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Abstract

This paper investigates the robustness of determinants of economic growth in the
presence of model uncertainty, parameter heterogeneity and outliers. The robust
model averaging approach introduced in the paper uses a flexible and parsimonious
mixture modeling that allows for fat-tailed errors compared to the normal bench-
mark case. Applying robust model averaging to growth determinants, the paper
finds that eight of eighteen variables found to be significantly related to economic
growth by Sala-i-Martin et al. (2004) are sensitive to deviations from benchmark
model averaging. For example, the GDP shares of mining or government con-
sumption, are no longer robust or economically significant once deviations from the
normal benchmark assumptions are allowed. The paper identifies outlying observa-
tions – most notably Botswana – in explaining economic growth in a cross-section
of countries.
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[A]ny good approach to model uncertainty should ideally be robust to ob-
servations that are measured with error, or drawn from a different regime.

Temple (2000)

The empirical analysis of determinants of economic growth has generated a large
literature among economists and applied researchers. This literature is plagued by a
number of problems that can have important consequences for statistical inference and
economic implications.1 In particular, Temple (2000) highlights three key issues: (i)
model uncertainty, (ii) parameter heterogeneity, and (iii) outliers. This paper inves-
tigates the robustness of inference about growth determinants to these specification
problems.

Consider first model uncertainty about the process driving economic growth. A
challenging problem is the large number of potential theories of economic growth com-
bined with a limited number of observations. Brock and Durlauf (2001) refer to the
“open-endedness” of economic growth theories, in the sense that the validity of one the-
oretical model does not contradict the validity of other models. A recent and quickly
growing literature employs model averaging techniques2 to address model uncertainty
and the effect on inference and policy analysis on growth determinants. Early papers
that address model uncertainty in growth regressions include Fernandez, Ley and Steel
(2001a), and Sala-i-Martin, Doppelhofer and Miller (2004). Recently, model averaging
has been applied in the context of growth empirics to investigate the sensitivity to prior
information (Ley and Steel, 2009), and predictive performance (Eicher, Papageorgiou
and Raftery, 2009).

A second issue is parameter heterogeneity, which is quite plausible when analyz-
ing economic growth across countries. Studies which have considered uncertainty due
to parameter heterogeneity in growth empirics include Durlauf and Johnson (1995),
Brock and Durlauf (2001), an entire special issue of the Journal of Macroeconomics
edited by Papageorgiou (2007), Masanjala and Papageorgiou (2008) and Tan (2009).
Even though these papers emphasize various sources of heterogeneity in the growth
process, they utilize prior knowledge and condition on a particular mechanism thought
to generate heterogeneity in the distribution of coefficients of interest. Statistical infer-
ence and economic implications in these papers are therefore conditional on correctly
specifying the source of parameter heterogeneity. Other misspecification issues are typ-
ically ignored, and the models are typically assuming independent normal sampling and
homoscedastic errors.

A third important problem is the presence of outliers in the data describing economic
growth across countries. Schultz (1999, p. 71) notes that “Macroeconomic studies of
growth often seek to explain differences in economic growth rates across countries in
terms of [several variables]. However, these estimates are plagued by measurement

1Durlauf, Johnson and Temple (2008) give an excellent critical survey over the econometric methods

and challenges in empirical research on economic growth.
2For recent surveys see Hoeting, Madigan, Raftery and Volinsky (1999) or Doppelhofer (2008).



error and specification problems.” Deaton (2010) critically discusses measures of in-
come across countries and over time. In a recent paper, Ciccone and Jarocinski (2010)
investigate the sensitivity of inference on growth determinants when using different vin-
tages of the Penn World Tables. Despite these data and specification problems, Zaman,
Rousseeuw and Orhan (2001) note that a remarkably low number of papers address
issues of robustness in the economic literature.

This paper contributes to the existing literature by dealing with model uncertainty
and allowing for heterogeneity of unknown form, generated either by outliers or ne-
glected parameter heterogeneity. The robust model averaging approach introduced in
this paper combines model averaging with a flexible and parsimonious mixture modeling
that allows for fat-tailed errors compared to the normal benchmark case. In particular,
we assume that the regression errors in each model are drawn from an independent
mixture normal distribution, scaling the error variances for each observation (country).
The robust model averaging approach helps to make statistical and economic inference
about growth determinants robust to the specifications problems discussed above.

The paper investigates the robustness of growth determinants by applying robust
model averaging to the Sala-i-Martin et al. (2004) data with 67 explanatory variables
for the average growth rate of GDP per capita among 88 countries.3 Compared with
the 18 variables that were found to be significantly related to economic growth using
benchmark model averaging, we find that eight are no longer robust or economically
significant in explaining economic growth once we allow for deviations from the normal
benchmark assumptions. Examples of such non-robust growth determinants include
the GDP shares of mining and government consumption and several regional variables.
Our robust model averaging approach identifies several outliers in models explaining
economic growth in a cross-section of countries. Several countries in Sub-Saharan Africa
– Botswana, Central African Republic, Gabon, Zaire and Zambia – and the Philippines
have variances between two to almost four times as large as under normal benchmark
assumptions. This paper finds that the results in existing studies of economic growth
determinants are thus not robust to allowing combinations of uncertainty about eco-
nomic models, heterogenous parameters and outliers in the data.

The remainder of the paper is organized as follows: Section 1 discusses outliers and
robustness of statistical inference and economic analysis, first conditional on a particular
model, and then combined with model uncertainty. Section 2 reviews what we call
benchmark model averaging, where model uncertainty is equivalent to the problem
of variable selection. The robust model averaging approach introduced in section 3
combines both model uncertainty and a flexible mixture modeling of heteroscedastic
errors. Section 4 applies robust model averaging to determinants of economic growth,
and section 5 concludes.

3See the Data Appendix B for a list of variables and data summary.
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1 Outliers and Robustness

Outliers due to measurement errors in the data or specification problems is a major
problem encountered in the empirical growth literature. In a critical survey, Brock and
Durlauf (2001) argue that much empirical work in this area suffers from “incredible”
assumptions that are difficult to defend. More specifically, Brock and Durlauf warn that
models of economic growth are unlikely to satisfy the basic assumption of exchange-
ability.4 Intuitively, the exchangeability assumption implies that the model explaining
economic growth is the same across different countries and also selected subgroups of
countries. For example, one specific requirement for exchangeability is that the model
errors have the same variance across all observation points. When this is not the case,
the errors are said to be heteroscedastic.

If specification problems are known a priori, it would be straightforward to adapt
the growth model accordingly. In the more realistic case when the precise form of model
misspecification are not known beforehand, inference should be conducted in a robust
manner. One possible approach to modeling outlying observations is the introduction of
mean-shifts. For example, Hendry and Santos (2005) propose to saturate the regression
model by introducing a large number of dummy variables. Treating each outlying
observation differently is problematic in the context of data limitations and model
uncertainty in the empirical growth literature. Furthermore, economic theory offers
little guidance about the appropriate form of parameter heterogeneity.

This paper uses instead the variance-inflation approach to accommodate outliers
and robustify inference against unknown aberrant observations. The variance-inflation
model has the advantage of being parsimonious and flexible, which makes it attractive
given the numerous specification and data problems that plague the empirical growth
literature. The variance-inflation approach uses a parsimonious mixture distribution
that requires only one or two additional parameters. As an example, consider a combi-
nation of two distributions, with low and high variance, and within these distributions
observations are identically and independently distributed. Combining these two gives
a mixture distribution with different variances. Heterogeneous parameters can be han-
dled through mixture distributions over one or more parameters (random coefficients
model), but this would quickly get cumbersome with a large number of parameters.
Fernandez and Steel (2000) examine Bayesian inference within the confines of the lin-
ear regression model, focussing on the theoretical basis of independent sampling from
a scale mixture of normal distributions of the regression errors. A flexible approach to
robust estimation becomes all the more important in the presence of model uncertainty,
when theory gives us little guidance about the correct model.

The robust model averaging approach proposed in this paper simultaneously deals
with model uncertainty and heterogeneity of unknown form. Inference and economic

4Brock and Durlauf (2001) refer to the de Finetti Representation Theorem that states that a sequence

of exchangeable random variables (the model errors in the context of growth regressions) can be written

as if generated by a mixture of identically and independently distributed (i.i.d.) random variable.
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analysis are made robust with respect to outliers and unequal variances by allowing
a priori for thicker tails of the distribution of regression errors compared to normal
benchmark model averaging. Suppose that the regressions errors are independently
normally distributed:

ε ∼ N(0, σ2Ω)

with diagonal covariance matrix Ω ≡ diag(ω1, ..., ωN ). The errors for each observation
(or country i = 1, ..., N) are scaled by a variance inflation term ωi with an independent
mixing distribution. Geweke (1993) demonstrates the equivalence of such a normal
mixture model with an independent Chi-square prior to a model where errors are drawn
from an independent Student-t distribution, where the degrees of freedom determine the
fatness of the tails and the prior weight on outliers. In the context of model uncertainty
about potential growth determinants, it is our goal to accommodate observations with
different degrees of reliance within a framework that accommodates model uncertainty.
Conditional on having estimated the covariance matrix Ω, all other quantities of interest
for a given model are estimated by using Generalized Least Squares (GLS) instead of
Ordinary Least Squares (OLS). The parameters of the model are drawn from their
respective conditional distributions using the Gibbs sampler (see the Computational
Appendix A for details).

In the following, we contrast the robust model averaging approach adopted in this
paper with alternative ways to model outliers and unequal error variances.

1.1 Alternative Robust Approaches

The simplest method to incorporate a measure of robustness case is the application of
a known (monotonic) transformation of the data. For example, a simple logarithmic
transform may be applied if the problem is scale related, accounting for the observation
that series that are growing exponentially often appear to have increasing variability. In
the empirical investigation of growth determinants in section 4, we consider explanatory
variables that have been suggested by the literature. For example, Initial Income is
measured in natural logarithms, and many other variables are usually defined as ratios
to GDP (see the Data Appendix B for a list of variables).

When dealing with outliers and misspecification, empirical researchers were initially
restricted by limitations in statistical techniques and computing resources. Leamer
(1982) and Leamer and Leonard (1983) propose so-called extreme bounds analysis
(EBA) to test the sensitivity of parameters of interest to changes in the set of al-
ternative models, represented by different combinations of additional control variables.
Sturm and de Haan (2005) apply a version of EBA that uses re-weighted least squares
first developed by Rousseeuw (1984). Zaman et al. (2001) highlight the importance of
robust inference when applying least trimmed squares to a simple growth regression.
Interestingly, even though our paper uses a larger sample and many more explanatory
variables, we agree with Zaman et al. that Zambia is an important outliers when an-
alyzing economic growth. Trimming of extreme observations can be interpreted as a
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special case of the approach used in this paper, where observations identified as outliers
receive zero weight.

Growth processes may also exhibit heterogeneity across a spatial dimension. LeSage
and Parent (2007) allow for model uncertainty in spatial econometric models with an
explicit treatment of spatial dependence of errors. Canova (2004) tests for the presence
of convergence clubs among European regions, allowing for heterogenous parameters
across particular subgroups. Corrado, Martin and Weeks (2005) test for regional con-
vergence clusters across Europe. Crespo-Cuaresma, Doppelhofer and Feldkircher (2009)
investigate the determinants of economic growth in European regions, allowing for spa-
tial spillovers across regions. The robust model averaging approach can also account
for spatial clustering of errors by accommodating outliers and heteroscedastic errors.

In both Classical and Bayesian settings estimates will be be sensitive to the par-
ticular set of assumptions which underlie the approach. For example, our approach
to robustness, and that of alternative approaches based on mixture modeling, depends
on parametric (prior) assumptions about the distribution of errors. An alternative ap-
proach to robust inference is to use the Bayesian bootstrap developed by Rubin (1981).5

The logic of the Bayesian bootstrap is to consider parameters as functionals of the data
(i.e. moment condition) and to sample directly from the posterior distribution of the
data. Poirier (2008) shows that posterior weights can then be used to weight individual
observations such that the resulting parameter estimates have a weighted least squares
representation. Another flexible approach is the use of heteroscedasticity-consistent
standard errors (HCSE). Even though they are biased in finite samples, HCSE rep-
resent an improvement upon OLS estimates using a minimal set of assumptions (see
White, 1980; MacKinnon and White, 1985). Lancaster (2009) demonstrates that HCSE
are reasonable approximations to the posterior standard deviations around the OLS es-
timator (see also Poirier, 2008). Section 4.3 investigates the sensitivity of inference to
using HCSE as alternative to our approach.

Despite the emergence of this literature it appears that much of the advances in
robust methods in Bayesian inference have been confined to single models. A notable
exception is the work of Hoeting, Raftery, and Madigan (1996), who develop an ap-
proach that simultaneously accounts for model uncertainty and outlier identification by
introducing a prior for the proportion of outlying observations. Recently, Gottardo and
Raftery (2007) adopt a unifying approach to Bayesian robust variable and transforma-
tion selection. Magnus, Wan and Zhang (2010) use a version of the weighted average
least squares (or WALS) estimator with nonspherical disturbances in an analysis of the
Hong Kong housing market. Our paper also addresses the problem of model uncertainty
and outlier detection within a unifying framework. Following Geweke (1993), we intro-
duce a parsimonious mixing distribution for the regression errors using both fixed and
variable hyperparameters. The paper applies robust model averaging to determinants
of economic growth and finds that the results are sensitive to outliers and neglected

5One variant of this approach, so-called Bagging (short for Bootstrap Aggregating) is used to generate

robust predictions accounting for data problems (see Breiman, 1996; and Clyde and Lee, 2001).
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heterogeneity.

2 Benchmark Model Averaging

Consider the typical cross-country growth regression of the form:

y = Xβ + ε (1)

where the N × 1 vector y contains observations on economic growth for N countries,
the explanatory variables or regressors are written compactly as N × k matrix X =
(x1, ...,xk), and associated conformable vector of unknown slope parameters β. Note
that an intercept is always included in the growth regression. The benchmark case
usually assumes that the N ×1 regression errors ε are (1) normally distributed, and (2)
conditionally homoscedastic. The benchmark model averaging case discussed in this
section takes these assumptions as given, but section 3 will return to this issue in more
detail.

Suppose that a researcher wishes to assess the effect associated with a particular
growth determinant, captured by its slope coefficient. A difficulty arises from the large
number of potential explanatory variables, compared to the limited number of available
observations N across countries.6 With K potential regressors, the model space M is
the set of all 2K combinations of linear models. Each model Mj is described by a k× 1
binary vector γ = (γ1, ..., γK)′, where a one (zero) indicates the inclusion (exclusion)
of a variable xk in regression (1). Let Xj be the set of regressors included in model
Mj with associated slope coefficient β. The researcher can estimate its distribution
p(β|Mj) conditional on model Mj . The unconditional distribution of coefficients can
be derived by integrating out all aspects of model uncertainty, including the space of
models M. A maintained assumption throughout is that the explanatory variables X
are predetermined (weakly exogenous) and independent of parameters β and σ. The
posterior density p(β|y) can then be expressed as function of sample observations of
the dependent variable y.

The unconditional posterior distribution of the slope coefficient β is given by

p(β|y) =
2K∑

j=1

p(β|Mj ,y) · p(Mj |y) (2)

where p(β|Mj ,y) is the conditional distribution of β given model Mj . The posterior
model probability p(Mj |y) propagates model uncertainty into the posterior distribution
of model parameters. By Bayes’ rule, the posterior model probability can be written as

p(Mj |y) =
l(y|Mj) · p(Mj)

p(y)
(3)

∝ l(y|Mj) · p(Mj)

6For example, Durlauf et al. (2008) list in the Appendix of their survey 145 different growth deter-

minants that have been suggested in the literature. However, similar small sample problems can also

be encountered in many other areas using non-experimental data.
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such that the posterior model probability (weight) of model Mj is proportional to the
product of the model-specific marginal likelihood l(y|Mj) and the prior model probabil-
ity p(Mj). The model weights are converted into probabilities by normalizing relative
to the set of all 2K models:

p(Mj |y) =
l(y|Mj) · p(Mj)

2K∑
l=1

l(y|Ml) · p(Ml)
(4)

We follow the (Bayesian) model averaging literature by assuming the following prior
structure for parameters in each model. The prior slope coefficients β are normally
distributed with mean zero and variance σ2V0j :

p(β|σ2,Mj) ∼ N(0, σ2V0j) (5)

For the prior error variance term σ2 that is common to all models, we assume a non-
informative (diffuse) prior that imposes a minimum of prior information. Alternatively,
one could assume a proper, inverse-Gamma prior distribution for the error variance σ2,
which is the natural conjugate prior for the normal regression model. We check for
sensitivity of results using a proper Bayesian prior in section 4.3.

The prior variance matrix is assumed to be proportional to the sample covariance

V0j = (g0X′
jXj)−1 (6)

with factor of proportionality g0. This g-prior was first suggested by Zellner (1986), and
is a convenient way to specify the prior variance matrix, in particular in the presence of
considerable model uncertainty. Different values of the g-prior parameter g0 have been
proposed in the literature (see Fernandez, Ley and Steel, 2001b).7 We follow Sala-i-
Martin et al. (2004) and assume that the prior distribution is dominated by the sample
information, implying a diffuse prior variance.

The assumed prior structure introduces a minimum of prior information into the
estimation. In the limit, when the sample information dominates the prior information,
Leamer (1978) shows that the marginal likelihood of model Mj may be written as

l(y|Mj) ∝ N−kj/2 · SSE
−N/2
j (7)

where kj is the number of regressors and SSEj = (y−Xjβj)′(y−Xjβj) is the sum of
squared errors in model Mj . The posterior model probability of model Mj is obtained
by pre-multiplying (7) by the prior model probability p(Mj) and dividing by the sum
over all 2K possible models:

p(Mj |y) =
p(Mj) ·N−kj/2 · SSE

−N/2
j∑2K

l=1 p(Ml) ·N−kl/2 · SSE
−N/2
l

(8)

7Feldkircher and Zeugner (2009) warn that an overly diffuse prior concentrates estimation on a few

models, what they call the ”supermodel effect”. This effect is contributing to the sensitivity of estimates

across different samples of the Penn World Tables found by Ciccone and Jarocinski (2010).
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The posterior model weights (8) equal the prior model weights times the (exponentiated)
Bayesian Information Criterion (BIC), developed by Schwarz (1978). The BIC weights
depend on the likelihood, through the term SSE

−N/2
j , but penalizes relatively large

models through the penalty term N−kj/2. The implied preference for smaller models
addresses to a certain extent collinearity among regressors. Explanatory variables that
are very similar explain relatively less of the variation of the dependent variable which
implies less weight on such models.

BIC model weights (8) have been extensively discussed in the literature. Alterna-
tive derivations include the so-called “unit information prior” discussed in Kass and
Wassermann (1995), approximation to Bayes Factors by Kass and Raftery (1995) and
Raftery (1995), benchmark priors by Fernandez, Ley and Steel (2001b), or the limiting
case of a non-informative Jeffreys prior for the error variance with a particular choice
of normalizing constant (Wasserman, 2000). Klein and Brown (1984) show that by
minimizing the so-called Shannon information in the prior distribution, the BIC model
weights (8) can be used in small samples. We adopt the BIC posterior model weights
since they provide a reasonable approximation to proper Bayesian model weights and
are consistent in large samples.

2.1 Model Space Prior

The last ingredient to make model averaging operative is the specification of a prior over
the model space. Letting πk be the independent prior inclusion probability of variable
xk in model Mj , the probability for model Mj is given by the binomial distribution:

p(Mj) =
K∏

k=1

πγk
k (1− πk)1−γk (9)

where the binary indicator variable γk measures inclusion (exclusion) of variable xk.8

One approach is to assume a completely diffuse or uniform prior across all models, which
corresponds to a prior inclusion probability equal to πk = 1/2 for all variables. However,
with a relatively large number of regressors, a uniform prior implies that the great
majority of prior probability is allocated to models with a large number of variables.
As an alternative, Sala-i-Martin et al. (2004) advocate in their BACE approach a
preference for more parsimoneous models with a smaller prior expected model size
k̄ = 7, which seems reasonable given the relatively large number of growth determinants
(K = 67). Figure 1 contrasts the prior distribution over model of different sizes k for
the BACE benchmark case with prior inclusion probability πBACE

k = k̄/K = 0.104
with the case of uniform model priors with πU

k = 0.5. The two distributions clearly
differ with regards to the assumed average size of the models (k̄ = 7 in the BACE case,
compared to 33.5 under the uniform model prior).

8Mitchell and Beauchamp (1988) first suggested this prior with discrete probability mass or “spike”

at zero, representing the prior uncertainty that a regressor should be included. George and McCulloch

(1993) propose a Bayesian alternative of using a proper prior distributions with large variance.
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Figure 1: Prior Probabilities by Model Size: Benchmark Case with Prior Model Size
k̄ = 7 and Uniform Prior with k̄ = 33.

A disadvantage of assuming a fixed prior mean model size parameter is that re-
searchers may differ in their opinions of what constitutes a reasonable prior model size.
The Bayesian solution is to treat the expected mean model size as random variable.
Following Brown, Vanucci and Fearn (1998), we introduce another layer of prior in-
formation that combines the independent Bernoulli sampling for each variable with a
conjugate Beta hyper-prior for the binomial proportion parameter πk (see also Ley and
Steel, 2009). Section 4.3 investigates the sensitivity of our results to allowing for random
model size.

2.2 Estimation of Posterior Objects

With all ingredients to calculate posterior model probabilities (3) in place, we can pro-
ceed to estimate the unconditional distribution quantities of interest that incorporates
model uncertainty. For example, the unconditional distribution of the slope coefficient
p(β|y) is obtained by integrating over the space of models M. A summary measure of

9



importance of an explanatory variable xk is its posterior inclusion probability

p(k|y) =
2K∑

j=1

1(γk = 1|y,Mj) · p(Mj |y) (10)

which represent the unconditional probability that variable xk enters the regression
model and is relevant in explaining the dependent variable (see Leamer, 1978; and
Mitchell and Beauchamp, 1988). The posterior inclusion probability can be contrasted
with the prior inclusion probability to see if after visiting the various models, the data
increase or decrease out confidence that variable xk is important in explaining the
dependent variable.

A researcher might be also interested in drawing inference about the economic im-
portance of variables. The unconditional mean and variance can be calculated in a
straightforward manner from their conditional (model specific) counterparts and poste-
rior model probabilities (see Leamer, 1978). The posterior mean of the slope parameter
βk associated with variable xk is given by

E(βk|y) =
2K∑

j=1

p(Mj |y) · β̂kj (11)

where β̂kj = E(βk|y,Mj) is the OLS estimate of the slope parameter βk given model
Mj . The posterior variance of slope βk is given by

V (βk|y) =
2K∑

j=1

p(Mj |y) · V (βk|y,Mj) +
2K∑

j=1

p(Mj |y) ·
[
β̂kj −E(βk|y)

]2
(12)

consists of two terms: the weighted sum of conditional (model-specific) variances and
an additional term taking into account the difference between conditional and poste-
rior estimates of mean coefficients. Given that we assume a prior structure that is
dominated by sample information, conditional (model-specific) variances are estimated
by the maximum likelihood estimator V (βk|y,Mj) = σ̂2

j (X
′
jXj)−1

kk , with error variance
estimate σ̂2

j ≡ SSEj/(N − kj).
To evaluate the economic effect of a variable, a researcher might be interested in

looking at estimates of the mean and variance of the slope coefficients conditional on
including a particular variable in the regression, but unconditional with respect to
the model space M and the inclusion of other explanatory variables. The conditional
posterior mean for the slope coefficient βk is obtained by dividing the unconditional
posterior mean (11) by the posterior inclusion probability (10):

E(βk|γk = 1,y) =
E(βk|y)
p(k|y)

(13)

Similarly, the variance conditional on including variable xk is calculated from the un-
conditional posterior estimates of moments (11), (12), and the posterior inclusion prob-
ability (10):

V (βk|γk = 1,y) =
V (βk|y) + [E(βk|y)]2

p(k|y)
− [E(βk|γk = 1,y)]2 (14)
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The conditional posterior standard deviation is simply the square root of the condi-
tional variance (14). To measure of economic significance of an explanatory variable
conditional on its inclusion in the model, one can divide the conditional posterior mean
by the conditional posterior standard deviation. Brock and Durlauf (2001) provide a
decision-theoretic foundation for the use of such standardized coefficients when under-
taking economic inference.

Note that all the posterior statistics presented in this section – inclusion probability
and moments, such as mean and variances – are estimated unconditionally with respect
to the model space and are thereby taking model uncertainty into account. However,
the benchmark model averaging framework does not take into account other forms
of specification uncertainty, such as the sensitivity of model weights and inference to
outliers and the assumed prior distribution. This will be addressed in the following
section.

3 Robust Model Averaging

This section introduces our robust model averaging framework that addresses both
model uncertainty and heteroscedastic errors due to parameter heterogeneity and out-
liers. Robust model averaging uses a flexible mixture of distributions for the error terms
to make inference and economic analysis robust to parameter heterogeneity and outliers.
The approach is parsimonious, because mixture distributions are a straightforward ex-
tension of the benchmark case of homoscedastic, normal errors requiring an additional
parameter determining the fatness of the tails of the error distribution and the rel-
ative weight on outliers. We first introduce scale mixtures of normal distributions9

conditional on a particular model, and then show how this robust approach extends to
averaging across different models.

3.1 Scale Mixtures of Normals

Recall the typical linear cross-country regression (1) from section 2. A model Mj is
characterized by a set of regressors Xj and associated slope coefficients βj . We start by
examining robustness to outliers and heterogeneity conditional on a given model Mj

10.
A maintained assumption in the normal benchmark case is that regression errors

are normally distributed with homoscedastic errors. A useful point of departure is
to suppose that the observations yi are described by a combination of two normal
distributions

p(yi|β, σ2, π, ρ) = (1− π) ·N(yi|β, σ2) + π ·N(yi|β, ρσ2) (15)

9For the growth application considered in this paper, the mixture-normal approach captures the

heterogeneity in the data well. McLachlan and Peel (2000) discuss other mixture distributions.
10This can be contrasted with Lange, Little and Taylor (1989) when estimating a model by maximum

likelihood.
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where the mixture is governed by two parameters. The parameter π is used to identify
a subset of observations as potential outliers, and conditional on this subset, the param-
eter ρ controls the degree of variance-inflation for the outlying observations. Hoeting et
al. (1996) adopt this approach in a study which simultaneously selects regressors and
identifies outliers. In the particular application of their paper, the parameters π and ρ

are treated as fixed, with the proportion of outliers π chosen based upon the size of the
dataset.

More generally, we consider mixture distributions of the form

p(yi|β, σ2,Mj) =
∫ ∞

0

ω
−1/2
i

(2π)1/2σ
· exp

[
−(yi −X′

ijβj)2

2σ2ωi

]
· p(ωi|τ)dτ, (16)

which consists of two parts. The first term is a kernel of a normal distribution for
the errors of a linear regression model for model Mj , conditional on the variance-
inflation term ωi. The second term adds a mixing distribution p(ωi|τ), described by an
unknown parameter vector τ . The specification of the mixing distribution is equivalent
to choosing a prior specification on the error variances ωi specific to each observation,
i = 1, ..., N .

The mixing distribution p(ωi|τ) may be chosen on a number of grounds, including
an analytically convenient form (conjugacy). A particularly convenient form of mixing
distribution p(ωi|τ) is the Gamma-family, with two parameters, say a and b, which
determine the shape and scale of the distribution. The conjugacy of the Normal-Gamma
case is such that the conditional distribution of each of the variance terms ωi is also
Gamma, which is convenient for computation. Geweke (1993) shows that the normal
mixture model with an independence prior for error variances across observations i

v/ωi ∼ χ2(v), i = 1, ..., N (17)

is equivalent to a model with independent Student-t errors with v degrees of freedom.
We note that this distribution is also part of the Gamma-family since Γ(a = v/2, b = 2)
is equivalent to a Chi-squared distribution, χ2(v). In this case the mixing distribution
is controlled by a single parameter v controlling the degrees of freedom. Lower values
of v imply a more skewed distribution with a higher probability of outliers and rela-
tively larger variances. High values of v on the other hand imply errors drawn from a
distribution close to the homoscedastic normal benchmark case described in section 2.
Intuitively, the degrees of freedom v determine the fatness of the tails of the Student-t
distribution and the prior weight on outliers. Lange et al. (1989) justify the use of
student-t distributions to robustify statistical inference for a number of applications.

Outliers, neglected heterogeneity and other specification problems can result in het-
eroscedastic errors, and, as argued in section 1, these issues are particularly important
in the empirical growth literature. To deal with these problems, the robust model
averaging approach proposed in this paper assumes independently distributed, but
heteroscedastic errors, ε ∼ N(0, σ2Ω). The covariance matrix is assumed diagonal,
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Ω ≡ diag(ω1, ..., ωN ), with independent variances ωi for observations i = 1, ..., N .11

Following Geweke (1993), we assume an independent prior distribution (17) for the
error variances, where the prior parameter v determines the fatness of the distribution
tails or equivalently the prior weight on outliers. As the degrees of freedom become large
(v →∞), the robust approach behaves like the limiting benchmark normal case, where
regression errors become conditionally homoscedastic with covariance matrix equal the
identity matrix.12

For the degrees of freedom parameter v we consider two alternative priors:

Case (a): Fixed degrees of freedom – We set the degrees of freedom parameter
to fixed value v = v̄. In the application to growth determinants in section 4,
we consider the following values of v̄ = 5, 25, 100, where lower (higher) values
correspond to fatter (thinner) tails of the error distribution, or a researcher’s
prior for more (less) outliers.

Case (b): Random degrees of freedom – Alternatively, the degrees of freedom pa-
rameter are treated as random, and we assume an analytically convenient expo-
nential distribution with prior mean v0:

p(v) ∼ exp(v|v0) (18)

The posterior distribution of the degrees of freedom v is given by p(v|ωi,Mj) ∼
p(ωi|v, Mj) · p(v).

The next subsection shows how we can estimate all other objects of interest – slope
coefficients and error variances – by drawing from their respective conditional distri-
butions for each model Mj using the Gibbs sampler. The unconditional estimates are
obtained by averaging across models in the same manner as described in section 2.

3.2 Estimation of Robust Posterior Objects

The prior assumptions over model parameters and the model space imply a convenient
hierarchical structure, which leads naturally to estimation of robust posterior distribu-
tions for model parameters using the Gibbs sampler. Conditional on each model Mj , we
draw quantities of interest from their conditional posterior distributions (for details, see
the Computational Appendix A). Under mild conditions the Markov chain generated
by the iterations of the Gibbs sampler converges to the full posterior distribution (see
Chib, 2001).

11Particular clustering of variances could be introduced a priori, but we focus on variance hetero-

geneity originating in the sample.
12When we allow for outliers and fat-tailed distribution of errors, posterior variances are only well

defined for degrees of freedom exceeding a lower bound v > 4 (see Geweke, 1993) . When applying

robust model averaging to growth determinants in section 4, posterior values of v are around 20, pointing

to sizeable heteroscedasticity, but clearly exceeding the lower bound for variances to exist.
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The posterior distribution of the slope parameters β in model Mj conditional on
other parameters is given by

p(β|σ2,Ω,Mj) ∼ N(βj , σ
2
jVj) (19)

where βj and Vj , denote, respectively, the conditional posterior mean and variance. The
conditional mean of β is estimated using the generalized least squares (GLS) estimator

βj = Vj

(
X′

jΩ
−1
j y

)
. (20)

Intuitively, the robust GLS estimator weights each observation of the dependent variable
yi and regressors Xi,j by the inverse of their estimated error variance ωi,j , which is the
diagonal element of the variance matrix Ωj . This is in contrast to estimation by ordinary
least squares (OLS) in the benchmark normal case, where each observation receives the
same weight.

The posterior error variances are estimated as follows. The posterior distribution of
the common error variance parameter σ2

j conditional on other parameters is calculated
using the weighted sum of squared errors, with weights proportional to the error variance
ωi,j for each observation i = 1, ..., N . The degrees of freedom is equal to N and not
N − kj , since we condition on the slope parameters βj and the error covariance matrix
Ωj . The elements of the error variance matrix Ωj conditional on other parameters are
drawn from their posterior Chi-square distribution, where the v + 1 degrees of freedom
follow from combining the prior distribution of ωi,j (17) with v degrees of freedom with
the weighted sum of squared error kernel from the likelihood function with one degree
of freedom, conditional on βj and σ2

j .
The degrees of freedom v governing the weight on outliers are determined by the

following alternatives. Under case (a), the degrees of freedom are fixed to their constant
prior values v̄. Under case (b), we use the exponential prior distribution (18) with prior
mean v0 = 25, and draw degrees of freedom v from the posterior distribution. Since
the posterior objects of interest are much less affected by the hierarchical prior for
the degrees of freedom in case (b), this is our preferred specification for robust model
averaging. In particular, the posterior results are not sensitive to the choice of the
parameter v0, so we have chosen this parameter to allow for moderate heteroscedasticity
a priori.

The estimation of the posterior objects of interest that are unconditional with re-
spect to the space of models is analogous to the benchmark model averaging case in
section 2.2, except that we now use robust (GLS) estimates of conditional means and
variances in each model Mj . In contrast to a simple correction of standard errors,
all posterior objects of interest are affected by heterogeneity and outliers through the
different weights on each observation. Conditional on inclusion, posterior means and
standard deviations are calculated by (13) and (14), respectively. The posterior inclu-
sion probability associated with each variable is calculated by summing the posterior
model probability (10) when the variable is included. We still use the posterior (BIC)
model weights (8), which are approximations to Bayesian posterior weights. Section 4.3
also considers proper Bayesian weights as alternative.
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4 Robustness of Growth Determinants

This section investigates the robustness of statistical inference and economic analysis of
growth determinants when simultaneously confronted with model uncertainty, parame-
ter heterogeneity and outliers. Results obtained using benchmark model averaging are
contrasted with findings based on robust model averaging. First, the data and bench-
mark model averaging results of Sala-i-Martin et al (2004) are summarized. Second,
robust model averaging is applied to the same data on growth determinants. This im-
plies interesting differences in the posterior distributions associated with the associated
slope coefficients, measuring the economic effect of growth determinants. In particular,
changes in posterior inclusion probabilities and inference are investigated. The poste-
rior distribution of error variances for each observations is estimated, which allows the
identification of important outliers in the cross-country growth data. Third, the section
presents sensitivity analysis with respect to prior assumptions.

4.1 Data and Benchmark Results

The empirical growth literature has proposed a large number of explanatory variables
related to economic growth (see for example the variables listed in Durlauf and Quah,
1999; or Durlauf et al., 2008). To facilitate comparison with results obtained by bench-
mark model averaging described in section 2, we apply the robust model averaging
proposed in section 3 to the dataset by Sala-i-Martin et al. (2004). Sala-i-Martin et
al. (2004) select variables representing ‘state variables’ in economic growth models and
measure them as close as possible to the start of the sample period in 1960. Further-
more, the dataset is restricted to be balanced, i.e. without missing observations. Under
these criteria the total number of explanatory variables is K = 67 with observations
for N = 88 countries. The dependent variable, average growth rate of GDP per capita
between 1960-96, and the 67 explanatory variables are listed in the Data Appendix B.
The Data Appendix also lists short names of variables, brief descriptions of variables,
and sample mean and standard deviations.13

For comparison with Sala-i-Martin et al. (2004), explanatory variables in the Data
Appendix B and in all Tables with results are ordered by their Posterior Inclusion
Probability (PIP) in the benchmark normal case. Recall that the posterior inclusion
probability, defined in equation (10), is an overall measure of the importance of explana-
tory variables in explaining economic growth. The posterior inclusion probability can
be compared to the prior inclusion probability, which equals πk = k̄/K = 7/67 = 0.104
for prior model size k̄ = 7. For comparison with benchmark results by Sala-i-Martin
et al., all results discussed in this section assume a fixed prior model size. Sensitivity
analysis using random prior model size are discussed in section 4.3.

Using the benchmark model averaging approach from section 2, Sala-i-Martin et
al. (2004) call the 18 highest ranked explanatory variables with posterior inclusion
probability greater than the prior probability, ‘significantly’ related to economic growth.

13The dataset and complete tables of results are available at: www.nhh.no/sam/bace.
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The next three variables, ranked 19 to 21, are found to be ‘marginally’ partially related
to economic growth. The following discussion contrasts the benchmark results by Sala-
i-Martin et al. with those using robust model averaging, with particular attention to
the 21 highest ranked variables.

4.2 Main Robust Findings

Table 1 contrasts the the posterior inclusion probabilities for the benchmark normal
benchmark case, shown in column (1), with estimates using robust model averaging,
shown in column (2). For most explanatory variables, posterior inclusion probabilities
are smaller when estimated robustly, indicating that a researchers confidence about the
inclusion of regressors is affected by heteroscedastic errors due to heterogeneity and
outliers. For convenience, variables with posterior inclusion probability below the prior
cut-off of πk = 0.104 are highlighted in italics in Table 1. The posterior mean degrees
of freedom E(v|y) in the robust model averaging case with random degrees of freedom
equal 19.5 – compared with a prior value of 25 –, implying important deviations from
the homoscedastic normal benchmark case and evidence for the presence of outliers.
Provided that a researcher has strong priors on the likely presence of outliers, Table
1 also shows posterior inclusion probabilities for fixed prior degrees of freedom (v̄ =
100, 25, 5), with increasing prior weight on outliers as we move from column (3) to
column (5).

[INSERT TABLE 1 ABOUT HERE]

Figures 2 to 7 contrasts the posterior distributions for the 24 highest-ranked vari-
ables under the normal benchmark case with the posterior distributions estimated using
robust model averaging. Notice that the posterior distributions consist of two parts:
The first part is a mass at zero (the green bars) measure the posterior probability that
the variable in question is not included in the regression model.14 The second part shows
the posterior distributions using either normal benchmark model averaging (blue), or
alternatively using robust model averaging (red). For most growth determinants, the
robust posterior distributions are scaled down relative to the benchmark normal case,
indicating that the posterior probability of inclusion is lowered for many variables. Most
posterior distributions of slope coefficients also shrink towards zero for most variables
when using robust model averaging, indicating smaller average coefficients (in absolute
value) and economic effects when estimated robustly.

[INSERT FIGURES 2–7 ABOUT HERE]

Table 2 shows the posterior mean and standard deviation of slope coefficients of
growth determinants. For comparison with Classical inference, the Table shows esti-
mates conditional on including variable xk in the regression model.15 Column (1) shows

14Note that for ease of presentation, we have split the point mass at zero into seven bars. Also the

bars are truncated above for some lower ranked variables that have low posterior inclusion probability.
15The unconditional moments that reflect also uncertainty about inclusion of a variable, can readily

be calculated from the conditional ones, as discussed in section 2.2.
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the posterior mean and underneath the standard deviation of the slope coefficient for the
benchmark model averaging case. In contrast, column (2) shows the posterior estimates
using robust model averaging. Comparing these two columns, we can observe that for
most explanatory variables the ratio of posterior mean to standard deviation is smaller
in absolute value for most regressors under robust model averaging compared to the
benchmark case. An absolute value much below two of such standardized coefficients
indicates that the coefficient is not considered to be statistically significant according
to Classical hypothesis tests (see also Brock and Durlauf, 2001). For convenience, cases
where the ratio of posterior mean to standard deviation falls below two are highlighted
by setting them in italics. To compare economic inference with the situation where
there exists strong priors on the presence of outliers, Table 2 also show the posterior
mean and standard deviation conditional on inclusion of each regressor for fixed prior
degrees of freedom (v̄ = 100, 25, 5), with increasing prior weight on outliers as we move
from column (3) to column (5).

[INSERT TABLE 2 ABOUT HERE]

The robust model averaging procedure allows the explicit investigation of outliers in
the economic growth dataset. Figure 8 shows the diagonal entries of the posterior error
variance matrix E(Ω|y) = E(diag(ωi)|y). In this dataset, Botswana has a posterior
variance more than three times larger than the average over the 67 other country in
this sample. Observe that Botswana has an average annual growth rate of 4.7 percent
during the 1960-96 sample period, which is much higher than neighboring countries
in Sub-Saharan Africa. Other outlying observations are the Philippines with posterior
variance about twice the average, and also the Central African Republic, Gabon, Zaire
and Zambia. It is noticeable that five out of six countries with strong outliers are
located in Africa, and in particular Sub-Saharan Africa. Notice that these outliers are
present despite the inclusion of the Sub-Saharan Africa dummy as regressor in many
models.

[INSERT FIGURE 8 ABOUT HERE]

The main findings regarding the robustness of particular growth determinants can
be summarized as follows.

Robust Growth Determinants – The eight highest ranked regressors in Table
1 have posterior inclusion probabilities exceeding the prior probability of 0.104 under
all the different prior assumptions. Among these robust variables, are the East Asian
dummy and variables measuring natural conditions, such as the Fraction of Tropical
Area and Malaria Prevalence. Other variables can be viewed as state variables in
standard neoclassical growth models, such as Primary Schooling Enrolment, the Price of
Investment Goods, and Initial Income. Two additional robust variables measure initial
conditions, such as the Coastal Population Density and Life Expectancy. Regarding
statistical inference and economic significance, Table 2 shows that for these eight robust
growth determinants, posterior mean and standard deviation conditional on inclusion
are very similar under the benchmark and robust model averaging. For example, the
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robust estimate for the speed of convergence of one percent implied by the estimated
mean coefficient −0.0082 is close to the benchmark case. A researcher can therefore
conclude that the eight highest ranked explanatory variables are robust determinants
of economic growth, even when allowing for the presence of sizeable outliers a priori,
parameter heterogeneity and model uncertainty.

Growth Determinants Sensitive to Heteroscedasticity – The other regressors
up to rank 18 in Table 1 are sensitive to some deviations from the normal benchmark
case, when we allow for the presence of outliers and heterogeneity. Statistical and eco-
nomic inference about the relevance of these regressors are also affected by allowing
for heteroscedastic errors as shown by the italicized entries in Table 2. The popula-
tion Fraction Confucian and the dummy variable for former Spanish Colony – have
posterior inclusion probability higher than the prior probability in most cases in Table
1. Also ratio of posterior mean to standard deviation of associated coefficients shown
in Table 2 are above or close to two, indicating confidence that these two regressors
are important in explaining economic growth. Inference about dummy variables for
Sub-Saharan African and Latin American is affected by allowing for different degrees
of heteroscedasticity. This is perhaps not too surprising, because the dummy variables
might to some extent capture outlying country observations. Similarly, the Fraction
Muslim and Fraction Buddhist capture some of the heterogeneity of growth perfor-
mance that is partly soaked up by allowing for heteroscedastic errors. The Fraction
GDP in Mining is strongly affected by allowing for heteroscedastic errors, since its ef-
fect is not considered significant under any deviation from the normal benchmark model
averaging case. Observe that Botswana is indentified as important outlier in the sample.
Botswana also has a large mining share of GDP, so the coefficient on the Mining share
might have picked up the outlier in the benchmark case.16 Three explanatory variables,
the Number of Years an Economy has Been Open, Ethnolinguistic Fractionalization,
and the Government Consumption Share of GDP have posterior inclusion probability
already close to the prior cutoff value of 0.104, and ratio of absolute value of posterior
mean to standard deviation near or below 2 in the normal benchmark case.

Regressors Marginally or Unrelated with Growth – Finally, three marginal
variables (ranked 19 to 21), Population Density, Real Exchange Rate Distortions and
Fraction Speaking a Foreign Language are marginally related to economic growth under
the normal benchmark case. Estimating their effect robustly further weakens confidence
in their importance. We confirm the finding of Sala-i-Martin et al. (2004) that none
of the variables ranked 22-67 are found to be related to economic growth regardless of
whether benchmark and robust version of model averaging are being used.

4.3 Sensitivity Analysis

In order to determine the impact of a number of critical prior assumptions, we examine
the sensitivity of our results to following deviations from the prior structure in the

16We thank Andrew Warner for pointing out this fact.
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previous section.
First, we compare the benchmark results based upon BIC model weights (8) with

those using proper Bayesian conjugate priors (see the Computational Appendix A for
implied posterior model weights). To contrast the results with the normal benchmark
case that uses sample-dominated priors, we set the degrees ’of freedom parameters to
a relatively large value (v̄ = 100), which implies that the error distribution is approx-
imately normal. This implies a thin-tailed distribution for the errors with low prior
weight on outliers. The results using posterior (Bayes) estimates are shown in column
(8) in Tables 1 and 2. The classification of explanatory variables is very similar to the
robust model averaging: regressors ranked 1 to 8 are robustly related with posterior
inclusion probability exceeding the prior probability, whereas regressors ranked below
9 have lower probability of inclusion after averaging across models. Similar conclusions
can be drawn about statistical and economic inference about significance of effects in
column (9) of Table 2. An exception is the Spanish Colony dummy, which shows an in-
crease in posterior inclusion probability and absolute value of standardized coefficients
when comparing columns (1) and (8) in Tables 1 and 2, respectively. The conclusions
reached using proper Bayesian priors are therefore in line with the ones using robust
model averaging.

Second, we also contrast the standard errors estimated under the normal benchmark
case with the heteroscedasticity-consistent standard errors (HCSE), proposed by White
(1980). For each model Mj , the covariance matrix for the slope coefficient βk can be
consistently estimated by

V (βk|y,Mj) = (X′
jXj)−1X′

jΩjXj(X′
jXj)−1 (21)

This estimator is unbiased asymptotically, but has been shown to be biased in small
samples. We therefore use the simple finite-sample correction of scaling the covariance
estimator Ω̂j = SSEj ·N/(N − kj) (see MacKinnon and White 1985). Column (9) in
Tables 2 and 4 shows the posterior standard errors when using White’s robust standard
errors (21) and benchmark normal posterior model weights. Note that the coefficient
means and therefore posterior model weights are not affected by estimating standard
errors using HCSE. Interestingly, the standardized coefficients in column (9) based on
the White heteroscedasticity-corrected standard errors do not seem to reflect the non-
robustness of several growth determinants highlighted by robust model averaging using
either random or fixed degrees of freedom. On the contrary, the sole use of White
standard errors in equation (21) could give a misleading indication of robustness, when
contrasting inference based on standardized coefficients in column (9) of Table 2 with
posterior inclusion probabilities in column (3) of Table 1. We therefore recommend to
use estimates based on HCSE with caution.

Third, we investigate the sensitivity of our results to relaxing the assumption of
a fixed prior model size. As discussed in section 2.1, we use a hierarchical (Beta-
Binomial) prior for the prior model size parameter k̄. The results from Tables 1 and 2
are reproduced for random model sizes in Tables 3 and 4. Comparing the results under
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fixed and random prior model size, we can draw the following conclusions:

• The robustly related variables ranked 1-8 have posterior inclusion probabilities
above the prior under all variations of prior assumption. We can also conclude
that inference on statistical and economic significance is robust to using different
estimates of posterior means and standard deviations.

• For the sensitive variables, a similar qualitative picture emerges, namely robustly
estimated PIP’s are lower than under normal benchmark assumptions, and stan-
dardized coefficients smaller in absolute value. Notice however, that PIPs are
higher using random model size.

• For the marginally and not related variables we draw similar conclusions under
alternative prior assumptions.

5 Conclusion

This paper investigates the sensitivity of the benchmark (Bayesian) Model Averaging
(BMA) procedure. We evaluate the robustness of the benchmark model averaging in
the context of cross-country growth regressions and find that inference on the robust-
ness of growth determinants is significantly affected by considering deviations from the
benchmark assumptions, such as outliers and heteroscedastic errors.

In contrast to the results based on benchmark model averaging, we find that sta-
tistical inference and the economic importance of a number of variables is sensitive to
allowing for heteroscedasticity due to outliers or parameter heterogeneity a priori.

We are working on extending the robust model averaging approach to a broader
set of prior parameters and to compare our approach in more detail with alternative
methods.
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A Computational Appendix

This Appendix discusses some of the details of the sampling and model averaging pro-
cedure: (1) the random and stratified sampling procedures across the model space, (2)
the Gibbs sampler used in the robust model averaging discussed in section 3.1, and (3)
numerical convergence criteria to check convergence of the sampler.

A.1 Random and Stratified Sampling

For the benchmark normal case of section 2 we estimate the posterior mean and variance
of βj conditional on each model Mj by OLS. For the sensitivity checks in section 4.3,
we can also calculate analytically the marginal likelihood (32).

The random sampler therefore draws directly from the posterior distribution of
p(β|y). With K = 67 regressors the number of possible regression models equals 267 ≈
1.48 × 1020. Each regression takes approximately 0.0005 seconds using GAUSS on
a recent PC. An exhaustive search over all models is therefore not feasible. Instead
we draw from the posterior distribution and related parameters of interest until the
parameters have converged (see numerical convergence criteria below).

The stratified sampler introduced by Sala-i-Martin et al. (2004, Technical Appendix)
allows for sampling inclusion probabilities to differ from prior inclusion probabilities
π = k̄/K. After every 100,000 regressions, the sampling inclusion probability for each
variable πS

i are set equal to a weighted average (with weight 0.5 in the benchmark case)
of the initial inclusion probability and the posterior inclusion probability (4) estimated
on those runs. To avoid sampling only a very small set of variables, the sampling inclu-
sion probabilities are restricted to lie in the interval [0.1, 0.85]. The stratified sampler
over-samples models that include variables with high inclusion probability which greatly
speeds up numerical convergence. To correct for differences in sampling probabilities
of different regressors, we scale the posterior weights by the ratio of prior to sampling
probabilities π/πS

i for i = 1, ...,K.

A.2 Gibbs Sampling

The robust approach adopted in section 3 implies the following hierarchical structure,
which can be conveniently estimated by the Gibbs sampler (see also Geweke, 1993).

1. The posterior distribution of the slope parameters β in model Mj conditional on
other parameters is given by

p(β|σ2,Ω,Mj) ∼ N(βj , σ
2
jVj). (22)

The conditional mean of βj is estimated using the generalized least squares (GLS)
estimator

βj = Vj

(
X′

jΩ
−1
j y

)
. (23)
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The posterior variance of βj is given by σ2
j V̄j , where

V̄j =
(
X′

jΩ
−1Xj + σ2

jV
−1
0j

)−1
. (24)

combines both sample and prior information given by the g-prior for the variance
V0j .

2. The posterior distribution of the error variance parameter σ2
j conditional on the

other parameters is given by
[

N∑

i=1

(
e2
i,j/ωi,j

)
/

σ2
j

]
|(βj ,Ωj ,Mj) ∼ χ2(N), (25)

where ei,j = yi − x′i,jβj . Notice that the degrees of freedom equals N and not
N − kj , since we condition on βj .

3. The posterior distribution of the elements of the error variance matrix Ωj condi-
tional on the other parameters is proportional to

[(
σ−2

j e2
i,j + v

)/
ωi,j

]
|(βj , σ

2
j ,Mj) ∼ χ2(v + 1), i = 1, ..., N. (26)

The v + 1 degrees of freedom follow from combining the prior distribution of ωi,j

(17) with v degrees of freedom with terms σ−2e2
i,j/ωi,j from the likelihood function

with a χ2(1) kernel.

4. For the degrees of freedom parameter v we consider two choices:

(a) Either we set the degrees of freedom to fixed values v̄ = 5, 25, 100.

(b) Alternatively, we draw degrees of freedom v from its posterior distribution:

p(v|ωi,j ,Mj) ∼ p(ωi,j |v,Mj) · p(v) (27)

∝
(v

2

)Nv/2
· Γ(v/2)−N · exp(−ηv) (28)

where η ≡ ∑N
i=1 [ln ωi,j + 1/ωi,j ] /2 + 1/v0. This distribution has no conve-

nient analytic from, and we therefore introduce a Metropolis step to draw
candidate values of v′ from (28) and accept them with probability pα = 0.5.
For an introductory discussion of the Metropolis-Hastings algorithm, see
Chib (2001).

For the robust case of section 3.1, analytic expressions of the marginal likelihood
are not available. However, we can make a sufficiently large number of draws from the
conditional posterior distributions (22)-(24) for mean and variance of the slope coeffi-
cient βj , (25) and (26) for the error variance σ2

jΩj , and from the posterior distribution
(28) for the degrees of freedom v. Alternatively, we set the degrees of freedom to fixed
values v̄.
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A.3 Numerical Convergence Criteria

Under certain regularity conditions the chain of draws from the Gibbs sampler converges
to the posterior distribution as the number of draws becomes large (see Chib, 2001).
Let s = 1, .., S be number of draws from the posterior distributions. We discard S0

burn-in draws and estimate the parameters using the remaining S1 = S − S0 draws.

• The posterior mean β̄j ≡ E(βj |Mj ,y) is estimated by 1
S1

∑S
s=S0+1 βj,s, using

draws from (22).

• The posterior variance matrix V̄j ≡ V ar(βj |Mj ,y) can be calculated either nu-
merically (superscript n) or analytically (superscript a) using

V̄n
j =

1
S1

S∑

s=S0+1

β2
j,s − [E(βj |Mj ,y)]2 (29)

V̄a
j =

(
X′

jΩ
−1
j Xj + σ2

jV
−1
0j

)−1
(30)

where σ̄2
j ≡ E(σ2|Mj ,y) is estimated by 1

S1

∑S
s=S0+1 σ2

j,s using draws from (25).

• The posterior error variance Ω̄j ≡ E(Ω|Mj ,y) is estimated using draws from (26)

1
S1

S∑

s=S0+1

Ωj,s =
1
S1

S∑

s=S0+1

diag(ω1,j,s, ..., ωN,j,s) (31)

We combine the robust estimates from the Gibbs sampler for the conditional mean,
β̄j , and conditional variance, σ̄2

j V̄j , with posterior (BIC) model weights (7) to estimate
the posterior mean and variance unconditionally over the model space M. For the sen-
sitivity analysis in section 4.3, we also consider proper Bayesian normal-inverse Gamma
prior, implying that the marginal likelihood of model Mj is proportional to

l(y|Mj) ∝
( ∣∣V̄j

∣∣
|Voj |

)1/2

· (N · σ2
j )
−N/2 (32)

To check for numerical convergence of model averaging with Gibbs sampling, we
observe that for a large enough number of draws S from the Gibbs sampler, the numer-
ical (29) and analytic (30) estimates of the posterior variance should be similar. The
default values for robust model averaging are 200 draws from the Gibbs sampler (with
20 draws for burnin) and 10 million draws from the model averaging loops. We use the
difference between posterior standardized coefficients using the numerical and analytic
posterior variance as numerical convergence criterion in this case. In particular, we
choose the number of Gibbs draws S̄, so that

∣∣βk/
√

Vn
k − βk/

√
Va

k

∣∣
S=S̄

< 0.1, k = 1, ..., K (33)
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B Data Appendix

Rank Short Name Variable Description PIP Mean S.D.

Depend. GROWTH Average Growth Rate of PPP-adjusted – 0.0182 0.019
Variable GDP per Capita between 1960–1996

1 EAST East Asian Dummy 0.823 0.1136 0.3192
2 P60 Primary Schooling Enrollment 0.796 0.7261 0.2932
3 IPRICE1 Investment Price 0.774 92.47 53.68
4 GDPCH60L Initial ncome (Log GDP in 1960) 0.685 7.3549 0.9011
5 TROPICAR Fraction of Tropical Area 0.563 0.5702 0.4716
6 DENS65C Population Coastal Density 0.428 146.87 509.83
7 MALFAL66 Malaria Prevalence 0.252 0.3394 0.4309
8 LIFE060 Life Expectancy 0.209 53.72 12.06
9 CONFUC Fraction Confucian 0.206 0.0156 0.0793
10 SAFRICA Sub-Saharan Africa Dummy 0.154 0.3068 0.4638
11 LAAM Latin American Dummy 0.149 0.2273 0.4215
12 MINING Fraction GDP in Mining 0.124 0.0507 0.0769
13 SPAIN Spanish Colony Dummy 0.123 0.1705 0.3782
14 YRSOPEN Years Open 1950-94 0.119 0.3555 0.3444
15 MUSLIM00 Fraction Muslim 0.114 0.1494 0.2962
16 BUDDHA Fraction Buddhist 0.108 0.0466 0.1676
17 AVELF Ethnolinguistic Fractionalization 0.105 0.3476 0.3016
18 GVR61 Government Consumption Share 0.104 0.1161 0.0745

19 DENS60 Population Density 0.086 108.07 201.44
20 RERD Real Exchange Rate Distortions 0.082 125.03 41.71
21 OTHFRAC Fraction Speaking Foreign Language 0.080 0.3209 0.4136

22 OPENDEC1 Openness 1965-74 0.076 0.5231 0.3359
23 PRIGHTS Political Rights 0.066 3.8225 1.9966
24 GOVSH61 Government Share of GDP 0.063 0.1664 0.0712
25 H60 Higher Education Enrollment 0.061 0.0376 0.0501
26 TROPPOP Fraction Population In Tropics 0.058 0.3000 0.3731
27 PRIEXP70 Primary Exports 0.053 0.7199 0.2827
28 GGCFD3 Public Investment Share 0.048 0.0522 0.0388
29 PROT00 Fraction Protestant 0.046 0.1354 0.2851
30 HINDU00 Fraction Hindu 0.045 0.0279 0.1246
31 POP1560 Fraction Population Less than 15 0.041 0.3925 0.0749
32 AIRDIST Air Distance to Big Cities 0.039 4324 2614
33 GOVNOM1 Nominal Govertnment Share 0.036 0.1490 0.0584
34 ABSLATIT Absolute Latitude 0.033 23.21 16.84
35 CATH00 Fraction Catholic 0.033 0.3283 0.4146
36 FERTLDC1 Fertility 0.031 1.5620 0.4193
37 EUROPE European Dummy 0.030 0.2159 0.4138
38 SCOUT Outward Orientation 0.030 0.3977 0.4922
39 COLONY Colony Dummy 0.029 0.7500 0.4355
40 CIV72 Civil Liberties 0.029 0.5095 0.3259
41 REVCOUP Revolutions and Coups 0.029 0.1849 0.2322
42 BRIT British Colony Dummy 0.027 0.3182 0.4684
43 LHCPC Hydrocarbon Deposits 0.025 0.4212 4.3512
44 POP6560 Fraction Population Over 65 0.022 0.0488 0.0290
45 GDE1 Defense Spending Share 0.021 0.0259 0.0246
46 POP60 Population in 1960 0.021 20308 52538
47 TOT1DEC1 Terms of Trade Growth in 1960s 0.021 -0.0021 0.0345
48 GEEREC1 Public Education Spending Share 0.021 0.0244 0.0096
49 LANDLOCK Landlocked Country Dummy 0.021 0.1705 0.3782
50 HERF00 Religion Measure 0.020 0.7803 0.1932
51 SIZE60 Size of Economy 0.020 16.15 1.82
52 SOCIALIST Socialist Dummy 0.020 0.0682 0.2535
53 ENGFRAC English Speahing Population 0.020 0.0840 0.2522
54 PI6090 Average Inflation 1960-90 0.020 13.13 14.99
55 OIL Oil Producing Country Dummy 0.019 0.0568 0.2328
56 DPOP6090 Population Growth Rate 1960-90 0.019 0.0215 0.0095
57 NEWSTATE Timing of Independence 0.019 1.0114 0.9767
58 LT100CR Land Area Near Navigable Water 0.019 0.4722 0.3802
59 SQPI6090 Square of Inflation 1960-90 0.018 394.54 1119.70
60 WARTIME Fraction Spent in War 1960-90 0.016 0.0695 0.1524
61 LANDAREA Land Area 0.016 867189 1814688
62 ZTROPICS Tropical Climate Zone 0.016 0.1900 0.2687
63 TOTIND Terms of Trade Ranking 0.016 0.2813 0.1904
64 ECORG Capitalism 0.015 3.4659 1.3809
65 ORTH00 Fraction Othodox 0.015 0.0187 0.0983
66 WARTORN War Particpation 1960-90 0.015 0.3977 0.4922
67 DENS65I Interior Density 0.015 43.37 88.06

Variables ranked by Posterior Inclusion Probability (PIP) in the benchmark case, defined in equation

(10). Prior inclusion probability for benchmark case equals k̄/67 = 7/67 = 0.10.
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Notes to Table 2: Posterior Mean (13) and Standard Deviation calculated as square root of the

variance (14) are conditional on inclusion of explanatory variable xj . Benchmark BACE results in

column (1) and White robust standard errors in column (9) are based on 100 million Monte Carlo

loops using the stratified sampler. Robust estimates in columns (2)-(8) are based on 10 million Monte

Carlo (outer) loops, and 200 (inner) Gibbs sampler loops with a burnin of 20 loops. See

Computational Appendix A for details.

31



T
ab

le
3:

P
os

te
ri

or
In

cl
u
si

on
P

ro
b
ab

il
it

ie
s

(R
an

d
om

P
ri

or
M

o
d
el

S
iz

e)

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

F
ix

ed
D

eg
re

es
o
f
F
re

ed
o
m

R
a
n
k

V
a
ri

a
b
le

B
A

C
E

R
o
b
u
st

v̄
=

1
0
0

v̄
=

2
5

v̄
=

5
B

ay
es

1
E

a
st

A
si

a
n

D
u
m

m
y

0
.7

7
8

0
.8

9
2

0
.8

0
0

0
.7

6
6

0
.7

8
2

0
.9

7
1

2
P

ri
m

a
ry

S
ch

o
o
li
n
g

E
n
ro

ll
m

en
t

0
.7

9
3

0
.7

7
8

0
.7

7
6

0
.7

7
5

0
.8

4
7

0
.6

0
7

3
In

v
es

tm
en

t
P

ri
ce

0
.7

8
6

0
.7

7
5

0
.7

5
5

0
.7

7
4

0
.8

1
3

0
.3

6
7

4
In

it
ia

l
In

co
m

e
(L

o
g

G
D

P
in

1
9
6
0
)

0
.7

2
2

0
.7

0
0

0
.7

1
5

0
.6

9
6

0
.6

7
3

0
.3

2
5

5
F
ra

ct
io

n
o
f
T
ro

p
ic

a
l
A

re
a

0
.5

3
0

0
.6

2
5

0
.5

3
4

0
.5

3
3

0
.5

8
9

0
.4

2
7

6
C

o
a
st

a
l
P
o
p
u
la

ti
o
n

D
en

si
ty

0
.4

1
6

0
.4

7
2

0
.4

3
9

0
.3

9
0

0
.4

6
9

0
.2

2
5

7
M

a
la

ri
a

P
re

va
le

n
ce

0
.2

3
9

0
.2

6
7

0
.2

5
3

0
.2

2
4

0
.2

0
9

0
.5

3
6

8
L
if
e

E
x
p
ec

ta
n
cy

0
.2

4
2

0
.2

2
2

0
.2

6
7

0
.2

7
1

0
.1

8
0

0
.1

3
4

9
F
ra

ct
io

n
C

o
n
fu

ci
a
n

0
.2

7
0

0
.1

6
6

0
.2

4
6

0
.2

7
1

0
.2

4
4

0
.0

6
9

1
0

S
u
b
-S

a
h
a
ra

n
A

fr
ic

a
D

u
m

m
y

0
.2

0
8

0
.0

9
8

0
.1

9
4

0
.2

0
5

0
.1

5
9

0
.0

4
4

1
1

L
a
ti

n
A

m
er

ic
a
n

D
u
m

m
y

0
.1

8
9

0
.0

8
7

0
.1

7
4

0
.1

4
7

0
.1

6
6

0
.0

5
4

1
2

F
ra

ct
io

n
G

D
P

in
M

in
in

g
0
.2

0
3

0
.1

3
9

0
.2

1
6

0
.2

4
8

0
.0

9
2

0
.0

2
3

1
3

S
p
a
n
is

h
C

o
lo

n
y

D
u
m

m
y

0
.1

2
7

0
.1

1
0

0
.1

1
5

0
.1

4
4

0
.1

2
2

0
.1

6
7

1
4

Y
ea

rs
O

p
en

1
9
5
0
-9

4
0
.1

2
3

0
.1

3
2

0
.1

3
0

0
.1

2
9

0
.1

3
2

0
.0

5
9

1
5

F
ra

ct
io

n
M

u
sl

im
0
.1

5
0

0
.1

4
4

0
.1

4
5

0
.1

6
6

0
.1

3
6

0
.0

4
2

1
6

F
ra

ct
io

n
B

u
d
d
h
is

t
0
.1

4
2

0
.1

0
1

0
.1

2
0

0
.1

2
7

0
.1

5
8

0
.0

3
4

1
7

E
th

n
o
li
n
g
u
is

ti
c

F
ra

ct
io

n
a
li
za

ti
o
n

0
.1

1
5

0
.1

3
0

0
.1

0
6

0
.1

2
7

0
.1

2
9

0
.0

4
5

1
8

G
ov

er
n
m

en
t

C
o
n
su

m
p
ti

o
n

S
h
a
re

0
.1

2
7

0
.1

4
6

0
.1

2
1

0
.0

9
5

0
.1

0
7

0
.0

7
8

1
9

P
o
p
u
la

ti
o
n

D
en

si
ty

0
.1

2
8

0
.1

0
3

0
.1

0
8

0
.1

1
0

0
.1

0
4

0
.0

1
8

2
0

R
ea

l
E

x
ch

a
n
g
e

R
a
te

D
is

to
rt

io
n
s

0
.1

1
6

0
.0

8
9

0
.1

1
8

0
.1

5
7

0
.0

7
4

0
.0

4
6

2
1

F
ra

ct
io

n
S
p
ea

k
in

g
F
o
re

ig
n

L
a
n
g
u
a
g
e

0
.1

1
1

0
.0

8
2

0
.0

9
3

0
.1

4
0

0
.0

9
8

0
.0

3
6

P
ri

o
r

in
cl

u
si

o
n

p
ro

b
a
b
il
it
y

w
it

h
fi
xe

d
p
ri

o
r

m
o
d
el

si
ze

k̄
=

7
eq

u
a
ls

k̄
/
6
7

=
7
/
6
7

=
0
.1

0
4
.

B
en

ch
m

a
rk

B
A

C
E

re
su

lt
s

in
co

lu
m

n
(1

)
a
re

ca
lc

u
la

te
d

u
si

n
g

1
0
0

m
il
li
o
n

M
o
n
te

C
a
rl

o
lo

o
p
s

u
si

n
g

th
e

st
ra

ti
fi
ed

sa
m

p
le

r.
R

o
b
u
st

es
ti

m
a
te

s
in

co
lu

m
n
s

(2
)-

(8
)

a
re

ca
lc

u
la

te
d

u
si

n
g

1
0

m
il
li
o
n

M
o
n
te

C
a
rl

o

(o
u
te

r)
lo

o
p
s,

a
n
d

2
0
0

(i
n
n
er

)
G

ib
b
s

sa
m

p
le

r
lo

o
p
s

w
it

h
a

b
u
rn

in
o
f
2
0

lo
o
p
s.

S
ee

C
o
m

p
u
ta

ti
o
n
a
l
A

p
p
en

d
ix

A
fo

r
d
et

a
il
s.

32



T
ab

le
4:

P
os

te
ri

or
M

ea
n

an
d

S
ta

n
d
ar

d
D

ev
ia

ti
on

s
(R

an
d
om

P
ri

or
M

o
d
el

S
iz

e)
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)

F
ix

ed
D

eg
re

es
o
f
F
re

ed
o
m

R
a
n
k

V
a
ri

a
b
le

B
A

C
E

R
o
b
u
st

v̄
=

1
0
0

v̄
=

2
5

v̄
=

5
B

ay
es

W
h
it

e

1
E

a
st

A
si

a
n

D
u
m

m
y

0
.0

2
1
3

0
.0

2
2
8

0
.0

2
1
7

0
.0

2
2
3

0
.0

2
3
8

0
.0

2
6
0

0
.0

2
1
3

0
.0

0
6
6

0
.0

0
6
7

0
.0

0
6
7

0
.0

0
6
3

0
.0

0
6
5

0
.0

0
6
3

0
.0

0
4
9

2
P

ri
m

a
ry

S
ch

o
o
li
n
g

E
n
ro

ll
m

en
t

0
.0

2
6
9

0
.0

2
6
7

0
.0

2
6
7

0
.0

2
7
0

0
.0

2
6
5

0
.0

2
3
9

0
.0

2
6
7

0
.0

0
8
0

0
.0

0
8
2

0
.0

0
8
3

0
.0

0
7
8

0
.0

0
8
2

0
.0

0
8
0

0
.0

0
5
5

3
In

v
es

tm
en

t
P

ri
ce

-8
.4

E
-0

5
-8

.1
E

-0
5

-8
.3

E
-0

5
-8

.4
E

-0
5

-8
.1

E
-0

5
-8

.1
E

-0
5

-8
.6

E
-0

5
2
.5

E
-0

5
2
.7

E
-0

5
2
.5

E
-0

5
2
.6

E
-0

5
2
.9

E
-0

5
2
.6

E
-0

5
1
.2

E
-0

5
4

In
it

ia
l
In

co
m

e
(L

o
g

G
D

P
in

1
9
6
0
)

-0
.0

0
8
8

-0
.0

0
8
6

-0
.0

0
8
9

-0
.0

0
9
1

-0
.0

0
8
4

-0
.0

0
7
9

-0
.0

0
9
0

0
.0

0
3
0

0
.0

0
3
1

0
.0

0
3
0

0
.0

0
3
1

0
.0

0
3
0

0
.0

0
2
9

0
.0

0
1
8

5
F
ra

ct
io

n
o
f
T
ro

p
ic

a
l
A

re
a

-0
.0

1
4
3

-0
.0

1
4
4

-0
.0

1
4
4

-0
.0

1
4
0

-0
.0

1
4
3

-0
.0

1
4
5

-0
.0

1
4
4

0
.0

0
4
5

0
.0

0
4
4

0
.0

0
4
5

0
.0

0
4
4

0
.0

0
4
4

0
.0

0
4
3

0
.0

0
3
1

6
C

o
a
st

a
l
P
o
p
u
la

ti
o
n

D
en

si
ty

8
.5

E
-0

6
8
.4

E
-0

6
8
.3

E
-0

6
8
.4

E
-0

6
8
.0

E
-0

6
8
.4

E
-0

6
8
.5

E
-0

6
3
.0

E
-0

6
3
.0

E
-0

6
3
.0

E
-0

6
2
.9

E
-0

6
3
.0

E
-0

6
2
.9

E
-0

6
1
.6

E
-0

6
7

M
a
la

ri
a

P
re

va
le

n
ce

-0
.0

1
5
5

-0
.0

1
5
3

-0
.0

1
6
1

-0
.0

1
6
1

-0
.0

1
5
8

-0
.0

1
9
0

-0
.0

1
5
1

0
.0

0
6
7

0
.0

0
6
3

0
.0

0
6
6

0
.0

0
6
2

0
.0

0
6
4

0
.0

0
5
6

0
.0

0
5
1

8
L
if
e

E
x
p
ec

ta
n
cy

0
.0

0
0
8

0
.0

0
0
8

0
.0

0
0
8

0
.0

0
0
8

0
.0

0
0
8

0
.0

0
0
8

0
.0

0
0
8

0
.0

0
0
4

0
.0

0
0
4

0
.0

0
0
4

0
.0

0
0
4

0
.0

0
0
4

0
.0

0
0
4

0
.0

0
0
2

9
F
ra

ct
io

n
C

o
n
fu

ci
a
n

0
.0

5
3
2

0
.0

4
8
0

0
.0

5
2
7

0
.0

5
6
3

0
.0

5
4
3

0
.0

5
1
5

0
.0

5
4
3

0
.0

2
1
7

0
.0

2
4
4

0
.0

2
1
9

0
.0

2
2
1

0
.0

2
5
6

0
.0

2
5
6

0
.0

1
2
2

1
0

S
u
b
-S

a
h
a
ra

n
A

fr
ic

a
D

u
m

m
y

-0
.0

1
5
1

-0
.0

1
2
4

-0
.0

1
5
3

-0
.0

1
4
3

-0
.0

1
6
1

-0
.0

1
0
0

-0
.0

1
4
6

0
.0

0
6
8

0
.0

0
6
5

0
.0

0
7
1

0
.0

0
6
5

0
.0

0
6
6

0
.0

0
6
8

0
.0

0
4
3

1
1

L
a
ti

n
A

m
er

ic
a
n

D
u
m

m
y

-0
.0

1
2
9

-0
.0

1
0
6

-0
.0

1
2
8

-0
.0

1
3
7

-0
.0

1
2
6

-0
.0

0
8
8

-0
.0

1
3
6

0
.0

0
5
9

0
.0

0
6
2

0
.0

0
5
9

0
.0

0
6
1

0
.0

0
6
0

0
.0

0
5
0

0
.0

0
3
7

1
2

F
ra

ct
io

n
G

D
P

in
M

in
in

g
0
.0

4
3
9

0
.0

3
2
5

0
.0

4
3
4

0
.0

4
5
0

0
.0

3
2
2

0
.0

3
2
3

0
.0

5
3
4

0
.0

2
0
0

0
.0

2
1
1

0
.0

2
0
1

0
.0

2
0
3

0
.0

2
5
3

0
.0

1
9
5

0
.0

1
5
5

1
3

S
p
a
n
is

h
C

o
lo

n
y

D
u
m

m
y

-0
.0

1
0
1

-0
.0

1
0
2

-0
.0

0
9
9

-0
.0

1
0
5

-0
.0

1
0
7

-0
.0

1
1
2

-0
.0

1
0
0

0
.0

0
5
2

0
.0

0
5
4

0
.0

0
5
3

0
.0

0
5
0

0
.0

0
5
0

0
.0

0
4
2

0
.0

0
3
9

1
4

Y
ea

rs
O

p
en

1
9
5
0
-9

4
0
.0

1
1
6

0
.0

1
1
5

0
.0

1
1
4

0
.0

1
0
1

0
.0

1
0
0

0
.0

1
2
9

0
.0

1
1
6

0
.0

0
6
3

0
.0

0
6
7

0
.0

0
6
2

0
.0

0
5
9

0
.0

0
6
0

0
.0

0
6
4

0
.0

0
4
1

1
5

F
ra

ct
io

n
M

u
sl

im
0
.0

1
2
6

0
.0

1
2
3

0
.0

1
2
6

0
.0

1
3
3

0
.0

1
2
9

0
.0

1
1
4

0
.0

1
2
7

0
.0

0
6
3

0
.0

0
6
3

0
.0

0
6
3

0
.0

0
6
7

0
.0

0
6
2

0
.0

0
6
4

0
.0

0
4
6

1
6

F
ra

ct
io

n
B

u
d
d
h
is

t
0
.0

2
1
1

0
.0

1
9
6

0
.0

1
9
9

0
.0

2
2
8

0
.0

2
1
9

0
.0

2
1
5

0
.0

2
0
0

0
.0

1
0
4

0
.0

1
1
5

0
.0

1
0
6

0
.0

1
0
6

0
.0

1
1
5

0
.0

1
3
0

0
.0

0
5
0

1
7

E
th

n
o
li
n
g
u
is

ti
c

F
ra

ct
io

n
a
li
za

ti
o
n

-0
.0

1
0
9

-0
.0

1
0
4

-0
.0

1
0
5

-0
.0

0
9
9

-0
.0

0
9
5

-0
.0

1
2
2

-0
.0

1
0
9

0
.0

0
5
9

0
.0

0
5
8

0
.0

0
5
9

0
.0

0
5
9

0
.0

0
5
9

0
.0

0
6
4

0
.0

0
3
1

1
8

G
ov

er
n
m

en
t

C
o
n
su

m
p
ti

o
n

S
h
a
re

-0
.0

4
3
6

-0
.0

4
2
1

-0
.0

4
1
7

-0
.0

4
1
8

-0
.0

3
8
5

-0
.0

4
8
8

-0
.0

4
3
2

0
.0

2
5
6

0
.0

2
4
1

0
.0

2
7
3

0
.0

2
4
6

0
.0

2
5
4

0
.0

2
4
4

0
.0

1
6
1

1
9

P
o
p
u
la

ti
o
n

D
en

si
ty

1
.3

E
-0

5
1
.2

E
-0

5
1
.3

E
-0

5
1
.3

E
-0

5
1
.0

E
-0

5
1
.1

E
-0

5
1
.3

E
-0

5
6
.9

E
-0

6
7
.4

E
-0

6
7
.2

E
-0

6
7
.1

E
-0

6
7
.7

E
-0

6
8
.2

E
-0

6
3
.8

E
-0

6
2
0

R
ea

l
E

x
ch

a
n
g
e

R
a
te

D
is

to
rt

io
n
s

-8
.1

E
-0

5
-7

.3
E
-0

5
-8

.1
E
-0

5
-8

.2
E

-0
5

-7
.0

E
-0

5
-7

.6
E
-0

5
-7

.9
E

-0
5

4
.4

E
-0

5
4
.3

E
-0

5
4
.4

E
-0

5
3
.9

E
-0

5
4
.1

E
-0

5
4
.3

E
-0

5
2
.7

E
-0

5
2
1

F
ra

ct
io

n
S
p
ea

k
in

g
F
o
re

ig
n

L
a
n
g
u
a
g
e

0
.0

0
7
4

0
.0

0
6
8

0
.0

0
7
3

0
.0

0
7
2

0
.0

0
6
6

0
.0

0
6
5

0
.0

0
8
6

0
.0

0
4
0

0
.0

0
4
0

0
.0

0
4
1

0
.0

0
3
5

0
.0

0
3
9

0
.0

0
4
6

0
.0

0
2
1

33



Notes to Table 4: Posterior Mean (13) and Standard Deviation calculated as square root of the

variance (14) are conditional on inclusion of explanatory variable xj . Benchmark BACE results in

column (1) and White robust standard errors in column (9) are based on 100 million Monte Carlo

loops using the stratified sampler. Robust estimates in columns (2)-(8) are based on 10 million Monte

Carlo (outer) loops, and 200 (inner) Gibbs sampler loops with a burnin of 20 loops. See

Computational Appendix A for details.
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Figure 2: BACE (BLUE) vs. Robust (RED) Distributions (Random d.f. v0 = 25).

Figure 3: BACE (BLUE) vs. Robust (RED) Distributions (Random d.f. v0 = 25).
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Figure 4: BACE (BLUE) vs. Robust (RED) Distributions (Random d.f. v0 = 25).

Figure 5: BACE (BLUE) vs. Robust (RED) Distributions (Random d.f. v0 = 25).
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Figure 6: BACE (BLUE) vs. Robust (RED) Distributions (Random d.f. v0 = 25).

Figure 7: BACE (BLUE) vs. Robust (RED) Distributions (Random d.f. v0 = 25).
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Figure 8: Posterior Error Variances Ω = diag(ωi).
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