
 
UNIVERSITY OF
CAMBRIDGE

Cambridge Working 
Papers in Economics 

 

 
Pro-competitive rationing in multi-unit 

auctions 
 
 
 

 Pär Holmberg 

CWPE 1435 & EPRG 1414 



 
 
 

 
 
 
 
 
 
 
 
 

Pro-competitive rationing in multi-unit 
auctions 

 
 
 

EPRG Working Paper      1414 
 

Cambridge Working Paper in Economics 1435 
 
 
 

Pär Holmberg 
 
 
 
 
 

Abstract                     In multi-unit auctions, such as auctions of commodities and securities, 
and financial exchanges, it is necessary to specify rationing rules to break ties between 
multiple marginal bids. The standard approach in the literature and in pratice is to ration 
marginal bids proportionally. This paper shows how bidding can be made more competitive 
if the rationing rule instead gives increasing priority to bidders with a small volume of 
marginal bids at clearing prices closer to the reservation price. In comparison to standard 
rationing, such a rule can have almost the same effect on the competitiveness of bids as a 
doubling of the number of bidders. 

 
 

Keywords Divisible-good auctions, multi-unit auctions, rationing rules, bidding 
format 

 
 

JEL Classification    C72, D44, D45 
 
 
 
 
 
 
 
 
 
 
 
 

Contact                      par.holmberg@ifn.se 
Publication                 Sep, 2014 
Financial Support       Torsten Söderberg Foundation and IFN’s The 

Economics of Electricity Markets Program 
www.eprg.group.cam.ac.uk 

mailto:par.holmberg@ifn.se
http://www.eprg.group.cam.ac.uk/


1  

EPRG 1414 
 
 
 
 
 
 
 
 
 

Pro-competitive rationing in multi-unit auctions* 
 
 

Par Holmbergt 
 

August 7, 2014 
 
 
 
 

Abstract 
 

In multi-unit auctions, such  as auctions of commodities and securities, 
and financial exchanges, it is necessary to specify rationing rules to break 
ties between multiple marginal bids.  The standard approach in the liter- 
ature and in pratice is to ration marginal bids proportionally.  This paper 
shows how bidding can be made more competitive if the rationing rule in- 
stead gives increasing  priority  to bidders with  a small volume of marginal 
bids at clearing prices closer to the reservation price.  In comparison to 
standard rationing, such a rule can have almost the same effect on the 
competitiveness of bids as a doubling of the number of bidders. 
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1    Introduction 
 
 
A wide  range  of products,  commodities  and assets  are  traded  in divisible-good 
or multi-unit auctions.  For instance, auctions of electricity, treasury bills and 
emission permits as well as financial exchanges, all allow bids for more than one 
unit  of the  traded  items.   In multi-unit  auctions,  each  bidder  submits  a stack 
of bids,  where  each bid specifies  a bid price  and a bid quantity,  such that  the 
bidder is willing to trade the specified bid quantity at the specified bid price or 
better.   Unless  by coincidence,  it would normally not  be possible  to  clear  such 
auctions by either fully accepting or fully rejecting all bid quantities at any price 
level.  For multi-unit auctions, it is therefore necessary to specify rationing rules. 
Rationing rules are of particular importance for the outcome in auctions where bid 
prices accumulate at a few price levels, as usually happens in financial exchanges1 , 
frequent batch auctions2  and auctions of financial securities.  The purpose of this 
paper is to highlight how rationing rules can be designed in order to increase the 
competition among a set of bidders, to the benefit of the auctioneer. 

In practice, the normal procedure is to only ration marginal bids, which have 
a bid price  exactly  at  the  clearing  price.   In auctions  where  all bids  are  cleared 
simultaneously,  it is  standard  practice  to  ration  marginal bids  pro-rata, so that 
the same percentage of its marginal bid quantity is accepted for each bidder.  In 
exchanges with continuous trading, it is also common to give priority to marginal 
bids that arrived early at the exchange; this is referred to as price-time priority. 
The IEX3  exchange  uses price-broker-time  priority.  This means that buy and sell 
orders at the same price from the same broker are matched before giving priority 
to  early  bids.4     Field  and Large  (2012) empirically  observe  that,  in comparison 
to  price-time  priority,  pro-rata  rationing  significantly  increases  bid quantities  in 
the order book of financial exchanges, but also the cancellation rate of bids.  This 
verifies that the design of the rationing rule influences the bidding behaviour in 
auctions. 

This paper shows that an auctioneer can increase its surplus by rationing 
marginal bids  non-proportionally.    I focus  on the  procurement  auction,  where 
the auctioneer buys items, but the results are analogous for sales auctions as well 
as for double auctions and exchanges, where bidders are both buying and selling 
items.  Obviously, a procurer benefits if bidders offer many items at low prices. 
Thus, a procurer would like to encourage bids that specify large bid quantities at 

 
1 Financial exchanges  normally  restrict  the number of permissible price levels in  order to 

improve liquidity in the market. The absolute difference between two adjacent permissible price 
levels is referred to as a tick-size.  Large tick-sizes increase the market depth (the volume of 
pending orders), one aspect of liquidity.  Lehmann and Modest (1994) analyse tick-sizes and 
liquidity on the Tokyo exchange. 

2 A frequent batch auction is a uniform-price sealed-bid double auction conducted at frequent 
but discrete time intervals.  Frequent batch auctions can be used instead of continuous trading 
in exchanges (Budish et al., 2013). 

3 The IEX exchange is a new alternative financial exchange in U.S.. It tries to attract traders 
by operating according to more transparent rules. 

4 This is to encourage brokers to submit all their bids to the exchange, rather than matching 
them internally first. 
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low bid prices.   I consider  a one-shot  game,  so it will  be optimal  for bidders  to 
submit bids for all their items with a marginal cost below the reservation price of 
the auctioneer.  Thus, bid stacks that result in large volumes of marginal bids when 
the clearing price is high should be discouraged by the auctioneer, as they will lead 
to less  quantity being offered at  low bid prices.  In line  with this  argument,  the 
paper shows that bidding gets closer to the competitive outcome at all price levels 
when an auction gives disproportionate priority to bidders with a large volume of 
marginal bids at low clearing prices and disproportionate priority to bidders with 
a small volume of marginal bids at high clearing prices. 

I evaluate  rationing  rules  in uniform-price  auctions,  where  all accepted  bids 
are  transacted  at  the  clearing  price.   Uniform-price  auctions  are,  for example, 
used in most wholesale electricity markets, in U.S. treasury sales auctions and in 
frequent  batch  auctions.  Assume that  each bidder  submits  a stack  of v + 1 sell 
bids with different bid prices and that the auctioneer wants to maintain the same 
pro-competitive effect at each bid price.  In this case, I show that an optimal use of 
disproportionate rationing on the margin in an auction with N symmetric bidders 
gives the auctioneer approximately the same procurement cost as an auction with 
pro rata on the margin rationing and 

(
1 +  1 

) 
(N - 1) + 1 > N symmetric bidders 

with the same aggregate production cost.  Thus, changing to the optimal rationing 
rule from pro-rata on the margin almost corresponds to a doubling of the number 
of bidders when each bidder submits a stack with two bid prices.  The effect is 
smaller, the larger the number of bids by each bidder.  However, if the auctioneer is 
mostly concerned with competitiveness in a narrow price interval, perhaps because 
it has some prior knowledge of where the auction is going to clear, the auctioneer 
can use disproportionate rationing to significantly boost competition in that short 
price interval, even if each bidder submits a stack with many bids. 

The optimal rationing rule depends on whether the clearing price is low or high. 
Still, a non-optimal disproportionate rationing rule can also be pro-competitive 
even if the rule does not depend on the clearing price.  Intuitively, assume that 
bidders in a procurement auction are more concerned with bids at a low price, 
perhaps because the auction is more likely to clear at a low price or perhaps 
because bidders  have significantly  higher  mark-ups  at  low prices.   In this  case, 
the auctioneer could also focus on encouraging large bid quantities at low clearing 
prices, so that a rationing rule that gives priority to bidders with a large volume 
of marginal bids at all clearing prices would boost competition.  Alternatively, if 
bidders are instead more concerned with bids at a high price, competition will be 
intensified if the rationing rule gives priority to bidders with a small volume of 
marginal bids at all clearing prices. 

My model uses Nash equilibria of a static game to predict the bidding behaviour 
for different rationing rules.  A stepped supply function is used to represent the bid 
stack of each bidder.  Similar to Holmberg et al.  (2013), I use a discrete version 
of Klemperer and Meyer's (1989) Supply Function Equilibrium (SFE) concept to 
analyse Nash equilibria of stepped supply functions   But I generalize Holmberg 
et al.'s (2013) model to allow for disproportionate rationing on the margin and 
non-constant tick-sizes.  The production costs of bidders are common knowledge 
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and the auctioneer's demand is uncertain as in the standard SFE model.  The SFE 
model is often used to evaluate the design of wholesale electricity markets5 and 
analogous sales auction versions of the supply function equilibrium, with equilibria 
of demand functions, have been used to evaluate bidding in treasury auctions in 
the U.S. (Wang and Zender, 2002).6 

Previously, Kremer and Nyborg (2004) have also shown that rationing rules 
can be  used  to  improve  competition.   However,  they  analyse  a rationing  rule, 
where also infra-marginal bids (sell bids below and buy bids above the clearing 
price) would be rationed proportionally.  But partly rationing infra-marginal bids 
would be inefficient in a market with non-constant marginal costs/values.  The 
spread rationing rule (SRR) and the concentrate rationing rule (CRR) examined 
by Saez  et  al.   (2007) may also  result  in  rationing  of infra-marginal bids  and 
similar  inefficiency  problems.    Gresik  (2001) proposes  a new  rule,  ( -rationing, 
where marginal bids (when possible) are rationed in proportion to the total amount 
that a bidder wants to trade at the marginal price.  McAdams (2000) and Kweik 
and Schenone (2000) explore the extent to which rationing rules may provide the 
auctioneer with a tool for deterring collusive bidding.  In order to ensure the 
existence  of Nash equilibria  in theoretical  models  of auctions,  such  as in papers 
by Deneckere and Kovenock (1996), Fabra et al. (2006), Simon and Zame (1990), 
and Jackson  and Swinkels  (1999), it is  sometimes  convenient  to  consider  type 
dependent rationing rules, for example where priority is given to the most efficient 
marginal bids,  e.g.  sell bids with the lowest cost.  However,  such rationing rules 
are  difficult  to  apply in practice,  where  bidders'  true  costs/values  are  normally 
not observed by the auctioneer.  The present paper is the first to use a rationing 
rule that depends on the clearing price.  In this way, competition can be improved 
in an almost mechanical way. Thus, it is my belief that the pro-competitive effect 
would be robust to assumptions made on bidders' values/costs and uncertainties 
in the auctioneer's demand or supply. 

Section 2 describes the setting of the game.  The analysis is carried out in 
Section 3. Section 4 discusses some extensions that may be of practical relevance. 
Section 5 concludes the paper.  All  proofs are derived in the Appendix. 

 
5 In electricity  markets, technology characteristics and fuel prices are transparent  and pro- 

ducers make offers before the demand for electricity has been realized (Anderson and Hu, 2008; 
Green and Newbery, 1992; Holmberg and Newbery, 2009). Observed offers match the first-order 
condition of a stepped SFE model so well that  the theory cannot be rejected (Wolak,  2007). 
The continuous SFE model is less precise.  In practice, it can only make accurate predictions of 
bids from large firms, whose submitted supply functions have many steps (Hortacsu and Puller, 
2008; Sioshansi and Oren, 2007). 

6 Uniform-price auctions of the U.S. treasury  have an uncertain amount  of non-competitive 
bids from small investors, which are given priority  before regular bids. Thus, there is an uncertain 
supply of securities that is available to large investors. Some treasury auctions also up-date the 
number of sold securities with  respect to the latest market news, after buyers have submitted 
their bids. The U.S. Treasury auction has a 35% rule, which prevents anyone from buying more 
than 35% of the auctioneer's supply. This is to avoid that a single bidder can corner the market. 
Purchase constraints of this type correspond to production capacities in my procurement setting. 
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Figure 1: Clearing of and excess supply in the procurement auction. 
 
2    Model 

 
 
Consider a uniform-price procurement auction, so that all accepted bids are paid 
the Market Clearing Price (MCP). A stepped supply function is used to represent 
the bid stack of each bidder.  As illustrated by Figure 1, the market is cleared at 
the lowest price where aggregated supply is larger than the auctioneer's demand. 
Any  excess  supply  at  the  MCP  is  rationed  on the  margin.   I calculate  a pure 
strategy Nash equilibrium of a one-shot game, where each risk-neutral supplier 
chooses a step supply function to maximize its expected profit. 

Similar to Holmberg et al. (2013) there are M  permissible price levels, Pj , j E 
{1, . . . , M },  with  the  price  tick  6Pj   = Pj  - Pj-1   > 0.  The  minimum quantity 
increment  is  zero,  i.e.   quantities  can be continuously  varied.   The  difference  to 
Holmberg et al. (2013) is that I now allow for non-constant tick-sizes and non-pro 
rata rationing.  I let r =  !:1Pj 

j+l 
, where it is assumed that r is a bounded constant. 

M
 

Producer  i E {1, . . . , N } submits  a supply  vector  Si   = 
{

Si 
1

  j=1 consisting  of 
the non-negative maximum quantities it is willing to produce at each permissible 
price level.  The quantity increment 6Si  = Si  - Si is non-negative (the supply 

j j j-1 

must be non-decreasing in the price).  Let S = 
{

Si1N
 and denote competitors' 

collective  offered  quantity  at  price  Pj   as  S-i and total  market  supply  at  Pj   as 
Sj .  The  cost  function of supplier i,  Ci (Si),  is  a smooth,  increasing  and convex 
function up to the capacity constraint ki.  Let k be the total production capacity 
in the  market.   Costs  are  common knowledge.   Klemperer  and Meyer's  (1989) 
continuous model is used  as a benchmark.  The set of individual  smooth supply 
functions in the continuous model is given by {qi (p)}i=1 . 

The auctioneer's demand is perfectly inelastic up to the reservation price PM . 



6  

- j-1 

j 

j 

 
Demand is uncertain and given by the shock c.  The shock has a continuous 
probability  density,  g(c), with  g 2: g(c) 2: g > 0 on the  support  [c, c}.  MCP is 
the lowest price at which the offered supply is (strictly) larger than the stochastic 
demand shock.  Thus,  the  equilibrium price  as a function  of the  demand shock, 
P (c), is right continuous, and the MCP equals Pj  if c E [Sj-1 , Sj ). Given chosen 
step supply functions, the market clearing price can be calculated for each demand 
shock in the  interval  [c, c}.  The  lowest  and highest  prices  that  are  realized  are 
denoted by PL  and PH , respectively, where 1 S L < fi S M . I let s (c) and si (c) 
be total accepted supply and supplier i's accepted supply at c, respectively. 

 
 
2.1     The rationing rule 

 

I consider a new class of rules that ration disproportionately on the margin. The 
rules are such that any bid accepted for some demand  shock cO   is also accepted 
for any c > cO , i.e.  a bidder's acceptance is monotonic with respect to the demand 
shock.   For a given  set  of supply  schedules,  the  outcome  of the  auction  is  the 
same (irrespective of the sharing rule) when there is no excess supply at MCP, i.e. 
Sj-1  = c. In this case, we have: 

 

si (Sj    1 )     Si .  (1) 

The rationing rule determines how to accept bids when Sj-1  < c < Sj .  For the 
class  of rationing  rules  that  I consider,  the  increment  of producer  i's  accepted 
supply 6si  for a shock increment 6c is determined by the differential equation 

 
dsi (c) 

= 
dc 

(
Si  - si (c) 

 N (
S 

 

) j 
 
 

 j if c E 
 
(
Sj-1 , Sj 

) 
 
 
,  (2) 

 =1 j - s  (c)
)
 

 

where the rationing parameter f.j  determines the non-linearity of the sharing rule 
at the clearing price Pj , i.e.  the extent to which large quantity increments at this 
clearing price  are  given priority to small  increments.  I consider f.j   2: 0, so that 
the rationing rule results in monotonic acceptance (in absolute terms) in the sense 
that a larger quantity increment at the marginal price will (weakly) increase the 
accepted volume from marginal bids of the supplier.  Similarly, the rationing rule 
gives monotonic rejection (in absolute terms), i.e.  a larger quantity increment at 
the marginal price will also (weakly) increase the rejected volume from marginal 
bids of a supplier.  For f.j  = 1, we get pro rata on the margin rationing, where any 
additional demand 6c is allocated in proportion to a supplier's unmet supply at 
the clearing price, Si - si (c).7  It follows from (2) that with f.j  > 1, disproportion- 
ate priority is given to producers with large unmet supply at the clearing price. 
When f.j  --- oo, 6c is shared equally among suppliers with the largest unmet 
supply at the clearing price, while suppliers with less unmet supply at Pj   get no 
share of 6c.  We say that this rule gives maximum priority to large quantity in- 
crements at Pj  (subject to rejection being monotonic for the rationing rule).  The 

 
7 Lemma 4 in  the Appendix formally  establishes  that  this  corresponds  to  pro-rata on the 

margin rationing. 



given set of non-decreasing supply schedules. 
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N 

j 

i 

i 

+ 

 
case 0 S f.j   < 1 gives more priority to small quantity increments.  In particular, 
f.j   = 0 gives  maximum priority  to  small  quantity  increments  at  Pj   (subject  to 
acceptance being monotonic for the rationing rule).  In this case, all suppliers with 
unmet supply at the clearing price get the same share of any additional marginal 
demand increment 6c.  Note that 

 

) dsi (c) 
dc 

 
 
1,  (3) 

i=1 
 

i.e.   the  marginal increase  in total  accepted  supply  always  equals  the  marginal 
shock increment, regardless of the rationing rule. 

Together  with  the  initial  condition  in (1), a system  of differential  equations 
of the type in (2), with one equation per bidder, can be used to calculate the 
accepted  quantity  for each supplier  as  a function  of the  demand  shock for any 
given set of monotonic step supply functions.8   From the supply si (c) allocated to 
each supplier, it is straightforward to calculate the supplier's expected profit: 

    
6

 

E (1i) = [P (c)si (c) -Ci(si (c) )}g (c) dc.  (4) 
  

 
3    Analysis 

 
In the following subsection, I derive a first-order condition for optimal bids when 
rationing is disproportionate on the margin. Then, I will analyse a case with two 
permissible price levels.  The third subsection of the analysis section analyses cases 
with many permissible price levels. 

 
 
3.1     The first-order condition 

 

Optimal bids of a supplier can be determined from the following first-order con- 
dition. 

 
 
 
Lemma 1 The first-order condition for a uniform-price auction with N symmet- 
ric suppliers is  iven by  

 
BE(1r  ) 

   
i
 

 
BS  

   
S  

= -6Pj 1 Sj g (Sj ) 
 

(N -1)!:1Sj 

N 

j =Sj 
1       

Pj  - C   
(
Sj 

 

(  )  N 
)  

(1 -   j ) g 
(
Sj 

 

( )
) 
d  

 
 
(5) 

O 
1 

(N -1)!:1Sj+l + N  

   
Pj 1 - C  (S j 1 (  )  N )

 
   j+l g 

(
S j 1 (  )

) 
d  = 0, 

O 
 
where k  = i and Sj (  )  =  Sj-1  + (1 -  ) Sj . 

 
8 Lemma 5 in the Appendix formally establishes that there exists a unique allocation for any 
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The first-order condition can be intuitively interpreted as follows.  When cal- 

culating  fJE (1i)   fJSi , supply  is  increased  at  Pj   while  holding the  supply  at  all 
other price levels constant.  This implies that the bid price of one (infinitesimally 
small) unit of quantity is decreased from Pj    1  to Pj . This decreases the MCP for 
the  event  when the  unit  is  price-setting,  i.e.  when c = Sj .  This  event  brings  a 
negative contribution to the expected profit, which corresponds to the first term in 
the first-order condition (5). This term corresponds to the price effect; the term is 
negative as a bid price was decreased.  Due to the rationing mechanism, decreasing 
the price by a unit of quantity (weakly) increases the accepted supply for demand ) 
outcomes  c E  Sj-l , Sj    1 .   This  gives  a positive  contribution  to  the  expected 
profit; the two integrals in (5).  The first integral covers c E  Sj-1 , Sj 

) 
when the 

MCP is Pj , and the second for c E   Sj-1 , Sj 
) 

when the MCP is Pj    1 .  The first 
integral corresponds to the loss associated with the quantity effect at price Pj  and 
the second integral corresponds to the loss associated with the quantity effect at 
price Pj    1 . The two integral terms are positive since a bid price was decreased. 

By means of the first-order condition in Lemma 1, we can identify two reasons 
why supplier i's loss associated with the quantity effect at Pj   dominates the loss 
associated with the quantity effect at Pj    1 .  First, if the market is more likely to 
clear at Pj   than at Pj    1 .  The other reason is that supplier i has higher average 
mark-ups at Pj  than at Pj    1 . We also note the following from Lemma 1: 

 
Remark 1 For   iven  supply  schedules  S,  the  loss  associated  with  supplier  i's 
 uantity eeect when increasin   the bid price for some units of output from Pj   to 
Pj    1  becomes lar er if 

 
1. the rationing rule gives increased priority to large quantity increments at Pj 

compared to Pj    1 , i.e.  f.j  increases and/or f.j    1  decreases. 
 

2. supplier i's loss associated with the quantity effect at Pj  dominates the loss 
associated with the quantity effect at Pj    1 , the same rationing rule is used at 
Pj  and Pj    1 , and the rationing rule gives increased priority to large quantity 
increments, i.e.  f.j  = f.j    1  increases. 

 
3. supplier i's loss associated with the quantity effect at Pj    1 dominates the loss 

associated with the quantity effect at Pj , the same rationing rule is used at 
Pj  and Pj    1 , and the rationing rule gives increased priority to small quantity 
increments, i.e.  f.j  = f.j    1  decreases. 

 
 
3.2     Two price levels 

 
 
To illustrate the effect of disproportionate rationing on equilibrium bids, we first 
analyse a simple case with only two admissible price levels, P1 and P2 . We make 
the following assumption: 

 
Assumption  1.  The uniform-price auction has two price levels,  P1  and P2 . 

The suppliers are symmetric, each supplier has capacity ki  and a constant marginal 
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O 

Si 

1 

Si 

Si 

2 

 
cost  c  S  P1  < P2 , such that  (N - 1) (P2 - c) S  N 6P2 .  Demand  is  uniformly 
distributed on [0, k}. We set Si  = 0. 

 
We can deduce the following inequality from Assumption 1: 

 

(N - 1) (P1 - c) S 6P2 .  (6) 
 

P2 > c is the highest possible price, so irrespective of competitors' bids, it is 
the best response for each supplier to offer its entire capacity ki  at P2 , i.e.  Si  = k . 2 i 
Thus, market performance is determined by Si . A higher Si means that bids are 

1  1 
more competitive, i.e.  the average mark-ups are lower.  We get the following result: 

 

Lemma 2 Under Assumption 1, the solution to the first-order condition in Lemma 
1 is 

 

l   =    
(N - 1) ki (P2 - c) 

(f.2 + 1) 6P2 + (N - 1) (P2 - c) - (N 

 
 
-1)(Pl - 

 
 
 )(1 

 
 
2 )  l 

 

  .  (7) 
(1 l ) 

 

As  expected  from Remark  1, we have  from Lemma  2 and the  inequality  in 
(6) that Si increases when f.2  decreases and/or when f.1  increases.  We note that 
the inequality in (6), which follows from Assumption 1, ensures that the optimal 
supply  at  P1  is  never  constrained  by the  capacity  constraint  ki.   Increasing  f.1 

and decreasing f.2 will weakly improve, but to a lower extent, market competi- 
tiveness  also  for circumstances  when (N - 1) (P2 - c) > N 6P2 , so that  supply 
at P1  is constrained by the capacity constraint ki  for the most high powered ra- 
tioning parameters.  We can verify that the following first-order solutions are Nash 
equilibria. 

 

Proposition 1 Under  Assumption  1,  we  can establish  Nash  e uilibria  for the 
followin   cases 

 

1. A rationing rule that gives maximum priority to large quantity increments 
at P1  (f.1  = oo) and maximum priority to small quantity increments at P2 

(f.2  = 0) results in the most competitive first-order solution.  The symmetric 
Nash equilibrium for this case is: 

 

= 
(N - 1) ki (P2 - c) .  (8) 1  N 6P 

2 
 

2. Auction competitiveness is also improved, but to a smaller extent, when 
maximum priority is given to small quantity increments at both P1  and P2 

(f.2  = f.1 = 0). The Nash equilibrium for this case is: 
 

Si (N - 1) ki (P2 - c) 
1 = 

6P 
 

+ (N 
 

- 1) (P2 - 
.  (9) 

c) 
 

3. The Nash equilibrium for pro rata on the margin rationing (f.2  = f.1 = 1) is: 

= 
(N - 1) ki(P2  - c) .  (10) 1  (N + 1) 6P 

2 

In this case, supplier i's loss associated with the quantity effect at P2 domi- 
nates the loss associated with the quantity effect at P1 . 
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Figure 2: Aggregate stepped supply function equilibria when  c = 4, P1 = 5 and 
P2 = 10 for four different cases:  A) N = 2, f.1  = f.2  = 1, B) N = 2, f.1  = f.2  = 0, 
C) N = 2, f.1 = oo, f.2 = 0 and D) N = 3, f.1 = f.2 = 1. 

 
 

The second result, that competitiveness is improved (relative to standard ra- 
tioning) by giving maximum priority to small quantity increments at both P1  and 
P2 can be explained by Remark 1 and the fact that supplier i's loss associated with 
the quantity effect at P2  dominates the loss associated with the quantity effect at 
P1 for pro rata on the margin rationing (the third result).  In the special case when 
P1 = c, the loss associated with the quantity effect at P1 is zero, so that it is only 
P2 that contributes to this loss.  In this special case, giving maximum priority to 
small  quantity increments  at  both P1  and P2  (f.2  = f.1  = 0) will  have the  same 
effect as the optimal rationing rule, i.e.  (8) and (9) give the same result. 

We can multiply the first and third result in Proposition 1 by N to get ex- 
pressions for total market supply at P1 . By using the fact that k = N ki, we can 
deduce the following: 

 
Corollary 1 Under  Assumption  1, a uniform-price  auction  with  N  symmetric 
suppliers and optimal rationin   on the mar  in  ives the auctioneer the same total 
procurement cost as a uniform-price auction with pro rata on the mar  in rationin 
and 2N - 1 symmetric  suppliers  with  the  same  total production  cost  (the same 
mar  inal cost c and total production capacity k  

 
Proposition 1 and Corollary 1 are illustrated by the four cases in Figure 2. 
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3.3     Many price levels 
 

In this  section,  we  analyse  the  case  where  supply  functions  have  many steps, 
so that the difference equation in Lemma 1 can be approximated by a differential 
equation.  A difference equation is said to be consistent with a differential equation, 
if the difference equation converges to the said differential equation as the number 
of steps in the supply schedules increases towards infinity (Holmberg et al., 2013). 

 
Lemma 3 For N symmetric suppliers, the discrete first-order condition in Lemma 
1 is consistent with the continuous dieerential e uation 

 
 

-qi (Pj ) + [Pj  - Ci (qi (Pj ))} 
 
 
if Pj > Ci (qi (Pj )) and f.j  > 0 

    
1 

(f.j    1 

 
 

+ 
+ 1)  (f. 

f.j r 
\

 
j + 1) 

 
 
(N - 1) qi (Pj ) = 0  (11) 

 
In the  special  case when  tick-sizes  are  constant,  i.e.   r = 1, and rationing  is 

proportionate on the margin, i.e.  f.j  = 1, (11) can be simplified to 
 

-qi (Pj ) + [Pj  - Ci (qi (Pj ))} (N - 1) qi (Pj ) = 0,  (12) 
 
which is the differential equation of continuous supply function equilibria for sym- 
metric suppliers with inelastic demand (Rudkevich, 1998; Anderson and Philpott, 
2002; Holmberg, 2008). This confirms the consistency result in Holmberg et al. 
(2013) for pro rata on the margin rationing and constant tick-sizes.  A comparison 
of (11) and (12) implies that for constant tick-sizes (r = 1) and disproportionate 
rationing on the margin, competitiveness (the number of competitors, N - 1) is 
approximately boosted by the factor 

 

 
.\ = 

 

1 
(f.j    1 + 1) 

 

+ 
f.j 

(f.j  + 1) 

 

 
(13) 

 

relative  to  the  case with  pro rata  on the  margin rationing.  As  in the  case with 
two  price  levels,  we  note  that  it is  beneficial  for competition  to  use  rationing 
parameters such that f.j   > f.j    1 .  However,  with more price levels,  there will  be 
smaller changes in f.j  from one price level to the next and a lower pro-competitive 
effect, if one wants to maintain the same effect on competition at each price level. 
We can write (13) in the following form: 

 
1 

f.j  =  
1 +   1   

j+l 

- 1. 

 

By setting the competition boosting factor .\ to a constant and f.H  = 0 (the 
rationing parameter at the highest realized price), we can iteratively solve for f.j 
for sequentially smaller j, until a non-negative solution of f.j  no longer exists.  In 
this way, we can approximately determine for how many steps in a supply function 
we can maintain .\ at the desired level.  The results are summarized in Table 1. 

We  can multiply  the  differential  equation  in (11) by N , so  that  we  get  an 
equation for total supply, and then note the following from Table 1. 
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Table 1: The competition boosting factor .\ and the number of steps in a supply 
function, for which the factor can be maintained. 

 

No of steps .\ 
1 2 
2 1.4 
3 1.3 
4 1.2 
6 1.15 
9 1.1 
19 1.05 
49 1.02 
99 1.01 
199 1.005 
499 1.002 
999 1.001 

 
 
Remark 2 A  uniform-price  auction  with  optimal  rationin    on the  mar  in and 
N  symmetric  suppliers  with  v steps  in each supply  function  has  appro imately 
the  same total procurement  cost  as a uniform-price  auction  with  pro  rata on the 
mar  in rationin   and (1 + 1 v) (N - 1) + 1 symmetric  suppliers  with  the  same 
total production costs and v steps in each supply function 

 
Even if supply functions have many steps, the auctioneer can still substantially 

boost competition at the local level by introducing large changes in f.j  in an interval 
with a few price levels, where the auctioneer expects the auction to clear or where 
the auctioneer is mostly concerned with market competitiveness.  We also note the 
following from Lemma 3: 

 
Remark 3 If the rationin   rule is the same for each price level, f.j  = f.j    1  = f., 
but tick-siies are non-constant, then 

 
1. If tick-sizes  decrease  towards  the  reservation  price  (r > 1), then  the  com- 

petition boosting factor .\ =      1      +     r   increases when the rationing rule 
( 1) (  1) 

gives increased disproportionate priority to large quantity increments at all 
prices (f. i). 

 
2. If tick-sizes  increase  towards  the  reservation  price  (r < 1), then  the  com- 

petition boosting factor .\ =      1      +     r   increases when the rationing rule 
( 1) (  1) 

gives increased disproportionate priority to small quantity increments at all 
prices (f.   ). 

 
The intuition behind this result is that smaller tick-sizes towards the reserva- 

tion price tend to also decrease the quantity increments, so that supplier i's loss 
associated  with  the  quantity  effect  at  Pj   tends  to  dominate  the  loss  associated 
with  the  quantity  effect  at  Pj    1 .   The  opposite  is  true  if  tick-sizes  are  instead 
larger towards the reservation price. 
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4    Extensions of the auction design 
 
In the  analysed  model,  each rationing  parameter  has been tied  to  a price  level, 
but  this  may not  be optimal  in practice.   In practice,  the  bidding format  often 
restricts  the  number  of steps  in supply  schedules  and/or  bidders  do not  always 
use all allowed steps, because the additional effort required of a supplier to submit 
another  step  may not  be negligible  (Kastl,  2011).  In such  cases, it should  be 
sufficient to boost competition at bid prices that are used by the supplier, so that 
a higher boosting factor can be maintained at those fewer prices.  In practice, it 
may therefore be beneficial to have individual rationing parameters for suppliers, 
j , where a supplier's parameter could, for example, depend on the step number 
in its supply function.  The auctioneer may also want to weight supplier's unmet 
supply, in order to avoid that the disproportionate rationing rule favours small or 
large suppliers, or to optimize rationing for asymmetric bidders.  As an example, 
a supplier's weight wi   could be inversely proportional to its production capacity 
or maximum offered supply Si  . Thus (2), could be generalized as follows 

 

dsi (c) 
= 

(
wi j - si (c) 

)) 
j 

. 
dc  N 

=1 
(
w  

(
Sj - s  (c)

))  
j 

In a more advanced auction,  the  individual  rationing  parameters  of a supplier 
may depend on its supply schedule.  The auctioneer may, for example, want to set 
high f.i values  in price  intervals  where  the  quantity increments  of supplier i are 
decreasing and low f.i values in price intervals where the quantity increments of 
supplier i are increasing. 

It has been shown that tick-sizes can be combined with the rationing rule in 
order to boost competition.  It should be possible to get similar effects with other 
aspects of the bidding format, such as lot sizes, the distance between permissible 
quantity levels. 

 
 

5    Conclusions 
 
For an auctioneer, it is beneficial if bidders increase quantity increments at prices 
far from the  reservation  price  and if bidders  decrease  their  quantity  increments 
near the reservation price.  It is shown that such a pro-competitive effect on bids 
can be achieved with rationing rules that prioritize large marginal quantity incre- 
ments at clearing prices far from the reservation price and then gives increased 
priority to small marginal quantity increments at price levels closer to the reser- 
vation price.  For supply schedules with one step, I show that the optimal use of 
disproportionate rationing on the margin for a uniform-price auction with N sym- 
metric suppliers gives the auctioneer the same procurement cost as a uniform-price 
auction  with  pro rata  on the  margin rationing  and 2N - 1 symmetric  suppliers 
with the same total production cost.  The pro-competitive effect is smaller for 
supply schedules with more steps.  For supply functions with v steps, a uniform- 
price auction with N symmetric suppliers and an optimal use of disproportionate 
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v 

 
rationing on the margin at each step roughly gives the auctioneer the same pro- 
curement cost as a uniform-price auction with pro rata on the margin rationing 
and 

(
1 +  1 

) 
(N - 1) + 1 > N symmetric suppliers with the same total production 

cost.  However, even if supply functions have many steps, the auctioneer can still 
substantially boost competition locally by using disproportionate rationing on the 
margin at a few price levels, where the auctioneer expects the auction to clear or 
where the auctioneer is mostly concerned with market competitiveness.  Forward 
prices,  prices in when-issued markets or clearing prices of previous auctions can 
be used to predict the clearing price of an auction. 

The paper also identifies situations where the competitiveness of the auction 
can be improved  if the  same rationing  rule  is  used at  all price  levels.   It is  also 
shown how the  bidding format,  such  as the  tick-sizes,  can be tailored  to  create 
such situations. 

The pro-competitive mechanism is almost mechanical, so although my results 
are derived for costs that are common knowledge, they should qualitatively hold 
for other standard models of divisible-good auctions.9   I consider a uniform-price 
auction,  where  all  accepted  bids  are  paid the  marginal price.    However,  intu- 
itively,  similar results should hold for all or most multi-item auctions with non- 
truthtelling  mechanisms10 , including pay-as-bid  auctions.11      Similarly,  the  pro- 
competitive mechanism should work also when there is a finite set of permissible 
quantities,  as  in  practice,  so  that  quantities  cannot  be  continuously  varied  as 
in the model.  Rationing rules with normalizations of quantity increments with 
respect to the size of a bidder may improve the performance in auctions with 
asymmetric bidders.  Finally, although the results are derived for a procurement 
auction  with  supply-side  bidding, analogous  results  will  hold for a sales  auction 
with demand-side bidding as well as for double auctions and exchanges that have 
both demand-side and supply-side bidding. 

The bidding format and parts of the auction software that receives and manages 
bids can be kept unchanged when implementing a pro-competitive rationing rule, 
so it should be straightforward to implement it in practice. 
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Appendix 
 
 
First, we verify that the special case when  f.j  = 1 corresponds to pro rata on the 
margin rationing at the price level Pj . 
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Lemma 4 The auction has pro rata on the mar  in rationin   at the price level Pj 

when f.j  = 1 
 

Proof.  We  can use  the  identities N
 s  (c)  c and  N  S Sj   to 

simplify and then solve (2) when f.j  = 1: 
 
 
 

ds  (6) 
   d6  

 

d  (  ) 
d 

   (  ) 

Sj -  (  ) 
Sj - 

Sj
 

Sj - 
+ (Sj - )2   = (Sj - )2 . 

 
It now follows from the product rule and integration that: 

 
d     (  )  Sj

 

d  Sj - = (Sj - )2 

   (  )    (Sj-l )  Sj S  .
 

Sj - 
- Sj -Sj-l   

= Sj - 
- Sj -Sj-l 

 
It now follows from (1) that: 

 
 

si (c) = Si  - 
6Si (Sj  - c) 

6Sj 

 
j-1  + 

6Si (c - Sj 

6Sj 

-1 ) , 

which is identical to the accepted supply of a supplier in a uniform-price auction 
with pro rata on the margin rationing (Holmberg et al., 2013) when demand is 
inelastic. 

 
The following statement ensures that there is a unique allocation under dispro- 

portionate rationing.  Note that rationing is never required at price levels where 
no supplier has a quantity increment. 

 
 
Lemma 5 For a   iven  set  of non-decreasin    stepped  supply  functions  S, such 
that Sj    > Sj-1   for at least  one  supplier  k  E {1, . . . , N }, there  e  ists  a uni  ue 
rationin   allocation at price Pj , defined by the  initial  value problem (1   and (2 
This uni  ue solution satisfies si (c) S Si  = si (Sj ) and si (c) 2: 0 for c E [Sj -1 , Sj ) 
and "vi E {1, . . . , N } 

 
Proof. We have Si  2: Si 

 

 
 
= si (Sj

 

 

 
 
1 ). Thus, it follows from (2) that s 

 

 
 
(c) 2: 0 

j j-1 - i 
when si (c) < Si and that  si (c) = 0 when si (c) = Si , as long as there  is  some 
supplier k E {1, . . . , N } with s  (c) < Sj . There must be at least one such supplier 
for c E [Sj-1 , Sj ), otherwise we would get the contradiction that Sj   S s (c) = c 
for some c E [Sj-1 , Sj ).  We also note that the right-hand side of (2) is Lipschitz 
continuous in the interval [Sj-1 , c* } for any c*  E [Sj-1 , Sj ), so it follows from the 
Picard-Lindelof  theorem that the initial  value problem has a unique solution in 
the interval [Sj-1 , Sj ). 
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6.1  A.1 First-order conditions 
 
 
From the properties of the sharing rule, it is now possible to derive a first-order 
condition for the optimal supply schedule of a supplier. 

 
 
Lemma 6 The first-order condition for supplier i's optimal output at price Pj  is 

 
BE(1r  )  i

 
 
 

Sj 
B    (  ) 

BSj 
= -6Pj    1 Sj g (Sj ) 

Sj+l 

 
 
B    (  ) + 

Sj-l 

[Pj  - Ci (si (c))}  
BSj 

g (c) dc + 
Sj 

[Pj    1 - Ci (si (c))}  
BSj 

g (c) dc = 0. 
 

(14) 
 

Proof. The accepted supply of supplier i only depends on Si  for c E [Sj -1 , Sj ) 
when the  clearing  price  is  Pj   and for outcomes  c E [Sj , Sj    1 ) when the  clearing 
price is Pj    1 . The contribution to the expected profit from outcomes c E [Sj-1 , Sj ) 
is given by: 

Sj 
 

j = 
 

Sj-l 

so 

 
 
[Pj si (c) - Ci(si (c))}g (c) dc, 

 
 

fJEi 
Sj 

fJsi 
 
(c) 

 

fJSi 
= [Pj si (Sj ) - Ci(si (Sj ))}g (Sj ) +  

 
Sj-l 

[Pj  - Ci (si (c))}  

fJSi 
g (c) dc.  (15) 

 
The contribution to the expected profit from outcomes c E [Sj , Sj    1 ) is given by: 

 
 
 

j 1 = 
 
 

so 

Sj+l 
 

[Pj    1 si (c) - Ci(si (c))}g (c) dc, 
 
Sj 

 
 

BE 

BSj 
= -[Pj    1 si(Sj ) - Ci(si (Sj ))}g (Sj ) + 

Sj+l 

 
Sj 

 
[Pj    1 - Ci (si (c))} 

 

BSj    
g (c) dc. 

 

(16) 
Summing the contributions from (15) and (16) establishes the result in (14). 

In this paper, I will focus on characterizing symmetric Nash equilibria.  Thus, I 
want to find the optimal response of a supplier i when its N -1 competitors submit 
identical  bids.   It follows  from (14) that  the  optimal  stepped  supply  function  is 
to  a large  extent  determined by how supplier i's  accepted supply si (c) depends 
on its supply function.  The following Lemma specifies this dependence when the 
supplier's N - 1 competitors submit identical bids. 
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Lemma 7 For N  symmetric producers we have that 

 
(N -1) 

N -  j 

(!:1Sj )   j if c E [Sj-1 , Sj ) fJsi (c) 
I 

= (N  -1)(S  
j+l - 

 
)   j+l 

fJSi  
 j N (!:1Sj+l )  j+l if c E [Sj , Sj    1 ) 

j Sj =   0  otherwise 
 

Proof. For fixed Si   "vk = j, increasing Si will increase producer i's quantity 
increment  at  the  price pj   and decrease  its  quantity  increment  at  the  price  pj    1 . 
The quantity increments and the offered supply at all other price levels will remain 
unchanged.  Thus,  a change  in  Si will  only influence  the  accepted  supply  for 
outcomes c E [Sj-1 , Sj ) when the clearing price is pj   and outcomes c E [Sj , Sj    1 ) 
when the clearing price is pj    1 . Let i (c) = B     (  )  and first consider c E (Sj -1 , Sj ). 
It follows from (2) that 

f.j (1 - ii (c)) 
(
Si  - si (c)

) 

 
 
 
j -1 

ii (c) = N  ( 
=1  j - 

j 

s  (c)
)  

j 

 

 
 
j -1

 
f.j 

(
Si  - si (c)

)
 (1 - ii (c)) 

(
Si  - si (c)

)
 

-   
N 

=1 
(
Sj   - s  (c)

)  j 
 2

 

f.j 
(
Si  - si (c)

)
 

 

j N 
=    i (- i (c)) 

(
Sj - s  (c)

)
 j -1 

. - 
 
 
 

Symmetry, i.e.  Si  = Sj 

 
 
 
 
, yields 

  
N  ( 

=1  j - s  (c)
)  

j 
 2

 

 
 

f.j (1 - ii (c)) 
 

f.j (1 - ii (c)) f.j  =i  i (c) 
(c) = 

j - si (c) N 2 
(
 Si  - si (c)

)
 N 2 

(
 
 

Si  - si (c) 
) .  (17) 

Notice that N
 s  (c)  c and accordingly  N

 
 

(c)  0. Thus, we can write 
(17) as follows:  

 
f.j (1 - ii (c)) 

 
 
f.j (c) = 

j - si (c) N 2 
(
 Si  - si (c)

)
 

 
 
 
 
where Sj  = N Si . Hence, 

= 
f.j ((N - 1)  N - ii (c)) 

, 
Sj  - c 

 

(Sj  - c)  ii (c) + f.j    ii (c) = f.j (N - 1)  N. 
 
 

We solve this differential equation by means of an integrating factor.  Multiplying 
 all terms by    1   

(Sj - )   j +l 
yields: 

 

  ii (c) f.j    ii (c) + f.  (N  1)  N 
= . (Sj  - c) j (Sj - c) j (Sj - c) j 
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- 

j 

BS 

(
Si 

j 1 

(
Si 

) j+l N 

=1 
ii - 

N 
(
Si S 

=1 =1  i 

j 1 

S  c 
(c) = 

1 

- 
j 

S 

S 

S 

) 
N 

. 

, 

 
 
 
By means of the product rule, we get 

 

d ii (c) = 
d (N - 1)  N 

, 
 
 

so that 

dc (Sj  - c) j dc (Sj  - c) j 

 

ii (c) 
 

ii (Sj-1 ) 
 

(N  1)  N 
= 

 

(N - 1)  N  
.
 

(Sj  - c) j 
- 

(Sj  - Sj 
 
We have  ii (Sj-1 ) = 0, so 

1 ) j (Sj - c) j  
- 

(Sj - Sj-1 ) 

 
fJsi (c) 

fJSi 

 
 
=  ii (c) = 

 
(N - 1)  

1 
N  

-
 
(Sj  - c) j 

\
 

(6Sj ) j
 

 
 
if c E (Sj-1 , Sj ) . 

 

Now, we will  repeat the same procedure for the interval c E (Sj , Sj    1 ) when 
the  price  is  pj    1 .  Again, let i (c) = B     (  ) .  In this  interval,  we have (compare 

j 

with (2))  
j 1 - si (c) 

) j+l 

 
 
 
Thus 

si (c) = N  ( 
=1  j 1 - s  (c)

)  
j+l 

.
 

f.j    1   ii (c) 
(
Si - si (c)

) 
 

j+l -1 

ii (c) = - N  ( 
=1  j 1 - s  (c)

)  
j+l 

+ j 1 - si (c) =1  i (c) f.j    1 
(
Sj    1 - s  (c) 

) j+l -1 

N ( 
=1  j 1 

2  . 
- s  (c)

)  j+l
 

 
Symmetry implies that  

 
 
f.j    1   ii (c) 

 

 
 
f.j    1  

N 

 
 
 
i (c) (c) = + 

j 1 - si (c) 2 
( 

i 
j 1 - si (c)

)
 

As before, N
 s  (c)  c implies that N

 
 

(c)  0, so 
 
 
 
 
 
where Sj    1 = N Si 

 
 
 
 
. Hence, 

-f.j    1   ii (c) 
ii 

j 1 - 

 

(Sj    1 - c)  ii (c) + f.j    1   ii (c) = 0. 
 
 

As  above,  we solve  this  differential  equation  by means of an integrating  factor. 
 Multiplying all terms by    1   

(Sj+l - )  j+l +l 
yields: 

 

  ii (c) f.j    1   ii (c) + 
 
= 0. 

(Sj    1 - c) j+l
 (Sj    1 - c) j+l 
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j 

j j j 

N 

j 
E  j j 1 

BS 

(Sj - ) 

+ i 

and  = !:1S 

 
Thus, it follows from the product rule that 

 

d ii (c)  
= 0, 

 
 

so that 

dc (Sj    1 - c) j+l
 

ii (c) 
(Sj    1 - c) j+l

 
=  ii (Sj ) 

(Sj    1 - Sj ) j+l
 

 

,  (18) 

where ii (Sj ) can be determined from the relation 
 

dSi 
1 = 

dSi 

 
dsi (Sj ) = dSi = 

 
 
ii (Sj ) + si 

 
 
(Sj ) 

 
dSj 

dSi . 
 

We have si (Sj ) = si (c) = 1 due to symmetry and dSj 
dSj 

= 1, so 
 

1 
ii (Sj ) = 1 - N  

= 
 

Now, it follows from (18) that 

N - 1 
. 

N 

 

fJsi (c) (N - 1) (Sj    1 - c) j+l 
 

fJSi 
=  ii (c) =  

N (6Sj    1 
if c  (S , S  ) . 

) j+l
 

 
 
 

Finally, we note that  B    (  )  is continuous at the points c = Sj  and c = Sj    1 . 
j 

We can now conclude the following from Lemma 6 and Lemma 7 above. 
 
 
 
Corollary 2 The first-order condition of a market with N symmetric suppliers is 
iven by 

 
BE(1r  )  i

 
 
 

+ (N -1) 

BSj 
= -6Pj    1 Sj g (Sj ) 

Sj 
j 

[Pj -C (si (c))}   1 - 

 
 
 
g (c) dc 

N  i 
Sj-l 
Sj+l 

(!:1Sj )  j (19) 

(N -1) 
N (!:1Sj+l )  j+l 

Sj 

[Pj    1 -C (si (c))} (Sj    1 - c) j+l g (c) dc = 0. 

 
 

We are now able to prove the first-order condition presented in the main text. 
Proof. (Lemma 1) This follows from Corollary 2 in Appendix and the sub- 

stitutions = Sj - 
!:1Sj 

Sj+l - 
j+l 

, respectively. 
The first-order condition can be solved as follows. 
Proof. (Lemma 2) We have 

 
1 

 

(1 -  j ) d   = 
 

j  1 
   1 

- = 
 

f.j 
f.j  + 1  O 

O 
f.j  + 1 
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1 
1  + 2 

1 
1  + 1 

Si 

j 

i 

j j 

j 

  
Si

 
if c 

i 

j 
i 

- 

j - 

 
and  

1 
 

j+l d   = 
 
O 

 
 

j+l  1 
 

f.j    1 + 1 

 
 
1  1 
= , 

O f.j    1 + 1 

so it follows from Lemma 1 and Assumption 1 that: 
 

6P2 Si = 

 

(N - 1) (P1 - c) f.1 6Si 

(f.1 + 1) 

 

(N - 1) (P2 - c) 6Si 

(f.2 + 1) 
 

6P2 Si = (N - 1) (P1 - c) f.1 Si 

(f.1 + 1) 
(N - 1) (P2 - c) (ki  - Si ) 

(f.2 + 1) 

= 
(N - 1) (P2 - c) ki 

1  (N -1)(Pl - )  l
 

 

. 
(N -1)(P2 - ) (f.2 + 1)  6P2 - (  l 1)  +  

(  2    1) 
 
 
 
 

6.2  A.2 Second-order conditions 
 

For extreme cases when  f.j  = 0 or f.j  = oo, the acceptance sensitivity with respect 
to quantity increments, i.e.   B    (  ) , can also be determined at asymmetric points, BSj 

where Si  = Sj . 
 

Lemma 8 If f.j  = 0 and competitors have identical supply functions, Sj , then 
 

 
fJsi (c) 

fJSi 

 

) 0  if 6Sj  > 6Sj   and c E (Sj-1 , Sj ) 
= 0   if 6Sj  < 6Sj   and c E 

(
Sj-1 , Sj-1  + N 6Sj 

) 

 

 
and 

i 
 

j 1  if 6Si  < 6Sj 

and c E 
(
Sj 

i 

1 + N 6Si , Sj 
)
 

N  if 6Sj  > 6Sj   and c E 
(
Sj-1 , Sj-1  + N 6Sj 

) 

fJsi (c)  
I) 

fJSi = 

N -1 
 

0 
N  -1 

i 
 

if 6Si 

i 

 
> 6Sj 

 
and c E 

(
Sj    1 

 
+ N 6Sj , Sj 

)
 

i 
N  if 6Sj  < 6Sj   and c E 

(
Sj-1 , Sj-1  + N 6Sj 

) 
j-1 I 

0  if 6Si  < 6S
  

and c S  + N 6Si , S j j E 
(
 j-1 j j 

)
 

 

Proof. It follows  from (2) that  for f.j   = 0 and 6Si 

 
> 6Sj 

 
, all producers 

get the same accepted quantity from marginal bids for c E 
(
Sj-1 , Sj-1  + N 6Sj 

)
, 

while competitors' accepted quantity of marginal bids is constant in the interval (
Sj -1  + N 6Sj , Sj 

)
 . Thus 

 
 

si (c) = 
 

j-1  + 
 
-Sj-l 

N  E 
(
Sj-1 , Sj-1  + N 6Sj 

) 
Sj-1  + 6Sj   + c - Sj-1  - N 6Sj if c E 

(
Sj-1  + N 6Sj , Sj 

) 
. 

 

For f.j   = 0 and 6Si 

 

< 6Sj 

 

, all producers  get  the  same  accepted  quantity  of 
marginal bids for c E 

(
Sj-1 , Sj-1  + N 6Sj 

)
,  while supplier i's accepted quantity 

from marginal bids is constant in the interval 
(
Sj    1 

N 6Si , S . Thus 

    
Si

 
 
-Sj-l 

- + j j 
)
 

( i ) 
si (c) = j-1  + N  if c E Sj-1 , Sj-1  + N 6Sj 

j if c E 
(
Sj-1  + N 6Sj , Sj 

) 
.
 

Si i 
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j 1 j 

i i 

j j 

j 

j j 

i i 

j 1 j j 

j j 

j 

j 

  
Si

 
- j-1 j  j 

)
 

i i 

j 

  
Si

 
j 

Si j 

j 1 j 

l 1 

 
- 

j 

- 

 
The statement follows from differentiation of the above expressions with respect 
to Si - and Si . 

 
 
Lemma 9 If f.j  = oo and competitors have identical supply functions, Sj , then 

 

0  if 6Sj  > 6Sj and c E 
(
Sj 

 

-1 , Sj-1 + 6Sj  - 6Sj 
) 

fJsi (c) 
I  N  -1 

N
 if 6Si  > 6Sj

 and c E 
(
Sj

 
1 + 6Si  - 6Sj

 , Sj 
) 

fJSi = 
I 

0  if 6Si  < 6Sj and c E 
(
S  j-1 , Sj-1 + (N - 1) 

(
6Sj - 6Si 

))
 

N  if 6Sj  < 6Sj   and c E 
(
Sj-1  + (N - 1) 

(
6Sj   - 6Sj 

) 
, Sj 

)
 

N -1 i i 
 

and 
 
 
0  if 6Sj  > 6Sj 

 

 

and c E 
(
Sj 

 
 
-1 , Sj-1 

 

 

+ 6Sj  - 6Sj 
) 

fJsi (c)
 I 

0  if 6Si  > 6S
 

and c E 
(
Sj

 
1 + 6Si  - 6S

 
, Sj 

) )  
j  j

 -  j  j
 

 

fJSi - 
= 1   if 6Si  < 6S I and c E 

(
S  j-1 , Sj-1 + (N - 1) 

(
6Sj - 6Si 

))
 

0  if 6Si  < 6Sj and c E 
(
Sj -1  + (N - 1) 

(
6Sj - 6Si ) , Sj 

) 
. 

 

Proof. It follows  from (2) that  for f.j   = oo and 6Si 
 

> 6Sj 

 

marginal bids 
are only accepted from supplier i, as long as its unmet supply at Pj , Si - si (c), is 
larger than for each other supplier.  Thus 

 

j-1  + c - Sj-1 if c E 

 
(
Sj    1 , S  + 6Si  - 6S 

si (c) = Sj 
Sj  - 6Sj   + 

-l -!:1Sj 

N 
!:1Sj if c E 

(
Sj -1  + 6Sj  - 6Sj , Sj 

) 
. 

 

If instead f.j   = oo and 6Si 
 

< 6Sj 
 

, then marginal bids  are  only accepted from 
competitors of supplier i, as long as each competitor's unmet supply at Pj , Sj   - 
s  (c), is larger than for supplier i. 

 

j-1 if c E 
(
Sj-1 , Sj-1  + (N - 1) 

(
6Sj   - 6Si 

)) 
si (c) =  

j-1  + 
-Sj-l -(N -1)(!:1Sj -!:1Sj ) 

N  if c E 
(
Sj-1  + (N - 1) 

(
6Sj   - 6Si ) , Sj 

) 
. 

 

The statement follows from differentiation of the above expressions with respect 
to Si - and Si . 

We are now able to establish the Nash equilibria stated in the main text. 
Proof. (Proposition 1) It follows from (6) and Lemma 2 that the first-order 

 

solution of Si  increases when f.2 decreases and that Si  increases when f.1 increases. 
Thus, competitiveness is maximized when f.1  = oo and f.2  = 0. (8) - (10) follows 

from Lemma 2. 
In the next step, we want to prove that the first-order solution in (8) constitutes 

an NE. It follows  from Lemma  6, Lemma  8 and Lemma  9 in Appendix  that  if 
(N -1)    (P2 - ) f.1 = oo and f.2 = 0, and competitors have an identical supply, S1 = 

then: 
N !:1P2  

, 
 

BE(1r  )  i
 

BSl 
= -6P2 S1 g 

N     (P1 - c) g        
(
6S1  - 6S1  + 6S1 , 6S1  - (N - 1) 

(
6S1  - 6S1 

))
 

+ N -1 i 
+ N               (
N 6S2 , N 6S2 
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1 1 

1 

) 
(P2 - c) g
 i 

(20)
 N -1 

 

= -6P2 Si g 
i 

+ (N - 1) (P1 - c) g        
(
S1 , Si 

) 
+ (  1 

) 
(P2 - c) g. 
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1 

2 1 

1  !:1P  (N    1)(P  ) 

1 

2 

1 

1 

Si 1 1 

1 

1 

2 - 

 

We note that BE(1r  )  is piece-wise linear in Si  with a break point at Si  = S , where 
 

BE(1r  ) 
BSl 1  1  1 

BE(1r  )  (  )  
i
 

BSl 
= 0. Moreover, BSl 

= (N - 1) ki  - S1 (P2 - c) g 2: 0 for S1 = 0 and it 
follows from (6) that  BE(1r  ) 

BSl 
= -6P2 kig + (N - 1) (P1 - c) gS1 

2 
S 0 for Si = ki. 

Hence, we can conclude that  B  E(1r  ) S 0. Thus, Si = S1
 is the best response to 

 
(N -1)    (P2 - )

 
B(Sl ) 

S1 = N !:1P2  
, which verifies that (8) constitutes a Nash equilibrium if f.1 = oo 

and f.2 = 0. 
In the next step, we want to prove that the first-order solution in (9) constitutes 

an NE. It follows from Lemma 6 and Lemma 8 in Appendix that if f.1  = f.2  = 0, 
and competitors have an identical supply, S  =  (N -1)(P2 - )  , then: 

2  - 2 - 
 

BE(1r  )  i
 

BSl 
= -6P2 S1 g 

+ (N - 1)  ax 
(
0, 6S1  - 6Si 

) 
(P1 - c) g 

+ (N - 1) 
(
6Si , 6S2 

6P2 Si g
 
) 

(P2 - c) g  

(21) 
= - 1 

+ (N - 1)  ax 
(
0, S1 - Si ) (P1 - c) g 

+ (  1 
) 

(P2 - c) g. 
 

We have  BE(1r  ) 
BSl 

= (N - 1) S1 (P1 - c) g + (N - 1) 
(
ki  - S1 

) 
(P2 - c) g 2: 0 for 

1  = 0 and BE(1r  ) 
BSl 

= -6P2 kig  S 0 for Si   = ki. BE(1r  ) 
BSl 

is piece-wise linear in Si 

with  a break  point  at  Si 

B2 E(1r  )
 

= S1 , where  BE(1r  ) 
BSl 

= 0, so we can now conclude  that 
(N -1)(P2 - )

 
 

B(Sl ) 2     S 0.  Thus  Si = S1 is  the  best  response  to  S1 = !:1P2     (N -1)(P2 - ) , which 

verifies that (9) constitutes a Nash equilibrium for f.1 = f.2 = 0. 
It follows from Holmberg et al. (2013) that (10) constitutes a Nash equilibrium. 

Finally, the following argument shows that supplier i's loss associated with the 
quantity effect at P2 dominates the loss associated with the quantity effect at P1 

for pro rata on the margin rationing.  It follows from Assumption 1 and (6) that 
 

(N - 1) (P2 - c) ki
 

6Si  (P1 - c) = Si  (P1 - c) = (P1 - c) 1  1 
 

= 
(N - 1) (P1 - c) 

(N + 1) 6P2 

(N + 1) 6P2 
 
(P2 - c) ki 

6P2 S 
(N + 1) 6P2 

 
(P2 - 

 
c) ki 

(N + 1) 6P2 - (N - 1) (P2 - c) 
(P S  

(N + 1) 6P2 

 
c) ki 

= 
(
ki  - Si ) (P2 - c) = 6Si  (P2 - c) , 1  2 

 
when Si  = (N -1)    (P2 - )

 
1  (N    1)!:1P2  

. 



26  

j 

j 1 j 

j N 

(Sj - ) 

+ i 

j 1 

j 

j 

j 

!:1P 

j 

- 

 

6.3  A.3 Approximate first-order condition for multiple price 
levels 

 

The following lemma is useful when we want to analyse the convergence properties 
of the first-order condition as the number of steps per supply function increases. 

 
 Lemma 10  We can make the  followin statements  for the  first-order  condition 
in Corollary 2 when Pj  - Ci 

(
Si ) > 0 and f.j  > 0 for all price levels 

 
1  The dieerence Si - Si  is of the order 6Pj    1 

 

2  The discrete first-order condition in Corollary 2 can be appro  imated by 
 

fJE (1i) 
 

i (N - 1) 
 

i f.j 6Sj 6Sj    1  
\ 

 

fJSi 
= -6Pj    1 Sj g (Sj ) + Pj  - Ci (Sj ) g (Sj )  

(f.j 
+ 

+ 1)  (f.j    1 

 

+ 1) 
(22) 

+    
(
(6Pj    1 )2 ) 

(23) 
 

 
Proof. The sum 

 
 

I = (N -1) 

 
Sj 

j 
[Pj  - C (si (c))}   1 - 

 
 
g (c) dc 

N  i 
Sj-l 

Sj+l 

(!:1Sj )  j  
(24) 

(N -1) 
N (!:1Sj+l )  j+l 

Sj 

[Pj    1 - C (si (c))} (Sj    1 - c) j+l g (c) dc 

 
must be of the order 6Pj    1 , otherwise the first-order condition in Corollary 2 in 
Appendix cannot be satisfied for small 6Pj    1 . Supply schedules are symmetric and 
non-decreasing.  Moreover, Pj    1 - Ci 

(
Si

 
) 
> 0, f.j  > 0, N 2: 2, and g (c) > 0, so 

it follows that we must have: 
 

Sj 

(N - 1)  Pj  - Ci (Si ) g 
 
 
(Sj 

 

- c) j 
\ 

I 2:  

N 
Sj-l 

1 
(6Sj ) j

 
dc 2: 0.  (25) 

 

We have that I is of the order 6Pj    1 and 6Sj  2: 6Si  2: 0, so the above inequality 
implies that 6Sj and 6Si  must both be of the order 6Pj    1 or, equivalently, of the 
order 6Pj , as r =  !:1Pj 

j+l 
is bounded. 

In the  next  step,  we want  to  derive  the  Taylor  expansions  of the  first-order 
conditions.  Using Taylor expansions and the above result, the first-order condition 
in Corollary 2 can be written: 

 
BE(1r  )  i

 
 
 

Sj 

+ (N -1) 

BSj 
= -6Pj    1 Sj g (Sj ) 

 

Pj  - C (Si )+    (6Pj )  1 - (Sj - ) 

 
 
 
[g (Sj ) +   (6Pj )} dc 

N 
 

Sj+l 

i j 
Sj-l 

(!:1Sj )  j 
 

j+l 

+ (N -1) Pj    1 - C (Si )+    (6Pj    1 )  Sj+l - [g (Sj    1 ) +    (6Pj    1 )} dc 
N  i  j  1 

Sj 
!:1Sj+l 
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j 

1 

j 

j N 

6S j 

+ 

6S j 

 
Hence,  as 6Sj and 6Si  are of the order 6Pj    1 : 

 
BE(1r  )  i

 
 
 

+ (N -1) 

BSj 
= -6Pj    1 Sj g (Sj ) 

Sj 
i 

 
 
(Sj - )  j 

N  Pj  - Ci (Sj ) g (Sj )  
Sj-l 

1 - 
 
Sj+l 

(!:1Sj )  j dc  
(26) 

+ (N -1) i
 (Sj+l - )  j+l 

N  Pj    1 - Ci (Sj    1 ) g (Sj    1 ) 
Sj 

+ 
(
(6Pj    1 )

2 ) . 

(!:1Sj+l )  j+l dc 

 

It can be shown that 
 

Sj (Sj - )  j - 
 

dc = j !:1Sj 
Sj-l (!:1Sj )  j (  j  1) 
Sj+l   (Sj+l - )  j+l !:1Sj+l

 

Sj (!:1Sj+l )  j+l dc = (  j+l  1) . 
 

Using  these  results  and that  6Sj and 6Si are  of the  order  6Pj    1 , the  Taylor 
expansion in (26) can be simplified to: 

 
fJE (1i) 

 

i (N - 1) 
 

i f.j 6Sj 6Sj    1  
\ 

 

fJSi 
= -6Pj    1 Sj g (Sj ) + Pj  - Ci (Sj ) g (Sj )  

(f.j 
+ 

+ 1)  (f.j    1 

 

+ 1) 
+ 

(
(6Pj    1 )2 ) .  (27) 

 
 

We are now able to prove the following consistency statement in the main text. 
Proof.  (Lemma 3) We  use the  Taylor approximation  in Lemma  10 to  ap- 

proximate the difference equation in Lemma 1: 
 

-6Pj    1 Si g (Sj )+
(
Pj  - C

 (Si )) g (Sj )
 (N - 1) 6Sj    1 

+ 
f.j 6Sj + 

(
(6Pj    1 )2 ) = 0. j i  j N  f.j    1 + 1 f.j  + 1 

 

We have assumed that g is bounded away from zero.  Thus 
 

-6Pj    1 Si  + 
(
Pj  - C

 (Si )) (N - 1) 6Sj    1 
+ 

f.j 6Sj + 
(
(6Pj    1 )2 ) = 0. j i  j N  f.j    1 + 1 f.j  + 1  

(28) 
Symmetry implies that 

 

-6Pj    1 Si  + 
(
Pj  - C

 

 
 
(
Si )) (N - 1) 

 
 

i 
j 1    + 

 
 
f.j 6Si 

+ 

 
 
(
(6Pj    1 )2 ) 

 
 
 
= 0. j i  j 

 
Thus 

f.j    1 + 1 
 
 
 

!:1Sj+l 

j+l  1 

f.j  + 1 
 
 
 
j !:1Sj 
j  1 

-Si  + 
(
Pj  - C (Si )) (N - 1) + (6Pj    1 ) = 0, j i  j 

 
so with 6Pj  = r6Pj    1 

6Pj    1 
 
 
 

i 
j 1 

 
 
 
 

f.j r6Si \ 
-Si +

(
Pj  - C (Si )) (N - 1) + + (6Pj    1 ) = 0. j i  j (f.j    1 + 1) 6Pj    1 (f.j  + 1) 6Pj 
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6S j 

S 

j 

 
Hence,  

 
 

1 
 
  1   

 
 
 
 
    j r 

 

 
 

i 
j 1 

(f.j    1 + 1) 6Pj    1
 

 
 

f.j r6Si \ 
+ 

(f.j  + 1) 6Pj
 

(  j+l  1)  + (  j  1) 

i 

= j 
  1    j r  ( 

 
 
 
( 

i 
)) 

 
 
 
+ (6Pj    1 ) . 

(  j+l  1)  + (  j  1)  (N - 1) Pj  - Ci    Sj 
 
If Si  are replaced by samples of the continuous supply function qi (p) at price Pj , 
then  the  left-hand  side  becomes an estimate  of qi (Pj ) and the  right-hand  side 
converges to: 

qi (Pj ) 
(N - 1)    1    + j r 

 
 
(Pj  - Ci  (qi (Pj ))) (  j+l  1) (  j  1) 

 

when qi (Pj ) is bounded. Thus, the first-order condition in Lemma 1 is consistent 
with the ordinary differential equation in (11) when Pj > Ci (qi (Pj )) and f.j  > 0. 
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