2_1

Jul.2003-Jun.2004 2402 3.9 11 -7.1 0.01 r2_1

Jul.2004-Jun.2005 2326 1.8 11 -9.2 0.01 IPM

Jul.2005-Jun.2006 2241 2.5 11 -8.5 0.01 r2_1

Jul.2006-Jun.2007 2178 1.5 11 -9.5 0.01 r2_1

Jul.2007-Jun.2008 2113 12.6 20 -7.4 0.01 r12_2,r2_1

Jul.2008-Jun.2009 2023 1.7 10 -8.3 0.02 r2_1

Jul.2009-Jun.2010 2007 1 10 -9 0.01 r2_1

Jul.2010-Jun.2011 1924 13.6 20 -6.4 0.01 r2_1

Jul.2011-Jun.2012 1990 2.5 10 -7.5 0.01 r2_1

Jul.2012-Jun.2013 1937 23.7 30 -6.3 0.01 r2_1,r12_7,r12_2

Jul.2013-Jun.2014 1909 2.3 10 -7.7 0.01 r2_1

Jul.2014-Jun.2015 1872 5.5 10 -4.5 0.01 r2_1

Jul.2015-Jun.2016 1841 12.4 20 -7.6 0.01 DelGmSale,r2_1

Jul.2016-Jun.2017 1826 26.1 30 -3.9 0.01 C2D,PCM,r12_7

This table summaries the empirical results, where n represents the number of stocks in this

rolling window.
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Table 6: First layer 1986-1987 (clusterings of ÿit )

Group number Group centeroid Group size

1 0.0059 435

2 0.1205 26

3 -0.0082 428

4 0.0399 189

5 0.0697 71

6 -0.1018 29

7 -0.0617 110

8 -0.0390 250

9 -0.0225 349

10 0.0208 386

Another finding is the persistence of some arbitrage characteristics. Arbitrage characteristics can be persistent

for two years once appear, such as BEME (Ratio of the book value of equity and market value of equity) in

Figure 4. Some persistent arbitrage characteristics even have similar shapes of mispricing functions in different

rolling windows, such as AT (Total asset) in Figure 6 and LME (Total market capitalization of the previous month)

in Figure 5.

8.5 Dynamic Peer Groups of Arbitrage Characteristics

In this section, we illustrate that there are distinguishable peer groups of the same arbitrage characteristics result-

ing in similar unsystematic returns. We apply the methods in section 5 and take two rolling windows, namely,

Jul.1986- Jun.1987 and Jul.2004-Jun.2005 as demonstrative examples.

In the rolling window Jul.1986-Jun.1987, PCM is selected as only arbitrage characteristic that explains ar-

bitrage returns. We reveal that similar characteristic-based arbitrage returns are determined by distinguishable

groups of the characteristic PCM. We first divide arbitrage returns ÿit into different return groups. And then, we

detect whether there are some clustering structures within groups of the highest and the lowest of characteristic-

based arbitrage returns, respectively. As we have 2326 assets, for the visualization purpose, we set the threshold

value of the K-means method to be relatively small to have as many as ten groups.

In Table 6, group 2 has the largest positive average return while group 6 has the worst. Next, we detect the

clusterings of characteristic "PCM" within each group individually, which is the second layer in section 5.

In Table 7, there are two clusterings of PCM that provide the highest positive characteristic-based arbitrage

returns. Group 2.2, which has an extreme negative PCM value but a high characteristic-based arbitrage return, is
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Table 7: Second layer 1986-1987 (clusterings of characteristic PCM )

Group number Centeroids of Arbitrage returns Centeroids of PCM Group size

2.1 0.1211 0.2452 25

2.2 0.1039 -7.630 1

Table 8: Second layer 1986-1987 (clusterings of characteristic PCM )

Group number Centeroids of Arbitrage returns Centeroids of PCM Group size

6.1 -0.1085 0.728 9

6.2 -0.0989 0.288 20

an outlier. Members in group 2.1 with excellent arbitrage performance have positive and small PCM values.

Table 8 gives groups of PCM in group 6. Members of this group are divided into two clusterings. Group 6.1

has a relatively large PCM value, while group 6.2 has a smaller PCM, which is close to that in group 2.2 with

the highest arbitrage return. This is an evident illustration of the nonlinear strucure of h(X) in this window. The

structure of characteristic-based arbitrage returns during Jul.1986- Jun.1987 is:

Arbitrage returns 1986-1987

G2 ÿit = 0.12

Group 2.1 PCM=0.25 Group 2.2 PCM=-7.6

G k

. .

G6 ÿit = −0.1

Group 6.1 PCM=0.73 Group 6.2 PCM=0.29

The classification can be found at Figure 11, where assets are labeled by their "PERMNO," and both axes are

rescaled.

Another example is the characteristic-based arbitrage return ÿit during the year 2004-2005. Power enhanced

test selects characteristic "IPM" as the only explanatory variable.

We apply the Hierarchical K-means method. The results of the first layer classification can be found in Table 9.

There are ten groups in total according to the similarity of charateristic-based arbitrage returns. Next, we pick

two groups with the highest and the lowest returns, respectively, to check clusters of "IPM" in these two groups.

Similarly, we show classification results in Table 10 and Table 11. Positive IPM values give higher characteristic-

based arbitrage returns. On the contrary, when IPM is close to zero or negative, the characteristic-based arbitrage

returns fall into the lowest group (group 8).
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Table 9: First layer (clusterings of ÿit )

Group number Group centeroid Group size

1 0.0421 276

2 0.0059 459

3 0.1537 26

4 -0.024 367

5 0.0659 166

6 0.023 387

7 0.0999 120

8 -0.0758 67

9 -0.0437 244

10 -0.0082 436

Table 10: Second layer (clusterings of characteristic IPM )

Group number Centeroids of Arbitrage returns Centeroids of PCM Group size

3.1 0.1681 0.266 5

3.2 0.1502 0.143 21

Table 11: Second layer (clusterings of characteristic IPM )

Group number Centeroids of Arbitrage returns Centeroids of PCM Group size

8.1 -0.0713 -0.07 10

8.2 -0.1016 -0.134 57
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Arbitrage returns 2004-2005

G3 ÿit = 0.15

Group 3.1 IPM=0.27 Group 3.2 IPM=0.14

G k

. .

G8 ÿit = −0.07

Group 8.1 IPM=-0.07 Group 8.2 IPM=-0.13

The plots of and IPM can be found at Figure 12, where the axes are rescaled and assets are labeled by their

"PERMNO" code with five digits.

Finally, it is obvious that peer groups of arbitrage characteristics are dynamic in two aspects. Firstly, the

selected arbitrage characteristics are time-varying. Although some of the arbitrage characteristics can show up

for more than one block once appear, no arbitrage characteristic can be substantially persistent. Secondly, as in

Figure 4, the same arbitrage characteristic can have different function forms in various rolling windows. However,

the patterns of some characteristics show strong persistence in different time periods, such as AT in Figure 6 and

LME in Figure 5. In a word, under the flexible semiparametric setting, methods for contructing arbitrage portfolio

in Kim et al. (2019) may be improvable, although the characteristic-based mispricing function is significant

for certain time periods. The arbitrage portfolios can perform better by considering peer groups of arbitrage

characteristics.

9 Conclusion

We proposed a semi-parametric characteristics-based factor model, with a focus on the existence and structure

of the mispricing function. Both unknown characteristics-based factor loadings and the mispricing component

are approximated by B-spline sieve. We also develops a power enhanced test to investigate whether there are

mispricing components, orthogonal to the main systematic factors. This is necessary because when the B-spline

coefficients of the mispricing functions are diverging, the conventional Wald test has very low power. Our pro-

posed methods work well for both simulations and the US stock market. Empirically, we found distinct clusters

of the same characteristics resulting in similar arbitrage returns. The mispricing function and selected arbitrage

characteristics are time-varying. We conclude that the traditional way of developing arbitrage portfolios can be

improved by considering peer groups of arbitrage characteristics
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10 Appendix

10.1 Characteristic Description

Table 12: Characteristic Details

Name Description Reference

A2ME We define assets-market cap as total assets (AT)

over market capitalization as of December t-1.

Market capitalization is the product of shares out-

standing (SHROUT) and price(PRC).

Bhandari (1988)

AT Total assets (AT) Gandhi and Lusting (2015)

ATO Net sales over lagged net operating assets. Net op-

erating assets are the difference between operating

assets and operating liabilities. Operating assets

are total assets (AT) minus cash and short-term in-

vestments (CHE), minus investment and other ad-

vances (IVAO). Operating liabilities are total assets

(AT), minus debt in current liabilities(DLC),minus

long-term debt (DLTT),minus minority interest

(MIB), minus preferred stock (PSTK), minus com-

mon equity (CEQ).

Soliman(2008)

BEME Ratio of book value of equity to market value

of equity. Book equity is shareholder equity

(SH) plus deferred taxes and investment tax credit

(TXDITC), minus preferred stock (PS). SH is

shareholder‘s equity (SEQ). If missing, SH is the

sum of common equity (CEQ) and preferred stock

(PS). If missing, SH is the difference between to-

tal assets (AT) and total liabilities (LT). Depend-

ing on availability, we use the redemption (item

PSTKRV), liquidating (item PSTKL), or par value

(item PSTK) for PS. The market value of equity is

as of December t-1. The market value of equity is

the product of shares outstanding (SHROUT) and

price (PRC).

Rosenberg, Reid and Lanstein

(1985) Davis, Fama, and French

(2000)
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C Ration of cash and short-term investments (CHE)

to total assets (AT)

Palazzo

C2D Cash flow to price is the ratio of income and ex-

traoridinary items (IB) and depreciation and amor-

tization (dp) to total liabilities (LT).

CTO We define caoital turnover as ratio of net sales

(SALE) to lagged total assets (AT).

Haugen and Baker (1996)

Debt2P Debt to price is the radio of long-term debt (DLTT)

and debt in current liabilities (DLC) to the mar-

ket capitalization as of December t-1 . Market

capitalization is the product of shares outstanding

(SHROUT) and price (PRC).

Litzenberger and Ramaswamy

(1979)

∆ceq The percentage change in the book value of equity

(CEQ).

Richardson et al. (2005)

∆(∆Gm− Sales) The difference in the percentage change in gross

margin and the percentage change in sales (SALE).

We define gross margin as the difference in sales

(SALE) and costs of goods sold (COGS).

Abarbanell and Bushee (1997)

∆Shrout The definition of the percentage change in shares

outstanding (SHROUT).

Pontiff and Woodgate (2008)

∆PI2A We define the change in property, plants ,and

equipment as changes in property,plants,and

equipment (PPEGT) and inventory (INVT) over

lagged total assets (TA).

Lyandres , Sun, and Zhang

(2008)

DTO We define turnover as ratio of daily volume (VOL)

to shares outstanding (SHROUT) minus the daily

market turnover and de-trend it by its 180 trading

day median. We scale down the volume of NAS-

DAQ securities by 38% after 1997 and by 50% be-

fore that to address the issue of double-counting of

volume for NASDAQ securities.

Garfinkel (2009); Anderson and

Dyl (2005)
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E2P We define earnings to price as the ratio of income

before extraordinary items (IB) to the market capi-

talization as December t-1 Market capitalization is

the product of share outstanding (SHROUT) and

price (PRC).

Basu (1983)

EPS We define earnings per share as the ratio of income

before extraordinary items (IB) to share outstand-

ing (SHROUT) as of December t-1

Basu (1997)

Investment We define investment as the percentage year-on-

year growth rate in total assets (AT).

Cooper, Gulen and Schill(2008)

IPM We define pre-tax profit margin as ratio of pre-tax

income (PI) to sales (SALE).

Lev leverage is the ratio of long-term debt (DLTT) and

debt in the current liabilities (DLC) to the sum

of long-term debt, debt in current liabilities, and

stockholders’ equity (SEQ)

Lewenllen (2015)

LME Size is the total market capitalization of the pre-

vious month defined as price (PRC) times shares

outstanding (SHROUT)

Fama and French (1992)

Turnover Turnover is last month’s volume (VOL) over

shares outstanding (SHROUT).

Datar, Naik and Radcliffe (1998)

OL Operating leverage is the sum of cost of goods sold

(COGS) and selling, general, and administrative

expenses (XSGA) over total assets.

Novy-Marx (2011)

PCM The price-to-cost margin is the difference between

net sales (SALE) and costs of goods sold (COGS)

divided by net sales (SALE).

Gorodnichenko and Weber

(2016) and D’Acunto, Liu,

Pflucger and Wcber (2017)

PM The profit margin is operating income after depre-

ciation (OIADP) over sales (SALE)

Soliman (2008)

Q Tobin’s Q is total assets (AT), the market value

of equity (SHROUT times PRC) minus cash

and short-term investments (CEQ) minus deferred

taxes (TXDB) scaled by total assets (AT).

ROA Return-on-assets is income before extraordinary

items (IB) to lagged total assets (AT).

Balakrishnan, Bartov and Faurel

(2010)
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ROC ROC is the ratio of market value of equity (ME)

plus long-term debt (DLTT)minus total assets to

Cash and Short-Term Investments (CHE).

Chandrashekar and Rao (2009)

ROE Return-on-equity is income before extraordinary

items (IB) to lagged book-value of equity.

in Haugen and Baker (1996)

r12−2 We define momentum as cumulative return from

12 months before the return prediction to two

months before.

Fama and French (1996)

r12−7 We define intermediate momentum as cumulative

return from 12 months before the return prediction

to seven months before.

Novy-Marx (2012)

r6−2 We definer6−2 as cumulative return from 6 months

before the return prediction to two months before.

Jegadeesh and Titman (1993)

r2−1 We define short-term reversal as lagged one-month

return.

Jegadeesh(1990)

S2C Sales-to-cash is the ratio of net sales (SALE) to

Cash and Short-Term Investments (CHE).

following Ou and Penman

(1989)

Sales-G Sales growth is the percentage growth rate in an-

nual sales (SALE).

Lakonishok, Shleifer , and

Vishmy (1994)

SAT We define asset turnover as the ratio of sales

(SALE) to total assets (AT).

Soliman (2008)

SGA2S SGA to sales is the ratio of selling ,general

and administrative expenses (XSGA) to net sales

(SALE).
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(a) r12−2 Curve 1972-1973 (b) r12−7 Curve 1978-1979 (c) r12−2 Curve 1980-1981

(d) r12−7 Curve 1985-1986 (e) r12−2 Curve 1982-1983 (f) r12−7 Curve 1982-1983

(g) r12−2 Curve 1985-1986 (h) r12−2 Curve 1985-1986

Figure 1: Mispricing Characteristic Curve of standardized r12−2 and r12−7
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(a) PCM Curve 1984-1985 (b) PCM Curve 2016-2017

Figure 2: Mispricing Characteristic Curve of standardized PCM

Figure 3: Mispricing Characteristic Curve of standardized ROA in 1988-1989

(a) BEME Curve 1995-1996 (b) BEME Curve 1996-1997

Figure 4: Mispricing Characteristic Curve of standardized BEME
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(a) LME Curve 1998-1999 (b) LME Curve 2000-2001

Figure 5: Mispricing Characteristic Curve of standardized LME

(a) AT Curve 1998-1999 (b) AT Curve 2000-2001

Figure 6: Mispricing Characteristic Curve of standardized AT

Figure 7: Mispricing Characteristic Curve of standardized LEV in 2002-2003
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Figure 8: Mispricing Characteristic Curve of standardized IPM in 2004-2005

Figure 9: Mispricing Characteristic Curve of standardized DelGmSale in 2015-2016
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Figure 10: Mispricing Characteristic Curve of standardized C2D in 2016-2017

(a) Clustering of PCM with highest returns (b) Clustering of PCM with lowest returns

Figure 11: Clustering of PCM 1986-1987

(a) Clustering of IPM with highest returns (b) Clustering of IPM with lowest returns

Figure 12: Clustering of IPM 2004-2005
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10.2 Proofs

Through out the proofs, we have the number of observations n→ ∞, and time T is fixed.

Proof of Theorem 6.1 : In equation 5, we have

Y = (Φ(X)A+ Γ +Rµ(X))1⊺
T + (Φ(X)B+Λ+Rθ(X))F⊺ +U,

Multiply time-demeaned matrix DT on both sides, where DT = IT − 1
T
1⊺
T1T. Given time-invariant mispricing

components, we obtain:

YDT = (Φ(X)B+Λ+Rθ(X))F⊺DT +UDT,

Onwards, we define YDT = Ỹ and F⊺ = F⊺DT. Time-demeaned factors do not change their properties.

Next, multiple both sides by P = Φ(X)(Φ(X)⊺Φ(X))−1Φ(X)⊺,

Ŷ = (Φ(X)B+PΛ+PRθ(X))F⊺ +PUDT.

We decompose:

PỸ = Ŷ = Φ(X)BF⊺ +PΛF⊺ +PUDT +PRθ(X)F⊺ = e1 + e2 + e3 + e4,

as n→ ∞ and nv → ∞, approximation error Rθ(X) →P 0 as in Huang et al. (2010). Thus, e⊺4 →P 0.

Under Assumption 1, we have following results:

for 1
n

∑3
j=1 e

⊺
2ej ,

1

n
PΛ →P 0,

therefore,

1

n

3∑

j=1

e⊺2ej +
1

n

3∑

j=1

e⊺j e2 →P 0.

For 1
n

∑3
j=1 e

⊺
3ej ,

1

n
PU →P 0,

therefore,

1

n

3∑

j=1

e⊺2ej +
1

n

3∑

j=1

e⊺j e2 →P 0.

And only 1
n
e⊺1e1 left, namely,

1

n
e⊺1e1 = F

B⊺Φ⊺(X)Φ(X)B

n
F⊺.
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Under Assumption 2-4 and fixed T . A much smaller T×T matrix 1
n
Ŷ⊺Ŷ can be sovled by asymptotic principal

component by Connor and Korajczyk (1986). F̂ = 1√
T
{ψ1, ψ2, . . . , ψJ}, where{ψ1, ψ2, . . . , ψJ} are eigenvectors

corresponding to the first J eigenvalues of 1
n
Ŷ⊺Ŷ.

Thus, F̂ →P F follows. �

Proof of Theorem 6.2 : Given F̂, we have:

Ĝ(X) = ŶF̂(F̂′F̂)−1,

as F̂⊺F̂ = IJ, therefore,

Ĝ(X) = ỸF̂.

Then we need to show:

E((Ĝ(Xi)−G(Xi))
2) = 0.

Take the sample analogue,
1

n
((Ĝ(X)−G(X)))⊺((Ĝ(X)−G(X))).

Given:

G(X) = Φ(X)B+Rθ(X).

Ĝ(X) = (Φ(X)B+PΛ+PRθ(X))F⊺F̂+PUDTF̂

Furthermore,

G(X)− Ĝ(X) = (Φ(X)B+PΛ+PRθ(X))F⊺F̂+PUDTF̂−Φ(X)B−Rθ(X) = q1 + q2 + q3 + q4.

Similar to the Proof of Theorem 6.1,

1

n
((Ĝ(X)−G(X)))⊺((Ĝ(X)−G(X))) →P 1

n
q⊺
1q1 +

1

n
q⊺
3q3 +

1

n
q⊺
1q3 +

1

n
q⊺
3q1.

For the first term,

1

n
q⊺
1q1 = F̂⊺F(Φ(X)B+PΛ+PRθ(X))⊺(Φ(X)B+PΛ+PRθ(X))F⊺F̂,

due to

1

n

3∑

j=1

e⊺2ej +
1

n

3∑

j=1

e⊺j e2 →P 0,

and
1

n
eT1 e1 →P F

B⊺Φ⊺(X)Φ(X)B

n
F⊺

then,
1

n
qT
1 q1 →P F̂⊺F

B⊺Φ⊺(X)Φ(X)B

n
F⊺F̂.
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Theorem 6.1 and Assumption 2 give F̂ → F and FTF = IJ, therefore:

1

n
qT
1 q1 →P B⊺Φ⊺(X)Φ(X)B

n
,

Similarly,
1

n
qT
3 q3 →P B⊺Φ⊺(X)Φ(X)B

n
,

1

n
qT
1 q3 →P −B⊺Φ⊺(X)Φ(X)B

n
,

1

n
qT
3 q1 →P −B⊺Φ⊺(X)Φ(X)B

n
.

Therefore,

1

n
q⊺
1q1 +

1

n
q⊺
3q3 +

1

n
q⊺
1q3 +

1

n
q⊺
3q1 → 0.

Then,
1

n
((Ĝ(X)−G(X)))⊺((Ĝ(X)−G(X))) →P 0

thus,

Ĝ(X) →P G(X).

Then Theorem 6.2 follows.

�

Proof of Theorem 6.3 : Let Ẏ = 1
T
(Y − Ĝ(X)F̂)1T. By substituting the restriction, we have the Lagrangian

equation:

min
A

(Ẏ −Φ(X)A)⊺(Ẏ −Φ(X)A) + λĜ⊺(X)Φ(X)A (8)

Then we take the first order condition with respect to A and λ separately, and we obtain:




2Φ(X)⊺Φ(X) Φ(X)⊺Ĝ(X)

Ĝ(X)⊺Φ(X)⊺ 0








Â

λ



 =




2Φ(X)⊺Ẏ

0



 . (9)

Under Assumption 2, the above matrice are invertible, which can be written as:




Â

λ



 =




2Φ′(X)Φ(X) Φ′(X)Ĝ(X)

Ĝ(X)⊺Φ(X)⊺ 0





−1


2Φ′(X)Ẏ

0



 . (10)

Therefore, we obtain:

Â = MÃ,

where

M = I− (Φ(X)⊺Φ(X))−1Φ(X)⊺Ĝ(X)(Ĝ(X)⊺Ĝ(X))−1Ĝ(X)⊺Φ(X),

Ã =
1

T
(Φ(X)⊺Φ(X))−1Φ(X)⊺Ẏ1T.
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Furthermore, let Ξ = Φ(X)Â− h(X) = Φ(X)MÃ−Φ(X)A−Rµ(X).

Under the restriction Ĝ′(X)Φ(X)A = 0, we can obtain:

Ξ =Φ(X)M(Φ(X)⊺Φ(X))−1
Φ(X)⊺

1

T
(Φ(X)A+R

µ(X) + Γ+ (Λ+R
θ(X))F′)1T −Φ(X)A−R

µ(X). (11)

Furthermore, we have:

Φ(X)M(Φ(X)⊺Φ(X))−1
Φ(X)⊺ = (I− (Φ(X)⊺Φ(X))−1

Φ(X)⊺Ĝ(X)(Ĝ(X)⊺Ĝ(X))−1
Ĝ(X)⊺)P. (12)

And then, substituteEquation 12 into Equation 11 and under Assumption 1 and Theorem 6.2:

Ξ = Φ(X)A−Φ(X)A−R
µ(X).

R
µ(X) → 0 as n → ∞,

therefore,
1

n
Ξ

⊺
Ξ → 0.

And the Theorem 6.3 follows. �

Proof of Theorem 6.4 : Define Z = max
{16p6P,16h6Hn}

{|α̂ph|/σ̂ph}. Under Assumption 3.2.3, we have

α̂ph/σ̂ph|H0 →d N(0, 1).

Therefore, under the H0, we have:

etE(Z) 6 E[etZ ]

= E[max{t|α̂ph|/σ̂ph}]

6

p=P,h=Hn∑

p=1,h=1

E[et|α̂ph|/σ̂ph ]

= net
2/2.

Then take the logarithm of both sides we can obtain:

E[Z] 6
log n

t
+
t

2
.

If we set t =
√
2 logn to minimise logn

t
+ t

2
, then we have:

E[Z] 6
√

2 logn.

Therefore, we can bound the |α̂ph|/σ̂ph by
√
2 logn. �
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Proof of Theorem 6.5 : To proof

inf
A∈A

P (reject H0|A) → 1,

equivalently, we need to prove

inf
A∈A

P (S0 + S1 > Fq|A) → 1.

S0 = Hn

∑P
p=1 I(

∑Hn

h=1 |α̂ph|/σ̂ph > ηn), as Hn = nv → ∞ as n→ ∞.

Under Theorem 6.4 and n→ ∞, we have:

E(S0|A) → ∞.

Meanwhile Fq = O(1), according to Fan et al. (2015) and Kock and Preinerstorfer (2019), we can show that:

inf
A∈A

P (S0 + S1 > Fq|A) → 1.

Then the Theorem 6.5 follows. �
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1 Introduction

The traditional portfolio choice model proceeds by estimating the parameters of an asset return distribution and

then finding the portfolio that maximizes expected payoffs for a given risk level, such as the optimal mean-

variance portfolio choice model proposed by Markowitz et al. (1952). This approach can produce biases in port-

folio weights since the portfolio selection process ignores the estimation error in the empirically-derived return

distribution parameters. Furthermore, as the number of assets increases, the estimation of the high-dimensional

covariance matrix becomes intractable. Some notable methods have been proposed to solve this issue, such as

linear (Ledoit and Wolf (2004)) and nonlinear shrinkage (Ledoit and Wolf (2017)) of the target covariance matrix

or selecting main elements by threshold (Fan et al. (2013)). However, these approaches may cause information

loss and lead to unsatisfactory results, as illustrate by Ao et al. (2019). At the same time, Ao et al. (2019) studied a

method called MAXSER, which is a sparse regression which sets the optimal sharpe ratio as the regressand. Their

method also requires a sparsity assumption and can be problematic when the number of assets n is large. Mean-

while, all aforementioned papers ignore the importance of predictive variables, which have been documented

by many researchers, such as Fama and French (1989), who analyzed the forecasting ability of dividend yield,

default spread and term spread on asset returns, as well as Keim and Stambaugh (1986), Campbell and Shiller

(1988), and Hodrick (1992) among others. The goal of this paper is to construct a two-step optimal portfolio that

takes advantage of both a large number of assets and dynamic predictors.

Brandt (1999) used nonparametric tools to directly estimate the portfolio weights that maximize expected utility

of the observed data, without first estimating the return distribution. He estimated the dynamic portfolio weights

of the assets in a two-asset model as a nonparametric function of the univariate time-series predictor of the future

excess returns of the risky assets. Aït-sahalia and Brandt (2001) replaced the univariate time series predictor with

an index-based set of predictors: the time-varying portfolio weights in a three-asset model were assumed to be a

nonlinear function of a linear fix combination of a vector of predictive variables. However, the number of assets

included in their portfolio was quite limited.

Brandt et al. (2009) developed a characteristic-based model for portfolio selection with a large cross-section

of assets. They assumed that optimal portfolio weights were linearly related to a small set of observable char-

acteristics, such as book-to-market ratio, momentum and market equity. They found the linear coefficients that

maximized expected utility under this assumption.

In this paper, we develop a new semiparametric model of portfolio selection, which combines the advantages

of a large cross-section of assets and dynamic predictive variables. This is achieved by a characteristics-based

asset pricing model. We generalize the methodologies in the above-mentioned papers since we do not impose the

assumption that optimal weights are linear in the characteristics. Furthermore, the firm-specific characteristics

included in our model can be significantly broadened. There are 33 characteristics in our empirical study, which

provides more potential abnormal return opportunities. Also, as in Aït-sahalia and Brandt (2001), we also allow
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information-based dynamically-varying portfolio allocation based on a single-index function of predictors. We

replace weighting across asset classes in Aït-sahalia and Brandt (2001) with weighting across our optimally-

constructed characteristics-based sub-portfolios.

We estimate the model using a new, two-stage semiparametric procedure. The first step involves the estimation

of the factor-mimicking sub-portfolios. This is a high-dimensional estimation problem since the number of assets

is diverging, but the objective function is quadratic, allowing us to solve it using semiparametric techniques.

That step compacts those assets into several sub-portfolios rather than discarding some of them, and also helps to

reduce the dimensionality, which simplifies the next step. The second step maximizes the dynamic expected utility

of a risk-free asset and those sub-portfolios conditional on a set of predictors, similar to Aït-sahalia and Brandt

(2001). Our two-step statistical methodology accounts fully for the estimation error in both semiparametric steps,

and we show that it approximates the intractable single-stage, asset-by-asset portfolio weight estimation problem

in a well-defined sense.

Our model is not entirely general: we do not allow individual asset selection in response to asset-specific val-

uation information. We essentially allow for factor-tilt strategies, which means weighting securities according

to their factor exposure in response to the associated factor risk premia, and factor timing, which means dynam-

ically varying factor-tilt strategies, accounting for predictability in factor risk premia, but not individual asset

selection. This method keeps most of the information contained in individual assets, while benefitting greatly

from dimensionality reduction.

We base our model on a dynamic, characteristics-based factor model of returns. This kind of model was first

studied by Connor and Linton (2007) and Connor et al. (2012), where they specified their model as:

yit = αi +

J
∑

j=1

gj(Xji)fjt + ǫit, (1)

where yit is the excess return on security i at time t; fjt is the jth risk factor’s return at time t; Xji is the

jth observable characteristic of firm i; αi represents the intercept (mispricing) part of ith asset return; and ǫit

are the mean zero idiosyncratic shocks. They restricted characteristic-based loading gj(·) to be a univariate

nonparametric function. To extend the dimension of the factor loading function gj(·), Kelly et al. (2019) and

Kim et al. (2019) specify both mispricing and factor loading parts as a parametric linear function of a large set of

firm-specific characteristics as:

yit = h(Xi) +
J
∑

j=1

gj(Xi)fjt + ǫit. (2)

They illustrated the validility of characteristics-based factor models and provided relevant empirical results. Li

and Linton (2020) generalized the parametric part of Equation 2 as semiparametric functions to be consistent with

earlier research. They also proposed power enhanced tests to verify their model, concluding that the semipara-

metric mispricing component h(Xi) was only significant during certain rolling windows.
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Section two describes the econometric framework for our model. We assume the returns are generated by the

asset pricing model in Li and Linton (2020) and that the factor risk premia are predictable based on a single-index

function involving a set of both stationary and nonstationary predictors.

Section three presents the general portfolio management problem and our restricted class of portfolio selection

rules in which the problem is divided into two steps. In the first step, the investors choose a set of characteristics-

based sub-portfolios that are well-diversified and mimic the returns of the underlying unobservable factors. In

the second step, the investors choose a dynamic combination of these sub-portfolios and a risk-free asset depen-

dent upon their time-varying information set and utility function. The information is specified as a single-index

function, which is well-approximated by orthogonal series, allowing both stationary and nonstationary covariates.

We show that under reasonable conditions on risk preference, the two-step selection rule has asymptotically zero

impact on an investor’s expected utility as the number of assets grows to infinity, relative to the unattainable true

optimal choice.

Section four derives estimators for both steps. In the factor-tilt step, the factor-mimicking portfolios are con-

structed by the linear combination of estimated characteristics-based factor loadings. To diversify the idiosyn-

cratic shocks further, the weight for each factor loading function is estimated through a constrained quadratic

objective function. In the second step, called factor timing, the optimization of the expected utility function is

solved by the methodology of the continuously-updating GMM, as in Hansen et al. (1996). The weights allocated

to the risk-free asset and sub-portfolios are determined by the single-index function approximated through Her-

mite polynomials, which allows for both stationary and nonstationary predictors, as in Dong et al. (2016b). The

coefficients of those orthogonal bases are estimated by solving the sample counterpart under the continuously-

updating GMM framework. Section five documents the hypothesis tests on the significance of these predictors

included in the single-index function.

Section six presents the empirical findings. We apply our approaches to monthly CRSP and FRED data and

reveal some popular predictive variables’ nonstationarity and significance. Furthermore, we find our portfolios

have different but outstanding performance under various levels of risk aversion. Finally, the results of the in-

sample and out-sample are similar and reflect the risk preference of the investor.

Section seven concludes and discusses the paper, while proofs of theorems and supplementary tables are ar-

ranged in the Appendix.

2 Econometric Framework

We assume there is a large panel of monthly stocks’ excess returns generated by the characteristics-based model:

yit =

J
∑

j=1

gj(Xi)(fjt + φjt) + ǫit, (3)
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where yit is ith stock’s excess return at time t while Xi is a large set of assets’ P-vector of characteristics, which

is regarded as time-invariant within a short time window; gj(Xi) is the jth characteristics-based factor loading,

which is specified as a multivariate additive semiparametric function. The factor returns Ft = (f1t, . . ., fJt)
⊺ are

the common sources of risk in asset returns at time t with associated means φt = {φ1t, . . . , φJt}. The asset-

specific return ǫit is conditional zero mean, i.e., E(ǫit|Xi,Ft) = 0.

This framework is an extension of Connor and Linton (2007) and Connor et al. (2012), who assumed the

factor beta function g(·) to be univariate. This model is a special case of Li and Linton (2020) by replacing the

mispricing component with the mean value φjt of the jth risk factor.

We allow for time variation in the characteristics of the assets across rolling windows. We treat the n × J

matrix of characteristics in the tth rolling window X = (X1, . . . ,Xn)
⊺, as a random draw from a multivariate

population distribution. Furthermore, the investor can observe X before rolling block t, and then choose his time

t portfolio.

We define the n × J matrix G(X) = (g1(X), . . . , gJ(X)) and gj(X) = (gj(X1), . . . , gj(Xn))
⊺ , and the

matrix form of the demeaned assets’ returns at time t is :

Yt = G(X)Ft + ǫt, t = 1, 2, . . . , T, (4)

where Yt is a n × 1 matrix of the demeaned assets’ excess returns at time t, G(X) = (g1(X), . . . , gJ(X)) is a

n× J factor loading matrix, and ǫt is a n× 1 vector of asset-specific returns.

Furthermore, we assume that there exists a nonsingular J × J matrix MG such that:

E(G(Xi)
⊺G(Xi)) = MG, (5)

where the expectation is over the multivariate probability density of characteristics and the off-diagonal elements

are all zeros. The Equation 5 simply imposes that for any large random population of the assets, the factor-loading

matrix is nonsingular with the probability of one.

For a finite value of n and realized characteristics matrix X , under weak assumption, the finite sample second

moment matrix approaches the population value as:

p lim
n→∞

1

n

n
∑

1=1

G(Xi)
⊺G(Xi) = MG, (6)

There is a scale indeterminacy in Equation 3 since one could multiply the function gj(Xi) by any non-zero

constant c and (fjt + φjt) by 1/c, and the model of returns would be identical. We resolve the this indeterminacy

by setting MG
jj = 1, where j = 1, . . . , J.

The estimation of Equation 5 under Equation 6 is discussed in Li and Linton (2020); it is achieved mainly

through "Projected Principal Component Analysis" (PPCA) by Fan et al. (2016). The idea is to project the n× T
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asset excess returns onto the B-spline space spanned by X , where X = (X1,X2, . . . ,Xn), and then, we collect

the projected returns Ŷ. Furthermore, we perform PCA on 1
T
ŶŶ⊺. Therefore, the Ĝ(X) is estimated as the

largest J eigenvectors of 1
T
ŶŶ⊺. Due to the property of the PCA, the assumption Equation 6 is satisfied.

Let Mf = E(FtF
⊺
t ) denote the nonsingular covariance matrix of the factors and M ǫ = E(ǫǫ⊺) denote the

covariance matrix of the idiosyncratic returns; note these two sources of returns are statistically independent. We

assume that the asset-specific risks are diversifiable, in particular:

λmax(M
ǫ) < cλ <∞,

where the λmax denotes the largest eigenvalue whereas cλ is a constant. This follows readily from standard

assumptions on weak correlations of the asset-specific risks.

We allow dynamic variation in the mean value of factor return premia. At the beginning of each period, a

K × 1 vector of random signal zt = (z1t, . . . , zKt)
⊺ is observed by the investor before he chooses his portfolio.

The expected return on the jth factor in Equation 3 is a nonlinear function of a fixed linear combination of these

dynamic signals by coefficients θ = (θ1, . . . , θK)
⊺ as:

φjt+1 = πj(θ
⊺zt). (7)

The three vectors Ft,zt and ǫt are assumed to be statistically independent. At each time t, the investor observes

the characteristics of those assets X , which is treated as time-invariant during this time block, and the dynamic

signal zt. Then, the investor chooses his time t portfolio based on this information. Finally, at the (t+1)th period,

his portfolio return depends upon the realized assets’ returns, which in turn depends on the realized factor returns

and asset-specific returns Ft+1 and ǫt+1 respectively, according to Equation 3.

3 A Two-Step Version of the Portfolio Choice Problem

This section first defines the utility function of a rational decision-maker and then describes how the optimal

portfolio weights are chosen through a two-step procedure. In step one, the investor chooses characteristics-based

factor-mimicking sub-portfolios based on a linear combination of the beta function
∑J

j=1 gj(X) in Equation 3.

Step two combines these sub-portfolios optimally using expected utility as the investor’s objective function, based

on a dynamic index.

3.1 Utility Function of the Investor

The investor in our model is myopic and he chooses his portfolio for time t to maximize one-period expected

utility of return. We assume his return at time t is Wt and his risk-averse von Neumann Morgenstern preference

is defined over Wt with a lower bound on the second derivative:

d

dW
u(W ) > 0,−c < d2

W 2
u(W ) < 0 (8)
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Additionally, we define the optimal portfolios weights n× 1 vector w∗ such that:

w∗ = argmax
w

E[u(rft +w∗⊺rt)|Xt, zt], (9)

where rft is the risk-free return at time t and rt is a n × 1 vector of stock returns at time t. In practice , the

optimal w∗ is hard to determine and unstable when n is large or the trading frequency is high, as discussed in the

Introduction. Therefore, we consider optimal portfolio choice under a restriction on portfolio weights. Rather than

choosing asset weights directly, the investor chooses a set of J characteristics-based portfolios to approximately

mimic the factors. Then, in the second step, the investor combines these factor-mimicking subportfolios optimally

using his expected utility function conditional on a group of predictors.

3.2 Step 1: Factor-mimicking Sub-portfolios

In this subsection, we propose a method to construct factor-mimicking sub-portfolios based on Equation 3 and

discuss the properties of these sub-portfolios.

We propose a semiparametric weighting function to mimic the risk factors Ft, which is in the form of a linear

combination of characteristics-based factor loadings as in Equation 3:

bj(Xi) = γj1g1(Xi) + · · ·+ γjJgJ(Xi), (10)

therefore, the portfolio weight of ith asset to construct the jth subportfolio is 1
n
bj(Xi).

The weighting matrix of assets to mimic all J factors is as follows:

B(Xi) =
1

n
ΓG(Xi)

⊺, (11)

where

B(Xi) =
1

n































b1(Xi)
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...

bJ(Xi)
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GJ(Xi)































.

Thus, the J × 1 factor-mimicking portfolio return vector at time t is calculated:

Qt(X) =































q1t(X)

q2t(X)
...

qJt(X)































=
n

∑

i=1

B(Xi)yit. (12)
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The factor-mimicking portfolio vector has at least two attractive properties, which are listed as theorems.

Theorem 1. Each subportfolio in the J×1 factor-mimicking vector defined by Equation 12 is a linear combination

of risk factors fjt directly.

Theorem1 implies that we can control the similarity between subportfolios and risk factors by adjusting coef-

ficients matrix Γ, which provides us with considerable flexibility.

Theorem 2. The returns of portfolio defined by Equation 12 have asymptotically zero idiosyncratic variance.

Theorem 2 illustrates that portfolio returns of factor-mimick sub-portfolios can diversify the asset-specific

returns completely as the number of assets goes to infinity.

An investor who uses a semiparametric characteristics-based weight function to choose sub-portfolios rather

than individual assets i sacrifices the flexibility to weight assets differently based on the properties of their asset-

specific returns ǫit, since the sub-portfolio weight function Equation 12 only differentiates assets by their char-

acteristic vectors. However, for both hedge fund managers and researchers, there are no satisfactory rules for

choosing thousands of assets robustly. Furthermore, some weighting strategies have to be rebalanced once per

trading day, and even more frequently for some strategies. This high-speed decision-making problem is intractable

without some simplifying applicable rules like Equation 12.

3.3 Step 2: Factor-timing Portfolio Based on Dynamic Signals

This subsection describes how to approximate the dynamic signal function πj(θ
⊺zt) in Equation 7, and how to use

this function as dynamic weights assigned to those factor-mimicking sub-portfolios in subsection 3.2, to reflect

information about their overperformance/underperformance on a risk-adjusted basis. This subsection captures the

particular "factor-timing" strategy used by the investor.

Here, we define the objective function as:

argmax
θ

E[u(αrft +Π(θ⊺zt)
⊺Qt+1(X))], (13)

subject to

‖θ‖2 = 1 and θ1 > 0

and

α+

J
∑

j=1

πj(θ
⊺zt) = 1

where rft is the risk-free return at time t and α is its portfolio weight, and

Π(θ⊺zt) = (π1(θ
⊺zt), . . . , πJ(θ

⊺zt))
⊺.
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The first restriction is for identification purposes while the second is for unit investment. We do not restrict short

selling and leverage. Equation 13 is a transformation of the objective function Equation 9. The n × 1 vector of

assets’ returns rt is replaced by the vector of sub-portfolios’ returns Qt+1 conditional on X , which compacts

the information of rt through observed characteristics X . Similarly, the dynamic weights of each asset w∗ is

substituted by the dynamic information function Π(θ⊺zt), which is the mean function for the risky factors φt

as in Equation 3. In other words, the objective function Equation 9 is a transformation of the utility function

Equation 13 by incorporating conditional variables zt,X .

Our purpose is to maximize the conditional expectation of the investor’s utility function. The investment

allocation to the jth factor-tilt sub-portfolios is determined by the jth information indicator πj(θ
⊺zt), which

is a single-index function, to avoid the problem of "curse of dimensionality" caused by fully nonparametric

methods. We specify fixed linear combinations as information input in an unknown function πj(·), as stated by

Aït-sahalia and Brandt (2001), for at least two reasons. Statistically, this can achieve a better convergence rate

for estimates, and economically, a univariate index value provides meaningful and convenient descriptions of

current investment opportunities. Meanwhile, these index functions’ effects on each sub-portfolio can be highly

nonlinear, as documented by Aït-sahalia and Brandt (2001). Therefore, we do not specify the functional form of

πj(·), allowing a parametric index function to influence each sub-portfolio’s weight nonparametrically.

To facilitate our estimation procedures, we approximate those unknown functions πj(·) by orthonormal bases

similar to Dong et al. (2016b). Their methods can allow the elements of information vector zt to be nonstationary.

As pointed by Gao et al. (2013) and Gao and Phillips (2013), conventional kernel estimation as in the Brandt

(1999) and Aït-sahalia and Brandt (2001) method may not be workable due to the breakdown of limit theory,

when zt is a multivariate I(1) process. In practice, some time series predictors are likely to be nonstationary, like

the unemployment rate, inflation and exchange rates, among other economic indicators. Therefore, we apply a

similar method as in the Dong et al. (2016b) to validate a more comprehensive application of our model.

Suppose all the link functions πj belong to L2(R) = {f(x) :
∫

f 2(x)dx <∞}. The Hermite function sequence

{Hi} is an orthonormal basis in L2(R):

Hi(x) = (
√
π2ii!)−1/2Hi(x) exp(−

x2

2
), i > 0, (14)

whereHi(x) are Hermite polynomials orthogonal with density exp(−x2). The orthogonality reads
∫

Hi(x)Hj(x)dx =

δij , the Kronecker delta.

Therefore, any countinuous function πj(·) ∈ L2(R) can be expanded into a linear combination of orthogonal

series:

πj(θ
⊺zt) =

∞
∑

l=0

βjlHl(θ
⊺zt). (15)
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We keep the first L− 1 terms and leave the rest as approximate residues:

πj(θ
⊺zt) =

L−1
∑

l=0

βjlHl(θ
⊺zt) + ψ(θ⊺zt), (16)

where ψ(θ⊺zt) is the approximation residues.

Furthermore, all J dynamic indicator functions can be approximated (we assume the same truncation parame-

ters for all functions for purposed of notation simplicity only):

Π(θ⊺zt) = BHL(θ
⊺zt)+Ψ(θ⊺zt), (17)

where

B =



















β10 . . . β1(L−1)

. . . . . . . . .

βJ0 . . . βJ(L−1)



















, HL(θ
⊺zt) =



















H0(θ
⊺zt)

. . .

HL−1(θ
⊺zt)



















,

and Ψ(θ⊺zt) is the approximation error.

Therefore, the objective function Equation 13 is transformed through replacing Π(θ⊺zt) by BHL(θ
⊺zt−1)

as:

arg max
α,B,Θ

E[u(αrft + (BHL(θ
⊺zt−1))

⊺Qt(X))], (18)

subject to

‖θ‖2 = 1 and θ1 > 0

α +
J
∑

j=1

β⊺

j HL(θ
⊺zt−1) = 1

Theorem 3. The restricted optimal portfolio weight function chosen by Equation 18 gives an approximately

optimal portfolio.

Theorem 3 demonstrates that, as the number of assets n → ∞, our two-step procedure is approximately

equivalent to Equation 9, which is the completely unrestricted asset-by-asset portfolio optimization because these

two methods give the same expected utility asymptotically.

4 Methodology

This section illustrates procedures for estimating Γ in Equation 11, and B,θ in Equation 18.

We assume that the investor chooses Γ based on the following objective:

Γ̂ = argmin
Γ

J
∑

j=1

E(bj(Xi)
2) (19)
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subject to

E[Qt(X)Qt(X)⊺] = IJ ,

where IJ is a J × J identity matrix.

In words, we choose the linear combination coefficients J × J matrix to maximize the spread of the portfolio

weights, specifically by minimizing the expected sum of squared portfolio weights, in the class of semiparametric

functions of the characteristics, subject to an orthogonality constraint on the vector of sub-portfolios’ returns.

These portfolios are an econometrically-derived variant of the widely popular Small-Minus-Big (SMB) and High-

minus-Low (HML) portfolios designed by Fama and French (1993) to capture the size-related and value-related

return factors. Fama and French (1993) did not minimize the sum of squared portfolio weights as was done in

Equation 19, but they instead set the portfolio weights using capitalization weight, which, in the highly diversified

US equity market, have a very low sum-of-squared relative to the number of assets. Fama and French (1993) did

not explicitly impose the orthogonality condition applied in Equation 19, but, as they noted, they chose their size

and value breakpoints so that the portfolio returns would have very low correlation. The reason that we set the

orthogonal constraint here is to diversify idiosyncratic risks further.

Next we show that Equation 19 can have a Langrangian solution. After expanding the constraint and under the

independence between Ft and ǫt, we have:

E[Qt(X)Qt(X)⊺] = E[( 1
n
ΓG(X)⊺G(X)Ft +

1
n
ΓG(X)⊺ǫt)(

1
n
F

⊺
t G(X)⊺G(X)Γ⊺ + 1

n
ǫ
⊺
tG(X)Γ⊺)]

= E(ΓG(X)⊺G(X)

n
FtF

⊺
t

G(X)⊺G(X)

n
Γ⊺) + 1

n2E(ΓG(X)⊺ǫtǫ
⊺
tG(X)Γ⊺)

→ ΓMGE(FtF
⊺
t )M

GΓ⊺ + 1
n2ΓG(X)⊺E(ǫtǫ

⊺
t)G(X)Γ⊺

,

which is a quadratic form in Γ.

As for the objective function, we have:

J
∑

j=1

E(bj(Xi)
2) =

J
∑

j=1

E(Γ2G(Xi)
2),

which is linear in Γ2.

Therefore, we write this constrained optimization problem of sample analogues in Lagrangian form:

L(Γ) =
1

n

J
∑

1

n
∑

i=1

ΓG(Xi)
⊺G(Xi)Γ

⊺ −Λ⊺vec((
1

T

T
∑

t=1

Qt(X)Qt(X)⊺)− IJ), (20)

where Λ is the 1
2
J(J + 1) vector of Lagrangian multipliers, and vec is the vecterization of a matrix.

The optimal Γ and associated Lagrangian multipliers will solve the first order conditions:

∂L

∂Γ
= 0J×J ,

∂L

∂Λ
= 0

1

2
J(J+1).
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Meanwhile, we collect the estimate Γ̂ to obtain the factor-mimicking sub-portfolios’ returns as:

Q̂t(X) =































q̂1t(X)

q̂2t(X)
...

q̂Jt(X)































=
n

∑

i=1

B̂(Xi)yit =
1

n

n
∑

i=1

Γ̂Ĝ(Xi)
⊺yit, (21)

where Ĝ(Xi) is the consistent estimate of Equation 3 as in Li and Linton (2020), where they specify G(Xi) as

an additive semiparametric function of asset-specified characteristics.

The next step derives an estimator for the dynamic portfolio allocation weighting functions Π(θ⊺zt−1). The

portfolio weight estimation problem is to find:

(α̂, B̂, θ̂) = arg max
α,B,θ

E[u(αrft + (BHL(θ
⊺zt−1))

⊺Q̂t(X))], (22)

subject to

‖θ‖2 = 1 and θ1 > 0

α +

J
∑

j=1

β⊺

j HL(θ
⊺zt−1) = 1

where Q̂t(X) is the estimate of sub-portfolios from Equation 21. This is essentially the same semiparametric

estimation problem analyzed by Aït-sahalia and Brandt (2001). The procedure relies on the profile estimation

of the single-index function. We iterate the first order condition to convergence after choosing initial values

arbitrarily.

With respect to identification issues, we need to solve another constrained optimization problem as:

arg max
α,B,θ

E[u(αrft + (BHL(θ
⊺zt−1))

⊺Q̂t(X))], (23)

subject to

‖θ‖2 = 1 and θ1 > 0

α +
J
∑

j=1

β⊺

j HL(θ
⊺zt−1) = 1

Therefore, the first order condition of the maximization with respect to B,θ is:

E[Mt] =



















u′(·)Q̂t(X)⊗HL(θ
⊺zt−1)] = 0JL×1

u′(·)Q̂t(X)IL×L(BH′
L(θ

⊺zt−1)⊗ zt−1)] = 0JL×1

u′(·)rft = 0



















,

where IL×L is a L× L identity matrix while H′
L and u′(·) are the first derivatives of the truncated orthonormal

series and the investor’s utility function respectively.
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As we can see, there are 2× JL+ 1 moment conditions to maximize the objective function.

These moment conditions can be used to construct standard GMM problem as was done in Hansen (1982):

(α, B̂, θ̂) = min
α,B,θ

E[Mt]
⊺SE[Mt]

subject to

‖θ‖2 = 1 and θ1 > 0

α +
J
∑

j=1

β⊺

j HL(θ
⊺zt−1) = 1

where S is the optimal weighting positive definite matrix as S = cov(Mt)
−1.

Then, we substitute these moment conditions E[Mt] with corresponding sample counterparts as:

mt =



















1
T

∑T
t=1 u

′(·)Q̂t(X)⊗HL−1(θ
⊺zt−1)] = 0JL×1

1
T

∑T
t=1 u

′(·)Q̂t(X)IL×L(BH′
L−1(θ

⊺zt−1)⊗ zt−1)] = 0JL×1

u′(·)rft = 0



















.

Similarly, we obtain the estimate of weighting as:

Ŝ =
1

T

T
∑

t=1















u′(·)Q̂t(X) ⊗HL−1(θ
⊺zt−1)] = 0JL×1

u′(·)Q̂t(X)IL×L(BH′
L−1(θ

⊺zt−1)⊗ zt−1)] = 0JL×1

u′(·)rft = 0





























u′(·)Q̂t(X) ⊗HL−1(θ
⊺zt−1)] = 0JL×1

u′(·)Q̂t(X)IL×L(BH′
L−1(θ

⊺zt−1)⊗ zt−1)] = 0JL×1

u′(·)rft = 0















⊺

.

Finally, we substitute the sample analogues and Ŝ into the objective function, and estimate B̂, θ̂:

(α̂, B̂, θ̂) = min
α,B,θ

m
⊺
t Ŝmt, (24)

subject to

‖θ‖2 = 1 and θ1 > 0

α +
J
∑

j=1

β⊺

j HL(θ
⊺zt−1) = 1

Furthermore, we substitute Equation 24 into the optimization iteration, which is called the continuously-

updating estimator; details can be found in Dong et al. (2018).

5 Hypothesis Tests

This section introduces the hypothesis tests that help us to understand which index variables are important to

guide the construction of factor-timing portfolios. We apply a Wald test to infer the significance of θj . We have

the null and alternative hypotheses as follows:
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H0 : Cθ = 0D×1, against H1 : Cθ 6= 0D×1,

where C is a D ×K fix matrix indicating the number of constraints D.

We denote the value of the objective function Equation 24 under B̂, θ̂ as V(B̂, θ̂) while under the null hy-

pothesis H0 as V(B̂, θ̂∗).

Therefore, if the null hypothesis is correct, we have:

T (V(B̂, θ̂∗)− V(B̂, θ̂)) ∼ χ2(D), (25)

where χ2(D) is the chi-square distribution with degree of freedom D. This method is a minimum-χ2 test,

the purpose of which is to check the minimized values of objective function Equation 24 after imposing some

restrictions.

We reject the null hypothesis if the test statistic exceeds the critical value.

6 Empirical Study

6.1 Data Description

6.1.1 Index Variables

We use the same index variable set as Aït-sahalia and Brandt (2001). These variables are all at a monthly fre-

quency:

• The Default Spread is the yield difference between Moody’s Baa and Aaa rated bonds, observed from

1967-07-01 to 2017-06-01 (600 months in total) denoted as DS.

• The Term Spread is the yield difference between 10 and 1 year government bonds, observed from 1967-

07-01 to 2017-06-01 (600 months in total) denoted as TS.

• The Trend is the difference between the log of the current S&P 500 index level and the log of the average

index level over the previous 12 months, observed from 1967-07-01 to 2017-06-01 (600 months in total).

• The Dividend Yield, also called Dividend-to-Price, is the sum of dividends paid on the S&P 500 index over

the past 12 months divided by the current level of the index observed from 1967-07-01 to 2017-06-01 (600

months in total). We use the percentage natural logarithm form of Dividend Yield, denoted as Ln(DY%).

• The Risk Free rate is obtained from the Fama-French factor model’s risk-free rate, observed from 1967-

07-01 to 2017-06-01, denoted in the percentage form as RF%.
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In Table 1, both "Trend" and "RF%" have small variation while "RF%" has some strong correlation with "TS"

and " Ln(DY%)". Apart from these, we also find that all of the index variables are not symmetrically distributed,

which is shown by the non-zero skewness. As for the kurtosis, the table indicates that outliers are quite common

among these variables.

In Table 2, we conclude the results of the unit root test and autocorrelation. After the Dickey-Fuller tests, we fail

to reject the null hypotheses that there are no unit roots among all index variables, especially for the " Ln(DY%)".

That can also be found from Figure 4. In terms of autocorrelation, almost all of the index series present persistent

autocorrelation even for lag nine, " Ln(DY%)" showing a strong signal of autocorrelation coefficient of 0.94, as

shown in Figure 4, Figure 5. However, "Trend" is an exception, where the autocorrelation decays to zero and is

negative after lag ten as shown in Figure 3. These test results verify the necessity of applying orthogonal series

to approximate the single index function with nonstationary covariates, as in subsection 3.3.

The data above was collected from the websites of FRED and Multpl.

6.2 Monthly Stock Data

We collected monthly stock returns from CRSP and firms’ characteristics from Compustat, from 1965 to 2017. We

constructed 33 characteristics following the methods of Freyberger et al. (2020). Details of these characteristics

can be found in the appendix of Li and Linton (2020). We construct characteristics from fiscal year t − 1 to

explain stock returns between July of year t to June of year t + 1. Following Hou et al. (2015), we adjust returns

of delisted stocks. The method that we apply to estimate the Equation 4 is similar to Li and Linton (2020). We

only include firms with at least three years of data in Compustat. The values of firm-specific characteristics are

updated annually as most characteristic data are reported every year. We use rolling windows to accommodate

these characteristics-based loadings and the risk factors are estimated correspondingly.

The time span of our in-sample analysis is 50 years, from July 1967 to June 2017 (600 months).

6.3 In-sample Factor-mimicking Portfolios

This section presents portfolios that mimic the annually updated risk factors estimated through Equation 5. In

this study, we choose the number of unobservable factors in Equation 3 to be three. In Li and Linton (2020), they

compared the effects of the number of factors through a simulation study, concluding that underestimating the

number of factors can be problematic. However, their discussions mainly focused on the estimation of mispricing

functions. We only have four dynamic index variables, and therefore, we follow the renowned research of Fama

and French (1993) to set the number of factors to be three. According to the literature, three factors can capture

the most important common variation in asset excess returns.

The methods are introduced in subsection 3.2, and we utilize all 600 months of data and construct three such
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portfolios every year, assuming the number of risk factors in Equation 3 to be three. Then, we conclude the

descriptive statistics of these three sub-portfolios in Table 3. The zero mean and unit variance are determined by

the constraints in estimation. As for the correlation between risk factors and those sub-portfolios using observa-

tions of all 600 months, our first step works very well because the diagonal elements of correlation are quite high

while the off-diagonal elements are negligible. That demonstrates that each sub-portfolio imitates only the target

risk factor’s variation accurately and leaves the rest uncorrelated. The weights put on each asset for these sub-

portfolios are calculated through a constrained optimization, which restricts the similarity between sub-portfolios

and risk factors. Furthermore, during certain years, the sub-portfolios behaved in the opposite direction of the

imitated factor, which can also influence the average correlation over 600 months. The annual correlation can be

found Table 7, where some negatively correlated periods are presented.

6.4 Utility Function

We utilitze the classic Constant Relative Risk Aversion (CRRA) utility function to model function u(W ) in

Equation 8:

u(W ) =







W 1−ξ

1−ξ
if ξ > 1;

ln(W ) if x = 1,

where ξ is an integer and ξ = W ∂2u(W )/∂W 2

∂u(W )/∂W
, measuring the level of risk aversion. Therefore, under this setting,

the investor is risk-averse and tries to maximize his expected utility function through factor-mimicking and factor-

timing portfolio strategy. The CRRA utility function is twice differentiable, which can further facilitate our

optimization algorithm.

6.5 Selection of Truncation Number

The value of L in Equation 16, which is the truncation number in polynomials, needs to be determined here.

Unfortunately, to the best of our knowledge, there is no rule of thumb for the best choice of L. We refer to

Dong et al. (2015) and Dong et al. (2016a), where the authors determined L according to the number of obser-

vations n. However, the n in this study ranged from 468 to 2928. After trading off the computation burden and

approximation accuracy, we choose L to be four throughout the empirical study.
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Table 1: Index Variable Summary

Descriptive Statistics Correlation Matrix

Index name T Mean Variance Median Max Min Skewness Kurtosis DS TS Trend Ln(DP%) RF%

DS 600 1.08 0.2 0.94 3.38 0.55 1.82 7.34 1.00

TS 600 1.12 1.39 1.23 3.40 -3.07 -0.32 2.72 0.09 1.00

Trend 600 0.03 0.01 0.05 0.22 -0.4 -1.24 5.63 -0.27 0.07 1.00

Ln(DY%) 600 1.00 0.17 1.05 1.83 0.10 -0.09 2.07 0.46 -0.26 -0.12 1.00

RF% 600 0.39 0.08 0.41 1.35 0.00 0.51 3.44 0.23 -0.68 -0.01 0.65 1.00

This table documents the descriptive statistics of the index variables that are used in this empirical study as well as the correlations among them.

To be consistent with most of the literature, we use the percentage values of DP and RF.

Table 2: Tests Summary

Unit root test Autocorrelation

Index name T time trend p-value (Trend) ∆Yt p-value (∆Yt) ρ3 ρ6 ρ9

DS 600 −2.3 × 10−5 -0.81 −3.82× 10−2 -3.43 0.85 0.68 0.54

(2.8× 10−5) (1.11× 10−2)

TS 600 9.27× 10−5 1.23 −3.6 × 10−2 -3.26 0.88 0.77 0.69

(7.51× 10−5) (1.1× 10−2)

Trend 600 4.1× 10−6 0.47 −7.59× 10−2 -4.86 0.70 0.37 0.12

(8.75× 10−6) (1.56× 10−2)

Ln(DY%) 600 −1.8 × 10−5 -1.44 −8.86× 10−3 -1.72 0.98 0.96 0.94

(1.25× 10−5) (5.16× 10−3)

RF% 600 −6.6 × 10−5 -3.22 −5.48× 10−2 -4.23 0.94 0.90 0.87

(2.05× 10−5) (5.16× 10−3)

This table summarizes the results of unit root tests and autocorrelations of those index variables. It reports the estimates,

standard errors (in parentheses) and t-statistics of Dickey-Fuller test with trend individually. Autocorrelation column

illustrates the correlation between the series and lag 3, lag 6 and lag 9 respectively, dennoted as ρ3, ρ6, ρ9.

Table 3: Factor-mimicking Portfolios Summary

Descriptive Statistics Average Correlation

Index name T Mean Variance Median Max Min Skewness Kurtosis f̂1 f̂2 f̂3

q̂1 600 0.00 1.00 0.08 2.81 -3.10 -0.38 3.33 0.48 -0.01 0.13

q̂2 600 0.00 1.00 0.03 2.70 -3.20 -0.15 3.42 -0.11 0.59 0.05

q̂3 600 0.00 1.00 0.05 2.60 -2.79 -0.10 2.82 0.06 -0.03 0.63

This table presents the descriptive statistics of factor-mimicking portfolios and their correlations with estimated risk factors.

q̂1, q̂2, and q̂3 are constructed portfolios through all 600 months’ data while f1, f2, and f3 are three T × 1 factors estimated

by rolling windows.
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Figure 1: The Plot of DS
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Figure 2: The Plot of DS
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(b) Autocorrelation Plot of Trend

Figure 3: The Plot of Trend
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Figure 4: The Plot of Ln(DY%)



6 EMPIRICAL STUDY 19

0 100 200 300 400 500 600

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

Time t

R
F

(a) Series Plot of RF

0 5 10 15 20 25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Series  RF

(b) Autocorrelation Plot of RF

Figure 5: The Plot of RF

6.6 Estimation of Dynamic Signals

This section presents the estimates of single-index coefficient vector θ and the results of the corresponding hy-

pothesis tests. We use the CRRA utility function with various risk aversion levels ξ. Meanwhile, we also test the

null hypothesis in section 5 to examine whether some of the coefficients of dynamic variables are significantly

different from 0. These tests are used to show the importance of this dynamic information during the second step

of portfolio management, namely factor-timing.

During our estimation, all the optimization processes converged, and the optimized values are reported. The

in-sample results are based on the data for all 600 months and the estimation procedures are repeated under

different risk-aversion levels ξ = 2, ξ = 5, and ξ = 10. We then obtain the values of the objective function

Equation 24, denoted as V(B̂, θ̂). The hypothesis tests are conducted by setting θi = 0, where i indicates the ith

index variable. We denote the value of the objective function Equation 24 under H0 : θi = 0 as V(B̂, θ̂i = 0). In

addition, χ2 statistics are calculated as T∆V = T (V(B̂, θ̂i = 0)−V(B̂, θ̂)).

Table 4: Index Variable Summary

ξ = 2 ξ = 5 ξ = 10

Index name T θ̂i V(B̂, θ̂i = 0) V(B̂, θ̂) T∆V θ̂i V(B̂, θ̂i = 0) V(B̂, θ̂) T∆V θ̂i V(B̂, θ̂i = 0) V(B̂, θ̂) T∆V

DS 600 0.15 0.23 0.006 134.4 0.06 0.0001 2.5× 10−8 0.066 0.08 0.0026 4.9× 10−10 1.56

TS 600 0.19 0.064 0.006 34.8 -0.34 0.0008 2.5× 10−8 0.481 -0.06 5.2× 10−9 4.9× 10−10 0

Trend 600 0.03 0.01 0.006 2.4 0.06 1× 10−6 2.5× 10−8 0.006 0.03 8.1× 10−10 4.9× 10−10 0

Ln(DY%) 600 -0.97 0.06 0.006 32.4 -0.93 3.2× 10−6 2.5× 10−8 0.002 -0.995 2× 10−8 4.9× 10−10 0

This table reports the estimates and hypothesis test of dynamic index variables. θ̂i is the estimate of the coefficient of the ith index variable while V represent the value of the objective

function. ∆V = V(B̂, θ̂i = 0)− V(B̂, θ̂).

The findings in Table 4 differ across the risk-aversion levels. When the magnitude of risk aversion is low, the

influence of the dynamic index variables is significant. With ξ = 2, nearly all of the values of T∆V exceed the

95% critical value of χ2(1), which is 3.84, except for DS. As the risk-aversion becomes larger, the importance of

these dynamic variables declines. This can be confirmed when ξ = 5 and ξ = 10, where all the four variables are

insignificant. We compare the values of the objective function Equation 24, and most of them are quite similar,
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both close to zero. That means the moment conditions in Equation 24 can be satisfied even if we restrict the

coefficient of the ith index variable to zero. Nevertheless, we cannot reject their joint significance.

6.7 In-sample Performance of Factor-timing Portfolios

This section presents portfolio performance estimated using in-sample data. As mentioned previously, there are

two steps in the construction of our dynamic portfolio, namely, factor-tilt and factor-timing steps. In subsec-

tion 6.3, we describe how to build the sub-portfolios that mimic the behavior of risk factors. This section solves

the second step, factor-timing: choosing the time-varying weights for the risk-free asset and risky sub-portfolios.

The dynamic weights are determined by a single-index function with a set of index variables. These variables

capture investment opportunities. We standardize the amount of investment to be 1 unit and take the monthly

returns as the wealth gleaned by the investor. We do not restrict leverage or short-selling in order to check the

influence of the risk-aversion level.

As we have 600 months in total, we record the average returns every year and annual standard deviations in

Table 5 to save the space, and we calculate the Sharpe-ratio directly through mean(Returnt)/SDannual. Ta-

ble 5 shows the in-sample results from July 1967 to June 2017 under all three risk-aversion levels defined in

subsection 6.4, and these results are compared with monthly S&P 500 returns.

Some findings here are significant and worth discussing. Firstly, for investors who have relatively lower risk-

aversion, the average portfolio returns are more rewarding, with some extremely high returns appearing as well.

For example, when the risk-aversion level ξ = 2, the twelve month average monthly returns can be 10.61and 8.

65. As for ξ = 10, the average monthly returns are more normal. Most monthly returns are around 5% except for

some outliers. Secondly, a higher risk-aversion level corresponds to more volatile returns, such as losing -2.33

monthly during the whole year when ξ = 2, provided the standard deviation of the monthly return is 6.44. But

the circumstances can be much more favourable when ξ increases to 5 and 10, with the standard deviation of the

monthly return being 3.98 and 2.81, respectively. Especially under ξ = 10, the returns are quite acceptable and

stable. Thirdly, all of the portfolios under various ξ have a relatively low Sharpe-ratio, compared with S&P 500

returns, which may be due to the high volatility.

In this empirical study, we optimize over three risky sub-portfolios and one risk-free asset without restricting

leveraging or short-selling, and the weights for each asset are plotted in Figure 6. As we can see in (a), when the

relative risk aversion level is low, ξ = 2, the weights for each asset are variable, while the scale of the vertical

axis here is wider than (b) and (c). As we increase ξ, the weights become more stable. Specifically, when the ξ

increases to 10, the only substantial volatility in the weights appeared around the stock crash in March 2000.
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6.8 Out-sample Performance of Factor-timing Portfolios

This section examines the out-sample performance of our two-step portfolio selection procedure. We test the last

six months of the last ten years in our data set for various risk aversion levels. The coefficients of the dynamic

information function are estimated using all of the past information while the sub-portfolios are estimated using

the first six months each year. The "Return" in Table 6 is calculated by substituting the predictors observed at the

beginning of time t + 1. The sub-portfolios are constructed at time t, based on all the available data at the target

year before time t+ 1. Table 6 also lists the assigned weights to each sub-portfolios and the risk-free asset using

1 unit of investment, represented by c1,c2,c3 and c0. To summarize each column, we also provide the mean and

standard deviation values at the end of the table, indicated by "ColMeans" and "ColStd".

As we can see from Table 6, most of the out-sample performance is quite similar to the in-sample performance

Table 5. When the risk-aversion level is low such as ξ = 2, the variation of assets’ weights is the largest and

with an extensive range. Correspondingly, the realized monthly returns are also variable and high on average.

The mean return of all 60 months is 0.36, which is very similar to that of the in-sample result which is 0.37. Not

surprisingly, the out-sample standard deviation 8.88 is bigger than that of the in-sample result (6.44).

When the risk-aversion level increases to ξ = 5, the weights’ volatility decreases, and the mean return also

falls from 0.36 to 0.27, which is similar to the in-sample result (0.29). Compared with the ξ = 2 situation, the

standard deviation of all the assigned weights and the monthly returns decline.

In the case of ξ = 10, all of the weights and monthly returns become more stable and less volatile. However,

the average monthly return here is much lower than the in-sample result ( 0.17), with a smaller standard deviation

of 1.51.

From the above analysis, we can conclude that our out-sample results are robust and vary according to the risk

aversion levels. When the risk-aversion level is low, the investor reassigns his weights broadly and frequently,

with an high average monthly return but high volatility. As the risk aversion level increases, the investor adjusts

his weights more moderately, and the monthly average return and its standard deviation are reduced.
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Table 5: Average Annual In-sample Results

ξ = 2 ξ = 5 ξ = 10 Average Monthly S&P 500

n Return SD Sharpe-ratio Return SD Sharpe-ratio Return SD Sharpe-ratio return SD Sharpe-ratio

468 -0.13 1.07 -0.12 0.15 0.70 0.22 0.06 0.61 0.10 0.01 0.03 0.01

894 -0.15 1.07 -0.14 0.20 0.47 0.41 0.08 0.63 0.13 -0.00 0.03 -0.00

1108 -0.13 1.11 -0.11 0.45 0.66 0.69 0.06 0.72 0.09 -0.02 0.04 -0.02

1199 -2.33 9.36 -0.25 0.10 0.88 0.12 0.04 0.59 0.08 0.02 0.03 0.02

1333 10.61 37.73 0.28 0.09 0.74 0.12 0.04 0.80 0.04 0.01 0.03 0.01

1409 -0.23 1.38 -0.16 0.10 0.77 0.13 0.06 0.82 0.08 -0.00 0.03 -0.00

1466 -0.16 1.03 -0.16 -1.02 3.50 -0.29 0.08 0.70 0.12 -0.01 0.04 -0.01

1560 -0.10 1.12 -0.09 0.35 1.19 0.30 0.05 0.70 0.07 0.00 0.07 0.00

1494 0.19 2.89 0.06 0.32 1.25 0.26 0.06 0.59 0.10 0.01 0.04 0.01

1292 0.52 7.48 0.07 0.14 1.29 0.11 0.03 0.60 0.05 -0.00 0.02 -0.00

1393 -0.12 0.73 -0.16 0.08 0.92 0.09 0.03 0.58 0.06 -0.00 0.03 -0.00

1340 -0.10 0.84 -0.12 0.38 0.94 0.41 0.05 0.79 0.06 0.00 0.03 0.00

1285 0.39 2.92 0.13 -0.13 5.27 -0.02 0.09 0.61 0.16 0.01 0.04 0.01

1181 -0.12 0.76 -0.16 -0.68 8.15 -0.08 0.03 0.57 0.06 0.01 0.03 0.01

1110 -0.15 0.83 -0.18 0.82 2.08 0.39 0.05 0.75 0.07 -0.01 0.04 -0.01

1044 -0.09 1.34 -0.07 -0.05 1.64 -0.03 -0.07 0.59 -0.11 0.04 0.03 0.04

1125 -0.73 1.72 -0.42 0.12 1.15 0.10 0.05 0.75 0.07 -0.01 0.02 -0.01

2192 -0.88 1.83 -0.48 -1.83 13.38 -0.14 0.05 0.73 0.06 0.02 0.03 0.02

2236 8.65 16.35 0.53 -0.87 2.35 -0.37 0.06 0.77 0.07 0.02 0.03 0.02

2273 0.07 0.53 0.13 0.08 0.87 0.09 0.05 0.95 0.05 0.02 0.03 0.02

2235 0.60 2.48 0.24 0.02 0.63 0.04 0.04 0.73 0.05 -0.01 0.06 -0.01

2270 -0.02 1.15 -0.02 0.28 0.95 0.30 0.09 0.58 0.16 0.02 0.02 0.02

2405 -0.33 1.19 -0.28 0.24 0.82 0.29 0.09 0.61 0.15 0.01 0.02 0.01

2376 2.03 3.87 0.53 0.02 1.00 0.02 0.03 0.63 0.05 0.01 0.05 0.01

2323 0.09 0.62 0.14 3.80 9.31 0.41 0.05 0.66 0.08 0.01 0.02 0.01

2344 0.05 0.68 0.08 2.45 3.21 0.76 0.03 0.61 0.05 0.01 0.01 0.01

2434 0.06 0.69 0.09 0.03 1.07 0.03 0.05 0.63 0.08 0.00 0.01 0.00

2548 -0.87 11.71 -0.07 -0.04 0.95 -0.04 0.10 0.56 0.17 0.01 0.02 0.01

2741 0.26 1.06 0.25 0.15 0.59 0.25 0.15 0.69 0.21 0.02 0.02 0.02

2928 0.10 0.55 0.19 0.14 0.74 0.18 0.25 0.53 0.47 0.02 0.04 0.02

2894 0.10 0.68 0.14 -0.03 1.90 -0.01 0.38 0.67 0.57 0.02 0.03 0.02

2905 0.11 0.73 0.16 -0.14 2.53 -0.05 0.25 0.64 0.39 0.02 0.05 0.02

2804 0.13 0.89 0.15 2.60 7.64 0.34 7.55 18.53 0.41 0.01 0.03 0.01

2570 0.10 0.69 0.14 -1.02 4.43 -0.23 0.95 1.64 0.58 -0.01 0.04 -0.01

2516 0.26 1.33 0.20 0.11 0.94 0.12 0.07 0.61 0.12 -0.02 0.05 -0.02

2491 0.11 0.89 0.13 0.07 1.05 0.07 0.03 0.60 0.05 -0.00 0.05 -0.00

2402 0.20 0.97 0.20 0.07 0.97 0.07 -0.04 0.58 -0.08 0.01 0.02 0.01

2326 0.06 0.90 0.07 0.01 0.50 0.03 0.11 0.58 0.18 0.01 0.02 0.01

2241 0.06 0.69 0.09 0.46 0.96 0.48 0.13 0.59 0.23 0.00 0.02 0.00

2178 0.12 0.73 0.17 7.04 15.93 0.44 0.15 0.60 0.25 0.02 0.02 0.02

2113 0.05 0.68 0.07 0.14 0.66 0.20 0.11 0.57 0.18 -0.01 0.04 -0.01

2023 -0.00 0.57 -0.00 -0.86 2.32 -0.37 0.04 0.85 0.04 -0.03 0.08 -0.03

2007 0.03 0.53 0.05 0.23 1.87 0.13 0.02 0.69 0.03 0.01 0.04 0.01

1924 -0.02 0.87 -0.02 0.02 1.14 0.02 -0.04 0.75 -0.05 0.01 0.02 0.01

1990 0.01 0.88 0.01 0.04 0.66 0.07 0.03 0.80 0.03 0.00 0.04 0.00

1937 0.00 0.89 0.00 -0.02 0.59 -0.03 0.01 0.79 0.01 0.02 0.02 0.02

1909 0.01 0.89 0.01 -0.02 0.94 -0.02 -0.01 0.70 -0.01 0.02 0.01 0.02

1872 0.00 0.69 0.01 -0.03 0.93 -0.04 -0.00 0.63 -0.00 0.01 0.02 0.01

1841 0.00 0.70 0.01 0.05 0.93 0.06 0.00 0.63 0.01 0.00 0.04 0.00

1826 0.01 0.70 0.02 -0.02 0.90 -0.02 -0.01 0.61 -0.01 0.01 0.01 0.01

Total mean 0.37 6.44 0.06 0.29 3.98 0.07 0.23 2.81 0.08 0.01 0.04 0.17

This table illustrates the in-sample results under various risk-aversion levels annually from July 1967- June 2017. n represents the number of stocks included in the

portfolio. Both returns and standard deviations are calculated based on each year’s results. The results of monthly S&P 500 returns are reported for comparison.

No restrictions on leverage or short-selling.
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Figure 6: The Plot of Subportfolio Weights
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Table 6: Monthly Out-sample Results Comparison

ξ = 2 ξ = 5 ξ = 10

Year c0 c1 c2 c3 Return c0 c1 c2 c3 Return c0 c1 c2 c3 Return

2008

1.12 0.04 0.05 -0.21 -0.04 -0.14 0.59 0.22 0.32 0.12 0.07 0.73 0.01 0.20 0.65

2.03 -0.13 -0.41 -0.49 0.21 -0.11 0.63 0.18 0.30 0.60 0.11 2.12 -0.37 -0.86 2.67

2.41 -0.21 -0.64 -0.55 0.67 -0.23 0.89 -0.09 0.43 0.22 -0.14 -2.37 1.00 2.51 0.84

2.31 -0.19 -0.58 -0.54 -0.82 -0.20 0.82 -0.02 0.40 0.69 -0.14 -2.31 0.99 2.46 4.20

2.24 -0.17 -0.54 -0.53 -1.28 -0.14 0.69 0.12 0.33 1.35 0.62 11.15 -3.11 -7.65 -6.09

1.85 -0.09 -0.31 -0.45 0.77 -0.11 0.63 0.18 0.30 0.49 0.11 2.02 -0.34 -0.79 3.93

2009

-0.00 1.47 0.79 -1.26 -1.60 0.15 -1.56 2.56 -0.15 6.52 -0.29 0.20 0.24 0.85 2.69

-0.00 1.45 0.83 -1.28 0.73 0.10 -1.08 2.03 -0.06 -0.30 -0.26 0.31 0.03 0.93 0.31

-0.00 1.46 0.81 -1.28 -1.44 0.11 -1.15 2.11 -0.07 0.92 -0.26 0.30 0.04 0.92 -0.44

-0.00 1.49 0.77 -1.25 -0.86 0.06 -0.66 1.60 -0.00 -1.90 -0.25 0.39 -0.13 1.00 -1.87

-0.00 1.45 0.83 -1.28 -0.05 0.03 -0.25 1.19 0.03 1.21 -0.26 0.67 -0.66 1.25 0.82

-0.00 1.39 0.94 -1.33 -0.48 0.02 0.03 0.93 0.03 0.33 -0.39 1.86 -2.80 2.33 -0.63

2010

-0.00 0.22 0.02 0.75 -0.21 -0.01 2.06 -0.73 -0.31 -1.17 -0.00 2.17 -0.84 -0.33 -1.23

-0.00 0.23 0.02 0.75 0.50 -0.01 2.04 -0.72 -0.31 -0.00 -0.00 2.18 -0.84 -0.34 -0.05

-0.00 0.23 0.02 0.75 -0.72 -0.01 2.07 -0.74 -0.31 -2.10 -0.00 2.17 -0.84 -0.33 -2.17

-0.00 0.22 0.03 0.75 0.31 -0.01 1.97 -0.67 -0.30 -2.02 -0.00 2.18 -0.84 -0.34 -2.31

-0.00 0.27 -0.01 0.74 -0.86 -0.01 2.11 -0.78 -0.32 -1.49 -0.00 2.18 -0.83 -0.35 -1.51

-0.00 0.30 -0.03 0.74 -0.71 -0.01 2.39 -1.03 -0.36 -1.00 -0.00 2.17 -0.84 -0.32 -0.97

2011

1.49 -0.90 0.61 -0.20 1.01 0.00 1.07 0.28 -0.35 -0.11 -0.02 0.37 0.66 0.00 0.36

1.02 -0.91 1.10 -0.20 1.42 0.00 1.09 0.26 -0.35 -0.35 -0.02 0.37 0.64 0.01 0.12

1.18 -0.92 0.96 -0.22 -1.19 0.00 1.06 0.28 -0.35 0.45 -0.03 0.39 0.62 0.02 0.09

1.05 -0.92 1.07 -0.21 -1.56 0.00 1.08 0.27 -0.35 0.54 -0.03 0.39 0.62 0.02 0.05

1.31 -0.92 0.83 -0.21 -2.11 0.00 1.04 0.31 -0.34 1.24 -0.03 0.40 0.61 0.02 0.73

1.52 -0.89 0.56 -0.19 -0.78 0.00 1.01 0.33 -0.35 0.78 -0.03 0.43 0.56 0.04 0.70

2012

-33.41 5.01 8.21 21.20 53.27 0.04 0.75 0.17 0.04 1.64 0.19 0.12 0.30 0.39 0.96

31.14 -4.95 -6.39 -18.80 -37.15 0.05 0.76 0.17 0.02 1.23 0.19 0.12 0.30 0.39 0.77

22.59 -3.62 -4.46 -13.50 -6.39 0.05 0.76 0.17 0.03 0.30 0.17 0.12 0.33 0.39 0.16

13.19 -2.17 -2.36 -7.67 13.97 0.05 0.77 0.17 0.01 -1.08 0.18 0.12 0.31 0.39 -0.93

11.36 -1.88 -1.95 -6.53 9.04 0.07 0.79 0.17 -0.03 -0.80 0.23 0.12 0.26 0.38 -0.72

14.33 -2.34 -2.61 -8.37 -4.71 0.07 0.79 0.17 -0.04 0.33 0.27 0.12 0.23 0.38 0.26

2013

1.06 -0.71 2.04 -1.40 0.44 0.05 1.18 -0.87 0.64 -0.30 0.09 0.19 0.36 0.36 -0.04

1.40 -1.02 2.53 -1.91 -0.90 0.05 1.17 -0.85 0.63 0.43 0.09 0.19 0.36 0.36 0.03

1.12 -0.76 2.12 -1.48 0.89 0.05 1.14 -0.77 0.58 -0.64 0.09 0.18 0.37 0.35 -0.17

0.43 -0.12 1.10 -0.41 -0.26 0.05 1.12 -0.72 0.55 0.92 0.10 0.18 0.37 0.35 0.32

1.09 -0.73 2.08 -1.43 -5.69 0.05 1.07 -0.60 0.48 2.90 0.10 0.17 0.40 0.33 0.15

-0.42 0.65 -0.08 0.85 1.06 0.04 1.05 -0.53 0.44 0.94 0.10 0.17 0.40 0.33 0.46

2014

0.01 0.24 0.63 0.13 -1.20 -0.04 2.39 1.34 -2.68 -4.24 0.08 -0.76 1.23 0.45 -3.96

0.01 0.25 0.63 0.12 0.02 -0.05 2.39 1.34 -2.68 0.29 0.09 -0.36 0.89 0.38 0.14

0.01 0.25 0.63 0.12 0.35 -0.05 2.39 1.34 -2.68 0.43 0.09 -0.28 0.82 0.37 0.34

0.01 0.25 0.63 0.12 0.75 -0.05 2.39 1.34 -2.68 1.40 0.09 -0.37 0.90 0.38 0.97

0.01 0.26 0.62 0.11 1.29 -0.06 2.40 1.34 -2.69 1.29 0.11 0.00 0.59 0.29 1.15

0.01 0.25 0.62 0.12 -0.01 -0.05 2.39 1.34 -2.68 0.33 0.10 -0.19 0.75 0.34 0.08

2015

0.37 0.36 1.09 -0.82 -1.66 -0.35 0.80 0.34 0.21 -0.13 0.40 0.20 0.29 0.12 -0.06

0.50 0.54 1.42 -1.46 2.83 -1.35 4.17 -1.20 -0.62 4.29 0.37 0.20 0.24 0.20 -0.21

0.51 0.55 1.43 -1.48 -0.58 -1.32 4.08 -1.16 -0.60 -0.60 0.36 0.20 0.22 0.22 -0.05

0.42 0.43 1.21 -1.05 2.27 -0.56 1.51 0.01 0.04 3.29 0.39 0.19 0.27 0.15 1.19

2.79 3.58 7.06 -12.44 -3.46 0.33 -1.46 1.36 0.77 -0.37 0.31 0.23 0.15 0.31 -0.09

-1.06 -1.50 -2.36 5.92 2.20 0.17 -0.91 1.11 0.64 -0.17 0.28 0.27 0.10 0.35 -0.04

2016

1.26 -0.15 -0.86 0.75 -1.11 -0.01 1.45 -1.28 0.84 -0.05 0.00 0.09 -0.11 1.02 -0.86

1.37 -0.29 -0.40 0.32 0.19 -0.01 1.12 -0.89 0.78 0.50 0.00 0.11 -0.10 0.99 0.37

1.37 -0.30 -0.35 0.28 1.24 -0.01 1.09 -0.85 0.78 -1.09 0.00 0.11 -0.10 0.99 -0.01

1.36 -0.28 -0.43 0.34 0.80 -0.01 1.03 -0.78 0.76 0.84 0.00 0.13 -0.10 0.97 1.02

1.37 -0.29 -0.40 0.32 -0.18 -0.01 0.94 -0.67 0.74 -2.72 0.00 0.17 -0.09 0.92 -1.29

1.37 -0.33 -0.19 0.15 -0.06 -0.01 0.85 -0.56 0.72 2.38 0.00 0.17 -0.09 0.92 0.18

2017

-0.00 -1.51 2.14 0.37 -0.92 0.60 -1.03 -2.37 3.80 -0.65 0.08 0.25 0.46 0.21 0.04

-0.00 -1.43 2.06 0.37 0.23 0.59 -1.00 -2.32 3.73 0.01 0.10 0.21 0.51 0.18 0.23

-0.00 -1.09 1.72 0.37 1.21 0.34 -0.24 -1.03 1.93 -0.14 0.14 0.10 0.65 0.11 0.53

-0.00 -0.71 1.35 0.37 1.56 0.25 0.10 -0.40 1.06 0.52 0.21 -0.08 0.87 0.00 0.85

-0.00 -0.60 1.23 0.37 1.18 0.24 0.16 -0.27 0.87 -0.08 0.26 -0.20 1.01 -0.07 1.18

-0.00 -0.30 0.93 0.37 0.28 0.24 0.25 -0.02 0.54 0.07 0.60 -1.08 2.03 -0.55 0.45

ColMean 1.58 -0.18 0.47 -0.88 0.36 -0.02 0.95 0.03 0.04 0.27 0.08 0.53 0.15 0.25 0.07

Colstd 7.15 1.42 2.03 4.75 8.88 0.30 1.18 1.02 1.21 1.58 0.19 1.67 0.81 1.22 1.51

This table demonstrates the out-sample results under various risk-aversion levels of the last six months from 2008- 2017. c0 represents the weights of the

risk-free asset while c1 c2 and c3 show the weights of three sub-portfolios individually. "Return" represents the monthly return. "ColMean" and "ColStd"

show the column means and standard deviations, respectively. No restrictions on leverage or short-selling.
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7 Conclusion

This paper develops and tests a two-step portfolio selection procedure which relies on a large universe of in-

vestable assets and a set of dynamic predictors of factor-related returns. The first step in the procedure creates

a collection of well-diversified mimicking portfolios to approximate the returns of pervasive risk factors. The

second step uses a set of predictors including default spread, term spread, price trend, and dividend yield. These

predictors are combined into a single-index function, which in turn determines a dynamic allocation of portfo-

lio weights across the factor-mimicking portfolios in order to maximize investor’s expected utility. Due to the

nonstationarity of some predictive variables, we apply orthogonal series to approximate the single-index function

in estimation. We apply the technique to fifty years of monthly U.S. data and find very good performance both

in-sample and out-of-sample. We show empirically that the factor mimicking portfolios have high correlation

with the targeted factors and low correlation with each other. Our dynamic portfolios perform well, both for high

risk-aversion and low risk aversion investors, providing high average returns and also high return volatility for the

less risk-averse and correspondingly lower average returns and lower volatility for the more risk-averse investor.
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8 Appendix

8.1 Proof

Proof of Theorem 1 : Write the subportfolio vector Qt(X) as:

Qt(X) =
n

∑

i=1

B(Xi)yit.

Because:

yit = G(Xi)Ft + ǫit.

Then, substitute yit into Qt(X):

Qt(X) =
∑n

i=1B(Xi)(G(Xi)Ft + ǫit)

= 1
n

∑n
i=1 ΓG(Xi)

⊺(G(Xi)Ft + ǫit)

= Γ( 1
n

∑n
i=1(G(Xi)

⊺G(Xi))Ft +
1
n

∑n
i=1(G(Xi)

⊺ǫit))

Given:

p lim
n→∞

1

n

n
∑

1=1

G(Xi)
⊺G(Xi) = MG,

where MG is an identity matrix, and

E(ǫit|Xi,Ft) = 0.

Therefore, we have:

p lim
n→∞

1

n

n
∑

1=1

G(Xi)
⊺ǫit = 0.

Thus,

p lim
n→∞

Qt(X) = ΓMGFt = ΓFt.

This shows that the factor-mimicking portfolio is a linear combination of risk factors given Γ is a non-zero

matrix. �

Proof of Theorem 2 : Let F̃ represent the demeaned risk factor matrix while

ỹt = G(X)F̃t + ǫt.

Correspondingly, we have:

Q̃t(X) = B(Xi)ỹt

= 1
n
ΓG(X)⊺ỹt.

And then,

E(Q̃t(X)Q̃t(X)⊺|X) = Γ( 1
n
G(X)⊺G(X))E(F̃ F̃ ⊺)( 1

n
G(X)⊺G(X))Γ⊺+

Γ( 1
n
G(X)⊺ 1

n
E(ǫtǫ

⊺
t )(G(X))Γ⊺.
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Given E(ǫit|Xi,Ft) = 0, the cross terms are E(F̃ ǫ̃t) = 0.

Taking the second term and using the Euclidian matrix norm:

||Γ( 1
n
G(X)⊺ 1

n
E(ǫ̃tǫ̃t

⊺)G(X))Γ⊺|| 6
1
n
||Γ 1

n
(G(X)⊺G(X))Γ⊺|| × ||E(ǫtǫ⊺t )|| →n→∞

1
n
||ΓΓ⊺|| × ||E(ǫtǫ⊺t )|| →n→∞ 0

The conclusion of the above formula is due to

p lim
n→∞

1

n

n
∑

1=1

G(Xi)
⊺G(Xi) = MG,

and ||E(ǫtǫ⊺t )|| has bounded eigenvalues for all n.

Furthermore, the well-chosen coefficient matrix Γ can give:

E(Q̃t(X)Q̃t(X)⊺|X) = IJJ

�

Proof of Theorem 3 : We decompose the investment returns of optimal asset-by-asset portfolio and risk-free

rate as:

rft +RF + ǫ∗t ,

where the RF is the optimal factor returns since the return generation function states the risk premiums come

from risk factors. The ǫ∗t is the zero mean idiosyncratic returns.

Since

E(ǫit|Xi,Ft) = 0,

it follows from the second-order stochastic dominance that the expected utility has the following relationship:

E(u(rft +RF )) > E(u(rft +RF + ǫ∗t )).

because zero mean ǫ∗t only contributes variance rather than returns.

According to Theorem 1 and Equation 17, the restricted portfolio optimally combines the factors’ returns.

Therefore, our two-stage portfolio’s return can be written as:

rft +RF + ǫ∗∗t ,

where the only difference is the idiosyncratic returns. Our goal now is to show that:
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E(u(rft +RF + ǫ∗∗t )|X, zt) →n→∞ E(u(rft +RF )|X, zt).

Next, we take the Taylor expansion of u(rft +RF + ǫ∗∗t ) around rft +RF :

u(rft +RF + ǫ∗∗t ) = u(rft +RF ) +
d

d(rft +RF )
u(rft +RF )ǫ

∗∗

t +
d2

d(rft +RF )
u(rft +RF )

2ǫ∗∗2t .

We take the expection on both sides, given E(ǫ∗∗t ) = 0 and
d2u(·)
dW 2 > −c. Therefore, we have:

E(u(rft +RF + ǫ∗∗t )) > E(u(rft +RF ))− cE(ǫ∗∗2t ),

where p limn→∞E(ǫ∗∗2t ) = 0, according to Theorem2. Therefore, we have :

p lim
n→∞

E(u(rft +RF + ǫ∗∗t )|X, zt)− E(u(rft +RF )|X, zt) = 0,

which completes the proof. �



8
A

P
P

E
N

D
IX

3
1

Table 7: Annual Correlation Between Subportfolios and Risk Factors 1-20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f1 0.61 -0.49 0.68 0.69 0.66 0.73 -0.10 -0.16 0.72 0.79 0.73 0.69 0.77 -0.17 0.64 0.87 0.65 0.71 0.51 0.75

f2 0.89 0.64 0.70 0.75 0.65 0.79 0.60 0.91 0.71 0.79 0.90 0.92 0.97 -0.01 0.79 0.74 0.79 0.86 0.88 0.41

f3 0.80 0.81 0.63 0.40 0.66 0.39 0.75 0.64 0.40 0.72 0.86 0.74 0.96 0.56 0.72 0.86 0.84 0.66 0.78 0.55

This table shows the annual correlation between factor-mimicking subportfolios and corresponding risk factors from Jul. 1967- Jun.1987.

Table 8: Annual Correlation Between Subportfolios and Risk Factors 21-40

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

f1 0.78 0.86 0.54 0.58 0.22 0.76 0.68 0.16 0.60 0.74 0.75 0.67 0.72 0.73 0.69 0.67 0.96 0.66 0.73 0.76

f2 0.77 0.79 0.73 -0.24 0.93 0.66 0.86 -0.06 0.87 0.81 0.94 0.76 0.22 -0.06 0.97 0.94 0.92 0.36 0.93 0.93

f3 -0.40 0.72 0.76 0.64 0.71 0.83 0.70 0.57 0.73 0.67 0.72 0.58 0.66 0.60 0.79 0.77 0.92 0.68 0.79 0.72

This table shows the annual correlation between factor-mimicking subportfolios and corresponding risk factors from Jul. 1987- Jun.2007.

Table 9: Annual Correlation Between Subportfolios and Risk Factors 41-50

41 42 43 44 45 46 47 48 49 50

f1 -0.22 0.73 -0.15 0.72 -0.55 -0.08 0.33 0.74 0.63 0.77

f2 0.63 0.76 0.29 0.73 0.65 0.34 -0.23 0.81 0.83 0.81

f3 0.64 0.58 0.65 0.61 0.82 0.51 0.87 0.86 0.82 0.53

This table shows the annual correlation between factor-mimicking subportfolios

and corresponding risk factors from Jul. 2007- Jun.2017.


