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Abstract 

The Effect of CO2 Pricing on Conventional and 
Non-Conventional Oil Supply and Demand 

EPRG Working Paper    1029 

Cambridge Working Paper in Economics  1054 

        

Aurélie Méjean, Chris Hope 

 

What would be the effect of CO2 pricing on global oil supply and 

demand? This paper introduces a model describing the interaction 

between conventional and non-conventional oil supply in a Hotelling 

framework and under CO2 constraints. The model assumes that non-

conventional crude oil enters the market when conventional oil supply 

alone is unable to meet demand, and the social cost of CO2 is included 

in the calculation of the oil rent at that time. The results reveal the effect 

of a CO2 tax set at the social cost of CO2 on oil price and demand and 

the uncertainty associated with the time when conventional oil 

production might become unable to meet demand. The results show that 

a tax on CO2 emissions associated with fuel use would reduce oil 

demand despite the effect of lower future rents, and would delay the 

time when conventional oil supply is unable to satisfy demand. More 

precisely, between 81 and 99% of the CO2 tax is carried into the oil price 

despite the counter-balancing effect of the reduced rent. A CO2 tax on 

fuel use set at the social cost of CO2 would delay by 25 years the time 

when conventional oil production is unable to meet oil demand, from 

2019 to 2044 (mean value). The results show that this date is very 

sensitive to the price elasticity of demand and the demand growth rate, 

which shows the great potential of demand-side measures to smooth 

the transition towards low-carbon liquid fuel alternatives.  
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The Effect of CO2 Pricing on Conventional and Non-

Conventional Oil Supply and Demand 

 

Aurélie Méjean 

and  

Chris Hope 
 

 

1.  Introduction 
 

As conventional oil becomes scarcer, advanced economies will remain dependent on 

petroleum resources if no substitute is available. What would happen if conventional oil 

production was no longer able to satisfy demand? Fuels from non-conventional oil 

resources would then become the backstop fuel. These resources involve higher CO2 

emissions per unit of energy produced than conventional oil as they require more 

energy to be extracted and upgraded (Grubb, 2001), and the social costs of CO2 would 

thus have a significant impact on the total marginal costs of supplying non-conventional 

oil. What would be the effect of CO2 pricing on global oil supply and demand? 

 

This paper describes a simple probabilistic model for estimating the effect of CO2 pricing 

(in this case a CO2 tax, set at the social cost of CO2) on oil supply and demand. The 

competitive price of oil over time is calculated within a Hotelling framework and is 

derived from the costs of producing non-conventional oil from Canadian oil sands, a 

substitute for conventional oil. As non-conventional oil is defined as a backstop for 

conventional oil, the model identifies the time of entry of non-conventional oil in the 

market as the time when conventional oil production alone is unable to match demand, 

and determines the competitive price of oil over time. The model describes the 

behaviour of the oil market under perfect competition, with and without a CO2 price 

reflecting its social cost. The social cost of CO2 emissions associated with the production 

and use of conventional and synthetic crude oil is included in the model calculations, 

and this paper investigates the effect of a CO2 tax set at the social cost of CO2 on oil 

prices and demand. 
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Numerical modelling is used as a tool to help decision-making: a model is introduced 

that draws on the user’s degree of belief about a series of parameters as an input (see 

for example Hope, 2006). A probability distribution is assigned to these parameters and 

the basis of these probabilities is “up-to-date knowledge from science and economics” 

(Stern, 2007 p33). The uncertainty associated with the validity of the input data is 

looked at, together with the influence of each parameter on the output. 

 

2.  Literature review 
 

2.1 Oil substitute and price 
 

Conventional oil producers face the choice of whether to extract oil now or leave it in the 

ground until a later date. In the first case, oil producers receive at time t0 the price pt0 

net of extraction costs ct0 for one unit of oil (also defined as the oil rent). At time t, oil 

producers will have earned (pt0-ct0)·exp(r·t), with r the real rate of interest1. In the 

second case, oil producers postpone oil production until time t, and earn (pt-ct) for one 

unit of oil. According to Hotelling (1931), the optimal production path commands a price 

net of extraction costs at time t: pt - ct = (pt0-ct0)·exp(r·t). A more rapid extraction path 

would lower the price of oil, and in a competitive market oil producers would then 

postpone extraction until a later date. Alternatively, a slower extraction path would 

push up the oil price, and would encourage oil producers to extract more oil earlier. At 

the equilibrium, the price of oil net of extraction costs will rise at the rate of interest.  

 

Now let’s consider the situation where two substitutes of the same product, 

conventional and synthetic crude oil, are available at differing extraction costs. 

According to Solow, the low-cost product, in this case conventional crude oil, should be 

produced first, and “at precisely the moment when the low-cost supply is exhausted, the 

price has reached a level at which it pays the high-cost producer to enter” (1974 p4). 

Here, the switch between substitutes is defined as the moment when the low-cost 

supply is exhausted, but this conclusion can be changed “if there are topographical 

constraints on the pattern of resource use”, (Solow and Wan, 1976, p363).  

 

                                                      
1
 Under the assumption of perfectly competitive capital markets, the opportunity cost of capital is equal to the consumption discount 

rate, so that rate is used in the model. 
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The behaviour of the market is uncertain in the situation where the low-cost supply is 

constrained. If we consider the case where the conventional oil production rate might 

reach a peak or a plateau, conventional supply could become unable to meet growing 

demand for oil before the supply is exhausted. The model described in this paper thus 

departs from the previous assumption and defines the moment when the high-cost 

substitute enters the market as the time when conventional oil production is unable to 

meet demand. At the time when oil demand might outgrow the conventional oil 

production rate (defined as T), the marginal oil product is the first barrel of synthetic 

crude oil produced, which sets the oil price, as no Hotelling rent yet occurs for the 

substitute, which is assumed to be available in large quantities. Synthetic crude oil is 

effectively a backstop at time T, even though it is not available in infinite quantities. So at 

that time, the price of oil equals the marginal cost of non-conventional crude oil, which is 

illustrated in figure 1. 

 

 

 

 

Figure 1: Interaction of conventional and non-conventional crude oil 
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If the price of oil is determined by the marginal cost of synthetic crude oil after time T 

defined above, an argument could be made that this situation is impossible as 

conventional oil producers would anticipate this situation and produce more of their oil 

at an earlier date, in order to benefit from the oil price growing at the rate of interest. 

But conventional oil producers face extraction constraints, which are parameterised as 

the maximum production rate in the model. These supply constraints prevent oil 

producers extracting conventional oil as rapidly as would be optimal without the 

constraints, and will result in the substitute, here synthetic crude oil, entering the 

market early. 

 

To calculate the competitive price of oil, it is assumed that the Hotelling rule holds for 

conventional oil production before the time when conventional oil production can no 

longer match demand, i.e. that the price of oil net of its cost of extraction will grow at the 

consumption discount rate until the oil price reaches the cost of non-conventional oil 

production at the time conventional oil production alone can no longer meet demand. 

The model assumes competitive behaviour and perfect foresight, and the analysis is 

carried out at the global level. 

 

After the time T, the price of oil is determined by the marginal cost of producing 

synthetic crude oil. The marginal cost of synthetic crude oil is not fixed. After T, it is a 

function of cumulative production and is driven by learning and depletion effects. 

Similar supply constraints affect Canadian bitumen.  

 

2.2 Model description 
 

Demand for oil is calculated endogenously, driven by the price elasticity of oil demand 

and a growth parameter independent of the price. The time T when conventional oil 

production is unable to meet demand is determined by iterating the model until it 

converges.  

 

To calculate the competitive price of oil today, it is assumed that the competitive price of 

oil will be equal to the costs of producing synthetic crude oil when that product enters 

the market at time T. The rent associated with conventional oil at time T is the difference 
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between the competitive price of oil at time T (i.e. the initial costs of producing synthetic 

crude oil) and the conventional oil production cost. 

 

The marginal extraction costs of conventional crude oil are influenced by technological 

change and depletion. The difference between the competitive price of conventional 

crude oil and the production cost of oil when synthetic crude oil enters the market, or 

the oil rent, is discounted to the present time, and is used to determine the competitive 

price of oil today.  

 

Finally, the Hotelling rent is added to the cost to obtain the competitive price of oil over 

the whole period. A loop is introduced in the model, as the demand for oil depends on 

the oil price, which is calculated from the time when conventional oil production is 

unable to meet demand. The simplified structure of the oil demand and price 

components of the model is summarised on figure 2. The starting point of the model 

iterations is the oil price over time, shown in red. 

 

 

Figure 2: Model structure of the oil price and demand components 

 

The model is used to compare the prices and demand obtained after a few iterations in 

two cases: in the first case prices are calculated with a CO2 tax on production and fuel 

end-use, and in the second case prices only include a CO2 tax on emissions associated 

with fuel production.  
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The model is set up as follows: a tax is added to the price of oil, which lowers demand 

through the price elasticity of demand. Lower demand delays the time when 

conventional oil production only is no longer able to satisfy demand, and thus lowers the 

oil rent, which reduces the oil price today and drives up demand and extraction. As the 

model converges, one effect takes over, leading to either higher or lower demand and 

extraction. It should be noted that the model is designed so that fuel extraction satisfies 

demand as long as this is physically possible. Figure 3 below shows an illustration of the 

model used. 

 

 

Figure 3: Model setting to compare oil demand with and without a tax on CO2 

 

Three iterations of each model set up, one with a CO2 tax on fuel end-use and the other 

without such a tax, are performed to obtain the results presented in section 5. Three 

iterations are sufficient, as the results converge and differ of less than 0.001% between 

iterations 2 and 3 in the case of the mean price in 2050. The following equations show in 

further details the structure of the model. 
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3. Methods: Equations and parameters of the model 

 

3.1 The social cost of CO2 
 

The social cost of CO2 is the increase in future damage, discounted to the present day, 

that occurs if current emissions of CO2 are increased by one tonne. The price of CO2 

should be rising with time in order to reflect this increase in the social costs of CO2, 

(Yohe et al., 2007 p813) and (Stern, 2007 p232).  

 

The social cost of CO2 is increasing with time at the rate , to account for the increasing 

damage costs over time. 

 

    



CCO2,t CCO2,t0
e

 tt0 
       (1) 

 

CCO2,t is the social cost of emitting CO2 at time t (USD/tCO2) 

CCO2,t0 is the social cost of emitting CO2 at time t0 (USD/tCO2) 

 is the rate of increase of the social cost of CO2 with time t (per year) 

 

The specific costs of CO2 from bitumen production are calculated from the process unit 

emissions e as follows: 

 

    



CBitumen ,t

CO2 CCO2,t eBitumen ,t
       (2) 

 

    



CBitumen ,t

CO2  is the CO2 cost associated with the production of one barrel of bitumen (USD/barrel) 

CCO2,t is the social cost of emitting CO2 at time t (USD/tCO2) 

eBitumen,t is the CO2 emissions to produce one barrel of bitumen (tCO2/barrel) 

 

Unit emissions are assumed to decline with cumulative emissions according to the 

following equation: 

    



eBitumen ,t  emin  (eBitumen ,t0
emin ) 

EBitumen ,t

EBitumen ,t0











be

    (3) 

 

eBitumen,t is the CO2 emissions to produce one barrel of bitumen at time t (tCO2/barrel) 

eBitumen,t0 is the CO2 emissions to produce one barrel of bitumen at time t0 (tCO2/barrel) 

EBitumen,t is the cumulative CO2 emissions from bitumen production at time t (tCO2) 
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EBitumen,t0 is the cumulative CO2 emissions from bitumen production at time t0 (tCO2) 

emin is the minimum CO2 emissions to produce one barrel of bitumen (tCO2/barrel) 

be is the learning coefficient (no unit) 

 

The same equations apply to the CO2 costs and emissions associated with upgrading 

bitumen into synthetic crude oil.  

 

The parameters used in the model to define the social cost of CO2 are exogenous, they 

don’t depend on the pathway of emissions that results from the model. Hope (2006) 

shows that the social cost of CO2 is independent of the path of emissions: this result 

might seem counter-intuitive at first, it is caused by “the interplay between the 

logarithmic relationship between forcing and concentration, the nonlinear relationship 

of damage to temperature, and discounting”.  

 

3.2 The cost of conventional oil 
 

The structure of the cost model for conventional and non-conventional oil was first 

presented in (Méjean and Hope, 2008) and (Méjean and Hope, 2010), and is briefly 

described below. The long-term costs of producing conventional oil are assumed to be 

driven by depletion, learning and CO2 emissions (equation 4).   
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    (4) 

learning    depletion         CO2 

 

Xconv,t is the cumulative production at time t (barrels) 

Cconv,t is the cost at time t (USD/barrel) 

Xconv,t0 is the cumulative production at time t0 (barrels) 

Cconv,t0 is the cost at time t0 (USD/barrel) 

Cconv,min is the minimum cost of producing the resources (USD/barrel) 

bconv is the learning coefficient (no unit) 

Rconv is the recovery factor (no unit) 

Qconv is the total oil in place (barrels) 

Cconv,max is the maximum cost of the depletion (USD/barrel) 

 is the exponent of the depletion curve (no unit) 

CCO2,t0 is the social cost of emitting CO2 at time t0 (USD/tonne CO2) 
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 is the rate of increase of the social cost of CO2 with time (per year) 

econv,t is the CO2 emissions to produce one barrel of oil at t (tCO2/barrel) 

Xconv,U is the ultimately recoverable resources (barrels) with Xconv,U= Rconv* Qconv 

 

3.3 Oil demand 
 

Demand is assumed to be sensitive to price, through the price elasticity of oil demand. 

Demand also has an exogenous component independent of the oil price. 

 

    



dt  dt0


Pt

Pt0











pe

 e
d (tt0 )

       (5) 

 

 dt is the oil demand at time t (barrels per day) 

dt0 is the oil demand at time t0 (barrels per day) 

 Pt is the price of oil at time t (USD/barrel) 

 Pt0 is the price of oil at time t0 (USD/barrel) 

 pe is the price elasticity of oil demand (no unit) 

 d is the growth rate of oil demand independent of the price of oil (% per year) 

 

3.4 Oil price 
 

It is assumed that the competitive price of oil at the time when conventional oil 

production is unable to meet demand (PCONV,T) is the cost of producing synthetic crude 

oil from in-situ bitumen (CSCO,T):  

 

    



PCONV,T CSCO,T         (6) 

with 

    



CSCO,T 
CIS,t0

 eIS CC02,T

YU

 (CU,t0
 eU CC02,T )     (7) 

and  
    



CCO2,T CCO2,t0
e

(Tt0 )
       (8) 

 

  YU is the upgrading efficiency (barrel SCO per barrel bitumen) 

CIS,t0 is the cost of producing in-situ bitumen at time t0 (USD/barrel bitumen) 

CU,t0 is the cost of upgrading bitumen into one barrel of SCO at time t0 (USD/barrel SCO) 

CCO2,T is the social cost of CO2 at time T (USD/barrel SCO) 
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With a CO2 tax on fuel use, the costs also include the emissions associated with burning 

the oil. 

 

The assumption was made earlier that synthetic crude oil could not enter the market 

while conventional oil production could still satisfy the demand for oil. It follows that 

the cost of producing synthetic crude oil at time T is the cost of producing synthetic 

crude oil today plus the CO2 costs of producing synthetic crude oil at time T. Also, no 

Hotelling rent is included in the cost of synthetic crude oil as that rent is not significant 

for the initial exploitation of very large fossil fuel resources, which is the case for non-

conventional oil. The difference between the price and cost of conventional oil at T, 

discounted to the present time (also called the oil rent at time T discounted to the 

present time, defined as OR), is calculated as follows: 

 

    



OR  PCONV,T CCONV,T er T
      (9) 

 

 OR is the oil rent at time T discounted to the present time (USD/barrel) 

 PCONV, T is the price of conventional oil at time T (USD/barrel) 

CCONV,T is the cost of conventional oil at time T (USD/barrel) 

r is the consumption discount rate (% per year) 

T is the time when conventional oil production is unable to meet demand 

 

This equation translates Hotelling’s rule (1931) that the oil rent should grow at a rate 

equal to the interest rate. The competitive price of oil at time t0, PCONV,t0, is then obtained 

from the oil rent: 

 

    



PCONV,t0
CCONV,t0

OR        (10) 

 

 PCONV,t0 is the price of conventional oil at time t0 (USD/barrel) 

CCONV,t0 is the cost of conventional oil at time t0 (USD/barrel) 

 

The following equation summarises the calculation of the competitive price of oil at time 

t0: 

 

    



PCONV,t0
CCONV,t0

 CSCO,T CCONV,T er T
     (11) 
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4. Data: estimation of the parameters 
 

4.1 Oil demand 

4.1.1 Price elasticity of oil demand (pe) 

 

The price elasticity of oil demand is “the responsiveness or sensitivity of oil demand to 

changes in price” (Cooper, 2003 p3). It is defined as the ratio between the percentage 

change in demand for oil and the percentage change in the price of oil: 

 

 
dP

dQ

Q

P
pe           (12) 

 

   pe is the price elasticity of oil demand (no unit) 

  P is the price of oil (USD/barrel) 

  Q is the quantity of oil demanded (barrels) 

 

The following table shows some estimates of the price elasticity of oil demand from 

seven studies, as reported in (Fattouh, 2007). 

 

Study Short run Long run Region Period 

Dahl, 1993 -0.05 to 

 -0.09 

-0.13 to 0.26 Developing countries  

Pesaran et al., 1998 -0.03 0 to -0.48 Asian countries  

Gately and 

Huntington, 2002 

-0.05  

-0.03 

-0.64 

-0.18 

-0.12 

OECD 

Non-OECD 

Fast growing non-OECD 

1971-1997 

Cooper, 2003 0.01 to -

0.11 

0.038 to -0.56 23 countries 1979-2000 

Brook et al., 2004  -0.6 

-0.2 

-0.2 

OECD 

China 

Rest of world 

 

Krichene, 2006 -0.02* to  

-0.03** 

-0.03* to  

-0.08** 

Various countries *1984-2005 

**1970-2005 

Rehrl and Friedrich, 

2006 

 -0.46*** World  

Adapted from (Fattouh, 2007, p10), except*** 

Table 1: Price elasticity of oil demand  
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The long-run price elasticity of oil is appropriate for this study. The range for the price 

elasticity of demand is chosen between 0 and -0.6. The lower bound of this range is 

above -1.0: as the demand for oil is increasingly driven by the demand for transport, it 

should become relatively less responsive to prices, as few substitutes are available (IEA, 

2006). Oil demand is also driven by exogenous growth, independent from the response 

to oil prices.  

 

4.1.2 Exogenous oil demand growth (d) 

 

Oil demand is driven in the model by exogenous growth, independent from the response 

to oil prices. Some estimates of the overall demand growth for oil were found in (UKERC, 

2009a). These estimates are listed in table 2.  

 

Model Oil demand growth Type 

IEA 1.3%/year 2008-

2015 

0.8%/year 2015-

2030 

Detailed demand modelling 

OPEC 1.14%/year after 

2012 

Detailed demand modelling 

EIA 1.16% Detailed demand modelling 

Shell No growth after 2020 

Decline after 2020 

Detailed demand modelling 

Meling 

(StatoilHydro) 

1.6%/year No detailed demand modelling 

Total 1.4%/year No detailed demand modelling 

Exxon Mobil 1.4%/year Detailed demand modelling 

Energyfiles 1.8%/year Demand not modelled, exogenous rate 

Adapted from (UKERC, 2009a) 

Table 2: Demand growth estimates found in the literature 

 

The range used for the demand growth rate (dCONV) is chosen to be between 1% and 

2.5% per year. 
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4.2 Resources  

4.2.1 Ultimate volume in place (Q) 

 

A distinction must be made between the amount of oil physically occurring 

underground, and the amount of oil that will eventually be recovered from the deposits. 

The ultimate volume in place is defined as the amount of oil physically occurring 

underground before any extraction has taken place.  

The IEA (2005b p25) estimates the conventional oil resources in place at 7 to 8 trillion 

barrels, of which 3.3 trillion barrels are considered ultimately recoverable.  

 

4.2.2 Recovery factor (R) 

 

The recovery factor is the percentage of the total oil in place in a deposit that can be 

recovered by a combination of primary, secondary and tertiary techniques (Grand 

Dictionnaire Terminologique, 2007). In this study, the ultimate recovery factor is the 

amount of oil or bitumen that could ultimately be produced as a percentage of the total 

amount of bitumen in place.  

 

The estimates of the recovery factors available in the literature are closely linked to the 

performance of current technologies, and to current or anticipated economic conditions. 

Ideally this study should be conducted independently of these considerations, as it is 

very difficult to anticipate future technological breakthroughs and economic conditions. 

In Rogner’s hydrocarbon resource assessment “the broadest possible dimensions were 

applied without immediate reference to recoverability”, (1997 p220). Rogner points out 

the “difficulty of incorporating future development efforts, technology change, and 

uncertainty into reserve assessments” and argues for the inclusion of all hydrocarbon 

occurrences, as the “a priori exclusion of presently subeconomic or geologically 

uncertain occurrences would certainly underestimate the hydrocarbon occurrence 

potentially available to humankind”, (1997 p236). Rogner thus adopts the highest 

plausible value for the occurrences of conventional oil resources, as his objective is to 

assess “the ultimately available resource base beyond short-term techno-economic 
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recovery limitations” (1997 p253). Rogner (1997 p231) uses a recovery rate of 0.4 for 

conventional oil with enhanced oil recovery, while the IEA (2005a) estimates the 

recovery rate of conventional oil between 0.41 and 0.47. The recovery rate is chosen to 

lie between 0.35 (Rogner, 1997 p231) and 0.55. 

 

The estimates of the recovery factors available in the literature are closely linked to the 

performance of current technologies, and to current or anticipated economic conditions. 

Ideally this study should be conducted independently of these considerations, as it is 

very difficult to anticipate future technological breakthroughs and economic conditions. 

In Rogner’s hydrocarbon resource assessment, “the broadest possible dimensions were 

applied without immediate reference to recoverability” (1997 p220). Rogner points out 

the “difficulty of incorporating future development efforts, technology change, and 

uncertainty into reserve assessments” and argues for the inclusion of all hydrocarbon 

occurrences, as the “a priori exclusion of presently subeconomic or geologically 

uncertain occurrences would certainly underestimate the hydrocarbon occurrence 

potentially available to humankind”, (1997 p236). Rogner thus adopts the highest 

plausible value for the occurrences of non-conventional oil resources, as his objective is 

to assess “the ultimately available resource base beyond short-term techno-economic 

recovery limitations” (1997 p253). 

 

The model introduces a depletion cost component that is solely based on the growing 

physical difficulty of producing bitumen. The recovery factor used to determine the 

costs associated with the depletion of the resources should therefore be set at the 

highest possible value.  

 

4.3 Conventional oil production 

4.3.1 Initial production rate (xt0) and initial cumulative production (Xt0) 

 

The initial production rate of conventional oil is derived from (EIA, 2009). The total 

world supply of oil in 2005 was estimated at about 84 million barrels per day (annual 

average), i.e. 3.07E+10 barrels per year. The IEA estimates that 1.0 trillion of the 7 to 8 

trillions barrels of conventional oil in place had been produced in 2005, (2005a p25). 
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4.3.2 Maximum production rate (xMAX) 

 

The range for the maximum production rate of conventional oil is derived from data 

collected in the 2009 UKERC report on global oil depletion, and summarised in table 3. 

 

Source Peak daily rate (Mb/d) Forecasted peak Reference 

IEA 2008 97.6 in 2030 

(excl. non-conventional oil) 

“Conventional oil production 

levels off towards 2030” 

IEA (2008 p251) 

UKERC (2009b p5) 

EIA 2008 113.3 in 2030 (all oil) 

99.3 in 2030 (conventional oil 

only) 

No peak UKERC (2009b p21) 

OPEC 2009 95 in 2030 (reference case) 

(excl. non-conventional oil) 

No peak OPEC (2009 p61) 

OPEC 2008 102 in 2030 (reference case) 

(excl. non-conventional oil) 

No peak OPEC (2008 p37) 

OPEC 2008 121 in 2030 (demand) 

(demand, incl. non-conventional 

oil) 

No peak UKERC (2009b p51) 

OPEC (2008 p112) 

Shell 2008 91.4 in 2030 (blueprint) 

(assumed moderate growth of 

unconventional oil and gas) 

“By 2015, growth in the 

production of easily 

accessible oil and gas will not 

match the projected rate of 

demand growth.” 

UKERC (2009b p33) 

ExxonMobil 

2008 

101 in 2030  

(excl. non-conventional oil) 

No peak before 2030 UKERC (2009b p51) 

 

Table 3: Maximum production rate from various oil supply models 

 

Two models (IEA 2008 and Shell 2008) acknowledge or predict a peak before 2030. 

Most of the estimates of the production rate in table 2.4 fall roughly into the range 90 – 

100 million barrels per day, with the exception of one OPEC estimate: in its World Oil 

Outlook 2008, OPEC estimates that demand for oil could reach 121 million barrels per 

day in 2030, and argues that the resource base would be sufficient to meet demand in 

that scenario, assuming the necessary investments are made to support additional non-

OPEC supply, including non-conventional oil. In its reference scenario, OPEC estimates 

the supply of non-conventional oil (non-OPEC) to reach about 11 million barrels per day 
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in 2030, so the higher bound of the range for the maximum conventional oil production 

rate is thus chosen as 110 million barrels per day, and the range is set at 91 – 110 

million barrels per day. 

 

This higher estimate for the conventional oil maximum production rate is included in 

the range, as the model aims at reflecting the absolute maximum production rate that 

could possibly be reached.  

 

4.3.3 Decline rate (CONV) 

 

The post-peak production decline rate parameter, i.e. the decline rate in conventional oil 

production after the maximum production rate has been reached, is derived from 

estimates gathered in (UKERC, 2009a p150-151). The decline rate is here defined as the 

overall decline rate, which is associated to all fields, including the fields that haven’t 

passed their peak (this is in contrast to the post-peak decline rate which only refers to 

the fields where production is declining), (UKERC, 2009c p4). This decline rate is the 

production-weighted aggregate decline rate of all fields, including post-peak fields, fields 

that are showing a plateau and fields that are still in the phase of build-up. Data gathered 

by UKERC shows aggregate post peak decline between 0.2% and 4.0% per year. The 

range is chosen to be between 0.0% and 4.0% per year, to allow for the possibility of a 

plateau. 

 

4.4 Depletion 
 

The estimates of the depletion parameters are obtained using the method described in 

(Méjean and Hope, 2008). Estimates from Attanasi (used in the SAUNER project), 

Rogner and Nordhaus and Boyer are used to determine the depletion parameters’ 

ranges. The incremental cost function from which some of these estimates are derived 

expresses ‘‘the quantity of resources that the industry is capable of adding to proved 

reserves or cumulative production’’ as a function of long-term marginal costs (Attanasi, 

1995, p2). These curves assume no subsequent cost reductions through technology 

learning (IEA, 2005b). The European SAUNER project uses Attanasi’s estimates to 

produce world oil supply cost curves for various categories of oil, including oil sands. 
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Rogner (1997) also produced similar aggregate quantity–cost curves for global oil 

resources.  

 

Cmax is the maximum cost of oil, i.e. the cost of producing the last barrel of oil (assuming 

no technological change), and  is the exponent of the depletion curve. The resulting 

estimates for  and Cmax are summarised in table 4. 

 

Source SAUNER 2000 Rogner 1997 p254 
Nordhaus and 
Boyer 1999 p40 

Category 
Conventional 
oil 

Global oil 
resources 
(conventional) 

Carbon fuels 

 
(no unit) 

1.41 1.04 4 

Cmax 
(2005)USD/barrel 

60a 86b 121c 

   a50(1998)USD; b58 (1990)USD; c81 (1990)USD. 

Table 4: Literature estimates for depletion parameters 

 

Rogner values all resource categories are as if “all future productivity gains were 

realized immediately” (p253).  In his analysis, “a productivity gain in the upstream 

sector of 1% per year is assumed (...) a resource that presently commands production 

costs of, for example, $40 per barrel of oil equivalent (boe) would, over a period of 50 

years, drop gradually to $24”, (Rogner, 1997 p251).  

 

The high end of the conventional oil spectrum is 35 (1990) USD/barrel (including EOR). 

Taking out the 1% per year productivity gains, this is equivalent to 58 (1990) 

USD/barrel, or 86 (2005) USD/barrel (Rogner, 1997 p254). The highest conventional oil 

production costs are 50 (1998) USD/barrel, (SAUNER, 2000), or 60 (2005) USD/barrel. 

The estimate of the maximum cost of oil from SAUNER is considered too low for the cost 

of producing the last barrel of conventional oil, as some conventional oil production 

costs are already approaching this value, and the lower bound of the range is chosen as 

86 USD/barrel. 

 

The maximum depletion cost parameters are chosen between 60 and 86 USD/barrel for 

conventional oil production. The depletion exponent is chosen between 1 and 4.  
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4.5 Costs and learning  

4.5.1 Initial costs (Ct0) 

 

a. Bitumen and synthetic crude oil 

 

Table 5 summarises the operating and supply costs of bitumen recovered using cold 

production, various in-situ techniques and surface mining. Upgrading costs are also 

included. 

 

USD(2005) per barrel at the plant gate Output 
Operating 

costs 

Supply 

costs 

Source 

In-situ (cold production)     

Wabasca, Seal bitumen 5  - 7 12 – 15 NEB, 2006 

Wabaka bitumen 3.5 – 7.5 8.5 – 12 Cliffe, 2002 

CHOPS - Cold Lake bitumen 7 – 8 13 – 16 NEB, 2006 

Cold Lake bitumen 7 – 11 12 – 16 Cliffe, 2002 

In-situ (thermal) bitumen    

Cyclic Steam Stimulation (CSS) bitumen 8 – 12 17 – 20 NEB, 2006 

CSS bitumen 7 – 12 12 – 19 Cliffe, 2002 

CSS bitumen 6 – 10 10 – 15 IEA, 2002 

CSS SCO 4.5 – 7.5  NRCan, 2003 

Steam Assisted Gravity Drainage (SAGD) bitumen 8 – 12 15 – 18 NEB, 2006 

SAGD bitumen 6 – 11 10 – 17 Cliffe, 2002 

SAGD bitumen 5 – 9 7 – 13 IEA, 2002 

SAGD SCO 3.5 – 7  NRCan, 2003 

Upgrading     

Stand-alone upgrader SCO 12 – 15 22 – 27 Cliffe, 2002 

Sources: (Cliffe, 2002) and (IEA, 2002) are adapted from (Greene et al., 2005); (NEB, 2006) 

Table 5: Literature estimates for initial costs 

 

It should be noted that the model does not include a parameter that reflects the losses 

occurring at the extraction stage. Bitumen is extracted from the mined oil sands before it 

is sent to the upgrader to be transformed into synthetic crude oil. These losses currently 

come close to about 10 to 13% of the initial amount of bitumen occurring in the mined 

oil sands (Alberta Chamber of Resources, 2004 p20). These losses have an impact on the 

bitumen production rate and the unit costs of producing bitumen. In fact, these losses 

are already included in the model, but in an implicit way. The estimates used to 

construct the ranges for the initial costs are found in the literature in dollars per barrel 

of bitumen, not in dollars per barrel of oil sand. These costs therefore already account 
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for the losses occurring at the extraction stage. Similarly, the estimates obtained for 

future production rates are found in barrels of bitumen, and not in barrels of mined oil 

sands. Also, the estimation of the minimum mining costs (Cmin) takes these losses into 

account. 

 

On average, two tonnes of oil sands are needed to produce one barrel of synthetic crude 

oil, (Centre for Energy, 2007). Oil sands contain about 10% bitumen (Government of 

Alberta, 2006) (the rest is sand, clay and water) and the density of bitumen is between 

5.8 and 6.4 barrels per tonne, giving an upgrading efficiency YU between 0.78 and 0.86 

barrel of synthetic crude oil per barrel of bitumen. 

 

 

b. Conventional oil  

 

The initial conventional oil production costs CCONV,t0 are derived from the estimates of 

upstream costs of oil by region in 2005 USD/barrel (EIA, 2007) shown in table 6. 

 

Region 

Upstream costs 

(2005 USD per barrel) 

2004-2006 2005-2007 

US 23 26 

Canada 26 20 

Europe 30 38 

Africa 32 44 

Middle East 14 14 

Other Eastern Hemisphere 19 27 

Other Western Hemisphere 47 34 

Total, excluding US 26 28 

Worldwide 24 26 

                                     Upstream costs are finding costs plus lifting costs.   

                                      1.000 (2005) USD = 1.044 (2007) USD  

Table 6: Upstream costs by region for FRS companies  

 

It appears that the offshore US and Africa were the regions with the highest upstream 

costs in the period 2005 to 2007. The highest estimates are used here for the initial 

marginal cost parameter, as other producing regions with lower costs will be able to 
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obtain oil rents. The initial marginal cost of producing a barrel of conventional oil is 

chosen to lie between 34 and 44 (2005) USD. 

 

The ranges shown in table 7 are assigned to the initial costs of producing bitumen using 

mining and in-situ techniques, to the initial upgrading costs and to the initial cost of 

producing conventional oil. These costs don’t include CO2 costs associated with fuel 

production and use. 

 

Ct0, 2005 USD/barrel Minimum Most likely Maximum 

Bitumen (in-situ) 7 14 20 

Bitumen (upgrading only) 22 25 27 

Conventional oil 34 39 44 

 

Table 7: Initial costs – summary 

 

4.5.2 Learning rate (LR) 

 

The learning rate associated with crude oil at the well is estimated at 0.05 by (Fisher 

1974) in (McDonald and Schrattenholzer, 2001 p258).  The learning rate associated with 

oil extraction in the North Sea is estimated at 0.25 by (Blackwood, 1997) in (Köhler et 

al., 2006 p32). The following range is thus associated with the learning rate for 

conventional oil production: 0.05 - 0.25.  

 

4.5.3 Minimum costs (Cmin) 

 

A way to capture the theoretical and technical limitations mentioned earlier is through 

the parameter Cmin, the minimum costs of supplying bitumen. There is little information 

about what the minimum costs of supplying oil from non-conventional deposits will be 

in the future, as potential cost reductions are underestimated most of the time, 

(Anderson, 2005). 

 

Upstream costs for conventional oil production remained in the 10-35 USD/barrel range 

between 1980 and 2005, (EIA, 2007). Although upstream costs in the Middle-East can be 

as low as 5 USD/barrel (Maurice 2001 in (OECD, no date)), the model is focusing on the 
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marginal cost of producing oil, and Cmin is defined as the minimum marginal oil cost, 

independent of depletion effects. The minimum costs Cmin from conventional oil are 

taken to be between 10 and 30 USD/barrel.  

 

4.6 CO2 emissions  

4.6.1 Initial unit emissions (et0) 

 

a. Bitumen and synthetic crude oil 

 

The literature estimates for unit CO2 emissions for mining recovery, in-situ recovery and 

upgrading are summarised in table 8. 

 

Type of process 
Initial unit emissions 

tCO2/barrel 
Source 

In-situ  0.06 Alberta Chamber of Resources, 2004 p62 

In-situ 0.081 

(0.675tCO2eq/m3)* 

CAPP, 2004 p30 

In-situ 0.07 – 0.085 
LENEF and T.J.McCann & Associates in 

(Alberta Chamber of Resources, 2004 p62) 
In-situ (SAGD) 0.065 – 0.115 Cupcic, 2003 p24 

Upgrading 0.075 – 0.09  
LENEF and T.J.McCann & Associates in 

(Alberta Chamber of Resources, 2004 p62) 

Upgrading 0.038 Cupcic, 2003 p24 

Light/medium crude 

oil 

0.022 (0.18tCO2/m3)* CAPP, 2004 p30 

*1 barrel = 0.12 m3 

Table 8: Literature estimates for unit emissions 

 

CO2 emissions are expected to increase when natural gas is replaced by residues to 

produce steam for recovery and hydrogen for upgrading. Flint provides some estimates 

for CO2 emissions per barrel of synthetic crude oil produced, shown in table 9.  

 

Emissions (tCO2/barrel SCO) In-situ (SAGD) + upgrading Mining + upgrading 

Process Natural gas Residue Natural gas Residue 

Total recovery only  

(tCO2/barrel bitumen) 
0.049-0.054 

0.077-

0.086 

0.027-

0.030 

0.037-

0.041 

Total upgrading only 0.045 0.085 0.045 0.085 

 
Table 9: Comparison between natural gas and residue fuelled upgrading processes 
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CO2 emissions from direct land-use change should also be taken into account. Direct 

land-use change emissions from oil sand and conventional oil production are 

summarised in table 10, adapted from (Yeh et al., 2010). 

 

Product SCO (mining) SCO (in-situ) 

CO2 emissions   

Carbon in soil (% released) (tC/ha) 438 (70-90%) 438 (20-40%) 

Carbon in vegetation (tC/ha) 78 78 

Emissions from tailing ponds (tCH4/ha/yr) 0-44  

Total (tCO2/ha) 1410-2655 607-924 

Land-use intensity   

Extraction (m2/m3SCO) 0.33-0.63 0.070-0.16 

Upgrading (m2/m3SCO) 0.0075-0.023 0.0075-0.023 

Natural gas (extraction and upgrading)     

 (m2/m3SCO) 

0.03-0.11 0.070-0.26 

Total (m2/m3SCO) 0.37-0.76 0.15-0.44 

Total (ha/barrel SCO) 4.4-9.2E-06 1.8-5.3E-06 

CO2 intensity (tCO2/barrel SCO) 0.006 – 0.024 0.001-0.005 

1 barrel = 0.12 m3, Global warming potential of CH4: 1 tCH4 = 21 tCO2eq  

Table 10: Direct land-use emissions from oil sand production 

 

The former land cover of the land area used for synthetic crude oil (SCO) production is 

assumed to be 23% peatland and 77% boreal forests (Yeh et al., 2010). Yeh et al. 

consider the production of SCO from mining and in situ recovery as “marginal as the 

technologies are relatively new”, (pS12). The CO2 emissions from land-use change are 

very small compared to the unit emissions associated with synthetic crude oil 

production. 

 

b. Conventional oil 

 

The initial CO2 emissions (eCONV,t0) associated with conventional oil production are 

derived from the estimates of upstream greenhouse gas emissions from ExxonMobil and 

CAPP (Canadian Association of Petroleum Producers) are summarised in table 11. 

Year tCO2eq/boe Source 

2004 0.029 Exxon-Mobil, 2009 

2005 0.029 Exxon-Mobil, 2009 

2006 0.031 Exxon-Mobil, 2009 

2007 0.029 Exxon-Mobil, 2009 

2004 0.022 CAPP, 2004 p30 

    1.0 toe = 7.3 boe; 1 barrel = 0.12 m3 

Table 11: Greenhouse gas emissions from the production of conventional crude oil 
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The range of CO2 equivalent emissions associated with the production of one barrel of 

conventional crude oil is chosen as 0.022 - 0.029 tCO2. As a comparison, the CO2 

emissions associated with the production of synthetic crude oil from in-situ bitumen are 

estimated between 0.092 and 0.160 tCO2 per barrel of synthetic crude oil. The following 

table summarises some estimates, as reported in (Méjean and Hope, 2010). These 

estimates only account for the production processes of the fuels, and exclude LUC 

emissions and the CO2 emissions from burning the oil. 

 

Step/output Minimum Maximum Unit 

In-situ bitumen 0.049 0.115 tCO2eq/barrel 

In-situ synthetic crude 

oil 

0.067 0.108 tCO2eq/barrel 

Conventional crude oil 0.022 0.029 tCO2eq/barrel 

Upgrading (SCO) 0.038 0.090 tCO2eq/barrel SCO 

 

Table 12: CO2 emissions associated with the production of oil 

 

4.7 The social cost of CO2 
 

Equation 13 shows the calculation of the consumption discount rate r. 

 

  



r  ptpEMUC  GDPgrowth POPgrowth       (13) 

 

 r is the consumption discount rate (% per year) 

 EMUC is the elasticity of marginal utility of consumption (no unit) 

 ptp is the pure time preference rate (% per year) 

 GDPgrowth is the growth of GDP (% per year) 

 POPgrowth is the growth of population (% per year) 

 

Stern (2007) locates the lower bound of the pure time preference rate as low as 0.1% 

per year. The ranges used in PAGE2002 (Hope, 2008b) for the four parameters above 

are summarised in table 13. These estimates are used to calculate the consumption 

discount rate.  
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Parameter Minimum Most likely Maximum Unit 

EMUC (absolute value) 0.5 1.0 2.0 % 

ptp (pure time preference rate) 0.1 1 2 % per year 

Growth of GDP per capita (EU, US, OT) 1.7 1.8 1.9 % per year 

Growth of population (EU, US, OT) 0.1 0.5 0.8 % per year 

 

Table 13: Ranges used in PAGE2002 to calculate the consumption discount rate 

 

Finally, the range of the consumption discount rate (r) used in the model is chosen as 0.9 

- 4.2%.  

 

The following range for the social costs of CO2 in 2008 is obtained from PAGE2002 with 

Stern review assumption: 25 – 300 (2000) USD/tCO2 (Hope, 2008a p20). The social cost 

of CO2 is assumed to grow at a rate of about 2 to 3% per year in real terms (Hope, 2008a 

p19). It should be noted that the social cost of CO2 increases at a slightly different rate 

than the discount rate. The social cost of CO2 at year 0 (2005) is estimated at about 23 to 

283 (2000) USD/tCO2, i.e. 26 - 3222 (2005) USD/tCO2.  

 

4.8 Summary 

 

Table 14 summarises the ranges that are assigned to conventional and non-conventional 

oil parameter in the model.  

 

 Parameters 

 

 Minimum 

 

 Most likely 

 

 Maximum 

 

 Standard 

deviation 

 Unit 

 

 Synthetic crude oil initial cost      

 Upgrading efficiency (YU) 

 

 0.78 

 

 0.82 

 

 0.86 

 

 0.02  no unit 

  Initial in-situ costs (CIS,t0)  7  14  21  2.9  USD/barrel 

 Initial upgrading costs (CU,t0)  22  25  27  1.0  USD/barrel 

 Synthetic crude oil CO2 emissions       

 Initial CO2 costs (CCO2,t0) 

 

 26 

 

 85 

 

 322 

 

 64  USD/tCO2 

  CO2 costs growth rate () 

 

 0.02 

 

 0.025 

 

 0.03 

  

 0.00  per year 

  In-situ initial emissions (eM,t0) 

 

 0.049 

 

 0.038 

 

 0.115 

 

 0.02  tCO2/barrel 

   Upgrading initial emissions (eU,t0)  0.038  0.064  0.09  0.01  tCO2/barrel SCO 

   Conventional oil resources      

 Resources in place (Qconv)  7.0E+12  7.5E+12  8.0E+12  2.0E+11  barrels 

 Recovery rate (Rconv)  0.35  0.43  0.50  0.04  no unit 

 Conventional oil demand and production      

 Oil demand growth rate (d)  1.0  1.8  2.5  0.4  % per year 

 Initial demand (dt0)  3.00E+10  3.05E+10  3.10E+10  2.04E+08  barrels/year 

                                                      
2
 with 1 (2000)USD = 1.138 (2005)USD 
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 Price elasticity of demand (pe)  -0.6  -0.3  0  0.12  no unit 

 Maximum production rate (xconv,max)  3.32E+10  3.67E+10  4.02E+10  1.42E+09  barrels/year 

 Decline rate (decline)  0.0  2.0  4.0  0.8  % per year 

 Initial cumulative production (Xconv,t0)  1.0E+12  1.0E+12  1.0E+12  0.0E+12  barrels 

 Conventional oil depletion costs      

 Maximum depletion costs (Cconv,max) 

 

 60 

 

 73 

 

 86 

 

 7.14  USD/barrel 

  Depletion exponent () 

 

 1 

 

 2.5 

 

 4 

 

 0.6  no unit 

  Conventional oil learning      

 Initial costs (Cconv,t0)  34  39  44  2.04  USD/barrel 

 Learning rate (LRconv) 

 

 0.05  0.15  0.25  0.004  no unit 

  Minimum costs (Cconv,min) 

 

 10  20  30  4.08  USD/barrel 

  Conventional oil CO2 emissions      

 Initial emissions (econv,t0) 

 

0.022 0.026 0.029  0.0014  tCO2/barrel 

  Other      

 Consumption discount rate (r)  0.9  2.6  4.2  0.7  % per year 

 

Table 14: Parameters ranges - Conventional and non-conventional oil 

 

 

5. Results: The impact of CO2 pricing on conventional and non-

conventional oil supply 
 

The impact of a CO2 tax on oil demand and on the time when conventional supply alone 

is unable to meet demand is examined. Two cases are considered. In the first case, a CO2 

tax is applied to emissions occurring when producing conventional and non-

conventional crude oil, while the second case also includes CO2 costs associated with 

fuel end-use.  

 

5.1 The impact of a CO2 tax on fuel demand 
 

A tax on CO2 emissions would depress oil demand, which would in turn result in lower 

oil prices than intended with the addition of the tax and drive up oil demand. Two 

countervailing effects of demand reducing measures on the production of fossil fuels 

were identified by Sinn (2007 p19): these measures could either reduce the incentive to 

extract fossil fuels, as they would depress today’s oil prices, or increase the incentive to 

extract, as the anticipated decline in demand and price would reduce the opportunity 

cost of the resource in-situ. The model presented here is used to study the impact of a 

CO2 tax on fuel use on oil demand in a Hotelling framework. 
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Figure 4 shows the evolution of the modelled oil prices over time, with and without a tax 

on CO2 fuel use. The average WTI spot prices between 2005 and 2009, presented in red 

dots as a reference, fall roughly within the range of modelled competitive oil prices 

without a tax on CO2. 

 

 

Figure 4: Oil prices with and without a tax on CO2 associated with fuel use 

 

Higher oil prices are expected to reduce demand. Figure 5 shows the evolution of 

demand for oil over time with and without the introduction of a CO2 tax on fuel use. 

 

 

Figure 5: Oil demand, with and without a CO2 tax on fuel end-use 
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The results show the mean and 90% confidence interval of demand without a tax on CO2 

emitted by fuel end-use in blue, and demand with a tax on CO2 emitted by fuel end-use in 

red. The detailed simulation data shows that demand for oil is always higher without a 

CO2 tax than with a CO2 tax. The results show that a tax on CO2 would reduce demand 

and extraction, despite the effect of the reduced rent. 

 

5.2 Is the CO2 tax carried over into the final price? 
 

In order to estimate the amount of CO2 tax which is carried over into the final oil price, 

we look at the difference between the initial price with a tax and the initial price without 

a tax, divided by the CO2 cost associated with burning the fuel at the first year of 

analysis. 

 

 

Figure 6: Difference between the price with tax and the price without tax, divided by the CO2 tax 

 

The ratio presented in figure 6 has a mean value of 0.91, with a 90% confidence interval 

between 0.81 and 0.99. This result means that between 81 and 99% of the CO2 tax is 

carried in the oil price, despite the effect of the lower rent on the price due to reduced 

demand3. From these results it can be concluded that demand-reducing measures will 

be largely effective despite the smaller scarcity rent. 

 

                                                      
3
 There is a possibility that that ratio is greater than one, although this occurs in few cases (less than 5% of the 

runs). This occurs when the rent in the scenario with a tax is higher than the rent in the scenario without a tax, 

although the time of switch with a tax is later than the time of switch without a tax (cf. calculation in the appendix). 



 28 

 

 

 

5.3 Time when conventional supply is unable to meet demand  

5.3.1 T with no CO2 tax on fuel end-use 

 

a. Probability distribution 

 

Figure 7 shows the probability distribution of the time when conventional oil 

production is unable to meet demand. This time corresponds to the entry of non-

conventional oil production on the oil market.  

 

 

Figure 7: Time T with no CO2 tax on use - probability distribution 

 

The results show a 90% chance that conventional oil production will be unable to meet 

oil demand between 2012 and 2030, with a mean value of 2019. This result is in 

accordance with Shell estimates (2008), according to which the production of easy oil 

and gas will fail to match demand by 2015. UKERC (2009a) gathered estimates the date 

of the peak oil (i.e. the date when the world oil production rate would start to decline) 

ranging from 2006 to 2030. The model shows a different result, i.e. the date when 

conventional oil production alone is unable to meet demand rather than the date of the 

peak oil, but the results presented above seem to be in accordance with UKERC 
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estimates. The long tail of the distribution to 2070 is explained by the fact that there is a 

constraint on the total amount of conventional oil that can be produced, defined from 

the ultimate volume of conventional oil in place and the recovery factor. The oil supply 

can follow two paths. In most cases, demand is not too sensitive to prices and increases, 

so production fails to meet demand when the production rate reaches its maximum 

value or peak. In a small minority of cases, demand is relatively sensitive to prices, and 

decreases or remains constant. This effect, combined with a high value of the maximum 

oil production rate, results in the time when conventional oil production is unable to 

meet demand only occurring when conventional oil is depleted in a few runs4.  

 

b. Sensitivity analysis: influences of the main parameters 

 

Figure 8 shows the influences of the main parameters (regression mapped values) on 

the time when conventional oil production is unable to meet demand. Only the most 

influential parameters are presented. 

 

 

Figure 8: Influences of main parameters - Time T with no CO2 tax on fuel use 

 

The results show that the demand growth rate, the maximum production rate and the 

price elasticity of oil demand are the most influential parameters. A higher demand 
                                                      
4
 Some tests were performed to check the consistency of the results. When using a higher price elasticity of oil demand (in absolute 

values), the resulting probability distribution shows two peaks, one corresponding to the production peak, and the other to the 

depletion of conventional oil.   
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growth rate and a lower maximum production rate imply that T will happen sooner. As 

the range for the price elasticity parameter is negative, a higher value means a smaller 

elasticity in absolute values. A lower elasticity in absolute values implies that demand is 

relatively not sensitive to prices and is mainly driven by the demand growth parameter. 

Although oil demand is not very responsive to prices, the production constraint on 

conventional oil production is such that the price elasticity still has a significant impact 

on the time when conventional oil production alone is unable to satisfy demand 

compared to other parameters: an increase (in absolute values) of one standard 

deviation (0.12 units) of the price elasticity of demand would delay the date T by over 

two years. 

 

5.3.2. T with a CO2 tax on fuel end-use 

 

a. Probability distribution 

 

Figure 9 shows the probability distribution of the date T when conventional oil supply 

alone might become unable to satisfy demand, when a CO2 tax is imposed on emissions 

associated with fuel production and use. 

 

 

Figure 9: Time T with a CO2 tax on use - probability distribution 

 

The CO2 tax on fuel use delays the time when conventional oil production is unable to 

meet oil demand from 2019 (cf. figure 7) to 2044 (mean value). With a CO2 tax on use, 
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the results show a 90% chance that conventional oil production will be unable to meet 

oil demand between 2018 and 2090. The spike at the right of the graph corresponds to 

the few cases where time T occurs after 2100. 

 

b. Sensitivity analysis: influences of the main parameters 

 

Figure 10 shows the influences of the main parameters (regression mapped values) on 

the time when conventional oil production is unable to meet demand, when a CO2 tax on 

fuel use is included. 

 

 

Figure 10:  Influences of main parameters - Time T with a CO2 tax on use 

 

The most influential parameter is the price elasticity of demand, although this 

parameter was only in third position without the CO2 tax on fuel use (cf. figure 8): The 

tax on CO2 emissions from fuel use drives up the oil price, and thus causes the price 

elasticity of demand to have a larger influence on demand than in the low price scenario. 

The results show that an increase (in absolute values) of one standard deviation, or 0.12 

units, of the price elasticity of demand would delay the date when conventional oil 

production alone is unable to meet demand by over 15 years. Also, a reduction of the 

demand growth rate of 0.4% per year would delay that date by over 10 years. These 

results show the great potential of demand-side measures to smooth the transition to 

low-carbon liquid fuels alternatives. 
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The third most influential parameter is the initial social cost of CO2. The time when 

conventional oil production is unable to meet demand is closely linked to demand, 

which is mainly driven by oil prices. A higher initial CO2 cost drives up the oil rent, which 

in turn induces higher oil prices. Demand is pushed down by higher oil prices, and lower 

demand postpones the time when conventional oil production is insufficient, hence the 

positive sensitivity. Finally, a higher consumption discount rate means a lower initial 

price of oil, but higher prices in general, therefore lower demand. Lower demand will 

thus induce time T to occur at a later date.  

 

Some questions have been raised concerning the relevance of the Hotelling rule as the 

basis for the formation of oil prices. A simple experiment assesses the effect of the 

choice of the pricing rule on the results, two models are compared: one model assuming 

the Hotelling rule and the other assuming marginal cost pricing, i.e. the oil price is set to 

be equal to the marginal costs of producing conventional oil. The results, presented in 

the appendix, show that the pricing rule has little effect on the time when conventional 

oil production alone is unable to meet demand as oil demand is not very sensitive to 

prices. However, the inclusion of a CO2 tax on fuel end-use has a significant impact on 

that results, pushing the date from 2019 to 2044 (mean values). 

 

 

6. Conclusion 
 

A tax on CO2 emissions associated with fuel use would reduce demand and delay the 

time when conventional oil supply is unable to satisfy demand. 

 

The analysis shows that despite the effect of the lower rent on the price, a CO2 tax on fuel 

use would reduce demand for oil: between 81% and 99% of the CO2 tax would be added 

to the oil price. The oil price minus the CO2 tax would thus fall by 1% to 19% compared 

to the case without a CO2 tax. This means that without a global tax on CO2, countries that 

remain outside an international agreement to abate CO2 emissions would benefit from 

slightly lower oil prices than without the tax, as Newbery points out (2010). Oil prices 

seen by countries that remain outside the international  agreement would be 1 to 19% 
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lower than without the tax. However, a CO2 tax enforced worldwide would still reduce 

oil demand and production, hence CO2 emissions from oil production and use. 

 

With a CO2 tax on fuel production and not on fuel use, conventional oil supply alone is 

expected to be unable to match oil demand between 2012 and 2030 (90% confidence 

interval), with a mean value of 2019. A CO2 tax on fuel use set at the social cost of CO2 

would delay the time when conventional oil production is unable to meet oil demand 

from 2019 to 2044 (mean value). With a CO2 tax on use, the results show a 90% chance 

that conventional oil supply alone will be unable to meet demand between 2018 and 

2090. The results show that this date is very sensitive to the price elasticity of demand 

and the demand growth rate: these results show the great potential of demand-side 

measures to smooth the transition to low-carbon liquid fuel alternatives. Further work 

will assess the impact of a tax on CO2 emissions associated with fuel use and production 

on CO2 emission pathways and damages. 
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8. Appendix 

 

8.1 Difference in the oil price with and without a CO2 tax 
 

The initial rent is the discounted difference between the costs of synthetic crude oil and 

conventional oil. The difference between the costs of synthetic crude oil and 

conventional oil is larger at a later date, as it is mainly driven by CO2 costs associated 

with the production of both fuels, and synthetic crude oil production is more CO2 

intensive than conventional oil production. However, in most cases, the discounting 

terms dominate and the following equation is verified.  

 

    



CSCO (Ttax )CCONV (Ttax ) ecdr Ttax  CSCO (Tno tax )CCONV (Tno tax ) ecdr Tno tax                (14) 

 

The ratio is greater than one when the difference in rents at time Ttax and Tno tax 

dominates the discounting term.  

 

 

Figure 11: Influences on the difference between the price (with tax) and  

the price (without tax) divided by the CO2 tax 

 

8.2 The impact of using prices based on Hotelling v. marginal cost 

pricing 
 

This section examines the impact of the principle chosen for the formation of oil prices, 

and more precisely the importance of the Hotelling assumption. Two models are set up 



 41 

using the same uncertain parameters, one assuming the Hotelling rule as the basis for 

the formation of oil prices (that assumption was used in all the results presented in this 

paper so far), and the other assuming marginal cost pricing, i.e. the oil price is set to be 

equal to the marginal cots of producing conventional oil. Figure 12 shows the difference 

in T between both cases, assuming no CO2 tax on fuel end-use. 

 

 

Figure 12: Difference in the time of switch between Hotelling and marginal cost pricing 

 

The difference is quite small, with a mean of 1.1 years and a 90% confidence interval 

between 0 and 4 years. The small difference between the results obtained by using both 

methodologies could be explained by the fact that the price elasticity of demand is quite 

small, therefore the difference between the marginal cost and the Hotelling price has 

little effect of the final demand, and therefore on the time when conventional oil 

production alone is unable to meet demand. Figure 13 shows the influences of the main 

parameters (regression mapped values) on the time difference between Hotelling and 

marginal cost pricing (standard deviation: 2.4 years).  
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Figure 13: Influences on the difference in the time of switch  

between Hotelling and marginal cost pricing 

 

As expected, the most influential parameter on the result is the price elasticity of 

demand. A lower elasticity in absolute values (i.e. a higher elasticity) reduces the 

difference between the results.  
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