
 

UNIVERSITY OF

CAMBRIDGE

Cambridge Working 
Papers in Economics 

 
Common Correlated Effects Estimation of 

Heterogeneous Dynamic Panel Data 

Models with Weakly Exogenous Regressors 

 

Professor Hashem Pesaran 

 

Alexander Chudik 

CWPE 1317 



Common Correlated Effects Estimation of Heterogeneous

Dynamic Panel Data Models with Weakly Exogenous Regressors∗

Alexander Chudik†

Federal Reserve Bank of Dallas, CAFE and CIMF

M. Hashem Pesaran‡

University of Southern California, CAFE, USA, and Trinity College, Cambridge, UK

April 2013

Abstract

This paper extends the Common Correlated Effects (CCE) approach developed by Pesaran

(2006) to heterogeneous panel data models with lagged dependent variable and/or weakly ex-

ogenous regressors. We show that the CCE mean group estimator continues to be valid but

the following two conditions must be satisfied to deal with the dynamics: a suffi cient number

of lags of cross section averages must be included in individual equations of the panel, and the

number of cross section averages must be at least as large as the number of unobserved common

factors. We establish consistency rates, derive the asymptotic distribution, suggest using co-

variates to deal with the effects of multiple unobserved common factors, and consider jackknife

and recursive de-meaning bias correction procedures to mitigate the small sample time series

bias. Theoretical findings are accompanied by extensive Monte Carlo experiments, which show

that the proposed estimators perform well so long as the time series dimension of the panel is
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1 Introduction

In a recent paper, Pesaran (2006) proposed the Common Correlated Effects (CCE) approach to

estimation of panel data models with multi-factor error structure, which has been further developed

by Kapetanios, Pesaran, and Yagamata (2011), Pesaran and Tosetti (2011), and Chudik, Pesaran,

and Tosetti (2011). The CCE method is shown to be robust to different types of cross section

dependence of errors, possible unit roots in factors, and slope heterogeneity. However, the CCE

approach as it was originally proposed does not cover the case where the panel includes a lagged

dependent variable and/or weakly exogenous variables as regressors.1 This paper extends the CCE

approach to allow for such regressors. This extension is not straightforward because coeffi cient

heterogeneity in the lags of the dependent variable introduces infinite order lag polynomials in the

large N relationships between cross-sectional averages and the unobserved factors (Chudik and

Pesaran, 2013a). Our focus is on stationary heterogenous panels with weakly exogenous regressors

where the cross-sectional dimension (N) and the time series dimension (T ) are suffi ciently large.

We focus on estimation and inference of the mean coeffi cients, and consider the application of bias

correction techniques to deal with the small T bias of the estimators.

Recent literature on large dynamic panels focuses mostly on how to deal with cross-sectional

(CS) dependence assuming slope homogeneity. Estimation of panel data models with lagged de-

pendent variables and cross-sectionally dependent errors has been considered in Moon and Weidner

(2010a and 2010b), who propose a Gaussian quasi maximum likelihood estimator (QMLE).2 Moon

andWeidner’s analysis assumes homogeneous coeffi cients, and therefore is not applicable to dynamic

panels with heterogenous coeffi cients.3 Similarly, the interactive-effects estimator (IFE) developed

by Bai (2009) also allows for cross-sectionally dependent errors, but assumes homogeneous slopes.4

Song (2013) extends the analysis of Bai (2009) by allowing for a lagged dependent variable as well as

coeffi cient heterogeneity, but provides results on the estimation of cross-section specific coeffi cients

only. This paper provides an alternative CCE type estimation approach to Song’s extension of the

1See Everaert and Groote (2012) who derive asymptotic bias of CCE pooled estimators in the case of dynamic
homogeneous panels.

2See also Lee, Moon, and Weidner (2011) for an extension of this framework to panels with measurement errors.
3Pesaran and Smith (1995) show that in the presence of coeffi cient heterogeneity pooled estimators are inconsistent

in the case of panel data models with lagged dependent variables.
4Earlier literature on large panels typically ignores cross section dependence of errors, including pooled mean

group estimation proposed by Pesaran, Shin, and Smith (1999), fully modified OLS estimation by Pedroni (2000) or
the panel dynamic OLS estimation by Mark and Sul (2003). These papers can also handle panels with nonstationary
data. There is also a large literature on dynamic panels with large N but finite T , which assumes homogeneous
slopes.
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IFE estimator. In addition, we propose a mean group estimator of the mean coeffi cients, and show

that CCE types estimators once augmented with a suffi cient number of lags and cross-sectional av-

erages perform well even in the case of dynamic models with weakly exogenous regressors. We also

show that the asymptotic distribution of the CCE estimators developed in the literature continue

to be applicable to the more general setting considered in this paper. Our method could extend to

Song’s IFE and we also investigate the performance of the mean group estimator based on Song’s

unit-specific coeffi cient estimates.

More specifically, in this paper we considered estimation of autoregressive distributed lagged

(ARDL) panel data models where the dependent variable of the ith cross section unit at time t,

yit, is explained by its lagged values, current and lagged values of k weakly exogenous regressors,

xit, m unobserved (possibly serially correlated) common factors, ft, and a serially uncorrelated

idiosyncratic error. In addition to the regressors included in the panel ARDL model, following

Pesaran, Smith, and Yamagata (2013) we also assume that there exists a set of additional covariates,

git, that are affected by the same set of unobserved common factors, ft. This seems reasonable

considering that agents in making their decisions face a common set of factors such as technology,

institutional set ups and general economic conditions, which then get manifested in many variables,

whether included in the panel data model under consideration or not. Similar arguments also

underlie forecasting using a large number of regressors popularized recently in econometrics by

Stock and Watson (2002) and Forni et al. (2005).

A necessary condition for the CCE mean group (CCEMG) estimator to be valid in the case of

ARDL panel data models is that the number of cross-sectional averages based on xit and git must

be at least as large as the number of unobserved common factors minus one (m− 1). In practice,

where the number of unobserved factors is unknown, it is suffi cient to assume that the number of

available cross-sectional averages is at least mmax− 1, where mmax denotes the assumed maximum

number of unobserved factors. In most economic applications mmax is likely to be relatively small.5

We also report on the small sample properties of CCEMG estimators for panel ARDL models,

using a comprehensive set of Monte Carlo experiments. In particular, we investigate two bias

correction methods, namely the half-panel jackknife due to Dhaene and Jochmans, 2012, and the

recursive mean adjustment due to So and Shin, 1999. We find that the proposed estimators have
5Stock and Watson (2002), Giannone, Reichlin, and Sala (2005) conclude that only few, perhaps two, factors

explain much of the predictable variations, while Bai and Ng (2007) estimate four factors and Stock and Watson
(2005) estimate as many as seven factors.
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satisfactory performance under different dynamic parameter configurations, and regardless of the

number of unobserved factors, so long as they do not exceed the number of cross-sectional averages,

and the time dimension is suffi ciently large. We compare the performance of CCEMG with the

mean group estimator based on Song’s IFE, and also with Moon and Weidner’s QMLE, Bai’s IFE

estimators developed for slope homogeneous ARDL panels. We find that jackknife bias correction is

more effective in dealing with the small sample bias than the recursive mean adjustment procedure.

Also, the bias correction seems to be helpful only for the coeffi cients of the lagged dependent

variable. The uncorrected CCEMG estimators of the coeffi cients of the regressors, xit, seem to

work fine even in the case of panels with a relatively small time dimension.

The remainder of the paper is organized as follows. Section 2 extends the multifactor residual

panel data model considered in Pesaran (2006) by introducing lagged dependent variables and

allowing the regressors to be weakly exogenous. Section 3 develops a dynamic version of the

CCEMG estimator for panel ARDL models. Section 4 discusses the jackknife and recursive de-

meaning bias correction procedures. Section 5 introduces the mean group estimator based on

Song’s individual estimates, describes the Monte Carlo experiments, and reports the small sample

results. Mathematical proofs are provided in the Appendix and additional Monte Carlo findings

are provided in a Supplement.

2 Panel ARDL Model with a Multifactor Error Structure

Suppose that the dependent variable, yit, the regressors, xit, and the covariates, git, are generated

according to the following linear covariance stationary dynamic heterogenous panel data model,

yit = cyi + φiyi,t−1 + β′0ixit + β′1ixi,t−1 + uit, (1)

uit = γ ′ift + εit, (2)

and

ωit =

 xit

git

 = cωi +αiyi,t−1 + Γ′ift + vit, (3)

for i = 1, 2, ..., N and t = 1, 2, ..., T , where cyi and cωi are individual fixed effects for unit i, xit is

kx× 1 vector of regressors specific to cross-section unit i at time t, git is kg × 1 vector of covariates
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specific to unit i, kx + kg = k, ft is an m × 1 vector of unobserved common factors, εit are the

idiosyncratic errors, Γi is an m × k matrix of factor loadings, αi is a k × 1 vector of unknown

coeffi cients, and vit is assumed to follow a general linear covariance stationary process distributed

independently of the idiosyncratic errors, εit.

The process for the exogenous variables, (3), can also be written equivalently as a panel ARDL

model in ωit. But we have chosen to work with this particular specification as it allows us to distin-

guish between cases of strict and weak exogeneous regressors in terms of the feed-back coeffi cients,

αi. The case of strictly exogenous regressors, covered in Pesaran (2006), refers to the special case

when αi = 0
k×1
. As in the earlier literature, the above specification also allows the regressors to

be correlated with the unobserved common factors. Lags of xit and git are not included in (3),

but they could be readily included. In order to keep the notations and exposition simple we also

abstract from observed common effects, additional lags of the dependent variable, and other deter-

ministic terms in (1) and (3). Such additional regressors can be readily accommodated at the cost

of further notational complexity.

In the above ARDL formulation, we specify the same lag orders for yit and xit because it is

desirable in empirical applications to start with a balanced lag order to avoid potential problems

connected with persistent regressors. It is also worth noting that a number of panel data models

investigated in the literature can be derived as special cases of (1)-(3). The analysis of Moon and

Weidner (2010a and 2010b) assumes that βi0 = β0, βi1 = β1 and φi = φ. Bai (2009) assumes

βi0 = β0, βi1 = β1 and φi = 0. Under the restriction

β1i = −φiβ0i, (4)

we have

yit − θ′ixit = cyi + φi
(
yi,t−1 − θ′ixit−1

)
+ uit,

where θi = −βi1/φi, which in turn can be written as (assuming that |φi| < 1)

yit = c∗yi + θ′ixit + γ∗′i f∗t + ε∗it, (5)

where c∗yi = cyi/ (1− φi), ε∗it = (1− φiL)−1 εit is a serially correlated error term, and f∗t is a

new set of unobserved common factors. Estimation and inference in panel model (5) have been

4



studied by Pesaran (2006) who introduced the CCE approach. This approach has been shown

to be robust to an unknown number of unobserved common factors (Pesaran, 2006, and Chudik,

Pesaran, and Tosetti, 2011), possible unit roots in factors (Kapetanios, Pesaran, and Yagamata,

2011), serial correlation of unknown form in ε∗it (Pesaran, 2006), spatial or other forms of weak

cross-sectional dependence in ε∗it (Pesaran and Tosetti, 2011, and Chudik, Pesaran, and Tosetti,

2011). However, if the restrictions set out in (4) on β0i and β1i do not hold then the CCE

approach is no longer applicable and the standard CCE estimators could be seriously biased, even

asymptotically.6 Our objective in this paper is to consider estimation and inference in the panel

ARDL model (1)-(3), where the parameter restrictions (4) do not necessarily hold, and the slope

coeffi cients πi =
(
φi,β

′
i0,β

′
i1

)′ are allowed to vary across units.
For future reference, partition matrix Γi = (Γxi,Γgi) intom×kx andm×kg matrices Γxi and Γgi,

vector αi =
(
α′xi,α

′
gi

)′
into kx× 1 and kg× 1 vectors αxi and αgi, and similarly vit =

(
v′xit,v

′
git

)′
into kx × 1 and kg × 1 vectors vxit and vgit.

3 Estimation

Let zit = (yit,x
′
it,g

′
it)
′ and write (1)-(3) compactly as

A0izit = ci + A1izi,t−1 + Cift + eit, (6)

where ci = (cyi, c
′
ωi)
′, Ci = (γi,Γi)

′,

A0i =


1 −β′0i 0

1×kg

0
kx×1

Ikx 0
kx×kg

0
kg×1

0
kg×kx

Ikg

 , A1i =


φi β′1i 0

1×kg

αxi 0
kx×kx

0
kx×kg

αgi 0
kg×kx

0
kg×kg

 ,

and eit = (εit,v
′
it)
′ is a serially correlated error process. A0i is invertible (for any i) and multiply-

ing (6) by A−1
0i , we obtain the following reduced form VAR(1) representation of zit with serially

correlated errors,

zit = czi + Aizi,t−1 + A−1
0i Cift + ezit,

6See Everaert and Groote (2012) for derivation of asymptotic bias of CCE pooled estimators in the case of dynamic
homogeneous panels.
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where czi = A−1
0i ci, ezit = A−1

0i eit, and Ai = A−1
0i A1i.

We postulate the following assumptions for the estimation of the short-run coeffi cients.

ASSUMPTION 1 (Individual Specific Errors) The individual specific errors εit and vjt′ are in-

dependently distributed for all i, j, t and t′. The vector of errors εt = (ε1t, ε2t, ..., εNt)
′ is spatially

correlated according to

εt = Rςεt, (7)

where the N × N matrix R has bounded row and column matrix norms, namely ‖R‖∞ < K

and ‖R‖1 < K, respectively, for some constant K < ∞, which does not depend on N , diagonal

elements of RR′ are bounded away from zero, ςεt = (ςε1t, ςε2t, ..., ςεNt)
′, and ςεit, for i = 1, 2, ..., N

and t = 1, 2, .., T , are independently and identically distributed (IID) with mean 0, unit variances,

and finite fourth-order moments. For each i = 1, 2, ..., N , vit follows a linear stationary process

with absolute summable autocovariances (uniformly in i),

vit =
∞∑
`=0

Si`ςv,i,t−`, (8)

where ςvit is a k× 1 vector of IID random variables, with mean zero, variance matrix Ik and finite

fourth-order moments. In particular,

‖V ar (vit)‖ =

∥∥∥∥∥
∞∑
`=0

Si`S
′
i`

∥∥∥∥∥ ≤ K <∞, (9)

for i = 1, 2, ..., N , where ‖A‖ is the spectral norm of the matrix A.

ASSUMPTION 2 (Common Effects) The m × 1 vector of unobserved common factors, ft =

(f1t, f2t, ..., fmt)
′, is covariance stationary with absolute summable autocovariances, distributed in-

dependently of the individual specific errors εit′ and vit′ for all i, t and t′. Fourth moments of f`t,

for ` = 1, 2, ...,m, are bounded.

ASSUMPTION 3 (Factor Loadings) The factor loadings γi, and Γi are independently and iden-

tically distributed across i, and of the common factors ft, for all i and t, with mean γ and Γ,

respectively, and bounded second moments. In particular,

γi = γ + ηγi, ηγi ∼ IID
(

0
m×1

,Ωγ

)
, for i = 1, 2, ..., N ,
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and

vec (Γi) = vec (Γ) + ηΓi, ηΓi ∼ IID
(

0
km×1

,ΩΓ

)
, for i = 1, 2, ..., N ,

where Ωγ and ΩΓ are m ×m and km × km symmetric nonnegative definite matrices, ‖γ‖ < K,

‖Ωγ‖ < K, ‖Γ‖ < K, and ‖ΩΓ‖ < K.

ASSUMPTION 4 (Heterogenous Coeffi cients) (2kx + 1) × 1 dimensional vector of coeffi cients

πi =
(
φi,β

′
0i,β

′
1i

)′ follows the random coeffi cient model

πi = π + υπi, υπi ∼ IID
(

0
2kx+1×1

,Ωπ

)
, for i = 1, 2, ..., N , (10)

where π =
(
φ,β′0,β

′
1

)′, ‖π‖ < K, ‖Ωπ‖ < K, Ωπ is (2kx + 1)× (2kx + 1) symmetric nonnegative

definite matrix, and the random deviations υπi are independently distributed of γj, Γj, εjt, vjt,

and ft for all i,j, and t. Furthermore, the support of φi lies strictly inside the unit circle, and

E ‖ci‖ < K for all i.

ASSUMPTION 5 (Regressors and Covariates) Regressors and covariates in ωit = (x′it,g
′
it)
′ are

either strictly exogenous and generated according to the canonical factor model (3) with αi = 0
k×1
,

or weakly exogenous and generated according to (3) with αi, for i = 1, 2, ..., N , IID across i and

independently distributed of υπj ,γj, Γj, εjt, vjt, and ft for all i, j and t. In the case where the

regressors are weakly exogenous we also assume:

(i) the support of λ1 (Ai) lies strictly inside the unit circle, for i = 1, 2, ..., N , where Ai =

A−1
0i A1i, and λ1 (Ai) denotes the largest eigenvalue (in absolute value) of Ai; and

(ii) the inverse of polynomial Λ (L) =
∑∞

`=0 Λ`L
`, where Λ` = E

(
A`
iA
−1
0i

)
, exists and has expo-

nentially decaying coeffi cients.

Let w = (w1, w2, ..., wN )′ be an N ×1 vector of non-stochastic (or pre-determined) weights that

satisfies the following ‘granularity’conditions

‖w‖ = O
(
N−

1
2

)
, (11)

wi
‖w‖ = O

(
N−

1
2

)
uniformly in i, (12)
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and the normalization condition
N∑
i=1

wi = 1. (13)

The weights vector w depends on N , but we suppress the subscript N to simplify notations.

Next, we derive a large N representation for cross-sectional averages of zit following Chudik

and Pesaran (2013a). Since the support of the eigenvalues of Ai is assumed to lie strictly inside

the unit circle, zit is an invertible covariance stationary process and can be written as

zit =
∞∑
`=0

A`
i

(
czi + A−1

0i Cift−` + ez,i,t−`
)
,

for i = 1, 2, ..., N . Taking weighted cross-sectional averages of the above and making use of the fact

that under our assumptions the elements of ezit are weakly cross-sectionally dependent, together

with the random coeffi cients Assumptions 3-5, we have

N∑
i=1

∞∑
`=0

wiA
`
iez,i,t−` = Op

(
N−1/2

)
.

Since (under Assumptions 3-5) Ai and A0,i are independently distributed of Ci, and Ai, A0,i and

Ci are independently distributed across i, we have

N∑
i=1

∞∑
`=0

wiA
`
iA
−1
0,iCift−` =

∞∑
`=0

E
(
A`
iA
−1
0,iCi

)
ft−` +Op

(
N−1/2

)
,

= Λ (L) Cf t +Op

(
N−1/2

)
,

where C = E (Ci) = (γ,Γ)′. Thus, yielding the following large N representation

z̃wt = Λ (L) Cf t +Op

(
N−1/2

)
, (14)

where z̃wt = z̄wt − c̄zw is k + 1 dimensional vector of de-trended cross section averages, z̄wt =

(ȳwt, x̄
′
wt, ḡ

′
wt)
′ =

∑N
i=1wizit is k + 1 dimensional vector of cross section averages, and c̄zw =∑N

i=1wi (Ik+1 −Ai)
−1 czi.

Multiplying (14) by the inverse of Λ (L) now yields the following large N expression for a linear
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combination of the unobserved common factors,

Cf t = Λ−1 (L) z̃wt +Op

(
N−1/2

)
. (15)

Consider now the special case where αi = 0
k×1
, and the regressors are strictly exogenous. In this

case the regressors are independently distributed of the coeffi cients in πi =
(
φi,β

′
0,i,β

′
1,i

)′, which
simplifies the derivation of the large N representation for z̃wt. In particular, (1− φiL) is invertible

for any i = 1, 2, ..., N under Assumption 4, and multiplying (1) by (1− φiL)−1 we have

yit =

∞∑
`=0

φ`icyi +

∞∑
`=0

φ`iβ
′
0ixi,t−` +

∞∑
`=0

φ`iβ
′
1ixi,t−`−1 +

∞∑
`=0

φ`iγ
′
ift−` +

∞∑
`=0

φ`iεi,t−`. (16)

Taking weighted cross-sectional averages, under Assumptions 1-5, and assuming αi = 0
k×1
, we

obtain

ywt = c̄yw + a (L)γ ′ft + a (L)
(
β′0 + β′1L

)
xwt +Op

(
N−1/2

)
, (17)

and

ωwt = c̄ωw + Γ′ft +Op

(
N−1/2

)
, (18)

where c̄yw =
∑N

i=1wicy,i (1− φi)−1, c̄ωw =
∑N

i=1wicωi, and a (L) =
∑∞

`=0 a`L
` with its elements

given by the moments of φi, namely a` = E
(
φ`i
)
, for ` = 0, 1, 2, .... Note that under Assumption

4, which constraints the support of φi to lie strictly inside the unit circle, the rate of decay of the

coeffi cients in a (L) is exponential. This restriction on the support of φi also ensures the existence of

all moments of φi. The rate of decay of the coeffi cients of a (L) will not necessarily be exponential

if the support of φi covered 1, and depending on the properties of the distribution of φi in the

neighborhood of 1, a (L) need not be absolute summable, in which case ywt could converge (in

a quadratic mean) to a long memory process as N → ∞. Such possibilities are ruled out by

Assumption 4.

However, under Assumption 4 and By Lemma A.1 of Chudik and Pesaran (2013b), the inverse

of a (L) exists and has exponentially decaying coeffi cients. Pre-multiplying both sides of (17) by

b (L) = a−1 (L), we obtain

γ ′ft = b (L) ywt − b (1) c̄yw − β′0xwt − β′1xw,t−1 +Op

(
N−1/2

)
. (19)
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Stacking equations (18) and (19), we obtain (15) with Λ−1 (L) reduced (in the strictly exogenous

case) to

Λ−1 (L) =


b (L) −β′0 − β′1L 0

1×kg

0
kx×1

Ikx 0
kx×kg

0
kg×1

0
kg×kx

Ikg

 . (20)

It follows from (15) that when rank (C) = m and regardless of whether the regressors are

weakly or strictly exogenous, de-trended cross section averages z̃wt and their lags can be used as

proxies for the unobserved common factors, assuming that N is suffi ciently large, namely we have

ft = G (L) z̃wt +Op

(
N−1/2

)
, (21)

where

G (L) =
(
C′C

)−1
C′Λ−1 (L) .

Note that the coeffi cients of the distributed lag function, G (L), decay at an exponential rate. In

particular, in the case of strictly exogenous regressors (where αi = 0
k×1
), the decay rate of the

coeffi cients in G (L) is given by the decay rate of the coeffi cients in b (L), see (20) and (23). As

established by Lemma A.1 of Chudik and Pesaran (2013b), the decay rate of the coeffi cients in b (L)

is exponential under Assumption 4, which confines the support of φi to lie strictly within the unit

circle. In the case of weakly exogenous regressors, an exponential rate of decay of the coeffi cients

in Λ−1 (L) is ensured by Assumption 5-ii.

The full column rank of C ensures that C′C is invertible and this rank condition is required for

the estimation of unit-specific coeffi cients. In contrast, the rank condition is not always necessary

for estimation of the cross-sectional mean of the coeffi cients, as we shall see below.

ASSUMPTION 6 (k + 1)×m dimensional matrix C = (γ,Γ)′ has full column rank.

Substituting the large N representation for the unobserved common factors (21) into (1), we

obtain

yit = c∗yi + φiyi,t−1 + β′0ixit + β′1ixi,t−1 + δ′i (L) z̄wt + εit +Op

(
N−1/2

)
, (22)
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where

δi (L) =
∞∑
`=0

δi`L
` = G′ (L)γi, (23)

and c∗yi = cyi − δ′i (1) c̄zw.

Consider now the following cross-sectionally augmented regressions, based on (22),

yit = c∗yi + φiyi,t−1 + β′0ixit + β′1ixi,t−1 +

pT∑
`=0

δ′i`z̄w,t−` + eyit, (24)

where pT is the number of lags (assumed to be the same across units, for the simplicity of exposition).

The error term, eyit, can be decomposed into three parts: an idiosyncratic term, εit, an error

component due to the truncation of possibly infinite polynomial distributed lag function, δi (L),

and an error component due to the approximation of unobserved common factors, namely

eyit = εit +

∞∑
`=pT+1

δ′i`z̄w,t−` +Op

(
N−1/2

)
.

Note that the coeffi cients of the distributed lag function, δi (L) = γ ′iG (L) , decay at an exponential

rate.

Let π̂i =
(
φ̂i, β̂

′
0i, β̂

′
1i

)′
be the least squares estimates of πi based on the cross-sectionally

augmented regression (24). Also consider the following data matrices

Ξi =



yipT x′i,pT+1 x′ipT

yi,pT+1 x′i,pT+2 x′i,pT+1

...
...

...

yi,T−1 x′iT x′i,T−1


, Q̄w =



1 z̄′w,pT+1 z̄′w,pT · · · z̄′w,1

1 z̄′w,pT+2 z̄′w,pT+1 · · · z̄′w,2
...

...
...

...

1 z̄′w,T z̄′w,T−1 · · · z̄′w,T−pT


, (25)

and the projection matrix

M̄q = IT−pT − Q̄w

(
Q̄′wQ̄w

)+
Q̄′w,

where IT−pT is a (T − pT ) × (T − pT ) dimensional identity matrix, and A+ denotes the Moore-

Penrose generalized inverse of A. Matrices Ξi, Q̄w, and M̄q depend also on pT , N and T , but we

omit these subscripts to simplify notations. We summarize and introduce additional notations that

will be useful (for proofs) in Appendix A.1.
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π̂i can now be written as

π̂i =
(
Ξ′iM̄qΞi

)−1
Ξ′iM̄qyi, (26)

where yi = (yi,pT+1, yi,pT+2, ..., yi,T )′. The mean group estimator of π = E (πi) =
(
φ,β′0,β

′
1

)′ is
given by

π̂MG =
1

N

N∑
i=1

π̂i. (27)

In addition to Assumptions 1-6 above, we shall also require the following further assumption.

ASSUMPTION 7 (a) Denote the (t− pT )-th row of matrix Ξ̃i = MhΞi by ξ̃
′
it =

(
ξ̃i1t, ξ̃i2t, ...., ξ̃i,2kx+1,t

)
,

where Mh is defined in the Appendix by (A.4). Individual elements of ξ̃it have uniformly

bounded fourth moments, namely there exists a positive constant K such that E
(
ξ̃

4

ist

)
< K

for any t = pT + 1, pT + 2, ..., T, i = 1, 2, ..., N and s = 1, 2, ..., 2kx + 1.

(b) There exists N0 and T0 such that for all N ≥ N0, T ≥ T0, (2kx + 1) × (2kx + 1) matrices

Ψ̂−1
Ξ,iT =

(
Ξ′iM̄qΞi/T

)−1 exist for all i.

(c) (2kx + 1)× (2kx + 1) dimensional matrix Σiξ defined in (A.14) in the Appendix is invertible

for all i and
∥∥∥Σ−1

iξ

∥∥∥ < K <∞ for all i.

This assumption plays a similar role as Assumption 4.6 in Chudik, Pesaran, and Tosetti (2011)

and ensures that π̂i, π̂MG and their asymptotic distributions are well defined.

First, we establish suffi cient conditions for the consistency of unit-specific estimates.

Theorem 1 (Consistency of π̂i) Suppose yit, for i = 1, 2, ..., N and t = 1, 2, ..., T is given by

the panel ARDL model (1)-(3), and Assumptions 1-7 hold. Then, as (N,T, pT )
j→ ∞, such that

p3
T /T → κ, 0 < κ <∞, we have

π̂i − πi
p→ 0

2kx+1×1
, (28)

where π̂i =
(
φ̂i, β̂

′
0i, β̂

′
1i

)′
is given by (26).

No restrictions on the relative expansion rates of N and T to infinity are required for the

consistency of π̂i in the theorem above, but the number of lags needs to be restricted so that there

are suffi cient degrees of freedom for consistent estimation (i.e. the number of lags is not too large,

in particular it is required that p2
T /T → 0) and the bias due to the truncation of (possibly) infinite

12



lag polynomials is suffi ciently small (i.e. the number of lags is not too small, in our case
√
TρpT → 0

for some positive constant ρ < 1). Letting p3
T /T → κ, 0 < κ < ∞, as T → ∞, ensures that these

conditions are met.7 The rank condition in Assumption 6 is also necessary for the consistency of

π̂i. This is because the unobserved factors are allowed to be serially correlated as well as being

correlated with the regressors.

3.1 Consistency and asymptotic distribution of π̂MG

Consistency of the unit-specific estimates π̂i is not always necessary for the consistency of the mean

group estimator of π = E(πi), which is established next.

Theorem 2 (Consistency of π̂MG) Suppose yit, for i = 1, 2, ..., N and t = 1, 2, ..., T is given by

the panel data model (1)-(3), and Assumptions 1-5 and 7 hold, and (N,T, pT )
j→ ∞, such that

p3
T /T → κ, 0 < κ <∞. Then,

(i) if Assumption 6 also holds,

π̂MG − π
p→ 0

2kx+1×1
, (29)

where π̂MG =
(
φ̂MG, β̂

′
0MG, β̂

′
1MG

)′
is given by (27);

(ii) if Assumption 6 does not hold but ft is serially uncorrelated, π̂MG − π
p→ 0

2kx+1×1
.

Theorem 2 establishes that π̂MG is consistent (as N and T tend jointly to infinity at any rate),

regardless of the rank condition when factors are serially uncorrelated, although they can still be

correlated with the regressors. When the factors are serially correlated, then the rank condition

is required for the consistency of π̂MG. As we have seen, full column rank of C is suffi cient for

approximating the unobserved common factors arbitrarily well by cross section averages and their

lags. In this case, the serial correlation of factors and correlation of factors and regressors do not

pose any problems. When the rank condition does not hold, but factors are serially uncorrelated,

then π̂i could be inconsistent due to the correlation of xit and ft, but the asymptotic bias of π̂i−πi

is cross-sectionally weakly dependent with zero mean and consequently the mean group estimator

is consistent.

The following theorem establishes the asymptotic distribution of π̂MG.
7See also a related discussion in Berk (1974), Chudik and Pesaran (2013b) and Said and Dickey (1984) on the

truncation of infinite polynomials in least squares regressions.
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Theorem 3 (Asymptotic distribution of π̂MG) Suppose yit, for i = 1, 2, ..., N and t = 1, 2, ..., T

are generated by the panel ARDL model (1)-(3), Assumptions 1-5 and 7 hold, and (N,T, pT )
j→∞

such that N/T → κ1 and p3
T /T → κ2, 0 < κ1,κ2 <∞. Then,

(i) if Assumption 6 also holds, we have

√
N (π̂MG − π)

d→ N

(
0

2kx+1×1
,Ωπ

)
, (30)

(ii) if Assumption 6 does not hold, but ft is serially uncorrelated, we have

√
N (π̂MG − π)

d→ N

(
0

2kx+1×1
,ΣMG

)
, (31)

where π̂MG =
(
φ̂
′
MG, β̂

′
0MG, β̂

′
1MG

)′
is given by (27) and ΣMG is given by equation (A.84)

in the Appendix.

In both cases, the asymptotic variance of π̂MG can be consistently estimated nonparametrically

by

Σ̂MG =
1

N − 1

N∑
i=1

(π̂i − π̂MG) (π̂i − π̂MG)′ . (32)

The convergence rate of π̂MG is
√
N due to the heterogeneity of the coeffi cients. Theorem 3

shows that the asymptotic distribution of π̂MG differs depending on the rank of the matrix C in

Assumption 6. If C has full column rank, then the unit specific estimates π̂i are consistent, ΣMG

reduces to Ωπ, and the asymptotic variance of the mean group estimator is given by the variance

of πi alone. If, on the other hand, C does not have the full column rank and factors are serially

uncorrelated then the unit-specific estimates are inconsistent (since ft is correlated with xit), but

π̂MG is consistent and asymptotically normal with variance that depends not only on Ωπ but also

on other parameters including the variance of factor loadings. Pesaran (2006) did not require any

restrictions on the relative rate of convergence of N and T for the asymptotic distribution of the

common correlated mean group estimator. This is no longer the case in our model due to O
(
T−1

)
time series bias of π̂i and π̂MG that arises from the presence of lagged values of the dependent

variable. This bias dates back to at least to Hurwicz (1950) and it has been well documented in

the literature. Theorem 3 requires N/T → κ1 for the derivation of the asymptotic distribution of
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π̂MG due to the time series bias, and it is therefore unsuitable for panels with T small relative to

N .

4 Bias-corrected CCEMG estimators

In this section we review the different procedures proposed in the literature for correcting the small

sample time series bias of estimators in dynamic panels and consider the possibility of developing

bias-corrected versions of CCEMG estimators for dynamic panels.

Existing literature focuses predominantly on homogeneous panels, where several different ways

to correct for O
(
T−1

)
time series bias have been proposed. This literature can be divided into the

following broad categories: (i) analytical corrections based on an asymptotic bias formula (Bruno,

2005, Bun, 2003, Bun and Carree, 2005 and 2006, Bun and Kiviet, 2003, Hahn and Kuersteiner,

2002 and 2011, Hahn and Moon, 2006, Hahn and Newey, 2004, Kiviet, 1995 and 1999, and Newey

and Smith, 2004); (ii) bootstrap and simulation based bias corrections (Everaert and Ponzi, 2007,

Phillips and Sul, 2003 and 2007), and (iii) other methods, including jackknife bias corrections

(Hahn and Newey, 2004, and Dhaene and Jochmans, 2012) and the recursive mean adjustment

correction procedures (So and Shin, 1999).

In contrast, bias correction for dynamic panels with heterogenous coeffi cients have been consid-

ered only in few studies. Hsiao, Pesaran, and Tahmiscioglu (1999) investigate bias-corrected mean

group estimation, where Kiviet and Phillips (1993) bias correction is applied to the individual esti-

mates of short-run coeffi cients. Hsiao, Pesaran, and Tahmiscioglu (1999) propose also a Hierarchical

Bayesian estimation of short-run coeffi cients, which they find to have good small sample proper-

ties in their Monte Carlo study.8 Pesaran and Zhao (1999) investigate bias correction methods in

estimating long-run coeffi cients and consider, in particular, two analytical corrections based on an

approximation of the asymptotic bias of long-run coeffi cients, a bootstrap bias-corrected estimator,

and a "naive" bias-corrected panel estimator computed from bias-corrected short-run coeffi cients

(using a result derived by Kiviet and Phillips, 1993).

8Zhang and Small (2006) further develops the hierarchical Bayesian approach of Hsiao, Pesaran, and Tahmiscioglu
(1999) by imposing a stationarity constraint on each of the cross section units and by considering different possibilities
for starting values. Bayesian approach has also been developed by Canova and Marcet (1999) to study income
convergence in a dynamic heterogenous panel of countries, and by Canova and Ciccarelli (2004 and 2009) to forecast
variables and turning points in a panel VAR. Forecasting with Bayesian shrinkage estimators have also been considered
by Garcia-Ferrer, Highfield, Palm, and Zellner (1987), Zellner and Hong (1989) and Zellner, Hong, and ki Min (1991).
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4.1 Bias corrected versions of π̂MG

All the bias correction procedures reviewed above are developed for panel data models without

unobserved common factors, and are not directly applicable to π̂MG. This applies to bootstrapped

based corrections, as well as the analytical corrections based on asymptotic bias formulae such as

the one derived by Kiviet and Phillips (1993). The development of analytical or bootstrapped bias

correction procedures for dynamic panel data models with a multifactor error structure is beyond

the scope of the present paper and deserve separate investigations of their own. Instead here we

consider the application of jackknife and recursive mean adjustment bias correction procedures to

π̂MG that do not require any knowledge of the error factor structure and are particularly simple

to implement.

4.1.1 Jackknife bias correction

Jackknife bias correction is popular due to its simplicity and wide applicability. Jackknife bias

correction can be applied to the panel mean group estimator, or at the level of unit-specific esti-

mates. Since the mean group estimator is a linear function of the unit-specific estimators, applying

the correction to π̂MG or to the unit-specific estimates, π̂i, yields numerically identical results.

We consider the "half-panel jackknife" method discussed by Dhaene and Jochmans (2012), which

corrects for O
(
T−1

)
bias. Jackknife bias-corrected CCEMG estimators are constructed as:

π̃MG = 2π̂MG −
1

2

(
π̂aMG + π̂bMG

)
,

where π̂aMG denotes the CCEMG estimator computed from the first half of the available time

period, namely over the period t = 1, 2, ..., [T/2], where [T/2] denotes the integer part of T/2,

and π̂bMG is the CCEMG estimators computed using the observations over the period t = [T/2] +

1, [T/2] + 2, ..., T .

4.1.2 Recursive mean adjustment

The second bias-correction is based on the recursive mean adjustment method proposed by So and

Shin (1999), who advocate demeaning variables using the partial mean based on observations up
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to the time period t− 1. In particular, we let

ỹit = yit −
1

t− 1

t−1∑
s=1

yis,

and

ω̃it = ωit −
1

t− 1

t−1∑
s=1

ωis,

for i = 1, 2, ..., N and t = 2, 3, ..., T , where ωit = (x′it,g
′
it)
′. We then compute bias-adjusted CCE

mean group estimator based on the recursive demeaned variables ỹit and ω̃it (with T − 1 available

time periods, t = 2, 3, ..., T ).

5 Monte Carlo Experiments

Our main objective is to investigate the small sample properties of the CCEMG estimator and its

bias corrected versions in panel ARDLmodels under different assumptions concerning the parameter

values and the degree of cross-sectional dependence. We also examine the robustness of the quasi

maximum likelihood estimator (QMLE) developed by Moon and Weidner (2010a and 2010b) and

the interactive-effects estimator (IFE) proposed by Bai (2009) to coeffi cients heterogeneity, and

include an alternative MG estimator based on Song’s extension of Bai’s IFE approach (denoted as

π̂sMG) and investigate its performance as well.

We start with the description of the data generating process in subsection 5.1, followed by a

summary account of the different estimators being considered in subsection 5.2, before providing a

summary of our main findings in the final subsection.

5.1 Data Generating Process

We set kx = kg = 1 and write (1)-(3) as

yit = cyi + φiyi,t−1 + β0ixit + β1ixi,t−1 + uit, uit = γ ′ift + εit, (33)

and  xit

git

 =

 cxi

cgi

+

 αxi

αgi

 yi,t−1 +

 γ ′xi

γ ′gi

 ft +

 vxit

vgit

 . (34)
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The unobserved common factors in ft and the unit-specific components vit = (vxit, vgit)
′ are gener-

ated as independent stationary AR(1) processes:

ft` = ρf`ft−1,` + ςft`, ςft` ∼ IIDN
(
0, 1− ρ2

f`

)
, (35)

vxit = ρxivxi,t−1 + ςxit, ςxit ∼ IIDN
(
0, σ2

vxi

)
, (36)

vgit = ρgivgi,t−1 + ςgit, ςgit ∼ IIDN
(
0, σ2

vgi

)
(37)

for i = 1, 2, ..., N , ` = 1, 2, ..,m, and for t = −99, ..., 0, 1, 2, ..., T with the starting values f`,−100 = 0,

and vxi,−100 = vgi,−100 = 0. The first 100 time observations (t = −99,−48, ..., 0) are discarded. We

generate ρxi and ρgi, for i = 1, 2, ....N as IIDU [0.0.95], and consider two values for ρf`, representing

the case of serially uncorrelated factors, ρf` = 0, for ` = 1, 2, ...,m, and the case of the serially

correlated factors ρf` = 0.6, for ` = 1, 2, ...,m. We set σ2
vxi = σ2

vgi = σ2
vi and allow σvi to be

correlated with β0i and set σvi = βi0

√
1− [E (ρxi)]

2.

As before, we let zit = (yit, xit, git)
′, and write the data generating process for zit more compactly

as (see (6)),

zit = czi + Aizi,t−1 + A−1
0i Cift + A−1

0i eit, (38)

where czi = (cyi + β0icxi, cxi, cgi)
′,

Ai =


φi + β0iαxi β1i 0

αxi 0 0

αgi 0 0

 , A−1
0i =


1 β0i 0

0 1 0

0 0 1

 , Ci =
(
γi,γxi,γgi

)′ ,

and eit = (εit + β0ivxit, vxit, vgit)
′ is a serially correlated error vector. We generate zit for i =

1, 2, ..., N , and t = −99, ..., 0, 1, 2, ..., T based on (38) with the starting values zi,−100 = 0, and

the first 100 time observations (t = −99,−48, ..., 0) are discarded as burn-in replications. The

fixed effects are generated as ciy ∼ IIDN (1, 1), cxi = cyi + ςcxi, and cgi = cyi + ςcgi, where

ςcxi, ςcgi ∼ IIDN (0, 1), thus allowing for dependence between (xit, git)
′ and cyi.

For each i the process {zit} is stationary if ft and eit are stationary and the eigenvalues of Ai

lie inside the unit circle. More specifically the parameter choices for |λ1 (Ai)| < 1 have to be such

that
1

2

∣∣∣∣φi + αxiβ0i ±
√

(φi + αxiβ0i)
2 + 4β1iαxi

∣∣∣∣ < 1.
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Suppose now that we only consider positive values of φi, αxi and β0i, such that φi + αxiβ0i < 2.

Then it is easily seen that suffi cient stationary conditions are

(β0i + β1i)αxi < 1− φi,

(β1i − β0i)αxi < 1 + φi.

Accordingly, we set β1i = −0.5 for all i, and generate β0i as IIDU(0.5, 1). When αxi > 0, we need

to generate αxi such that 0.5αxi < 1 − φi. We consider two possibilities for φi: Low values where

φi are generated as IIDU(0, 0.8) and αxi as IIDU(0, 0.35). High values where use the draws,

φi ∼ IIDU(0.5, 0.9) and αxi ∼ IIDU(0, 0.15). These choices ensure that the support of λ1 (Ai)

lies strictly inside the unit circle, as required by Assumption 5. Values of αgi do not affect the

eigenvalues of Ai and are generated as αgi ∼ IIDU(0, 1).

The above DGP is more general than the other DGPs used in other MC experiments in the

literature and allows for weakly exogenous regressors. The factors and regressors are allowed to be

correlated and persistent, and correlated fixed effects are included.

All factor loadings are generated independently as

γi` = γ` + ηi,γ`, ηi,γ` ∼ IIDN
(
0, σ2

γ`

)
,

γxi` = γx` + ηi,γx`, ηi,γx` ∼ IIDN
(
0, σ2

γx`

)
,

γgi` = γg` + ηi,γg`, ηi,γg` ∼ IIDN
(
0, σ2

γg`

)
for ` = 1, 2, ..,m, and i = 1, 2, ..., N . Also, without loss of generality, the factor loadings are

calibrated so that V ar(γ ′ift) = V ar (γ ′xift) = V ar
(
γ ′gift

)
= 1. We also set σ2

γ` = σ2
γx` = σ2

γg` =

0.22, γ` =
√
bγ`, γx` =

√
`bx` and γg` =

√
(2`− 1) bg`, for ` = 1, 2, ...,m, where bγ = 1/m − σ2

γ`,

bx = 2/ [m (m+ 1)]− 2/ (m+ 1)σ2
x` and bg = 1/m2 − σ2

g`/m, for ` = 1, 2, ...,m. This ensures that

the contribution of the unobserved factors to the variance of yit does not rise with m. We consider

m = 1, 2 or 3 unobserved common factors.

Finally, the idiosyncratic errors, εit, are generated to be heteroskedastic and weakly cross-

sectionally dependent. Specifically, we adopt the following spatial autoregressive model (SAR) to

generate εt = (ε1t, ε2t, ..., εNt)
′:

εt = aεSεεt + eεt, (39)
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where the elements of eεt are drawn as IIDN
(
0, 1

2σ
2
i

)
, with σ2

i obtained as independent draws

from χ2(2) distribution,

Sε =



0 1
2 0 0 · · · 0

1
2 0 1 0 0

0 1 0
. . .

...

0 0
. . . . . . 1 0

... 1 0 1
2

0 0 · · · 0 1
2 0


,

and the spatial autoregressive parameter is set to aε = 0.4. Note that {εit} is cross-sectionally

weakly dependent for |aε| < 0.5.

In addition to these experiments, we also consider pure panel autoregressive experiments where

we set β0i = β1i = 0, for all i. Table 1 summarizes the various parameter configurations of all the

different experiments. In total, we conducted 24 experiments covering the various cases: with or

without regressors in the equation for the dependent variable, low or high values of φ = E (φi),

m = 1, 2, or 3 common factors, and persistent or serially uncorrelated common factors. We consider

the following combinations of sample sizes: N,T ∈ {40, 50, 100, 150, 200}, and set the number of

replications to R = 2000, in the case of all experiments.

5.2 Estimation techniques

The focus of the MC results will be on the estimates of the average parameter values φ = E (φi) and

β0 = E (β0i), in the case of experiments with regressors, xit. But before presenting the outcomes

we briefly describe the computation of the alternative estimators being considered.9

5.2.1 Dynamic CCE mean group estimator

We base the CCE mean group estimator on the following cross-sectionally augmented unit-specific

regressions,

yit = ciy + φiyi,t−1 + β0ixit + β1ixi,t−1 +

pT∑
`=0

δ′i`z̄t−` + eyit, (40)

9We are grateful to Jushan Bai, Hyungsik Roger Moon, and Martin Weidner for providing us with their Matlab
codes.
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for i = 1, 2, ..., N , where z̄t = N−1
∑N

i=1 zit = (ȳt, x̄t, ḡt)
′. We set pT equal to the integer part of

T 1/3, denoted as pT =
[
T 1/3

]
. This gives the values of pT = 3, 3, 4, 5, 5 for T = 40, 50, 100, 150, 200,

respectively. The CCE mean group estimator of φ and β0 is then obtained by arithmetic averages

of the least squares estimates of φi and β0i based on (40).

We also computed bias-corrected versions of the CCEMG estimator using the half-panel jack-

knife and the recursive mean adjusted estimators as described in Section 4.1.

5.2.2 QMLE estimator by Moon and Weidner

We deal with fixed effects by de-meaning the variables before implementing the QMLE estimation

procedure. Denote the demeaned variables as

ẏit = yit − T−1
T∑
t=1

yit, and ẋit = xit − T−1
T∑
t=1

xit, (41)

for s = 1, 2 and i = 1, 2, ..., N . We compute the bias-corrected QMLE estimator defined in

Corollary 3.7 in Moon and Weidner (2010a) using ẏit as the dependent variable and the vector

żit = (ẏi,t−1, ẋit, ẋi,t−1)′ as the vector of explanatory variables. Two options for the number of

unobserved factors are considered: the true number of factors and the maximum number, 3, of

unobserved factors.

5.2.3 Interactive-effects estimator by Bai

We deal with the fixed effects in the same way as before. In particular, we use the demeaned

variables ẏit, and ẋit,s for s = 1, 2, to compute the interactive-effects estimator as the solution to

the following set of non-linear equations:

π̂b =

(
N∑
i=1

Ξ̇′iMF̂ Ξ̇i

)−1 N∑
i=1

Ξ̇′iMF̂ ẏi, (42)

1

NT

N∑
i=1

(
ẏi − Ξ̇iπ̂b

)(
ẏi − Ξ̇iπ̂b

)′
F̂ = F̂V̂, (43)

where π̂b =
(
φ̂b, β̂0b, β̂1b

)′
is the interactive-effects estimator , MF̂ = IT − F̂

(
F̂F̂
′)−1

F̂′, V̂ is a

diagonal matrix with the m largest eigenvalues of the matrix 1
NT

∑N
i=1

(
ẏi − Ξ̇iπ̂b

)(
ẏi − Ξ̇iπ̂b

)′
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arranged in decreasing order, ẏi = (ẏi2, ẏi3, ..., ẏiT )′ and

Ξ̇i =



ẏi1 ẋi2 ẋi1

ẏi,2 ẋi3 ẋi2
...

...
...

ẏi,T−1 ẋiT ẋi,T−1


.

The system of equations (42)-(43) is solved by an iterative method.

Bai (2009) does not allow for a lagged dependent variable in the derivation of the asymptotic

results for the interactive-effects estimator, but considers this possibility in Monte Carlo experiments

and concludes that parameters are well estimated also for the DGP with a lagged dependent

variable. As in the case of the QMLE estimator, we consider Bai’s estimates based on the true

number of factors, and on the maximum number of factors, namely 3.

5.2.4 Mean Group estimator based on Song’s extension of Bai’s IFE approach

Song (2013) extends Bai’s IFE approach by allowing for coeffi cient heterogeneity and lags of the

dependent variable. Song focuses on the estimates of individual coeffi cients obtained from the

solution to the following system of nonlinear equations, which as he shows minimizes the sum of

squared errors,

π̂si =
(
Ξ̇′iMF̂ Ξ̇i

)−1
Ξ̇′iMF̂ ẏi, for i = 1, 2, ..., N , (44)

1

NT

N∑
i=1

(
ẏi − Ξ̇iπ̂i

)(
ẏi − Ξ̇iπ̂i

)′
F̂ = F̂V̂. (45)

Similarly to Bai’s IFE procedure, we use demeaned observations to deal with the presence of

fixed effects and the system of equations (44)-(45) is solved numerically by an iterative method.

Song (2013) establishes
√
T consistency rates of individual estimates π̂si under asymptotics N,T

j→

∞ such that T/N2 → 0.

Given our random coeffi cient assumption on πi, we adopt the following mean group estimator

based on Song’s individual estimates,

π̂sMG =
1

N

N∑
i=1

π̂si ,
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and investigate the performance of π̂sMG with its variance estimated nonparemetrically by

Σ̂s
MG =

1

N − 1

N∑
i=1

(π̂si − π̂sMG) (π̂si − π̂sMG)′ .

Note that since
√
T (π̂si − πi) = Op (1) (uniformly in i) as N,T

j→ ∞ such that T/N2 → 0 (see

Song, 2013, Theorem 2), it readily follows that (also see Assumption 4)

π̂sMG − π =
1

N

N∑
i=1

υπi +Op

(
1√
T

)
.

However, suffi cient conditions for
√
N (π̂sMG − π)

d→ N (0,Ωπ) as N,T
j→ ∞ remains to be inves-

tigated and this is outside the scope of the present paper.

6 Monte Carlo findings

In this section we report some of the main findings, and direct the reader to an online Supplement

where the full set of results can be accessed.

Table 2 summarizes the results for the bias (×100) and root mean square error (RMSE, ×100) in

the case of the experiment with regressors, φ = E (φi) = 0.4, and one serially correlated unobserved

common factor (Experiment 14 in Table 1). The first panel of this table gives the results for the

fixed effects estimator (FE) which provides a benchmark against three sources of estimation bias:

the time series bias of order T−1, the bias from ignoring a serially correlated factor, and the bias

due to coeffi cient (slope) heterogeneity. The latter two biases are not diminishing in T and we see

that their combined effect remains substantial even for T = 200.

Next consider the QMLE estimator due to Moon and Weidner, which allows for unobserved

factors, but fails to account for coeffi cient heterogeneity. As can be seen, this estimator still suffers

from a substantial degree of heterogeneity bias which does not diminish in T . This is in line with

the theoretical results derived in Pesaran and Smith (1995), where it is shown that in the presence

of slope heterogeneity pooled least squares estimators are inconsistent in the case of panel data

models with lagged dependent variables. This would have been the case even if the unobserved

factors could have been estimated without any sampling errors. Initially, for T = 40, negative time

series bias helps the performance of QMLE in our design, but as T increases, the time series bias
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diminishes and the positive coeffi cient heterogeneity bias dominates the outcomes. The bias for

T = 200 ranges between 0.07 to 0.10 which amounts to 20− 25% of the true value. Inclusion of 3

as opposed to 1 unobserved common factor improves the performance but does not mitigated fully

the consequences of coeffi cient heterogeneity. Results for Bai’s IFE approach are similar to those

of QMLE and are therefore reported only in the online Supplement to save space.

In contrast the CCEMG estimator deals with the presence of persistent factors and coeffi cient

heterogeneity, but fails to adequately take account of the time series bias. As can be seen from the

results, the uncorrected CCEMG estimator suffers from the time series bias when T is small, with

the bias diminishing as T in increased. The sign of the bias is negative, which is in line with the

existing literature. Thee bias of the CCEMG estimator is around −0.12 for T = 40, and declines

to around −0.02 when T = 200.

Both bias correction methods considered are effective in reducing the time series bias of the

CCEMG estimator, but the jackknife bias correction method turns out to be more successful

overall. It is also interesting that the jackknife correction tends to slightly over-correct whereas

the RMA procedure tends to under-correct. Both bias-correction methods also reduced the overall

RMSE for all values of N and T considered.

The mean group estimator based on Song’s individual estimates performs slightly worse than

the jackknife bias-corrected CCEMG, but overall its performance (in terms of bias and RMSE)

seems to be satisfactory. The knowledge of the true number of factors, however, plays a very

important role in improving the performance of this estimator.

Table 3 reports findings for estimation of β0 in the same experiment. As before, the FE and

QMLE estimators continue to be biased even when T is large. The selection of the number factors

seems to be quite important for the bias of QMLE estimator (and also Bai’s IFE estimator reported

in the Supplement). The bias of CCEMG estimators is, in contrast, very small, between 0.0 to 0.02

for all values of N and T . Bias correction does not seem to matter for the CCEMG estimation of

β0. The small sample time series O
(
T−1

)
bias for the estimation of β0 is much smaller as compared

to the bias of the autoregressive coeffi cient. Bias correction seems therefore not so important for

the estimation of β0, and the uncorrected version of CCEMG estimator performs better in terms

of RMSE compared to its bias corrected versions. π̂sMG also performs well although its RMSE is,

in the majority of cases, slightly worse than RMSE of the uncorrected CCEMG estimator.
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An important question is how robust are the various estimators to the number of unobserved

factors. The MC results with more than one factor are summarized in Tables 4-7, and show that

the CCEMG estimator continues to work well regardless of the number of factors and whether the

factors are serially correlated. For m = 2 or 3, the performance of the CCEMG estimator and

its bias-corrected versions is qualitatively similar to the case of m = 1 discussed above. Only a

slight deterioration in bias and RMSE is observed when m is increased to 3, most likely due to the

increased complexity encountered in approximating the space spanned by the unobserved common

factors.

To check the validity of the asymptotic distribution of the CCEMG and other estimators, we

now consider the size and power performance of the different estimators under consideration. We

compute the size (×100) at 5% nominal level and the power (×100) for the estimation of φ and β0

with the alternatives H1 : φ = 0.5 and H1 : φ = 0.8, associated with the null values of φ = 0.4 and

0.7, respectively, and the alternative of H1 : β0 = 0.85, associated with the null value of β0 = 0.75.

The results for size and power in the case of the Experiments 14, 16 and 18 are summarized in

Tables 8-13.

As can be seen the tests based on FE and QMLE estimators and Bai’s IFE (reported in the

Supplement) are grossly oversized irrespective of whether the parameter of interest is φ or β0. In

contrast the CCEMG estimator and the MG estimator based on Song’s individual estimates have

the correct size if one is interested in making inference about β0, but both estimators tend to be

over-sized if the aim is to make inference about φ. These results are in line with our theoretical

findings and largely reflect the time series bias of order O
(
T−1

)
which is present in the MG type

estimators of φ. The bias-corrected versions of the CCEMG estimator perform much better, with

the jackknife bias-correction method generally outperforming the RMA procedure. The condition

N/T → κ1, 0 < κ1 <∞, in Theorem 3 plays an important role in ensuring that the tests based on

the CCEMG estimator of φ have the correct size. In particular, the size worsens with an increase

in the ratio N/T , especially when T = 40. Relatively good size (7%-9%) is achieved only when

T > 100.

As already noted, the size of the tests based on the CCEMG estimator of β0, (Tables 9, 11

and 12) is strikingly well behaved in all experiments and is very close to 5 percent for all values

of N and T , which is in line with low biases reported for this estimator. Similar results also hold
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for πsMG, although there are some incidences of size distortions for this MG estimator when T is

relatively small (40− 50).

Given the importance of the time series bias for the estimation of and inference on φ, it is also

reasonable to check the robustness of our findings to higher values of φ. The estimation bias is

likely to increase as φ is increased towards unity. The results for the experiments with φ set to 0.7

are reported in the online Supplement, and not surprisingly are generally worse than the results

reported in the tables below for φ = 0.4. Although, once again, the estimates of β0 tend not be

much affected by the choice of φ.

The results of the experiments with purely autoregressive panel data models (reported in the

Supplement) are very similar to the ones discussed above, although the small sample performance

of CCEMG estimator of φ is slightly better as compared to the experiments with regressors.

Overall, our findings suggest that when β0 is the parameter of interest, the uncorrected CCEMG

estimator seems to be preferred (in terms of bias, RMSE, size, and power), whereas jackknife

corrected CCEMG estimator seems to be preferred for estimation of φ, but the time dimension T

needs to be relatively large in order to obtain a correct size for the tests of φ based on the CCEMG

type estimators of φ, although some marginal improvements can be achieved if the jackknife bias-

corrected version of CCEMG is used.

7 Conclusion

This paper extends the Common Correlated Effects (CCE) approach to estimation and inference

in panel data models with a multi-factor error structure, originally proposed in Pesaran (2006),

by allowing for the inclusion of lagged values of the dependent variable and weakly exogenous

regressors in the panel data model. We show that the CCE mean group estimator continues

to be valid asymptotically but the following two conditions must be satisfied to deal with the

presence of lagged dependent variables amongst the regressors: a suffi cient number of lags of cross-

sectional averages must be included in individual equations, and the number of cross-sectional

averages must be at least as large as the number of unobserved common factors. CCE mean

group estimator and its jackknife and recursive mean adjustment bias corrected versions are easily

implemented empirically. Results from an extensive set of Monte Carlo experiments show that the

homogeneous slope estimators proposed in the literature can be seriously biased in the presence of
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slope heterogeneity. In contrast the uncorrected CCEMG estimator proposed in the paper performs

well (in terms of bias, RMSE, size and power) if the parameter of interest is the average slope of

the regressors (β0), even if N and T are relatively small. But the situation is very different if the

parameter of interest is the mean coeffi cient of the lagged dependent variable (φ). In the case of

φ the uncorrected CCEMG estimator suffers form the time series bias and tests based on it tend

to be over-sized, unless T is suffi ciently large relative to N . The jackknife bias-corrected CCEMG

estimator, also proposed in the paper, does help in mitigating the time series bias, but it cannot

fully deal with the size distortion unless T is suffi ciently large. Improving on the small sample

properties of the CCEMG estimators of φ in the heterogeneous panel data models still remains a

challenge to be taken on in the future.
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Table 1: Parameters of the Monte Carlo Design

Experiments without regressors Experiments with regressors
(β0i = β1i = 0) (β0i ∼ IIDU [0.5, 1], β1i = −0.5)

Exp. φ = E (φ) m ρf Exp. φ = E (φ) m ρf
1 0.4 1 0 13 0.4 1 0
2 0.4 1 0.6 14 0.4 1 0.6
3 0.4 2 0 15 0.4 2 0
4 0.4 2 0.6 16 0.4 2 0.6
5 0.4 3 0 17 0.4 3 0
6 0.4 3 0.6 18 0.4 3 0.6
7 0.7 1 0 19 0.7 1 0
8 0.7 1 0.6 20 0.7 1 0.6
9 0.7 2 0 21 0.7 2 0
10 0.7 2 0.6 22 0.7 2 0.6
11 0.7 3 0 23 0.7 3 0
12 0.7 3 0.6 24 0.7 3 0.6

Notes: The dependent variable, regressors and covariates are generated according to (33)-(34) with φi ∼ IIDU [0, 0.8]
(low value of φ = E (φi) = 0.4) or with φi ∼ IIDU [0.5, 0.9] (high value of φ = E (φi) = 0.7), with correlated

fixed effects, and with cross-sectionally weakly dependent heteroskedastic idiosyncratic innovations generated from a

SAR(1) model (39) with aε = 0.4. All experiments allow for feedback effects with αxi ∼ IIDU [0, 0.35] for high value
of φ, αxi ∼ IIDU [0, 0.15] for low value of φ, and αgi ∼ IIDU [0, 1] for both values of φ.
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Table 2. Estimation of φ in experiments with regressors, φ = E (φi) = 0.4, and m = 1

correlated common factor. (Experiment 14)

Bias (x100) RMSE (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 13.12 14.74 17.83 18.80 19.61 15.48 16.72 19.12 19.83 20.55
50 13.08 14.79 18.07 19.25 19.60 15.13 16.50 19.14 20.12 20.41
100 13.42 15.11 18.29 19.53 20.12 15.08 16.43 19.00 20.12 20.64
150 13.95 15.05 18.47 19.67 20.23 15.47 16.20 19.09 20.09 20.61
200 13.47 15.27 18.64 19.71 20.23 14.89 16.38 19.21 20.11 20.57

Dynamic CCEMG without bias correction
40 -10.93 -8.25 -3.31 -1.98 -1.18 11.86 9.35 5.12 4.37 3.93
50 -11.12 -8.34 -3.61 -2.02 -1.30 11.88 9.23 5.02 4.05 3.74
100 -11.73 -9.04 -3.99 -2.41 -1.59 12.12 9.44 4.69 3.41 2.88
150 -12.06 -9.25 -4.22 -2.60 -1.76 12.33 9.54 4.68 3.25 2.62
200 -12.13 -9.37 -4.32 -2.68 -1.94 12.35 9.60 4.67 3.17 2.56

Dynamic CCEMG with RMA bias correction
40 -8.58 -5.82 -2.20 -0.84 -0.50 10.23 7.63 4.66 3.98 3.91
50 -8.55 -5.97 -2.14 -1.18 -0.57 9.92 7.47 4.24 3.77 3.44
100 -9.08 -6.17 -2.36 -1.25 -0.80 9.81 6.92 3.54 2.73 2.59
150 -9.29 -6.55 -2.40 -1.48 -0.89 9.80 7.06 3.24 2.49 2.22
200 -9.44 -6.75 -2.61 -1.47 -1.01 9.88 7.13 3.24 2.28 2.03

Dynamic CCEMG with jackknife bias correction
40 3.82 2.64 1.74 1.21 0.85 9.96 7.18 4.91 4.41 4.09
50 4.02 2.66 1.59 1.19 0.77 9.26 6.62 4.38 3.96 3.79
100 3.91 2.35 1.40 0.97 0.66 7.64 4.96 3.23 2.83 2.62
150 3.73 2.48 1.30 0.90 0.59 6.93 4.64 2.72 2.32 2.15
200 4.04 2.52 1.27 0.88 0.47 6.78 4.41 2.45 2.05 1.83

MG based on Song’s individual estimates with 3 factors
40 -9.15 -6.77 -2.74 -1.38 -0.90 10.91 8.58 5.11 4.12 4.03
50 -9.48 -7.03 -2.76 -1.50 -0.95 10.81 8.38 4.52 3.84 3.54
100 -10.20 -7.32 -2.85 -1.72 -1.21 10.85 7.98 3.85 3.00 2.75
150 -10.53 -7.56 -2.98 -1.79 -1.27 10.99 8.02 3.69 2.74 2.33
200 -10.85 -7.78 -3.05 -1.85 -1.36 11.21 8.13 3.58 2.55 2.21

MG based on Song with true number of factors (m = 1)
40 -5.34 -3.95 -1.46 -0.40 -0.01 7.57 6.31 4.55 3.98 3.96
50 -6.03 -4.58 -1.76 -0.79 -0.28 7.61 6.33 4.06 3.60 3.43
100 -7.09 -5.47 -2.36 -1.40 -0.99 7.76 6.17 3.49 2.83 2.65
150 -7.27 -5.70 -2.56 -1.59 -1.11 7.71 6.17 3.33 2.60 2.24
200 -7.43 -5.87 -2.67 -1.67 -1.24 7.76 6.22 3.23 2.41 2.13

Moon and Weidner’s QMLE with 3 factors
40 -2.67 0.94 5.73 7.30 7.73 8.93 7.99 8.68 9.55 9.82
50 -3.34 0.37 5.82 7.23 7.86 8.46 7.04 8.20 9.18 9.62
100 -4.66 -0.57 5.65 7.28 7.99 7.58 5.21 7.06 8.34 8.96
150 -5.74 -1.14 5.38 7.15 8.04 7.71 4.61 6.44 7.87 8.69
200 -6.05 -1.70 5.35 7.05 7.81 7.65 4.31 6.18 7.64 8.32

Moon and Weidner’s QMLE with true number of factors (m = 1)
40 1.87 3.62 6.87 8.08 8.48 8.30 8.56 9.79 10.37 10.74
50 1.83 3.89 7.20 8.23 8.76 7.58 8.08 9.60 10.38 10.77
100 1.99 3.82 7.45 8.67 9.18 5.92 6.45 8.79 9.79 10.21
150 2.24 4.00 7.47 8.66 9.31 5.12 5.88 8.46 9.42 10.02
200 2.36 4.10 7.72 8.83 9.32 5.00 5.68 8.46 9.44 9.87

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ẏit
and ẋit defined in (41).
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Table 3. Estimation of β0 in experiments with regressors, φ = E (φi) = 0.4, and m = 1

correlated common factor. (Experiment 14)

Bias (x100) RMSE (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 51.52 51.31 51.66 51.37 51.49 51.96 51.68 51.88 51.54 51.64
50 50.96 51.08 51.27 51.25 51.33 51.37 51.42 51.47 51.40 51.46
100 51.07 51.13 51.36 51.13 51.35 51.40 51.39 51.52 51.24 51.43
150 51.22 51.11 51.25 51.22 51.32 51.54 51.36 51.38 51.32 51.39
200 50.99 51.28 51.20 51.09 51.20 51.27 51.51 51.32 51.17 51.27

Dynamic CCEMG without bias correction
40 1.37 1.14 0.69 0.45 0.18 5.92 5.28 3.70 3.30 3.08
50 1.05 0.82 0.48 0.28 0.27 5.48 4.59 3.37 2.93 2.84
100 1.11 0.92 0.58 0.30 0.23 3.92 3.37 2.45 2.15 1.93
150 1.23 1.05 0.46 0.26 0.28 3.34 2.88 1.98 1.77 1.61
200 1.24 0.97 0.50 0.33 0.26 2.97 2.51 1.77 1.52 1.37

Dynamic CCEMG with RMA bias correction
40 1.34 0.91 0.60 0.60 0.36 6.84 5.81 4.05 3.43 3.12
50 1.31 1.11 0.55 0.39 0.49 6.06 4.99 3.56 3.02 2.79
100 1.22 0.99 0.66 0.44 0.24 4.50 3.50 2.53 2.24 1.94
150 1.13 0.96 0.56 0.41 0.37 3.59 3.12 2.14 1.81 1.69
200 1.10 0.97 0.53 0.44 0.32 3.27 2.71 1.84 1.64 1.41

Dynamic CCEMG with jackknife bias correction
40 1.60 0.98 0.36 0.20 0.03 12.04 8.25 4.42 3.69 3.29
50 0.85 0.34 0.07 0.11 0.14 11.21 7.32 4.11 3.32 3.03
100 0.58 0.70 0.22 0.00 0.01 7.71 5.42 2.98 2.36 2.07
150 0.97 0.55 0.08 -0.06 0.07 6.49 4.32 2.38 1.99 1.71
200 0.84 0.52 0.08 0.03 0.02 5.65 3.88 2.08 1.68 1.44

MG based on Song’s individual estimates with 3 factors
40 0.10 0.51 0.42 0.44 0.49 8.13 6.45 4.12 3.60 3.50
50 0.29 0.54 0.31 0.38 0.32 6.81 5.40 3.69 3.12 2.90
100 0.49 0.42 0.30 0.35 0.29 4.21 3.58 2.51 2.22 1.95
150 0.56 0.44 0.35 0.27 0.21 3.34 2.81 2.02 1.73 1.59
200 0.62 0.56 0.37 0.32 0.22 2.81 2.42 1.72 1.53 1.41

MG based on Song with true number of factors (m = 1)
40 -2.76 -2.08 -1.58 -1.51 -1.41 8.58 7.78 5.09 4.42 4.15
50 -1.67 -1.33 -1.09 -0.85 -0.95 7.50 5.61 4.09 3.36 3.25
100 0.09 0.04 -0.01 0.03 0.04 3.64 3.26 2.40 2.17 1.89
150 0.44 0.30 0.22 0.13 0.09 3.04 2.57 1.95 1.70 1.56
200 0.57 0.52 0.30 0.25 0.15 2.66 2.26 1.69 1.50 1.39

Moon and Weidner’s QMLE with 3 factors
40 8.09 7.42 6.25 5.51 5.20 10.50 9.56 7.87 6.95 6.68
50 7.40 6.63 5.23 4.87 4.75 9.46 8.46 6.68 6.14 5.92
100 6.26 5.59 4.55 4.12 4.05 7.32 6.58 5.29 4.83 4.69
150 6.02 5.47 4.34 4.08 4.04 6.82 6.12 4.87 4.56 4.49
200 5.95 5.38 4.39 4.09 3.97 6.56 5.89 4.79 4.45 4.31

Moon and Weidner’s QMLE with true number of factors (m = 1)
40 17.09 16.70 16.36 16.08 16.28 19.93 19.20 18.18 17.75 17.80
50 16.84 16.37 16.16 16.34 16.40 19.40 18.58 17.76 17.69 17.66
100 17.19 17.03 16.86 16.75 17.00 18.88 18.45 17.88 17.62 17.75
150 17.86 17.24 17.25 17.31 17.36 19.34 18.47 18.07 17.93 17.89
200 17.27 17.55 17.32 17.32 17.41 18.60 18.65 18.02 17.85 17.87

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ẏit
and ẋit defined in (41).
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Table 4. Estimation of φ in experiments with regressors, φ = E (φi) = 0.4, and m = 2

correlated common factors. (Experiment 16)

Bias (x100) RMSE (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 21.98 23.35 26.19 27.41 27.95 23.66 24.63 26.98 28.00 28.45
50 21.59 23.37 26.36 27.44 27.89 23.10 24.61 27.01 27.95 28.36
100 22.44 23.76 26.67 27.65 28.34 23.74 24.81 27.24 28.03 28.65
150 22.51 23.77 26.68 27.98 28.26 23.76 24.81 27.16 28.31 28.53
200 22.16 23.63 26.77 27.83 28.42 23.37 24.61 27.22 28.13 28.68

Dynamic CCEMG without bias correction
40 -10.66 -7.93 -3.13 -1.58 -0.68 11.66 9.15 5.12 4.21 3.93
50 -10.83 -8.07 -3.23 -1.66 -0.87 11.64 9.02 4.82 3.84 3.64
100 -11.18 -8.31 -3.43 -1.94 -1.20 11.61 8.79 4.28 3.14 2.66
150 -11.45 -8.67 -3.67 -2.02 -1.37 11.74 8.99 4.23 2.87 2.40
200 -11.64 -8.87 -3.78 -2.23 -1.42 11.86 9.11 4.19 2.85 2.23

Dynamic CCEMG with RMA bias correction
40 -8.72 -5.77 -1.98 -0.89 -0.14 10.40 7.66 4.65 4.08 3.89
50 -8.77 -5.88 -2.10 -0.97 -0.38 10.11 7.37 4.29 3.65 3.57
100 -9.14 -6.11 -2.30 -1.28 -0.75 9.89 6.94 3.51 2.83 2.53
150 -9.33 -6.42 -2.45 -1.33 -0.88 9.89 6.97 3.28 2.48 2.18
200 -9.49 -6.56 -2.53 -1.48 -0.87 9.92 7.00 3.17 2.33 1.95

Dynamic CCEMG with jackknife bias correction
40 3.94 2.97 1.93 1.54 1.40 10.00 7.26 5.01 4.45 4.24
50 4.11 2.86 1.79 1.50 1.14 9.39 6.51 4.50 4.02 3.82
100 3.96 2.83 1.63 1.17 0.79 7.73 5.33 3.39 2.92 2.60
150 4.10 2.59 1.45 1.11 0.63 7.18 4.69 2.80 2.46 2.17
200 4.12 2.70 1.46 0.99 0.64 6.88 4.53 2.55 2.12 1.89

MG based on Song’s individual estimates with 3 factors
40 -9.08 -6.33 -2.04 -0.82 -0.32 10.77 8.02 4.56 4.11 3.94
50 -9.02 -6.41 -1.91 -0.94 -0.36 10.26 7.80 4.12 3.61 3.54
100 -9.46 -6.79 -2.29 -1.01 -0.61 10.10 7.49 3.48 2.69 2.56
150 -9.83 -6.89 -2.39 -1.25 -0.75 10.28 7.37 3.21 2.42 2.15
200 -10.30 -7.19 -2.61 -1.37 -0.85 10.64 7.54 3.21 2.24 1.97

MG based on Song with true number of factors (m = 2)
40 -7.57 -5.41 -1.76 -0.62 -0.14 9.20 7.18 4.39 4.04 3.88
50 -7.54 -5.48 -1.62 -0.79 -0.22 8.80 6.90 3.97 3.57 3.52
100 -7.86 -5.87 -2.04 -0.85 -0.47 8.49 6.57 3.31 2.62 2.51
150 -8.13 -5.91 -2.12 -1.09 -0.61 8.55 6.41 3.00 2.35 2.09
200 -8.39 -6.08 -2.32 -1.19 -0.71 8.72 6.44 2.97 2.13 1.90

Moon and Weidner’s QMLE with 3 factors
40 -0.27 3.31 8.40 9.94 10.80 8.95 8.83 10.68 11.76 12.41
50 -1.40 2.26 7.69 9.31 9.96 8.47 7.59 9.65 10.86 11.44
100 -4.23 0.15 6.46 8.16 9.04 7.52 5.54 7.77 9.11 9.80
150 -5.76 -1.28 5.77 7.80 8.49 7.56 4.73 6.79 8.53 9.12
200 -6.44 -1.76 5.41 7.32 8.23 7.76 4.23 6.19 7.90 8.74

Moon and Weidner’s QMLE with true number of factors (m = 2)
40 2.89 5.33 9.61 10.97 11.66 8.99 9.32 11.73 12.80 13.26
50 2.09 4.49 8.85 10.26 10.79 8.15 8.42 10.77 11.77 12.27
100 0.23 3.14 7.60 8.96 9.77 5.46 5.82 8.70 9.83 10.50
150 -0.15 2.59 7.53 9.15 9.77 4.49 4.82 8.29 9.75 10.30
200 -0.37 2.64 7.56 9.13 9.85 3.91 4.39 8.14 9.59 10.28

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ẏit
and ẋit defined in (41).
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Table 5. Estimation of β0 in experiments with regressors, φ = E (φi) = 0.4, and m = 2

correlated common factors. (Experiment 16)

Bias (x100) RMSE (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 9.94 9.49 9.66 9.61 9.70 14.19 13.18 11.72 11.26 11.02
50 9.95 9.43 9.53 9.87 9.92 13.87 12.86 11.48 11.28 11.12
100 9.85 9.83 9.85 9.80 9.46 13.47 12.63 11.49 11.02 10.45
150 10.15 9.75 9.86 9.86 9.74 13.56 12.58 11.28 10.89 10.59
200 9.62 9.81 9.87 9.95 9.60 13.04 12.49 11.35 10.92 10.40

Dynamic CCEMG without bias correction
40 1.00 0.71 0.43 0.09 0.13 5.75 5.10 3.82 3.31 3.08
50 0.79 0.76 0.24 0.24 0.16 5.23 4.57 3.38 3.00 2.77
100 0.95 0.73 0.30 0.15 -0.01 3.78 3.32 2.40 2.10 1.93
150 1.06 0.61 0.28 0.23 0.07 3.26 2.75 1.98 1.78 1.58
200 0.98 0.75 0.29 0.17 0.08 2.80 2.34 1.71 1.48 1.37

Dynamic CCEMG with RMA bias correction
40 1.12 0.80 0.58 0.24 0.27 6.59 5.65 4.00 3.44 3.12
50 0.82 0.73 0.42 0.41 0.33 5.89 4.95 3.59 3.10 2.81
100 0.99 0.73 0.45 0.33 0.18 4.25 3.58 2.50 2.18 1.98
150 1.07 0.68 0.41 0.40 0.24 3.66 3.02 2.09 1.84 1.63
200 0.98 0.79 0.43 0.30 0.23 3.12 2.54 1.83 1.56 1.43

Dynamic CCEMG with jackknife bias correction
40 1.42 0.54 0.20 0.01 0.06 12.35 8.24 4.62 3.73 3.28
50 0.94 0.45 0.12 0.15 0.12 10.68 7.40 4.05 3.35 2.93
100 0.89 0.52 0.09 0.10 -0.03 7.61 5.17 2.89 2.40 2.09
150 1.22 0.44 0.10 0.11 0.03 6.44 4.42 2.42 1.97 1.70
200 0.95 0.67 0.08 0.01 0.03 5.72 3.73 2.10 1.68 1.49

MG based on Song’s individual estimates with 3 factors
40 0.98 0.52 0.40 0.39 0.18 7.45 5.95 3.94 3.55 3.33
50 0.77 0.59 0.38 0.38 0.32 6.31 5.35 3.65 3.15 3.00
100 0.77 0.77 0.43 0.39 0.33 4.17 3.58 2.64 2.34 2.21
150 0.91 0.70 0.40 0.41 0.39 3.41 2.93 2.22 1.97 1.88
200 0.96 0.75 0.54 0.44 0.35 2.92 2.50 1.92 1.74 1.78

MG based on Song with true number of factors (m = 2)
40 0.87 0.69 0.54 0.43 0.27 6.71 5.58 3.89 3.50 3.25
50 0.82 0.67 0.35 0.43 0.34 5.68 4.96 3.52 3.10 2.92
100 0.90 0.84 0.51 0.40 0.41 3.88 3.43 2.54 2.26 2.16
150 0.94 0.78 0.45 0.43 0.43 3.27 2.88 2.12 1.90 1.79
200 1.00 0.77 0.58 0.45 0.34 2.83 2.41 1.86 1.68 1.70

Moon and Weidner’s QMLE with 3 factors
40 5.21 4.83 4.53 4.20 4.23 7.88 7.45 6.43 5.81 5.89
50 5.06 4.95 4.47 4.57 4.49 7.55 7.08 6.04 5.94 5.78
100 5.54 5.14 4.81 4.53 4.47 6.83 6.29 5.66 5.27 5.18
150 5.62 5.15 4.66 4.57 4.43 6.54 5.95 5.25 5.11 4.91
200 5.68 5.21 4.56 4.45 4.31 6.36 5.81 5.04 4.84 4.69

Moon and Weidner’s QMLE with true number of factors (m = 2)
40 4.94 4.68 4.32 3.95 4.05 7.94 7.52 6.41 5.77 5.86
50 4.91 4.83 4.33 4.43 4.33 7.62 7.08 6.04 5.96 5.74
100 5.43 5.18 4.91 4.65 4.64 6.89 6.47 5.82 5.45 5.39
150 5.59 5.33 4.98 4.96 4.83 6.68 6.27 5.64 5.51 5.34
200 5.75 5.40 5.02 5.00 4.90 6.64 6.16 5.55 5.43 5.31

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ẏit
and ẋit defined in (41).
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Table 6. Estimation of φ in experiments with regressors, φ = E (φi) = 0.4, and m = 3

correlated common factors. (Experiment 18)

Bias (x100) RMSE (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 25.74 27.09 30.09 31.21 31.58 27.09 28.16 30.68 31.67 31.98
50 25.86 27.55 30.06 31.22 31.77 27.17 28.50 30.60 31.65 32.12
100 26.31 27.72 30.40 31.34 31.70 27.37 28.58 30.84 31.65 31.95
150 26.16 27.50 30.46 31.58 31.94 27.14 28.36 30.87 31.87 32.15
200 26.26 27.65 30.51 31.62 32.21 27.26 28.40 30.89 31.88 32.42

Dynamic CCEMG without bias correction
40 -11.29 -8.46 -3.08 -1.41 -0.61 12.26 9.53 5.06 4.12 4.04
50 -11.36 -8.38 -3.34 -1.61 -0.72 12.16 9.26 4.88 3.84 3.56
100 -11.59 -8.71 -3.50 -1.74 -1.09 12.00 9.14 4.32 3.02 2.66
150 -11.64 -8.76 -3.53 -1.88 -1.13 11.94 9.07 4.09 2.75 2.29
200 -11.64 -8.81 -3.62 -1.93 -1.13 11.86 9.05 4.03 2.61 2.07

Dynamic CCEMG with RMA bias correction
40 -9.99 -6.82 -2.32 -1.04 -0.42 11.45 8.41 4.78 4.04 4.04
50 -10.02 -6.86 -2.59 -1.32 -0.58 11.26 8.18 4.52 3.79 3.56
100 -10.44 -7.26 -2.84 -1.53 -1.03 11.13 7.94 3.88 2.97 2.66
150 -10.56 -7.34 -2.93 -1.72 -1.09 11.08 7.84 3.62 2.67 2.29
200 -10.56 -7.37 -3.03 -1.77 -1.15 10.95 7.77 3.56 2.51 2.09

Dynamic CCEMG with jackknife bias correction
40 4.25 2.99 2.17 1.78 1.37 10.26 7.47 5.08 4.47 4.34
50 4.49 3.12 1.90 1.56 1.21 9.65 6.91 4.52 4.05 3.79
100 3.74 2.77 1.71 1.30 0.73 7.59 5.35 3.36 2.96 2.61
150 3.99 2.78 1.58 1.10 0.67 7.19 4.92 2.83 2.41 2.15
200 4.24 2.60 1.50 1.05 0.62 6.99 4.49 2.54 2.14 1.90

MG based on Song with true number of factors (m = 3)
40 -7.94 -4.88 -0.14 0.96 1.54 9.72 6.96 4.17 3.95 4.10
50 -7.86 -5.05 -0.38 0.76 1.32 9.35 6.75 3.77 3.66 3.70
100 -8.79 -5.82 -0.95 0.28 0.73 9.58 6.65 2.83 2.51 2.67
150 -9.28 -6.28 -1.51 -0.30 0.19 9.78 6.84 2.69 2.18 2.03
200 -9.86 -6.76 -1.96 -0.70 -0.21 10.23 7.19 2.78 1.97 1.80

Moon and Weidner’s QMLE with true number of factors (m = 3)
40 2.21 5.83 11.43 12.87 13.18 9.75 10.12 13.26 14.43 14.64
50 0.88 4.70 10.13 11.66 12.49 8.75 8.96 11.79 12.99 13.71
100 -3.20 0.99 7.93 9.91 10.64 7.18 5.48 9.02 10.72 11.33
150 -5.01 -0.42 6.91 9.05 9.88 7.07 4.54 7.75 9.65 10.39
200 -5.70 -1.20 6.25 8.49 9.54 7.01 4.00 6.94 8.97 9.97

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ẏit
and ẋit defined in (41).
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Table 7. Estimation of β0 in experiments with regressors, φ = E (φi) = 0.4, and m = 3

correlated common factors. (Experiment 18)

Bias (x100) RMSE (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 -18.62 -18.43 -18.70 -18.50 -18.38 21.16 20.51 19.99 19.45 19.25
50 -18.31 -18.45 -18.29 -18.80 -18.64 20.83 20.42 19.47 19.70 19.41
100 -18.20 -18.56 -18.40 -18.29 -18.42 20.42 20.29 19.32 18.98 18.98
150 -18.10 -18.24 -18.43 -18.45 -18.32 20.18 19.91 19.33 19.04 18.82
200 -17.87 -18.42 -18.44 -18.73 -18.54 19.90 20.08 19.23 19.31 18.99

Dynamic CCEMG without bias correction
40 0.98 0.84 0.47 0.38 0.27 6.12 5.22 3.76 3.31 3.12
50 0.93 0.73 0.53 0.34 0.05 5.30 4.67 3.43 2.96 2.71
100 0.92 0.66 0.32 0.18 0.10 3.78 3.39 2.42 2.07 1.94
150 0.83 0.65 0.40 0.12 0.15 3.23 2.76 1.94 1.72 1.61
200 0.90 0.73 0.29 0.13 0.11 2.81 2.47 1.67 1.49 1.36

Dynamic CCEMG with RMA bias correction
40 1.01 0.86 0.52 0.46 0.35 6.91 5.63 3.92 3.42 3.18
50 0.73 0.67 0.59 0.45 0.16 6.00 5.15 3.61 3.04 2.72
100 0.93 0.62 0.41 0.28 0.20 4.30 3.63 2.53 2.13 1.99
150 0.81 0.58 0.48 0.24 0.27 3.61 3.03 2.06 1.80 1.65
200 0.87 0.67 0.38 0.25 0.22 3.17 2.67 1.75 1.56 1.40

Dynamic CCEMG with jackknife bias correction
40 1.02 0.93 0.22 0.19 0.15 12.39 8.52 4.56 3.76 3.36
50 1.05 0.68 0.29 0.19 -0.06 10.94 7.73 4.21 3.34 2.91
100 1.39 0.45 0.10 -0.01 0.02 7.99 5.34 2.91 2.33 2.10
150 1.01 0.54 0.17 -0.03 0.09 6.52 4.44 2.32 1.95 1.72
200 1.00 0.58 0.03 -0.01 0.05 5.72 3.88 2.01 1.69 1.47

MG based on Song with true number of factors (m = 3)
40 0.49 0.24 -0.21 -0.08 0.01 7.73 6.23 4.20 3.77 3.59
50 0.20 0.29 0.02 -0.08 -0.09 6.71 5.55 3.91 3.34 3.12
100 0.38 0.26 -0.02 -0.30 -0.19 4.28 3.67 2.78 2.52 2.44
150 0.27 0.28 -0.12 -0.25 -0.20 3.29 2.88 2.32 2.12 2.10
200 0.35 0.22 -0.07 -0.22 -0.22 2.84 2.47 1.95 1.82 1.80

Moon and Weidner’s QMLE with true number of factors (m = 3)
40 4.18 4.51 4.13 4.24 4.12 7.19 7.15 6.10 5.94 5.74
50 4.67 4.75 4.36 4.17 4.08 6.96 6.75 5.92 5.56 5.45
100 5.17 4.88 4.61 4.48 4.46 6.36 5.97 5.38 5.17 5.10
150 5.19 5.01 4.75 4.44 4.57 6.10 5.79 5.24 4.93 5.03
200 5.28 5.15 4.67 4.44 4.41 5.94 5.75 5.07 4.82 4.77

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ẏit
and ẋit defined in (41).
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Table 8. Size and Power of estimating φ in Experiment 14 (with regressors, φ = 0.4, m = 1 and

ρf = 0.6).

Size (x100) Power (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 88.00 91.70 98.10 99.65 99.80 60.85 68.50 83.65 89.45 92.10
50 88.75 94.15 99.30 99.90 99.85 63.25 70.20 85.65 92.00 93.80
100 94.85 98.10 99.90 100.00 100.00 71.35 75.95 91.90 96.20 97.80
150 96.70 99.05 100.00 100.00 100.00 77.30 81.00 95.60 98.65 99.45
200 97.15 99.35 100.00 100.00 100.00 78.40 83.15 96.45 99.15 99.65

Dynamic CCEMG without bias correction
40 72.75 53.85 16.00 10.80 8.90 99.80 99.35 94.15 90.15 88.25
50 80.95 60.75 21.45 12.90 10.00 100.00 99.90 98.00 95.20 92.40
100 98.30 92.60 38.80 19.80 11.90 100.00 100.00 100.00 99.90 99.90
150 99.95 98.60 57.45 28.50 16.75 100.00 100.00 100.00 100.00 100.00
200 100.00 99.70 70.85 37.15 22.10 100.00 100.00 100.00 100.00 100.00

Dynamic CCEMG with RMA bias correction
40 42.65 27.85 10.15 6.20 6.90 94.90 92.40 86.25 80.70 78.80
50 49.65 32.65 10.55 8.25 6.35 97.65 96.65 91.90 89.25 89.05
100 79.50 57.80 17.20 8.30 7.20 100.00 100.00 99.85 99.70 99.55
150 91.80 77.40 22.70 11.75 9.20 100.00 100.00 100.00 100.00 100.00
200 95.60 88.95 32.40 14.55 10.55 100.00 100.00 100.00 100.00 100.00

Dynamic CCEMG with jackknife bias correction
40 14.15 12.20 9.85 8.65 7.90 20.65 30.10 49.60 59.90 65.00
50 15.40 12.60 9.05 8.15 8.95 21.20 33.70 59.80 69.20 75.00
100 21.70 16.05 10.80 7.80 7.65 34.05 54.95 86.80 93.80 96.25
150 26.85 20.35 10.95 8.65 7.05 42.20 66.00 96.55 99.15 99.50
200 31.90 25.85 11.95 8.60 6.95 48.15 74.15 99.00 99.85 99.95

MG based on Song’s individual estimates with 3 factors
40 51.50 36.20 13.75 7.95 7.15 95.60 94.10 88.20 84.55 81.55
50 62.00 45.45 13.15 9.05 7.05 98.45 98.50 95.65 91.90 89.50
100 90.30 75.70 23.00 11.35 8.95 100.00 100.00 99.95 99.70 99.70
150 97.35 89.50 33.45 16.70 10.60 100.00 100.00 100.00 100.00 100.00
200 99.50 96.20 42.95 20.80 13.60 100.00 100.00 100.00 100.00 100.00

MG based on Song with true number of factors (m = 1)
40 30.45 20.90 10.35 6.55 7.45 91.45 89.00 81.55 76.70 74.85
50 39.85 27.70 10.50 7.15 6.75 96.45 95.85 91.70 88.70 86.00
100 72.45 56.80 17.60 10.45 8.30 100.00 100.00 99.90 99.60 99.55
150 88.60 74.85 26.75 15.10 9.15 100.00 100.00 100.00 100.00 100.00
200 95.45 87.60 34.80 17.10 11.70 99.95 100.00 100.00 100.00 100.00

Moon and Weidner’s QMLE with 3 factors
40 51.95 52.55 71.60 80.20 84.90 81.85 74.10 66.30 67.80 70.55
50 55.15 51.30 74.35 83.35 87.85 85.05 79.20 67.45 69.60 72.35
100 63.80 50.15 81.35 91.85 94.90 96.50 91.50 73.20 70.80 73.05
150 73.00 53.45 84.25 96.10 98.55 99.10 96.55 80.40 74.40 70.95
200 79.65 57.00 89.15 97.60 99.05 99.55 98.80 84.85 77.95 75.15

Moon and Weidner’s QMLE with true number of factors (m = 1)
40 46.30 53.35 72.50 81.15 85.55 67.95 63.15 63.80 65.95 68.25
50 46.15 53.50 76.90 83.45 88.70 69.80 67.05 65.35 68.05 72.60
100 49.60 57.30 88.10 94.60 96.45 80.85 76.50 66.55 67.90 70.05
150 50.65 64.35 93.10 98.50 98.95 86.30 80.85 70.95 68.85 70.60
200 54.20 70.75 96.85 99.30 99.55 88.40 84.10 69.30 68.80 71.75

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ẏit
and ẋit defined in (41).
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Table 9. Size and Power of estimating β0 in Experiment 14 (with regressors, φ = 0.4, m = 1 and

ρf = 0.6).

Size (x100) Power (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
150 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
200 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Dynamic CCEMG without bias correction
40 6.75 7.15 6.85 7.10 6.60 33.35 41.45 74.80 85.20 91.10
50 7.00 6.25 5.05 5.95 7.20 42.55 54.15 82.70 92.45 94.60
100 6.95 6.45 6.10 5.65 5.10 67.05 80.30 98.10 99.65 100.00
150 7.90 7.40 6.30 6.10 5.85 81.55 92.60 99.85 99.95 100.00
200 8.65 7.45 7.00 5.80 5.65 90.80 97.30 99.95 100.00 100.00

Dynamic CCEMG with RMA bias correction
40 6.35 7.65 7.25 6.70 6.45 28.05 40.55 69.55 81.90 90.00
50 6.55 6.25 6.40 6.45 6.55 33.45 44.95 78.75 90.40 94.40
100 7.40 5.80 6.80 7.15 4.70 56.40 74.60 97.45 99.65 100.00
150 7.10 7.95 6.35 6.85 6.50 74.45 88.10 99.80 100.00 100.00
200 8.05 7.25 6.30 7.20 5.50 84.15 94.70 100.00 100.00 100.00

Dynamic CCEMG with jackknife bias correction
40 5.55 6.40 5.55 6.55 6.50 62.10 87.15 99.70 99.95 100.00
50 6.40 4.85 5.65 6.45 6.90 68.45 92.00 100.00 100.00 100.00
100 5.00 6.70 6.00 5.20 5.10 90.00 99.75 100.00 100.00 100.00
150 5.85 5.45 4.95 6.45 5.60 97.60 100.00 100.00 100.00 100.00
200 6.20 5.95 5.40 5.00 4.30 99.45 100.00 100.00 100.00 100.00

MG based on Song’s individual estimates with 3 factors
40 4.30 5.15 4.20 4.60 4.20 30.15 37.45 61.55 71.90 75.50
50 5.20 4.50 4.45 4.30 3.75 36.60 48.30 75.50 84.00 87.60
100 5.45 6.00 5.80 5.85 4.85 68.15 79.75 97.05 99.50 99.75
150 6.30 5.55 5.95 5.05 5.20 85.80 93.70 99.70 99.80 100.00
200 6.50 6.80 6.00 6.00 5.85 93.15 98.30 100.00 100.00 100.00

MG based on Song with true number of factors (m = 1)
40 8.30 9.05 5.80 6.25 6.45 51.45 56.15 78.15 85.10 88.20
50 8.60 6.75 6.55 4.95 4.90 55.60 66.10 85.55 92.25 95.00
100 5.55 6.45 5.25 5.75 4.90 80.80 89.25 98.10 99.60 99.95
150 7.25 6.25 5.60 5.65 4.85 92.30 96.65 99.95 100.00 100.00
200 7.00 6.55 6.15 6.15 5.70 97.20 99.35 99.95 100.00 100.00

Moon and Weidner’s QMLE with 3 factors
40 52.70 54.60 62.20 66.15 69.35 29.50 31.20 48.30 59.40 69.50
50 54.00 54.10 57.90 64.80 68.90 30.65 35.05 58.90 70.00 74.65
100 63.15 62.25 69.60 73.15 76.80 37.90 50.40 80.10 90.55 94.10
150 69.85 73.65 76.25 83.15 86.45 48.30 62.05 91.05 97.10 98.15
200 79.70 81.05 86.30 89.55 92.15 56.20 71.60 95.30 99.15 99.60

Moon and Weidner’s QMLE with true number of factors (m = 1)
40 79.80 84.10 93.40 95.40 97.75 49.40 52.15 60.55 65.20 67.85
50 83.70 86.20 95.35 97.90 98.60 51.40 52.65 60.85 68.15 72.45
100 93.75 96.50 99.30 99.55 99.90 63.55 66.20 76.05 80.00 84.20
150 96.80 98.35 99.75 100.00 100.00 72.75 73.35 81.90 87.20 90.80
200 97.85 99.35 99.95 100.00 100.00 74.70 78.50 85.85 90.60 93.80

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ẏit
and ẋit defined in (41).
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Table 10. Size and Power of estimating φ in Experiment 16 (with regressors, φ = 0.4, m = 2 and

ρf = 0.6).

Size (x100) Power (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 97.30 99.45 99.95 100.00 100.00 84.35 90.30 97.70 99.60 99.80
50 98.50 99.30 100.00 100.00 100.00 85.85 92.40 99.00 99.85 99.90
100 99.50 99.85 100.00 100.00 100.00 92.05 95.50 99.75 100.00 100.00
150 99.85 99.95 100.00 100.00 100.00 93.95 96.05 99.75 100.00 100.00
200 99.95 99.95 100.00 100.00 100.00 94.15 97.40 99.95 100.00 100.00

Dynamic CCEMG without bias correction
40 69.65 50.75 18.30 10.70 9.85 99.65 98.90 93.70 89.20 84.45
50 79.70 59.65 19.80 10.90 9.80 99.90 99.90 98.05 95.05 91.70
100 97.25 87.40 32.95 16.45 10.25 100.00 100.00 99.95 100.00 99.75
150 99.65 97.85 48.65 22.35 13.00 100.00 100.00 100.00 100.00 100.00
200 100.00 99.70 61.80 30.95 17.10 100.00 100.00 100.00 100.00 100.00

Dynamic CCEMG with RMA bias correction
40 44.25 26.90 10.15 7.10 6.95 95.35 92.15 84.05 79.70 76.55
50 51.00 33.25 10.80 6.80 7.20 98.25 96.60 91.85 88.55 86.10
100 78.85 57.10 16.00 8.85 6.35 99.85 99.90 99.60 99.65 99.35
150 90.40 75.45 22.85 11.45 7.45 100.00 100.00 99.95 100.00 100.00
200 96.85 86.00 30.55 14.40 8.30 100.00 100.00 100.00 100.00 100.00

Dynamic CCEMG with jackknife bias correction
40 14.30 12.35 11.20 8.60 9.15 19.55 27.65 48.30 56.45 62.45
50 15.85 11.50 10.75 8.95 8.00 21.80 32.15 56.20 65.90 72.20
100 22.15 17.95 11.90 9.25 6.45 33.70 49.60 85.30 92.65 96.35
150 29.05 21.40 12.10 10.30 8.00 39.85 64.95 96.00 98.60 99.65
200 34.00 26.40 14.25 10.40 7.30 46.35 72.00 98.85 99.80 100.00

MG based on Song’s individual estimates with 3 factors
40 53.25 34.75 9.40 8.40 6.85 95.95 95.20 86.30 80.10 78.55
50 59.95 40.95 10.05 7.75 7.40 99.00 98.25 92.10 89.50 86.20
100 88.60 70.25 17.50 9.40 6.90 99.90 99.95 99.75 99.60 99.05
150 96.60 83.85 23.60 11.15 8.05 100.00 100.00 100.00 100.00 100.00
200 99.35 94.20 32.80 14.00 8.85 100.00 100.00 100.00 100.00 100.00

MG based on Song with true number of factors (m = 2)
40 44.00 28.40 8.30 7.65 6.50 95.90 94.30 85.15 78.80 77.25
50 50.15 34.35 9.10 8.20 7.45 98.65 97.95 91.50 89.20 85.15
100 79.15 60.35 15.20 8.55 6.65 99.95 100.00 99.65 99.30 99.15
150 92.00 76.05 20.75 10.30 7.55 100.00 100.00 100.00 99.90 100.00
200 97.45 88.45 28.15 12.35 8.25 100.00 100.00 100.00 100.00 100.00

Moon and Weidner’s QMLE with 3 factors
40 53.00 56.05 79.60 89.30 92.00 74.50 68.70 61.50 65.70 71.45
50 56.40 54.65 80.35 90.55 92.65 80.40 72.25 62.35 67.15 70.50
100 64.95 55.05 84.35 94.30 97.85 94.90 89.20 69.90 69.10 68.20
150 76.20 53.65 86.15 96.70 98.40 99.25 96.65 78.60 70.70 72.00
200 82.90 56.15 89.50 98.55 99.20 99.70 98.85 85.75 76.00 73.20

Moon and Weidner’s QMLE with true number of factors (m = 2)
40 51.55 59.30 84.60 90.25 94.30 64.75 59.10 61.95 67.70 70.95
50 52.10 57.55 83.95 92.05 93.50 69.95 63.20 62.40 64.70 70.05
100 45.70 55.20 89.10 96.20 98.45 87.25 78.35 63.25 63.10 66.15
150 45.35 56.55 94.40 98.65 99.65 93.35 88.25 64.35 64.40 67.20
200 46.50 59.80 97.60 99.75 99.85 97.05 92.85 67.70 67.40 70.10

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ẏit
and ẋit defined in (41).
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Table 11. Size and Power of estimating β0 in Experiment 16 (with regressors, φ = 0.4, m = 2

and ρf = 0.6).

Size (x100) Power (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 67.90 68.90 81.40 85.25 90.30 48.70 49.65 48.70 54.70 55.25
50 70.35 72.50 82.70 89.40 92.85 53.45 51.55 54.60 54.95 57.30
100 79.35 82.80 90.55 94.85 95.55 62.10 60.90 64.05 66.15 66.25
150 82.45 84.30 92.80 95.75 97.95 70.70 68.80 68.30 68.80 71.50
200 85.55 87.80 94.40 96.80 97.60 71.15 73.10 69.40 73.75 73.15

Dynamic CCEMG without bias correction
40 6.00 5.85 6.50 6.65 6.25 35.55 46.10 73.80 87.35 90.75
50 5.60 5.90 5.75 6.80 6.30 43.25 54.30 83.70 92.25 95.70
100 5.40 6.85 5.45 5.50 5.70 69.00 81.85 98.65 99.85 99.95
150 7.20 5.50 5.70 6.60 4.95 85.00 95.30 99.95 100.00 100.00
200 7.30 6.35 6.30 5.20 4.95 93.25 98.05 100.00 100.00 100.00

Dynamic CCEMG with RMA bias correction
40 5.80 6.15 6.50 6.65 6.50 29.25 40.05 68.95 84.30 89.55
50 5.75 6.30 7.25 6.50 6.80 35.50 47.60 80.00 90.15 94.85
100 5.40 5.70 5.55 6.05 6.40 58.50 76.15 97.65 99.65 99.85
150 7.45 5.55 6.90 6.80 5.45 74.05 89.85 99.90 100.00 99.95
200 6.60 6.00 6.50 5.95 5.70 86.75 96.45 100.00 100.00 100.00

Dynamic CCEMG with jackknife bias correction
40 5.80 5.45 5.70 6.00 7.00 61.70 86.45 99.85 100.00 100.00
50 5.30 5.65 6.40 6.05 5.40 68.20 92.55 100.00 100.00 100.00
100 4.25 5.60 5.35 5.30 5.45 91.70 99.70 100.00 100.00 100.00
150 5.65 5.20 5.60 5.85 5.30 98.25 99.95 100.00 100.00 100.00
200 6.75 5.40 5.60 4.90 5.60 99.50 100.00 100.00 100.00 100.00

MG based on Song’s individual estimates with 3 factors
40 9.75 9.10 6.50 5.70 4.80 43.95 51.75 71.55 78.75 83.50
50 9.95 8.65 7.15 5.50 3.75 50.50 60.25 80.45 86.30 90.30
100 9.35 9.40 5.65 5.50 4.65 75.75 85.30 96.20 98.30 98.25
150 11.25 9.35 7.50 5.60 3.75 88.15 94.10 98.95 98.55 98.15
200 11.75 10.15 7.80 5.15 4.60 94.40 97.15 99.35 98.85 98.45

MG based on Song with true number of factors (m = 2)
40 11.05 9.95 6.55 5.90 5.40 48.50 55.85 72.15 80.45 84.00
50 11.40 10.70 7.20 6.10 4.75 56.15 64.75 82.85 88.10 91.20
100 11.70 11.00 6.70 5.80 5.30 80.65 87.85 96.90 99.20 98.85
150 13.15 10.80 7.95 5.85 4.10 91.00 95.35 99.15 99.20 98.85
200 13.00 10.35 7.90 5.40 5.15 95.85 98.25 99.40 99.35 98.70

Moon and Weidner’s QMLE with 3 factors
40 39.00 41.70 51.75 57.60 61.90 37.10 41.60 58.60 70.20 75.20
50 40.95 44.35 53.40 62.00 67.10 41.20 45.70 64.80 70.50 77.15
100 56.90 58.40 71.95 76.85 80.30 46.80 56.70 76.40 86.80 90.15
150 67.05 70.40 80.15 86.05 89.30 54.20 66.55 87.60 93.10 95.80
200 77.05 78.50 86.30 91.25 93.00 59.70 73.85 93.25 97.80 98.40

Moon and Weidner’s QMLE with true number of factors (m = 2)
40 36.25 39.50 47.90 52.55 59.75 36.95 39.80 57.90 69.95 74.85
50 38.35 42.80 50.10 60.15 64.30 39.40 43.70 63.75 69.75 77.00
100 53.20 56.70 70.45 76.20 80.95 47.65 55.20 73.65 84.40 87.40
150 65.85 69.30 81.55 87.65 90.85 53.85 62.65 81.70 88.60 92.80
200 73.55 75.55 88.00 92.80 94.85 59.10 68.30 87.70 93.00 95.90

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ẏit
and ẋit defined in (41).
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Table 12. Size and Power of estimating φ in Experiment 18 (with regressors, φ = 0.4, m = 3 and

ρf = 0.6).

Size (x100) Power (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 99.40 99.85 100.00 100.00 100.00 91.55 95.75 99.70 99.95 99.90
50 99.60 100.00 100.00 100.00 100.00 93.80 97.35 99.85 100.00 100.00
100 100.00 100.00 100.00 100.00 100.00 97.25 98.40 100.00 100.00 100.00
150 99.90 100.00 100.00 100.00 100.00 98.05 99.25 100.00 100.00 100.00
200 100.00 100.00 100.00 100.00 100.00 97.75 99.35 100.00 100.00 100.00

Dynamic CCEMG without bias correction
40 73.90 56.55 17.20 10.80 10.25 99.75 99.45 94.00 88.60 82.80
50 82.90 64.40 20.45 11.65 9.45 100.00 99.85 97.80 94.35 91.70
100 98.35 91.30 35.00 14.40 11.10 100.00 100.00 100.00 99.90 99.90
150 99.90 97.75 47.65 20.30 13.05 100.00 100.00 100.00 100.00 100.00
200 100.00 99.75 59.45 26.15 14.70 100.00 100.00 100.00 100.00 100.00

Dynamic CCEMG with RMA bias correction
40 52.75 34.05 11.00 6.95 7.60 96.45 95.40 86.00 81.85 76.65
50 61.30 40.35 12.55 8.05 6.85 99.00 97.95 93.35 89.80 87.20
100 86.60 69.35 21.35 10.00 8.55 100.00 100.00 99.95 99.75 99.85
150 95.00 83.40 29.15 13.70 9.45 100.00 100.00 100.00 100.00 100.00
200 98.05 91.25 40.15 17.70 10.70 100.00 100.00 100.00 100.00 100.00

Dynamic CCEMG with jackknife bias correction
40 15.45 13.15 11.15 9.05 9.35 18.70 27.20 45.70 55.00 60.05
50 17.65 14.55 10.30 9.45 8.30 20.05 31.05 56.05 66.20 71.30
100 21.45 17.30 12.00 10.50 6.70 32.40 49.35 84.20 91.75 96.55
150 28.00 21.90 11.40 8.85 6.85 41.35 61.00 95.90 98.80 99.50
200 34.60 25.30 13.85 10.20 7.80 45.50 71.90 98.65 99.70 99.95

MG based on Song with true number of factors (m = 3)
40 44.45 24.95 7.50 6.40 7.90 94.50 90.75 73.55 65.95 62.80
50 50.00 32.45 7.90 7.80 8.50 97.50 95.85 83.20 77.70 73.90
100 82.40 58.70 9.55 6.45 8.65 99.95 99.85 98.95 97.80 96.60
150 94.10 77.90 15.10 8.55 6.60 100.00 100.00 99.90 99.85 99.85
200 98.65 90.05 24.25 9.50 7.20 100.00 100.00 100.00 100.00 100.00

Moon and Weidner’s QMLE with true number of factors (m = 3)
40 57.25 63.35 90.10 95.00 96.05 68.15 61.75 63.30 70.90 74.35
50 58.10 62.10 88.65 94.90 96.60 73.00 67.20 62.75 69.60 73.35
100 61.80 51.50 91.30 98.00 98.90 93.30 86.70 63.20 62.75 68.15
150 74.65 53.20 92.35 98.40 99.70 98.35 95.60 71.35 66.20 66.05
200 79.80 54.85 93.85 99.60 99.90 99.60 98.30 79.85 68.90 68.60

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ẏit
and ẋit defined in (41).
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Table 13. Size and Power of estimating β0 in Experiment 18 (with regressors, φ = 0.4, m = 3

and ρf = 0.6).

Size (x100) Power (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200

Fixed Effects estimates
40 88.05 91.30 97.50 99.45 99.50 98.35 99.15 100.00 100.00 100.00
50 89.30 92.90 98.55 99.50 99.95 98.55 99.65 100.00 100.00 100.00
100 93.90 96.20 99.65 100.00 100.00 99.35 99.75 100.00 100.00 100.00
150 94.65 96.65 99.65 100.00 100.00 99.80 99.95 100.00 100.00 100.00
200 95.85 98.10 99.95 100.00 100.00 99.75 100.00 100.00 100.00 100.00

Dynamic CCEMG without bias correction
40 7.20 6.75 6.25 6.00 7.20 36.15 45.80 73.95 84.75 90.35
50 6.50 5.35 7.25 7.10 5.15 42.45 55.15 82.40 91.75 96.10
100 5.75 6.60 6.65 5.80 5.40 68.75 82.30 98.45 99.90 99.95
150 7.05 6.15 5.15 5.75 6.00 85.45 94.85 99.90 100.00 100.00
200 6.35 7.35 5.45 5.20 5.40 93.70 97.80 100.00 100.00 100.00

Dynamic CCEMG with RMA bias correction
40 7.15 6.80 6.10 6.50 6.85 28.90 38.55 69.70 81.05 89.05
50 6.05 7.15 6.40 7.05 5.15 35.55 48.80 77.60 90.25 95.65
100 6.50 6.50 6.70 6.05 5.60 58.10 76.55 97.75 99.70 99.80
150 6.55 6.15 5.55 5.75 5.90 76.20 90.00 99.70 100.00 100.00
200 6.75 7.15 5.35 5.50 5.30 86.30 95.65 99.95 100.00 100.00

Dynamic CCEMG with jackknife bias correction
40 5.90 6.20 5.55 6.50 6.90 59.95 85.85 99.85 100.00 100.00
50 5.10 6.85 5.70 6.85 5.50 66.95 90.30 100.00 100.00 100.00
100 5.75 5.40 5.45 5.30 5.75 91.30 99.30 100.00 100.00 100.00
150 5.05 5.30 5.00 5.35 5.85 97.50 99.95 100.00 100.00 100.00
200 5.55 5.90 4.95 5.30 5.45 99.45 100.00 100.00 100.00 100.00

MG based on Song with true number of factors (m = 3)
40 8.45 8.55 5.15 4.90 5.05 41.95 50.75 72.65 79.20 80.80
50 8.20 9.10 6.85 5.00 4.50 52.00 59.00 79.50 86.95 89.75
100 9.35 8.55 7.10 5.55 4.85 76.70 84.20 95.65 97.85 97.25
150 8.70 8.25 6.05 5.40 4.75 90.15 94.65 98.30 98.45 97.90
200 9.45 8.30 6.65 4.55 4.05 95.20 97.60 98.60 98.90 98.05

Moon and Weidner’s QMLE with true number of factors (m = 3)
40 33.45 39.20 48.30 58.05 63.25 41.35 44.25 61.60 68.50 75.90
50 37.15 43.05 53.85 60.50 65.60 40.65 44.90 64.75 75.35 80.60
100 54.05 56.30 70.35 77.85 83.05 49.60 59.00 80.15 88.40 90.95
150 63.35 68.80 83.45 85.70 90.35 59.10 68.40 88.90 94.95 95.45
200 73.65 78.75 88.80 91.30 93.75 67.30 74.70 94.05 97.55 98.70

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of zit = (yit, xit, git)
′.

QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ẏit
and ẋit defined in (41).
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A Mathematical Appendix

A.1 Notations and Definitions

We begin by briefly summarizing the notations used in the paper, and introduce new notations which will

prove useful in the proofs provided below. All vectors are represented by bold lower case letters and matrices

are represented by bold upper case letters. We use 〈a,b〉 = a′b to denote the inner product (corresponding

to the Euclidean norm) of vectors a and b. ‖A‖1 ≡ max
1≤j≤n

∑n
i=1 |aij | , and ‖A‖∞ ≡ max

1≤i≤n

∑n
j=1 |aij | denote

the maximum absolute column and row sum norms of A ∈ Mn×n, respectively, where Mn×n is the space

of real-valued n × n matrices. ‖A‖ =
√
% (A′A) is the spectral norm of A, % (A) ≡ max

1≤i≤n
{|λi (A)|} is the

spectral radius of A, and |λ1(A)| ≥ |λ2(A)| ≥ ... ≥ |λn(A)| are the eigenvalues of A. Col (A) denotes the

space spanned by the column vectors of A. Note that ‖a‖ =
√
% (a′a) =

√
a′a corresponds to the Euclidean

length of vector a.

Let

yi
T−pT×1

=


yi,pT+1

yi,pT+2

...

yiT

 , yi,−1
T−pT×1

=


yipT
yi,pT+1

...

yi,T−1

 , Xi
T−pT×kx

=


x′i,pT+1

x′i,pT+2

...

x′iT

 , Xi,−1
T−pT×kx

=


x′ipT

x′i,pT+1

...

x′i,T−1

 ,

τT−pT = (1, 1, ..., 1)
′ is T − pT × 1 vector of ones, ξit =

(
yi,t−1,x

′
it,x

′
i,t−1

)′
,

Ξi
T−pT×2kx+1

=


ξ′i,pT+1

ξ′i,pT+2

...

ξ′iT

 = (yi,−1,Xi,Xi,−1) , F
T−pT×m

=


f ′pT+1

f ′pT+2

...

f ′T

 , and εi =


εi,pT+1

εi,pT+2

...

εiT

 .

Using the above notations, model (1) can be written as

yi = cyiτT−pT +φiyi,−1 + Xiβ0i + Xi,−1β1i + Fγi + εi,

or more compactly as

yi = cyiτT−pT +Ξiπi + Fγi + εi, (A.1)

for i = 1, 2, ..., N , where πi =
(
φi,β

′
0i,β

′
1i

)′
. Let also zit = (yit,ω

′
it)
′, z̄wt = (ȳwt, ω̄

′
wt)
′

=
∑N
i=1 wizit,

Q̄w
T−pT×(k+1)pT+1

=


1 z̄′w,pT+1 z̄′w,pT · · · z̄′w,1
1 z̄′w,pT+2 z̄′w,pT+1 · · · z̄′w,2
...

...
...

...

1 z̄′w,T z̄′w,T−1 · · · z̄′w,T−pT

 , and ηi
T−pT×1

=


∑∞
`=pT+1 δ

′
i`z̄w,pT+1−`∑∞

`=pT+1 δ
′
i`z̄w,pT+2−`
...∑∞

`=pT+1 δ
′
i`z̄w,T−`

 .

Model (A.1) can be equivalently written as (see also (22)),

yi = Ξiπi + Q̄wdi + εi + ηi + ϑi, (A.2)

where di =
(
c∗yi, δ

′
i0, δ

′
i1, ..., δ

′
ipT

)′
, δi (L) is given by δi (L) = G′ (L)γi =

[
γ′i (C′C)

−1
C′Λ−1 (L)

]′
, see (23),
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c∗yi = cyi − δ′i (1) c̄zw, and

ϑi = cyiτ + Fγi − Q̄wdi − ηi
= Fγi − Z̃wδi (L) , (A.3)

in which

Z̃w = Z̄w − τT−pT c′zw, Z̄w =


z̄′w,pT+1

z̄′w,pT+2

...

z̄′w,T

 , and czw =

N∑
i=1

wi (Ik+1 −Ai)
−1

czi.

Note that the individual elements of ϑi = (ϑi,pT+1, ϑi,pT+2, ..., ϑi,T )
′ areOp

(
N−1/2

)
uniformly across all i

and t.

Define also the following projection matrices

Ph
T−pT×T−pT

= Hw (H′wHw)
+

H′w, and Mh
T−pT×T−pT

= IT−pT −Hw (H′wHw)
+

H′w, (A.4)

in which

Hw
T−pT×(k+1)pT+1

=


1 h′w,pT+1 h′wpT · · · h′w1

1 h′w,pT+2 h′w,pT+1 · · · h′w2

...
...

...
...

1 h′w,T h′w,T−1 · · · h′w,T−pT

 ,
and hwt = Ψw (L) ft + czw, where

Ψw (L) =

N∑
i=1

wi (Ik+1 −AiL)
−1

A−1
0,iCi.

Furthermore, let V̄w = Q̄w −Hw, and note that

V̄w =


0 ν̄′w,pT+1 ν̄′wpT · · · ν̄′w1

0 ν̄′w,pT+2 ν̄′w,pT+1 · · · ν̄′w2

...
...

...
...

0 ν̄′wT ν̄′w,T−1 · · · ν̄′w,T−pT

 , ν̄wt =

N∑
i=1

wi (Ik+1 −AiL)
−1

A−1
0,ieit,

and Hw= F̌Λ̌w, where

F̌
T−pT×1+mpT

=


1 f ′pT+1 f ′pT · · · f ′1
1 f ′pT+2 f ′pT+1 · · · f ′2
...

...
...

...

1 f ′T f ′T−1 · · · f ′T−pT

 ,

Λ̌w
(pTm+1)×[pT (k+1)+1]

=



1 c′zw c′zw · · · c′zw
0

m×1
Λ′w (L) 0

m×k+1
· · · 0

m×k+1

0
m×1

0
m×k+1

Λ′w (L) 0
m×k+1

...
...

. . .
...

0
m×1

0
m×k+1

0
m×k+1

Λ′w (L)


, and Λw (L) =

N∑
i=1

wi (Ik+1 −AiL)
−1

A−1
0,iCi.
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We also define

S
(1+2kx)×(1+2kx)

=


1 0

1×kx
0

1×kx
0

kx×1
0

kx×kx
Ikx

0
kx×1

Ikx 0
kx×kx

 , (A.5)

ξ∗it =
(
yi,t−1,x

′
i,t−1,x

′
it

)′
, and note that ξit = S′ξ∗it, and Ξi = Ξ∗iS, where Ξ∗i =

(
ξ∗i,pT+1, ξ

∗
i,pT+2, ..., ξ

∗
iT

)′
.

Individual elements of ξit are also denoted as ξist for s = 1, 2, ..., 2k + 1, and the vector of observations on

ξist is

ξis·
T−pT×1

=


ξi,s,pT+1

...

ξisT

 .
Recall that the panel data model (1)-(3) can be written as the VAR model (6) in zit = (yit,x

′
it,g

′
it)
′.

Hence we have

zit =

∞∑
`=0

A`
i

(
czi + A−1

0i Cift−` + A−1
0i ei,t−`

)
,

and

ξ∗it =

 yi,t−1

xi,t−1

xit

 =

(
S′yxzi,t−1

S′xzit

)
= cξ∗i + Ψξi (L) (Cift + eit) ,

where

S′yx
kx+1×k+1

=

 1 0
1×kx

0
1×kg

0
kx×1

Ikx 0
kx×kg

 , S′x
kx×k+1

=
(

0
kx×1

Ikx 0
kx×kg

)
,

cξ∗i = Ψξi (L) (Syx,Sx)
′
czi, and

Ψξi (L)
(1+2kx)×(k+1)

=

(
0

kx+1×k+1

S′x

)
A−1

0i +

(
S′yx (Ik+1 −AiL)

−1
L

S′x

[
(Ik+1 −AiL)

−1 − Ik+1

] )A−1
0i . (A.6)

A.2 Statement of Lemmas

Lemma A.1 Let A = (a1,a2, ...,asN ) and B = (b1,b2, ...bsN )be rN × sN random matrices, and rN and

sN are deterministic sequences nondecreasing in N . Suppose also that ‖a`‖ = Op

(
r

1/2
N

)
and ‖b`‖ =

Op

(
r

1/2
N N−1/2

)
, uniformly in `, for ` = 1, 2, ..., sN . Then for any αA,1,αA,2 ∈ Col (A) for which there

exist vectors c1 and c2 such that αA,1 = Ac1, αA,2 = Ac2, ‖c1‖∞ < K and ‖c2‖∞ < K, where the constant

K <∞ does not depend on N , we have

‖MA+BαA,1‖ = Op

(
sN
√
rN√
N

)
, (A.7)

and

〈MA+BαA,1,MA+BαA,2〉 = α′A,1MA+BαA,2 = Op

(
s2
NrN
N

)
(A.8)

where MA+B is orthogonal projection matrix that projects onto the orthogonal complement of Col (A + B).
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Lemma A.2 Suppose Assumptions 1-5 and 7 hold and (N,T, pT )
j→∞. Then

1

T

T∑
t=1

yi,t−1εit
p→ 0, uniformly in i (A.9)

1

T

T∑
t=1

ωi,t−sεit
p→ 0
k×1
,uniformly in i, (A.10)

and, if also p3
T /T → κ for some constant 0 < κ <∞,

1

T

T∑
t=1

hw,t−qεit = Op

(
T−1/2

)
, uniformly in i and q, (A.11)

for i = 1, 2, ..., N , q = 1, 2, ..., pT , and s = 0, 1. The same results hold when εit is replaced by ηit and ϑit.

Lemma A.3 Suppose Assumptions 1-5 and 7 hold and (N,T, pT )
j→∞ such that p3

T /T → κ, 0 < κ <∞.
Then

Ξ′iMhΞi

T

p→ Σiξ uniformly in i, (A.12)

and
Ξ′iMhF

T

p→ Qif uniformly in i, (A.13)

where Σiξ is positive definite and given by

Σiξ = ΩΨξi + Ωfi, (A.14)

and

Qif = cov [S′Ψξi (L) C∗i ft,C
∗
i ft] , (A.15)

in which

ΩΨξi = V ar [S′Ψξi (L) eit] , Ωfi = V ar [S′Ψξi (L) C∗i ft] , (A.16)

C∗i = McCi, Mc = Ik+1 − CC+ is orthogonal projector onto the orthogonal complement of Col (C),

Ψξi (L) =
∑∞
`=0 Ψξi`L

` is defined in (A.6), selection matrix S is defined in (A.5) and eit = (εit,v
′
it)
′. When

factors are serially uncorrelated, then Ωfi =
∑∞
`=0 S′Ψξi` (C∗iΩfC

∗′
i ) Ψ′ξi`S and Qif = S′Ψξi0 (C∗iΩfC

∗′
i ),

where Ωf = V ar (ft).

Lemma A.4 Suppose Assumptions 1-5 and 7 hold and (N,T, pT )
j→ ∞ such that p3

T /T → κ for some

constant 0 < κ <∞. Then,
Ξ′iMhεi

T

p→ 0
2kx+1×1

, uniformly in i, (A.17)

Ξ′iMhηi
T

p→ 0
2kx+1×1

, uniformly in i, (A.18)

and
Ξ′iMhϑi

T

p→ 0
2kx+1×1

, uniformly in i. (A.19)

Lemma A.5 Suppose Assumptions 1-5 hold and unobserved common factors are serially uncorrelated.
Then, as (N,T, pT )

j→∞, we have

1

N

N∑
i=1

Σ−1
iξ

Ξ′iMhF

T
ηγi

p→ 0
2kx+1×1

. (A.20)
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Lemma A.6 Suppose Assumptions 1-5 hold and (N,T, pT )
j→∞ such that and p2

T /T → 0. Then,

√
N

Ξ′iM̄qΞi

T
−
√
N

Ξ′iMhΞi

T

p→ 0
2kx+1×2kx+1

uniformly in i, (A.21)

√
N

Ξ′iM̄qεi
T

−
√
N

Ξ′iMhεi
T

p→ 0
2kx+1×1

uniformly in i, (A.22)

√
N

Ξ′iM̄qF

T
−
√
N

Ξ′iMhF

T

p→ 0
2kx+1×m

uniformly in i. (A.23)

Ξ′iM̄qηi
T

− Ξ′iMhηi
T

p→ 0
2kx+1×1

, uniformly in i, (A.24)

and
Ξ′iM̄qϑi

T
− Ξ′iMhϑi

T

p→ 0
2kx+1×1

, uniformly in i. (A.25)

Lemma A.7 Suppose Assumptions 1-5 hold and (N,T, pT )
j→∞ such that N/T → κ, for some 0 < κ <∞,

and p2
T /T → 0. Then,

1√
N

N∑
i=1

Ξ′iMhεi
T

p→ 0
2kx+1×1

. (A.26)

A.3 Proofs of Lemmas

Proof of Lemma A.1. Hilbert projection theorem (see Rudin, 1987) implies

‖MA+BαA,1‖ ≤
∥∥αA,1 − βA+B

∥∥ , (A.27)

for any vector βA+B ∈ Col (A + B). Consider the following choice of βA+B ,

βA+B =

sN∑
`=1

Pa`+b`a`c1`, (A.28)

where Pa`+b` is orthogonal projector onto Col (a` + b`), and c1`, for ` = 1, 2, ..., sN are elements of vector

c1. Using αA,1 = Ac1=
∑sN
`=1a`c1`, (A.27) with βA+B given by (A.28) can be written as

‖MA+BαA,1‖ ≤
∥∥∥∥∥
sN∑
`=1

a`c1` −
sN∑
`=1

Pa`+b`a`c1`

∥∥∥∥∥ .
Using now the triangle inequality, we obtain

‖MA+BαA,1‖ ≤
sN∑
`=1

‖a`c1` −Pa`+b`a`c1`‖

≤
sN∑
`=1

|c1`| ‖a` −Pa`+b`a`‖ (A.29)

Next, we establish an upper bound to ‖a` −Pa`+b`a`‖. Consider the triangle given by a`, Pa`+b`a` and

a` + b`. Hilbert projection theorem (see Rudin, 1987) implies

‖a` −Pa`+b`a`‖ ≤ ‖a` − (a` + b`) γ‖ ,
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for any scalar γ and setting γ = 1 we have

‖a` −Pa`+b`a`‖ ≤ ‖a` − a` + b`‖ ,
≤ ‖b`‖ ,
= Op

(
r

1/2
N N−1/2

)
.

Using this result in (A.29) and noting that |c1`| < K by assumption, it follows that

‖MA+BαA,1‖ = Op

(
sNr

1/2
N

N1/2

)
,

as desired.

Consider now the inner product of vectors MA+BαA,1 and MA+BαA,2. Using Cauchy-Schwarz inequal-

ity, we obtain∣∣α′A,1MA+BαA,2
∣∣ =

∣∣(MA+BαA,1)
′
(MA+BαA,2)

∣∣ ≤ ‖MA+BαA,1‖ ‖MA+BαA,2‖ .

But (A.7) implies that both ‖MA+BαA,1‖ and ‖MA+BαA,2‖ are Op
(
sN
√
rN/
√
N
)
. These results establish

(A.8), as desired.

Proof of Lemma A.2. Note that all processes, εit, ηit, ϑit, yit, ωit and hwt, are stationary with absolutely

summable autocovariances and their cross products are ergodic in mean. Lemma A.2 can be established in

the same way as Lemma 1 in Chudik and Pesaran (2011) by applying a mixingale weak law.

Proof of Lemma A.3. Lemma (A.3) can be established in a similar way as Lemma A.5 in Chudik,

Pesaran, and Tosetti (2011) and by observing that Mh is asymptotically the orthogonal complement of the

space spanned by Cf t.

Proof of Lemma A.4. Let us denote the individual columns of Ξi as ξis·, for s = 1, 2, ..., 2k + 1, and

define the scaled vectors ξ�is· = T−1/2ξis· and ε
�
i = T−1/2εi. Since the individual elements of ξis· and

εi are uniformly Op (1), we have ‖ξis·‖ = Op
(
T 1/2

)
, ‖εi‖ = Op

(
T 1/2

)
and therefore ‖ξ�is·‖ = Op (1) and

‖ε�i ‖ = Op (1). Now consider the inner product

〈Mhξ
�
is·,Mhε

�
i 〉 = 〈ξ�is·, ε�i 〉+ 〈Phξ

�
is·,Phε

�
i 〉 , (A.30)

where 〈a,b〉 = a′b denotes the inner product of vectors a and b, and Ph = Hw (H′wHw)
+

H′w is the

orthogonal projection matrix that projects onto the column space of Hw. Consider the probability limits of

the elements in (A.30) as (N,T, pT )
j→ ∞ such that p3

T /T → κ for some constant 0 < κ < ∞. (A.9) and
(A.10) of Lemma A.2 establish that

〈ξ�is·, ε�i 〉
p→ 0, for s = 1, 2, ..., 2k + 1. (A.31)

Consider the Euclidean norm of the second term of (A.30). Using Cauchy-Schwarz inequality we obtain the

following upper bound,

‖〈Phξ
�
is·,Phε

�
i 〉‖ 5 ‖Phξ

�
is·‖ ‖Phε

�
i ‖ , (A.32)

where (by Pythagoras’theorem)10

‖Phξ
�
is·‖ ≤ ‖ξ�is·‖ = Op (1) . (A.33)

10Let Mh = (IT−pT −Ph) and note that ξ�is· =Mhξ
�
is· + Phξ

�
is·. Vectors Mhξ

�
is· and Phξ

�
is· are orthogonal and

therefore ‖Mhξ
�
is· +Phξ

�
is·‖

2 = ‖Mhξ
�
is·‖

2 + ‖Phξ�is·‖
2. It now follows that ‖ξ�is·‖

2 = ‖Mhξ
�
is·‖

2 + ‖Phξ�is·‖
2, but

since ‖Mhξ
�
is·‖

2 ≥ 0, we obtain ‖ξ�is·‖
2 ≥ ‖Phξ�is·‖

2.
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Now we will establish convergence of ‖Phε
�
i ‖ in probability. By spectral theorem there exists a unitary

matrix V such that

V′
H′wHw

T
V =

 D 0
rcpT+1×(k+1−rc)pT

0
(k+1−rc)pT×rcpT+1

0
(k+1−rc)pT×(k+1−rc)pT

 , (A.34)

where D is rcpT +1 dimensional diagonal matrix with strictly positive diagonal elements and rc = rank (C).

Also by assumption ft is a stationary process with absolute summable autocovariances, and so is hwt. Further-

more, H′wHw/T = Op (1) as well as the diagonal elements of D have nonzero (and finite) probability limits.

Partition unitary matrix V = (V1,V2) so that T−1V′1H
′
wHwV1 = D and define U1 = T−1/2HwV1D

−1/2.

Note that U1 is orthonormal basis of the space spanned by the column vectors of Hw, namely

U′1U1 = D−1/2V
′

1

H′wHw

T
V1D

−1/2

= D−1/2DD−1/2

= IrcpT+1.

Scaled matrix T−1/2Hw can now be written as T−1/2Hw = U1D
1/2V′1. Consider

D−1/2V
′

1

H′wεi
T

= D−1/2V
′

1V1D
1/2U′1ε

�
i = U′1ε

�
i ,

where we have used that V
′

1V1 is an identity matrix since V1 is unitary. Using now the submultiplicative

property of matrix norms and (A.11) of Lemma A.2, we obtain

‖U′1ε�i ‖∞ =

∥∥∥∥D−1/2V
′

1

H′wεi
T

∥∥∥∥
∞

≤
∥∥∥D−1/2

∥∥∥
∞
‖V′1‖∞

∥∥∥∥H′wεi
T

∥∥∥∥
∞

= Op

(
T−1/2

)
,

where
∥∥D−1/2

∥∥
∞ = Op (1) since the diagonal elements of the diagonal matrix D have positive probability

limits, and ‖V′1‖∞ = Op (1) since V1 is unitary. This establishes that the individual elements of the vector

U′1ε
�
i are (uniformly) Op

(
T−1/2

)
. Consider next Phε

�
i , which is an orthogonal projection of ε

�
i on the space

spanned by the column vectors of Hw. Since U1 is an orthonormal basis of this space, we can write Phε
�
i

as the following linear combination of basis vectors,11

Phε
�
i =

(rc+1)pT+1∑
j=1

〈ε�i ,u1j〉u1j , (A.35)

where u1j , for j = 1, 2, ..., rcpT+1, denote the individual columns ofU1. But we have shown that |〈ε�i ,u1j〉| =
11The column vectors in U are orthogonal and therefore for any vector a ∈ Col (U) we have a =∑rcpT+1
j=1

〈a,u1j〉
〈u1j ,u1j〉u1j . But 〈u1j ,u1j〉 = 1 since each of the column vectors contained in U have unit length (or-

thonormality) and we obtain a =
∑rcpT+1

j=1 〈a,u1j〉u1j . (A.35) now follows by letting a = Phε�i and noting that
〈Phε�i ,u1j〉 = 〈ε�i ,u1j〉 since Phu1j = u1j .
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Op
(
T−1/2

)
and ‖u1j‖ = 1 (orthonormality), and therefore

‖Phε
�
i ‖ = Op

(
pT√
T

)
. (A.36)

Using (A.33) and (A.36) in (A.32) yields

‖〈Phξ
�
is·,Phε

�
i 〉‖ = Op

(
pT√
T

)
,

for s = 1, 2, ..., 2k + 1, and using this result together with (A.31) in (A.30) we obtain

‖〈Mhξ
�
is·,Mhε

�
i 〉‖∞

p→ 0,

as desired. This completes the proof of (A.17)

(A.18) and (A.19) can be established in a similar way by noting that Lemma A.2 implies
∥∥T−1Ξ′iηi

∥∥
∞

p→
0 and

∥∥〈η�i , T−1/2Hw

〉∥∥
∞ = Op

(
T−1/2

)
(required to establish (A.18)) and also

∥∥T−1Ξ′iϑi
∥∥
∞

p→ 0,
∥∥〈ϑ�i , T−1/2Hw

〉∥∥
∞ =

Op
(
T−1/2

)
(required for (A.19)).

Proof of Lemma A.5. Define

ϕiT = Σ−1
iξ

Ξ′iMhF

T
ηγi,

and consider the cross section average ϕ̄T = N−1
∑N
i=1ϕiT . Note that

E (ϕiT ) = 0
2kx+1×1

, (A.37)

and

E
(
ϕiTϕ

′
jT

)
= 0

2kx+1×2kx+1
for i 6= j, i, j = 1, 2, ..., N , (A.38)

since the unobserved common factors are serially uncorrelated and independently distributed of ηγi, and ηγi
is independently distributed across i. Next, we show that the individual elements of E (ϕiTϕ

′
iT ) are bounded

in N . Σiξ defined in Lemma A.3 is invertible under Assumption 7 and in particular
∥∥∥Σ−1

iξ

∥∥∥ < K <∞. Using
Cauchy-Schwarz inequality, we obtain

E

[(
ξ̃istf`tηγi`

)2
]
≤
√
E
(
ξ̃

4

ist

)
E
(
f4
`tη

4
γi`

)
= O (1) ,

for s = 1, 2, ..., 2k + 1, and ` = 1, 2, ...,m, where ξ̃ist are the individual elements of Ξ′iMh, ξ̃isthas uniformly

bounded 4-th moments under Assumption 7, and E
(
f4
`tη

4
γi`

)
= E

(
f4
`t

)
E
(
η4
γi`

)
is also uniformly bounded

under Assumptions 2 and 3. It follows that there exists a constant K < ∞, which does not depend on N
and such that

‖E (ϕiTϕ
′
iT )‖ < K. (A.39)

Using now (A.38)-(A.39), we obtain

‖V ar (ϕ̄T )‖ = O
(
N−1

)
. (A.40)

(A.37) and (A.40) imply ϕ̄T
p→ 0, as desired.

Proof of Lemma A.6. Denote the individual columns of Ξi by ξis·, s = 1, 2, ..., 2k + 1 and consider

ξ′is·M̄qξis· − ξ′is·Mhξis· =
∥∥M̄qξis·

∥∥2 − ‖Mhξis·‖
2 , (A.41)

48



for s = 1, 2, ..., 2k + 1. Hilbert projection theorem (see Rudin, 1987) implies∥∥M̄qξis·
∥∥2 ≤ ‖ξis· −αq‖

2 ,

for any vector αq ∈ Col
(
Q̄w

)
. Choose αq = Phξis· − M̄qPhξis·, where Ph is orthogonal projector matrix

onto Col
(
Q̄w

)
, and note that αq =

(
IT−pT − M̄q

)
Phξis· ∈ Col

(
Q̄w

)
. Hence,∥∥M̄qξis·

∥∥2 ≤
∥∥ξis· −Phξis· + M̄qPhξis·

∥∥2

≤
∥∥Mhξis· + M̄qPhξis·

∥∥2

≤ ‖Mhξis·‖
2

+
∥∥M̄qPhξis·

∥∥2
+ 2

〈
Mhξis·, M̄qPhξis·

〉
, (A.42)

where we used Mh = IT−pT − Ph to obtain the second inequality, and we used ‖a + b‖2 = ‖a‖2 + ‖b‖2 +

2 〈a,b〉, for any vectors a and b, to obtain the third inequality. Similarly, we obtain the following upper

bound on ‖Mhξis·‖
2,

‖Mhξis·‖
2 ≤

∥∥ξis· − P̄qξis· + MhP̄qξis·
∥∥2

≤
∥∥M̄qξis· + MhP̄qξis·

∥∥2

≤
∥∥M̄qξis·

∥∥2
+
∥∥MhP̄qξis·

∥∥2
+ 2

〈
M̄qξis·,MhP̄qξis·

〉
(A.43)

Using (A.42) and (A.43) in (A.41) yields the following lower and upper bounds,

ε1,NT ≤
∥∥M̄qξis·

∥∥2 − ‖Mhξis·‖
2 ≤ ε2,NT , (A.44)

where

ε1,NT =
∥∥MhP̄qξis·

∥∥2
+ 2

〈
M̄qξis·,MhP̄qξis·

〉
, (A.45)

and

ε2,NT =
∥∥M̄qPhξis·

∥∥2
+ 2

〈
Mhξis·, M̄qPhξis·

〉
. (A.46)

Note that P̄qξis· belongs to Col
(
Q̄w

)
and

∥∥P̄qξis·
∥∥ ≤ ‖ξis·‖ = Op

(√
T − pT

)
since the individual elements

of ξis·. are uniformly Op (1). Also, Q̄w = Hw + V̄w, where elements of V̄w are uniformly Op
(
N−1/2

)
,

whereas the elements of Hw are Op (1). Using Lemma A.1 (by setting A = Hw + V̄w, B = −V̄w and

αA,1 = P̄qξis·), we obtain ∥∥MhP̄qξis·
∥∥ = Op

(
pT
√
T − pT√
N

)
. (A.47)

Similarly, Lemma A.1 can be used again (by setting A = Hw, B = V̄w and αA,1 = Phξis·) to show that

∥∥M̄qPhξis·
∥∥ = Op

(
pT
√
T − pT√
N

)
. (A.48)

Now consider the inner product on the right side of (A.45). Using Cauchy-Schwarz inequality, we have∣∣〈M̄qξis·,MhP̄qξis·
〉∣∣ ≤ ∥∥M̄qξis·

∥∥∥∥MhP̄qξis·
∥∥ ,

= Op

(
pT (T − pT )√

N

)
(A.49)

where
∥∥M̄qξis·

∥∥ ≤ ‖ξis·‖ = Op
(√
T − pT

)
, and

∥∥MhP̄qξis·
∥∥ = Op

(
pTN

−1/2
√
T − pT

)
by (A.47). Similarly,
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using ‖Mhξis·‖ ≤ ‖ξis·‖ = Op
(√
T − pT

)
, (A.48) and the Cauchy-Schwarz inequality, we obtain∣∣〈Mhξis·, M̄qPhξis·

〉∣∣ ≤ ‖Mhξis·‖
∥∥M̄qPhξis·

∥∥
= Op

(
pT (T − pT )√

N

)
(A.50)

Using (A.47)-(A.50) in (A.45) and (A.46) we obtain

ε`,NT = Op

(
p2
T (T − pT )

2

N

)
+Op

(
pT (T − pT )√

N

)
, for ` = 1, 2;

and using this result in (A.44) yields

√
N

(∥∥∥∥M̄qξis·
T

∥∥∥∥2

−
∥∥∥∥Mhξis·

T

∥∥∥∥2
)

= Op

(
p2
T

(T − pT )

T 2
√
N

)
+Op

(
pT (T − pT )

T 2

)
,

p→ 0,

for s = 1, 2, ..., 2k + 1, as (N,T, pT )→∞ such that p2
T /T → 0. This establishes that the diagonal elements

of
√
N

Ξ′iM̄qΞi

T
−
√
N

Ξ′iMhΞi

T

tend to 0 in probability uniformly in i.

Now consider the off-diagonal elements. Convergence of individual terms

√
N
ξ′is·M̄qξi`·

T
−
√
N
ξ′is·Mhξi`·

T
, for s 6= `, s, ` = 1, 2, ..., k + 1,

can be established following the same arguments as above, but using (A.8) instead of (A.7) of Lemma A.1.

This completes the proof of (A.21). (A.22)-(A.25) can be established in the same way.

Proof of Lemma A.7. Using the identity Mh = IT−pT −Ph, where Ph is orthogonal projection matrix

that projects onto Col (Hw), we write the expression on the left side of (A.26) as:

1√
N

N∑
i=1

Ξ′iMhεi
T

=
1√
N

N∑
i=1

Ξ′iεi
T
− 1√

N

N∑
i=1

Ξ′iPhεi
T

. (A.51)

First we establish convergence of the first term on the right side of (A.51). Let TN = T (N) and pN =

pT [T (N)] be any non-decreasing integer-valued functions ofN such that limN→∞ TN =∞ and limN→∞ p2
T /T =

0. The first term on the right side of (A.51) can be written as

1√
N

N∑
i=1

Ξ′iεi
TN

=

TN∑
t=pT+1

κNt,

where

κNt =
1

TN
√
N

N∑
i=1

ξitεit.

Let
{
{cNt}∞t=−∞

}∞
N=1

be two-dimensional array of constants and set cNt = 1
TN

for all t ∈ Z and N ∈ N.
ξit and εjt are independently distributed for any i, j and t, and we have: E (κNt) = 0, and the elements of
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covariance matrix of κNt/cNt are bounded, in particular∥∥∥∥V ar(κNtcNt

)∥∥∥∥ =

∥∥∥∥E (κNtκ′Ntc2Nt

)∥∥∥∥ ,
=

∥∥∥∥∥∥ 1

N

N∑
i=1

N∑
j=1

E
(
ξitξ

′
jtεitεjt

)∥∥∥∥∥∥ ,
=

∥∥∥∥∥∥ 1

N

N∑
i=1

N∑
j=1

[
E
(
ξitξ

′
jt

)
E (εitεjt)

]∥∥∥∥∥∥ .
Noting that E

(
ξitξ

′
jt

)
is bounded in i, j and t, and E (εtε

′
t) = RR′ under Assumption 1, we obtain

∥∥∥∥V ar(κNtcNt

)∥∥∥∥ ≤ K

N

∥∥∥∥∥∥
N∑
i=1

N∑
j=1

E (εitεjt)

∥∥∥∥∥∥ ,
≤ K

N
‖τ ′E (εtε

′
t) τ‖ ,

≤ K

N
‖τ ′N‖ ‖R‖ ‖R′‖ ‖τN‖ .

But ‖τ ′N‖ = ‖τN‖ =
√
N and ‖R‖ ≤

√
‖R‖1 ‖R‖∞ < K, where ‖R‖1 and ‖R‖∞ are postulated to be

bounded by Assumption 1, and therefore ∥∥∥∥V ar(κNtcNt

)∥∥∥∥ = O (1) . (A.52)

(A.52) implies uniform integrability of {κNt/cNt} and the array κNt is uniformly integrable L1-mixingale

array with respect to the constant array cNt. Using a mixingale weak law yields (Davidson, 1994, Theorem

19.11)
TN∑

t=pT+1

κNt =
1

TN
√
N

TN∑
t=pT+1

N∑
i=1

ξitεit
L1→ 0

2kx+1×1
.

Convergence in L1 norm implies convergence in probability. This establishes

1√
N

N∑
i=1

Ξ′iεi
T

p→ 0
2kx+1×1

, (A.53)

as (N,T, pT )
j→∞ and p2

T /T → 0.

Next consider the second term on the right hand side of (A.51), and note that

Ξ′iPhεi
T

=
1√
T

Ξ′iHw

T

(
H′wHw

T

)+
H′wεi√
T
,

=
1√
T

G′iTϑεi,

where

G′iT =
Ξ′iHw

T

(
H′wHw

T

)+

,

and

ϑεi =
H′wεi√
T
.
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Define also

G′i = ΘξiΘ
+
hh,

in which Θξi = E
(
ξith̃

′
wt

)
, h̃′wt =

(
1,h′wt,h

′
w,t−1, ...,h

′
w,t−pT

)
denotes the individual rows of Hw, is 2kx +

1 × (k + 1) pT + 1 dimensional matrix, and Θhh = E
(
h̃wth̃

′
wt

)
is (k + 1) pT + 1 × (k + 1) pT + 1 matrix.

Elements of Θξi and Θhh are uniformly bounded and in particular∥∥Θ+
hh

∥∥
∞ = O (1) ,

∥∥Θ+
hh

∥∥
1

= O (1) , ‖Θξi‖∞ = O (1) and ‖Θξi‖1 = O (1) , (A.54)

because
∑∞
`=0 |E (ξisthw,r2t−`)| < K and

∑∞
`=0 |E (hw,r1thw,r2t−`)| < K for any r1, r2 = 1, 2, ..., k + 1 and

s = 1, 2, ...k + 1, where hw,r1t for r1 = 1, 2, ..., k + 1 denotes individual elements of hwt = Ψw (L) ft + czw

and ξist for s = 1, 2, ...k+ 1 denotes individual elements of ξit. Using these notations, we can now write the

second term on the right side of (A.51) as

1√
N

N∑
i=1

Ξ′iPhεi
T

=

√
N

T
· 1

N

N∑
i=1

G′iTϑεi

=

√
N

T

(
1

N

N∑
i=1

G′iϑεi +
1

N

N∑
i=1

(G′iT −G′i)ϑεi

)
(A.55)

Consider the first term inside the brackets on the right side of (A.55), and note that

E

(
1

N

N∑
i=1

G′iϑεi

)(
1

N

N∑
i=1

G′iϑεi

)′
=

1

N2

N∑
i=1

N∑
j=1

G′iE
(
ϑεiϑ

′
εj

)
Gj . (A.56)

Since εi is independently distributed of h̃′wt and the stochastic processes in h̃′wt are covariance stationary we

also have

E
(
ϑεiϑ

′
εj

)
=

1

T
E
(
H′wεiε

′
jHw

)
= σijΘhh, (A.57)

where σij = E (εitεjt). Using (A.57) in (A.56) and applying the submultiplicative property of matrix norm

yields ∥∥∥∥∥∥E
(

1

N

N∑
i=1

G′iϑεi

)(
1

N

N∑
i=1

G′iϑεi

)′∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥ 1

N2

N∑
i=1

N∑
j=1

σijG
′
iΘhhGj

∥∥∥∥∥∥
∞

≤ 1

N2

N∑
i=1

N∑
j=1

|σij | ‖G′i‖∞ ‖Θhh‖∞ ‖Gj‖∞ ,

where ‖Θhh‖∞ = O (1), ‖G′i‖∞ = ‖ΘξiΘhh‖∞ ≤ ‖Θξi‖∞ ‖Θhh‖∞ = O (1), and ‖Gj‖∞ =
∥∥(ΘξjΘhh)

′∥∥
∞ =

‖ΘξjΘhh‖1 ≤ ‖Θξj‖1 ‖Θhh‖1 = O (1), see (A.54). Using these results and noting thatN−1
∑N
i=1

∑N
j=1 |σij | =

O (1) under Assumption 1, we obtain∥∥∥∥∥∥E
(

1

N

N∑
i=1

G′iϑεi

)(
1

N

N∑
i=1

G′iϑεi

)′∥∥∥∥∥∥
∞

≤ K

N2

N∑
i=1

N∑
j=1

|σij |

≤ K

N
, (A.58)
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which in turn implies that √
N

T
· 1

N

N∑
i=1

G′iϑεi
p→ 0

2kx+1×1
, (A.59)

as (N,T, pT )
j→∞ such that N/T → κ1, for some 0 < κ1 <∞.

Now consider the second term inside the brackets on the right side of (A.55). Using submultiplicative

property of matrix norms, we have∥∥∥∥∥ 1

N

N∑
i=1

(G′iT −G′i)ϑεi

∥∥∥∥∥
∞

≤ 1

N

N∑
i=1

‖G′iT −G′i‖∞ ‖ϑεi‖∞ . (A.60)

Note that ϑεi has zero mean and V ar (ϑεi) = E
(
ϑεiϑ

′
εj

)
= σijΘhh, see (A.57), where σij and the elements

of Θhh are uniformly bounded. It therefore follows that

‖ϑεi‖∞ = Op (1) uniformly in i and pT . (A.61)

Consider now the term
√
T ‖G′iT −G′i‖∞, and first note that

G′iT −G′i =
Ξ′iHw

T

(
H′wHw

T

)+

−ΘξiΘ
+
hh

=

[
Ξ′iHw

T
−Θξi

][(
H′wHw

T

)+

−Θ+
hh

]
+

[
Ξ′iHw

T
−Θξi

]
Θ+
hh

+Θξi

[(
H′wHw

T

)+

−Θ+
hh

]
.

Hence

‖G′iT −G′i‖∞ ≤
∥∥∥∥(Ξ′iHw

T
−Θξi

)∥∥∥∥
∞

∥∥∥∥∥
(

H′wHw

T

)+

−Θ+
hh

∥∥∥∥∥
∞

+

∥∥∥∥Ξ′iHw

T
−Θξi

∥∥∥∥
∞

∥∥Θ+
hh

∥∥
∞

+ ‖Θξi‖∞

∥∥∥∥∥
[(

H′wHw

T

)+

−Θ+
hh

]∥∥∥∥∥
∞

(A.62)

Individual elements of Ξ′iHw/T − Θξi can be written as
∑T
t=pT+1

ξi,r,th̃
′
w,s,t − E

(
ξi,r,th̃

′
w,s,t

)
, for r =

1, 2, ..., k + 1 and s = 1, 2, ..., (k + 1) pT + 1, where ξi,r,t and h̃
′
w,s,t are the elements of ξit and h̃wt. The

stochastic processes ξi,r,t and h̃
′
w,s,t are covariance stationary with absolute summable autocovariances and

we have
∑T
t=pT+1

ξi,r,th̃
′
w,s,t − E

(
ξi,r,th̃

′
w,s,t

)
= Op

(
T−1/2

)
uniformly in i and pT . This implies∥∥∥∥(Ξ′iHw

T
−Θξi

)∥∥∥∥
∞

= Op

(
pT√
T

)
uniformly in i. (A.63)

Lemmas A.7 and A.8 of Chudik and Pesaran (2013b) establish that in the full column rank case where

rank (C) = m and k + 1 = m, we have∥∥∥∥∥
(

H′wHw

T

)−1

−Θ−1
hh

∥∥∥∥∥
∞

= Op

(
pT√
T

)
,

where Θhh = E
(
h̃wth̃

′
wt

)
is (k + 1) pT + 1 × (k + 1) pT + 1 nonsingular matrix (in the full column rank

53



case with k + 1 = m). Using generalized inverse instead of inverse, the diagonalization of H′wHw/T in

(A.34) and similar arguments as in Lemmas A.7 and A.8 of Chudik and Pesaran (2013b), the same result

can be established for the more general case when C does not necessarily have full column rank or when

rank (C) = m but k + 1 ≥ m, namely:∥∥∥∥∥
(

H′wHw

T

)+

−Θ+
hh

∥∥∥∥∥
∞

= Op

(
pT√
T

)
(A.64)

Using (A.54) and (A.63)-(A.64) in (A.62), we obtain

‖G′iT −G′i‖∞ = Op

(
pT√
T

)
, uniformly in i. (A.65)

Using now (A.61) together with (A.65) in (A.60) yield

1

N

N∑
i=1

(G′iT −G′i)ϑεi
p→ 0

2kx+1×1
, (A.66)

as (N,T, pT )
j→∞, and p2

T /T → 0. Finally, using (A.59) and (A.66) in (A.55), we obtain

1√
N

N∑
i=1

Ξ′iPhεi
T

p→ 0
2kx+1×1

, (A.67)

when (N,T, pT )
j→∞ such that N/T → κ, for some 0 < κ <∞, and p2

T /T → 0. This completes the proof.

A.4 Proofs of Theorems and Propositions

Proof of Theorem 1. Equation (24), for t = pT + 1, pT + 2, ..., T , can be written as (see (A.2))

yi = Ξiπi + Q̄wdi + εi + ηi + ϑi, (A.68)

where di =
(
c∗yi, δ

′
i0, δ

′
i1, ..., δ

′
ipT

)′
, εi = (εi,pT+1, εi,pT+2, ..., εiT )

′, ηi is T − pT × 1 vector with its elements

given by
∑∞
`=pT+1 δ

′
i`z̄w,t−`, for t = pT + 1, pT + 2, ..., T , and ϑi is T − pT × 1 vector defined in (A.3) with

its elements uniformly bounded by Op
(
N−1/2

)
. Substituting (A.68) into the definition of π̂i in (26) and

noting that
(
Ξ′iM̄qΞ

′
i

)−1
Ξ′iM̄qΞiπi = πi, we obtain

π̂i − πi =
(
Ξ′iM̄qΞ

′
i

)−1
Ξ′iM̄q

(
Q̄wdi + εi + ηi + ϑi

)
. (A.69)

Note that M̄qQ̄w = Q̄w − Q̄w

(
Q̄′wQ̄w

)+
Q̄′wQ̄w = Q̄w − Q̄w = 0

T−pT×(k+1)pT+1
and (A.69) reduces to

π̂i − πi =

(
Ξ′iM̄qΞ

′
i

T

)−1
Ξ′iM̄q

T
(εi + ηi + ϑi) (A.70)

Consider the asymptotics (N,T, pT )
j→ ∞, such that p3

T /T → κ, for some constant 0 < κ < ∞. (A.12) of
Lemma A.3 and (A.21) of Lemma A.6 show that T−1Ξ′iM̄qΞ

′
i converges in probability to a full rank matrix

and therefore (
Ξ′iM̄qΞ

′
i

T

)−1

= Op (1) . (A.71)
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Moreover, Lemmas A.4 and A.6 establish

Ξ′iM̄qεi
T

p→ 0
2kx+1×1

,
Ξ′iM̄qηi

T

p→ 0
2kx+1×1

, and
Ξ′iM̄qϑi

T

p→ 0
2kx+1×1

. (A.72)

Using (A.71)-(A.72) in (A.70) establish (28), as desired.

Proof of Theorem 2. First suppose that the rank condition stated in Assumption 6 holds and consider

the asymptotics (N,T, pT )
j→ ∞, such that p3

T /T → κ, for some constant 0 < κ < ∞. Using Theorem 1

and the definition of the mean group estimator π̂MG in (27), we have

π̂MG −
1

N

N∑
i=1

πi
p→ 0

2kx+1×1
. (A.73)

Assumption 4 postulates that πi = π + υπi, where υπi ∼ IID

(
0

2kx+1×1
,Ωπ

)
and the norms of π and Ωπ

are bounded. It follows that
∥∥∥V ar (N−1

∑N
i=1 υπi

)∥∥∥ = ‖Ωπ/N‖ → 0 as N →∞ and

1

N

N∑
i=1

πi − π =
1

N

N∑
i=1

υπi
p→ 0

2kx+1×1
, as N →∞. (A.74)

(A.73) and (A.74) establish (29), as desired.

Now suppose that the rank condition does not hold. Using model (1)-(2), vector of observations on the

dependent variable, yi = (yi,pT+1, yi,pT+2, ..., yi,T )
′, can be written as (see (A.1))

yi = cyi + Ξiπi + Fγi + εi, (A.75)

where cyi = cyiτT−pT and F = (f1, f2, ..., fm) with f` = (f`,pT+1, f`,pT+2, ..., f`,T )
′ for ` = 1, 2, ...,m. Substi-

tuting (A.75) into the definition of π̂i in (26) and noting that M̄qcyi = 0
T−pT×1

and
(
Ξ′iM̄qΞ

′
i

)−1
Ξ′iM̄qΞiπi =

πi, we obtain the following expression for the mean group estimator,

π̂MG =
1

N

N∑
i=1

πi +
1

N

N∑
i=1

Ψ̂−1
Ξ,iT

Ξ′iM̄qεi
T

+
1

N

N∑
i=1

Ψ̂−1
Ξ,iT

Ξ′iM̄qFγi
T

, (A.76)

where Ψ̂Ξ,iT is defined in Assumption 7. Consider the asymptotics (N,T, pT )
j→ ∞, such that p3

T /T → κ,
for some constant 0 < κ <∞. The probability limit of the first term in (A.76) is established in (A.74). As

before (see (A.71)), Ψ̂−1
Ξ,iT = Op (1) uniformly in i and using also (A.17) and (A.22) of Lemmas A.4 and A.6,

respectively, we obtain

1

N

N∑
i=1

Ψ̂−1
Ξ,iT

(
Ξ′iM̄qεi

T

)
p→ 0

2kx+1×1
. (A.77)

Finally, consider the last term on the right side of (A.76). Since Σiξ is nonsingular, (A.12) of Lemma A.3

and (A.21) of Lemma A.6 establish that Ψ̂−1
Ξ,iT

p→ Σ−1
iξ , and together with (A.23) of Lemma A.6 we have

1

N

N∑
i=1

Ψ̂−1
Ξ,iT

Ξ′iM̄qF

T
γi −

1

N

N∑
i=1

Σ−1
iξ

Ξ′iMhF

T
γi

p→ 0
2kx+1×1

.

Note that γi = ηγi +
(
γw − ηγw

)
. F

(
γw − ηγw

)
does not necessarily belong to the linear space spanned by

the column vectors of Q due to the truncation lag pT and, in particular, we have T−1MhFγw = Op (ρpT ),
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T−1MhFηγw = Op
(
N−1/2ρpT

)
, and T−1Ξ′iMhFγi = T−1Ξ′iMhFηγi + Op

(
N−1/2ρpT

)
+ Op (ρpT ), where

ηγw = Op
(
N−1/2

)
, |ρ| < 1 and function ρ`, for ` = 1, 2, ..., is an upper bound on the exponential decay of

coeffi cients in the polynomial Λw (L) =
∑N
i=1 wi (Ik+1 −AiL)

−1
A−1

0,iCi in the definition of Q̄w. Now, when

unobserved common factors are serially uncorrelated, we can use Lemma A.5 to obtain

1

N

N∑
i=1

Ψ̂−1
Ξ,iT

(
Ξ′iM̄qF

T

)
γi

p→ 0
2kx+1×1

. (A.78)

Note that when factors are serially correlated and the rank condition does not hold then T−1Ξ′iMqFηγi does

not converge to 0
2kx+1×1

and as a result equation (A.78) would not hold. Using (A.74), (A.77) and (A.78) in

(A.76) establish π̂MG → π, when (N,T, pT )
j→ ∞ such that p3

T /T → κ for some constant 0 < κ < ∞, as
desired.

Proof of Theorem 3. Multiplying (A.76) by
√
N and substituting πi = π + υπi we obtain

√
N (π̂MG − π) =

1√
N

N∑
i=1

υπi +
1√
N

N∑
i=1

Ψ̂−1
Ξ,iT

Ξ′iM̄qεi
T

+
1√
N

N∑
i=1

Ψ̂−1
Ξ,iT

Ξ′iM̄qFγi
T

(A.79)

where Ψ̂Ξ,iT is defined in Assumption 7. Consider the asymptotics (N,T, pT )
j→ ∞ such that N/T → κ1

and p3
T /T → κ2, for some constants 0 < κ1,κ2 < ∞. We establish convergence of the individual elements

on the right side of (A.79) below.

It follows from (A.21) of Lemma A.6 and (A.12) of Lemma A.3 that

Ψ̂Ξ,iT −Σiξ = op

(
N−1/2

)
uniformly in i. (A.80)

(A.80), (A.22) of Lemma A.6, and (A.26) of Lemma A.7 imply

1√
N

N∑
i=1

Ψ̂−1
Ξ,iT

Ξ′iM̄qεi
T

p→ 0
2kx+1×1

. (A.81)

As in the proof of Theorem 2, γi = ηγi +
(
γw − ηγw

)
, F

(
γw − ηγw

)
does not necessarily belong to the

linear space spanned by the column vectors of Q due to the truncation lag pT and, in particular, we have

T−1Ξ′iMhFγi = T−1Ξ′iMhFηγi + Op
(
N−1/2ρpT

)
+ Op (ρpT ), where ηγw = Op

(
N−1/2

)
, |ρ| < 1 and

function ρ`, for ` = 1, 2, ..., is an upper bound on the exponential decay of coeffi cients in the polynomial

Λw (L) =
∑N
i=1 wi (Ik+1 −AiL)

−1
A−1

0,iCi in the definition of Q̄w. Using now (A.21) and (A.23) of Lemma

A.6 and noting that
√
NρpT → 0 yields

1√
N

N∑
i=1

Ψ̂−1
Ξ,iT

Ξ′iM̄qF

T
γi −

1√
N

N∑
i=1

(
Ξ′iMhΞi

T

)−1
Ξ′iMhF

T
ηγi

p→ 0
2kx+1×1

. (A.82)

Using (A.81)-(A.82) in (A.79), we obtain

√
N (π̂MG − π)

d∼ ϑπi, ,

where

ϑπi =
1√
N

N∑
i=1

υi +
1√
N

N∑
i=1

(
Ξ′iMhΞi

T

)−1
Ξ′iMhF

T
ηγi, (A.83)

and recall that υi and ηγi are independently distributed across i. It now follows that
√
N (π̂MG − π) →
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N

(
0

2kx+1×1
,ΣMG

)
, where

ΣMG = Ωπ + lim
N→∞

[
1

N

N∑
i=1

Σ−1
iξ QifΩγQ

′
ifΣ

−1
iξ

]
, (A.84)

in which Ωπ = V ar (πi) = V ar (υπi), Ωγ = V ar (γi) = V ar
(
ηγi
)
, and Σiξ = p limT−1Ξ′iMhΞi and

Qif = p limT−1Ξ′iMhF are defined by (A.12) and (A.13) of Lemma A.3, respectively. When the rank

condition stated in Assumption 6 hold then Qif = 0
2kx+1×m

and ΣMG reduces to ΣMG = Ωπ.

Consider now the non-parametric variance estimator (32) and the same assumptions on the divergence

of (N,T, pT ). We have

π̂i − π̂MG = (π̂i − π) + (π − π̂MG) ,

where
√
N (π − π̂MG)

d→ N

(
0

2kx+1×1
,ΣMG

)
with ‖ΣMG‖ < K. It therefore follows that

1

N − 1

N∑
i=1

(π̂i − π̂MG) (π̂i − π̂MG)
′

=
1

N − 1

N∑
i=1

(π̂i − π) (π̂i − π)
′
+Op

(
N−1/2

)
.

Consider now π̂i −π. As before, using the definition of πi in (26) and substituting πi = π + υπi we obtain

π̂i − π = υπi + Ψ̂−1
Ξ,iT

Ξ′iM̄qεi
T

+ Ψ̂−1
Ξ,iT

Ξ′iM̄qFγi
T

.

Using (A.81)-(A.82), we have

1

N − 1

N∑
i=1

(π̂i − π)
′
(π̂i − π) =

1

N − 1

N∑
i=1

υπiυ
′
πi

+
1

N − 1

N∑
i=1

(
Ξ′iMhΞi

T

)−1
Ξ′iMhF

T
ηγiη

′
γi

(
Ξ′iMhF

T

)′(
Ξ′iMhΞi

T

)−1

+op (1)

=
1

N − 1

N∑
i=1

υπiυ
′
πi +

1

N − 1

N∑
i=1

Σ−1
iξ Qifηγiη

′
γiQ

′
ifΣ

−1
iξ + op (1) ,

where Σiξ = p limT−1Ξ′iMhΞi and Qif = p limT−1Ξ′iMhF are defined by by (A.12) and (A.13) of

Lemma A.3, respectively. Note that υπi and ηγi are independently distributed across i and therefore
1

N−1

∑N
i=1 (π̂i − π)

′
(π̂i − π)−ΣMG

p→ 0 and Σ̂MG
p→ ΣMG, as required.
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