UNIVERSITY OF
319 CAMBRIDGE

i i
5&5 0
[

Cambridge Working
Papers in Economics

Measuring Energy Security

Christian Winzer

CWPE 1305




5 UNIVERSITY OF
» CAMBRIDGE

Electricity Policy
Research Group

Measuring Energy Security

EPRG Working Paper 1303
Cambridge Working Paper in Economics 1305

Christian Winzer

Abstract Continuity of energy supplies is a central aspect of concerns about
energy security. Although the continuity of supplies can be influenced by a large
number of risks, most models only analyse a small subset of risk sources and often
neglect interdependencies between them. In this paper we introduce a probabilistic
time-series model that quantifies the impact of inter-dependent natural, technical and
human risk sources on energy supply continuity. Based on a case study of Italian gas
and electricity markets we conclude that typical simplifications in time-series models
and alternative approaches lead to a bias, which justifies the usage of detailed time-
series models of interdependent risks such as the framework suggested in this paper,
even though more detailed versions of this and other frameworks may quickly become
very resource intensive.

Keywords Energy Security, Security of Supply, Reliability, Monte-Carlo
Simulation, Measurement

JEL Classification

Contact c.b.winzer@gmail.com
Publication February, 2013
Financial Support EPSRC Grant EP/E04011X/1

Www.eprg.group.cam.ac.uk



EPRG 1303

Measuring Energy Security

Christian Winzer 1

01.2013

1 Abstract

Continuity of energy supplies is a central aspect of concerns about energy
security. Although the continuity of supplies can be influenced by a large number
of risks, most models only analyse a small subset of risk sources and often
neglect interdependencies between them. In this paper we introduce a
probabilistic time-series model that quantifies the impact of inter-dependent
natural, technical and human risk sources on energy supply continuity. Based on
a case study of Italian gas and electricity markets we conclude that typical
simplifications in time-series models and alternative approaches lead to a bias,
which justifies the usage of detailed time-series models of interdependent risks
such as the framework suggested in this paper, even though more detailed
versions of this and other frameworks may quickly become very resource
intensive.
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2 Introduction

The continuity of energy supplies depends on the performance of a complex
supply chain which spans different countries and continents and is subject to a
variety of interdependent human, technical and natural risk sources that may
cause interruptions at different places within the supply chain. In the electricity
sector this is further complicated by the high inelasticity of demand and the non-
storability of supplies, which leads to a complicated system behavior.

Nevertheless, the models that are used for quantifying the continuity of
commodity supplies are often surprisingly simple. Important reasons for
simplicity are a reluctance to quantify uncertain risks such as political disruption
probabilities, the desire to avoid intransparent modeling assumptions and the
large cost involved with building and maintaining complicated models. Most
probabilistic time-series models therefore represent at least some of the
intermediate variables in the calculation process by their average values instead
of modeling them as stochastic variables, which may lead to errors in the
estimation. Most alternative approaches which are used in particular for the
quantification of political risk tend to further reduce or completely omit details

heuristics.

In section 7 we summarize our conclusions about the error that is caused by
different models that are typically used for quantifying energy security and
about the main gaps for the measurement of energy security.

This paper is part of a wider research project to quantify energy security in three
steps. The first step of the quantification process is the framing of the analysis.
This is treated in (Winzer, 2012). The second step of the quantification process is
the description of a fixed infra-structure system within the chosen frame of
analysis. This is the focus of this paper. The last step of the analysis is addressing
the question how regulatory interventions may influence the investment in the
energy supply chain. This step is treated in ##Ref: EPRG WP##.



3 Framing of the case-study

3.1 Definition of energy security

The definition of energy security that we use in our case study is the “continuity
of commodity supplies relative to demand”. A detailed overview of alternative
definitions can be found in (Winzer, 2012).

Discontinuities of the supply - demand balance can lead to a disruption of both
the quantity that is delivered and the price at which energy is delivered. Either of
these discontinuities can be measured with different metrics.

Technical reliability analyses usually focus on those metrics that describe the
continuity of quantities. Two measures that are widely used in this context are
the Loss of Load Expectation (LOLE) - which is the cumulative probability of
load shedding due to a negative reserve margin - and the Loss of Energy
Expectancy (LOEE) - which is integral between amount of energy that is shed at
each reserve margin and the probability of having such a reserve margin. An
overview of other statistics measuring the continuity of supply quantities, such
as the Customer Average Interruption Duration Index (CAIDI) or the Customer
Minutes Lost (CML) can be found in (Billinton and Allan, 1996; Council of
European Energy Regulators (CEER), 2008). In general, statistics describing the
continuity of quantities are easier to calculate because they do not require the
estimation of input price volatility or the cost of disruptions. The technical
metrics which we use in this paper are illustrated in the left hand side of Figure
1.

Economic reliability analyses on the other hand require the analysis of both
discontinuities of the price and the quantity of energy that is available relative to
demand. Two metrics which capture both types of discontinuity are the levelized
cost to society (LCS) in £/MWh - which is the integral between the sum of fixed
and variable production costs at each reserve margin and the probability of
having such a reserve margin, divided by the total consumption - and the
levelized cost to consumers (LCC) in £/MWh - which is the integral between the
total cost to consumers at each reserve margin and the probability of having
such a reserve margin, divided by the total consumption. In case of a constant
willingness to pay by consumers, the LCS is indirectly also a measure for the
continuity of welfare, as the area between the willingness to pay (WTP) of
consumers and the supply curve minus the fixed cost equals to the welfare for
society. In the same way, the LCC is an indirect measure of consumer welfare, as
the area between the WTP and the price level at each reserve margin
corresponds to the consumer rent. We assume that in case of load shedding both
the cost of production and the price paid by consumers are the same as the WTP.
The economic metrics which we use in this paper are illustrated in the right hand
side of Figure 1.
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Figure 1: Metrics measuring the continuity of the supply-demand balance.

In our paper we separately report these continuity metrics for each commodity
market. If desired, a composite indicator could be calculated by using the
weighted sum of discontinuities in individual markets at the expense of losing
information about the location of discontinuities.

3.2 Geographical region and infrastructure scenarios

In our case study we investigate the continuity of Italian gas and electricity
supplies based on the DGTren Reference Scenario for Italy in 2030 (DG Tren,
2009) but replacing the nuclear capacity with 10GW concentrated solar power
imports. The decision which policy makers face is whether it would be
warranted to introduce a strategic back-up for these imports. We investigate this
by including two infrastructure scenarios with 10GW strategic reserve.

In the first case, in scenario 12, the strategic reserve is provided by back-up gas
generators - which are available for unlimited time, but only as long as there are
enough gas supplies. In the second case, in scenario [3, the strategic reserve is
provided by pumped storage hydro plants — which are also available in case of
gas disruptions, but only for a limited time. The relative efficiency of these
interventions depends on the frequency, the timing and the duration of gas and
electricity disruptions as well as the cost levels. In the rest of this paper, we will
compare how well the different modelling approaches can help to answer the
question about which - if any - of these interventions would be appropriate.

The question whether these forms of strategic reserve can really provide
additional capacity or would simply crowd out investment by private actors is
addressed elsewhere.

An overview of the installed capacities for each infrastructure scenario is given
in Table 5 in the appendix.

4 Stylised probabilistic energy system model

In this section we will describe a stylised, probabilistic model of the energy
system, which quantifies the joint impact of natural, technical and political risk
on the continuity of gas and electricity supplies. The model thus combines
elements from technical reliability analysis with those that are typical in the
4



analysis of critical infrastructures. Within the model we assume that stochastic
variables have a distribution which is from a standard family of probability
density functions - such as an exponential distribution for outage probabilities
or a lognormal distribution for price inputs, which is a common approach. A
previous version of this model, which excludes the analysis of interdependencies
between the risk sources, has been applied in a joint publication (Lilliestam et al.,
n.d.).

4.1 Literature review

Models in technical reliability analysis typically tend to focus on a simulation of
stochastic outages within a single fuel network. The two most commonly used
approaches for this purpose are the analytical solution of Markov-Chain models
and Monte Carlo Simulations (Billinton and Allan, 1996). In case of independent
outages, analytical solutions of Markov-Chain models may be calculated using a
stepwise, modular procedure as described in (Képpel, 2007). However, in case of
interdependency between contingencies, a decomposition of the problem is not
possible, and since the multi-variate state space grows exponentially, the
analytical approach quickly reaches its limits. In the past this has not been a
problem, as reliability analyses used to focus on independent technical failures.
However, the push towards smarter grids and introduction of renewable
energies lead to an increasing interconnection between networks and correlated
local weather conditions.

In the area of critical infrastructure protection, this challenge has been
recognized and is addressed in a variety of different models for interconnected
infrastructure systems and multiple risk sources (Pederson et al, 2006).
Interdependencies that are analyzed can be created by physical flows, geo-
spacial co-location, policy or high level decisions and information flows
(Dudenhoeffer et al., 2006; Rinaldi, 2004). Due to the complexity and size of a
system of systems model, the ‘verticall models which integrate different
networks and risk sources tend to use a much less detailed representation of
individual networks than the ‘horizontal’ models for the technical reliability of
individual networks that are used in control rooms (Svendsen and Wolthusen,
2007).

4.2 Model structure and variables

In our case study we follow the typical approach in critical infrastructure
protection and model the Italian gas and electricity system as a directional graph
(Svendsen and Wolthusen, 2007)2. Each node of the graph corresponds to the
market of a specific energy form in a particular region. Each of the edges in the
graph corresponds to an element of the energy infrastructure. The three main
functions of the energy infrastructure are to transport, store and convert
different forms of energy or energy services. Energy transportation
infrastructure such as power-cables, pipelines and ships can be seen as links

Z Models of combined gas and electricity networks can also be found outside the area of critical
infrastructure protection, such as in (Abrell and Weigt, n.d.; Képpel and Andersson, 2009; Munoz
etal,, 2003).
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between the markets for the same fuel in different regions. Energy storage
infrastructure such as gas storage terminals and hydro reservoirs can be seen as
links connecting the market from which they originate with itself across time.
Energy conversion infrastructure, such as power plants and refineries can be seen
as links between the markets for different energy forms in the same region.

The resulting model for our case study is shown in Figure 2.
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Figure 2: Infrastructure links that are modelled in our case-study.

The graph shows the infrastructure links that are included in the model. The
nodes that are not included in the model are greyed. We can see in this graph
that the Italian gas storage links the Italian gas market to itself. Electricity
transmission lines, which allow bi-directional flows between Algeria and Italy,
are represented by two links between these nodes in opposing directions.

Demand for gas and electricity is modelled as an exogenous variable. If the
concept was extended to the continuity of services or the continuity of welfare,
this could be captured by including the different energy services as separate
energy forms, and welfare as the ultimate “energy form” into which all services
are transformed.

The regional resolution of our model is on a country level, which excludes the
analysis of network constraints within a country. Each time step within our
model corresponds to a single day. In order to estimate the impact of diurnal
demand variations we use a fixed daily load-duration curve. All other variables
are assumed to remain constant throughout the day. As a result of these strong



simplifications — which are largely driven by data constraints - the results of our
model can only provide qualitative insights at this point.

Each of the infrastructure links is characterised by a set of constant parameters
C, and a set of state dependent, variable parameters S. The composition of the
parameter sets depends on the detail of the technological resolution. In order to
keep data requirements low, we use a relatively simple version in our case study.

The set of constant parameters that we use consists of the nominal output
capacity CapOut;, the storage capacity CapStore;, the conversion factor between
input and output units 7InOut; the fixed cost CFix; and the additional variable
cost CVar; for each unit of output flowing through the link i. In case of a demand
link, the variable cost represents the willingness to pay or the value of lost load
for the service. We collect the constant parameter sets of all the links in the
matrix C in Figure 3 where the i-th row-vector corresponds to the parameter set
for the link number i.

NIn; NOut; CapOut, CapStore; nInOut, CFix; CVanry
C=| : : : : : : :
NIn, NOut, CapOut, CapStore, nInOut, CFix, CVan,

Figure 3: Matrix of constant system states C.

The variable parameter set that we choose consists of environmental variables
such as wind-speed, temperature, rainfall and insolation to which a link is
exposed3 (w1; ... wK;), a set of partial availabilities (aNatt, aTecit, aPolit) which -
in case of a aTect and aPoltare influenced by random component failures with
time dependent forced outage rates (FOR.TY FOR.PY) and time dependent
repair rates (RR.T%, FOR.T"), the amount of energy (e;) which is stored in the
link at the beginning of a period, and the flows in and out of each link (fIn¢, fOut)
during time period t. Each partial availability factor corresponds to the
percentage of the nominal capacity of link 7 that is available due to the influence
of a particular risk source. The risk sources that we distinguish in our simplified
model are natural (aNatit), technical (aTect) and human (aPolit) risk. The natural
(in)availability, in this paper refers to the capacity reduction due to the
(in)availability of natural inputs such as wind, cooling water, cool air etc.
Technical (in)availability on the other hand describes the capacity reduction due
to unintentional damages that require repair, such as deterioration due to
ageing, but also mechanical stress, lightning, excavation etc. Political risk finally
refers to all intentional capacity reductions, either through sabotage/terrorism
or deliberate withholding for non-economic motives.

As we will see in the next section, this distinction is based on the dependency
structure within the model: natural availability is a deterministic function of
weather variables, technical availability is a random variable conditional on the

3 Many of the links are exposed to the same weather variables, which are therefore only stored
once.
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weather state, and intentional political risk is a random variable that depends on
the damage that is caused.

We collect the variable parameter sets of all the links at time t in the matrix S,
where the i -th row-vector corresponds to the variable parameter set of link i at
time t. The matrices St for each time step can further be stacked into the three
dimensional matrix of system states S. As illustrated in Figure 4, dependencies
can occur along all three dimensions of S.

e, lwlt|..| wk;'|aNat,'! FORT,® | RRT,' | aTec,! FOR.P;! | RR.P,* aPol fOuyt m
/ et |wlt|...| wK,t  aNat!| FORT,! | RRT,' | aTec,! | FOR.P,! | RR.P,t | aPol,t | fin,t | fBut,t I
'3

3

RRT,! fin,t | fOut,t

t
aTec,

aNat,,' FORT ;* RR.P_;t | aPol ;| fln_;t fOut ;*

.| wk! | aNat! | FORT! | RRT! | aTec! | FOR.P® | RR.P! | aPol® | fInt

RRT,,*

FOR.P, !

aTec ,*

() Dependencies between values of the same variable in
different streams

() Dependencies between the values of different variables of the
same stream

(II) Dependency of each variable accross time (autocorrelation)

Figure 4: Possible dependencies within the matrix of variable system states S.

4.3 Calculation steps, treatment of uncertainty and
dependencies

In this section we will describe the philosophy of treating uncertainty as well as
the interdependency structure that is underlying our model by following the
sequence of calculation steps that are repeated in each simulation run.

At step 1 of the calculation process, we draw the value for each of the uncertain
parameters that are displayed in Table 1 from their Bayesian distribution.



Table 1: Parameters that are modelled as Bayesian variables.

Parameter Description Distrib.Type Max Std
FORT, RR.T The average technical forced outage rates Lognormal 0.5 * avg
and repair rates
FOR.P, RR.P The average political forced outage rates Lognormal 5* avg
and repair rates
Caplng,, Maximum level of gas demand Lognormal .05 *avg
Caplng,, Maximum level of electricity demand Lognormal 1 *avg
Calculated
CVar;, CFix; Variable cost and fixed cost of link i based CapEx,
OpEx, and
FuelCost Spread
Capital expenditure for construction of reported in
CapEx; link i Lognormal data source
divided by 4
Operational expenditure for maintenance
OpEx; C 1 Lognormal
of link 7
FuelCost; Fuel cost for link i Lognormal

Using the terminology of (Walker et al., 2003) which is summarized in Box 1 this
corresponds to a probabilistic treatment of uncertain parameters and input
variables, independent of the nature of uncertainty. Low levels of statistical
uncertainty, such as the uncertainty about the average value of FOR.T and RR.T,
are represented by narrow probability distributions, and higher levels of
uncertainty, such as the uncertainty about the average FOR.P and RR.P, are
represented by wider probability distributions. Extreme cases of scenario
uncertainty, i.e. absence of knowledge about probabilities, could be represented
by a uniform distribution over the support of the uncertain variable or
parameter.

According to the taxonomy introduced in (Walker et al., 2003) uncertainty can
be categorized along three dimensions: its location in the modelling process; the
level of uncertainty; and the nature of uncertainty. Similar distinctions can be
found in other publications on uncertainty (Morgan, 1990). The categories for
the location of uncertainty are the model context, the model structure, model
parameters or the valuation of model outcomes. The categories for uncertainty
levels are statistical uncertainty - where the probabilities of outcomes are
known, scenario uncertainty -where the outcomes are known, but not their
probability, recognised ignorance — where one is aware of an effect, but neither
the outcomes nor their probability and complete ignorance - where one is not
aware of an effect. The nature of uncertainties can either be epistemic, i.e. a lack
of knowledge about otherwise well determined outcomes, or variability
uncertainty, i.e. an inherent, ontological indeterminacy of the outcomes even in
case of perfect information. We can summarize the possible categories in the
form of a cube as displayed in Figure 5.
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Figure 5: Uncertainty categories, illustration based on (Walker et al., 2003).

The treatment of uncertainty deviates along the dimensions. The nature of
different uncertainties is largely discussed in philosophical debates. In theory
any source and type of uncertainty until the level of scenario uncertainty can be
treated with the tools of Bayesian averaging. In practice an averaging over
alternative model structures is associated with much higher effort than
averaging over a large number of different parameter sets and is therefore much
less common. An overview of aggregation techniques that can be used for
averaging can be found in (Clemen and Winkler, 1999) and (Osherson and Vardi,
2006).

Box 1: Types of uncertainty

In step 2 of the calculation process, we calculate the natural availability aNatit of
each link i at each time step t as a function of the exogenously given time series
of weather variables (w1; ... wK;) to which the link is exposed. The functions for
the calculation of aNat which we use at this step are described in the appendix in
section 0.

In step 3 of the calculation process we calculate the weather dependent technical
forced outage and repair rate FOR.Tit and RR.Ti of each link i at each time step ¢
as a function of the exogenously given time series of weather variables (w1; ...
wK;) to which the link is exposed. The functions for the calculation of FOR.T and
RR.T which we use at this step are described in the appendix in section O.

In step 4 of the calculation process we calculate the technical availability aTec of
each link i at each time step t by simulating a random outage with probability
FOP.Ti for every link that was technically available at time step t-1 and a random
repair with probability RP.T for every link that was unavailable for technical
reasons at time t-1. The formula for calculating outage and repair probabilities
on the basis of forced outage rates FOR.T{ and repair rates RR.T{# and the
duration of a time step is explained in Box 2.

In step 5 of the calculation process we calculate the state dependent political
forced outage and repair rate FOR.Pit and RR.Pit of each link i at each time step ¢
as a function of the reserve margin at the output node of the link (w1; ... wK;) at
time t. The functions for the calculation of FOR.P and RR.P which we use at this
step are described in the appendix in section 0.
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In step 6 of the calculation process we calculate the political availability aPolt of
each link 7 at each time step t by simulating a random outage with probability
FOP.P¢ for every link that was politically available at time step t-1 and a random
repair with probability RP.Pit for every link that was unavailable for political
reasons at time t-1. The outage and repair probabilities are calculated on the
basis of political forced outage rates FOR.Pi and repair rates RR.Pt and the
duration of the time step in the same way as for technical risk in Box 2.

Within our model, the availability due to technical risk aTeci of a link i at time ¢
is represented by a simple birth-death process with a time-dependent forced
outage rate A =FOR.Tit and repair rate u =RR.Ti::

A

aTec;'= 0 o

The transition probability FOP.Tit of the link being in an outage state at time
t + 6 if it was available at time ¢ is obtained by solving the following differential
equation system:

o Tt O) e+ 0) - mo(t +0)
(2) my(t+6)+m(t+6)=1
(3) m(t) =1

where my(t + 6) is the probability of being unavailable at time t + 6 and
1 (t + 0) is the probability of being available at time t + 6.

As a solution we obtain the forced outage probability depending on the duration
0 of a time step:

(4) FOP.Tf=my(t+0) = om0 ) L (—] 4 0+

A+u
If we change the starting condition in equation (3) so that 7, (t) = 0, we obtain
the transition probability RP.Tit of link i being available at time t + @ if it was
available at time t:

Box 2: Calculation of transition probabilities based on outage and repair rates.

In step 7 of the calculation process we finally determine the system dispatch and
the flows in and out of each link* (fIn, fOutit) during time period t as a function
of the natural, technical and human availability (aNati, aTecit and aPolt) of each
link i at time t. In the current model we assume a simplified deterministic

4In our example, links that connect different markets have zero storage capacity so that

fOut = fIn *nInOut; . Storage links connect back to the same market, so that either filn=0 or fOut=0.
We can therefore simplify by using only one flow variable f=fIn + fOut, which is positive - in case
of supply - and negative - in case of demand.
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generation capacity is available.

An overview of the calculation process and the resulting dependency structure is
shown in Figure 6.
Step 1 &

E[FOR.T!], E[FOR.P;t],
E[RR.T{"] E[RR.P;]

Figure 6: Calculation steps and dependencies between variables.

Our model thus includes interdependencies along all three dimensions of the
matrix of system states in Figure 4.

Along dimension I, the interdependency between links is generated by
geographical proximity, which exposes different links to the same weather
variables, as well as by the network flow equations, which determine the flows in
and out of each link depending on the available capacity of all other links.

Along dimension II, dependencies occur because the technical forced outage and
repair rates may be influenced by the weather, political forced outage and repair
rates may be driven by the reserve margins that result from both natural and
technical availability.

Along dimension III, the availability of each link at time is a function of the
availabilities (aNatit, aTeci, aPolit) of each link at time t are a function of the
availabilities at time t-1 and the corresponding forced outage and repair rates.

The dependencies between variables are important because as a result of the
flaw of averages (Savage, 2009) in case of a non-linear dependency the average
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value of the dependent variable is likely to be different from the value that
results from the mean of the independent variable. For example, as illustrated in
Figure 7, the failure rate for the average wind speed may be different from the
average failure rate due to a distribution of wind speeds. The bias that is caused
by neglecting dependencies is further increased if the probability distribution of
the independent variable is broadened by modelling it as an uncertain, Bayesian

variable.
FOR.T ‘
E[FORT(s)] /

FOR.T(E[s]}—

Windspeed, s
Prob(s)

E[s) Windspeed, s

Figure 7: Flaw of averages in case of non-linear dependencies.

5 Impact of simplifications in probabilistic models

Many probabilistic models neglect uncertainty about input variables and
parameters as well as dependencies between the model variables. In this section
we will introduce a number of simplified model versions to test the impact this
has on results. We find that while the usage of averaging can lead to biased
results if dependencies work in the same direction, it may not cause a distortion
if dependencies work in an opposite direction and cancel each other out.

Energy market simulations typically neglect dependencies by using average
values at one or several steps of the calculation process described in Figure 6. In
models, such as the pathways 2050 calculator of the Department for Energy and
Climate change (Department of Energy and Climate Change (DECC), 2011) or the
project discovery by Ofgem (Ofgem, 2010) averages are used at all steps of the
calculation process up to step 6 by assuming a constant average de-rating factor
for each component. By contrast, technical reliability models used by system
operators include variability at step 4 of the calculation process by simulating
individual component failures instead of using average de-rating factors (Rei
and Schilling, 2008; Schilling et al., 2008). However, averaging may still be used
at steps 1 and 3 of the calculation process by assuming constant forced outage
rates and repair rates. This has been recognised as a problem in technical
reliability literature, and different factors - such as plant age, wind speeds and
precipitation - have been identified which lead to a variation of the forced outage
rates across time and space (Carer and Briend, 2008; Chan and Shaw, 1993;
Foley and Gutowski, 2008; Rothenstein and Halbig, 2010). More advanced
technical reliability models may therefore also include variability at the third
step of the calculation process by calculating forced outage rates as a function of
current environmental conditions. However, they will typically still use
averaging at the first step of the calculation process by assuming that the forced
outage rate at each point in time is perfectly known. In case of technical

13



reliability model, the bias due to this assumption may already be significant
(Dent and Bialek, 2010), even though the outage probabilities can be determined
reasonably well. If political risk is included in the probabilistic model, the
uncertainty is expected to be much larger and therefore cause a bigger impact.

In order to explore the impact of successively adding variability at the different
steps of the calculation process for a number of selected variables from the
matrix S in Figure 4, we calculate the results for a number of simplified versions
of our probabilistic model that are described in Table 2 to Table 4. Each of the
model versions M1 to M11 is characterised by the settings in the respective
columns.

Table 2: Treatment of variability due to stochastic outages (calculation steps 4 and 6) in
different probabilistic model versions.

Variability at Calculation Steps 4 and 6: Simulation of stochastic outages:

Model

. M1 M2 M3 M4 M5 M6 M7 M8 M9 | M10 | M11
Version
aNat no* no* no* no* no* no* no* no* no* no* no*
aTec no yes yes yes yes yes yes yes yes yes yes
aPol no yes yes yes yes yes yes yes yes yes yes
*) availability is a deterministic function of the corresponding weather variable, which is calculated at step 2.

Table 3: Treatment of variability due to interdependencies between variables (calculation
steps 2, 3 and 5) in different probabilistic model versions.

Variability at Calculation Steps 2, 3 and 5: Interdependencies between availabilities:
y:riilm M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11
aNat no no yes yes yes yes yes yes yes yes yes
FOR.T no no no yes yes yes yes yes yes yes yes
RR.T no no no no yes yes yes yes yes yes yes
FOR.P no no no no no yes yes yes yes yes yes
RR.P no no no no no no yes yes yes yes yes

14



Table 4: Treatment of variability due to uncertainty (calculation step 1) in different
probabilistic model versions.

Variability at Calculation Step 1: Bayesian Uncertainty described by Stdev as %Avg:
Model M1 | M2 | M3 | Ma | M5 | M6 | M7 | M8 | M9 | M10 | M11
Version
FOR.T 0 0 0 0 0 0 0 2.50%] 2.50%] 2.50% | 2.50%
RR.T 0 0 0 0 0 0 0 2.50%] 2.50%] 2.50% | 2.50%
FOR.P 0 0 0 0 0 0 0 0 25% | 25% | 25%
RR.P 0 0 0 0 0 0 0 0 25% | 25% | 25%
CapOutGas 0 0 0 0 0 0 0 0 0 5% 5%
CapOutEle 0 0 0 0 0 0 0 0 10% | 10%
CVar, CFix 0 0 0 0 0 0 0 0 0 0 100*%
*) % of the spread reported in the data sources divided by 4

Model version M1 represents a deterministic model which does not include any
variability of the supply side and uses constant averages at all steps of the
calculation process. Model version M2 uses the same settings as M1, but includes
the simulation of stochastic technical and political outages at step 3 of the
calculation process. For the variable aNat, there is no simulation of stochastic
outages at step 3 of the calculation process, because the capacity that is available
due to the availability of wind, sunlight, cooling water etc. is calculated as a
deterministic function of these variables in step 2 of the calculation process.

Model versions M3 to M7 use the same settings as M2 at calculation step 1 and 3,
but successively introduce variability at step 2 of the calculation process for an
increasing number of parameters from the natural availability, in M3, until
technical forced outage rates, in M4, technical repair rates, in M5, political forced
outage rates, in M6, and political repair rates, in M7. The dependencies that are
introduced are described in detail in the appendix.

Model versions M8 to M11 use the same settings as M7 at calculation steps 2 and
3, but successively include variability at step 1 within the model calculations for
an increasing number of parameters from the technical forced outage and repair
rates, in M8, until political forced outage and repair rates, in M9, gas and
electricity demand, in M10, and fixed and variable cost of different infrastructure
elements, in M11. The values in the table indicate the standard deviation of the
respective Bayesian variable at step 1 of the calculation process as a percentage
of its mean. We assume that the Bayesian uncertainty for technical parameters
(standard deviation of 2.5%) is much smaller than for political risk parameters
(standard deviation of 25%). In case of cost parameters, we assume that the
difference between minimum and maximum values reported in the data source
corresponds to four times the standard deviation. This would mean that in case
of a normal distribution the reported range would correspond to the 90%
confidence interval.

In order to make sure, that a difference in the results is caused by the
introduction of dependencies as such and not by different average input
parameter values, we calibrate each of the look-up functions in model versions
that include dependencies until the average value of the dependent variable is
the same as in absence of dependencies, so that for example the average value of
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FOR.P in model M5 and M6 is the same. In practice, neglecting dependencies may
also lead to a bias in the input parameter values. For example, the average
technical forced outage rates FOR.T of CCGT plants in the U.S. may be a biased
estimator of the average forced outage rates of CCGT plants in the U.K. if they are
not adjusted by differences in age, environmental and operating conditions. We
do not estimate this second type of error within this paper.

In Figure 8 and Figure 9 we show the average value, as well as the 5% quantile
and the 95% quantile of the continuity metrics that were explained in section 3.1
for each of the probabilistic model versions M1 to M11.
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Figure 8: Average value, 5% quantile and 95% quantile of the LOLE a) for gas, c) for
electricity and of the LOEE b) for gas and d) for electricity in case of infrastructure
scenario I1 model versions M1 to M11.
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c) EleLCS d) Ele LCC
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Figure 9: Average value, 5% quantile and 95% quantile of the LCS a) for gas, c) for
electricity and of the LCC b) for gas and d) for electricity in case of infrastructure scenario
I1 and model versions M1 to M11.

In Figure 8 d) we can see that in case of the deterministic model, in M1, there are
no outages, i.e. the LOLE and the LOEE in both the gas and the electricity markets
are zero. As we allow for more variability in each of the following model versions
M2 to M11, the probability of disruptions, measured by the LOLE and the LOEE
in both markets tends to increase. However, the increase is not monotonic. The
introduction of a variable RR.P in model version M7 leads to a drastic reduction
of the LOLE and the LOEE, because we assume that the variable repair rate is
smaller than average during high reserve margins — when there is no risk of
disruptions - but larger than average during low reserve margins - when there is
a high risk of disruptions. In case of the gas market, even in case of model version
M11, which allows for variability at all steps of the calculation process, the
disruptions are so in-frequent that the 95 percentile of the LOLE and the LOEE is
still zero, i.e. more than 95% of the simulation runs do not result in an outage.

In Figure 9 we can see that the economic continuity measures, LCS and LCC in
both markets follow a similar shape as the technical continuity measures in
Figure 8. The costs are lowest in case of the deterministic model M1 and increase
as we allow for more variability in the model versions M2 to M11. The magnitude
of changes of the LCC for electricity in Figure 9 d) that is caused by different
model versions is roughly similar to the changes of the corresponding technical
continuity measures in Figure 8 c) and d). However, we can see that the LCS in
Figure 9 c) reacts less strongly to the increasing variability than the LCC in
Figure 9 d). The reason for this goes back to the difference between LCS and LCC
that is described in Figure 1. In case of a disruption, the LCC weighs all
consumption by the VOLL, while the LCC only weighs the unserved load by VOLL.
The economic continuity measures for the gas market also show a higher impact
of variability on the LCC, in Figure 9 b) than on the LCS in Figure 9 a). However,
the overall impact on both the LCS and the LCC of increasing the variability by
moving from model version M1 to M10 is much smaller than for the electricity
market, and is almost negligible compared to the impact that is caused by
allowing uncertainty about future prices in M11.

Overall, the largest impacts in our example are caused by the introduction of
stochastic outages instead of fixed de-rating (in M2ff) and uncertainty about
future demand levels (in M10ff). The impact of using situation specific forced
outage rates for technical risk (in M4ff) or political risk (in M6ff) depends on the
direction and the extent of the dependency for the respective repair rates.
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In case of technical risk, repair rates during high wind periods are expected to be
lower than on average. The introduction of variable repair rates (in M5ff) thus
re-inforces the impact on output metrics of introducing situation specific outage
rates in model version M4.

In case of political risk, on the other hand, variable repair rates (in M7ff) are
expected to increase as a result of larger urgency in case of low reserve margins.
The introduction of variable repair rates thus reduces the impact on output
metrics of introducing situation specific outage rates in model version M6. The
dependency of political risk on reserve margins may thus be very relevant, if the
repair rate remains constant as in model version M6, or negligible, if the higher
risk during times of scarcity can be compensated by higher repair rates as in
model version M7.

After the above observations, which were all based on an analysis of the
infrastructure scenario 11, we will now address the question, whether the impact
of increasing variability in the model versions M1 to M11 depends on the
infrastructure scenario. If an increasing variability affects the continuity
measures of some infrastructure scenarios more than others, the amount of
variability that is included in the model could determine the choice between the
infrastructure scenarios.

We illustrate this in Figure 10 and Figure 11 by showing the impact of an
increasing variability in model versions M1 to M11 on the average value of the
continuity metrics for each of the infrastructure scenarios I1 to I3.
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Figure 10: Average value of a) LOLE and b) LOEE for infrastructure scenarios I1 to I3 and
model versions M1 to M11.
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Figure 11: Average value of a) LCS and b) LCC for infrastructure scenarios I1 to I3 and
model versions M1 to M11.

As we can see in Figure 11 the impact of an increasing variability in model
versions M1 to M11 on the LCS and the LCC is much smaller in case of
infrastructure scenario I3 than in case of the infrastructure scenarios I1 and I2.
The reason for this can be seen by looking at the technical continuity metrics.

We can see in Figure 10 a) that for all of the model versions M1 to M11, both the
additional gas plants in infrastructure scenario 12 and the additional strategic
hydro storage in infrastructure scenario 13 lead to a reduction of the LOLE.
However, the hydro storage seems to be much more effective as infrastructure
scenario I3 reduces the LOLE much more than infrastructure I2. The difference is
even bigger if we look at the LOEE in Figure 10 b). Here we can see that the
additional gas plants in I12 have almost no impact on the amount of energy that is
lost, while the hydro storage is almost completely eliminating all losses.

In summary, we can see that the additional gas plants can avoid a number of
outages that are due to disruptions in the electricity market which would not
have led to significant losses, while they cannot protect against the remaining
outages which are due to disruptions in the gas market and lead to significant
losses. The strategic hydro storage can protect against both types of outages and
the storage capacity is enough to almost completely eliminate losses in all model
versions. As we can see in Figure 11 b), the cost of hydro storage is still too high
for I3 to be cheaper than I1 in any of the model versions. However, m

6 Impact of simplifications made by alternative approaches

In an attempt to avoid the probabilistic simulation of highly uncertain events
such as political supply disruptions, many authors have suggested the usage of
alternative, simplified modelling approaches. However, we find that with the
exception of scenario approaches, the alternative models are likely to increase
the modelling errors. Scenario approaches on the other hand offer limited help if
decisions depend on a complex set of probabilities. A fully probabilistic approach
may be an uncomfortable necessity in these cases.

In the following paragraphs we will describe the different groups of approaches
with examples from the literature. By comparing the output of these metrics for
different infrastructure scenarios with the output from the probabilistic model
M11 in the last section, we illustrate the information that is lost if these metrics
are used.
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6.1 Indicators

Indicators are the least detailed method and at the same time - partly because of
their simplicity - one of the most popular approaches for analysing the broader
picture of energy security. They range from single indicators, such as import
shares or depletion rates of certain fuels to more complex, composite indicators
that cover aspects of environmental sustainability in addition to the continuity of
energy supplies (Kruyt et al., 2009). Composite indicators are either based on
subjectively weighted expert ratings (Institute for 21st Century Energy, 2009;
McCarthy et al., 2007; Scheepers et al., 2007) of different categories, on a
concentration measure such as the Herfindahl-Hirschmann Index(Frondel et al.,
2009; Grubb et al., 2006; Jansen et al., 2004; Lefevre, 2009) or the Shannon-Wiener
Index (Grubb et al, 2006) or on principal component analysis of simple
indicators (Gupta, 2008). An index based on the extension of concentration
measures by the disparity between components is proposed by for the
measurement of diversity.

This corresponds to a partial analyses of the aspects covered in our stylised
probabilistic energy system model. Indicators are usually calculated on the basis
of nominal capacities stored in the constant matrix C. They sometimes adjust for
the average value of time-varying reductions of available capacity that are stored
in the matrix S but usually discard the information about the interdependencies
between them. The diversity index by (Stirling, 2007) is the only one that
includes information about the interdependency between time-varying
availabilities of components in the form of a single number that describes the
disparity between each pair of links.

An advantage of using indicators is the easy data availability of simple
calculation. On the other hand, they provide limited information and generally
speaking tend to deal with uncertainty by ignoring the probability and
correlation of time-varying reductions of the available capacity due to different
risk sources. Indicators therefore make sense in the case of recognised ignorance
where the matrix S for risk events is unknown. In case of scenario and statistical
uncertainty the information about interdependencies between the availability
reduction of different components should not be discarded.

Figure 12 illustrates the disconnection between the two most widely used simple
indicators and the levelized cost of electricity to society that was obtained for
different infrastructure scenarios using the modelling approach M11.
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Figure 12: Herfindahl-Hirschmann Index (E.HHI), Shannon-Weiner Index (E.SWI) and
Levelized Cost to Society (E.LCS) for the electricity market in case of different
infrastructure scenarios.

Both concentration measures take into account neither the impact of storage on
the likelihood of disruptions, nor the impact of additional cost on the levelized
costs to consumers and society. As a result, the indicator value for scenario I1
and I3 is the same, even though simulation results show that the strategic
storage in I3 significantly reduces the disruption risk and adds high fixed cost.
While the loss of information is very clear, the hope that a more crude heuristic
may include ‘hidden’ information which was neglected in the probabilistic model
may be a reason for the continuing popularity of ratings. However, given the
mechanistic construction of the HHI and the SWI, this seems to be highly
unlikely. These simple indicators are thus very inadequate measures for the
continuity of energy quantities or prices. Nevertheless deterministic indicators
of this type continue to be used in policy advice and are also used in regulations
(Noél and Findlater, 2009).

6.2 Portfolio theory models

Portfolio theory has recently gained some popularity in the area of energy
security, because it builds a link between the concentration measures in the
previous section and the continuity of supply quantities or prices. The continuity
of supply quantities has been analysed on the basis of correlations between
historical fuel production (Neff, 1997) or wind-power output (Roques et al,,
2009) without regard to the cost of production. The continuity of prices on the
other hand has been analysed on the basis of correlations between generation
costs (Lesbirel, 2004) in case of constant load factors. One of the main
shortcomings of portfolio theory is the difficulty to analyse the joint impact of
variations in price and availability within the same model, as either the load
factors or the cost are assumed to be constant.

Portfolio theory corresponds to a significant simplification of the matrix S in our
framework along all three dimensions. Firstly, the dependency structure is
simplified along dimension I: bottlenecks of transmission capacity are neglected
and what counts is only the sum of available capacities or cost. Secondly, the
dependency structure is simplified along dimension II: weather states wK are not
modelled and each component is only characterised by its total availability or
cost instead of interdependent partial availabilities aNat, aTec and aPol. And
thirdly, the dependency structure is simplified along dimension III:
autocorrelation is neglected, and it is only considered how often a component is
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inavailable on average and how that is correlated with the inavailability of other
components. Whether the inavailability occurs during few, very long periods or
during many, very short periods cannot be distinguished.

The great advantage of portfolio theory is the easy calculation of optimal
portfolios and the intuitive explanation of the rationale of diversification.
However, if realistic networks, extreme events and storage shall be assessed, the
assumptions of unconstrained transmission, homogenous correlation (Kat,
2003) and the neglection of the time-dimension will lead to wrong results.

It is possible to mitigate some of these shortcomings, by calculating the average,
standard devation and correlation between costs on the basis of a probabilistic
simulation that takes into account the variations in both the cost and the
availability of infrastructure elements and the interdependencies between them.
Portfolio theory would then only be used to derive the optimal generation mix.
However, this would not reduce the modelling effort, as the calculation of
portfolios needs to happen on top of the probabilistic simulation. In addition, the
optimality of the resulting generation mix is still doubtful, as a different capacity
mix will result in different load factors which lead to different averages, standard
deviations and correlations of levelized cost. We have illustrated this in Figure
11, where we calculate the levelized cost in the electricity market on the basis of
the probabilistic model M11, and use the average, standard devation and
correlations between the levelized cost of individual power plants that were
calculated by this model during simulations for infrastructure scenario I1 in
order to estimate the total levelized cost of the portfolio in all the infrastructure
scenarios.

Levelized Cost of Portfolios, Electricity Market
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Figure 13: Levelized Cost of Society (LCS) in the electricity market, calculated using a
probabilistic model (M11) and portfolio theory (PFT).

We can see that in our example PFT leads to a strong over-estimation of cost, as
it does not take into account the reduction of levelized cost due to higher load
factors of reserve plant (in 12) or the strategic storage (in 13). Portfolio theory
thus provides a very incomplete picture of what would happen if new
infrastructure was built, or the existing links were interrupted.

(Fondazione Eni Enrico Mattei (FEEM),
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the dependencies described in section 4.

Scenario analyses thus correspond to a simulation of the energy system where
some or all of the time-dependent variables in the matrix S will be fixed at a
specific value in order to give a feeling for potential upper or lower bounds of the
availability. The probability of the scenarios is usually not specified. However, it
is possible to calculate break even frequencies that describe how often each
individual threat would have to occur in order for a certain policy measure to be
profitable (Joode et al., 2004).

An advantage of using scenarios is that they allow a very detailed analysis of the
system behaviour in a particular situation. The scenarios can well be described
in the form of a story, which makes them very useful for the communication of
the selected risks. However, if the number of highly uncertain parameters grows,
more scenarios are needed and the comparison between them can quickly
become in-tractable. If none of the policy measures dominates the others, the
decision in favour of one of them is only efficient for a range of implicit
probabilities.

In Figure 14 we illustrate this for the example of the different disruption
scenarios of Algerian gas and electricity supplies described in Figure 15.
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Figure 14: Levelized Cost to Society and break even frequencies in case of I1 to 13 under
different disruption scenarios.
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Figure 15: Description of disruption scenarios

We can see that as expected, the additional gas plants in scenario 12 reduce the
cost compared to I1 in disruption scenarios S5 to S7 and S9 to S10 where
electricity supplies are interrupted during times when gas is available, but is
unable to reduce cost in case of gas supply disruptions. The additional strategic
storage in I3 leads to a very high cost mark-up in absence of disruptions in S1,
but almost completely avoids further cost increases in the disruption scenarios.

Judging from the left hand part of Figure 14 alone it may seem tempting to
introduce a strategic storage facility. However, the break even frequencies for
the scenarios in the right hand part of Figure 14 put the decision in a different
perspective.

In most cases the disruption scenarios would have to occur with a frequency
between every two to five years in order for a policy measure to become
profitable, which seems unlikely. This is one of the main strengths of the break
even approach in (Joode et al., 2004). The calculation of break even frequencies
puts the savings into perspective and provides a more balanced way of
presenting the outcomes than the description of the mere cost increases - which
may be politically unacceptable - in case of different disruption scenarios. It can
be argued in how far this is desirable, as the political unacceptability of high cost
scenarios may have reasons that are not covered in the analysis. For example the
causation of existential threats to vulnerable parts of the population if they lose
access to heating during winters which is not captured by the cost function
because people’s ‘willingness’ to pay is restricted by their income. On the other
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hand the reasons for political aversion to high cost scenarios could be the
personal consequences for politicians if disruptions happened during their
governing period. In any case these reasons need to be explored, and if
appropriate, included in the analysis in the form of adjustments to the demand/
cost function to reflect the fact that the loss of a person’s life due to price hikes is
valued higher than his willingness to pay which may be constrained by his
income.

As we can see in Figure 14 and Figure 15, and also in (Joode et al., 2004), break-
even frequencies are a helpful tool as long as one of the policy alternatives -in
our example the absence of political intervention, which is represented by
infrastructure scenario I1 - is clearly dominating the others. However, as soon as
there is no clear winner, and the choice between the policy alternatives depends
on assumptions about a number of different uncertain parameters, the
approaches of scenario analysis and break-even frequencies can quickly reach
their limits. We illustrate this in Figure 16 by calculating the break-even
frequencies that would result if the additional gas plants in I2 or the strategic
storage in I3 could be obtained at 75% lower cost.

Break even freq. of disruption scenarios
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Figure 16: Break even frequencies in case of 75% cost reduction of reserve plants in 12
and I3.

In this case the break even frequency for the best option is in most cases
between 8 and 18 years which may be seen as more realistic. However, the
decision between the alternatives of no intervention (I1), strategic gas plants
(I2) and strategic hydro storage (I3) depends on the likelihood and duration of
gas outages - in disruption scenarios S2 to S4, and electricity outages - in
disruption scenarios S5 to S7. As the break-even frequencies in both cases are
within what could be seen as a realistic range, it is not clear which of the
infrastructure alternatives 12 or I3 should be preferred. In case of the joint
disruption, the infrastructure scenario I3 has a higher break even frequency in
case of a year-long simultaneous disruption of gas and electricity imports from
Algeria in S8, which means that it is more economical than 12 in those cases.
However, in case of the shorter joint outages with little or no overlap that are
described by S9 and S10, the infrastructure scenario 12 has a higher break even
frequency and is thus more economical than I3. In case of the joint outage
scenarios S8 to S10, the choice between 12 and I3 thus also depends on the
length of the disruptions and the overlap between electricity and gas outages. If
more policy options - such as different reserve plant technologies, or more
uncertain variables - such as the likelihood of interrupting imports from other
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countries are included in the analysis the picture becomes even more
complicated and the approach of break even frequencies reaches its limit.

In order to support decision maker in such a situation, it hence seems desirable
to at least complement the approach of scenarios and break-even frequencies,
with a fully probabilistic simulation using a model such as the one described in
section 4 that includes policy maker’s beliefs about the likelihood of different
uncertain outages. The disruption scenarios S7 to S10 in Figure 16 confirm what
we have also seen in the probabilistic model versions M5 to M7, that in this
context it does not only matter how likely individual disruptions are going to
happen, but also how likely they are going to coincide which means that political
risk needs to be represented in a way that is conditional on the state of the
system and the damage that is caused by disruptions. The modelling framework
which we have suggested explicitly takes this dependency into account.

7 Conclusions

In spite of the confusion in large parts of literature, the narrow concept of energy
security, which is the continuity of the supply demand balance, can be described
by a list of well defined metrics from the field of reliability analysis, such as the
loss of load expectation (LOLE), the loss of energy expectancy (LOEE) and the
levelized cost to consumers (LCC) or society (LCS).

These metrics can be quantified by using probabilistic time-series models to
propagate decision makers’ beliefs about the uncertain likelihood of different
disruptions in a consistent manner and enrich it with detailed information about
the technical operation of the system. However, the non-linearity of both the
dependencies and the cost function may lead to substantial biases if the
variability within the model is reduced by using averages at different steps of the
calculation process. Although this has long been recognized as a problem,
averages continue to be used for pragmatic reasons. The extent of the bias which
is caused by these simplifications depends on the degree to which the variations
of different variables re-enforce or compensate each other. In case of technical
risk, the variations of forced outage rates and repair rates caused by weather
dependencies will tend to re-enforce each other, which increases the importance
of modeling weather dependencies. In the case of intentional human risk, the
variations of the outage and repair rates caused by higher impact of disruptions
may compensate each other to the extent that it is possible to repair or replace
the disrupted supply source at a faster rate in case of more damaging
disruptions, which could reduce the importance of modeling dependencies for
human risk.

Due to the high uncertainty about in particular political risks and the time and
resources required to build a probabilistic model that includes all risk sources, a
variety of alternative modeling approaches have been suggested, which often use
different metrics than the reliability metrics described above. The approaches
can be grouped into indicators based on concentration measures, applications of
portfolio theory and scenario based analyses. With the exception of scenario
analyses these approaches tend to reduce the accuracy of the measurement even
further than a fully deterministic time-series based approach. They should
therefore only be considered if the budget does not allow for a more refined
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measurement. Scenario analyses avoid the quantification of unknown
probabilities while allowing a probabilistic treatment of better known risks
including the interdependencies between them. As a first step break even
frequencies can be used to assess whether a policy intervention could be
justified. However, in those cases where an intervention could in principle be
justified and none of the alternatives is dominating the others in all scenarios,
the scenario approach and break-even frequencies quickly reach their limit. As
the number of uncertain variables and hence the number of scenarios that need
to be evaluated increases, it can quickly become very difficult to decide without a
more formalized approach for weighting the probabilities of the different
scenarios. In those cases, it may hence be necessary to complement the scenario
and break-even analyses with a probabilistic model that includes the uncertain
risks as Bayesian variables. Within this paper we have suggested a framework
which may be used for this purpose.

In principle this framework could be extended to include a detailed
representation of all natural, technical and human risks that are known to have
an impact on the continuity of supplies. However, caution is warranted as a
detailed simulation, based on half-hourly demand values and a higher
geographical resolution can quickly become very resource intensive, both in
terms of the data requirements and the calculation speed. What seems to be the
largest problem in the analyses of energy security is thus neither the lack of
knowledge about individual interdependencies, nor the absence of modeling
techniques for stochastic failures but the resources required to gather the data,
build and run a model that includes all the known interdependencies and
infrastructures at reasonable level of detail and precision.
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Appendix A: Capacity scenarios

Table 5: Nominal output capacities of infrastructure scenarios.

Infrastructul"e Il 12 I3 Unit Source
Scenario
Italy Strategic
Pumped Storage 0 0.00 1241 [GW]
Italy Strategic Gas 0 1241 0.00 [GW]
Plants )
Assumption
Algeria Solar Plant 12.41 [GW]
Algeria HVDC Cable 12.41 [GW]
Italy Nuclear Plants 0 [GW]
Italy Coal& Bio Plant 18.99 [GW]
Italy Gas Plants 46.17 [GW]
Italy Oil Plants 4.05 [GW] DGTren 2030
Italy Hydro Plants 17.44 [GW] Reference Scenario
Italy Wind Plants 19.01 [GW]
Italy PV Plants 7.12 [GW]
ENTSO-E, maximum
daily average demand
Italy Electricity 5416 [GW] 2006-2009 scaled by
Demand yearly average
demand 2009 vs.
2030
Algeria Gas Pipe 3.62 [MMcm/h]
Russia Gas Pipe 4.26 [MMcm/h]
Neth.& Norw. (-}as 258 [MMcm /h]
Pipe Gas Infrastructure
Lybia Gas Pipe 1.14 [MMcm/h] ~ Europe, www.gie.eu
Italy Gas Prod 3.84 [MMcm/h]
Italy Gas Storage
Withd. 7.75 [MMcm/h]
SNAM RETE,
Italy Gas Demand -13.95 [MMcm/h] maximum daily

average demand
2006-2009
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Appendix B: Dependencies
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