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Abstract

A test for time-varying correlation is developed within the frame-
work of a dynamic conditional score (DCS) model for both Gaussian
and Student t-distributions. The test may be interpreted as a La-
grange multiplier test and modi�ed to allow for the estimation of mod-
els for time-varying volatility in the individual series. Unlike standard
moment-based tests, the score-based test statistic includes information
on the level of correlation under the null hypothesis and local power
arguments indicate the bene�ts of doing so. A simulation study shows
that the performance of the score-based test is strong relative to exist-
ing tests across a range of data generating processes. An application
to the Hong Kong and South Korean equity markets shows that the
new test reveals changes in correlation that are not detected by the
standard moment-based test.
KEYWORDS: Dynamic conditional score, EGARCH, Lagrange

multiplier test, Portmanteau test, Time-varying covariance matrices.
JEL classi�cation: C14, C22, F36

1 Introduction

The possibility that the correlations between �nancial assets are changing
over time is an important issue in many areas of �nance, such as portfolio
construction and risk management; see Lumsdaine (2009) for a recent dis-
cussion. The aim here is to provide a test for time-varying correlation that is
powerful, yet simple to implement. The proposed approach is based on the
dynamic conditional score (DCS) models recently developed by Creal et al
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(2011, 2013) and Harvey (2013). It is shown that Lagrange multiplier (LM)
tests can be constructed from the autocorrelations of the conditional scores,
with a modi�ed test taking account of estimated dynamic variances. Without
this modi�cation the test is based on a simple portmanteau statistic. The
scores incorporate information on the level of correlation, and local power
arguments indicate that the resulting test can be expected to be more pow-
erful as the level of correlation under the null hypothesis moves away from
zero. This is not the case with the standard moment-based portmanteau
test, introduced by Bollerslev (1990), which simply uses the cross-product of
standardised residuals.
The tests are developed for a bivariate Gaussian model, with a subsequent

extension to the bivariate Student t-distribution. Monte Carlo experiments
are used to compare the performance of these tests with existing tests, includ-
ing those of Tse (2000, 2002) and Bera and Kim (2002). The results show
that, on the whole, the proposed tests perform much better than existing
tests across a range of data generating processes. Although the competing
tests, which include portmanteau tests, residual regression tests and Lagrange
multiplier tests, are based on a variety of approaches, they generally rely on
the cross-product of standardised residuals to identify potential time vari-
ation and so share the same weakness relative to the scores. This point is
highlighted by an application to the Hong Kong and South Korean equity
markets, where it is found that the score-based tests can identify changing
correlations that are undetectable by a moment-based test.
The paper is organised as follows. Section 2 reviews the bivariate DCS

model for time-varying correlation and Section 3 shows how the new tests
can be derived as LM tests within this framework. Section 4 presents the
Monte Carlo results while Section 5 reports the application.

2 The DCS Model for Time-Varying Corre-
lation

Consider a bivariate Gaussian model, with zero means and constant vari-
ances, in which the covariance matrix is

�tpt�1 =

�
�21 �tjt�1�1�2
�tjt�1�1�2 �22

�
;
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where �tjt�1 denotes the (changing) correlation, based on information at time
t � 1: Rather than working directly with �tjt�1; a transformation is applied
so as to keep it in the range, �1 < �tjt�1 < 1. The link function

�tjt�1 =
exp(2
tjt�1)� 1
exp(2
tjt�1) + 1

; t = 2; :::; T; (1)

is eminently suitable in that it allows the new variable, 
tjt�1; to be uncon-
strained. The inverse is the arctanh transformation.
The log-density of the t � th observation, conditional on information at

time t� 1; is

ln f(yt; ; �1; �2) = � ln 2� � �1 � �2 �
1

2
ln(1� �2tjt�1)

� 1

2(1� �2tjt�1)

�
y1t

2

exp(2�1)
� 2�y1ty2t
exp(�1 + �2)

+
y2t

2

exp(2�2)

�
;

where  denotes the parameters upon which �tjt�1; and hence 
tjt�1; depend.
The score with respect to 
tjt�1, that is @ ln ft=@
tjt�1; can be written in
terms of �tjt�1 as

ut =
1

4
(x1t + x2t)

2
1� �tjt�1
1 + �tjt�1

� 1
4
(x1t � x2t)2

1 + �tjt�1
1� �tjt�1

+ �tjt�1; (2)

where xit = yit exp(��i); i = 1; 2; see Harvey (2013, ch 7). We can also write

ut =
1

1� �2tjt�1

�
(1 + �2tjt�1)x1tx2t � �tjt�1(x21t + x22t)

�
+ �tjt�1:

The score reduces to x1tx2t when �tjt�1 = 
tjt�1 = 0; but more generally the
term involving squared observations makes important modi�cations captur-
ing information on the level of correlation.
The �rst-order dynamic equation for correlation is


t+1jt = (1� �)! + �
tjt�1 + �ut; t = 1; :::; T; (3)

with 
1j0 = !; where ut is the score. It is convenient to specify the stan-
dard deviations using an exponential link function. The covariance matrix
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is therefore �tpt�1 = DRtpt�1D; where the diagonal matrix D has elements
exp(�1) and exp(�2) and

Rtpt�1 =

�
1 �tjt�1

�tjt�1 1

�
: (4)

When scale (standard deviation in a Gaussian model) is time varying, the
dynamic equations will be assumed to take a similar form to that for 
tjt�1;
namely

�i;t+1jt = !i(1� �i) + �i�i;tjt�1 + �iuit; i = 1; 2; (5)

with �i;1j0 = 0; i = 1; 2:The exponential link function ensures that the vari-
ances remain positive.
The information matrix for �1; �2 and 
 in the static model depends only

on 
: In terms of � it is

I

0@ �1
�2



1A =

264 2��2
1��2

��2
1��2 ��

��2
1��2

2��2
1��2 ��

�� �� 1 + �2

375 : (6)

Remark 1 If the score vector for �1; �2 and 
 is pre-multiplied by the inverse
of the information matrix, as is often the practice in formulating DCS models,
the modi�ed score for 
tjt�1 becomes

ut =
1

8
(x1t + x2t)

2
1� �tjt�1
1 + �tjt�1

� 1
8
(x1t � x2t)2

1 + �tjt�1
1� �tjt�1

+
1

2
x1tx2t (7)

=
1

1� �2tjt�1

h
x1tx2t �

�tjt�1
2
(x21t + x

2
2t)
i
:

In this case, the variance of ut is unity in all time periods and so the con-
dition j�j < 1 ensures that 
t+1jt is covariance stationary. As regards the
volatility equations, (5), the u0its are the same as they would be in a uni-
variate model (apart from a factor of 1/2). In other words the score-driven
approach suggests that the volatility for each series is driven solely by its own
movements.

The model may be generalized so that the joint distribution is multivariate
Student�s t, as in Creal et al (2011).
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3 Testing

The model of the previous section provides a framework for testing for time
varying correlation. Under the null hypothesis of constant correlation in a
Gaussian model with constant variances, the score for 
 is

ut =
1

4
(x1t + x2t)

21� r
1 + r

� 1
4
(x1t � x2t)2

1 + r

1� r + r; (8)

where r is the sample correlation and the x0its are standardized observations,
that is xit = yit=si; i = 1; 2; where s2i is the sample variance. The portman-
teau statistic is

Qu(P ) = T
PX
j=1

r2u(j); (9)

where ru(j) is the j�th sample autocorrelation of ut: The Ljung-Box statistic

Q�u(P ) = T (T + 2)
PX
j=1

(T � j)�1r2u(j);

may also be used; the asymptotic distribution of both statistics under the null
hypothesis is �2P : When r = 0 the Qu(P ) statistic reduces to the moment-
based portmanteau test of Bollerslev (1990), because ut = x1tx2t.
For a bivariate t-distribution with degrees of freedom �, the scores in (8)

can be amended by modifying the observations so that they enter as

x�it = xit

r
� + 2

�

1

wt
; i = 1; 2; t = 1; :::; T; (10)

where
wt = 1 +

1

�(1� r2)
�
x1t

2 � 2rx1tx2t + x2t2
�

and �1; �2 and � are jointly estimated by maximum likelihood (ML).
When changing volatility is estimated, the residuals are rede�ned as xit =

yit=e�it; i�1; 2; where the e�0its is obtained from an EGARCH volatility model.
An extra term must be then added to Qu(P ) to give the LM test statistic.
The �rst sub-section below derives the LM test. The second sub-section

uses a local power argument to demonstrate the value of using the scores
to capture information on the level of correlation. This is then followed by
a discussion of the choice of P and the use of an information criterion to
determine a suitable value. The test of Nyblom (1989), which is also based
on the scores of (8), is given in the last sub-section.
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3.1 Lagrange multiplier tests

The portmanteau test may be derived as an LM test of the null hypothesis
that �0 = �1 = :::: = �P�1 = 0, against the alternative �i 6= 0; i = 0; :::; P�1;
in the dynamic model


tpt�1 = ! + �0ut�1 + :::+ �P�1ut�P ; t = 1; :::; T: (11)

Let � = (!; �1; �2)
0 denote �xed parameters other than those in � =

(�0; ::; �P�1)
0: The LM test statistic is

LMu(P ) =
1
T

�
@ lnL=@�0 00

� �I�� I��
I�� I��

��1 �
@ lnL=@�

0

�
; (12)

where I�� denotes the information matrix for � for a single observation and
so on. For the t-th observation

@ ln ft
@�

=
@ ln ft
@
tpt�1

@
tpt�1
@�

= ut
@
tpt�1
@�

and so I�� is

E

�
@ ln ft
@�

@ ln ft
@�0

�
�=0

= EEt�1

�
@ ln ft
@
tpt�1

@
tpt�1
@�

@ ln ft
@
tpt�1

@
tpt�1
@�0

�
= E

"
Et�1

"�
@ ln ft
@
tpt�1

�2# @
tpt�1
@�

@
tpt�1
@�0

#

= E

"�
@ ln ft
@


�2#
E

�
@
tpt�1
@�

@
tpt�1
@�0

�
= �2uE

�
@
tpt�1
@�

@
tpt�1
@�0

�
:

Under the null hypothesis, the conditional expectation of the squared score
is �xed and hence equal to the information quantity in the static model, this
is �2u; the variance of the scores.
We have

@
tpt�1
@�j

=
PX
i=1

�i�1
@ut�i
@�j

+ ut�j�1; j = 0; :::; P � 1;
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but under the null hypothesis � = 0; so @
tpt�1=@� = ut�1;where ut�1 =
(ut�1; ut�2;:::; ut�P )

0: Hence

E

�
@
tpt�1
@�

@
tpt�1
@�0

�
= �2uIP ;

where IP is a P � P identity matrix, and so I�� = �4uIP : Furthermore

E

�
@ ln ft
@�

@ ln ft
@�0

�
�=0

= EEt�1

�
@ ln ft
@�

@ ln ft
@
tpt�1

@
tpt�1
@�0

�
= E

�
@ ln ft
@�

@ ln ft
@


�
E

�
@
tpt�1
@�0

�
= 0:

Note that because ! appears directly in the dynamic equation,

@ ln ft
@!

=
@ ln ft
@
tpt�1

@
tpt�1
@!

= ut:1

under the null hypothesis. Thus I�� = 0 and so

LMu(P ) =
1

T

@ lnL

@�0
I�1��

@ lnL

@�
: (13)

On substituting for I�� and noting that

@ lnL

@�j
=
X @ ln ft

@
tpt�1

@
tpt�1
@�j

=
X

utut�1�j; j = 0; 1; :::; P � 1;

the Qu(P ) statistic, (9), is obtained.

Remark 2 Although the form of the link function is important for estima-
tion, it does not a¤ect the LM statistic in (9).

The above derivation is as Harvey (2013, sub-section 2.5.1), but stated
more generally, and it applies to any time-varying parameter in a DCS model
when the other parameters are �xed1. Now suppose some of the other pa-
rameters, denoted �; are time-varying, with dynamics depending on a set of
parameters  , but not depending on 
tpt�1: In the present context this means
that each volatility comes from a univariate model; see the Remark at the end

1Calvori et al (2014) also propose tests based on conditional scores but develop the
methods in a di¤erent direction.
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of Section 2. Suppose, for simplicity, that the only other constant parameter
is !: Then � = ( 0; !)0: Assuming identi�ability under the null hypothesis,
the formula for a partitioned inverse means that the LM statistic, (12), can
be written

LMu(P ) =
1

T

@ lnL

@�0
I�1��

@ lnL

@�
+
1

T

@ lnL

@�0

h
I�1��I��

�
I�� � I��I�1��I0��

��1
I0��I

�1
��

i @ lnL
@�

;

where the second term on the right hand side is positive semi-de�nite2 re-
sulting in a modi�ed LM statistic that cannot be less than the LM statistic
with �xed �; which is the portmanteau statistic of (13). Hence the Qu(P )
test is more conservative than the LM test because Qu(P ) � LMu(P ):
The second term in the LM statistic acts as a correction for the estimation

of  and it can be shown to be equivalent to the result by Pierce (1982),
which has been used in the GARCH literature to correct speci�cation tests
based on estimated residuals; see, for example, Bera and Zuo (1996) and Tse
(2002). We have I�� = [I0� ; I

0
�!]

0 = [I0� ; 0
0]0 because I!� = 0; see above

(13). Following on from Pierce (1982),

E

�
@ ln ft
@ 

@ ln ft
@�0

�
�=0

= E

�
@2 ln ft
@ @�0

�
�=0

= E

�
@

@ 

�
@ ln ft
@


@


@�0

��
= E

�
@(utu

0
t�1)

@ 

�
= E

�
@ut
@ 
ut�1 + ut

@u0t�1
@ 

�
= E

�
@ut
@ 
ut�1

�
+ E

�
Et�1

�
ut
@u0t�1
@ 

��
= E

�
@ut
@ 
ut�1

�
= E

�
@2 ln ft
@ @


ut�1

�
:

Once the model has been estimated under the null hypothesis, the above
expression can be approximated numerically.
Suppose that I�
 does not depend on �: This is the situation here when

EGARCH models are used; see (6). Consider one of the elements, �i; in �:

2This follows from that fact that under identi�ability, the full information matrix in (12)
will be positive de�nite. It then follows that the sub matrix I�1�� and its Schur complement�
I�� � I��I�1��I0��

��1
will also be positive de�nite; see Abadir and Magnus(2005, p 228).
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Dropping the subscript on �i, we have

I � = E

�
@ ln ft
@ 

@ ln ft
@�0

�
�=0

= EEt�1

�
@ ln ft
@�tpt�1

@�tpt�1
@ 

@ ln ft
@
tpt�1

@
tpt�1
@�0

�
= E

�
Et�1

�
@ ln ft
@�tpt�1

@ ln ft
@
tpt�1

�
@�tpt�1
@ 

@
tpt�1
@�0

�
= E

�
@ ln ft
@�

@ ln ft
@


�
E

�
@�tpt�1
@ 

@
tpt�1
@�0

�
= ��E

�
@�tpt�1
@ 

@
tpt�1
@�0

�
:

The elements in E
h
@�tpt�1
@ 

@
tpt�1
@�0

i
will also depend on � because of the corre-

lation between the (contemporaneous) scores. Thus I � 6= 0; unless � = 0:
When � = 0 the LM statistic reverts to the original portmanteau statistic,

Qu(P ), and this, in turn, is the same as the moment-based portmanteau
statistic, Qx(P ):

3.2 Local Power for P=1

Consider the Gaussian DCS model 
t+1jt = !+�ut:We are interested in the
power of the proposed score test for the null hypothesis H0 : � = �0 = 0,
against local alternatives of the form � = �=

p
T . The asymptotic distrib-

ution of the test statistic, Qu(1); is then �21(I(�0)�
2), a non-central �2 with

noncentrality parameter I(�0)�
2; see Godfrey (1988, p 18). Because I(�0) is

the element of the information matrix for �0 = 0, we have I(�0) = (1 + �2)
2.

(Estimation of the variances, �21 and �
2
2; makes no di¤erence; see sub-section

3.1). Thus for a given value of �; the local power increases as j�j ! 1: This
property will be apparent in the Monte Carlo results. By contrast, the power
of the moment-based test does not increase with j�j :

3.3 Choice of P

Although the portmanteau test is derived against a moving average alterna-
tive, a stationary �rst-order model of the form, (3), is a more likely candidate
for a dynamic model. In this case, it can be shown that the LM test is the
portmanteau test with P = 1; see, for instance, Lee (1991): However, when
the process driving 
t+1jt is very persistent, that is � is close to one, the power
may be increased by setting P to a relatively high value, perhaps selected by
a criterion such as P =

p
T : An alternative way forward is to select P using
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a consistent information criterion, as in Escanciano and Lobato (2009); see
appendix. Under the alternative, such a model selection procedure should
select an increasing number of lags as � goes to unity. Under the null
hypothesis, only the �rst lag is selected in large samples with probability
one. As a result, the asymptotic distribution under the null hypothesis is
�21. Simulation results (not reported here) indicated that this last approach
was the best option and so it was adopted for all tests based on portman-
teau statistics. Such test statistics will be denoted simply as Qu rather than
Qu(P ): The LM statistics are similarly denoted as LMu(P ) and LMu and
the moment-based test statistics as Qx(P ) and Qx:

3.4 Nyblom test

Nyblom (1989) gives a general test for parameter constancy against a random
walk alternative based on the LM principle. In the present context, the
statistic ends up being based on the same scores as in the portmanteau test.
It can be written

N =
1

T 2�2u

TX
j=1

 
TX
k=j

uk

!2
:

Under the null hypothesis of parameter constancy, the statistic follows a
Cramer-von Mises distribution with a 5% critical value of 0.462. The same
critical value can be used when the scores are constructed from dynamic
volatility estimates. Although the Nyblom test is usually regarded as a test
against a random walk alternative, it can also be interpreted a test against a
very persistent, but stationary, alternative, as in Harvey and Streibel (1998).

4 Monte Carlo experiments

To evaluate the performance of the proposed testing procedure, a simulation
study was conducted on a number of models. The results are con�ned to ver-
sions of the tests in which the number of lags is determined by an information
criterion, as in sub-section 3.3. The Ljung-Box form of the portmanteau sta-
tistic was used and volatilities were estimated from univariate GARCH or
EGARCH models3.

3EGARCH models were always used for the DCS test, whereas GARCH models were
used for the other tests when the true model was not the DCS; the exception is the Tse
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Several tests from the existing literature were also considered. These are
as follows.
i) The moment-based portmanteau test, as in Bollerslev (1990), based on

autocorrelations constructed from the cross-product of standardized (volatil-
ity corrected) residuals. As with the score-based tests, the value of P is
selected by an information criterion and so the test statistic is denoted as
Qx: (Since we are using the Box-Ljung form throughout this should actually
be Q�x to be consistent with the original notation. However, it is neater to
drop the star). The results for a version of the test that corrects for volatility
estimation are omitted as they are very close to those of the Qx test.
ii) A residual regression test, RR, proposed by Tse (2002), in which x1x2�

� is regressed on P lags. He also provides a correction based on Pierce (1982)
to allow for the estimation of volatility. The third test considered is the LM
test of Tse (2000) based on an alternative model �t = c + byit�1yjt�1, with
the score vector calculated using a set of recursive equations. Estimation
of the volatility models was based on MLEs for the bivariate time series
and all corrected statistics used numerical derivatives. The results for the
residual regression test are based on a lag length of two in accordance with
Tse (2002)4.
iii) The test of Bera and Kim (2002), denoted BK, gets around the need

to assume a functional form for the time-varying correlations by focussing on
behaviour local to the constant parameter case. They use Taylor approxima-
tions based on the variance of the errors driving the time varying parameters
being small. The test statistic is again constructed from standardized resid-
uals, xit, i = 1; 2; and is given by

BK =

hPT
t=1(�

2
1t�

2
2t � 1� 2�̂2)

i2
4T (1 + 4�̂2 + �̂4)

;

where �1t = (x1t � �̂x2t)=(
p
1� �̂2) and �2t = (x2t � �̂x1t)=(

p
1� �̂2):

The simulation study consists of three models with a bivariate normal
conditional distribution, and one with a t-distribution. The sample sizes

test where GARCH was used in all cases.
4All test statistics requiring a choice of lag length were also considered with �xed lag

lenths of 2, 10 and 20 in a series of preliminary simulations. The relative performance of
the various tests was similar for all lag lengths. Hence, only the preferred lag length is
presented.
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were T = 500 and 1000 with 5; 000 replications used in power comparisons
and 10; 000 in size comparisons.

4.1 DCS model

The DCS model has dynamic equations for the correlation and volatility as in
(3) and (5). The three parameters in the equation for correlation were varied
across the sets ! = [0; 0:9], � = [0:6; 0:99] and � = [0:01; 0:1]; whereas the
parameters governing the EGARCH volatility dynamics were �xed at !i = 0,
�i = 0:95 and �i = 0:2, i = 1; 2:

5 Only one parameter was changed at a time,
with the base set of parameters given by ! = 0:4, � = 0:9 and � = 0:05.
Note that ! = 0:4 and 0:8 correspond to � = 0:38 and 0:66 respectively.

4.1.1 Size of tests

From the results in Table 1, the LMu test appears to be slightly oversized in
�nite samples as does the Qu test, though to lesser extent (because Qu cannot
be greater than LMu): This size distortion, which is due to the use of the
information criterion to choose P; declines as the sample size increases and
becomes negligible for T = 1000. The estimated rejection probabilities of the
N test increase as the correlation increases, whereas those of the moment-
based portmanteau test decrease.

Table 1: Estimated size (�100) of tests for a DCS model with
EGARCH volatility.

Test
!(�) LMu Qu N Qx BK Tse cRR
0 7.08 6.40 4.60 6.50 5.52 6.03 5.18

T = 500 0.4 (0.38) 7.04 6.35 5.48 6.27 5.68 6.21 5.18
0.8 (0.66) 7.35 6.64 7.33 5.95 6.02 6.73 5.86

0 5.94 5.67 4.58 5.9 5.22 5.45 4.70
T = 1000 0.4 6.16 5.90 5.24 5.86 5.26 5.54 5.21

0.8 5.70 5.29 5.95 5.27 6.05 6.66 5.38
Note: LMu is score-based LM test, Qu is score-based portmanteau test, N is
Nyblom test, Qx is moment-based (Bollerslev) test, BK is Bera and Kim test,

Tse is Tse test, cRR is (corrected) residual regression test.

5The values for � are relatively large but lower values give similar results.
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4.1.2 Power comparisons

Table 2 shows powers, or, more precisely, estimated probabilities of rejection.
The salient feature is the increasing extent to which the score-based tests
dominate the moment-based tests as ! increases. A clearer impression of
the relative performance of the tests comes from Figure 1 which shows the
estimated powers for the Qu; LMu; N and Qx tests for T = 500 as the
parameter ! (governing the unconditional level of correlation) increases from
zero to 0.8. We �nd that the new score-based tests and the Nyblom test
outperform the competition across virtually the entire range of !. The power
of the score-based tests increases as the unconditional level of the correlation
rises, as indicated by the local power results of sub-section 3.2, whereas the
power of the moment-based test does not; in fact it shows a slight fall. When
T = 500, the Qu and LMu tests outperform the Nyblom test for ! above
0:5, but when T = 1000 the break-even value falls to 0.3, as shown in Figure
2. The rejection probabilities with the conservative Qu test are only slightly
smaller than those for the LMu test when T = 1000:

Table 2: Powers of Tests for DCS Model with Di¤erent Levels of
Correlation

Test
! � � LMu Qu N Qx BK Tse cRR
0 0.9 0.05 12.4 11.4 18.8 11.6 6.6 7.6 10.5

T = 500 0.4 0.9 0.05 21.0 18.5 21.6 10.0 7.0 9.2 9.8
0.8 0.9 0.05 37.8 34.5 30.4 7.5 11.6 11.7 8.4
0 0.9 0.05 16.5 15.4 19.7 15.3 6.9 7.7 18.3

T = 1000 0.4 0.9 0.05 28.5 26.9 22.7 10.7 9.1 8.8 13.6
0.8 0.9 0.05 55.3 53.2 31.4 6.6 17.3 13.0 8.6

Figures 3 and 4 show the power of the tests as the parameter � is varied
across the set (0.01, 0.1) with sample sizes T = 500 and T = 1000 respec-
tively. Once again the score-based tests, including the Nyblom test, out-
perform the others across almost the entire range examined. It seems that
the Nyblom test has greater power against smaller deviations from the null.
However as before, the range of values over which the score-based portman-
teau test matches or improves upon the Nyblom test increases as the sample
size reaches T = 1000. Once again the di¤erence between the Qu and LMu

tests is small throughout.
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Figure 1: Power Comparison across ! with � = 0:9, � = 0:05, T = 500.
LMu is DCS-LM test, Qu is score-based portmanteau test, Qx is moment-based
portmanteau test and N is Nyblom test.
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Figure 2: Power Comparison across ! with � = 0:9, � = 0:05, T = 1000.
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Figure 3: Power Comparison across � with � = 0:9, ! = 0:05, T = 500.
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Figure 4: Power Comparison across � with � = 0:9, ! = 0:05, T = 1000.
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Figure 5: Power Comparison across � with � = 0:05, ! = 0:05, T = 500.

Figures 5 and 6 show the power of the tests as the parameter � is varied
across the set (0.6, 0.99) with sample sizes T = 500 and T = 1000 respectively.
Once again, the score-based tests, including the Nyblom test, perform best
overall with the gap increasing with �: When T = 500; the Qu and LMu

tests are beaten by the Nyblom test for � > 0:9; but the break-even value of
� rises to around 0:95 when T = 1000; compare similar �ndings in Harvey
and Streibel (1998).
Rejection probabilities for the BK, Tse and cRR tests are little better,

and sometimes worse, than those for the Qx test. Results are available on
request.
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Figure 6: Power Comparison across � with � = 0:05, ! = 0:05, T = 1000.
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4.2 Stochastic Correlation

In the second model the correlation to be driven by an unobserved compo-
nents Gaussian autoregressive process,


t = !(1� �) + �
t�1 + ��t; �t � NID(0; 1); (14)

in which the correlations were again constrained to lie in the range (�1; 1)
by using a transformation of the form (1). We set values for ! = f0; 0:4g,
� = f0:8; 0:95g and � = f0:1; 0:15; 0:2g, but the time-varying volatility is as
in the DCS model.

Table 3 shows the estimated rejection probabilities for various values of
the parameters !, � and � at sample sizes of 500 and 1000. The �ndings from
the previous sub-section generally carry over to this setting. Contrasting the
�rst three rows (! = 0) with the last three rows (! = 0:4) of both Panel
A and Panel B shows that the powers of the score-based tests increase with
the level of correlation, !, whereas that of the Qx test deteriorates, as do the
powers of the Tse and cRR tests. The one exception is the BK test which for
this particular model, but not for the others, does rather well. The Qu and
LMu tests dominate the Nyblom test, even for T = 500; this was not the case
for the DCS model as reported in table 2. Finally, the relative performance
of the score-based tests improves as � increases from 0.8 to 0.95, which is
consistent with Figures 5 and 6.

Table 3: Power Comparison for Stochastic Correlation Model

20



Panel A: T = 500
! � � LMu Qu N Qx BK Tse cRR
0 0.8 0.2 33.2 31.7 20.2 32.0 47.4 24.7 29.2
0 0.95 0.1 42.5 40.7 48.0 39.6 40.3 27.5 35.9
0 0.95 0.15 80.5 79.4 70.6 77.3 79.2 60.2 75.1
0.4 0.8 0.2 39.9 37.8 22.9 20.7 59.2 24.2 20.0
0.4 0.95 0.1 50.7 48.1 52.5 26.4 50.9 27.2 24.9
0.4 0.95 0.15 84.9 83.2 74.3 61.5 87.0 56.0 59.7
Panel B: T = 1000
! � � LMu Qu N Qx BK Tse cRR
0 0.8 0.2 54.7 53.8 19.6 54.4 72.8 38.6 55.0
0 0.95 0.1 68.2 67.0 51.3 66.3 65.4 43.8 65.9
0 0.95 0.15 97.8 97.6 75.6 97.4 97.4 82.4 97.3
0.4 0.8 0.2 62.2 61.3 23.3 34.5 85.3 34.3 35.2
0.4 0.95 0.1 76.7 75.1 56.1 44.3 78.2 40.0 44.6
0.4 0.95 0.15 98.7 98.5 79.5 88.3 98.9 76.5 88.2

4.3 Diagonal Vech-GARCH Model

Because the new tests are derived within the framework of a DCS model
for changing correlation, it could be argued that the results of sub-section
4.1 and, to a lesser extent, those of sub-section 4.2, are weighted in favor
of them. We therefore consider a third model in which the dynamics are
moment-based. In this diagonal vech GARCH model the covariances are
generated by a dynamic equation which is similar in form to that of the
equations for variance. Thus

�12t = � + ��12t�1 + �y1t�1y2t�1; t = 2; :::; T;

�2it = �i + �i�
2
it�1 + �iy

2
it�1; i = 1; 2:

Table 4 shows the rejection probabilities with � = 0:8 and � = 0:05,
that is a persistence of 0:85; together with �i = 0:05, �i = 0:8 and �i = 0:15,
i = 1; 2: Generally speaking, the �ndings from the DCS simulations carry
over to this setting. In particular, the powers of the score-based tests increase
with an increase in the unconditional level of correlation, driven by �, whereas
the power of the moment-based Qx test deteriorates, as do the powers of the
other tests based on the product of standardised residuals. Other results, not
reported here, con�rm that, as expected, power increases as � gets bigger.
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Table 4: Power Comparison for Vech GARCH Model
Parameter Test

� � � LMu Qu N Qx BK Tse cRR
T = 500 0.02 0.8 0.05 21.5 20.4 14.3 15.5 5.5 15.3 14.0

0.05 0.8 0.05 35.9 34.1 27.0 8.1 10.3 9.0 7.6
T = 1000 0.02 0.8 0.05 34.3 33.5 15.9 26.1 6.2 23.0 25.8

0.05 0.8 0.05 55.9 54.8 29.1 10.0 13.2 9.7 10.0

4.4 Bivariate t-distribution

The above simulations are for Gaussian models and, as such, demonstrate
the advantages of using the scores for a changing correlation test. However,
the conditional distributions of �nancial asset returns are often heavy-tailed
and a t-distribution is usually a better option. For modeling volatility, the
DCS approach leads to an EGARCH model in which the dynamics of the
logarithm of scale, �; are driven by

ut =
(� + 1)(yt � �)2

� exp(2�tpt�1) + (yt � �)2
� 1; � > 0: (16)

Because ut is a linear function of a beta distribution at the true parameter
values, the model is known as Beta-t-EGARCH; see Harvey (2013, ch 4). The
fact that the score function is bounded has the practical e¤ect of moderating
the in�uence of outliers.
Rather than carrying out a full LM test for a bivariate t-distribution, the

scores in (8) are amended by modifying the observations as in (10), where the
standardized observations are obtained by �tting univariate Beta-t-EGARCH
models. The scores with respect to correlation are then constructed by esti-
mating the correlation and degrees of freedom in a bivariate t model. Table 5
compares the performance of the resulting portmanteau test, denoted Qu(t);
with that of the Gaussian test portmanteau test studied in the previous sub-
sections. The simulations estimate size with 10,000 replications and power
with 5,000. Volatility was generated from Beta-t-EGARCH models with
� = 8 and parameters !i = 0, �i = 0:95 and �i = 0:1, for i = 1; 2. The �rst
two rows of the table show the size of the tests for two levels of correlation.
Both tests are slightly oversized, though reasonably close to the nominal 5%
level, with the discrepancy decreasing when T rises to 1000. The di¤erence
between the Gaussian and t-based tests is much more evident when consid-
ering power: the rejection probabilities for Qu(t) are much higher.
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Table 5: Size and Power for a Student t-distribition
T = 500 T = 1000

! � � Qu Qu(t) Qu Qu(t)
0 1 0 6.2 6.3 5.1 5.9
0.4 1 0 7.1 6.2 6.4 5.9
0 0.8 0.05 19.6 31.4 32.6 53.8
0 0.8 0.1 66.2 89.6 92.1 99.7
0 0.95 0.05 37.7 57.4 64.4 87.9
0 0.95 0.1 88.9 98.6 98.9 100
0.4 0.8 0.05 25.2 33.3 38.1 56.5
0.4 0.8 0.1 67.3 89.4 89.6 99.7
0.4 0.95 0.05 46.9 61.7 70.6 89.9
0.4 0.95 0.1 89.7 98.9 98.7 100

5 Application: Hong Kong and South Korea
Stock Indices

To demonstrate the e¤ectiveness of the proposed test statistics, we exam-
ine the stability of the correlation between daily local currency returns of
the Hong Kong (Hang Seng) and South Korean (SET) stock indices from
2/1/1984 to 27/11/2007. Because of the length of the series (T = 6237) and
the occurrence of several major events in this time frame6, we also consider a
shorter window between 1/1/2004 and 27/11/2007 (T = 1019): this provides
a tougher challenge for detecting changing correlation7.
Table 6 presents the results for score and moment-based tests constructed

using volatility-corrected residuals. For the full sample there is strong evi-
dence for time varying correlation. The prob-values for all score-based tests
are essentially zero. The moment-based test is slightly less conclusive in that
it fails to reject at the 1% level of signi�cance. The higher values of the
score-based tests are consistent with the local power and Monte Carlo re-
sults because the unconditional correlation over the full sample is 0:24. The

6This data was modeled in Harvey (2010) by means of a time varying copula. As
noted there, the sample includes i) Black Monday, October 19th, 1987; ii) the speculative
attack on the Hong Kong dollar on 20th October 20th, 1997; and iii) the High Technology
Crash of October 2nd, 2000.

7Data including the recent �nancial crisis are not considered due to the likelihood that
contagion would lead to sharp changes in the correlation structure that would be easy for
all tests to identify.
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LMu statistic is much larger than Qu, although the latter is still very big
in absolute terms. More signi�cant is the much larger value of the Qu(t)
statistic, which presumably stems from the fact that the estimated degrees
of freedom is 4:7.

Table 6: Tests against Changing Correlation for Hong Kong and
South Korean Stock Markets

Sample LMu Qu Qu(t) Qx N
2/1/84 - 27/11/07 341.53 285.13 552.81 6.39 34.57

(0) (0) (0) (1.21) (<0.1)
1/1/04 - 27/11/07 4.25 4.13 4.64 0.56 1.14

(3.93) (4.20) (3.12) (45.4) (< 1:0)
Note: P-values are in parentheses. For the N test these are based values

tabulated in Nyblom (1989).

The results for the shorter sub-sample show an even more striking di¤er-
ence between the score and moment-based tests. Whereas the moment-based
test fails to reject the null hypothesis of constant correlation at any reason-
able signi�cance level, suggesting a period of stability during 2004-2007, the
score-based tests demonstrate their higher power by rejecting at the 5% level
of signi�cance. This discrepancy is once again explained by the uncondi-
tional correlation, which is now 0:61. As before the biggest score-based test
statistic is Qu(t); the degrees of freedom is now 5:99.
Figure 7 plots the time-varying correlation over the full sample when

estimated with a bivariate t DCS model. Considerable short run variation
is evident throughout, but there is a clear increase in the level, starting in
the late 1990s. In the sub-sample after 2004, there is considerable movement
in the correlation, which ranges from 0.50 to 0.85. Nevertheless, only the
score-based tests are able to detect these changes.

6 Conclusion

The proposed test for time-varying correlation is relatively simple. First
standardize the two series by dividing by the scale given by �tting univariate
volatility models, preferably Beta-t-EGARCH, to each series. Then construct
the scores with respect to correlation by estimating the correlation and de-
grees of freedom in a bivariate t model. The simple portmanteau statistic,

24



1984 1988 1992 1996 2000 2004
­0.2

­0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 7: Time Varying Correlation for Hong Kong and Korean Stock Market
Indices - 2/1/1984 to 27/11/2007.
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in the Ljung-Box form, is constructed with the number of lags chosen by an
information criterion.
The simulation results show that there is little to be gained by making

the correction demanded by the full LM test. Indeed, the LM test is more
oversized than the portmanteau test when the number of lags is selected
by an information criterion. The Nyblom test is a good option when the
changes in correlation are thought to be very persistent. What is very clear
from the simulations is that tests based only on cross-products of residuals
are almost always dominated by the score-based tests, with the di¤erence
in power increasing as the underlying correlation moves away from zero and
often being very considerable.
Further development of tests developed from DCS models, for example

tests against time variation in copulas, seems to be a fruitful avenue for future
research.
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APPENDIX: Data-driven Q-test

The lag length, P; is selected by the criterion proposed by Escanciano
and Lobato (2009), namely

P = minfp : 1 � P � d : LP � Lh; h = 1; 2; :::dg;

where
Q = Q(P )� �(p; T; q);

d is a �xed upper bound, and �(p; T; q) is a penalty term that takes the form

�(p; T; q) =

8<: p log T if max
1�j�d

p
T je�jj � p

q log T

2p; if max
1�j�d

p
T je�jj > p

q log T
;
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where q is some �xed positive number. Escanciano and Lobato (2009) suggest
setting q = 2:4: Their simulation evidence suggests that the choice of d is not
crucial. Here we set d = 20.
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