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1.    Introduction 
 
 

China is the world’s largest consumer of coal, mining over 3 billion tons of coal a year and it has now 

become the largest importer of coal. China had more than 650 GW of coal-fired power installed capacity by the 

end of 2010 and has been building at least 50 GW of new coal-fired power plants per year since 2005 [CEC, 

2011]. The rapid growth of thermal generation capacity is likely to continue until 2030 according to estimates 

by the International Energy Agency (IEA) [2007: 88-91].  In the past five years, China has become the largest 

producer of greenhouse gases in  the world and, by  far, the leading driver of  growth in  greenhouse gas 

emissions globally. As a result, addressing carbon dioxide (CO 2 ) emissions and reducing the emissions intensity 

of Chinese energy and electricity sector in particular has become increasingly important. 
 
 

CO 2  capture and storage (CCS) is the process of separating CO 2  from stationary sources (mainly industrial 

and power plants), and transporting and injecting the CO 2  into a geological storage site. CCS is currently the 

only promising technology to decarbonise fossil fuel power and industrial plants at a large scale. The IEA’s 2°C 

Scenario (2DS), which assessed the strategies for reducing global GHG emissions through 2050, concluded that 

based on cost estimates, CCS would constitute some 14% of the cumulative emissions reductions required and 

that while the developed world must lead the CCS effort in the next decade, CCS must rapidly spread to 

developing countries, where most of the growth in emissions is occurring [IEA, 2013]. The IEA scenario would 

involve 950 GW globally (some 8% of all generation capacity) including 349 GW in China, the largest of any 

region (IEA, 2013) 
 
 

This level of CCS deployment amounts to a tremendous global challenge. At present, there are only four 

commercial-scale CO 2 storage projects in operation around the world and a number of smaller-scale integrated 

ones, but no commercial scale fully integrated projects, although a few are nearing completion. These projects 

will involve power generation, but also industrial sectors such as cement, iron and steel, chemical production, 

and gas processing. The challenges of technology integration and scale-up can only be met through the 

experience of building and operating commercial-scale CCS facilities in a variety of settings. Since 2008, in 

China, three CO 2  capture pilot projects have started operation and two projects are still under construction. 

However,  these  early  efforts  are  of  limited  scale  and  generally  also  offer  commercial benefit  from  CO 2 
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utilisation. In contrast with the millions of tonnes of CO 2  emitted from a large coal-fired power plant, the 

largest capture unit in China is only producing 120,000 tonnes per year, and the first integrated CCS project 

only captures 100,000 tonnes per year. 
 
 

A large number of studies have explored the cost structure for CCS [DOE, 2007; Rubin et al, 2007; McCoy 

and Rubin, 2008; Dahowski et al, 2009; Herzog, 2010; Hammond et al, 2011], but few studies have investigated 

financing issues explicitly. Kessels and Beck [2009] organised two CCS finance experts meetings in London in 

2007 and two subsequent meetings in New York. They concluded that: (1) market based instruments alone 
 

would not be sufficient to support large-scale investment in CCS; (2) governments need to provide more robust 

policies to provide certainty for investors in deploying CCS; and (3) a price of US$80-100 per ton CO 2  would be 

required to support the deployment of CCS. Liang et al (2010) investigated the financial strategies for CO 2 

capture ready (i.e. careful design and possibly a small investment up front to make subsequent CCS retrofitting 

cheaper and easier) in China rather than a large-scale deployment of CCS, suggesting the separation of the 

financing of capture faculties from that of the base plant in order to apply for CCS project financing. Almendra 

et al (2011) summarise potential financing strategies for demonstrating CCS in developing countries. To date, 

however, there are still no targeted mechanisms to encourage a large-scale CCS demonstration project in China 

(Jaccard and Tu, 2011). 

In December 2010, the 6th  Conference of the Parties serving as the Meeting of the Parties to the Kyoto 
 

Protocol (CMP 6) at Cancun recognised CCS as an eligible project level activity within the Clean Development 

Mechanism (CDM) [UNFCCC, 2010]. The inclusion of CCS in CDM may accelerate the financing of early CCS 

opportunities with low marginal abatement in developing countries, such as ammonia, fertiliser, cement, 

hydrogen productions. However, because there is currently more than 1 Gigatonne (Gt) of CO 2  emissions from 

these early opportunities in developing countries every year, though it might not significantly depress the 

carbon market [Zakkour et al, 2011], CDM is unlikely to be the primary incentive to finance a large-scale 

commercial CCS power plant in developing countries. There is very limited literature explicitly investigating the 

financial strategies to implement a large-scale CCS project in China. Therefore, this study tries to bridge the gap 

and examines the two following key research questions: 

1. What is the on-grid tariff or carbon price required to support full-scale CCS deployment at a large coal- 

fired power plant in China? 

2. In  the  absence  of  national  political  and  regulatory  support,  what  are  the  potential  incentive 

mechanisms and strategies required to bridge the financial gap and trigger investment large-scale CCS 

coal-fired power plant in China? 
 
 

The next section introduces the current technical and economic status of CCS technologies. The 

methodology and assumptions are presented in section 3, followed in section 4 by a case study investigating 

the investment required for a CCS power plant in China. Building on the results of the project financing model, 

the fifth section provides an in-depth discussion of potential strategies and measures needed to bridge the gap 

in financing a CCS power plant. The final section summarises the findings and offers some conclusions. 
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2. Status of CCS Technologies 
 

2.1  Capture of CO 2 
 

CO 2  capture technologies have long been used by industry to remove CO 2   from gas streams. There are 

currently three primary methods for CO 2  capture: post-combustion, pre-combustion and oxy-fuel (IPCC, 2005; 

IEA 2008). 
 
 

♦ Post-combustion 
 

Post-combustion involves scrubbing the CO 2  out of flue gases from the combustion process, which contains 
 

4% to 15% of CO 2  by volume depending upon the plant. Chemical absorption, typically through the use of 

amine-based solvents and subsequent regeneration is the preferred method for post-combustion capture 

because the energy required is not particularly sensitive to low concentrations. CO 2  capture has been applied 

in a wide range of industrial manufacturing processes, refining and gas processing. In the 1980s, CO 2  capture 

from gas-fired boiler flue gases was used commercially for enhanced oil recovery (EOR) projects in the US 

[Chapel, et al., 1999]. In China, the first post-combustion capture project in Beijing (with 3,000 tonne of CO 2 

captured per year), and the second post-combustion capture project in Shanghai (with a capacity of 120,000 

tonne of CO 2 per year), are already in operation [Hart and Liu, 2010]. 
 
 

The current challenges facing post-combustion capture include: (1) developing novel solvents that can 

recover the CO 2  with a minimal energy penalty and at an acceptable cost; (2) designing innovative processes 

that can deeply reduce the energy penalty and capital cost. However, post-combustion capture also has distinct 

advantages: it can be applied to existing power plants without fundamental change to the production systems. 

The empirical study described in Section 3 focuses on post-combustion capture because a great majority of 

proposed and existing coal-fired power plants would require this technology to capture CO 2 . 

 
 

♦ Pre-combustion 
 

Pre-combustion capture technologies are used commercially in various industrial applications such as the 

production of hydrogen and ammonia from hydrocarbon feedstock. Where coal is the feedstock, it needs first 

to be gasified to produce syngas. If natural gas is the feedstock, it needs to be reformed to produce syngas. 

Syngas must be processed in a shift reactor to produce a mixture of hydrogen and CO 2 . Then the CO 2   is 

removed using physical sorbents from a high-pressure gas mixture (2 to 7 MPa) that contains between 15% and 

40% CO 2 . 
 
 

Pre-combustion is particularly relevant for Integrated Gasification Combined Cycle (IGCC), in which coal is 

gasified with oxygen to produce syngas that, after cleaning, is burned in a gas turbine to produce electricity. 

Pre-combustion CO 2  capture from IGCC power plant has yet to be demonstrated; however, elements of the 

pre-combustion capture technology have already been proven in other industrial processes [IPCC, 2005; IEA, 

2008]. The  GreenGen 250  MW  IGCC demonstration project, which began operating in  2011, and  CCS is 
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expected to be added in the second phase of the project. 
 
 

The advantages of pre-combustion capture (through gasification) are: (1) multiple fuels can be used and 

multiple products produced, from electricity to chemicals, (2) the process is technically elegant, with efficiency 

gains from the integration, and (3) it offers an lower marginal cost to strip CO 2  from the syngas rather than to 

capture it from flue gases in a pulverized coal power plant, (where CO 2  is at lower pressure and diluted with 

other exhaust gases). Carbon capture from fuel at high pressure provides an approximately 60-to-1-volume 

advantage over post-combustion capture. With the CO 2   concentration taken into account, pre-combustion 

boasts an approximately overall 240-to-1 advantage. Despite of increasingly mature technology and growing 

reliability in recent decades, pre-combustion capture has been hindered by its higher capital investment, 

poorer reliability and availability, and inflexibility of operation. 
 
 

♦ Oxy-combustion (or Oxy-fuel) 
 

This process separates oxygen from air with the use of an established air separation unit and then burns the 

fuel in a mixture of oxygen combined with recycled flue gas to control the combustion temperature. Oxy-fired 

pulverized coal combustion plants do not yet exist at a commercial scale, although several new such plant 

constructions have recently been announced in the United States and Europe. There is as yet also limited 

experience of the ways in which Oxy-fuel retrofits might impact on boiler materials or the operation of plant as 

a whole. 
 
 

The efficiency of Oxy-fuel power plants and their associated CO 2  capture systems depends heavily on the 

energy required for oxygen production. Research is currently focused on developing ion-transport membranes 

operating at 800°C to 900°C to produce oxygen from compressed air. Future developments could improve high- 

temperature operation and reduce the energy costs of O 2 separation from air. 
 
 

The  advantages of  oxy-combustion are:  much  easier  separation of  CO 2 ,  no  solvent  required, smaller 

physical size, and the potential to retrofit existing plants (though the boilers may be required to be 

reconstructed). The disadvantages are the need for very low SOx levels in the gas leaving the burners, as well 

as the higher temperature materials demanded in most cases. The cost of capturing CO 2   through Oxy-fuel 

depends on the type of power plant used, its overall efficiency and the energy requirements of the capture 

process. 
 
 

IEA (2008) estimated the additional investment costs for CO 2  capture ranges from US$ 600 to 1700/kW, 

which is approximately 50% to 100% of the plant cost without CO 2  capture. In summary, most of CO 2  capture 

technologies are commercially available today, but the associated costs need to be lowered and the technology 

needs to be demonstrated at commercial scale. 
 
 

2.2  Transportation of CO 2 
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CO 2  is transported predominantly via high-pressure pipeline networks. Ships, trucks and trains have also 

been used for CO 2  transport in early demonstration projects and in regions with inadequate storage.  So far, 

studies on CCS have been focusing on developing capture and sequestration technologies rather than on 

transportation,  which  reflects  the  current  perception  that  CO 2    capture  probably  represents  the  largest 

technological hurdle to implementing large-scale CCS, and that CO 2   transportation by pipelines does not 

present a significant barrier. This perception is no doubt reinforced by the large number of existing CO 2 

pipelines in the world. In the United States, for example, there are 6,274 km of existing CO 2  pipelines [Dooley, 

et al, 2009]. Notwithstanding this perception, there are important unanswered policy issues related specifically 

to CO 2  pipelines which may require more attention, including regulatory, access, public acceptance, planning 

challenges  for  different  regions,  and  cost  [Liu  and  Gallagher,  2010].  The  cost  of  onshore  CO 2    pipeline 

transportation in China is estimated to be much lower than in developed countries. For a 20,000 t/d case, for 

example, the levelised cost of CO 2 transportation in China is about two-thirds of that in developed countries. 
 
 

2.3  Storage of CO 2 
 

CO 2  is stored by being injected into a geological formation. The three options for geological CO 2  storage 

are saline formations, depleted oil and gas reservoirs, and deep unminable coal seams [IEA, 2013]. Of the 

three, it is expected that saline formations will provide the opportunity to store the largest quantity of CO 2 , 

followed by oil and gas reservoirs. A number of projects involving the injection of CO 2  into oil reservoirs have 

been conducted, primarily in the USA and Canada for enhanced oil recovery, and much of that has used natural 

rather than anthropogenic CO 2 . In China, initial assessments [Dahowski et al, 2009] suggest that, theoretically, 

China has sufficient capacity in its deep saline formations to sequester over 3,000 Gt CO 2 —more than 450 

times China’s total CO 2  emissions in 2005. 90% of China’s large stationary CO 2  emissions sources are located 

within 100 miles of at least one identified storage formation; 85% have at least one storage option within just 

50 miles. 
 
 
 

3. Methodology and Assumptions 
 

In order to conduct a comprehensive investigation on the financing requirements, opportunities and 

challenges to develop a large-scale CCS project in China, we combine the following research methodologies: 

  First, we analyse the required on-grid tariff (eq. 1) or the cost of carbon abatement (chosen because 
 

they are straightforward to interpret) to finance a large scale CCS power plant. We then investigate the 

financial gap for a 1GW generic USCPC (ultra-supercritical pulverised coal-fired power plants) with 

post-combustion capture built in 2010. A cost cash flow model (including estimated tax) is developed 

for studying both the plant with and without CCS. The scenarios of financial leverage and fuel cost 

assumptions are compared in the study. 

  Second, we investigate the potential sources of finance. The results of four stakeholder consultation 

studies from 2006 to 2010 are reviewed (Reiner and Liang, 2009). In 2009, the stakeholder study 

interviewed  16  financial  stakeholders on  the  detailed  investment  requirements of  CCS  projects. 

Among the respondents were 9 stakeholders from large energy groups with experience in CCS. In the 
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stakeholder consultation in 2009, Internal Rate of return (IRR) was used as a hurdle rate to reflect an 

individual’s risk perception of demonstrating CCS. In general, private investors would demand a higher 

return to compensate for the uncertainties of investing and operating CCS projects.   Therefore, a 

higher required return on equity is applied for the hypothetical models for financing CCS projects. 

  Finally, we demonstrate some hypothetical mix of financing options for implementing a large-scale 
 

CCS project in the near future. 
 
 

The required on-grid tariff (ROT) is given by: 
 
 

(eq. 1) 
 
 
 
 
 
 

The annual cost cash flow at year t (CF t ) is given by 
 
 

CFt (US$) = Ft + It + Ot (eq. 2) 

 
 

The cost of carbon avoidance or the required carbon price (RCP) is given by: 

𝑅𝑅𝑅��𝑅𝑅 � 
𝑈𝑈𝑈

𝑈$ 
� = 𝑡��𝑅��𝑡𝑡2𝑒𝑒 

𝑅𝑅𝑡𝑡𝑅��𝑟𝑟𝑒𝑒𝑟𝑟 − 

𝑅𝑅𝑡𝑡𝑅��𝑐𝑐𝑐𝑐𝑐𝑐
 

𝐸𝐸𝐸��𝑟𝑟𝑒𝑒𝑟𝑟 − 𝐸𝐸𝐸��𝑐𝑐𝑐𝑐𝑐𝑐 

(𝑒𝑒𝑒��. 3) 

 

 
 

A majority of Chinese coal-fired powered power plants in planning or construction are supercritical or ultra- 

supercritical. We therefore assume that the underlying base plant is a 1 GW ultra-supercritical power plant 

with 41.8% net supply efficiency before adding CO 2  capture. The plant performance calculation is based on the 

IEA GHG [2006] PH4/33 study. The cost data is taken from CCS power plants cost assumptions by Liang et al 

[2010] and the current market information, base on 2010 constant price level. The total cost of fixed capital for 

the base plant is US$634 million which is equal to US$626/kW or CNY4069/kW. The non-fuel O&M cost for the 

base plant is US$32.5m and the additional O&M cost for the CO 2 capture plant is US$19.2m The capital cost for 

capture facilities is assumed to be US$155 million, 25% higher than the original capital. Under the baseline 

scenario, the plant is assumed to run at an 80% load factor. Equivalent availability factor (EAF) could be a proxy 

of operating risk of a CO 2  capture power plant. Le Moullec and Kanniche [2011] from EDF R&D estimated that 

the addition of a capture plant would decrease the availability factor by 1.4% due to an increased operational 

risk of forced outage. The impact of adding CO 2  capture plant on the availability factor is not significant, and 
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therefore we are not considering this issue in the financial model. 
 
 

The cost of coal in the financial model is $4/GJ (eqv. US$117/tonne or CNY762 per tonne 7000 kCal coal). 

Because the current 12-month average coal price is significantly above the five-year average, another scenario 

analysis is performed assuming the coal price at $5/GJ. Because a domestic carbon market does not yet exist in 

China,  most  stakeholders  interviewed  don’t  currently  take  into  account  either  a  future  cost  of  carbon 

emissions, or the potential benefits of finance through the CDM.  Consequently the financial model baseline 

scenario  assumes  the  market  price  of  CO 2   emissions eventually  disappears.  The  required  on-grid  tariffs 

assessed in the study takes into account tax, which is estimated with reference to cost cash flow, tax code [SAT, 

2011], required on-grid tariff, and the required return. The cost of transportation is assumed to be US$6/tCOe 

and the cost of storage is assumed at US$9/tCO2e based on the amount of captured CO 2 . The study for the 

NZEC project [Reiner and Liang, 2009] indicated that stakeholders’ required return (hurdle rate) for a CCS 

project ranges from 5% to 20%, while private stakeholders would require a higher return than public 

stakeholders. The baseline scenario therefore assumes the real required rate of return for the base plant is 

10%, but rises to 12% for an unleveraged CCS project, or 15% for a CCS project with leverage (i.e. 15% required 

return-on-equity with 75% debt financing at 6% fix interest). In addition, we simulated the required on-grid 

tariff at different required rates of return (or discount rates). The free cash flow of the project in each operating 

year is assumed to be fully distributed to equity investors. The baseline scenario of the generic USCPC with CCS 

is shown in Table 1 below. 
 
 

Table 1 Economic and Engineering Performance Assumptions of a Generic Ultra-supercritical Power Plant with 
 

Carbon Capture and Storage in China 
 

Parameter                                                                      Data                         Note 

Plant Type                                                                                        USCPC 
Base Real Required Return without Financial 
Leverage (Discount Rate) 

12% (10% applied for base plant) 

Capacity before retrofit 1000 MW 
Net Supply Efficiency (LHV) without CCS 41.8% 42.7% at full load 
Capacity with 90% capture 799.04 MW 
Net Supply Efficiency (LHV) with CCS  34.1% 
Lifetime Degrading factor  1.00% 
Fixed Capital Base Plant                                                                     634    M US$ ($6m working cap.) 
Fixed Capital for Capture                                                                   155    M US$ ($5m working cap.) 
Load factor                                                                                           80% 
Coal Price 4 US$/GJ 
On-grid Electricity Tariff vary for tax estimation only 
CO 2 Emissions Price  0 $/tonneCO 2e 

Emissions factor base 758.7 gram CO 2 /kWh 
Emissions factor with capture   97.7 gram CO 2 /kWh 
CO 2 Captured 852.2 gram CO 2 /kWh 
CO 2 avoided 660.7 gram CO 2 /kWh 
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Full Load Coal Feed Rate 8700 GJ/hr 
Non-fuel O&M 32.6 m 
Fixed O&M (Non-fuel) 51.8 m 
Decommissioning Cost Equal to Salvage Value 
Corporate Tax 25% (other taxes follow State 

Administration of Taxation) rule) 
Depreciation 20 Years (straight-line) 
Transport, storage and monitoring cost 15 $/tonne 

 
 

4. Required Investment to Deploy CCS in China 
 

The required on-grid electricity tariff to finance a CCS power plant in China is US$85.7/MWh (assuming a 
 

12% required return), which is US$35.7 or 71% higher than the required tariff for the base plant (US$50/MWh, 
 

10% required return), as shown in Figure 1. The required tariff is also very sensitive to fuel cost—when the 

assumed coal price rises from $4/GJ to $5/GJ in the baseline scenario, the required on-grid tariff significantly 

surges to US$96.6/MWh, US$37.9 or 65% higher than the required breakeven tariff for the base plant 

(US$58.7/MWh). The cost of carbon avoidance is US$50.9/tonneCO2e at the baseline scenario (US$4/GJ for 

coal, 12% required return), and the cost would rise to US$54.2/tonneCO2e if the lifetime coal price is assumed 

to be US$5/GJ (Figure 2). The required carbon price or tariff support is very sensitive to the required rate of 

return assumption. As illustrated in Figure 2, each 1% increase in required return would result in approximately 

US$0.9 growth in carbon avoidance cost. 
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Figure 1. Required On-grid Tariff to Finance CCS at a USCPC Power Plant in China under Varied Required 
Returns Assumptions (Coal Price is $4/GJ and 5$/GJ, no carbon emissions cost and no financial leverage) 
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Figure 2. Estimated Cost of Carbon Avoidance (or required price of carbon) to finance CCS at a USCPC Power 
Plant in China under Varied Required Return Assumptions (Coal Price is $4/GJ and 5$/GJ, no carbon emissions 
cost and no financial leverage) 

 
In the absence of any financial leverage, the extra cost of US$35.7/MWh (illustrated as the required on- 

grid tariff) for financing CCS is caused by a variety of factors (as illustrated in Figure 3). More than half of the 

extra cost (55%) is consumed by the capture process, while 36% is spent directly on CO 2   transportation, 

storage and monitoring. Specifically, in relation to the cost of capture, the most substantial proportion (24%) is 

spent on the extra fuel alone compared to capital (15%) and non-fuel O&M (13%). To compensate for the extra 

risk perceived by investors, a 2% higher required return is assumed for CCS compared to the base plant, and 

this results in a US$3.2 (or 9%) higher tariff requirement for CCS. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Structure of On-grid Tariffs for a CCS Power Plant in China (at 10% and 12% required rate of return and 
$4/GJ coal cost assumptions and no carbon market) 

 
 

Financing conventional thermal power plants in China would normally include 70% to 80% debt finance. 

If a 75% debt finance scheme is realised for the CCS project, the overall required on-grid tariffs would be 



EPRG 1410  
 
 

significantly reduced to US$77.5/MWh at 12% required return on equity (ROE) US$78.5/MWh at 15% required 

ROE, US$31.8/MWh higher than the base plant without CCS (US$46.7/MWh at 10% required ROE), as shown in 

Figure 4. This beneficial effect is due to the cost of debt financing (6% before tax) being much lower than the 

required return. In this scenario, the pressure to generate a higher return for equity investment in CCS would 

be significantly reduced, as most of the equity is replaced with debt capital, and only the remaining equity 

capital requires the additional 4% return provided by the incremental tariff. In these circumstances, investors 

might be able to tolerate a higher level of risk. The cost of transportation, storage and monitoring and fuel cost 

together contributes more than two thirds of the tariff premium. The cost of CO 2  avoidance per tonne would 

be reduced to US$46.3/tonneCO2e (at a 12% required ROE for CCS) or US$48.1/tonneCO2e (at a 15% required 

ROE for CCS). However, whether this assumed favourable scenario could be realised will largely depend on the 

risk appetite of lending institutions (e.g. commercial banks, development banks, shareholders). 
 
 

Because Reiner and Liang [2009] found financial stakeholders in China have divergent perceptions 

towards an acceptable leverage ratio in financing a CCS project, we simulate the extra required on-grid tariffs 

using  different  financial  leverage  ratios.  As  illustrated  in  Figure  5,  investing  in  CCS  would  add  about 

US$36/MWh to the required on-grid tariff for the base plant in a 50% debt financing scenario (i.e. debt/equity 

= 1). If the assumed coal price rises from US$1/GJ to US$5/GJ, the required on-grid tariff would be increased by 
 

approximately US$11/GJ in parallel. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Structure of Required on-grid Tariffs for Financing a CCS Power Plant in China with 75% debt financing 

(with 6% fixed rate loan; 10%, 12% 15% required rate of return on equity and $4/GJ coal cost assumptions, and 

no carbon market) 
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Figure 5. Additional Required On-grid Tarriffs for Financing CCS in a Generic USCPC in China versus Financial 

Leverage Ratios (Debt/Equity)  at 15% required return on equity for CCS power plant and 10% required return 

on equity for the benchmark base power plant without CCS 

 
 

5. Discussion 
 

Developing a large-scale CCS power plant has a high marginal cost (71% higher without leverage) compared 

to a conventional power plant, but currently there is neither a premium tariff scheme nor a carbon support 

scheme to bridge the financial gap in China. Besides conventional equity investment from shareholders and 

loans from commercial banks, developing early large-scale commercial projects in China therefore may require 

a combination of financial strategies to improve the financial prospect, such as (1) CDM, (2) support by foreign 

governments,  (3)  support  by  Chinese  national  and/or  regional  governments,  (4)  grants  and  loans  from 

domestic and/or multilateral development banks,  (5) equity investment and loans from venture capital, and 

(6) special funds for supporting CCS industrial project developments. 
 
 

Liang et al (2011) found that more than two thirds of the 113 stakeholders in their NZEC study believed that 

CCS is a necessary or very necessary technology to achieve a deep cut of carbon emissions in China, and that 

there were no significant regulatory and legal barriers to develop CCS projects in China. However, a study of 

financial stakeholders in  that  same NZEC survey found very  different opinions on  the required ROE  and 

leverage ratios (Reiner and Liang 2012). In particular, 

• 7 respondents from development banks and state-owned electric companies suggested a required 

rate of return lower than 10%, and some of them considered CCS to be a non-commercial (or social 

responsibility) investment. 

• However,  9  respondents  from  commercial  banks,  oil  companies  and  private  power  companies 

demanded much higher rates (i.e. 12% to 20%) to reflect the risk premium of demonstrating CCS in 

contrast with developing a conventional coal-fired power plant. 

• Half of stakeholders considered that the debt-to-equity ratio in financing carbon capture facilities 
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should be low (i.e. less than 50% debt in total capital). 
 

Building on  the  findings, potential mechanisms for  co-financing a  CCS project in  China are  outlined and 

discussed as below. 
 
 

5.1 Private Financing Mechanisms 
 

In this paper, private financing is defined as capital provided by commercial players, including equity 

investment provided by energy companies, venture capital, loans provided by energy companies, commercial 

banks. A higher investment return is obviously the most important investment driver in the private sector. 

Drivers for developing CCS projects may also link with corporate technology and environment strategies 

[Bowen, 2011], such as the early-mover advantages and social responsibility. 
 
 

Energy Companies 
 

To understand the drivers behind the five existing pilot projects in China, the 2009 NZEC stakeholder 

consultation interviewed key project developers from TPRI (thermal power research institute), China Shenhua 

Group and Yuanda Environment [Reiner and Liang, 2009]. They found the primary driver behind these projects 

is the corporate technology strategy (i.e. potential large-scale deployment of CCS). Most large Chinese energy 

companies have vertically integrated structures, which normally includes a R&D and engineering design 

institute. The interests of these institutes may influence the corporate strategy of the energy giants in China. 
 
 

On the financial side, both post-combustion capture units (3,000t/a in Beijing and 120,000t/a in Shanghai) 

refine the captured CO 2  for the industrial grade and food grade CO 2  markets. Furthermore, the 10,000 t/a 

capture facilities developed by China Yuanda Environment (a subsidiary of China Power Investment Corp) at the 

Chongqing Shuanghuai Power Plant produces CO 2  for the industrial grade CO 2  market. However, the marginal 

cost of CO 2 capture is significantly higher than in other industrial processes such as hydrogen production in 

refinery plants, ammonia production plants, and natural CO 2  sources, so these post-combustion capture units 

hardly provide a sound ROE in the absence of other incentives. China Shenhua Group has constructed the first 

integrated CCS pilot project in China, which captures 100,000 tonnes of CO 2  per annum from the coal-to-liquid 

process and stores the CO 2   in a saline formation. Phase I of the GreenGen project only captures a small 

proportion of CO 2  for testing, so capture has little financial implication. All of the pilot projects are owned by 

large state-own enterprises (SOEs), and each SOE has more than US$10 billion in total assets. SOEs may not 

focus on maximising short-term economic return for shareholders, and therefore be more likely to undertake 

CCS pilot and demonstration projects (Dewenter and Malatesta 2001). Therefore, the impact of developing a 

CCS pilot project on their cash flows is negligible. However, none of these companies plan to scale up CO 2 

capture to a million-tonne level in the short-term. 
 
 

Commercial Banks 
 

When energy company officials and commercial bankers were asked about the desired debt/equity mix for 

capture  facilities  in  a  power  plant,  they  responded  with  an  average  split  of  41%  debt  /  59%  equity. 



EPRG 1410  
 
 

Furthermore, energy companies and commercial banks were reluctant to invest in large-scale CCS projects 

where less than 10% of the equity capital is provided by power companies. Commercial bank stakeholders 

didn’t anticipate being major players in providing loans, and, on average, they suggested that 25% or less of the 

debt financing would be provided by them. Not surprisingly, they also stated they would require their claims be 

given higher priority in the event of default. Two commercial bankers suggested that financing for early CCS 

projects should be provided by development banks. Aside from commercial loans, a number of financial 

stakeholders perceived that vendor financing (e.g. supplier credits) might be possible, because large capture 

equipment manufacturers (OEMs) could be major beneficiaries of CCS demonstration projects. 
 
 

Venture Capital and Smaller Investors 
 

Venture capital (VC) could be another source of finance to support the equity investment in CCS [Burtis, 
 

2010]. VC funds would normally provide US$1 to US$20 million for start-up companies in exchange for a 

substantial equity share. Although VC has supported CCS initiatives in US, Canada, EU and UK for various 

technologies, to date, VC has not been used to support CCS ventures in China [Burtis, 2010]. In a CCS project 

finance context, a typical commercial CCS power plant in China could require some US$ 800 million in capital 

investment (as shown in Table 1) and the high investment requirement may imply that any VC will be able to 

contribute a relatively small proportion of this. Perhaps more importantly, it is not sensible for a VC to invest in 

the base power plant without a clear exit strategy. 
 
 

However, if the capital investment for the capture facilities is made by an entity separate from that for the 

base power plant, a VC could potentially only need to contribute some 20% of the total capital required 

($155m shown in Table 1). As a result, there would be a lower capital-cost barrier to entry for developing CCS 

projects. Liang et al (2010) indicated the possibility of separating the financing of CO 2  capture assets from the 

base plant for financing capture ready. We could apply the concept for financing a CCS project: a CO 2  capture 

operating company would sign steam purchase and flue gas cleaning agreements with the power generation 

companies. The CO 2  capture company, if not also operating the transportation and storage businesses, could 

sell the captured CO 2  to oil companies for EOR or pay for transportation, storage and monitoring and sell the 

carbon credits through the emissions trading mechanism (e.g. CDM). Power generation companies may want 

to hold a minority share of the CO 2  capture operator in order to maintain the synergy of operating both base 

plant and capture plants. Splitting the CO 2  capture operating company from that for the base power plant 

would provide five distinct advantages: (1) less capital would be required in financing a CCS plants which may 

provide higher return for CCS investors; (2) the base plant could be financed using a conventional financing 

model; (3) power plant investors may find it easier to agree upon the business model for CCS, since some 

Chinese power plant operators have experience in selling steam as an alternative product of electricity 

generation but are less familiar with emissions reduction credits; (4) the CO 2  capture entity could leverage the 

return from technology learning and development (e.g. process optimisation, testing of solvents); (5) public 

financing could focus on supporting the incremental cost of carbon capture and storage. 
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5.2 Public Financing Mechanisms 
 

Because private finance may not be able to fully support large demonstration of CCS projects, public support 

would play an important role in developing and financing early and large-scale CCS projects. The NZEC study 

outlines six potential sources of public finance for early CCS demonstration projects: the Chinese national 

government, Chinese local governments, foreign governments, domestic development banks, multilateral 

development banks, and special energy funds (incl. energy charities and foundation). 
 
 

Chinese National Government 
 

National Development and Reform Commission (NDRC), Ministry of Environment Protection (MOEP) and 

Ministry of Science and Technology (MOST) are the key national government ministries in regulating and 

financing CCS. Even though CCS has been recognised as an important technology to decarbonise the Chinese 

energy sector, NDRC (in charge of formulating national energy policy and authorising construction of large 

thermal power plants) has been slow to prioritise CCS because the significant energy penalty may hinder the 

energy conservation target (i.e. the GDP energy intensity target). Recently, however, NDRC issued guidance 

entitled “Promoting Carbon Capture, Utilisation and Storage Pilot and Demonstration”, which focuses on six 

areas: (i) developing pilot and demonstration projects along the CCUS technology chain; (ii) developing 

integrated CCUS demonstration projects; (iii) exploring and establishing financial incentive mechanisms; (iv) 

strengthening strategy and planning for CCUS development; (v) promoting CCUS standards and regulation; and 

(vi) strengthening capacity building and international collaboration.  Though still lacking in detail in terms of 

how this will be implemented, this offers the first clear signal of support for CCS, though with the emphasis 

placed specifically on utilization of CO 2 , such as in EOR. 

Reducing CO 2  emissions from coal-fired power plants are not yet a priority in MOEP, though it may play an 
 

important role in formulating emission performance standards and monitoring implementation of CCS. Long 

prior to the NDRC guidance, CCS was recognised as the key technology in the Chinese national medium and 

long-term programme outline for Science and Technology (2006~2020) formulated by the Ministry of Science 

and Technology [SCC, 2006]. Therefore, it may be possible to apply for scientific support grants for a large-scale 

early CCS demonstration project at a funding level of, say, less than US$25 million (e.g. establishing a national 

laboratory) but may be challenging to obtain substantial financial support (e.g. direct subsidy) through the 

NDRC at least until the 2013 guidance is more fully implemented. 
 
 

Provincial and Municipal Governments 
 

Local governments may play a more important role than the national government in financing CCS projects. 

Ten provinces and cities in China have been recognised by NDRC to pilot low carbon zones which include 

Guangdong and Shenzhen city [NDRC, 2010]. According to an anonymous official from the NDRC in Guangdong, 

it is now almost impossible to authorise any new unabated large coal power or chemical project. On the other 

hand, some developed areas have significant budgets for infrastructure investment and scientific development. 

For example, the Shenzhen municipal government, within its US$17 billion equivalent budget for 2010, 

allocated  approximately US$1.54  billion  for  scientific  development  and  US$3.17  billion  for  infrastructure 
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investment [SZTJ, 2011]. 
 
 

A government interested in supporting CCS could claim that a large CCS demonstration plant would create 

significant job opportunities across the value chain and demonstrate the government’s effort to implement a 

low carbon zone. We estimate that a local government (provincial or municipal) could provide up to US$50 

million grant to support a large-scale CCS coal-fired power plant in the region. Even barring direct investment, a 

large-scale CCS project would likely be eligible for favourable tax schemes through local governments. 
 
 

Foreign Governments 
 

From a climate policy perspective, a number of countries have recognised the importance of developing 

CCS in China and prioritise CCS in bilateral and multi-lateral scientific and industrial project collaborations. 

There are a number of international CCS initiatives that may potentially provide support for a full-scale CCS 

project, drawing on earlier rounds of cooperation through the EU-UK-China NZEC project, Global Carbon 

Capture and Storage Institute, and the Australia-China joint study for a commercial scale CCS project. These 

initiatives may provide a limited but still significant source of funding for a large-scale CCS demonstration in 

China. The disadvantage is the possible long lead times due to the involvement of international actors. 

Interestingly, in the NZEC stakeholder consultation, financial stakeholders, on average, suggested 40% of initial 

equity investment should be subsided by foreign governments (Reiner and Liang 2012). 
 
 

Chinese Development Banks 
 

China Development Bank (CDB), the primary development bank in China, has not yet provided support for 

CCS. Interviews with senior CDB project appraisal officials in late 2010 found they were gravely concerned 

about the energy penalty of carbon capture and disagreed with the logic of burning much more coal to reduce 

carbon emissions. Therefore, at least in the short term, financial support from Chinese development banks 

seems unlikely unless the project benefits from strong political support. 
 
 

Multilateral development banks 
 

Multilateral development banks could be a major source of finance for developing early CCS projects in 

China. For example, the Asian Development Bank (ADB) has already provided a 26-year loan of US$135 million 

(6-year grace period, at LIBOR + 0.6%) to support 32% of the capital investment for GreenGen phase I (ADB, 

2010). In addition, they provided a US$5 million grant for phase 1 and US$1.2 million in technical assistance 

support for phase 2 and 3 of the GreenGen IGCC project in Tianjin (Bhargava, 2010). However, the terms of the 

ADB  loan  requires  GreenGen  to  obtain  a  ‘reasonable electricity  tariff’  (i.e.  a  premium electricity  tariff), 

maintain 1.2 times coverage ratio to repay the debt and gradually improve the debt to equity ratio. The terms 

of the loan imply that strong support by the national and/or local government(s) is an inevitable condition in 

order to obtain loans from multilateral banks.   Raising long-term loans from foreign banks would impose a 

lower burden if, as many expect, the Chinese currency Yuan appreciates over the long term (Xu, 2009; Das, 

2009). 
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A number of multilateral funding bodies exist which could support the development of carbon capture and 

storage projects, such as the Global CCS Institute (funded largely by the Australian government), the World 

Bank CCS Capacity Building Fund, the ADB CCS Fund and UNFCCC Strategic Climate Fund [Hart and Liu, 2010]. 

Most of these programmes would, however, only support a small fraction of the capital investment needed. 

More ambitious would be a multilateral scheme that would support the deployment of CCS [Liu and Liang, 

2011]. 
 
 

Clean Development Mechanism (CDM) 
 

The CDM is the Kyoto Protocol’s flexible mechanism designed to allow projects in non-Annex I countries (i.e., 

most developing countries) that reduce greenhouse gas emissions to generate certified emissions reduction 

units (CERs). As described in the Introduction, CCS was formally recognised as a potential emission reduction 

measure in the CDM at COP16 in Cancun in 2010 (Decision 7/CMP.6) and the modalities and procedures for 

including CCS projects in the CDM were endorsed at COP17 in Durban in 2011 (FCCC/KP/CMP/2011/L.4). To 

successfully  register  any  CDM  project,  a  project  must  demonstrate  ‘additionality’,  i.e.,  that  emissions 

reductions are additional to what would have occurred otherwise. Permanently storing CO 2  in a depleted oil 

field or saline formation provides no benefit other than reducing carbon emissions, thus it should be relatively 

straightforward to claim credit under the CDM. For EOR projects, because CO 2  injected into an oil field may re- 

emerge at the production well, incremental crude oil or gas extracted may produce more CO 2  emissions and 

there is an economic incentive for EOR independent of climate change concerns, it would be more difficult to 

demonstrate additionality. 
 
 

5.3 Other CCS Financing Options 
 
 

Enhanced Oil Recovery (EOR) 
 

The captured CO 2  could be injected into nearly depleted oil fields to increase oil production. More than half 

of the crude oil consumed in China has to be imported and that figure is steadily increasing, so utilising CO 2 

captured from coal-fired power plants to increase domestic production not only provides economic benefit but 

also addresses Chinese concerns over oil dependency since China has the advantage (from an EOR perspective) 

of having a number of older onshore oilfields suitable for EOR. In theory, when the crude oil price is above 

$100/bbl, the economic benefit of EOR may justify the cost of CO 2  capture from a coal-fired power plant and 

transportation. However, EOR cannot reliably be the only mechanism for financing a large-scale CCS power 

plant, because (1) the demand for CO 2  for EOR will vary over time but the lifetime of a coal-fired power plant is 

30 years or longer and will supply CO 2  at a roughly constant rate; and (2) the marginal cost of capturing CO 2 
 

could be much lower for processes such as ammonia, cement, or hydrogen production, so oil companies may 

not want to pay a premium price for higher cost CO 2   from coal-fired power plants. A long-term contract 

therefore would need to be signed between CO 2  producers (power plants) and consumers (oil companies) to 

secure the price and demand, which does not seem a sustainable solution for financing CCS except in very 

specific cases. 
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Premium Electricity Tariff 
 

The Chinese on-grid electricity tariff is set according to the principle of ‘cost plus reasonable profit’. The 

NDRC formulates the benchmark electricity price for each province, and the energy department of each 

province has flexibility in determining the tariff of every thermal power plant within its territory. For example, 

the current on-grid tariff for gas power plants in Guangdong is CNY530/MWh (eqv. US$82/MWh) and it is likely 

to rise significantly when a low cost Australian LNG contract expires in the near future. Many of these gas 

power plants are operating as base load. Because coal-fired CCS power plants can also significantly reduce the 

conventional pollutants, providing a gas or nuclear on-grid tariff to finance a CCS power plant is a possible 

approach. The cost of developing CCS power plants in Guangdong is likely to be higher than the national 

average, but may still be well below $100/MWh. In comparison, the on-grid tariff of nuclear power is 

approximately CNY450/MWh (eqv. US$73/MWh) and the actual price of purchasing nuclear is much higher for 

power grids if the lower flexibility of nuclear electricity is taken into account. Coal-fired power plants with CCS 

could be viewed as an alternative to gas and nuclear power plants and could apply for a premium electricity 

tariff in some developed areas in China (e.g. the Pearl River Delta and Hong Kong). 
 
 

Plant Operational and Investment Flexibilities 
 

Building a CCS power plant with pre-designed flexibilities may enhance the value of the investment, or in 

other words, reduce the on-grid tariff needed to finance the project. A CCS power plant can be designed to be 

flexible in relation to operations and investment. Concerning operations, in theory, the energy penalty for 

capturing CO 2  could be used as peak-load generation capacity. Chalmers et al [2009] suggest two options for 

increasing the value of a post-combustion capture power plant: CO 2 capture by-pass and solvent storage. From 

a purely economic perspective, when the short-run marginal cost (SRMC) of capturing CO 2  is higher than the 

carbon price or when the electricity tariff provides much greater benefit than capturing CO 2   (e.g. at peak 

times), a plant can by-pass CO 2  capture. Alternatively, when the electricity tariff increases to a certain level, 

CO 2 -rich solvent could be temporarily stored and the energy intensive regeneration process could be deferred 

until the electricity price is sufficiently reduced. ‘Rich’ solvent storage would be the preferred means of 

flexibility from a climate policy perspective because CO 2 from the power plant would still be removed from the 

flue gas and would not be emitted to the atmosphere. However, the economics of operational flexibilities in 

CCS power plants requires further analysis of the capital investment required and impact of potential reform of 

Chinese electricity tariffs. In relation to investment flexibility, a power plant may increase its value by investing 

from the outset in upgradability, because the cost of CO 2  separation technology (e.g. the solvent) may be 

reduced significantly over the course of a plant’s lifetime when the learning process takes place with the 

growth of global deployment capacity [Riahi et al, 2003]. Upgradability would allow a plant to reduce the cost 

of  CO 2   capture  by  switching  to  a  better  and/or  cheaper  separation  technology.  Lucquiaud  et  al  [2011] 

conducted an upgradability study on a generic CCS power plant and found the upgradability option could 

significantly increase the value of power plant investment and reduce the average lifetime levelised cost of 

electricity. 
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5.4 Financing Strategies 
 

In summary, a portfolio of financing options could possibly be applied to develop large-scale CCS projects in 

China. To understand how these options might be combined in the near future, we estimate the required on- 

grid tariff under five different hypothetical scenarios (as illustrated in Table 2). Scenarios A to E assume the 

hypothetical project is funded with 50% equity and 50% debt under different combinations of financing 

support, although all scenarios involve funding from multiple sources. 
 
 

Scenario A assumes a low level of support by the national government and local governments (only 5% of 

the total), 45% of the capital is provided by the operating company with 25% of capital from commercial loans 

and 25% from concessionary loans. An on-grid tariff of US$74.7/MWh would be required to justify the initial 

investment. Moderate public financial support (10% of original capital) demonstrated in scenario B could 

reduce the required on-grid tariff significantly but it is largely offset by higher required return if venture capital 

investment is introduced to support to investment.  As illustrated in scenario C, a mix of grant support from 

national, local, foreign governments and development banks (30% of capital) could reduce the required on-grid 

tariff to US$65.1/MWh. The tax exemption has minor impact but can further reduce the required tariff by 

US$0.5/MWh. If CO 2   captured from the CCS project can be stored underground for enhanced oil recovery 

(EOR) and sell at US$20/tCO 2  captured, the required tariff would drop to US$58.8 level, much lower than the 

cost of baseload gas power plants, and near the tariff of coal-fired power plants without capture and the full 

levelised cost of nuclear power plants. 
 
 
 
 

The required return on equity is assumed to be higher when the financial leverage ratio increases (i.e. debt 

to equity ratio) and vice versa. However, because the relatively lower cost in debt especially concessionary 

loan, the required on-grid tariff could be significantly reduced with a higher debt-to-equity ratio. For scenario 

with minor public support, a 100% equity financing will require US$80.3/MWh tariff level, a 75% debt ratio will 

lowers the required tariff to US$72.2/MWh. The impacts of financial leverage on scenario C (strong public 

support) and scenario E (EOR) are minor, (i.e. less than US$0.5/MWh). Perhaps, the most important of debt 

financing is less public grant support required for the project, while a large proportion of public support could 

be repaid through the project’s life as a loan. This could reduce the public financing pressure while at the same 

time allow a higher equity return for the CCS operating company. 
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Table 2. Hypothetical scenarios for financing a large-scale CCS demonstration project in China through 50% 
equity and 50% debt financing 

 
 
 
 

Options Scenario A Scenario B Scenario C Scenario D Scenario E 

Minor public Venture capital Strong Strong public Strong public 
support & moderate public support & Tax support & EOR 

public support support Exempt 

Equity 

Operating company 45% (18%) 30% (16%) 20% (14%) 20% (14%) 20% (14%) 
(required return) 
National government 2.5% (grant) 2.5% (grant) 5% (grant) 5% (grant) 5% (grant) 

Local governments 2.5% (grant) 2.5% (grant) 5% (grant) 5% (grant) 5% (grant) 
Foreign governments 0 0 10% (grant) 10% (grant) 10% (grant) 
Venture capital 0 10% (27.5%) 0 0 0 
(required return) 
Chinese or Multilateral 0 2.5% (grant) 5% (grant) 5% (grant) 5% (grant) 
Development banks 
CCS Special Funds 0 2.5% (grant) 5% (grant) 5% (grant) 5% (grant) 

Debt 

Commercial loan 25% (8%) 0 0 0 0 
(interest) 
Venture capital 0 25% (10%) 0 0 0 
(interest) 
Concessionary Loans 25% (4%) 25% (4%) 50% (4%) 50% (4%) 50% (4%) 
(interest) 

Value Enhancement 
Strategies 

EOR n/a n/a n/a n/a $20/tCO2e 
captured 

Carbon Market (e.g. $12 $12 $12 $12 n/a 
CDM) (per tonne CO2 
avoided) 
Corporate Tax Scheme 15% 15% 15% Exempt (0%) 15% 
Results 

Required On-grid Tariff 74.7 70.3 65.1 64.7 58.8 
(US$/MWh) 

Note: 
1. Operational and investment flexibilities are not considered in the evaluation; 
2. Revenue in tax estimation is based on the electricity price is at the levelised cost of electricity, therefore it 

could be underestimated; 
3. The reference levelised cost of electricity is $85.7/MWh assuming a 12% discount rate; and the reference 

on-grid tariff for coal-fired power plants without CCS is $50/MWh using a 10% discount rate. 
 
 
 
 

6. Conclusions 
 

A substantial proportion of the world’s new coal-fired power plants from now to 2030 will be built in 
 

China (as has been the case for the past 15 years), and CCS is the only solution to decarbonise these power 
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plants at large-scale. However, as yet, there are few strong incentives or national policies to support the 

commercial demonstration and deployment of CCS in China. We review the status of CCS technologies and 

analyse possible financial models and strategies to develop large-scale integrated CO 2  capture and storage 

projects using only existing financial resources and incentive structures. 
 
 

Without any debt financing or other support mechanisms, developing CCS in a generic USCPC power plant 

requires either an on-grid tariff of US$86/MWh or a carbon price of US$51/tonneCO 2,eq . If the required on-grid 

tariff could be reduced to below US$60/MWh, it would be economically viable to bring CCS into commercial 

operation.  More than half of the extra cost of CCS comes from the capture process, while a third is spent on 

CO 2  transportation, storage and monitoring. Because capital costs are much lower in China compared with 

OECD countries, the cost of capture in China is very sensitive to fuel cost assumptions. 
 
 

It will not be feasible to rely on any one single measure to finance a large-scale CCS project in China in the 

short term because CCS is not yet prioritised by the national government. Building on past stakeholder 

consultations, we examined a number of possible options for financing CCS in China. Aside from corporate 

equity investment and commercial loans, the Chinese national government, local governments, foreign 

governments, multilateral banks, venture capital, and CCS special funds could each provide different levels of 

support for demonstrating CCS projects. In addition, the economics of a CCS power plant could be enhanced 

through a range of mechanisms including EOR, domestic or international carbon markets, and a premium 

electricity tariff scheme. Based on several hypothetical financing scenarios, we found the required on-grid tariff 

could be lower than the current tariff levels of nuclear and natural gas power plants. EOR, though not a long- 

term option, can significantly improve the economics of a CCS power plant in China. On the other hand, if a 

global (or Chinese!) carbon market price reaches US$25/tCO2e, a CCS project with limited support mechanisms 

would reduce the on-grid tariff to US$58.8/MWh. 
 
 

The economics of upgradability and operational flexibilities has not been investigated and may offer 

significant value enhancement opportunities. It is also worth investigating whether it is possible to separate the 

CO 2    capture  investment  and  financing  from  that  for  base  power  plants  which  could  ease  the  capital 

requirement for carbon capture and allow public financing to focus on additionality.  Separating  capture 

facilities from base plant may be easiest for post-combustion facilities since virtually all coal-fired generation, 

whether in China or elsewhere, is pulverised   coal.   For other configurations such as gasification (IGCC) or 

oxyfuel, it may be difficult to separate base plant and capture facilities, since the economics of IGCC may only 

be viable because higher base plant costs are offset by lower capture costs, relative to pulverised coal plants. 
 
 

At some point, CCS may become a standard in coal-fired power plants whereby CCS is required in new 

build power plants, while some existing plants need to  be  retrofitted; Gibbins and  Chalmers (2008),  for 

example suggest this might happen globally around 2025. In China, over 50GW of new coal-fired generation 

has been built each year for the past decade [CEC, 2011], so a large number of existing coal-fired power plants 
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will still have many years of remaining effective life in 2030. 
 
 

The study identifies a number of policy recommendations for Chinese policy-makers. 
 

•   Although CCS is viewed as a medium- to long- term low carbon option for China, there are 

insufficient domestic  incentives for  CCS,  since  significant lead  times  are  likely  required  to  build 

capacity and develop workable business models. One possibility for developing a CCS demonstration 

programme for the first large-scale integrated CCS projects in China would be to consolidate various 

strands of financial support from foreign governments, multilateral institutions and domestic sources. 

On other hand, the Chinese government may consider providing at least moderate support for CCS, 

for example, by imposing a modest carbon floor price. 

•   The labour cost of building CCS power plants is much lower than in developed countries 

(GCCSI, 2011). Thus, even without a dedicated subsidy, the overall levelised cost of electricity of coal- 

fired power plants with CCS may still be competitive compared to unabated gas, nuclear and onshore 

wind power plants. In addition, provincial and municipal governments may provide financial support 

for developing a large-scale CCS project locally to generate other social benefits (e.g. R&D capacity, 

employment, supply chain). 

•   To reduce the upfront capital burden of financing a CCS project, policymakers should consider 

CO 2  capture investment as a separate entity independent of the base power plant.   by the public 

sector. 

•   Other value enhancement strategies, such as enhanced oil recovery (EOR) and flexibility in 

plant design should be encouraged in demonstrating the first large-scale integrated CCS projects in 

China. 
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