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Abstract

An understanding of the spatial dimension of economic and social activity re-
quires methods that can separate out the relationship between spatial units that is
due to the effect of common factors from that which is purely spatial even in an
abstract sense. The same applies to the empirical analysis of networks in general.
We are able to distinguish between cross-sectional strong dependence and weak de-
pendence. Strong dependence in turn suggests that there are common factors. We
use cross unit averages to extract common factors and contrast this to a principal
components approach widely used in the literature. We then use a multiple test-
ing procedure to determine significant bilateral correlations (signifying connections)
between spatial units and compare this to an approach that just uses distance to
determine units that are neighbours. We apply these methods to real house price
changes at the level of Metropolitan Statistical Areas in the USA, and estimate a
heterogeneous spatiotemporal model for the de-factored real house price changes
and obtain significant evidence of spatial connections, both positive and negative.
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1 Introduction

The nature and degree of spatial dependence in economic, geographical, epidemiological
and ecological systems has long been the focus of intensive study. Geographers regard the
fundamental question in economic geography to be what explains the uneven pattern of
economic activity in space. Indeed the New Economic Geography starting with Krugman
(1991) addresses exactly this question. But where we have a data rich environment with
observations on many spatial units over many time periods there may be obstacles to
understanding these uneven patterns in spatial data because of complex dependencies
between spatial units that reflect both local (clustering) and common factors. Recent
developments in spatial econometrics have generated a growing literature on methods
for modelling and measuring spatial or cross section dependence in data sets with a
panel structure where there are observations over time (T ) and over space (N). This
in turn has identified a number of central research questions. What is the source of
dependencies in space? To what extent are the observed dependencies between different
spatial units due to common factors - for example, aggregate shocks - that affect different
units rather than being the result of local interactions that generate spatial spill-over
effects? Is the implementation of estimation procedures of panels that implicitly assume
spatially correlated units justifiable when the degree of their cross dependence has not
been established? Do existing methods of identifying neighbouring relationships fully
reflect the actual spatial structure of the underlying data studied?
Currently, there are two main approaches to modelling cross sectional dependence in

large panels: spatial processes and factor structures. Spatial processes were pioneered
by Whittle (1954) and developed further in econometrics by Anselin (1988), Kelejian
and Prucha (1999), and Lee (2002), amongst others. Factor models were introduced
by Hotelling (1933) and first applied in economics by Stone (1947). They have been
applied extensively in finance - Chamberlain and Rothschild (1983), Connor and Kora-
jczyk (1993), Stock and Watson (1998), and Kapetanios and Pesaran (2007) -, and in
macroeconomics as in Forni and Reichlin (1998) and Stock and Watson (2002a,b).
Factors can be represented by cross-sectional averages at regional and/or national

levels (Pesaran, 2006), or can be estimated by Principle Components (PCs). The num-
ber of principal components can be determined using the information criteria proposed
by Bai and Ng (2002), amongst others. Estimation of panels with spatially correlated
errors include the use of parametric methods based on maximum likelihood - Lee (2004),
Yu, de Jong and Lee (2008), Lee and Yu (2010), or the GMM approach proposed by
Kelejian and Prucha (1999, 2010), Kapoor, Kelejian and Prucha (2007), and Lin and Lee
(2010). Furthermore, non-parametric methods using spatial HAC estimators have been
applied by Conley (1999), Kelejian and Prucha (2007), and Bester, Conley and Hansen
(2011). Chudik and Pesaran (2013) provide a comprehensive review of recent literature
on estimation and inference in large panel data models with cross-sectional dependence.
The factor and spatial econometric approaches tend to complement one another, with

the factor approach more suited to modelling strong cross-sectional dependence, whilst
the spatial approach generally requires the spatial dependence to be weak. See, for ex-
ample, Chudik, Pesaran and Tosetti (2011). This presents a challenge as most panel data
sets are subject to a combination of strong and weak cross dependencies, and a method-
ology that is capable of identifying and dealing with both forms of cross dependence
is needed. This paper proposes a two-stage estimation and inference strategy, whereby
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in the first step tests of cross sectional dependence are applied to ascertain if the cross
sectional dependence is weak. If the null of weak cross-sectional dependence is rejected,
the implied strong cross-sectional dependence is modelled by means of a factor model.
Residuals from such factor models, referred to as de-factored observations, are then used
to estimate possible connections amongst pairs of cross section units, and ultimately to
model the remaining weak cross dependencies, making use of extant techniques from
spatial econometrics.
In addition to using spatial weights matrices based on contiguity and geodesic dis-

tance, we also consider the use of pair-wise correlation of the de-factored observations to
identify if a given pair of cross section units are connected. To avoid the multi-testing
problem that such an approach entails we employ the Holm (1979) procedure discussed
and justified in Bailey, Pesaran and Smith (2013) for consistent estimation of large cor-
relation matrices.1

Finally, we provide a detailed application of the proposed two-step methodology to
real house price changes across different Metropolitan Statistical Areas (MSAs) in the
US. To estimate the correlation-based measures of connections, we begin with the esti-
mation of a de-factored set of observations from a hierarchical spatiotemporal model or
by means of the PC analysis. We then apply the Holm procedure to the pair-wise cor-
relations of the de-factored observations to estimate the N ×N connections matrix, Ŵ,
which we then decompose into Ŵ+ (representing positive connections) and Ŵ− (repre-
senting negative connections).2 These positive and negative connection matrices are then
compared to geodesic based spatial matrices, Wd, (d being the selected distance measure
between different MSAs) and their closeness examined by means of contingency tables.
A spatiotemporal model of house prices is then estimated by the quasi maximum likeli-
hood (QML) approach developed in Aquaro, Bailey and Pesaran (2013) for the analysis
of heterogeneous spatiotemporal panel data models. The QML estimates confirm impor-
tant dynamics in the de-factored house price changes as well as statistically significant
positive and negative spill-over effects across the MSAs, with the positive effects being
more prevalent.
The rest of the paper is organised as follows: Section 2 motivates and describes the

first stage of the proposed two-step spatiotemporal modelling strategy. Section 3 focuses
on the second stage of the proposed approach and suggests a correlation based method for
approximating network connections using de-factored observations from the first stage.
Section 4 presents the empirical application to the US real house price changes. Finally,
Section 5 concludes. Data specifications and sources are relegated to the Appendix.
Notation: The largest and the smallest eigenvalues of the N × N matrix A = (aij) ,

are denoted by λmax (A) and λmin (A) respectively, ‖A‖ = λ1/2max (A′A) is the spectral (or

operator norm) of A, ‖A‖1 = max1≤j≤N

{∑N
i=1 |aij|

}
is its maximum absolute column

sum norm, and ‖A‖∞ = max1≤i≤N

{∑N
j=1 |aij|

}
is its maximum absolute row sum norm.

1For a related field see Barigozzi and Brownlees (2013). Their empirical application infers just one
common factor in the form of the market return.

2Note that Ŵ = Ŵ
+
+ Ŵ−.
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2 Spatial econometric models

The standard spatial econometric model can be written as

x◦t = ψWx◦t + u◦t, (1)

where x◦t = (x1t, ..., xNt)
′, u◦t = (u1t, ..., uNt)

′, and W is a given spatial weights matrix.
The error terms uit are assumed to be independently distributed over both i and t with
zero mean and variances var(uit) = σ2ui , so that var(u◦t) = Σu = Diag

(
σ2u◦
)
, where

σ2u◦ = (σ2u1 , . . . , σ
2
uN

)′, 0 < σ2ui < K < ∞ on its ith diagonal and K is a finite generic
constant independent of N . Hence, (1) can be re-written as

x◦t = ψWx◦t + Σ1/2
u ũ◦t, (2)

where ũ◦t = (ũ1t, ..., ũNt)
′ and ũit ∼ IIDN (0, 1), for i = 1, ..., N . This is commonly

referred to in the spatial econometrics literature as a spatial autoregressive model, or a
spatially lagged dependent variable model. The usual approach is to specify theW matrix
a priori and then estimate equation (1) directly.3 One possible problem with this is that
apparent cross sectional dependence that is meant to be captured by W may actually be
due, in part, to common effects from the exogenous variables. We propose a two-stage
modelling strategy below where we first purge the data of potential common effects, using
a factor model, and then focus attention on the resulting residuals to identify possible
spatial patterns through a multiple testing analysis of the correlation matrix.
In the first stage of our procedure we use the cross-sectional average approach of

Pesaran (2006) to approximate the factors creating strong cross dependence at a national
and regional level. As explained in the introduction, different methods can be used
to eradicate the data from common effects, such as maximum likelihood - Robertson
and Symons (2007) - or principal components - Bai (2003). Our preference towards
the cross-sectional averages alternative mainly arises from the fact that in this case the
factors have clear economic interpretations. On the other hand, under the principal
components approach for instance, an infinite number of factor rotations are possible
rendering representation of well-defined, economically meaningful factors diffi cult.
For the second stage of our strategy, there is a related literature that addresses the

issue of identification of neighbours by estimating the corresponding sparse covariance
matrix of the data set. The first approach uses Markov networks as its basis. This is
defined as a graphical model that represents variables as nodes and ‘conditional’depen-
dencies (partial correlations) between variables as (undirected) edges. Estimation then
amounts to setting elements of the inverse covariance matrix to zero - Dempster (1972).
A number of estimation approaches have followed involving lasso regressions or graphical
lasso (penalised ML with a lasso penalty) performed on the inverse covariance matrix.
The main problem with this approach is that once de-factoring has taken place the inter-
pretation of the resulting inverse covariance matrix is ambiguous. Furthermore, finding
a good estimate of the inverse covariance matrix especially when N > T can be challeng-
ing. The second approach (and less well-known) uses the so-called covariance graph at
its centre which is the corresponding graphical model for ‘marginal’dependencies (mar-
ginal correlations). Methods of estimating the covariance matrix involve pre-specifying a

3The regional science literature has long been aware of the potential problems with the prior specifi-
cation of the W matrix. For recent contributions see Corrado and Fingleton (2012).
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zero-pattern - Chaudhuri, Drton and Richardson (2007), Bayesian priors - Khare and Ra-
jaratnam (2011), thresholding - Butte, Tamayo, Slonim, Golub and Kohane (2000) and
shrinkage - Rothman, Bickel, Levina and Zhu (2008, 2010). In general neither approach
shows relative superiority over the other.
The multiple testing method developed in Bailey, Pesaran and Smith (2013) belongs

to the second line of thought of approximating ‘marginal’dependencies. As shown in
Section 3, it is practical and simple to implement, and it is invariant to the ordering
of the underlying units. Furthermore, it circumvents the challenge of evaluating the
theoretical constant, C, arising in the rate of convergence of other thresholding estimators.
By using the inverse of the normal distribution at a pre-specified significance level, it
avoids the computationally intensive cross validation procedure typically employed for
the estimation of C.

2.1 Cross-sectional dependence (CSD) in panels

2.1.1 Spatial dependence - a form of weak CSD

Conventionally, spatial dependence is characterised by use of a predetermined metric
such as space or ‘economic distance’- Lee and Pesaran (1993), Conley and Dupor (2003),
Conley and Topa (2003), Pesaran, Schuermann and Weiner (2004) and the review of
spatial econometrics by Anselin (2001). However, often in economic applications these
may not be appropriate measures. In some instances trade flows might be relevant,
whilst in the case of inter-industry dependencies input-output matrices might provide
the appropriate ‘spatial’metric - Holly and Petrella (2012). Alternatively, there may be
dependencies between geographical areas that reflect cultural similarity, and migration
or commuting relationships.4

Irrespective of the measure used, spatial dependence relates to spill-over effects that
are not pervasive in nature. In other words it conforms to the notion of cross-sectional
weak dependence (CWD) as defined in Chudik, Pesaran and Tosetti (2011). To see why,
consider as an example the first-order spatial autoregressive, SAR(1), model defined in
(2). Assuming that (IN − ψW) is invertible, we have

x◦t = Gũ◦t, (3)

where
G = (IN − ψW)−1 Σ1/2

u .

In the spatial literature, W is assumed to have non-negative elements and is typically
row-standardized so that ‖W‖∞ = 1. Under these assumptions, |ψ| < 1 ensures that
|ψ| ‖W‖∞ < 1, and we have

‖G‖∞ =
∥∥∥Σ1/2

u

∥∥∥
∞

∥∥IN + ψW+ψ2W2 + ....
∥∥
∞

≤
∥∥∥Σ1/2

u

∥∥∥
∞

[
1 + |ψ| ‖W‖∞ + |ψ|2 ‖W‖2∞ + ...

]
=

maxi(σui)

1− |ψ| ‖W‖∞
< K <∞.

4Interactions in social networks can also be ‘spatial’ in an entirely abstract sense. For example
Bhattacharjee and Holly (2013) explore interactions among members of a committee using a spatial
analogy.
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Similarly, ‖G‖1 < K < ∞, if it is further assumed that |ψ| ‖W‖1 < 1. In general,
(IN − ψW)−1 Σ1/2

u has bounded row and column summatrix norms if |ψ| < min (1/ ‖W‖1 , 1/ ‖W‖∞).
See Chudik and Pesaran (2013) for further details.
Therefore, if the above condition on |ψ| is met the covariance matrix of (3), Σ = GG′,

will also be row (column) bounded:

‖Σ‖1 = ‖GG′‖1 ≤ ‖G‖1 ‖G′‖1 = ‖G‖1 ‖G‖∞ < K <∞.

Similarly, assuming that var(xit) = σ2i > 0 is bounded away from zero, for the correlation
matrix of (3), R = D−1/2ΣD−1/2, where D =diag( σ2i , i = 1, 2, ..., N) we have

‖R‖1 =
∥∥D−1/2ΣD−1/2

∥∥
1
≤ 1

mini(σ2i )
‖Σ‖1 < K <∞. (4)

Also, λmax(R) ≤‖R‖1 < K, where λmax(R) is the largest eigenvalue of R.
The degree of cross-sectional dependence among the N units can be summarised

conveniently by their average cross-correlation (excluding the diagonal elements),

ρ̄N =
τ ′Rτ −N
N (N − 1)

=
τ ′Rτ

N (N − 1)
− 1

N − 1
, (5)

where τ is anN×1 vector of ones. In general, noting that (τ ′τ ) λmin(R) ≤ τ ′Rτ ≤ (τ ′τ )
λmax(R), where λmin(R) is the smallest eigenvalue of R, we have

λmin(R)

(N − 1)
≤ τ ′Rτ

N (N − 1)
≤ λmax(R)

(N − 1)
,

and
λmin(R)− 1

(N − 1)
≤ ρ̄N ≤

λmax(R)− 1

(N − 1)
.

Therefore, in the case of weakly cross correlated processes, such as the spatial autoregres-
sive models, where λmax(R) is bounded in N , ρ̄N → 0, as N →∞, and standard spatial
econometric models cannot deal with cases where ρ̄N differs from zero even for suffi ciently
large N .5 In cases where ρ̄N tends to a non-zero value, other modelling strategies such
as the common factor models with pervasive effects across all units are needed.

2.1.2 The factor model - a form of strong CSD

To this end we draw from the analysis in Pesaran (2013) to test for weak cross-sectional
dependence. Suppose that x◦t are now generated according to the following factor model

x◦t = Γf t + Ω1/2ε̃◦t, (6)

where f t = (f1t, f2t, ..., f`t)
′ is the `×1 vector of unobserved common factors (` being fixed)

with E(f t) = 0, Σff = Cov(f t) = I`, and Γ is the N × ` matrix of the factor loadings
5In cases where the degree of cross-sectional dependence is relatively high, one would expect λmax(R)

associated with the correlation matrix of the spatial model to be very large whenW is row-standardized
and ψ is close to unity. Using simulations we can confirm that in such cases λmax(R) rises with N but
at a slower rate, such that αN = ln (λmax(R)) / ln(N) tends to a value which is below 1/2. Also, as to be
expected, for each N , αN rises with |ψ| - see Bailey, Kapetanios and Pesaran (2013) for details regarding
the specification of αN .

5



γi = (γi1, γi2, ..., γi`)
′, for i = 1, ..., N, ε̃◦t = (ε̃1t, ..., ε̃Nt)

′ are idiosyncratic errors that are
cross-sectionally and serially independent, namely ε̃it ∼ IID(0, 1), i = 1, ..., N . The error
variance components are collected in Ω = Diag (ω2i , i = 1, ..., N) so that εit = ωiε̃it is
then distributed as εit ∼ IID(0, ω2i ), i = 1, ..., N. As before, the degree of cross-sectional
dependence of x◦t is governed by the largest eigenvalue of the correlation matrix, R,
which bounds the rate at which the average pair-wise error correlation coeffi cient, ρ̄N ,
defined by (5), tends to zero in N .
In the case of the above factor model, V ar(xit) = σ2i = ω2i+γ

′
iγi, ρij = Corr(xit, xjt) =

δ′iδj, for i 6= j, where

δi =
γi√

1 + γiγ
′
i

, (7)

and δi = (δi1, δi2, ..., δi`)
′. Then,

ρ̄N =

(
N

N − 1

)(
δ̄
′
N δ̄N −

∑N
i=1 δ

′
iδi

N2

)
, (8)

where δ̄N = N−1
∑N

i=1 δi.
Consider now the effects of the jth factor, fjt, on the ith unit, xit, as measured by γij,

and suppose that these factor loadings take non-zero values for Mj out of the N cross-
section units. Then, following Bailey, Kapetanios and Pesaran (2013 - BKP), the degree of
cross-sectional dependence due to the jth factor can be measured by αj = ln(Mj)/ ln(N),
and the overall degree of cross-sectional dependence by α = maxj(αj). They define α as
the exponent of N that gives the maximum number of xit units, M = maxj(Mj), that
are pair-wise correlated. The remaining N −M units will only be partially correlated.
BKP refer to α as the exponent of cross-sectional dependence and it can take any value
in the range 0 to 1, with 1 indicating the highest degree of cross-sectional dependence.
Considering that γ ′iγi = O(`) where ` is fixed as N →∞, the exponent of cross-sectional
dependence of the units can be equivalently defined in terms of the scaled factor loadings,
δi. Without loss of generality, suppose that only the first Mj elements of δij over i are
non-zero, and note that6

δ̄j,N =
1

N

 Mj∑
i=1

δij +
N∑

i=Mj+1

δij

 =
Mj

N

M−1
j

Mj∑
i=1

δij

 = Nαj−1µj = O(Nαj−1),

where µj =
(
M−1

j

∑Mj

i=1 δij

)
6= 0, for a finiteMj and asMj →∞. Similarly,N−2

∑N
i=1 δ

2
ij =

O(Nαj−2), and using (8) we have

ρ̄N = O(N2α−2).

The values of α in the range [0, 1/2) correspond to different degrees of cross-sectional
weak dependence, as compared to values of α in the range (1/2, 1] that relate to distinct
degrees of cross-sectional strong dependence. Under the SAR(1) model specification of
(3), ρ̄N → 0 and ‖R‖1 = O (1) , indicating that α must fall in the range [0, 1/2), for N
suffi ciently large.

6The main results in Pesaran (2013) and Bailey, Kapetanios and Pesaran (2013) remain valid even if∑N
i=Mj+1

δij = O(1). But for expositional simplicity we maintain the assumption that
∑N

i=Mj+1
δij = 0.
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2.1.3 Identifying the degree of cross-sectional dependence

In many applications, cross-sectional dependence could be due to common factors as well
as spatial or network dependence, and it is important that both sources of cross-sectional
dependence are taken into account. Mistaking factor dependence, as in (6), for spatial
dependence can lead to spurious inference as to the pervasiveness and the degree of the
cross-sectional dependence. In consequence, identifying the strength of such dependence
is of special significance.
Suppose observations x◦t = (x1t, ..., xNt)

′, t = 1, 2, ..., T, are available and the aim
is to model the cross-dependence between xit and xjt across i, j = 1, ..., N, with N and
T relatively large. A first step requires one to evaluate the strength of cross-sectional
correlation in x◦t. The application of spatial methods should only be considered if the
cross-sectional exponent of the observations, α, is suffi ciently small, and particularly not
close to unity. Regarding temporal dependence, this can be modelled through common
factors or unit-specific dynamics using autoregressive distributed lag models or GVAR
specifications (Pesaran, Schuermann and Weiner (2004), and Dees, di Mauro, Pesaran
and Smith (2007)).
A two-step procedure suggests itself:

1. Apply the cross section dependence (CD) test developed in Pesaran (2013) to x◦t,
t = 1, ..., T, as shown in (10).

(a) Only proceed to spatial modelling if the null of weak cross dependence is not
rejected.

(b) If the null of weak dependence is rejected, model the (semi-) strong depen-
dence by use of factor models or cross section averages, and check that the
residuals from (6), denoted by ε̂◦t = (ε̂1t, ..., ε̂Nt)

′, are weakly cross-correlated
(by applying the CD test to ε̂◦t, t = 1, ..., T ).

2. Apply spatial or network modelling techniques to ε̂◦t and/or identify local connec-
tions for the spatial weights matrix W.

In order to test for weak or spatial dependence, denote the sample estimates of the
pair-wise correlations of (i, j) units of x◦t, t = 1, ..., T , by

ρ̂ij = ρ̂ji =

∑T
t=1 (xit − x̄i) (xjt − x̄j)(∑T

t=1 (xit − x̄i)2
)1/2 (∑T

t=1 (xjt − x̄j)2
)1/2 , (9)

where x̄i = N−1
∑N

i=1 xit. The CD statistic is then defined by

CD =

[
TN(N − 1)

2

]1/2 ̂̄ρN , (10)

where ̂̄ρN =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

ρ̂ij. (11)
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Pesaran (2013) shows that CD → N(0, 1), under the null hypothesis that the cross-
sectional exponent of x◦t, t = 1, ..., T, is α < (2 − ε)/4 as N → ∞, such that T = κN ε,
for some 0 ≤ ε ≤ 1, and a finite κ > 0.
If H0 of weak dependence is rejected for x◦t in step 1 of the above procedure, then

according to BKP the exponent of cross-sectional dependence, α, can be estimated. There
are different ways of estimating this exponent if 1/2 < α < 1. We refer to section 3.1
of Bailey, Kapetanios and Pesaran (2013) for details of their estimation of α. Once step
1 is complete then we can be confident that our data have been stripped suffi ciently of
common effects and step 2 of the analysis can then begin. In principle, it is also possible
to combine the two steps in one meta approach that simultaneously deals with factor and
spatial dependence. Such an approach is beyond the scope of the present paper.

3 Correlation-based specification of spatial weights
matrices

We now revert back to (3) and focus our attention on the choice of the spatial weights
matrix, W. Typically, this is constructed using geodesic, demographic or economic infor-
mation brought in exogenously, and not contained in the data set under consideration,
here x◦t, t = 1, ..., T . In economic applications, economic measures, such as commuting
times, trade and migratory flows across geographical areas have been used. For exam-
ple, in GVAR modelling trade weights are used in the construction of link matrices that
relate individual economies to their trading partners in the global economy - Pesaran,
Schuermann and Weiner (2004). Alternatively geographical contiguity can be used as in
Holly, Pesaran and Yamagata (2011a,b). Such measures are often preferable over geodesic
measures - since they are closer to the decisions that underlie the observations, xit, and
they allow also for possible time variations in the weighting matrix which of course is not
possible if we use only physical distance measures in the construction of W.
The use of economic distance, however, might not be possible in practice, and it is

desirable to see if W can be constructed without recourse to such exogenous information.
In applications where the time dimension is reasonably large (around 50-80), it is possible
to identify the non-zero elements ofW with those elements of ρ̂ij, as expressed in (9), that
are different from zero at a suitable significance level - Barigozzi and Brownlees (2013).7

But since there are a large number of such statistical tests, multiple testing procedures
that control the overall size of the tests have to be used.
The multiple testing problem arises when we are faced with a number of (possibly)

dependent tests and our aim is to control the size of the overall test. Suppose we are
interested in a family of null hypotheses, H01, H02, ..., H0m and we are provided with
corresponding test statistics, Z1T , Z2T , ...., ZmT , with separate rejection rules given by
(using a two sided alternative)

Pr (|ZiT | > CViT |H0i ) ≤ piT ,

7A related literature addresses the issue of approximating ‘marginal’dependencies via thresholding
or shrinking the covariance matrix. For contributions to this field see Butte, Tamayo, Slonim, Golub and
Kohane (2000), Meinshausen and Buhlmann (2006), Chaudhuri, Drton and Richardson (2007), Peng,
Wang, Zhou and Zhu (2009), Rothman, Bickel, Levina and Zhu (2010), Khare and Rajaratnam (2011),
and Bien and Tibshirani (2011) among others.
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where CViT is some suitably chosen critical value of the test, and piT is the observed p
value for H0i.
Consider now the family-wise error rate (FWER) defined by

FWERT = Pr [∪mi=1 (|ZiT | > CViT |H0i )] ,

and suppose that we wish to control FWERT to lie below a pre-determined value, p.
Bonferroni (1935, 1936) provides a general solution, which holds for all possible degrees
of dependence across the separate tests. By Boole’s inequality we have

Pr [∪mi=1 (|ZiT | > CViT |H0i )] ≤
m∑
i=1

Pr (|ZiT | > CViT |H0i )

≤
m∑
i=1

piT .

Hence, to achieve FWERT ≤ p, it is suffi cient to set piT ≤ p/m. However, Bonferroni’s
procedure can be quite conservative, particularly when the tests are highly correlated.
This means that the procedure does not reject as often as it should and therefore lacks
power. A step-down procedure is proposed by Holm (1979) which is more powerful than
Bonferroni’s procedure, without imposing any further restrictions on the degree to which
the underlying tests depend on each other.
If we abstract from the T subscript and order the p-values of the tests, so that

p(1) ≤ p(2) ≤ .... ≤ p(m),

are associated with the null hypotheses, H(01), H(02), ..., H(0m), respectively, Holm’s pro-
cedure rejects H(01) if p(1) ≤ p/m, rejects H(01) and H(02) if p(2) ≤ p/(m − 1), rejects
H(01), H(02) and H(03) if p(3) ≤ p/(m− 2), and so on.8

In our application, we apply multiple testing procedures to distinct non-diagonal ele-
ments of the sample estimate of R = (ρij), namely R̂ = (ρ̂ij), where ρ̂ij is the correlation
of the de-factored price changes between i and j MSAs. Bailey, Pesaran and Smith (2013)
show that the Holm approach applied to R̂ provides a regularised version of the matrix
that converges to R at a faster rate and has superior support recovery than when apply-
ing Bonferroni as N → ∞. To apply the Holm procedure to R̂ = (ρ̂ij), we first observe
that under the null i and j are unconnected, and ρ̂ij is approximately distributed as
N (0, T−1). Therefore, the p-values of the individual tests are (approximately) given by

pij = 2
[
1− Φ

(√
T
∣∣ρ̂ij∣∣)] for i = 1, 2, ..., N−1, j = i+1, ..., N , with the total number of

tests being carried out given by m = N(N −1)/2. To apply the Holm procedure we need
to order these p-values in an ascending manner, which is equivalent to ordering

∣∣ρ̂ij∣∣ in a
descending manner. Denote the largest value of

∣∣ρ̂ij∣∣ over all i 6= j, by
∣∣ρ̂(1)∣∣, the second

largest value by
∣∣ρ̂(2)∣∣, and so on, to obtain the ordered sequence ∣∣ρ̂(s)∣∣, for s = 1, 2, ...,m.

Then the (i, j) pair associated with
∣∣ρ̂(s)∣∣ are connected if ∣∣ρ̂(s)∣∣ > Φ−1

(
1− p/2

m−s+1

)
, oth-

erwise disconnected, for s = 1, 2, ...,m , where p is the pre-specified overall size of the
test (which we set to 5% in the empirical application), and Φ−1(.) is the inverse of the

8Other multiple testing procedures can also be considered and Efron (2010) provides a recent review.
But most of these procedures tend to place undue prior restrictions on the dependence of the underlying
test statistics while the Holm method is not subject to this problem.
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standard normal distribution function. The resultant connection matrix will be denoted
by Ŵ = (ŵij), where ŵij = 1 if the (i, j) pair are connected according to the Holm pro-
cedure, otherwise ŵij = 0. Connections can also be classified as positive ( ŵ+ij) if ρ̂ij > 0,
and negative (ŵ−ij) if ρ̂ij < 0.

4 Application: US house prices

The two stage procedure developed in this paper can be applied to different types of
panel data sets so long as the time series dimension of the panel is reasonably large
such that reliable estimates of pair-wise correlations, ρij, can be obtained. There are
many such panels, covering regions or countries, that can be considered. Regional data
in the United States have been studied by many including Cromwell (1992), Pollakowski
and Ray (1997), Carlino and DeFina (1998, 2004), Carlino and Sill (2001), Del Negro
(2002), Owyang, Piger and Wall (2005), and Partridge and Rickman (2005). The cross
country data sets used in global modelling provide another example. Here we opt to
study house price changes at the level of Metropolitan Statistical Areas (MSAs) in the
US, where we have quarterly time series data on 363 MSAs over the period 1975Q1-
2010Q4 (T = 144). There already exists a large literature on the spatial dimension of
house price changes, partly because of the availability of spatially disaggregated data, but
also because of the role that housing plays in household wealth and in the transmission
of monetary policy shocks, and more recently as a conduit for transmission of global
shocks. Recent contributions include Rapach and Strauss (2007, 2009), Kadiyala and
Bhattacharya (2009), Gupta and Das (2010), Gupta, Kabundi and Miller (2011a,b),
Kuethe and Pede (2011) and Gupta and Miller (2012). In these a number of models are
considered ranging from ARDL, STAR, BVAR, FAVAR, FABVAR, Bayesian shrinkage
LBVAR and the so-called SpVAR specification which are applied to house prices data
directly without prior assessment of their degree of cross-sectional dependence which is
required when implementing these model specifications. Moreover, house price shocks
spill over into adjacent geographical areas and tend to ripple across the economy. See,
for example, Meen (1999), and Holly, Pesaran and Yamagata (2011a,b).
MSAs are large urban concentrations.9 They range in size, as measured by population

in 2008, from the smallest - Carson City - with a population of 55,000, to New York and
its environs with a population of 18.97 million. Moreover, there can be considerable
distances between MSAs. The pair-wise average distance is 1,156 miles, though of course
this is exaggerated by the relative sparseness of the distribution of MSAs in the Midwest.
Indeed, by comparison, the study of regional house prices in the UK by Holly, Pesaran
and Yamagata (2011b) deals with distances of a much smaller magnitude. Distance is,
therefore, likely to be an important factor for the spatial distribution of house prices,
though size could play a role as well.
Our choice of house prices is also motivated by the role that housing plays in spatial

equilibrium models (Glaeser, Gyourko and Saiz (2008), Glaeser and Gottlieb (2009)).
The standard approach in urban and regional economics is to assume a spatial equi-

9Metropolitan Statistical Areas are geographic entities delineated by the Offi ce of Management and
Budget and are used by Federal statistical agencies when collecting, tabulating, and publishing Federal
statistics for spatial units in the USA. The MSAs are defined by a core area with a large population
concentration, together with adjacent areas that have a high degree of economic and social integration
with that core through commuting and transport links.
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librium. At the margin firms and households have to be indifferent between different
locations. Firms employ labour up to the point at which the wage is equal to marginal
product; construction companies supply housing up to the point at which marginal cost
is equal to marginal product. Finally, households have to be indifferent about where they
are located, taking into account wages, the price of houses and the local availability of
amenities (proximity to schools, sea, mountains, temperature, etc.). The combination
of the labour supply curve, the supply curve for housing and the labour demand deter-
mines simultaneously the population of say a locality, wages and the price of housing.
Idiosyncratic differences in space in terms of productivity, particular characteristics of an
area and the construction sector determine differences across space in population density,
household incomes and the price of houses. There are a number of equilibrating processes
at work. Households tend to move across geographical areas in response to differences
in wages, house prices and area characteristics. There can also be agglomeration effects
due to economies of scale in relation to size and population density of cities. But, it
should be clear that such equilibrating tendencies are likely to operate fully only in the
long run, over a number of years rather than quarters. It takes time for households to
relocate in response to changing economic circumstances. It also takes time (time to
build) for construction companies to increase the supply of housing. Any model of house
price diffusion across MSAs must also adequately deal with dynamics, both within and
across MSAs.

4.1 Spatial weights matrices based on distance

We start our analysis with a standard specification of W based on contiguity measures,
which we also use as a benchmark to examine the estimates of W that are based on
pair-wise correlations, ρ̂ij. As noted above, MSAs are deliberately defined as one or more
large cities with their core having a substantial influence over the surrounding region,
but not distance MSAs, due to commuting or other travel costs. Hence, it can be argued
that geographical distance can play an important role in the determination of connections
across different MSAs. As noted earlier, we consider 363 MSAs in total, excluding three
MSAs located in Alaska and Hawaii.10 We denote a weights matrix based on physical
distance byWd, and make use of data for geodesic distance (d) by applying the Haversine
formula to data on the Latitude-Longitude of zip codes, cross referenced to each of the
N = 363 MSAs.11 We regard Wd (of dimension N × N) to be symmetric. We identify
as neighbours for each MSA, i (i = 1, ..., N), all MSAs that lie within a radius of d miles.
This pattern translates into a value of 1 for elements (i, j) and (j, i) of Wd if MSA i is a
neighbour (falling within the given radius) of MSA j, or a value of 0 otherwise. Diagonal
entries (i, i) take a value of 0, indicating that MSA i cannot be a neighbour of itself. Also
under this specification all non-zero elements of Wd are viewed as representing a positive
connection, which should be contrasted with connections that are based on economic
factors that could lead to negative as well as positive connections.
We study three cases: (i) MSAs within a radius of d = 50 miles, (ii) MSAs within

a radius of d = 100 miles, and (iii) MSAs within a radius of d = 200 miles. These give
rise to three Wd matrices, namely (i) W50m, (ii) W100m, and (iii) W200m, which are
sparse by nature, but of different degree depending on the cut-off point set by the radius,

10Note that the District of Columbia is treated as a single MSA.
11See Appendix I for details of this formula.
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d. We compare the degree of sparseness of W50m, W100m, and W200m in terms of their
percentage of non-zero elements (excluding the diagonal elements). This percentage is
0.35% for W50m, 1.55% for W100m, and 5.39% for W200m. As expected, the number of
non-zero elements increases when the radius within which MSAs are considered to be
neighbours rises. Figure 1 displays all three Wd matrices. In this figure we have ordered
the MSAs by States starting at the East Coast and moving towards the West Coast,
following the list provided in Table A of Appendix II, from top to bottom and from left
to right. The sparseness of theWd matrices is captured by white areas in the graph when
the relevant entries are equal to zero. As to be expected there is considerable clustering
along the diagonal, but because we are using a line to depict a plane, sometimes an MSA
may lie at the edge of a State (or region) and fall within the radius of another State or
region. Clearly, as the radius is increased from 50 to 200 miles the degree of leaching
increases.

Figure 1: Spatial weights matrices specified by distance
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4.2 Spatial weights matrices formed from de-factored house price
correlations

As an alternative to Wd, we now consider the problem of estimating W using pair-wise
correlations of house price changes across MSAs. We consider the same 363 MSAs, over
the period 1975Q1 to 2010Q4. We denote the level of house prices in MSA i , located
in State s, in quarter t, by Pist, for i = 1, ..., Ns, s = 1, ..., S, and t = 1, ..., T, where∑S

s=1Ns = N = 363, S = 49 (comprised of 48 contiguous States and the district of
Columbia), and T = 144 quarters. Then we compute real house prices as:

pist = ln

(
Pist
CPIst

)
, for i = 1, 2, ..., Ns; s = 1, ..., S; t = 1, 2, ..., T,

where CPIst is the Consumer Price Index of State s in quarter t. Details on the sources
of these data can be found in Appendix III. We have ordered the MSAs by State, as
described in Section 4.1. Finally, we obtain seasonally adjusted changes in real house
prices, πist, as residuals from regressing pist − pis,t−1, the seasonally unadjusted rate of
change in real house prices, on an intercept and three quarterly seasonal dummies. Before
modelling the spatial dimension of the price changes, πist, we first need to examine the
extent to which these price changes are cross sectionally strongly correlated and then
de-factor such effects if necessary. (Section 2.1.3)
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4.2.1 Stage 1(a,b) : Cross sectional dependence in house price changes and
de-factoring of observations

To examine the degree of cross section dependence in house price changes, we computed
the CD statistic of Pesaran (2013) for the price series, πist, without any de-factoring. (See
(10) and (11)). We obtained CDπ = 640.46 as compared to a critical value of 1.96 at the
5% significance level. The test is clearly highly significant and suggests a very high degree
of cross-sectional dependence in house price changes, which could be due to common
national and regional effects. Applying the method proposed by BKP we calculate the
exponent of cross sectional dependence (standard error in parenthesis) for the house
price changes and obtain α̊π = 0.989 (0.03) . This suggests the existence of cross-sectional
strong or semi-strong dependence in real house price changes across MSAs. Therefore, it
would be inappropriate to apply standard spatial modelling techniques directly to πist,
as suggested in step 1a of the two-stage procedure set out in Section 2.1.3.
The strong cross-sectional dependence in house price changes can be modelled using

observed (national/regional income, unemployment and interest rates), or unobserved
common factors (using principal components). Alternatively, as argued in Pesaran (2006),
we can use cross-sectional averages at the national and regional level as in (13).12 We
identify a total of R = 8 regions in the US containing an average of approximately 45
MSAs each. These are: (i) New England, (ii) Mid East, (iii) South East, (iv) Great
Lakes, (v) Plains, (vi) South West, (vii) Rocky Mountains, and (viii) Far West (see Table
A of Appendix II for more details). Accordingly, let πirt denote the rate of change of real
house prices (after seasonal adjustments) in the ith MSA located in region r = 1, 2, ..., R,
at time t, and consider the following hierarchical factor model

πirt = air + βirπ̄rt + γirπ̄t + ξirt, (12)

i = 1, 2, ..., Nr; r = 1, 2, ..., R; t = 2, ..., T,

where , π̄rt = N−1r
∑Nr

i=1 πirt, and π̄t = N−1
∑R

r=1

∑Nr
i=1 πirt, with N =

∑R
r=1Nr. Write

the above model more compactly as

πt = a + BQNπt + ΓPNπt + ξt, (13)

where πt is an N × 1 vector of house price changes partitioned by regions, namely

πt = (π11t, π21t, ...πN11t; π12t, π22t, ....πN22t; ......; π1Rt, π2Rt, ...., πNRRt)
′.

Similarly
a = (a11, a21, ...aN11; a12, a22, ....aN22; ......; a1R, a2R, ...., aNRR)′.

B and Γ are N ×N diagonal matrices with their ordered elements given by

β11, β21, ...βN11; β12, β22, ....βN22; ......; β1R, β2R, ...., βNRR,

and
γ11, γ21, ...γN11; γ12, γ22, ....γN22; ......; γ1R, γ2R, ...., γNRR,

respectively. Finally, QN and PN are N × N projection matrices such that QNπt give
the regional means and PNπt the national mean of the local feature. More specifically,
let τNr be an Nr × 1 vector of ones, and τN an N × 1 vector of ones, then

PN = τN(τ ′NτN)−1τ ′N ,

12We also considered using State level averages, but there were only a few MSAs in some States.
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and

QN =


PN1 0 . . . 0 0
0 PN2 . . . 0 0
...

...
...

...
...

0 0 . . . PNR−1 0
0 0 . . . 0 PNR

 ,

where PNr = τNr(τ
′
Nr
τNr)

−1τ ′Nr . It is assumed that R is fixed, and for each r, Nr/N
tends to a non-zero constant as N → ∞. PNrπt, for r = 1, 2, ..., R, and PNπt can be
viewed as regional and national factors that are consistently estimated by simple averages.
They also represent the strong form of cross-sectional dependence in the real house price
changes across MSAs.
The de-factored real house price changes are then given by residuals from (13), namely

ξ̂t = πt − â− B̂QNπt − Γ̂PNπt, t = 2, ..., T. (14)

Then, in accordance with step 1b of the two-stage procedure of Section 2.1.3, we apply the
CD test of Pesaran (2013) to the vector of de-factored price changes, ξ̂t. The resulting
CD statistic is much reduced, falling from 640.45 to −6.05, showing that the simple
hierarchical de-factoring procedure has managed to eliminate almost all of the strong
cross-sectional dependence that had existed in the house price changes, and what remains
could be due to the local dependencies that need to be modelled using spatial techniques.
Also, the estimate of the exponent of cross sectional dependence, α, which stood at
α̊π = 0.989 (0.03) is now reduced to α̊ξ = 0.637 (0.03) for the de-factored price changes
which is close to the borderline between strong and weak dependence of 1/2.
For comparison we repeat the de-factoring analysis by applying the method of prin-

cipal components developed for large panels in Bai (2003) to price changes. This entails
running the following regressions

πit = ai + γ ′if̂t + ξit, i = 1, 2, ..., N ; t = 2, ..., T, (15)

where f̂t is an `× 1 vector of principal components (PC) of house price changes (without
grouping by regions or States), and γi = (γi1, γi2, ..., γi`)

′ is the associated vector of factor
loadings. To select the number of PCs we applied the six information criteria proposed
in Bai and Ng (2002), specifying 8 as the maximum number of factors to match the
number of cross-sectional averages used in the hierarchical factor model. All six IC ended
up selecting 8 as the optimal number of factors. We increased the maximum number of
factors in the procedure, but still ended up selecting the maximum as the optimal. In
view of the failure of the IC to lead to any meaningful outcome we decided to conduct
the de-factoring analysis using ` = 2, 3, ..., 8 principal components. We then computed
CD statistics for the de-factored residuals for all 7 choices of `, and obtained the values
of 53.39, 10.21, 2.73, 3.27, 2.31, −1.96 and −4.42 respectively, for ` = 2, 3, ..., 8. The
corresponding exponents of cross-sectional dependence are α̊2pc = 0.932 (0.04), α̊3pc =
0.799 (0.04) , α̊4pc = 0.793 (0.03) , α̊5pc = 0.785 (0.03) , α̊6pc = 0.831 (0.02) , α̊7pc = 0.718
(0.02) and α̊8pc = 0.622 (0.02) , respectively. In view of these results, and to strike a
balance between purging the house price changes from common effects and still leaving a
suffi cient degree of spatial dependence in the de-factored observations we decided to opt
for the mid value of ` at 4.
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It is clear that both methods (cross-sectional averages or PCs with ` = 4) do rea-
sonably well in purging the price changes from the common effects, although the use of
regional and national averages have a clearer economic interpretation as factors than do
the statistically generated principal components. We conclude that once de-factoring has
been implemented using either (14) or (15), the resulting residuals are weakly enough
cross-correlated to consider them amenable to spatial modelling using existing economet-
ric methods or a more elaborate specification, as shown in (18).

4.2.2 Step 2: Estimation of spatial connections

Having computed de-factored price changes, ξ̂it, and ξ̂it,PC4 , we are now in a position
to apply the methodology developed in Section 3 to estimate the matrix of connections
using pair-wise correlations of ξ̂it (or those of ξ̂it,PC4). To do this, first we obtain the
sample correlation matrix of ξ̂t = (ξ̂it), R̂ξ = (ρ̂ξ̂,ij) from the residuals of regression

(13), where ρ̂ξ̂,ij = ρ̂ξ̂,ji = σ̂ξ̂,ij/
√
σ̂ξ̂,iiσ̂ξ̂,jj, and σ̂ξ̂,ij = T−1

∑T
t=1 ξ̂itξ̂jt. Next, we apply

Holm’s multiple testing to the N (N − 1) /2 pair-wise correlation coeffi cients, ρ̂ξ̂,ij, for
i = 1, 2, ..., N −1, j = i+1, ..., N , as described in Section 3. We denote the resultant con-
nection matrix by Ŵcs=

(
ŵcsij

)
. Here cs stands for multiple testing applied to residuals

extracted from de-factoring using the cross-sectional averages approach.
As in Section 4.1, measuring the degree of sparseness of Ŵcs by the percentage of

its non-zero elements we obtain the figure of 1.08% which is comparable to the 1.55%
we obtained for W 100m, although as can be see from Figure 2 the pattern of sparseness
of the two matrices, W100m and Ŵcs, are quite different. In fact it is best to view
the non-zero elements of Ŵcs as connections rather than as neighbours (in a physical
sense). According to Ŵcs, the connections extend well beyond geographical boundaries,
though distinct clusters are evident especially in the West Coast and parts of the East
Coast regions.13 Divisions of the connections into the East, the Middle and West of the
country are also visible.

Figure 2: Spatial weights matrix using multiple testing and W100m
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13Recall that in these graphs MSAs are ordered by State, moving from East to West, from top to
bottom and left to right.
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4.2.3 Positive and negative connections

Unlike the distance based Wd weights matrices, the connections identified by the corre-
lation based approach can be readily distinguished into positive and negative ones. This
can be done by associating positive connections with statistically significant evidence of a
positive correlation, and the negative connections with the evidence of statistically pair-
wise negative correlations. Accordingly, we can now define the positively and negatively
connected weights matrices, Ŵ+

cs = ( ŵ+csij) and Ŵ−
cs =

(
ŵ−csij

)
, respectively, by

ŵ+csij = ŵcsijI
(
ρ̂ξ̂,ij > 0

)
, and ŵ−csij = ŵcsijI

(
ρ̂ξ̂,ij < 0

)
.

We note that Ŵ = Ŵ+
cs +Ŵ−

cs. Comparing these with the distance based weights matrix,
W100m, in Figure 3, at first glance we notice that Ŵ+

cs is more closely related to W100m

than is Ŵ−
cs. Further, it is evident that geographical proximity is not the only factor

driving spatial connections between MSAs. There are significant correlations (positive or
negative) well away from the diagonal, with a number of clusters suggesting connections
at considerable distances.

Figure 3: Spatial weights matrices - distance and correlation-based connections (CS)
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We also applied the multiple testing procedure to the de-factored house price changes
using the PCs, as in (15), and obtained the weights matrices Ŵjpc, corresponding to
2, 3, and 4, PCs, respectively. The degree of sparseness of these matrices, as measured
by the percentage of their non-zero elements, at 1.64%, 1.15% and 0.89%, respectively,
tend to rise with the number of PCs used in the de-factoring process, which is to be
expected. Comparing Ŵjpc, j = 2, 3, 4, with the distance-based matrices W50m,W100m,
and W200m, it appears that we need at least 3 PCs to match the degree of sparseness
of W100m. We also constructed Ŵ+

jpc and Ŵ−
jpc, j = 2, 3, 4 in line with the procedure

described earlier. Ŵ+
4pc, Ŵ−

4pc and W100m are plotted in Figure 4 below. As with the
cross-sectional averages approach, the PC method suggests that positively correlated
connections match more closely the distance-based connections than do the negatively
correlated connections.
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Figure 4: Spatial weights matrices - distance and correlation-based connections (4PCs)
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4.2.4 Statistical associations of different connection weights matrices

We assess the closeness of the correlation-based estimates, Ŵ+ and Ŵ− (using either
cs or pc regressions for de-factoring) with the distance-based weight matrix, Wd, more
formally by quantifying the statistical association of the two types of weights matrices.
The analysis is complicated by the fact that these matrices are by nature sparse, and
hence the probability of a zero realisation in both adjacency matrices Ŵ+ (or Ŵ−)
and Wd is higher than obtaining a common entry of 1.14 Given the symmetry of the
weights matrices in our application, we focus on the upper triangular elements. We
create contingency tables from these upper-triangular elements of the form[

n11 n10
n01 n00

]
,

where:

• n11 equals the number of times Ŵ+ (or Ŵ−) displays entry of 1 when Wd displays
1.

• n00 equals the number of times Ŵ+ (or Ŵ−) displays entry of 0 when Wd displays
0.

• n01 equals the number of times Ŵ+ (or Ŵ−) displays entry of 0 when Wd displays
1.

• n10 equals the number of times Ŵ+ (or Ŵ−) displays entry of 1 when Wd displays
0.

Then, n11 + n00 + n01 + n10 = N (N − 1) /2, and Pearson’s chi-squared statistic -
Pearson (1900) - is given by

χ2 =
1

2
N (N − 1)

[
1∑

i,j=0

n2ij
(ni. + n.j)

− 1

]
.

14For more details regarding testing the dependence among multicategory variables see Pesaran and
Timmermann (2009).
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We set the significance level at 5%. We compare Ŵ+ (or Ŵ−) with the three versions
of Wd, namely W50m,W100m, and W200m. For brevity of exposition we present the con-
tingency tables for Ŵ+

cs and Ŵ−
cs versus W100 only:

Table 1: Contingency tables - Ŵ+
cs and Ŵ−

cs versus W100m spatial weights matrices

W100m

1 0
∑

rows

1 54 357 411

Ŵ
+ cs

0 966 64326 65292∑
cols 1020 64683 65703

W100m

1 0
∑

rows

1 8 288 296

Ŵ
− cs

0 1012 64395 65407∑
cols 1020 64683 65703

It is clear that Ŵ+
cs has more elements in common with Wd than does Ŵ−

cs. The χ
2
5%

statistics for Ŵ+
cs and Ŵ−

cs versus W50m,W100m, and W200m respectively are shown in
Table 2 below (to be compared with a critical value of 3.84):

Table 2: Pearson’s χ25% test statistics
W+

cs and W
−
cs versus Wd, d = 50, 100, 200m

W50m W100m W200m

Ŵ+
cs 267.24 363.27 298.41

Ŵ−
cs 0.89 2.57 4.30

The chi squared test statistics are highly significant especially when Ŵ+
cs is considered.

Elements of Ŵ+
cs are much more closely associated with the spatial weights, Wd, than

the elements of Ŵ−
cs. The association between Ŵ+

cs and Wd is the largest when d = 100.
Finally, we repeat these comparisons with weights based on PC de-factored price

changes, and obtain similar results when the number of PCs is set to 4. See Tables 3 and
4 where Ŵ+

4pc and Ŵ−
4pc are compared with Wd, Ŵ+

cs and Ŵ−
cs. The association between

Ŵ+
cs and Ŵ+

4pc is particularly high, and gives a chi-squared statistic of 7573.2 (compared
with a critical value of 3.84).

Table 3: Pearson’s χ25% test statistics
W+

pc and W
−
pc versus Wd, d = 50, 100, 200m

W50m W100m W200m

Ŵ+
pc 608.53 1034.51 876.42

Ŵ−
pc 0.71 0.40 4.52
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Table 4: Contingency tables - W
+/−
cs versus W

+/−
pc spatial weights matrices

W+
pc

1 0
∑

rows

1 137 250 387

Ŵ
+ cs

0 274 65042 65316∑
cols 411 65292 65703

W−
pc

1 0
∑

rows

1 54 146 200

Ŵ
− cs

0 242 65261 65503∑
cols 296 65407 65703

4.3 A heterogeneous spatiotemporal model of US house price
changes

We are now in a position to illustrate the utility of separate identification of positive
and negative connections for the spatial analysis of house price changes. The de-factored
house price changes, ξ̂it, can be modelled using the following spatiotemporal model

ξ̂it = aiξ +

hλi∑
j=1

λij ξ̂i,t−j +

hξi∑
j=0

ψij ξ̂
∗
i,t−j + ζ it, for i = 1, 2, ..., N, t = 2, ..., T, (16)

where

ξ̂
∗
it =

wiξ̂t
wiτN

, if wiτN > 0,

= 0 if wiτN = 0,

and wi denotes the ith row of the N × N spatial matrix W, which we take as given.
Writing the above model in matrix notation we have

ξ̂t = aξ +

hλ∑
j=1

Λj ξ̂t−j +

hξ∑
j=0

ΨjWξ̂t−j + ζt, (17)

where hλ = max(hλ1, hλ2, ..., hλN), hξ = max(hξ1, hξ2, ..., hξN), Λj andΨj are N×N diag-
onal matrices with λij and ψij over i as their diagonal elements, and ζt = (ζ1t, ζ2t, ..., ζNt)

′.
This model provides a generalisation of the spatiotemporal models analysed in the lit-
erature to the case where the slope coeffi cients, λij and ψij, and the error variances,
σ2ζi = var(ζ it) are allowed to differ across i. An econometric analysis of this model is
provided by Aquaro, Bailey and Pesaran (2013).
To accommodate negative as well as positive connections, (17) can be further gener-

alised to

ξ̂t = aξ +

hλ∑
j=1

Λj ξ̂t−j +

h+ξ∑
j=0

Ψ+
j W+ξ̂t−j +

h−ξ∑
j=0

Ψ−j W−ξ̂t−j + ζt, (18)

where W+ and W− are N ×N network matrices for positive and negative connections,
respectively. Since W = W+ + W−, the above specification reduces to (17) if we impose
the restrictions h+ξ = h−ξ = hξ, and that Ψ+

j = Ψ−j , for all j = 1, 2, ..., hξ, which can be
tested.
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We now use the estimates of the correlation-based connection matrices, Ŵ+ and Ŵ−,
computed based on residuals from (13) or (15), to obtain estimates of Ψ+

j and Ψ−j . To
simplify the exposition and given the desirable properties of the de-factoring based on
cross- section averages we use the residuals from (13). Therefore (18) becomes

ξ̂t = aξ +
h∑
j=1

Λj ξ̂t−j +

h+ξ∑
j=0

Ψ+
j W̃+

csξ̂t−j +

h−ξ∑
j=0

Ψ−j W̃−
csξ̂t−j + ζt,

where W̃+
cs and W̃−

cs are the scaled (row-standardised when applicable) versions of Ŵ+
cs

and Ŵ−
cs.
15 More precisely, for the positively correlated connections we compute the local

averages as

ξ̂
+

it =
ŵ+
cs,iξ̂t

ŵ+
cs,iτN

= w̃+
cs,iξ̂t, if ŵ+

cs,iτN > 0

= 0, if ŵ+
cs,iτN = 0, for i = 1, ..., N,

where ŵ+
cs,i and w̃+

cs,i are the i
th row of Ŵ+

cs and W̃+
cs respectively, while τN is an N × 1

vector of ones. Analogous expressions hold for Ŵ−
cs. Setting hλ, h

+
ξ and h

−
ξ equal to unity

(18) becomes

ξ̂t = aξ +Λ1ξ̂t−1+Ψ+
0 W̃+

csξ̂t+Ψ−0 W̃−
csξ̂t+Ψ+

1 W̃+
csξ̂t−1+Ψ−1 W̃−

csξ̂t−1+ζt, t = 3, ..., 144.
(19)

Here Λ1 = diag (λ1) , Ψ+
0 = diag

(
ψ+0
)
, Ψ−0 = diag

(
ψ−0
)
, Ψ+

1 = diag
(
ψ+1
)
, and Ψ−1 =

diag
(
ψ−1
)
. Also, λ1, ψ

+
0 , ψ

−
0 , ψ

+
1 andψ

−
1 areN×1 vectors of parameters for theN = 363

MSAs. Finally, for quasi maximum likelihood (QML) estimation of the parameters we
assume that ζ it ∼ IIDN

(
0, σ2ςi

)
, for i = 1, ..., N .

The model specification in (19) allows for a high degree of heterogeneity in dynamics
and spatial dependence across the 363 MSAs. By comparison, the traditional spatial
setting assumes that the spatial coeffi cients in ψ0 = (ψ10, ..., ψN0)

′ are homogeneous.
This is a strong assumption that we relax in (19). Furthermore, existing spatial literature
assumes that all units in Wd have at least one (positive) neighbour - see Kelejian and
Prucha (1999, 2010) among others. This need not always hold either. When applying the
multiple testing procedure to the residuals from (13) we find a relatively small number
of units, N0 = 76 in total, that are not connected with the remaining MSAs. There are
also a number of MSAs with only negative connections, N− = 34, and a number with
only positive connections, N+ = 90, with the remaining N+/− = 163 MSAs having both
positive and negative connections, so that N = N+/− + N− + N+ + N0 = 363. The
distribution of connections by the eight regions are given in Table 5.
It is clear that, for the most part, MSAs in all regions have both positive and negative

connections. Also, more MSAs have exclusively positive connections than only negative
connections across all regions, the most polarised regions being the South East and the
Far West. On the other hand, a more balanced distribution of MSAs across N− and N+
can be seen for the Plains, South West and Rocky Mountains regions, with the latter two
also having a proportionately larger number of MSAs with no connections at all.

15Here we abstract from sampling variations in the second stage of our modelling strategy. Potentially
one could estimate both strong and weak forms of dependence simultaneously but this is outside the
scope of the present paper.
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Table 5: Distribution of MSAs by connections across 8 regions in the US

Region\No. of MSAs N+/− N− N+ N0
∑

row

New England 9 1 1 4 15
Mid East 17 2 9 8 36
South East 63 10 25 16 114
Great Lakes 28 8 13 12 61
Plains 16 5 8 3 32
South West 14 3 7 14 38
Rocky Mountains 7 3 3 9 22
Far West 9 2 24 10 45∑

col 163 34 90 76 363
Proportional to total no. of MSAs per region

New England 60.0% 6.7% 6.7% 26.7% 100.0%
Mid East 47.2% 5.6% 25.0% 22.2% 100.0%
South East 55.3% 8.8% 21.9% 14.0% 100.0%
Great Lakes 45.9% 13.1% 21.3% 19.7% 100.0%
Plains 50.0% 15.6% 25.0% 9.4% 100.0%
South West 36.8% 7.9% 18.4% 36.8% 100.0%
Rocky Mountains 31.8% 13.6% 13.6% 40.9% 100.0%
Far West 20.0% 4.4% 53.3% 22.2% 100.0%
N+/− denotes the number of MSAs with both positive and negative connections; N−
the no. of MSAs with only negative connections; N+ the no. of MSAs with only
positive connections; finally N0 the no. of MSAs with no connections.

Given the existence of contemporaneous effects we cannot estimate ψ+i0 and ψ
−
i0 con-

sistently using OLS. Instead we use a QML method developed for given spatial weight
matrices in Aquaro, Bailey and Pesaran (2013). For computational convenience we con-
centrate out the intercept and lagged effects and work with the concentrated log-likelihood
function of (19) after stacking over T

`
(
ψ+0 ,ψ

−
0

)
∝ T ln

∣∣∣IN −Ψ+
0 W̃+

cs −Ψ−0 W̃−
cs

∣∣∣− T

2

N∑
i=1

ln

(
1

T
˜̂
ξ
′

iMi
˜̂
ξi

)
. (20)

Here, ˜̂ξi = ξ̂i − ψ+i0ξ̂
+

i − ψ−i0ξ̂
−
i , Mi = IT − Zi (Z

′
iZi)

−1 Z′i, Zi =
(
τ T , ξ̂i,−1, ξ̂

+

i,−1, ξ̂
−
i,−1

)
for τ T a T × 1 vector of ones, ψ+0 = (ψ+10, . . . , ψ

+
N0)
′ and ψ−0 = (ψ−10, . . . , ψ

−
N0)
′. The

intercepts, aiξ, and the parameters of the lagged values, λ1,ψ
+
1 and ψ

−
1 can be estimated

via OLS applied to the equations for individual MSAs conditional on ψ+i0 and ψ
−
i0.

We note also that for the N0 units with no connections, we set ψ
+
i0 = ψ−i0 = ψ+i1 =

ψ−i1 = 0, and estimate the only remaining parameters, intercepts and λi1 by OLS. In
contrast for the N+/− MSAs with both positive and negative connections estimation of
ψ+i0 and ψ

−
i0 needs to be performed as shown in (20). For MSAs with only negative or

positive connections we impose the restriction that the corresponding ψ+i0, ψ
+
i1, ψ

−
i1, and

ψ−i0 coeffi cients are set to zero. This restriction is needed for identification purposes due
to the simultaneity problem that arises in this case. Clearly these coeffi cients can be
set to other values as well, such as the average of each coeffi cient within the region they
belong to or even to the national average of each coeffi cient.
With respect to inference, it is important to compute standard errors using the sec-

ond cross derivatives of the original likelihood function of (19) with respect to the full
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vector of parameters θ = (θ1,θ2, ...,θN)′, where θi =
(
ψ+i0, ψ

−
i0, ψ

+
i1, ψ

−
i1, αiξ, λi1, σ

2
ςi

)′
. The

variance-covariance matrix of θ̂ML is computed as

Σ̂θML
=

− 1

T

∂2`
(
θ̂ML

)
∂θ̂ML∂θ̂

′
ML

−1 .
For further details, see Aquaro, Bailey and Pesaran (2013).
QML estimates for individual MSAs are available on request. In what follows we give

median and mean estimates, and the proportion of MSAs with statistically significant
parameters (at the 5% level). The summary estimates for all MSAs are given in Table
6, which shows the median and mean (also known as mean group estimates, MGE) of
λ̂i1, ψ̂

+

i0, ψ̂
−
i0, ψ̂

+

i1, ψ̂
−
i1 and σ̂iς over the parameter coeffi cients that are not restricted to

zero, together with the standard errors (in parenthesis) of the MGE.16 For simplicity of
exposition we refer to these summary estimates in the table as λ1, ψ

+
0 , ψ

−
0 , ψ

+
1 , ψ

−
1 and σς .

A number of general conclusions readily emerge from an examination of the results
in Table 6. The mean and median estimates are very close suggesting that the estimates
across the MSAs are approximately symmetrically distributed. All the mean estimates
are statistically significant at the 5% level, with the mean lagged spatial effects (ψ+1 and
ψ−1 ) being less precisely estimated as compared to the other mean effects, λ1, ψ

+
0 and

ψ−0 .
17 The size of the mean temporal effect, λ1, at 0.392 (0.009) is reasonably large

considering that de-factoring is likely to have removed some of the common dynamics in
the house price changes. With regard to the cross section dynamics, contemporaneous
positive spill-over effects are more sizeable than their equivalent negative effects with ψ+0
and ψ−0 estimated at 0.345 (0.017) and −0.2763 (0.021) , respectively. The estimates in
both cases are correctly signed and clearly reject the hypothesis that Ψ+

j = Ψ−j , for j = 0
(and for j = 1 as discussed below). Therefore, it would appear inappropriate to estimate
model specification (17) instead. Also, the lagged spatial effects show a slight reversal of
direction of the contemporaneous effects as seen from the size and the magnitudes of ψ+0
and ψ−0 . Indeed, ψ

+
1 and ψ

−
1 average at −0.040 (0.015) and 0.071 (0.016). We also note

that the mean spatial effects of positive connections at 0.345 is somewhat higher than
the mean effects of negative connections at 0.276 (in absolute terms).
With regard to the statistical significance of the estimates for individual MSAs (ab-

stracting from multiple testing issues) we note that λ̂i1 is statistically significant in 90%
of the MSAs, whilst the contemporaneous spatial effects is significant in 65% of MSAs
with positive connections, and significant in 62% of MSAs with negative connections. In
contrast, the lagged spatial effects turned out to be much weaker, with only 28 present
of positive connections and 26% of negative connections being statistically significant.
Overall, the estimates suggest there exists a reasonably rich temporal and cross sectional
dependence in US house price changes even after stripping them of strong, pervasive
national and regional factors.
16The MG estimator is defined as the simple average of the estimates across the MSAs with non-

zero coeffi cients. For example, the MGE of E
(
ψ+i0
)
= ψ+0 , is given by ψ

+
0,MGE = (1/N∗

+)
∑N∗

+

i=1 ψ̂
+

i0,

where N∗
+ denotes the number of MSAs with positive connections (N

∗
+ = N+/− + N+), and ψ̂

+

i0 is the

QMLE of ψ+i0. The non-parametric estimator of the variance of ψ
+
0,MGE is given by: V̂ ar

(
ψ+0,MGE

)
=

1

N∗
+(N∗

+−1)

∑N∗
+

i=1

(
ψ̂
+

i0 − ψ+0,MGE

)2
. For more details see Pesaran and Smith (1995).

17MGE standard errors are reported in parenthesis.
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Table 6: Quasi-ML estimates of spatiotemporal model (19)

Applied to residual house price changes of 363 MSAs in the United States

λ1 ψ+0 ψ−0 ψ+1 ψ−1 σζ
Computed over non-zero parameter coeffi cients

Median 0.3986 0.3124 -0.2493 -0.0430 0.0608 1.2416
Mean Group Estimates 0.3921 0.3454 -0.2763 -0.0398 0.0706 1.3056

(0.0086) (0.0168) (0.0209) (0.0147) (0.0156) (0.0181)
% significant (at 5% level) 89.8% 64.8% 61.9% 28.1% 26.4% -
Number of non-zero coef. 363 253 197 253 197 363
1Restricted parameter coeffi cients are set to zero. ψ̂

+
i0 = 0 and ψ̂

+
i1 = 0 if MSA i has no positive connections;

ψ̂
−
i0 = 0 and ψ̂

−
i1 = 0 if MSA i has no negative connections; ψ̂

+
i0 = 0, ψ̂

+
i1 = 0, ψ̂

−
i0 = 0 and ψ̂

−
i1 = 0 if MSA i

has no positive or negative connections, for i = 1, ..., 363.
2MGE standard errors are in brackets.

To give an idea of the extent of parameter heterogeneity across MSAs, in Table 7 we
provide median and mean estimates by regions. Interestingly enough the regional differ-
ences are not very pronounced, particularly if we focus on the more precisely estimated
mean parameters, λ1 and ψ

+
0 . The regional estimates of λ1 range from the low value of

0.316 (0.021) for Great Lakes to the high value of 0.458 (0.025) for the Rocky Mountains.
The regional differences in the mean estimates of ψ+0 are even slightly lower and range
from 0.264 (0.082) in South West to 0.374 (0.042) in the Plains. In contrast, the esti-
mates of the negative connections, ψ−0 are less precisely estimated and range from −0.078
(0.099) for New England to −0.370 (0.053) in South West). But one should consider such
comparisons with care since in the case of some regions the number of non-zero estimates
were quite small. Nevertheless, one of our main conclusions that positive and negative
connections have opposite effects seems to be robust to the regional disaggregation. The
estimates of ψ+0 and ψ

−
0 are respectively positive and negative across all the regions. The

results in Table 7 also support our conclusion that lagged spatial effects are generally not
that important and tend to be statistically insignificant in a number of regions. But once
again we need to bear in mind that some of the regional estimates are based on a rather
small number of non-zero estimates.
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Table 7: Quasi-ML estimates of spatiotemporal model (19) summarised by region

Applied to residual house price changes of 363 MSAs in the United States

Computed over non-zero parameter coeffi cients

λ1 ψ+0 ψ−0 ψ+1 ψ−1 σζ
New England

Median 0.4064 0.2762 -0.0843 -0.0514 0.0209 1.1684
Mean Group Estimates 0.3944 0.3563 -0.0781 -0.0050 -0.0412 1.2704

(0.0303) (0.0996) (0.0991) (0.0430) (0.0784) (0.0966)
% significant (5% level) 86.7% 60.0% 50.0% 0.0% 30.0% -
Number of non-zero coef. 15 10 10 10 10 10

Mid East
Median 0.4278 0.3439 -0.1904 -0.0096 0.0625 1.3977
Mean Group Estimates 0.3990 0.3603 -0.1938 -0.0755 0.1129 1.4368

(0.0319) (0.0465) (0.1163) (0.0487) (0.0747) (0.0634)
% significant (5% level) 91.7% 65.4% 68.4% 30.8% 26.3% -
Number of non-zero coef. 36 26 19 26 19 36

South East
Median 0.4013 0.3242 -0.2686 -0.0538 0.0847 1.2384
Mean Group Estimates 0.4001 0.3563 -0.3062 -0.0596 0.0977 1.3469

(0.0162) (0.0262) (0.0326) (0.0234) (0.0242) (0.0427)
% significant (5% level) 90.4% 64.8% 61.6% 27.3% 31.5% -
Number of non-zero coef. 114 88 73 88 73 114

Great Lakes
Median 0.3176 0.2660 -0.2227 0.0149 0.0361 1.2492
Mean Group Estimates 0.3160 0.3304 -0.2846 0.0229 0.0407 1.3142

(0.0209) (0.0463) (0.0383) (0.0435) (0.0351) (0.0392)
% significant (5% level) 78.7% 63.4% 50.0% 31.7% 13.9% -
Number of non-zero coef. 61 41 36 41 36 61

Plains
Median 0.3808 0.3015 -0.2491 -0.1573 0.0597 1.1128
Mean Group Estimates 0.3751 0.3744 -0.2409 -0.1280 0.0825 1.1254

(0.0243) (0.0427) (0.0540) (0.0290) (0.0421) (0.0324)
% significant (5% level) 93.8% 75.0% 57.1% 29.2% 28.6% -
Number of non-zero coef. 32 24 21 24 21 32

South West
Median 0.3935 0.2944 -0.3053 -0.1023 0.0077 1.2877
Mean Group Estimates 0.4024 0.2642 -0.3695 -0.0576 0.0377 1.3385

(0.0209) (0.0823) (0.0525) (0.0630) (0.0560) (0.0301)
% significant (5% level) 94.7% 57.1% 82.4% 38.1% 23.5% -
Number of non-zero coef. 38 21 17 21 17 38

Rocky Mountains
Median 0.4435 0.3486 -0.2756 0.0155 0.1396 1.1618
Mean Group Estimates 0.4581 0.3177 -0.3086 0.0083 0.1033 1.2096

(0.0253) (0.0667) (0.0542) (0.0430) (0.0557) (0.0409)
% significant (5% level) 100.0% 70.0% 80.0% 10.0% 40.0% -
Number of non-zero coef. 22 10 10 10 10 22

Far West
Median 0.4672 0.3667 -0.2438 0.0330 0.0480 1.2158
Mean Group Estimates 0.4400 0.3591 -0.2673 0.0137 0.0155 1.2437

(0.0237) (0.0488) (0.0898) (0.0428) (0.0293) (0.0336)
% significant (5% level) 91.1% 63.6% 63.6% 30.3% 18.2% -
Number of non-zero coef. 45 33 11 33 11 45
1Restricted parameter coeffi cients are set to zero. ψ̂

+
i0 = 0 and ψ̂

+
i1 = 0 if MSA i has no positive

connections; ψ̂
−
i0 = 0 and ψ̂

−
i1 = 0 if MSA i has no negative connections; ψ̂

+
i0 = 0, ψ̂

+
i1 = 0,

ψ̂
−
i0 = 0 and ψ̂

−
i1 = 0 if MSA i has no positive or negative connections, for i = 1, ..., 363.

2MGE standard errors are in brackets below their respective Mean Group Estimates.
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Finally, to assess the importance of de-factoring of house price changes we also esti-
mated the connection matrices Ŵ

+
and Ŵ

−
without de-factoring, using the hierarchical

factor model (12). Not surprisingly we found Ŵ
+
to be much denser as compared to

the estimates obtained based on de-factored price changes, and Ŵ
−
to be less dense.

The many more connections that we are finding when using price changes without de-
factoring reflect the presence of common factors rather than genuine spatial effects. In
line with this result we also find an estimate of spatial effects, ψ+0 , which is very close
to unity when we use W+ estimated based on non-defactored price changes. Details of
these results are available upon request.

5 Conclusions

An understanding of the spatial dimension of economic and social activity requires meth-
ods that can separate out the relationship between spatial units that is due to the effect
of common factors from that which is purely spatial, even in an abstract sense. We are
able to distinguish between cross-sectional strong dependence and weak or spatial de-
pendence. Strong dependence in turn suggests that there are common factors. We have
proposed the use of cross unit averages to extract common factors and contrast this to a
principal components approach widely used in the literature. We then use multiple test-
ing to determine significant bilateral correlations (signifying connections) between spatial
units and compare this to an approach that just uses distance to determine units that
are neighbours. In a very data rich environment with observations on many spatial units
over long periods of time a way of filtering the data to uncover spatial connections is
crucial. We have applied these methods to real house price changes in the US at the level
of the Metropolitan Statistical Area. Although there is considerable overlap between
neighbours determined by distance and those by multiple testing, there is also consider-
able correlation between MSAs across the United States that suggests that other forces
at work.
We also find that our analysis of connections based on pair-wise correlations of de-

factored house price changes clearly points to the existence of negative as well as positive
connections. This feature is absent if we base the spatial analysis exclusively on contiguity.
It is common in the literature to think of spatial relationships as involving spillover from
one area to another with the (implicit) assumption that the spillovers are positive. But
this need not be the case. Migration across space could raise/lower wages or house prices
in one locality and lower/raise them into another locality.
Further, we verify that basing the spatial analysis on house price changes without

de-factoring ignores the possibility that there may be common national and regional
factors that account for these correlations and failing to condition on the common factors
may bias the inferences that can be drawn. Our analysis strips out such common effects
and allows us to focus on spillover effects (positive or negative) which is of primary
interest in spatial analysis. Although proximity measured by distance is a useful metric
for constructing a weighting matrix, our analysis suggests that correlation analysis, once
applied to de-factored price changes with appropriate application of multiple testing
techniques can lead to important new insights as to the nature of spatial connections.
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Appendices

Appendix I: Calculation of distance

The original data used were Latitude-Longitude of zip codes, cross referenced with each
of the 366 Metropolitan Statistical Areas (MSAs). Any missing Latitude-Longitude co-
ordinates were coded manually from Google searches. The geodesic distance between a
pair of latitude/longitude coordinates was then calculated using the Haversine formula:

a = sin2
(

∆lat

2

)
+ cos (lat1) cos (lat2) sin2

(
∆long

2

)
,

c = 2a tan 2
(√

a,
√

1− a
)
,

d = Rc,

where R is the radius of the earth in miles and d is the distance. ∆lat = lat2− lat1, and
∆long = long2− long1.

Appendix II: Geographical classification of the United States

Table A provides the broader geographical breakdown used in our analysis of US house
prices. We identify 8 regions which contain an average of 6 States, each of which contains
an approximate average of 45 Metropolitan Statistical Areas. The classifications are
shown in Table A together with the number of MSAs included in each State. Details on
the exact MSAs used are available upon request.

Appendix III: Data sources

Monthly data for US house prices from January 1975 to December 2010 are taken from
Freddie Mac. These data are available at:
http://www.freddiemac.com/finance/cmhpi

The quarterly figures are arithmetic averages of monthly figures.
Annual CPI data at State level are obtained from the Bureau of Labor Statistics:
http://www.bls.gov/cpi/

The quarterly figures are interpolated using the interpolation technique described in the
appendix of GVAR toolbox 1.1 user guide.
The annual population data at MSA level are obtained from the Regional Economic
Information System, Bureau of Economic Analysis, U.S. Department of Commerce:
http://www.bea.gov/regional/docs/footnotes.cfm?tablename=CA1-3

Again the quarterly figures are interpolated using the interpolation technique described
in the appendix of GVAR toolbox 1.1 user guide.
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