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Abstract

Solving dynamic models with inequality constraints poses a challenging problem for two ma-

jor reasons: dynamic programming techniques are reliable but often slow, while Euler equation

based methods are faster but have problematic or unknown convergence properties. This pa-

per attempts to bridge this gap. I show that a common iterative procedure on the first-order

conditions – usually referred to as time iteration – delivers a sequence of approximate policy

functions that converges to the true solution under a wide range of circumstances. These cir-

cumstances extend to a large set of endogenous and exogenous state variables as well as a very

broad spectrum of occasionally binding constraints.

1. Introduction

Dynamic models with inequality constraints are of considerable interest to a wide range of economists.

The workhorse consumption-savings framework, for instance, is commonly augmented to include

liquidity constraints that limit the extent to which agents can borrow; non-cooperative dynamic

games frequently observe enforcement constraints that bound the set of subgame perfect equilibria;

and in the wake of the recent financial crisis, there has been a surge of interest in models incor-

porating collateral constraints that may propagate shocks by way of the “financial accelerator”.1

∗University of Cambridge, Faculty of Economics, Austin Robinson Building, Sidgwick Avenue, CB3 9DD, Cam-

bridge, United Kingdom. Email: pontus.rendahl@gmail.com. This paper is a substantially revised version of a

chapter in my Ph.D dissertation written at the European University Institute, previously circulated under the title

“Inequality Constraints in Recursive Economies”. The author would like to thank Wouter den Haan, Dirk Krueger,

Albert Marcet, Karel Mertens, Morten Ravn, Sanne Zwart, and two anonymous referees for helpful comments and

suggestions. The usual disclaimer applies.
1See, for instance, Deaton (1991), Aiyagari (1994), and Ludvigson and Michaelides (2001) for examples of liq-

uidity constraints; Kehoe and Perri (2002), Cooley et al. (2004), and Jermann and Quadrini (2012) of enforcement

constraints; and Gertler and Kiyotaki (2010), Gertler and Karadi (2011), and de Groot (2011) of collateral con-

straints. Studies that incorporate collateral constraints frequently assume that these always bind in order to simplify

computation. The “financial accelerator” is commonly attributed to Kiyotaki and Moore (1997) and Bernanke et al.

(1999).
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Yet, solving dynamic models with occasionally binding inequality constraints is no trivial matter.

Dynamic programming techniques are reliable but often slow, while Euler equation based methods

are known to be faster but have problematic or unknown convergence properties.2 This paper aims

to bridge this gap.

I show that a common iterative procedure applied on the Euler equation – time iteration –

delivers a sequence of approximate policy functions that converges to the true solution under a

wide range of circumstances. The proposition extends to a large set of endogenous and exogenous

state variables, and includes a broad spectrum of occasionally binding constraints.3 I exemplify

the potential advantages of the method to alternative techniques by solving a simple real business

cycle model with irreversible investments (cf. McGrattan (1996); Christiano and Fisher (2000)).

The proposed method is generally faster than state-of-the-art dynamic programming algorithms,

and at least equally accurate.

In the context of dynamic programming, dealing with occasionally binding constraints is gener-

ally straightforward. In one popular approach, the state- and the choice space is confined to belong

to a discrete grid, which is (almost trivially) delimited to rule out any violations of the constraint

set (e.g. Imrohoroğlu (1989); Hansen and Imrohoroğlu (1992)). The resulting procedure has the

advantage of being simple, robust, and essentially arbitrarily accurate, but also comes at a very

high cost in terms of computational power (Santos and Vigo-Aguiar, 1998).

To ease this computational burden, it has become increasingly common to treat the choice

set as (if) convex (e.g. Johnson et al. (1993); Krusell and Smith (1998)). Function values in-

between grid points are then evaluated using some interpolation, or approximation, routine, and

the maximisation step is carried out by constrained optimisation. Whereas these improvements have

led to some significant gains in both speed and accuracy (e.g. Judd and Solnick (1994)), they are

still not without complications of their own. An efficient implementation requires the approximation

method to preserve certain desirable properties of the value function, such as differentiability and

concavity, which adds complexity to the computations. And while most numerical optimisation

routines are far more reliant on the slope- rather than the level of the value function, dynamic

programming infers the former from an approximation of the latter, which leaves the procedure

vulnerable to the possibility of self-propagating errors.4 A slope inferred from an approximation of

2To be clear, dynamic programming techniques refers to the method of successive approximations of the value

function, with its various numerical implementations.
3Occasionally binding- or inequality constraints are used interchangeably throughout this paper.
4It should be noted here that the choice of approximation- and optimisation method is not independent. For

instance, if one would use a gradient based optimisation routine, which is normally very fast, it would also be

advisable to employ an (at least) once continuously differentiable and concave approximation method, such as a

shape-preserving spline (see for instance Judd and Solnick (1994) and Judd (1998)). Alternatively, a search-based

optimisation routine, which instead is quite slow, would leave greater freedom in terms of suitable approximation

methods.
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a function can be orders worse than an approximation of the slope of the function, and errors may

easily accumulate.5

Parts of these difficulties can be circumvented by operating directly on the Euler equation –

or more generally – on the first-order conditions.6 The optimisation step is then replaced by a

collection of nonlinear equations, and the choice of approximation method is given a much larger

degree of freedom. A monotone and continuous approximation of the slope of the value function, for

instance, is isomorphic to a once continuously differentiable and concavity preserving approximation

of the level of the value function, but comes at a much smaller computational cost. However,

these approaches do not come without their own issues. Euler equation based methods often have

problematic or unknown convergence properties and, without an educated initial guess for the

optimal policy functions, convergence may fail.7

This paper addresses some of these concerns. I show that any element in the sequence of

approximate value functions defined by dynamic programming is differentiable when a general

class of inequality constraints is considered, and I provide analytical expressions of their respective

derivatives. Using these theoretical insights, an iterative procedure on the first-order conditions,

commonly known as time iteration, is derived. Given that this procedure is equivalent to value

function iteration, it is, under mild initial conditions, a globally convergent method of finding the

equilibrium functions for recursively defined, Pareto optimal problems. And due to the concavity

of the problem, this turns out to be a very convenient and efficient technique from a computational

perspective.

The ideas developed in this paper relate foremost to those of Coleman (1989; 1990; 1991), and

Deaton (1991) and Deaton and Laroque (1992). In influential work, Coleman (1989; 1990; 1991)

argues that a certain iterative procedure applied on the Euler equation converges to the true solution

of an infinite horizon problem. The proposed procedure, which Coleman refers to as “policy function

iteration”, is identical to that explored in this paper, but the results are obtained using a different

approach and, therefore, also carry different implications.8 In particular, Coleman shows that

under the right conditions the Euler equation defines a “monotone map”, and Tarski’s fixed-point

5See for instance Judd (1998), p. 213 and p. 438 for a discussion of these issues.
6See Bizer and Judd (1989), Coleman (1990), den Haan and Marcet (1990), and Baxter (1991) for early applications

of this approach. Davig (2004), Davig and Leeper (2007), Kumhof and Ranciere (2011), and Malin et al. (2011)

provide some recent examples. See McGrattan (1996), Judd (1998), and Christiano and Fisher (2000) for a detailed

discussion.
7Christiano and Fisher (2000), for instance, use the solution to a log-linearised version of their problem as an

initial guess for the policy function. Despite this, some of the algorithms they explore fail to converge.
8Time iteration, or policy function iteration, can be described as the solution to a finite horizon problem using

the first-order conditions while letting the horizon approach infinity. As in Judd (1998), I prefer the term “time

iteration” to “policy function iteration” to avoid confusion with Howard’s improvement algorithm (Howard, 1960),

which is sometimes referenced under the latter name (see e.g. Santos and Rust (2003)).
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theorem applies.9 Convergence is therefore ensured even for non-Pareto optimal economies, but is

also restricted to a relatively simple one-dimensional class of problems without occasionally binding

constraints (see in particular Coleman (1991)). This paper, in contrast, abstracts from the analysis

of suboptimal economies, but instead allows for a much larger state- and choice space, including

multiple first-order conditions and a broad collection of possibly binding inequality constraints.

Deaton, on the other hand, does consider the possibility of occasionally binding constraints. In

particular, Deaton (1991) studies a standard stochastic consumption-savings problem in the pres-

ence of liquidity constraints that preclude borrowing. By exploiting theoretical results developed

in Deaton and Laroque (1992), Deaton shows that the same iterative procedure as advocated in

Coleman (1989; 1990; 1991) defines a contraction mapping, and convergence follows from the Ba-

nach fixed-point theorem. This approach has received quite some attention in the literature and is

particularly widely applied in consumption-theoretic studies.10 I generalise Deaton’s (1991) results

in some dimensions, but specifise it in some other. In particular, I expand the analysis to cover a

much larger state- and choice space, and consider a richer set of occasionally binding constraints.

In contrast to Deaton (1991), however, this paper abstracts from the difficulties that arise when

the return function may be unbounded.

2. Analysis

This section presents the main propositions and discusses their implications. In the first part, I

set up a general stochastic optimisation problem formulated as a Bellman equation. The problem

is cast such that it includes the possibility of occasionally binding inequality constraints, subject

to some standard constraint qualifications. I then proceed by showing that under some commonly

imposed conditions on the primitives of the problem, any element in the sequence of successive ap-

proximations of the value function, {vn}, is differentiable with respect to the (vector of) endogenous

state variables, and analytic expressions for their respective derivatives is provided. Lastly I show

that as these derivatives solely depend on the policy and Lagrange multiplier functions associated

with each vn, the first order conditions allow these functions to be updated by only using their

values in the previous iteration. The method of successive approximations that maps vn−1 to vn

can therefore be recast as a procedure that maps past policy- and multiplier functions to current

policy- and multiplier function, and with identical convergence properties. This latter procedure,

it turns out, is identical to that of Coleman (1989; 1990; 1991), Deaton (1991), and Judd (1998,

pp. 553-555 and 601-602), and is referred to as time iteration.

9For these reasons, Coleman’s method is sometimes referred to as the “monotone map method” (see Davig (2004),

Davig and Leeper (2007), Davig et al. (2012)).
10See for instance Ludvigson (1999), Ludvigson and Michaelides (2001), Szeidl (2002), Haliassos and Michaelides

(2003), Carroll (2006), and Carroll (2009).
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The last part of the section discusses the practical implications of these results, and compare the

resulting iterative procedure to standard value function iterations as well to other Euler equation

based solution methods.

2.1. A General Problem

This paper is concerned with problems that can be formulated according to the following Bellman

equation

v(x, z) = max
y∈Γ(x,z)

{F (x, y, z) + β

∫
Z
v(y, z′)Q(z, dz′)}. (1)

Where x ∈ X is the endogenous state, and z ∈ Z is the exogenous state with a law of motion deter-

mined by the stationary transition function Q. I will employ the following standard assumptions.

(i) X is a convex Borel set in R` with Borel subsets X , and Z is a compact Borel set in Rk with

Borel subsets Z. Denote the (measurable) product space of (X,X ) and (Z,Z) as (S,S).

(ii) The transition function, Q(Z,Z), has the Feller property.11

(iii) The feasibility correspondence Γ(x, z) : X × Z → 2X is, nonempty, compact-valued, and

continuous. Moreover, the set A = {(y, x) ∈ X×X : y ∈ Γ(x, z)} is convex in x, for all z ∈ Z.

(iv) The return function F (·, ·, z) : A → R is once continuously differentiable, jointly (strictly)

concave in x and y, and bounded on A for all z ∈ Z.

(v) The discount factor, β, is in the interval (0, 1).

It is important to note that the above definition of the feasibility correspondence includes the

possibility of inequality constraints.

Then for any weakly concave and bounded v0, it follows that (Stokey et al. (1989), pp. 263-266)

(i) The sequence of functions defined by

vn+1(x, z) = max
y∈Γ(x,z)

{F (x, y, z) + β

∫
Z
vn(y, z′)Q(z, dz′)}, (2)

converges uniformly to the unique fixed point v. And

gn+1(x, z) = argmax
y∈Γ(x,z)

{F (x, y, z) + β

∫
Z
vn(y, z′)Q(z, dz′)}, (3)

converges pointwise to the unique fixed point g.12

11Alternatively one may assume that Z is countable and Z contains all subsets of Z.
12Following standard notation, g is the argmax of (1). It is important to note that if X is compact, then convergence

of gn is uniform.
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(ii) v and vn are strictly concave.

(iii) g and gn are continuous functions.

To more explicitly introduce the presence of inequality constraints, I will assume that all equal-

ity constraints have been substituted into the instantaneous return function, F . The remaining

restriction on feasibility will then solely be summarised by the collection of functions mj(x, y, z),

such that mj(x, y, z) ≤ 0, for j = 1, . . . , r.

Assumption 1. The feasibility correspondence can be formulated as

Γ(x, z) = {y ∈ X : mj(x, y, z) ≤ 0, j = 1, . . . , r},

and the functions mj(x, y, z), j = 1, . . . , r, are, once continuously differentiable in x and y, and

jointly (weakly) convex in x and y.

Let Jx(x, y, z) denote the Jacobian matrix of the constraint vector m = (m1(·),m2(·), . . . ,mr(·))′

with respect to the first ` arguments (the x’s). And let Jy(x, y, z) denote the Jacobian with respect

to the ensuing ` arguments (the y’s).13

Assumption 2. Linear Independence Constraint Qualification (LICQ): The Jacobian of the p ≤ r
binding constraints has full rank; i.e. rank(Jy(x, gn(x, z), z)) = p, for each n ∈ N.

Assumption 3. The following hold

(i) Γ(x, z) ⊂ int(X), or

(ii) X is compact and g(x, z) ∈ int(X).

A few things ought to be noted here. Assumption 1 is actually quite weak. While it is assumed

that all equality constraints have been substituted into the instantaneous return function, none of

the results hinge on this expositional simplification. Together with Assumption 1, Assumption 2

ensures that the duality gap is zero and that the Kuhn-Tucker (KT) conditions are sufficient. There

are other, weaker, constraint qualifications that ensures the sufficiency of the KT conditions, but

LICQ is the weakest constraint qualification that ensures both the existence and uniqueness of the

Lagrange multipliers (Wachsmuth, 2013). Together with Assumption 3, Assumption 2 also implies

that there exists a ŷ such that mj(x, ŷ, z) < 0, for all x, z and j. This is normally known as Slater’s

condition. Part (i) of Assumption 3 implies part (ii), but the converse is not necessarily true. And

lastly, the purpose of Assumption 3 is to ensure that it is the collection of constraints that restricts

feasibility, and not the edge of the state space itself.

13The Jacobian is here defined as an (`× r)-matrix, where ` is the number of endogenous state variables and r is

the number of inequality constraints.

6



Thus, while Assumptions 1 and 3 are largely expositional, Assumption 2 is more substantive

and merits a further discussion. First, and quite trivially, p, the number of binding constraints,

must fall short of, or equal, the number of endogenous state variables, `.14 One example of such

a violation would be a standard neoclassical growth model with an irreversibility constraint on

investments, kt+1 − (1− δ)kt ≥ 0, and with a liquidity constraint on capital kt+1 ≥ φ.15 Then for

kt = φ/(1−δ) both constraints simultaneously bind and LICQ is violated. While the KT conditions

may still remain sufficient, the Lagrange multipliers are no longer unique as only their sum, and

not their individual values, would distinctly influence the first order conditions.

This argument can be made more general. If µ denotes a vector of Lagrange multipliers as-

sociated with some generic optimisation problem, and Jy denotes the Jacobian of the associated

constraint vector, then the vector v = Jyµ plays an integral part in the KT conditions; but the

individual values of Jy and µ do not. However, if the rank of Jy falls short of the number of binding

constraints, there are infinitely many vectors µ̂ that satisfies the system of equations v = Jyµ̂, and

the Lagrange multipliers are not unique.

2.2. Results

Define the operator T on C1(S), the space of bounded, strictly concave, and once continuously

differentiable functions, as

(Tf)(x, z) = max
y∈Γ(x,z)

{F (x, y, z) + β

∫
Z
f(y, z′)Q(z, dz′)}. (4)

That is, T is an operator that takes a function f ∈ C1(S) as an argument and maps it into a new

function Tf . While it is obvious that under the above conditions, T maps functions in C1(S) into

functions in C(S) – the space of bounded, strictly concave, and continuous functions – it will be

shown that T : C1(S)→ C1(S), which follows less straightforwardly.16

Under all the aforementioned assumptions it is possible to express the mapping in (4) as

(Tf)(x, z) = min
µ≥0

max
y∈X

L(x, y, z,µ) = max
y∈X

min
µ≥0

L(x, y, z,µ), (5)

where L denotes the Lagrangian (or saddle function)

L(x, y, z,µ) =F (x, y, z) + β

∫
Z
f(y, z′)Q(z, dz′)− µ′m(x, y, z), (6)

and µ is a (r × 1) column vector of Lagrange multipliers associated with the constraint vector m

(see for instance Rockafellar (1970)).

The ultimate goal of this section is to show that time iteration yields a convergent sequence of

policy functions. The following definition of time iteration will be used.

14The rank of the Jacobian of the constraint vector must, by construction, always fall short of, or equal, the number

of endogenous state variables.
15See Section 3 for a clarification of the notation used here. The parameter φ is an arbitrary positive constant.
16See, for instance, Stokey et al. (1989) for the former claim.
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Definition 1. Let Fx(x, y, z) denote the `-vector consisting of the partial derivatives of F with

respect to its first ` arguments. And let Fy(x, y, z) denote the corresponding vector with respect to

the ensuing ` arguments. Then, time iteration is the iterative procedure that finds the sequence

{hn(x, z)}∞n=0 as y = hn+1(x, z) such that

0 = Fy(x, y, z)− Jy(x, y, z)µn+1(x, z)

+ β

∫
Z

[Fx(y, hn(y, z′), z′)− Jx(y, hn(y, z′), z′)µn(y, z′)]Q(z, dz′). (7)

While the notation may appear esoteric, time iteration can be thought of as using the Euler

equation to find today’s optimal policy, hn+1, given the policy of tomorrow, hn.17

Proposition 1. The n-step value function, vn, is (once) continuously differentiable with respect

to x ∈ int(X) and its vector of partial derivatives is given by

vx,n(x, z) = Fx(x, gn(x, z), z)− Jx(x, gn(x, z), z)µn(x, z).

Proof. In Appendix A.

Since the space C1(S) is not complete in the sup-norm, Proposition 1 does not imply that the

limiting value function, v, is differentiable.18 Moreover, in the proposition above, strict concavity

of the problem and full rank of Jy is assumed. This simplifies the proof given in Corollary 5, p.

597, in Milgrom and Segal (2002), which essentially is equivalent for x ∈ [0, 1].

The final proposition will show that the sequence of policy functions obtained by time iteration

converges to the true policy function.

Proposition 2. If the function y = hn+1(x, z) satisfies equation (7) with hn = gn, and the function

gn+1(x, z) satisfies equation (3) with vn = Tvn−1, then hn+1(x, z) = gn+1(x, z).

Proof. In Appendix A.

Thus, Proposition 2 reveals that if hn is the nth solution of time iteration and gn is the nth

solution of dynamic programming, then hn and gn must coincide. And since it is known that for all

ε > 0 there exist an Ns such that sups |g(s)− gn(s)| < ε for all n ≥ Ns, it follows from Proposition

2 that sups |g(s)−hn(s)| < ε for all n ≥ Ns (see, for instance, Theorem 3.8 in Stokey et al. (1989)).

As a consequence the sequence {hn}n∈N converges to the unique function g.19

Finally there is one additional remark to be made. As, gn converges to g it follows that

Fx(x, gn(x, z), z) converges to Fx(x, g(x, z), z). Thus if the constraint vector m(x, y, z) is indepen-

dent of x, vx,n(x, z) is independent of µn and vx,n(x, z)→ Fx(x, g(x, z), z).20 Hence, if convergence

17In the theoretical part of this paper I will use h to denote the policy function obtained through time iteration,

and g as the policy function obtained through dynamic programming. The goal is to show that hn = gn.
18See Rincon-Zapatero and Santos (2009) for a result related to the limiting value function.
19If X is compact, Ns is independent of s and convergence is uniform.
20This particular case covers state-independent inequality constraints, such as borrowing or short-selling constraints.
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of gn is uniform, then v(x, z) is, under these additional conditions, indeed differentiable and its

derivative is given by Fx(x, g(x, z), z).21 Thus, as a byproduct, this paper provides a simple proof

of the differentiability of the limiting value function, v, under state-independent constraints, such

as debt limits.22

2.3. Discussion

The propositions presented above establish an equivalence between value function- and time iter-

ation and, as such, neither method has any advantage over the other. It may therefore not be

obvious how these ideas may help us in numerically computing dynamic models with occasionally

binding constraints. Thus, to appreciate the usefulness of the techniques advocated in this paper, it

is important to develop an understanding of the challenges involved in numerical solution methods,

and how time iteration may help to alleviate some of these difficulties.

To this end, I will proceed in two steps. First, I will discuss the challenges involved in numerical

dynamic programming, and how Euler equation based methods can provide some relief. Second, I

will briefly discuss various ways of solving the Euler equation, and to which extent time iteration

carries some advantages over alternative approaches.

2.3.1. Dynamic programming vs. Euler equation based methods

Many applications of dynamic programming rely on a discretised state- and choice space, and

such a formulation makes any inequality constraint easy to implement. The resulting grid is simply

delimited such that any violation of the constraint-set is made impossible (see, for instance, Hansen

and Imrohoroğlu (1992)). However, in order to achieve any reasonable degree of accuracy, the

discretisation must be made on a very fine grid and this causes the procedure to suffer immensely

from the curse of dimensionality.23

Parts of these concerns can be avoided by relying on sophisticated approximation-, or interpo-

lation, methods. In particular, by defining the value function on a relatively coarse grid, function

values in-between grid points are then approximated and the choice space can be treated as convex

(see, for example, Krusell and Smith (1998)). In the context of the standard neoclassical growth

model, Judd and Solnick (1994) showed that approximating the value function with a shape-

21This follows as for any sequence of functions such that fn converges pointwise to f , and f ′n exists, is continuous,

and converges uniformly to the function g, then f is differentiable with derivative g (see for example Schroder (2008)).
22In fact, this result holds under weaker assumptions than previously stated; in particular, the uniqueness of the

Lagrange multipliers are no longer necessary and LICQ could be replaced by a less strict constraint qualification,

such as Slater’s condition.
23Some numbers may illustrate this point quite clearly. Suppose that a grid consisting of a thousand nodes in each

endogenous state-variable is known to produce an accurate solution to some dynamic problem. Then a reasonably

small-scaled problem with three state variables suggests a meshed grid of 1, 0003, or one billion, nodes.
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preserving spline on a grid consisting of 12 nodes performs as well as a discretisation technique

using 1200 nodes.

However, these methods are still no panacea. First, efficient optimisation routines exploit

information regarding the slope of the value function, and not its level. An incredibly accurate

approximation of the level of the value function can still be orders off track when it comes to

the derivative. Second, for an efficient implementation the approximation procedure is usually

confined to a computationally expensive class of methods. For instance, linear interpolations –

which are known to be very efficient – create kinks in the value function, and discontinuities

in its derivative. These discontinuities may ultimately feed into the associated policy function

and give rise to misleading results. Alternative approximation methods, such as orthonormal

polynomials, are smoother but can on the other hand display pronounced internodal oscillations.

These oscillations can easily translate to quite wild swings in the derivative of the value function

(and even alter its sign), and may therefore pave the ground for erroneous or diverging solutions.

Thus, the choice of approximation methods should therefore be confined to a relatively expensive

class which preserves certain desirable properties of the value function, such as concavity and

continuous differentiability.

So in what way can Euler equation based methods circumvent these issues? Any approximation

of the Euler equation – whether it is the policy function itself as in standard projection methods

(Judd, 1992), or the entire conditional expectation as in the parameterised expectations algorithm

(den Haan and Marcet, 1990) – is tantamount to an approximation of the derivative of the value

function. Thus, an accurate approximation of the Euler equation will provide much more precise

information of the slope of the value function than would an accurate approximation of its level.

Furthermore, simple and efficient approximation methods, as those mentioned above, are much less

capable of causing mischief when applied directly on the Euler equation. Linear interpolations, for

instance, are not only continuous, but also known to preserve monotonicity and positiveness, even

in arbitrarily many dimensions (Judd, 1998). A continuous, positive, and monotonically increasing

approximation of the derivative of the value function is therefore as accurate as a once continuously

differentiable and concavity-preserving approximation of its level. But the former comes at a much

smaller computational cost than the latter, and there are therefore potentially large efficiency gains

to be made.

As a final remark in this section, it appears appropriate to point out that what has been proven

is a theoretical equivalence between time- and value function iteration, and not a practical numerical

equivalence. Thus once numerical approximations replace precise mathematical operations – i.e. the

maximisation step and/or function evaluations – the contraction property may be lost. Stachurski

(2008) shows how “nonexpansive” numerical approximation methods preserves the contraction

property under value function iteration. This result does not immediately carry over to time

iteration.
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2.3.2. Solution methods based on the Euler equation

A substantial share of dynamic economic models can be summarised by a collection of first-order

conditions following

xt+1 = f(xt, xt+1, xt+2), (8)

were xt ∈ X represents the state of the system. An Euler equation based solution technique

attempts to find a policy function xt+1 = g(xt) such that

g(xt) = f(xt, g(xt), g(g(xt))), (9)

for all xt ∈ X. There are several ways to accomplish this. In what follows I will briefly discuss

three classes of solution methods – one direct approach, and two iterative procedures – under

which, I believe, most practical implementations can be categorised, and I juxtapose their respective

advantages.

Under the direct approach, the researcher decides on some approximation method for g(x),

and finds the associated coefficients such that equation (9) holds according to some metric.24 This

procedure is normally very fast, but also quite fragile. In particular, if g(x) is approximated

using N coefficients, the direct approach amounts to solving an N -dimensional system of nonlinear

equations. This is a non-trivial task, in particular in higher dimensions, and convergence can easily

fail.

Iterative methods can to some extent avoid these issues. Fixed point iteration is initiated by

some guess for the policy function, call this gn(x), which is then updated according to25

gn+1(xt) = f(xt, gn(xt), gn(gn(xt))), (10)

until gn+1 does not differ significantly from gn. In many applications, such as the simple case

illustrated here, this procedure carries some immediate advantages over the direct approach as the

updated guess, gn+1, can be found without resorting to any root-finding operation at all. The

cumbersome system of non-linear equations is replaced by a simple, but repeated, evaluation of

the Euler equation.26 Despite these salient properties there are no guarantees that the sequence of

successive guesses obtained under fixed point iteration will eventually converge to the solution g,

and oscillating or exploding sequences are frequent.27

24For example, (9) should hold exactly on a finite grid of points in X according to the collocation method. In the

Galerkin method, (9) holds as a weighted average on the entire state space, X.
25See for instance Judd (1998) pp. 599-601.
26Fixed point iteration nests the ideas of the Parameterised Expectations Algorithm by den Haan and Marcet

(1990). In particular, as gn+1 only shows up in the left-hand side, one could instead approximate the entire right-

hand side as f̂n(xt) = f(xt, gn(xt), gn(gn(xt))), which is then updated as f̂n+1(xt) = f(xt, f̂n(xt), f̂n(f̂n(xt))).
27A remedy to this issue is to consider a dampening parameter η ∈ (0, 1). In particular, let ĝn+1(x) denote the

left-hand side of (10), then the “dampened” update guess is given by gn+1(x) = ηĝn+1(x) + (1− η)gn(x). However,

in some cases η must be set at a low value close to zero which may slow the algorithm down considerably.
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Time iteration avoids these convergence issues. In particular, starting with some initial guess,

gn(x), the sequence of successive approximations is then given by

gn+1(xt) = f(xt, gn+1(xt), gn(gn+1(xt))), (11)

And following Proposition 2, gn+1 → g, and time iteration is therefore a globally convergent solution

method. However, these benefits do not come without costs. As the updated guess, gn+1, appears

both in the left- and right-hand side of (11), some root-finding operation is therefore unavoidable.

But in contrast to the direct approach, the root-finding operation is confined to repeatedly solving

a small-scale system of nonlinear equations (of dimensionality at most equal to the number of first-

order conditions), instead of solving a much larger system only once.28 And in the one-dimensional

case, the method of endogenous grid points (Carroll, 2006) can avoid any numerical root-finding

operations altogether, and each iteration of time iteration is equally fast as that of fixed point

iteration, but with superior convergence properties.

3. A Numerical Example

This section illustrates the ideas developed in this paper by numerically solving a standard stochas-

tic growth model with irreversible investment. The example is partly chosen on the basis that the

underlying structure represents a fundamental building-block of most modern macroeconomic mod-

els, and partly as it includes a nontrivial occasionally binding constraint. In addition, the model is

parsimonious enough to be solved very accurately using standard dynamic programming techniques,

which will therefore be used as a benchmark for comparisons.

It should be emphasised already at this point that this section is by no means intended as a

large scale comparison of various solution algorithms.29 Instead, the purpose is to illustrate the

applicability of the results derived in the preceding section, and how these ideas can be implemented

in practice. As a byproduct of this exercise, however, some numerical results do emerge.

3.1. Model

I follow Christiano and Fisher (2000) and McGrattan (1996) and consider a standard stochastic

growth model with irreversible investment. As this economy is Pareto optimal, the model can be

summarised by the Bellman equation

v(k, z) = max
k′∈Γ(k)

{u(zf(k) + (1− δ)k − k′) + β

∫
z′∈Z

v(k′, z′)Q(z, dz′)}, (12)

28Malin et al. (2011), p. 237, state this difference as “Thus we trade off solving non-linear systems of much smaller

size by the necessity to having to solve the systems many times (as opposed to only once)”.
29See Christiano and Fisher (2000) or Aruoba et al. (2006) for comprehensive work in this direction.

12



with feasibility correspondence

Γ(k) = {k′ ∈ K : k′ ≥ (1− δ)k}. (13)

The function u denotes the momentary utility function, and f the production function. Both are

assumed to satisfy standard regulatory and Inada conditions. The parameter δ represents the

depreciation rate of capital. And the feasibility correspondence in (13) reflects the irreversible

nature of investment.30

The state space K belongs to an interval, [k, k], such that 0 < k < k < ∞, and g(k, z) ∈
int(K). This conjecture will later be numerically verified, but holds quite naturally due to the Inada

conditions imposed on u and f . In the numerical implementation the state space is discretised into

N uniformly spaced elements, K̂ = {k1, k2, . . . , kN}, and function values in-between grid points will

be found by some approximation routine (see the more detailed description below). The stochastic

element z follows a two-state Markov process, z ∈ Z = {zb, zg}, with law of motion described by

transition matrix P . As a consequence any integral of the type
∫
z′∈Z f(z′)Q(z, dz′) will from hereon

be written as
∑

z′∈Z f(z′)Pz,z′ , where Pz,z′ denotes the probability of the economy transitioning

from state z in period t to state z′ in period t+ 1.

3.2. Solution Methods

I solve the above model using two different solution methods: value function- and time iteration.

The two following subsections briefly discuss their precise numerical implementations. As any

numerical implementation can only deal with the discretised state space K̂ × Z, the qualification

for (k, z) ∈ K̂ × Z is considered implied and is therefore omitted.

3.2.1. Value function iteration

I initiate the value function iteration algorithm using the conjecture31

v0(k, z) = u(zf(k)), (14)

and iterate according to the familiar procedure in equation (2). Following Proposition 1, the

optimisation step can be carried out by finding a g̃n(k, z) which satisfies the (unrestricted) first-

order condition

−u′(zf(k) + (1− δ)k − g̃n(k, z)) + β
∑
z′∈Z

v′n−1(g̃n(k, z), z′)Pz,z′ = 0, (15)

30An alternative formulation consistent with the notation in the previous section would be Γ(k) = {k′ ∈ K :

m(k, k′, z) ≤ 0}, with m(k, k′, z) = (1− δ)k − k′.
31In the numerical implementation this conjecture proved to be simpler for the nonlinear equation solver than the

more commonly used v0(k, z) = u(zf(k))/(1− β).
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where v′n−1 refers to the derivative of vn−1 with respect to its first element. The optimal policy

choice is then given by gn(k, z) = max{g̃n(k, z), (1− δ)k}. And vn−1(k, z) is updated according to

vn(k, z) = u(zf(k) + (1− δ)k − gn(k, z)) + β
∑
z′∈Z

vn−1(gn(k, z), z′)Pz,z′ . (16)

Outside of any k ∈ K̂, the value of vn(k, z) is given by a Piecewise Cubic Hermite Interpolating

Polynomial (pchip). pchip sets the derivative at a “knot” equal to the harmonic mean of the

line-secants between the knot itself and its two neighboring knots.32 This procedure preserves

monotonicity and prevents overshooting of the interpolant in-between grid points. This latter

property significantly reduces the risk of internodal oscillations.

The unrestricted first-order condition is solved using Newton’s method with an analytically

provided Jacobian. The procedure displays no issues of convergence for any parameterisation. The

value function iteration algorithm is terminated once ε < 1(−6), where

ε = max
(k,z)∈K̂×Z

|ε(k, x)|, (17)

and

ε(k, z) = −u′(zf(k) + (1− δ)k − g̃n(k, z)) + β
∑
z′∈Z

v′n(g̃n(k, z), z′)Pz,z′ . (18)

Lastly, following the discussion in Appendix B, I also consider a version of Howard’s improve-

ment algorithm (Howard, 1960). While the precise details of the procedure can be found in the

appendix, the algorithm proceeds similarly to that of value function iteration in finding gn above.

But in contrasts to merely updating vn−1, it “improves” upon the value function through the

iterative scheme

vn,h+1(k, z) = u(zf(k) + (1− δ)k − gn(k, z)) + β
∑
z′∈Z

vn,h(gn(k, z), z′)Pz,z′ , (19)

with vn,h(gn(k, z), z′) = vn−1(gn(k, z), z′), for h = 0. This improvement step is terminated once

h = H, or the distance between vn,h+1 and vn,h is small – whichever comes first. The value function

is then updated as vn = vn,H , and the process repeats itself.33

Apart from significantly enhancing the convergence rate (Santos and Rust, 2003), Howard’s

improvement algorithm has an intuitive appeal. Given a candidate value and policy function, vn

and gn, satisfying equation (16), the algorithm improves on vn by calculating the value function

that emerges if the agent would operate on policy function gn, H number of times. The resulting

32A knot is the same as a node; i.e. an element of K̂. Derivatives at endpoints are set by the one sided line-secant.

For more information about this approximation method see Moler (2004) or Kahaner et al. (1989).
33For simplicity I let vn,H denote the improved value function at the iteration at which the procedure was terminated

even if less than H iterations were executed.
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value, here called vn,H , is then used in place of vn in the subsequent iteration of the standard

algorithm, and the process repeats itself. The enhanced convergence rate stems from the fact that

the (computationally costly) maximisation step is only carried out infrequently, while the value

function itself is “improved” upon repeatedly.

As a rule of thumb, I terminate the improvement step once H = 20 or the sup-norm between

vn,h+1 and vn,h is less than 1(−6). However, there are some variations across parameterisations

in terms of which value of H is optimal, and I alter H in order to attain a procedure as efficient

as possible. The improvement algorithm is terminated using the same criterion as that of value

function iteration.

3.2.2. Time iteration

The time iteration algorithm is initiated using the conjecture

v′0(k, z) = zf ′(k)u′(zf(k)). (20)

Similarly to value function iteration I find g̃n(k, z) as the solution to the (unrestricted) first-order

condition

−u′(zf(k) + (1− δ)k − g̃n(k, z)) + β
∑
z′∈Z

v′n−1(g̃n(k, z), z′)Pz,z′ = 0. (21)

And the optimal policy choice is again given by gn(k, z) = max{g̃n(k, z), (1− δ)k}. The Lagrange

multiplier, µn(k, z), is trivially found as the “residual”

µn(k, z) = u′(zf(k) + (1− δ)k − gn(k, z))− β
∑
z′∈Z

v′n−1(gn(k, z), z′)Pz,z′ , (22)

and the derivative v′n−1 is then updated following Proposition 1

v′n(k, z) = (1 + zf ′(k)− δ)u′(zf(k) + (1− δ)k − gn(k, z))− (1− δ)µn(k, z). (23)

Outside of any k ∈ K̂, the value of v′n(k, z) is given by linear interpolation. In many aspects

linear interpolation is a suitable choice of approximation to juxtapose the two solution methods:

While phcip provides a C1 approximation, linear interpolation is C0. This will give some obvious

speed advantages to time iteration, although without any a priori expected loss in accuracy. For

the sake of further comparison, however, I will also report the results when v′n(k, z) is approximated

using pchip.

As with value function iteration, the unrestricted first-order condition is solved using Newton’s

method with an analytically provided Jacobian. The procedure displays no issues of convergence

for any parameterisation. Again, the time iteration algorithm is terminated once ε < 1(−6), where

ε is defined in exactly the same way as in equation (17).
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I also employ the improvement algorithm discussed in Appendix B. The improvement algorithm

proceeds very similarly to that of time iteration in finding gn above. In contrasts to merely updating

v′n−1, as is done in equation (23), I “improve” upon the derivative through the iterative scheme

v′n,h+1(k, z) = (1 + zf ′(k)− δ)u′(zf(k) + (1− δ)k − gn(k, z))

+ g′n(k, z)× [−u′(zf(k) + (1− δ)k − gn(k, z)) + β
∑
z′∈Z

v′n,h(gn(k, z), z′)Pz,z′ ], (24)

with v′n,h(gn(k, z), z′) = v′n−1(gn(k, z), z′), for h = 0, and where g′n denotes the derivative of the

policy function gn with respect to its first argument (see Appendix B for a further discussion).34

This improvement step is terminated once h = H, or the distance between v′n,h+1 and v′n,h is small

– whichever occurs first. The derivative of the value function is then updated as v′n = v′n,H , and

the process repeats itself.35 The disclaimer discussed in the previous section in setting H applies

also here. But as a rule of thumb, H = 20 performs generally well.

Two final remarks ought to be noted. First, whenever H = 1 the second term in equation (24) is

equal to g′n(k, z)×µn(k, z). When the irreversibility constraint is binding, µn > 0 and g′n = (1− δ),
and equation (24) collapses into equation (23). Thus, with H = 1, the improvement algorithm

is identical to that of time iteration. Second, the time iteration algorithm described above may

appear different to that of Definition 1. From a theoretical perspective this difference is merely

cosmetic: Substituting equation (23) into the definition of the multiplier reinstates the procedure

in Definition 1. From a practical, or applied, perspective there may, however, be a difference.

By approximating the derivative of the value function we avoid approximating both the policy-

and Lagrange multiplier function. This gives one functional approximation less to worry about.

The procedure also has the pedagogical advantage of nesting the improvement algorithm described

above.

3.3. Accuracy of Solutions

Let q(k, z) denote an arbitrary and feasible policy, such that q(k, z) ∈ Γ(k, z), for all (k, z) ∈ K×Z.36

The fixed point associated with q is then defined as

vq(k, z) = u(zf(k) + (1− δ)k − q(k, z)) + β
∑
z′∈Z

vq(q(k, z), z′)Pz,z′ . (25)

In the case in which q indeed is optimal, q must equal to g, and vq must satisfy the Bellman

equation in (12). However, for any two feasible policies q and q̂ (which may or may not be optimal),

34An approximation for the derivative of gn(·, z) on K̂ is computed using forward difference for the first node,

backward difference for the last node, and the central difference for all other nodes.
35As previously I let v′n,H denote the improved derivative at the iteration at which the procedure was terminated

even if less than H iterations were executed.
36I denote an arbitrary and feasible policy as q in order to underline its distinction from the optimal policy g.
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vq(k, z) > vq̂(k, z) implies that q(k, z) must be strictly preferred to q̂(k, z). As a consequence, we

may assess the relative desirability – and therefore the relative accuracy – of any two feasible policies

by simply comparing their associated fixed points. Evaluating accuracy in this way carries three

important properties.

First, the relative accuracy between any two arbitrary feasible policies q and q̂ can be assessed

without any reference to the “true” or “optimal” policy, g. Second, the relative accuracy of a policy

is expressed in terms of the actual utility cost associated with its error, and not by its distance

to the “true” policy function.37 Lastly, the cost of operating under policy q̂ relative to policy q

can be expressed in terms of consumption equivalents, which has a very natural interpretation. In

particular, following Lucas (1987), the value associated with switching from policy q̂ to policy q can

be expressed in terms of the % increase in consumption in each period for perpetuity according to,

η(k, z; q, q̂) =
ln vq(k, z)− ln vq̂(k, z)

1− γ
× 100, (26)

where γ denotes the (constant) coefficient of risk aversion.38

To calculate a precise estimate of η, it is important to have a precise estimate of the fixed

points vq and vq̂. To this end, I linearly interpolate a given policy function q : K̂ × Z → Γ onto a

fine grid K̄ containing 1,000,000 nodes such that q : K̄ × Z → Γ. Lastly, I use nearest neighbour

interpolation to arrive at the policy function q : K̄ × Z → Γ̄, with

Γ̄(k) = {k′ ∈ K̄ : k′ ≥ (1− δ)k}. (27)

As this expanded policy function maps values of the very fine grid K̄ × Z onto K̄ there is no need

for any additional interpolation methods, and a very accurate approximation to the fixed point in

(25) is easily computed. I find an approximation by iterating 2,000 times on equation (25) using

the initial guess

vq0(k, z) =
u(zf(k))

1− β
, (k, z) ∈ K̄ × Z. (28)

It should be noted that while the above method provides a very precise procedure to assess the

relative accuracy of two policies q and q̂, it does so at the cost of not providing any information

about the absolute accuracy of any given policy. To attain the dual objective of assessing both

relative as well as absolute accuracy of the suggested solution methods, I also solve the Bellman

equation in (12) with Γ replaced by the fine grid Γ̄ and for (k, z) ∈ K̄×Z (see Appendix C for more

details). Considering the large cardinality of K̄, I interpret this benchmark solution to be exact.39

37I use the words “true” and “optimal” in quotation marks here as virtually all comparative studies on this topic

use some stand-in for the true function, which is never recovered (e.g. Christiano and Fisher (2000)).
38If utility is logarithmic, i.e. if γ → 1, the relevant metric is η = (1− β)(vq − vq̂)× 100.
39Christiano and Fisher (2000) consider the same solution exact when K̄ contains 40,000 nodes.
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If I let g denote the policy function obtained from the “exact” solution, and q denote the policy

function obtained from any other solution, I will report accuracy following the three measures

ηmax = max
(k,z)∈K̄×Z

η(k, z; g, q), ηmin = min
(k,z)∈K̄×Z

η(k, z; g, q), ηmean =
∑

(k,z)∈K̄×Z

η(k, z; g, q)

2, 000, 000
,

where, under the hypothesis that g indeed is optimal, η(k, z; g, q) ≥ 0 for all feasible policy function

q, and all (k, z) ∈ K̄ × Z.

Lastly, notice that the linearity of η implies that

η(k, z; q, q̂) = η(k, z; g, q)− η(k, z; g, q̂), (29)

and that the mean consumption equivalent cost of policy q̂ relative to policy q is therefore given

by their differences in ηmean.40

3.4. Functional Forms and Parameterisations

The momentary utility function belongs to the class of constant relative risk aversion, and the

production function is of the standard Cobb-Douglas type

u(c) =
c1−γ

1− γ
, f(k) = kα, (30)

with u(c) interpreted as ln(c) if γ is equal to one. The transition matrix P is given by

P =

(
1+ρ

2
1−ρ

2
1−ρ

2
1+ρ

2

)
, (31)

where a typical element, Pi,j , is interpreted as the probability of state j occurring in the subsequent

period given that the current state is i; Pr(z′ = zj |z = zi). The state space for the exogenous state

is given as Z = {eσ, e−σ}.
Table 1 summarises the various sets of parameterisations considered, together with the associ-

ated bounds on the endogenous state space, [k, k]. The parameterisations follow those of Christiano

and Fisher (2000).

I solve the models (1)-(7) using the two algorithms described above. The grid for capital contains

N = 10, N = 100, and N = 1, 000 equidistant nodes.

3.5. Numerical Results

Tables 2 and 3 display the main results of the numerical exercise. The first three cells of each

cluster provide the maximum, minimum, and mean error, respectively. The fourth cell provides

40As an example, suppose that ηmean(q̂) = 5, and ηmean(q) = 3, then ηmean(q, q̂) = −2. That is, the superiority of

policy q relative to q̂ is worth a 2 % rise in consumption for perpetuity. Notice however that the same logic does not

apply for ηmax or ηmin.
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Table 1: Parameterisations

Parameters

Model β γ α δ σ ρ k/kss k/kss

(1) 1.03−
1
4 1 0.3 0.02 0.23 0 1.9 0.3

(2) 1.03−
1
4 10 0.3 0.02 0.23 0 3.8 0.005

(3) 1.03−
1
4 1 0.05 0.02 0.0382 0 1.2 0.8

(4) 1.03−
1
4 1 0.3 0.5 0.675 0 3.8 0.3

(5) 1.03−
1
4 1 0.3 0.02 0.23 0.95 1.7 0.6

(6) 1.03−
1
4 1 0.3 0.02 0.4 0 2.3 0.2

(7) 1.03−
1
4 10 0.1 0.02 0.23 0.95 5.9 0.4

the computation time in seconds, with and without the improvement algorithm (with the latter

in brackets). The fifth cell provides the number of iterations executed until convergence, again

with and without the improvement algorithm. If we start by comparing value function iteration

with time iteration using linear interpolation, a few noticeable features emerge. Time iteration is

as accurate as value function iteration for all parameterisations except for model (2) and (5), and

is also markedly faster.41 It is an order of magnitude more accurate for model (4) at N = 10,

but performs slightly worse across the board for model (5) – although with a sustained speed

advantage.42 With respect to model (2), time iteration performs very poorly at small values of N ,

but remains roughly on par with value function iteration at higher values. However, even value

function iteration performs intolerably bad for this particular model at the coarser grids, with the

maximum error peaking at a striking 4.5 %. There are two reasons underlying these inaccuracies.

First, the ergodic set of capital for model (2) covers a very wide interval, ranging from 0.5 % of

the steady-state level of capital, to 380 %. A grid consisting of 10 nodes is therefore arguably far

too coarse for any reasonable degree of accuracy. Second, a coefficient of risk aversion of 10 brings

forth some significant nonlinearities in the model which appear difficult to approximate. These

nonlinearities seem to cause more serious complications for the derivative of the value function –

which is heavily exploited in time iteration – than they do for its level. At least at the very small

values of N .

When piecewise cubic hermite interpolation replaces linear interpolation in time iteration, some

of these results change. For N = 10, time iteration consistently outperforms value function iteration

– roughly by one order or two – for all parameterisations apart from model (2). It performs no worse

than value function iteration at the finer grids, apart from, again, model (2) where it consistently,

41With the only exceptions of N = 100 for model (4) and N = 1, 000 for model (7) for which value function

iteration is slightly faster.
42Speed should not be neglected here. For instance, time iteration with 100 nodes is both faster and more accurate

for model (5) than value function iteration with 10 nodes.
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although moderately, actually performs better. For model (7) time iteration is roughly an order

more accurate than value function iteration when N is equal to 100.

These gains in accuracy associated with hermite interpolation are nontrivial. But they do

also come at the expense of computational speed. Piecewise cubic hermite interpolation is slower

than linear interpolation and computation time for time iteration increases across all models and

for all grids (with N = 10 for model (2) being the only exception). Yet, even under this more

demanding interpolation scheme time iteration still remains faster than value function iteration

for all models apart from (4) and (7), and for almost all grid sizes (N = 1, 000 for models (2)

and (3) is the exception). In general, time iteration is faster than value function iteration in

15 out of the 21 possible cases, and equally or more accurate in 20. The speed advantage of time

iteration relative to value function iteration under this interpolation scheme stems from the superior

performance of the nonlinear equation solver: pchip renders a continuous (albeit kinked) Jacobian

for time iteration, but imposes some challenging discontinuities for the Jacobian associated with

value function iteration.43 It is therefore unclear whether these speed gains would remain in models

that rely on search-based, rather than gradient based, solution algorithms.

Lastly, an interesting, although disconcerting, observation is that accuracy barely changes as

N increases from 100 to 1, 000. With the notable exception of model (2), this pattern emerges

across all parameterisations and all solution methods.44 I can see two possible explanations for this

phenomenon. Firstly, there might be something inherent in the numerical implementations which

prevents them from ever approaching the exact solution, even as the mesh size approaches zero.

This would be a serious concern. Alternatively, and secondly, the “exact” solution may be further

from the truth than we initially thought – or at least further from the truth than the alternative

solution methods. To see how the latter explanation could generate the above observation, recall

that the obtained policy functions have been interpolation and discretised onto the very same grid

that defines the “exact” solution. Thus, any measure of accuracy – i.e. the cost of operating on

any policy other than the “exact policy” – will, by construction, always be positive, and the “exact

policy” will always outperform any other alternative. But if the “exact” solution is not exact

enough, any other policy that is actually closer to the truth will appear inferior, even when it is

not.

To discriminate between these two hypotheses I interpolate and discretise all policy functions

(including the “exact”) on an even finer grid consisting of 10,000,000 nodes in capital. I subsequently

calculate the associated fixed points as described in Section 3.3, and recalculate the associated

43I have also tried using a cubic spline as an alternative to pchip. The C2 property of the spline alleviates the issues

raised here, but causes some other due to internodal oscillations; indeed for some parameterisations the derivative of

the value function took on negative values on parts of the state space, which led the solver to a complex (absorbing)

terrain. In general, pchip performed quite a lot better than a cubic spline across all models.
44Accuracy actually declines for model (5) when using time iteration with piecewise hermite interpolation. I have

also tried increasing N to 10,000 with unaltered results.
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accuracy measures. The results for the parameterisations where the problem is the most pronounced

are provided in Table 4.

Table 4: Comparison of different solution methods, models (5) and (6)

Value Function Iteration Time Iteration (linear) Time Iteration (pchip)

Grid size, N 10 100 1,000 10 100 1,000 10 100 1,000

Model (5)

Max error 6.9(-4) -1.8(-7) -1.9(-7) 3.7(-4) -2.1(-8) -1.9(-7) 1.3(-6) -1.9(-7) -1.9(-7)

Min error 6.4(-5) -3.8(-6) -3.8(-6) 2.5(-4) -3.7(-7) -3.8(-6) -3.1(-6) -3.8(-6) -3.8(-6)

Mean error 1.1(-4) -5.0(-7) -5.0(-7) 3.2(-4) -3.6(-7) -5.0(-7) 3.7(-7) -5.0(-7) -5.0(-7)

Model (6)

Max error 2.1(-3) -6.1(-5) -6.2(-4) 8.0(-3) -6.0(-5) -6.2(-5) 5.0(-4) -6.2(-5) -6.2(-5)

Min error -9.5(-5) -9.9(-5) -9.9(-5) 1.7(-3) -9.9(-5) -9.9(-5) -9.5(-5) -9.9(-5) -9.9(-5)

Mean error 8.0(-5) -7.9(-5) -7.9(-5) 2.7(-3) -7.8(-5) -7.9(-5) -3.0(-5) -7.9(-5) -7.9(-5)

Notes. This table does not include the computational time nor the number of iterations as these are identical to those in

Table 3. The disclaimer that applies for Tables 2 and 3 applies also here.

Perhaps unsurprisingly the relative performances of the solutions are largely unchanged. Time

iteration performs roughly as well as value function iteration for N = 100 and N = 1, 000 irre-

spective of interpolation method. Linear interpolation loses somewhat in relative accuracy to value

function iteration at N = 10, while hermite interpolation instead makes some headway. But more

importantly, the absolute performances of the solutions have changed quite dramatically. Both

value function iteration and time iteration deliver a more accurate solution using a grid consisting

of 100 nodes than discretised value function iteration on a grid using 1,000,000 nodes.

I have repeated this exercise for all parameterisations in Appendix D with very similar results:

Value function iteration and time iteration using linear interpolation outperform the discretisation

algorithm in four out of seven cases when N = 100, and in six out of seven cases when pchip is

used. While these numerical results are by no means a centrepiece of the analysis in this paper,

they are quite surprising and suggest that the grid size must be much larger than what has been

previously used in the literature when using discretisation methods as a benchmark for accuracy.45

4. Concluding Remarks

Dynamic models with inequality constraints pose a challenging problem for two major reasons:

dynamic programming techniques are reliable but often slow, while Euler equation based methods

45Christiano and Fisher (2000), for instance, treat the discretised value function iteration algorithm using 40,000

nodes as “exact” for precisely the same parameterisations as those explored here. McGrattan (1996) uses 214 = 16384

nodes for a very similar exercise.
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are faster but have problematic or unknown convergence properties. This paper has, at least partly,

addressed these concerns.

I have shown that a common iterative procedure applied on the first-order conditions – known in

the literature as time iteration – delivers a sequence of approximate policy functions that converges

to the true solution under a wide range of circumstances. These circumstances extend to a finite,

but large set of endogenous and exogenous state variables, and include a broad spectrum of occa-

sionally binding constraints. I exemplified the potential advantages of the method to alternative

techniques by solving a simple real business cycle model with irreversible investments. In general

time iteration turns out to be as accurate as state of the art value function iteration algorithms,

but almost indiscriminately faster.

University of Cambridge, Centre for Macroeconomics (CFM), and CEPR.

Manuscript submitted September 3, 2012.
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A Proofs

Lemma 1. The minimiser, µ(x, z), of (5) is a continuous function with respect to x and z.

Proof. By the definition of a saddle function, the fact that µ ≥ 0 and mj(x, ŷ, z) < 0, for all x, z and j, it follows

that

(Tf)(x, z) ≥ L(x, ŷ, z, µ) ≥ F (x, ŷ, z) + β

∫
Z

f(ŷ, z′)Q(z, dz′)− µ′m(x, ŷ, z). (A.1)

Which implies that µ is bounded. Denote the upper bound as µ̄.

Given a certain µ ∈ [0, µ̄]r, define g̃(x, z, µ) as

g̃(x, z, µ) = argmax
y∈X

L(x, y, z, µ). (A.2)

By Berge’s Theorem of the Maximum, L(x, g̃(x, z, µ), z, µ) is a continuous function. Hence, the set of minimisers

µ(x, z) that solve the dual problem

min
0≤µ≤µ̄

L(x, g̃(x, z, µ), z, µ), (A.3)

is an upper hemicontinuous correspondence in x and z. By Assumptions 2 and 3, µ(x, z) is single valued and

consequently a continuous function in x and z (Wachsmuth, 2013).

A.1 Proof of Proposition 1

Proof. It is sufficient to show that T : C1(S)→ C1(S).

Define the saddle function

L(x, g(x, z), z, µ(x, z)) = (Tf)(x, z) = F (x, g(x, z), z)+β

∫
Z

f(g(x, z), z′)Q(z, dz′)−µ(x, z)′m(x, g(x, z), z). (A.4)

Pick an x ∈ int(X) and an x̂ ∈ X such that xj = x̂j for all j 6= i and x̂i = xi + ε, where xi denotes the ith element

of the vector x. For notational convenience, denote the policy and multiplier functions from (5) as g, µ and ĝ, µ̂ for

(x, z) and (x̂, z) respectively.

The definition of a saddle function implies

L(x̂, g, z, µ̂) ≤ L(x̂, ĝ, z, µ̂) ≤ L(x̂, ĝ, z, µ), (A.5)

and

L(x, ĝ, z, µ) ≤ L(x, g, z, µ) ≤ L(x, g, z, µ̂). (A.6)

Combine these two expressions and divide by x̂i − xi
L(x̂, g, z, µ̂)− L(x, g, z, µ̂)

x̂i − xi
≤ (Tf)(x̂, z)− (Tf)(x, z)

x̂i − xi
≤ L(x̂, ĝ, z, µ)− L(x, ĝ, z, µ)

x̂i − xi
. (A.7)

By Lemma 1 and the results on page 5, the functions g and µ are continuous. Consequently the limits of ĝ and µ̂

exist and equal limx̂→x ĝ = g, limx̂→x µ̂ = µ. Hence

lim
x̂→x

L(x̂, g, z, µ̂)− L(x, g, z, µ̂)

x̂i − xi
= lim
x̂→x

L(x̂, ĝ, z, µ)− L(x, ĝ, z, µ)

x̂i − xi
=
∂L(x, g, z, µ)

∂xi
. (A.8)

By the Pinching (Squeeze) Theorem

lim
x̂→x

(Tf)(x̂, z)− (Tf)(x, z)

x̂i − xi
=
∂L(x, g, z, µ)

∂xi
=
∂(Tf)(x, z)

∂xi
. (A.9)

Thus

(Tf)x(x, z) = Lx(x, g, z, µ) = Fx(x, g, z)− Jx(x, g, z)µ(x, z). (A.10)

If v0 is a weakly concave and differentiable function, the desired result is achieved.
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A.2 Proof of Proposition 2

Proof. A sufficient condition for a maximum is a saddle point of the Lagrangian

L(x, y, z, µ) = F (x, y, z) + β

∫
Z

vn(y, z′)Q(z, dz′)− µ′n+1m(x, y, z). (A.11)

By Proposition 1, the value function vn(y, z′) is differentiable and by Assumption 3, given minimisers µn+1, sufficient

conditions for a saddle point are thus

0 = Fy(x, y, z) + β

∫
Z

vx,n(y, z′)Q(z, dz′)− Jy(x, y, z)µn+1. (A.12)

By Proposition 1, this can be rewritten as

0 = Fy(x, y, z) − Jy(x, y, z)µn+1(x, z) + β

∫
Z

[Fx(y, hn(y, z′), z′) − Jx(y, hn(y, z′), z′)µn(y, z′)]Q(z, dz′). (A.13)

Due to strict concavity the solution is unique and hn+1(x, z) = gn+1(x, z).

B An Improvement Algorithm

Value function iterations are considered prohibitively costly in many practical applications as convergence occur at a

linear rate. Howard’s improvement algorithm (Howard, 1960) can at least partly circumvent this issue, as convergence

can be shown to be quadratic (see Puterman and Brumelle (1979), and Santos and Rust (2003)). This part of the

Appendix shows, albeit somewhat heuristically, that some of the ideas of Howard (1960) can be extended to the

current setting of time iteration.

Let gn denote the policy function associated with T ṽn−1. Here ṽn−1 denotes some candidate value function, and

T is the operator defined as in (4). Howard’s improvement algorithm then suggests to find improvements to T ṽn−1,

which I will call ṽh+1
n , through the iterative procedure

ṽh+1
n (x, z) = {F (x, gn(x, z), z) + β

∫
Z

ṽhn(gn(x, z), z′)Q(z, dz′)}, (B.1)

with ṽhn = ṽn−1, for h = 0. This procedure is then repeated until h = H, or, say, until the distance between ṽh+1
n

and ṽhn is sufficiently small.46 The updated ṽn is given as ṽn = ṽHn , and the new policy function gn+1 solves T ṽn:

T ṽn = max
y∈Γ(x,z)

{F (x, y, z) + β

∫
Z

ṽHn (y, z′)Q(z, dz′)}. (B.2)

The procedure repeats itself until {ṽn} converges. As previously mentioned, ṽn converges to v at a quadratic rate.

Under standard value function iteration any element in the sequence {vn} is known to be concave and differentiable

(Proposition 1). However, the same cannot be said about any element in {ṽn}.47 From a theoretical perspective

this may cause problems as concavity and differentiability are properties often exploited to solve the optimisation

problem in (B.2). In practice, however, it is quite common to ignore these issues and proceed under the hypothesis

that each element ṽHn are known to be concave and differentiable, even if this may not be the case. The optimisation

problem in (B.2) is then solved by finding the solution to the first-order conditions

0 = Fy(x, y, z)− Jy(x, y, x)µn+1(x, z) + β

∫
Z

ṽHx,n(y, z′)Q(z, dz′), (B.3)

where ṽHx,n denotes – following the notation used throughout this paper – the `-vector of derivatives of ṽHn .

46For notational convenience I will let ṽHn denote the outcome of this procedure, irrespective of the stopping

criterion.
47Unless, of course, H = 1.
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A sufficient, albeit strong, condition to ensure that each ṽh+1
n indeed is differentiable – and this is where the

heuristic part comes in – is that gn, the policy function, is differentiable. Let Gx,n denote the Jacobian of the policy

function gn. The `-vector of derivatives of ṽh+1
n is then recursively given by

ṽh+1
x,n (x, z) = Fx(x, gn(x, z), z) +Gx,n(x, z)[Fy(x, gn(x, z), z) + β

∫
Z

ṽhx,n(gn(x, z), z′)Q(z, dz′)]. (B.4)

Interestingly, equations (B.3) and (B.4) suggests an obvious improvement algorithm to augment time iteration.

First, given a candidate ṽHx,n−1, we can find gn as the solution to (B.3). This step would be identical to the

updating step in Howard’s improvement algorithm – equation (B.2) – under the familiar assumptions of concavity

and differentiability. Second – defining ṽx,n = ṽHx,n−1 and ṽhx,n = ṽx,n, for h = 0 – we would use equation (B.4) to

repeatedly find improvements of the derivative of ṽn, and iterate until h = H, or until until the distance between

ṽh+1
x,n and ṽhx,n is sufficiently small. This step differs from the analogous step in Howard’s algorithm in that we never

bother to either find, nor improve upon, the value function itself, but only its derivative. While perhaps obvious, it

is worth emphasizing that under the same assumptions as those commonly imposed in many practical applications

– i.e. differentiability of the policy function gn, and concavity of ṽhn – the sequence of policy functions {gn} that

emerges under the derived improvement algorithm will converge to the limiting function g. And convergence will

occur at exactly the same rate as that of Howard’s improvement algorithm.

C A Benchmark Solution

For the benchmark solution I discretise the state space K into a set K̄ containing 1, 000, 000 equidistant nodes

K̄ = {k1, k2, . . . , kN}. For each (k, z) ∈ K̄ × Z and each n = 0, 1, . . ., I solve

Tvn−1(k, z) = max
k′∈Γ̄(k)

{u(zf(k) + (1− δ)k − k′) + β
∑
z′∈Z

vn−1(k′, z′)Pz,z′}, (C.1)

with feasibility correspondence

Γ̄(k) = {k′ ∈ K̄ : k′ ≥ (1− δ)k}. (C.2)

The solution is then improved upon until h = 400 using

vhn(k, z) = u(zf(k) + (1− δ)k − gn(k, z)) + β
∑
z′∈Z

vh−1
n (k′, z′)Pz,z′ , (C.3)

with vh−1
n = vn−1 for h = 1, and where gn(k, z) is the maximiser of (C1). The updated value function is then set

to vn = v400
n , and the procedure repeats itself until ‖vn+1 − vn‖ < 1(−9). The initial guess for the value function is

taken from the solution of the algorithm in Section 3.2.1 using 10,000 nodes. The maximisation step is carried out

by a rather brute force search algorithm which guarantees global optimality. As this procedure is known to converge

to the true solution as the mesh size of the discretisation approaches zero (Santos and Vigo-Aguiar, 1998), I consider

the solution as virtually exact.

D Additional accuracy measures

Table D1 presents the same accuracy results as those in Tables 2 and 3 but while using the procedure described in

Section 3.5 on page 22.
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Table D1: Comparison of different solution methods, models (5) and (6)

Value Function Iteration Time Iteration (linear) Time Iteration (pchip)

Grid size, N 10 100 1,000 10 100 1,000 10 100 1,000

Model (1)

Max error 5.2(-3) -1.6(-6) -1.8(-6) 6.2(-3) 1.3(-6) -1.8(-6) 4.1(-4) -1.7(-6) -1.8(-6)

Min error 1.3(-3) -3.5(-5) -3.4(-5) 1.7(-3) -3.4(-5) -3.4(-5) 2.2(-5) -3.4(-5) -3.4(-5)

Mean error 2.6(-3) -1.3(-5) -1.3(-5) 2.3(-3) -1.2(-5) -1.3(-5) 1.1(-4) -1.3(-5) -1.3(-5)

Model (2)

Max error 4.5 2.8 8.3(-2) 36.3 2.9 2.3(-3) 21.3 9.6(-1) 2.4(-3)

Min error 2.0(-2) -1.8(-3) -3.1(-3) 7.6(-1) 1.4(-3) -3.0(-3) 8.9(-4) -1.6(-3) -3.1(-3)

Mean error 5.3(-1) 3.2(-3) -7.2(-5) 1.3 4.0(-3) -8.6(-5) 1.2(-1) 6.2(-4) -8.6(-5)

Model (3)

Max error 2.2(-7) -1.2(-8) -1.1(-8) 2.4(-6) -1.1(-8) -1.1(-8) 1.4(-7) -1.2(-8) -1.1(-8)

Min error 1.4(-7) -5.8(-8) -5.7(-8) 2.1(-6) -5.8(-8) -5.7(-8) 9.0(-8) -5.8(-8) -5.7(-8)

Mean error 1.9(-7) -1.7(-8) -1.7(-8) 2.3(-6) -1.7(-8) -1.7(-7) 1.3(-7) -1.7(-8) -1.6(-8)

Model (4)

Max error 5.9(-2) 1.8(-6) -5.0(-7) 2.1(-3) -2.7(-7) -5.0(-7) 1.8(-3) -2.4(-7) -5.0(-7)

Min error 4.6(-2) 1.3(-7) -8.8(-7) 1.9(-3) -7.1(-7) -8.9(-7) 1.6(-3) -7.3(-7) -8.9(-7)

Mean error 4.7(-2) 4.7(-7) -5.6(-7) 1.9(-3) -3.8(-7) -5.6(-7) 1.7(-3) -3.9(-7) -5.6(-7)

Model (5)

Max error 6.9(-4) -1.8(-7) -1.9(-7) 3.7(-4) -2.1(-8) -1.9(-7) 1.3(-6) -1.9(-7) -1.9(-7)

Min error 6.4(-5) -3.8(-6) -3.8(-6) 2.5(-4) -3.7(-7) -3.8(-6) -3.1(-6) -3.8(-6) -3.8(-6)

Mean error 1.1(-4) -5.0(-7) -5.0(-7) 3.2(-4) -3.6(-7) -5.0(-7) 3.7(-7) -5.0(-7) -5.0(-7)

Model (6)

Max error 2.1(-3) -6.1(-5) -6.2(-4) 8.0(-3) -6.0(-5) -6.2(-5) 5.0(-4) -6.2(-5) -6.2(-5)

Min error -9.5(-5) -9.9(-5) -9.9(-5) 1.7(-3) -9.9(-5) -9.9(-5) -9.5(-5) -9.9(-5) -9.9(-5)

Mean error 8.0(-5) -7.9(-5) -7.9(-5) 2.7(-3) -7.8(-5) -7.9(-5) -3.0(-5) -7.9(-5) -7.9(-5)

Model (7)

Max error 2.5(-1) 5.6(-4) -1.2(-5) 1.1(-1) 3.2(-4) -1.2(-5) 2.7(-3) -1.2(-5) -1.2(-5)

Min error 5.4(-2) -1.3(-4) -1.4(-4) 4.7(-2) 6.0(-5) -1.4(-4) 1.2(-3) -1.4(-4) -1.4(-4)

Mean error 1.1(-1) -5.8(-5) -7.0(-5) 9.7(-2) 1.7(-4) -7.0(-5) 1.7(-3) -7.0(-5) -7.0(-5)

Notes. This table does not including the computational time nor the number of iterations as the solution methods have not

changed, and these are therefore identical to those of Tables 2 and 3. The same disclaimer that applies for Tables 2 and 3

also, of course, applies here.
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