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Abstract

Modern economies rely heavily on their infrastructure networks. These

networks face threats ranging from natural disasters to human attacks. As

networks are pervasive, the investments needed to protect them are very large;

this motivates the study of targeted defence. What are the ‘key’ nodes to

defend to maximize functionality of the network? What are the incentives of

individual nodes to protect themselves in a networked environment and how do

these incentives correspond to collective welfare?

We first provide a characterization of optimal attack and defence in terms

of two classical concepts in graph theory – separators and transversals. This

characterization permits a systematic study of the intensity of conflict (the

resources spent on attack and defence) and helps us identify a new class of

networks, windmill graphs, that minimize conflict.

We then study security choices by individual nodes. Our analysis identifies

the externalites and shows that the welfare costs of decentralized defence in

networks can be very large.
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1 Introduction

“Our nation’s critical infrastructure is crucial to the functioning of the

American economy... (It) is increasingly connected and interdependent

and protecting it and enhancing its resilience is an economic and national

security imperative” Department of Homeland Security (2012).

Infrastructure networks – highways, aviation, shipping, pipelines, train systems,

and posts – are a vital part of the modern economy. These networks face a variety

of threats ranging from natural disasters to human attacks. The latter may take

a violent form (guerrilla attacks, attacks by an enemy country, and terrorism) or a

non-violent form (as in political protest that blocks transport services).1 A network

can be made robust to such threats through additional investments in equipment and

in personnel. As networks are pervasive, the investments needed could be very large;

this motivates the study of targeted defence. What are the ‘key’ parts of the network

that should be protected to ensure maximal functionality? As defence is often a choice

made by individual actors, we also wish to understand the relation between network

structure and decentralized incentives. This paper develops a model to study these

questions.

Consider a given infrastructure network consisting of nodes and links. The de-

signer chooses to protect ‘nodes’ of the network against damage/attacks; protecting

a node is costly. Protection include investments in security personnel, in training,

in equipment and in cybersecurity. These protection measures typically take time to

implement and so we focus on ex-ante investments in protection. We suppose that

a defended node is immune to attack whereas an undefended node is eliminated by

attack (along with all its links). The initial network, the defence and the attack to-

gether yield a set of surviving nodes and links – the residual network. The defender

chooses a defence strategy that maximizes the value of the residual network net of

the costs of defence.

Our model covers two scenarios. The first is that of an intelligent adversary who

seeks to damage components and disrupt the flows in the network. The second is

that of a natural threat: facing such a threat the defender focuses on the worst

case scenario. In both cases the defender looks for the ‘maximin’ solution. For

1For an introduction to network based conflict, see Arquilla and Ronfeldt (2001) and Zhu and

Levinson (2011); for news coverage of the effects of natural disasters and human attacks on infras-

tructure networks, see Eun (2010), Kliesen (1995), India Today (2011) and Luft (2005).
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expositional simplicity, we use the language of an intelligent adversary throughout.

We study a game between a defender and an adversary and analyze the sub-game

perfect equilibrium of this game.

We consider network payoff functions in which the value to the designer of a

network is component additive, and the payoff from each component is increasing

and convex in the size of the component.2 The convexity of value in component size

is key to the appeal of connectivity in networks.

We begin with a study of optimal defence. Proposition 2, characterizes optimal

defence and attack. Optimal attack targets two types of nodes: those that fragment

the network into distinct components (the separators), and those that simply reduce

the size of components (the reducing attacks). Anticipating this attack, optimal

defence targets nodes that block the separators and reducing attacks. A set of nodes

that block a collection of separators is referred to as a transversal. We prove that

optimal defence either targets a minimal transversal or protects all nodes. Figure 3

illustrates these concepts.3

This characterization result allows us to study the relation between networks and

conflict more closely. We find that the size of defence and attack are both non-

monotonic in the cost of attack; even more surprisingly, the size of defence and the

payoff of the defender may fall with the addition of links in the network (Proposition

3).

We then turn to the intensity of conflict : this is the sum of expenditures of defence

and attack. For given conflict technology, we define minimal intensity of conflict and

then describe networks that sustain it (Proposition 4). We then demonstrate that

network architecture can create very large variations in the intensity of conflict. A

feature of minimal conflict is that there is a single active player. We next discuss

circumstances where both players devote resources to conflict in equilibrium.

An important insight of the analysis is the idea of strategic exposure: the defender

may find it optimal to leave unprotected a ‘key’ node (the elimination of which dis-

2This specification is consistent with Metcalfe’s Law (network value is proportional to the square

of number of nodes) and Reed’s Law (network value is exponentially increasing in number of nodes).

It is also in line with the large theoretical literature on network externalities (Katz and Shapiro

(1985), Farrell and Saloner (1986)) and network economics (Bala and Goyal (2000), Jackson and

Wolinsky (1996)). One way of defining network value is the number of connected node pairs. This

is a special case of our value function.
3Appendix C provides a detailed application of the concepts to well known families of networks

(trees, core-periphery, interlinked stars).
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connects the network) and instead protects a alternative larger set of nodes. We refer

to this as the ‘queen sacrifice’. This leads us to identify a class of networks – windmill

graphs – that minimize conflict and are also attractive for the defender. Figure 6

below presents these networks.

In many situations, security decisions are made at the local level, e.g., individual

airports choose their own security checks. This motivates the study of decentralized

security.4 Individual nodes care about surviving an attack and about being part

of large connected components. Observe, that to block a ‘separator’ it is sufficient

for one node in the separator to protect itself. So, in the game among the nodes,

defence choices within a separator are strategic substitutes. But for the network

to remain connected all separators must be blocked. So a node will protect itself

only if other separators are being blocked: thus defence choices also exhibit strategic

complementarity. We show that decentralized security choices is characterized by

separators and transversals (Proposition 5). We establish that a combination of

incentive and coordination issues can lead to very large costs of decentralization.

Our paper contributes to the economic study of networks. The research on net-

works has been concerned with the formation, structure and functioning of social and

economic networks (Goyal (2007), Jackson (2008) and Vega-Redondo (2007)). The

problem of ‘key players’ has traditionally been studied in terms of Bonacich central-

ity, betweenness, eigenvector, and degree centrality, see e.g., Bala and Goyal (2000),

Ballester et al. (2006), Choi et al. (2013), DeMarzo et al. (2003), Elliot and Golub

(2013), Galeotti et al. (2010), Golub and Jackson (2010). Our paper suggests that for

the problem of attack and defence the ‘key players’ are nodes that lie in separators

and transversals. These nodes are typically distinct from nodes that maximize famil-

iar notions of centrality. Appendix B discusses this distinction in detail. Thus the

principal contribution of our paper is to introduce two classical concepts from graph

theory into economics and show how they address a problem of practical importance.

Individual defence is a public good, and so this conceptual contribution is also

relevant for the study of games on network more generally. Bramoullé and Kranton

(2007) draw attention to maximal independent sets. By contrast, our work brings

out the role of minimal transversal of the separators. This set is generally different

from maximal independent sets.5

4For an early contribution on inter-dependent security, see Kunreuther and Heal (2004).
5For example, in core-periphery network, core nodes are the minimal separators, while the max-

imal independent set can include at most one core node and must include peripheral nodes.
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Our paper also contributes to the literature on network defence, see e.g., Bier

et al. (2006), Baccara and Bar-Isaac (2008), Acemoglu et al. (2013),Dziubiński and

Goyal (2013), Goyal and Vigier (2014) Clark and Konrad (2007) and Kovenock and

Roberson (2012). To the best of our knowledge, our results on the role of separators

and transversals in network conflict are novel, relative to the existing body of work.

In particular, we note that the earlier work by Dziubiński and Goyal (2013) and Goyal

and Vigier (2014) focuses on optimal design and defence. In these papers, the optimal

network takes on a very simple form – it is a star – and so the optimal defence takes

on a correspondingly simple structure – protect the central hub node. By contrast,

in the present paper the network is exogenous and arbitrary: this is a much broader

problem and requires new conceptual tools.

In passing it must be noted that the problem of network defence has traditionally

been studied in operations research, electrical engineering and computer science; see

e.g., Alpcan and Başar (2011), Aspnes et al. (2006), Smith (2008) and Grötschel

et al. (1995). In an early paper, Cunningham (1985) looks at the problem of network

design and defence with conflict on links. Relative to this literature, the novelty of

our paper lies in the study of intensity of conflict and the externalities that arise in

decentralized defence.

The rest of the paper is organized as follows. Section 2 presents the model of

defence and attack. Section 3 introduces the main concepts and provides a character-

ization of equilibrium defence and attack. It also contains the study of comparative

statics, active conflict and conflict intensity. Section 4 takes up the case of decentral-

ized defence. Section 5 concludes. All proofs are presented in the Appendix A.

2 The model

We start with a given network. We consider a two-player sequential move game with

a defender and an adversary. In the first stage, the defender chooses an allocation

of defence resources. In the second stage, given a defended network, the adversary

chooses the nodes to attack. Successfully attacked nodes (and their links) are removed

from the network, yielding a residual network. The goal of the defender is to maximize

the value of the residual network, while the goal of the adversary is to minimize this

value.6

6The sequential move game formulation appears to be appropriate for the large scale and time

consuming protection investments discussed in the introduction. This two stage model with observ-
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Let N = {1, . . . , n}, with n ≥ 3, be a finite set of nodes. A link is a two element

subset of N . The set of all possible links over P ⊆ N is gP = {ij : i, j ∈ P, i 6= j}
(where ij is an abbreviation for {i, j}). A network is a set of links. Given the set of

nodes P ⊆ N , G(P ) = 2gP is the set of all networks over P . The set G =
⋃

P⊆N G(P )

is the set of all networks that can be formed over any subset of nodes from N . Every

network g ∈ G has a value Φ(g), associated with it: Φ : G → R is called a value

function.

The set of nodes X ⊆ N chosen by the adversary is called an attack. The set

X = ∅ is called the empty attack. A defence is a set of nodes ∆ ⊆ N ; node i ∈ N
is defended under ∆ if and only if i ∈ ∆. We assume that the defence is perfect:

a protected node cannot be removed by an attack, while any attacked unprotected

node is removed with certainty. Given a defence ∆ and an attack X, a set Y = X \∆

will be removed from the network. Removing a set of nodes Y ⊆ N from a network

creates a residual network g − Y = {ij ∈ g : i, j ∈ N \ Y }.
Defence resources are costly: the cost of defending a node is cD > 0. Given

network g, defender’s payoff from strategy ∆ ⊆ N , when faced with adversary’s

strategy X ⊆ N , is

ΠD(∆, X; g, cD) = Φ(g − (X \∆))− cD|∆|. (1)

Attack resources are costly: the cost of attacking a node is given by cA > 0. Given

defended network (g,∆), payoff to the adversary from strategy X ⊆ N is

ΠA(∆, X; g, cA) = −Φ(g − (X \∆))− cA|X|. (2)

We study the (sub-game perfect) equilibria of this game.

Remarks on model: We have assumed sequential moves; this is mainly for expo-

sition. It is possible to show that our main results on characterization of conflict in

terms of certain properties of the graph carries over with simultaneous moves. Perfect

defence is a more substantial assumption. Smoother models of conflict such as the

Tullock contest function would lead to modifications in parts of the main characteri-

zation results below. Appendix D discusses these points in greater detail.

A component is a minimal and non-empty set of nodes C ⊆ N such that any two

distinct nodes i, j ∈ C are connected. Two nodes i and j are connected in network g if

ability of first stage actions is consistent with the approach in the large literature on security and

networks, see e.g., Tambe (2011) and Alpcan and Başar (2011).
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there is a sequence of nodes i0, . . . , im such that i = i0, j = im and for all 0 < k ≤ m,

ik−1ik ∈ g. The set of components of g is denoted by C(g).

We assume that Φ is component additive. Given a network g,

Φ(g) =
∑

C∈C(g)

f(|C|), (3)

where f satisfies the following assumption:

Assumption 1. f : R+ → R+ is strictly increasing, strictly convex, and f(0) = 0.

Since the game is finite and sequential, standard result guarantees existence of

(subgame perfect) equilibria. These equilibria are usually not unique, but generically,

equilibrium outcomes are equivalent with respect to player’s payoffs, sizes of defence

and attack, and the value of residual network. This is the content of the following

result.

Proposition 1. For any network g and costs cD and cA, there exists a sub-game

perfect equilibrium. For generic values of cA and cD and generic f the equilibrium

attack and defence size and the payoffs of the players are unique.

3 The analysis

This section develops our main results for the two person game between the defender

and the adversary. Optimal attacks focus on nodes that fragment the network (the

separators), while optimal defence targets a set of nodes that block these separators,

(the transversal). The interest then moves on to the relation between network ar-

chitecture and the intensity of conflict (the sum of resources allocated to attack and

defence) and the prospects of active conflict (when the adversary eliminates some

nodes while the defender protects others).

We begin with a study of a simple example that helps illustrate a number of

interesting phenomena.

Example 1. Defence and Attack on the Star

Consider the star network with n = 4 and {a} as central node (as in Figure 1).

The value function is f(x) = x2.

7



Figure 1: Star network (n = 4)

As is standard, we solve the game by working backward. For every defended net-

work (g,∆) we characterize the optimal response of the adversary. We then compare

the payoffs to the defender from different profiles, (g,∆), and compute the optimal

defence strategy. Equilibrium outcomes are summarized in Figure 2.
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Figure 2: Equilibrium outcomes: star network (n = 4) and f(x) = x2.
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A number of points are worth noting.

1. Observe that removing node a disconnects the network; this node is a separator.

Moreover, there is a threshold level of cost of attack (7) such that the adversary

either attacks a or does not attack at all when cA > 7. Protecting this node is

also central to network defence.

2. The intensity of conflict exhibits rich patterns: when cost of attack is very large

there is no threat to the network and no need for defence. If the cost of attack

is small, intensity of conflict hinges on the level of defence costs. When they are

low all nodes are protected and there is no attack (the costs of conflict are ncD),

if they are high then there is no defence but all nodes are eliminated (the costs

of conflict are ncA). For intermediate cost of attack and defence, both defence

and attack are seen in equilibrium.

3. The size of the defence may be non-monotonic in the cost of attack. Fix the cost

of defence at cD = 3.5. At a low cost of attack (cA < 1) the defender protects

all nodes, in the range cA ∈ (1, 5) he protects 0 nodes, in the range cA ∈ (5, 13)

he protects {a}, and then in the range cA > 13, he stops all protection activity.

Similarly, the size of the attack strategy may be non-monotonic in the cost of

attack.

�

The starting point of the general analysis is the nature of optimal attack. Given

the convexity in the value function of networks, disconnecting a network is especially

damaging. A set X ⊆ N is a separator if |C(g)| < |C(g − X)|. In other words, a

separator is a set of nodes removing which strictly increases the number of components

in the network. A network will normally possess multiple separators and the adversary

should target the most effective ones. A separator S ⊆ N is essential for network

g ∈ G(N), if for every separator S ′ ( S, |C(g − S)| > |C(g − S ′)|. The set of all

essential separators of a network g is denoted by E(g). Figure 3 illustrates essential

separators and their transversal in an example. We provide a detailed discussion of

essential separators and their transversals in well known families of networks (trees,

core-periphery, interlinked stars) in Appendix C.

The second element is the level of costs. As illustrated by Example 1, the network

defence problem can be divided into two parts, depending on the cost of attack. Given

x ∈ N, ∆f(x) = f(x + 1) − f(x) is the marginal gain to a node in the value of a
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Figure 3: (a) network g, (b) essential separators, (c) minimum transversal of essential

separators.

component of size x. Under Assumption 1, ∆f(x) is strictly increasing. It is useful

to separate two levels of costs: one, high costs with cA > ∆f(n − 1), and two, low

costs with cA < ∆f(n− 1).

We start with the case of high cost as it brings out some of the main general

insights in a straightforward way. Facing a high cost, the adversary must disconnect

the network, i.e., choose a separator or not attack the network at all. Clearly, the

adversary would never use an essential separator that yields a lower payoff than the

empty attack. Given cost of attack cA and network g, the set of individually rational

separators is E(g, cA) = {X ∈ E(g) : Φ(g)− Φ(g −X) ≥ cA|X|}.
When cost of attack is low, it may be profitable for the adversary to use attacks

that merely remove nodes from the network, without disconnecting it. A set R ⊆ N

is a reducing attack for a network g, if there is no X ⊆ R such that X is a separator

for g. The set of all reducing attacks for a given network g is denoted by R(g).

The following lemma characterizes all the possible attacks of the adversary in

terms of essential separators and reducing attacks. In addition, it provides character-

ization of the attacks that are best responses in the adversary’s sub-game.

Lemma 1. Fix a connected network g. Let ∆ ⊆ N be a defence selected by the

defender in the first stage. Any attack X ⊆ N can be decomposed into two disjoint

sets: a set E and a reminder set R such that

1. E is either empty or E ∈ E(g).

2. R is a reducing attack for g − E.

Moreover, if X is a best response to ∆, then E is either empty or E ∈ E(g, cA).
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We now turn to equilibrium strategies of the designer. Again, it is instructive

to start with the setting where cost of attack is high. An optimal strategy of the

defender should block a subset of individually rational essential separators in the

most economical way. Given a family of sets of nodes, H, and a set of nodes M ,

D(M,H) = {X ∈ H : X ∩M 6= ∅} are the sets in H that are blocked (or covered)

by M . Given a family of sets F ⊆ H, the set M is called a transversal of F , if

D(M,H) = F . The set of all transversals of F is denoted by T (F). Elements of

T (F) with the smallest size are called minimum transversals of F . Let τ(F) denote

the transversal number of F , i.e., the size of a minimum transversal of F . Figure 3

illustrates essential separators and their transversal in a simple network. We provide

more examples and discussion of essential separators and their transversals in some

well known families of networks (trees, core-periphery, interlinked stars) in Appendix

C.

We are now ready to state our first main result on optimal defence and attack.

Proposition 2. Consider a connected network g ∈ G(N). Let (∆∗, X∗) be an equi-

librium.

1. If cA < ∆f(n− 1) then

• ∆∗ = N or ∆∗ is a minimal transversal of D(∆∗, E(g, cA)).

• X∗(∆) = E∪R, where E ∈ E(g, cA) and R ∈ R(g−E), with X∗(∆)∩∆ =

∅.

2. If cA > ∆f(n− 1) then

• |∆∗| ≤ τ(E(g, cA)) and ∆∗ is a minimum transversal of D(∆∗, E(g, cA)).

• X∗(∆) = ∅, if ∆ ∈ T (E(g, cA)); X∗(∆) ∈ E(g, cA) with X∗(∆) ∩∆ = ∅,

otherwise.

Optimal defence is characterized in terms of minimal transversal of the appropriate

hypergraph of separators (or defence covers all nodes). If cost of attack is such that

elimination of single nodes is not worthwhile, optimal attack is bounded above by the

transversal number of the graph. Optimal attack is either empty or targets essential

separators. If cost of attack justifies elimination of single nodes optimal defence can

range from a minimal transversal to covering all nodes. Optimal attack is constituted

of nodes that comprise reducing attacks and essential separators. A general feature of
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optimal defence is that it may be larger than the smallest possible transversal (even

when it does not cover all nodes).

We now briefly describe the arguments underlying the proof. By Lemma 1, we

know that any attack may be decomposed into two disjoint parts comprising an

essential separator and a reducing attack.

In the range of costs covered by part 2, the adversary will not use reducing attacks.

So, an optimal attack must be either empty or it must be an individually rational

essential separator. Next consider the optimal defence strategy, ∆∗. Clearly, ∆∗

cannot be larger than the size of the minimum transversal of E(g, cA), as that would

be wasteful for the defender. If |∆∗| = τ(E(g, cA)), then ∆∗ must be a minimum

transversal of E(g, cA); choosing a defence other than a minimum transversal would

simply lower payoffs. If |∆∗| < τ(E(g, cA)), then ∆∗ is a minimum transversal of

D(∆∗, E(g, cA)).

We turn next to part 1 of Proposition 2. The proof proceeds by showing that a

defence exceeding a minimal transversal (of covered essential separators) must include

some node that is being protected purely to prevent it from removal. Hence the role

of such a defence is to ensure the size of the component. This must mean that, in the

absence of defence, the node would be eliminated in the subsequent optimal attack.

We then exploit convexity of f and linearity of costs of defence and attack to establish

that the adversary must find it optimal to eliminate all other unprotected nodes in

the surviving component. Extrapolating from this, we establish that this must apply

to all essential separators and by convexity then to single nodes in those components

as well. In other words, if the defender finds it optimal to go beyond a minimal

transversal of blocked essential separators, then he must protect all nodes.

We now consider the general comparative statics with respect to the costs and

the network. It is worth noting some patterns in Example 1 above. Figure 2 suggests

that defence size is falling in defence costs and is non-monotonic in attack cost. The

attack size is non-monotonic in both attack cost and defence cost. These patterns are

true more generally. They have payoff implications. The following result summarizes

our analysis.

Proposition 3. The equilibrium comparative statics are as follows.

1. The size of defence and defender’s payoff are both decreasing in the cost of

defence. Defender’s payoff increases in the cost of attack. However, depending

on the costs and the network, the size of defence may increase or decrease when

cost of attack increases.
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2. Depending on the costs and the network, the size of attack and adversary’s

payoff may increase or decrease when cost of attack increases. Adversary’s

payoff increases in the cost of defence. However, depending on the costs and

the network, the size of attack may increase or decrease when cost of defence

increases.

3. Depending on the costs and the network, adding links may increase or decrease

the size of optimal defence as well as defender’s payoff.

We note that the effect of defence cost on size of attack may be non-monotonic.

This is because with higher cost of defence, the defender may uncover some essential

separators which the adversary could switch to. Their size might be smaller or higher

than the size of separators chosen by the adversary under lower cost of defence.

As an example, consider the network g in Figure 4 and suppose that f(x) = x2,

cA ∈ (31, 54), and cD ∈ (108, 121). Under these parameters in every equilibrium the

defender defends node a and the adversary responds with essential separator {b, c}.
When cost of defence rises to 122, equilibrium defence of the defender is ∅ to which

the adversary responds with essential separator {a}. On the other hand, Example 1

illustrates that size of attack might rise when cost of defence is rising (c.f. the case of

cA ∈ (7, 13) in Figure 2). Despite this non-monotonic behavior of equilibrium attack

size, the payoff to the adversary increases when the cost of defence rises. A similar

observation also holds on the effect of attack cost on defence size and on payoffs.

An increase in attack cost has non-monotonic effects on attack size and adversary’s

payoff. This is illustrated by Example 1, e.g. when cost of defence is in the range

(3.25, 4). The reason to these non-monotonicities is as follows. When cost of attack

rises, some of the attacks stop being individually rational. This creates an opportunity

for the defender to reduce defence, possibly on the expense of some value of the

network. This, in turn, allows the adversary to execute attacks which were blocked

when cost of attack was lower. In the example, when cA ∈ (0, 1), it is individually

rational for the adversary to remove any unprotected node. Therefore, with cD ∈
(3.25, 4), the defender defends all the nodes. When cA ∈ (1, 5), it is not individually

rational for the adversary to remove single unprotected nodes. With costs of defence

in (3.25, 4), the defender prefers to leave the network undefended and loose the central

node, saving on cost of defence and loosing some value of the network. Such an attack

is better to the adversary than not removing any node. The size of attack rises from

0 to 1 and the payoff of the adversary rises from −16 to −3− cA ∈ (−9,−4). When
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cA > 7 then size of attack falls back to 0 and payoff to the adversary falls back to

−16.

Figure 4: Network where rise in cost of defence reduces size of attack.

Finally, consider the effects of adding links. A first conjecture would be that

adding links should always be good for the defender, as it creates more routes for

connection and this should make the network easier to defend. The next example

shows that this intuition is false: a denser network may induce a bigger optimal

defence with lower defender payoffs!

Example 2. Adding links may increase defence size and lower defender payoffs

We consider network given in Figure 5. Suppose that payoff from component of

size x is f(x) = x2.

Figure 5: Example 2. (a) Original network. (b) Network with added link.

Assume that the cost of attack, cA ∈ (23, 31), and the cost of defence, cD ∈
(43, 85). The unique equilibrium outcome is ∆∗ = {c}, X∗ = {d}. The equilibrium

payoff to the defender is 101− cD.

Now consider a network g′ = g ∪ {ef}, with a link between the nodes e and f

added. With this additional link, the separator {d} is replaced by separator {d, e}.
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Suppose that cost of defence is cD ∈ (43, 62). Observe that with defence ∆∗ = {c},
there exists an attack {d, e} that is optimal for the adversary and yields only 82− cD

to the defender. Thus the addition of a link, and retaining the same defence, may

actually lower defender’s payoffs.

In the new network, g′, the unique equilibrium outcome is ∆∗ = {d, e} and X∗ =

∅. The equilibrium payoff to the defender is 144 − 2cD < 101 − cD. So, the optimal

defence size increases and the defender’s payoff falls as the network becomes denser.

On the other hand, it is clear that as we keep adding links and arrive at the

complete network, the optimal attack is empty (as cA > 23) and so optimal defence is

also the empty set. Defender’s payoff is 144, which is the maximal attainable. Thus

the effects of adding links are non-monotonic.

�

This non-monotonicity is not an artifact of the specifics of the network and the

costs of attack and defence. It reflects a general feature of conflict in networks. To

see this consider the case of the complete network. The first thought would be that

a network that contains the most connections is the hardest to disrupt and always

leads to the best outcomes for the defender. This is not true. The following example

clarifies this point.

Example 3. Complete network vs core-periphery network

Suppose that n is large and that the cost of attack satisfies f(n− 2)− f(n− 3) <

cA < f(n − 1) − f(n − 2). With this cost of attack, the adversary removes 2 nodes

from complete network over n nodes, 1 node from complete network containing n− 1

nodes, and does not remove any nodes from complete network containing n−2 or less

nodes. Finally, suppose that the cost of defense satisfies (f(n)−f(n−2)−f(1))/n <

cD < (f(n) − f(n − 2))/n. With this cost of defence the defender will protect all

the nodes in a complete network with n nodes, because f(n)− ncD > f(n− 2), (and

we know that in a complete network the defender either protects all or no nodes, in

equilibrium).

Now consider a network with n − 1 nodes in a clique with one node linked to a

single element of the core (let’s call it i). This is a type of core-periphery network. If

such a network is not protected, the adversary will remove node i only, disconnecting

the network into a clique of size n− 2 and a single isolated node. Now, we know that

the defender is either inactive, protects i, or protects all the nodes in equilibrium.

With the above cost of defence the defender is inactive. First note that f(n)−ncD <
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f(n − 2) + f(1) (so protecting everything is worse than being inactive). It can be

checked that protecting i is worse, because in response the adversary would remove

2 nodes from the core of the network.

Thus in the core-periphery network the equilibrium payoff to the defender is f(n−
2) + f(1) > f(n)− ncD; so it is better than the complete network.

�

This example illustrates the attractiveness of queen sacrifice strategy: it is better

to leave i unprotected because there is greater loss in value if it is protected! The

idea of ‘queen sacrifice’ and the sub-optimality of the complete network will resurface

in other contexts below.

3.1 Networks and conflict

This section examines the relation between the network architecture and the nature

of conflict more closely. We define the intensity of conflict as the sum of expenditures

of defence and attack. Our analysis shows that for given costs of conflict, differences

in network structure can lead to very large differences in conflict.

Proposition 1 tells us that the size of equilibrium attack and defence are generically

unique. We start by defining the minimum intensity of conflict for given costs of attack

and defence. Define minimal cost of conflict for given costs and f as follows:

CC(cA, cD, f) = min
g∈G(N)

cD|∆∗(g, cA, cD, f)|+ cA|X∗(g, cA, cD, f)|. (4)

Example 1 illustrates some of the forces at work. Observe that when cost of attack

is very large, cA > 13 = f(n)− (n− 1)f(1), no attack is profitable, and anticipating

this, the defender abstains from defence. The intensity of conflict is 0. This lack of

conflict for large costs of attack is independent of the architecture of the network.

Turning to the lower cost of attack, an inspection of Figure 1 in Example 1 tells us

that the intensity of conflict also depends on the cost of defence. It will be useful to

define a special class of networks, windmill graphs. These graphs are denoted by hmn ,

where n ≥ 2 and m ∈ {1, . . . , n−1}. There is one critical node which, when removed,

disconnects the network. The remaining nodes are partitioned into cliques of size m

and, possibly, one group of smaller size (this implies that there are d(n− 1)/me such

groups). Every member of a clique is connected to the critical node. We now define
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a key cost threshold for defence: this equates the payoff from full defence with the

payoff from an unprotected hmn network.

c(m,n) =
f(n)− bn−1

m
cf(m)− f((n− 1) mod m)

n
(5)

Figure 6 illustrates windmill graphs.

Figure 6: Windmill graphs (hmn ): n = 13, m = 6, 4, 3.

We are now ready to provide a general characterization of minimal conflict levels.

Proposition 4.

1. If cA > f(n) − (n − 1)f(1), then CC(cA, cD, f) = 0. It is attained on any

connected network.

2. If cA ∈ (∆f(n− 1), f(n)− (n− 1)f(1)), then CC(cA, cD, f) = 0. It is attained

on any connected network g with E(g, cA) = 0.

3. If cA ∈ (∆f(m− 1),∆f(m)) with m ∈ {1, . . . , n− 1} and:

• cD > c(m,n), then CC(cA, cD, f) = cA. It is attained on a windmill net-

work, hmn .

• cD < c(m,n) with m ∈ {1, . . . , n − 1}, then CC(cA, cD, f) = ncD. It is

attained on any connected network.

17



In case 2, when cost of attack is high, cA > ∆f(n−1), the minimal costs of conflict

are 0, as it is not profitable for the adversary to attack any network with E(g, cA) = ∅.

Such networks include the complete network, as well as networks which are robust to

nodes removal in the sense that they require large number of nodes to be removed to

get disconnected. More generally, for any integer t ≥ 1, a network is t-connected if

it can be disconnected by removing t nodes and cannot be disconnected by removing

less than t nodes. Any t-connected network with t ≥ (f(n) − nf(1)/(cA − f(1))

has empty E(g, cA). Menger (1927) provides a characterization of such networks: a

network is a least t-connected if and only if any two nodes which are not neighbours

are connected with at least t node independent paths.7 Thus such networks have

many redundant connections between nodes.

The last case with lower attack costs cA < ∆f(n − 1), is much richer. Suppose

that cA ∈ (∆f(m − 1),∆f(m)), where m ∈ {1, . . . , n − 1}. Now it is profitable to

the adversary to attack any undefended node in a component of size greater than m.

Hence, the lower bound on costs of conflict is min(cA, ncD). If the cost of defence is

sufficiently low, cD < c(m,n), then complete defence is better than any other defence

and the minimal cost of conflict is ncD. If cD > c(m,n), then complete defence has

higher cost as compared to the outcome with no defence and one attacked node.

This leads to total cost of conflict of cA. To sustain such an equilibrium, we need a

network that has a separator of size 1 and that all components in the residual network

have size at most m. The windmill graph possesses exactly this characteristic. This

motivates the windmill network: for m ∈ {1, . . . , n − 2}, the windmill network hmn
has such an equilibrium and yields the minimal costs of conflict, cA.

We now turn to the role of networks in shaping the intensity of conflict. Proposi-

tion 4 tells us that network architecture matters only if costs are in cases 2 or 3.

Consider case 2. Proposition 4 tells us that CC(cA, cD, f) = 0 in this range. To see

the impact of network architecture, consider a star network. If cD < f(n)−(n−1)f(1),

then in equilibrium the defender protects the center of the star and costs of conflict

are cD. On the other hand, if cD > f(n)−(n−1)f(1), then in equilibrium the defender

chooses the empty defence, the adversary attacks the center of the star and costs of

conflict are cA. So, when the costs of attack and defence reach their upper bound,

the difference in costs of conflict between the star network and minimal attainable is

f(n)− (n−1)f(1). It is easy to see that this can grow without bound as n gets large.

7Two paths are node independent if the only nodes they have in common are the starting and

the ending node.
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Next consider case 3, with m ∈ {1, . . . , n − 2}. Proposition 4 tells us that the

minimum conflict, attained on network hmn (for example) is cA. Suppose cD ∈
(c(m,n), (f(n) − f(m))/n) and consider a complete network. The unique equi-

librium outcome is full protection and so costs of conflict are ncD. When cost

of defence reaches its upper bound and cost of attack reaches its lower bound,

the difference in costs between this minimum and the complete network reaches

f(n) + f(m − 1) − 2f(m), which is maximal, f(n) − 2f(1), for m = 1. Again,

the network architecture can have very large effects on the intensity of conflict.

Active conflict: In Proposition 4, minimal conflict is associated with a single active

player. An inspection of Figure 2, in Example 1 above, shows us that both players

can be active in equilibrium. This motivates the study of circumstances under which

we should expect to see active conflict. Example 1 draws attention the role of costs:

neither the attack nor the defence costs can be too high. Here we briefly discuss the

role of the network architecture and the network value function.

We start with an observation that draws upon Proposition 2: for active conflict to

arise there must exist an individually rational essential separator. If such a separator

does not exist, then convexity of function f together with linearity of costs implies that

either none or all nodes are defended. In particular, if g is a complete network, then

for all costs and all functions f (satisfying our assumptions), there is no equilibrium

with active conflict.

Are there any other (connected) networks with the same property as complete

networks? If marginal value of f is growing sufficiently fast, then no active conflict

is possible. Let f satisfy the following property, for x ≥ 0:

∆f(x) > xf(x), (6)

where ∆f(x) = f(x+ 1)− f(x).

The property is satisfied by functions f(x) = (x + 1)! − 1 and (x + 1)x − 1, for

example. Marginal value in these functions grows so rapidly, that adding a single

node to a component of size m increases its value more than m times. In effect, the

returns from protecting m < n nodes are smaller than average returns from protecting

additional m− n nodes. Thus if the defender prefers protecting the first m nodes to

no protection, he is even more willing to protect the whole network. Formally, let

Φ∗(m; g, cA) = max
∆⊆N,|∆|≤m

min
X∈BR(∆;g,cA)

Φ(g −X(∆) \∆), (7)
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be a function giving maximum value of the residual network that can be attained

from network g when up to m units of defence are used and cost of attack is cA

(BR(∆; g, cA) denotes the set of best responses of the adversary to ∆, given g and

cA). Suppose that there is an equilibrium, (∆∗, X∗), featuring active conflict. Let

|∆∗| = m, Since there is active conflict, so 1 ≤ m ≤ n − 1 and |X∗(∆∗)| ≥ 1. Since

∆∗ is better than ∅, so cD ≤ (Φ∗(m; g, cA) − Φ∗(0; g, cA))/m ≤ f(n − 1). On the

other hand, since ∆∗ is better than N , so cD ≥ (f(n) − Φ∗(m; g, cA))/(n − m) ≥
(f(n)− f(n− 1))/(n− 1). Combining both the inequalities we get f(n) ≤ nf(n− 1),

which contradicts Equation (6).

4 Decentralized defence

In many applications, security decisions are made at the individual node level. This

section studies decentralized security choices in a network that is under attack. We

begin by showing that the equilibrium choices of nodes and the adversary can be

characterized in terms of transversals and separators of the underlying network. We

then show that the welfare gap between decentralized equilibrium and first best out-

comes is unbounded: interestingly, individual choice may lead to too little and to too

much protection, relative to the choice of a single (centralized) defender.

We consider a two-stage game. In the first stage, each of the nodes in the network

decides whether to protect itself or to stay unprotected. These choices are observed

by the adversary who then chooses the nodes to attack.

Let N = {1, 2, . . . , n}, with n ≥ 3 be the set of players and let Si = {0, 1}
denote the strategy set of node i ∈ N . Here si = 1 means that the node chooses

to defend itself and si = 0 refers to the case of no-defence. These choices are made

simultaneously. There is a one-to-one correspondence between a strategy profile of

the nodes, s ∈ {0, 1}N , and the resulting set of defended nodes ∆ ⊆ N . So we will

use ∆ to refer to the strategy profile of the nodes in the first stage.

In the second stage the adversary observes the defended network (g,∆) and

chooses an attack X ⊆ N , which leads to a residual network g − (X \ ∆). The

payoff to the adversary remains as in the case of the centralized defence and is de-

fined in Equation (2). The payoff to a node depends on whether the node is removed

by the attack or not. A removed node receives payoff 0. Each of the surviving nodes
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receives an equal share of the value if its component in the residual network.

Πi(∆, X; g) =

{
0 if i ∈ X \∆,
f(|C(i)|)
|C(i)| − sicD otherwise,

(8)

where C(i) is the component in the residual network g − (X \∆) containing i.

This completes the description of the decentralized defence game. We study the

sub-game perfect equilibria of this game, restricting attention to those without active

conflict.

Let us solve the game starting from the second stage. As in the two player game,

the adversary chooses either the empty attack or an attack being a combination of

an essential separator and a reducing attack. If cost of attack is low and there is

no active conflict, then either the adversary removes all the nodes, or all nodes are

protected. In any other outcome the adversary must remove at least one node. If

cost of attack is high and there is no active conflict then either none of the nodes

protects or, anticipating the strategy of the adversary, the nodes choose a defence

configuration that blocks all the individually rational essential separators. Therefore,

in equilibrium, they must choose a minimal transversal of E(g, cA). We build on these

observations to provide the following characterization of equilibria with no active

conflict in the decentralized defence game.8

Proposition 5. Consider a connected network g ∈ G(N). Let ∆∗ be the equilibrium

defence.

1. If cD > f(n)
n

, then ∆∗ = ∅ is the unique equilibrium defence.

2. If cD ≤ f(n)
n

, and

(a) cA < f(n)− f(n− 1), then ∆∗ = N is an equilibrium defence.

(b) cA > f(n) − f(n − 1), then any minimal transversal of E(g, cA), is an

equilibrium defence.

The equilibrium strategy of the adversary is as in Proposition 2.

8We concentrate on equilibria with no active conflict, because, on one hand, it allows for pro-

viding a clean characterization and, on the other hand, it provides a sufficiently rich platform for

discussing the sources if inefficiencies when defence decisions are decentralized. All other equilib-

ria in decentralized defence game could be characterized in the same spirit as the characterization

provided in Proposition 2 for the centralized defence game.
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We now turn to discussing inefficiencies that may arise due to decentralized pro-

tection, as well as their sources. We compare the aggregate welfare of the nodes in the

equilibrium of the two-player game with the aggregate welfare in the decentralized

defence game. Aggregate welfare in the 2-player game, starting from network g, and

costs cA and cD, is defined as:

W F (g, cA, cD) = ΠD (∆∗, X∗; g, cD) , (9)

where (∆∗, X∗) is an equilibrium of the two person game. Aggregate welfare in an

equilibrium, s = (∆, X), of the n+ 1 player game starting from network g, and given

costs cA and cD, is defined as:

WD (s; g, cD) =
∑
i∈N

Πi (∆, X; g, cD) . (10)

Proposition 2 and Proposition 5 allow us to assess the costs of decentralization.

We compare the aggregate welfare of the nodes in the equilibrium of the two-player

game with the aggregate welfare in the decentralized defence game. Aggregate welfare

in the 2-player game, starting from network g, and costs cA and cD, is defined as:

W F (g, cA, cD) = ΠD (∆∗, X∗; g, cD) , (11)

where (∆∗, X∗) is an equilibrium of the two person game.

Aggregate welfare in an equilibrium, s = (∆, X), of the n+1 player game starting

from network g, and given costs cA and cD, is defined as:

WD (s; g, cD) =
∑
i∈N

Πi (∆, X; g, cD) . (12)

Following Koutsoupias and Papadimitriou (1999), we study the costs in terms of

the price of anarchy : the ratio of welfare in the two player game to the welfare in the

worst equilibrium of the decentralized defence game.

PoA = max
g,cA,cD

W F (g, cA, cD)

min∆,X WD (s; g, cA, cD)
(13)

Our analysis highlights externalities and points to sources of inefficiency in de-

centralized defence. The first source is the familiar one of positive externalities: an

individual’s protection decision creates benefits for other nodes, which she does not

take into account. Consider a star network and suppose that cost of attack is high,

cA > f(n)− f(n− 1), and cD ∈ (f(n)/n, f(n)). In the equilibrium of the two player
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game, the aggregate welfare W F (g, cA, cD) = f(n)− cD. However, in the equilibrium

of the decentralized game, the central player does not find it profitable to defend

itself, as cD > f(n)/n. So aggregate welfare WD(s; g, cA, cD) = 0. The ratio of the

two is unbounded, for cD ∈ (f(n)/n, f(n)).

Protection choices exhibit a threshold property: for a node to find it profitable to

protect it is necessary that other nodes belonging to the same minimal transversal

protect. Thus protection decisions are strategic complements. This can generate

coordination failures, resulting in large welfare losses. To see this consider a tree

with two hubs each of whom are linked to (n − 2)/2 distinct nodes. Suppose that

f(n) − f(n − 1) < cA < f(n/2) − (n − 2)f(1)/2, so the adversary will only attack

hub nodes. If 2f(n/2)/n < cD < f(n)/n then the first best outcome is to defend

the two hubs. One hub protecting itself gives incentives to the other hub to protect:

two protected hubs is an equilibrium. However, a hub node does not have unilateral

incentives to protect: zero protection it is also an equilibrium. In this equilibrium

the aggregate payoffs, (n − 2)f(1) as compared to first best outcome of f(n) − 2cD.

The cost of decentralization can be unbounded.

Thirdly, at the local level, the game is clearly one of strategic substitutes. A node

in a separator has incentives to protect only if no other node in the separator protects

itself. Like public good games on networks (c.f. Bramoullé and Kranton (2007)), the

network protection game therefore displays multiple equilibria that. This can generate

very large efficiency losses. As an example consider network g depicted in Figure 7.

Figure 7: Essential separators with minimal transversals of sizes 1 and 5 (n = 11).

Suppose that f(x) = x2, cA ∈ (21, 28) and cD < 11. Since cost of attack is high,

the adversary will not remove a node without disconnecting the network. The set of
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individually rational essential separators is a combination of sets depicted in Figure 7.

Notice that the minimum transversal of E(g, cA) is the node belonging to each of the

separators, while the largest minimal transversal consists of one distinct node from

each of the two element separators. Hence the modified PoA in this case is |E(g, cA)|
and as the example in Figure 7 suggests, it is possible to have a graph g such that

|E(g, cA)| ≥ (n− 1)/2. Again, the cost of decentralization is unbounded.

The idea that personal security exhibits positive externalities is well known in the

economic epidemiology literature (and has been noted in the recent research in this

area, see e.g., Acemoglu et al. (2013); Cerdeiro et al. (2014); Zawadowski (2013).

Moreover, in the standard disease setting security choices are strategic substitutes.

Our model departs from this standard setting in two important ways: one, we have

an intelligent adversary and two, agents in our model care about the size of the

component (and not just about survival). This means that security choices exhibit

features both of complements and substitutes. In addition due to the role of size

effects, security choices can exhibit large coordination failures. These features of the

model distinguish it from the existing literature and call for new methods of analysis

and yield fresh insights.

5 Concluding Remarks

Infrastructure networks are a key feature of an economy. These networks face a variety

of threats ranging from natural disasters to intelligent attacks. This paper develops

a strategic model of defence and attack in networks.

We provide a characterization of equilibrium attack and defence in terms of two

classical concepts in graph theory – separators and transversals. We show that the

intensity of conflict (the resources spent on attack and defence) and the possibility

of active conflict (when both adversary and defender target nodes for action) are

both intimately related to the architecture of the network. Finally, we show that the

welfare costs of decentralized defence can be very large.

We have assumed that the defender moves first and is followed by the defender

and that the defence is perfect: it would be more natural to allow for outcomes of

conflict to vary with resources of attack and defence allocated to a node. Appendix

D presents a preliminary analysis of models where we relax these assumptions. A

general analysis remains an important problem for future research.

Finally, we have assumed that payoff depends only on the size of the networks (or
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their components). In future work, it would be important to study a model where

payoffs depend on the details of the architecture of the components.
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Appendix A: Proofs

We start with proving Proposition 1 that states generic equivalence of equilibrium

outcomes of the defender-adversary game in terms of payoffs, size of defence and size

of attack. We start with the following auxiliary lemmata.

Lemma 2. Let g be a network over set of nodes N and ∆ ⊆ N be a set of defended

nodes. Generically, for any best responses X∗ and X∗∗ to defence ∆, Φ(g − X∗) =

Φ(g −X∗∗) and |X∗| = |X∗∗|.

Proof. Let g be a network and ∆ be a defence, as stated in the lemma. Let X∗ and

X∗∗ be best responses to (g,∆). Then it holds that

−Φ(g −X∗)− |X∗|cD = −Φ(g −X∗∗)− |X∗∗|cD. (14)

If |X∗| = |X∗∗|, then it follows that Φ(g − X∗) = Φ(g − X∗∗) and we are done.

Otherwise, the equality is equivalent to

cD =
Φ(g −X∗)− Φ(g −X∗∗)

|X∗∗| − |X∗|
(15)

The set of values on the right hand side of the equality is finite (there are at most

2n+1 − 1 values there). Hence the equality can be satisfied for a finite number of

values of cD ∈ R++ and it is not satisfied for almost any value of cD ∈ R++. This

completes the proof.

Lemma 3. Let g be a network over set of nodes N . Generically, for any two equilibria

(∆∗, X∗) and (∆∗∗, X∗∗), Φ(g −X∗(∆∗)) = Φ(g −X∗∗(∆∗∗)) and |∆∗| = |∆∗∗|.

Proof. Let g, ∆∗, ∆∗∗, X∗ and X∗∗ be as stated in the lemma. Since ∆∗ is a best

response to X∗ so

Φ(g −X∗(∆∗))− |∆∗|cD ≥ Φ(g −X∗(∆∗∗))− |∆∗∗|cD (16)

and since ∆∗∗ is a best response to X∗∗ so

Φ(g −X∗∗(∆∗∗))− |∆∗∗|cD ≥ Φ(g −X∗∗(∆∗))− |∆∗|cD. (17)

By Lemma 2, generically, Φ(g − X∗∗(∆∗)) = Φ(g − X∗(∆∗)) (as both X∗∗(∆∗) and

X∗(∆∗) are best responses to ∆∗. This, together withwith (16) and (17) implies

Φ(g −X∗∗(∆∗∗))− |∆∗∗|cD ≥ Φ(g −X∗(∆∗))− |∆∗|cD. (18)
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Similarly, by Lemma 2, generically, Φ(g−X∗(∆∗)) = Φ(g−X∗∗(∆∗)). This together

with (16) and (17) implies

Φ(g −X∗∗(∆∗∗))− |∆∗∗|cD = Φ(g −X∗(∆∗))− |∆∗|cD. (19)

If |∆∗| = |∆∗∗|, then Φ(g−X∗(∆∗)) = Φ(g−X∗∗(∆∗∗)) and we are done. Otherwise,

(19) can be rewritten as

cD =
Φ(g −X∗(∆∗))− Φ(g −X∗∗(∆∗∗))

|∆∗| − |∆∗∗|
. (20)

Since the number of values on the right hand side is finite, for almost every value

of cD ∈ R++ this equality is not satisfied. Hence, generically, |∆∗| = |∆∗∗| and

Φ(g −X∗(∆∗)) = Φ(g −X∗∗(∆∗∗)).

Lemma 4. Let g be a network over set of nodes N and X, Y ⊆ N be two attacks

such that |X| 6= |Y |. Generically, Φ(g −X) 6= Φ(g − Y ).

Proof. Let g, X and Y be as stated in the lemma. Suppose that Φ(g−X) = Φ(g−Y ).

This equality can be rewritten as∑
C∈C(g−X)

f(|C|) =
∑

C∈C(g−Y )

f(|C|). (21)

Since X 6= Y so there exists s > 0 such that g−X has component of size s and g−Y
has not or g − Y has a component of such a size and g − X has not. Suppose that

Φ(g −X) = Φ(g − Y ). Hence the equality above reduces to

f(s1) + . . .+ f(sp) = f(z1) + · · ·+ f(zq) (22)

where s1, . . . , sp and z1, . . . , zq are sizes of components such that {s1, . . . , sp}∩{z1, . . . , zq} =

∅. Equation (22) puts very strict constraints on function f and perturbing f it

slightly (within the set of functions satisfying Assumption 1) destroys the equality.

Thus Φ(g −X) = Φ(g − Y ) for |X| 6= |Y | is a non-generic property of f .

With Lemmas 2, 3 and 4 in hand, we are ready to prove Proposition 1.

Proof of Proposition 1: Generic equivalence of defence size and of payoff to the

defender follow directly from Lemma 3. Consider equivalence of attack size and

of payoff to the adversary. By Lemmata 3 and 4, generically Φ(g − X∗(∆∗)) =

Φ(g −X∗∗(∆∗∗)) and |X∗(∆∗)| = |X∗∗(∆∗∗)|. Thus the points follow as well.
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Proofs of Lemma 1 and Proposition 2 exploit some properties of graphs. The first

step is to establish these properties. Lemma 5 characterizes the essential separators

as those separators which are ‘thin’: every node of such separators neighbours at

least two components of the residual network. Given a set of nodes X ⊆ N and a

network g over N , ∂g(X) = {k ∈ N \ X : there is j ∈ X such that jk ∈ g}, is the

neighbourhood of X in g. If X is a singleton, that is X = {j}, then we will write

∂g(j) instead of ∂({j}) (∂g(j) is the set of neighbours of j in g). We will drop the

subscript g in the notation if network g is clear from the context.

Lemma 5. Let g ∈ G(N) be a network over a set of nodes N . A set X ⊆ N is

an essential separator if and only if X 6= ∅ and for every i ∈ X there exist two

distinct components C1, C2 ∈ C(g − X), C1 6= C2, such that ∂g−X(i) ∩ C1 6= ∅ and

∂g−X(i) ∩ C2 6= ∅.

Proof. Let g ∈ G(N) be a network over a set of nodes N , and X ⊆ N .

The necessary part: Assume that X is an essential separator. Since X is a sepa-

rator, so X 6= ∅. Assume, to the contrary, that there exists i ∈ X such that there is

at most one component C ∈ C(g−X) such that ∂g−X(i)∩C 6= ∅. Suppose first there

is no such component. Then the attack X ′ = X \{i} results in the set of components

C(g − X ′) = C(g − X) ∪ {{i}}, larger than C(g − X), which contradicts the as-

sumption that X is essential. Secondly, suppose that there is exactly one component

C ∈ C(g−X) such that ∂g−X(i)∩C 6= ∅. Taking attack X ′, as before, leads to resid-

ual network with set of components C(g−X ′) = (C(g−X) \ {C})∪{C ∪{i}}, which

has the same cardinality as C(g −X). Therefore X is not essential, a contradiction.

Sufficiency part: Assume that X 6= ∅, and for every i ∈ X there exist two distinct

components C1, C2 ∈ C(g − X) such that C1 ∩ ∂g−X(i) 6= ∅ and C2 ∩ ∂g−X(i) 6= ∅.

Then there exist two nodes, j1 ∈ C1 ∩ ∂g−X(i) and j2 ∈ C2 ∩ ∂g−X(i), which are

connected in g and not connected in g −X. Hence X is a separator and we have to

show that it is essential. Suppose X ′ ( X, so there is some i such that i ∈ X but

i /∈ X ′. Given the definition of i ∈ X it follows that |C(X ′)| ≤ |C(X)| − 1. Since X ′

was arbitrary, the claim is established.

We now develop a characterization of optimal attack strategies in terms of essential

(affordable) separators and reducing attacks.

Proof of Lemma 1: The proof of the first part is by induction on the number of

nodes in X that violate the condition from Lemma 5. For the induction basis consider
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the set of all X ⊆ N for which there are no nodes that violate the condition. Then,

by Lemma 5, X is essential and so the reminder is ∅ and E = X (in particular it

may be that E = X = ∅). The claim holds.

For the induction step, take any X ⊆ N for which there are exactly m nodes that

violate the condition from Lemma 5. Suppose that the claim holds for any Y ⊆ N

for which there are l < m nodes that violate the condition. Let i ∈ X be a node that

violates the condition and let Y = X \ {i}. Since the condition is violated for i ∈ X,

so g − Y contains either one component more than g −X (namely component {i}),
or it has the same number of components with one component C in g −X replaced

with C ∪ {i} in g − Y . Hence the condition is violated for l < m nodes from Y in

g − Y . Thus, by the induction hypothesis, Y can be decomposed into two disjoint

sets E and R as claimed. Since, as we argued above, adding i to Y does not increase

the number of components in the residual network, so R ∪ {i} does not contain a

separator of g − E and so the decomposition of X into E and R ∪ {i} satisfies the

conditions from the claim. Thus points 1 and 2 are shown.

Now we show that if g is connected and X is a best response to some defence

∆ ⊆ N , then either E = ∅ or E ∈ E(g, cA).

We show first, for any attack X and any decomposition of X into two disjoint sets

E and R satisfying points 1 and 2, that

Φ(g − E)− Φ(g −X) ≤ Φ(g)− Φ(g −R) (23)

We use induction on R. For the induction basis let R = ∅. Then Equation (23)

trivially holds. For the induction step, suppose that Equation (23) holds for any

T ( R. Take any i ∈ R, let T = R \ {i} and Y = X \ {i}. Let C ∈ C(g − Y ) be

the component with i ∈ C. Since R does not contain an essential separator of g −X
so C(g −X) and C(g − Y ) differ at component C only: either C \ {i} ∈ C(g −X) or

C \ {i} = ∅. Hence

Φ(g −X) = Φ(g − Y )− (f(|C|)− f(|C| − 1)). (24)

Now let C ′ ∈ C(g − T ) be the component with i ∈ C ′. Applying attack {i} to g − T
replaces C ′ with components C ′1, . . . , C

′
m such that

⋃m
i=1C

′
i = C ′ \ {i}. Hence

Φ(g−R) = Φ(g−T )−

(
f(|C ′|)−

m∑
i=1

f (|C ′i|)

)
≤ Φ(g−T )−(f(|C ′|)−f(|C ′|−1)) (25)

(by the fact that f is strictly convex). By the induction hypothesis

Φ(g−E)−Φ(g−Y )+(f(|C|)−f(|C|−1)) ≤ Φ(g)−Φ(g−T )+(f(|C|)−f(|C|−1)) (26)
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and, by the fact that C ⊆ C ′ and by convexity of f ,

Φ(g−E)−Φ(g−Y )−(f(|C|)−f(|C|−1)) ≤ Φ(g)−Φ(g−T )+(f(|C ′|)−f(|C ′|−1)).

(27)

Thus, by (24) and (25),

Φ(g − E)− Φ(g −X) ≤ Φ(g)− Φ(g −R). (28)

This shows the induction step. Hence we have shown Equation (23).

Now, let ∆ ⊆ N be a defence chosen in the first stage and suppose that X is a

best response to ∆. X is a better response to ∆ than R, so

−Φ(g −X)− cA|X| ≥ −Φ(g −R)− cA|R| (29)

and, consequently,

Φ(g −R) ≥ Φ(g −X) + cA(|X| − |R|) = Φ(g −X) + cA|E| (30)

From 23, we have

Φ(g −X) ≥ Φ(g − E) + Φ(g −R)− Φ(g). (31)

Putting the last two inequalities together, we arrive at

Φ(g −R) ≥ Φ(g − E) + Φ(g −R)− Φ(g) + cA|E|. (32)

Simplifying this yields:

−Φ(g − E)− cA|E| ≥ −Φ(g). (33)

In other words, E ∈ E(g, cA).

The proof of Part 2 of Proposition 2 now follows from the lemmata above and the

arguments in the main text. We turn next to proving Part 1 of Proposition 2.

To simplify some parts of the argument, we will make a tie-breaking assumption

on the behavior of the adversary. It says that if two strategies yield equal payoffs

to the adversary then he will choose the strategy that yields a lower payoff to the

defender.
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Assumption 2. Given a network g and defence ∆, if two strategies X ⊆ N and

X ′ ⊆ N yield the same payoff to the adversary then he chooses the the strategy that

results in residual network of lower value.

The first step here is to state and prove the following lemma.

Lemma 6. Let g ∈ G(N) be a connected network over N , cD and cA be costs of

defence and attack, respectively. Suppose that ∆ ⊆ N is an equilibrium defence

and X ⊆ N is a best response to it. Suppose that there exists i ∈ ∆ such that

D(∆, E(g, cA)) = D(∆\{i}, E(g, cA)). Let X ′ ⊆ N be a best response to ∆′ = ∆\{i}.
Then there exists a component C ∈ C(g−X) such that C ⊆ ∆ and either C = {i}

or C \ {i} ∈ C(g −X ′). Moreover

ΠD(∆, X; g) = ΠD(∆′, X ′; g) + f(|C|)− f(|C| − 1)− cD (34)

and

cA ≤ f(|C|)− f(|C| − 1). (35)

Proof. Let ∆ ⊆ N be a defence, i ∈ ∆ and ∆′ = ∆ \ {i}. Let X be a best response

to ∆ and X ′ be a best response to ∆′.

Since X is a best response to ∆ so X ∩∆ = ∅ and Φ(g − (X \∆)) = Φ(g −X).

Analogously with X ′ and ∆′. We prove the lemma in seven steps below.

(i). Φ(g −X) > Φ(g −X ′).
Since ∆ is an equilibrium strategy of the defender, so ΠD(∆, X; g) ≥ ΠD(∆′, X ′; g),

that is Φ(g −X)− cD|∆| ≥ Φ(g −X ′)− cD(|∆| − 1). Hence Φ(g −X) > Φ(g −X ′).
(ii). i ∈ X ′.

Assume, to the contrary, that i /∈ X ′. Then X ′∩∆ = X ′∩∆′ = ∅. Similarly, since

X ∩∆ = ∅, so X ∩∆′ = ∅. Hence ΠA(∆′, X ′; g) = ΠA(∆, X ′; g) and ΠA(∆′, X; g) =

ΠA(∆, X; g). By the fact that ΠA(∆′, X ′; g) ≥ ΠA(∆′, X; g), as X ′ is a best response

to ∆′, this yields ΠA(∆, X ′; g) ≥ ΠA(∆, X; g). Additionally, by point (i), Φ(g−X) >

Φ(g − X ′), so X ′ results in residual network of lower value than in the case of X.

Hence, by the tie-breaking Assumption 2, X ′ is an equilibrium response to ∆, a

contradiction. Thus it must be that i ∈ X ′.
(iii). Let Y ⊆ N be an attack with i ∈ Y and such that Y ∩ ∆′ = ∅. Then

either {i} ∪ ∂(i) ⊆ Y or there exists exactly one C ∈ C(g − Y ) such that

i ∈ ∂(C).
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Take any decomposition E ∪R of Y , as described in Lemma 1. It cannot be that

i ∈ E, as otherwise we would have E ∈ D(∆, E(g, cA)), while E /∈ D(∆′, E(g, cA)),

as Y ∩ ∆′ = ∅, and we would have a contradiction with the assumption that

D(∆, E(g, cA)) = D(∆′, E(g, cA)). Hence i ∈ R and there exists a component C̃ ∈
C(g − E) such that i ∈ C̃. Let C = C̃ \R be what remains of C̃ after the remainder

R of Y is applied to g −E. By the definition of the remainder, R does not contain a

separator for g − E. Therefore either C = ∅ (i.e. it is completely removed by R) or

C ∈ C(g−Y ), (i.e. it is a component in g−Y ). Suppose that C = ∅, that is C ⊆ R.

Then ∂g−E(i) ⊆ R and ∂g(i) ⊆ E ∪R = Y . Since i ∈ Y , so {i} ∪ ∂g(i) ⊆ Y . Suppose

now that C is a component in C(g− Y ). We will show that i ∈ ∂g−E(C). For assume

the opposite. Then ∂g−E(C) must be a separator in g − E, as it separates C from a

component containing i. But then ∂g−E(C) contains an essential separator for g−E.

Since ∂g−E(C) ⊆ R, so this contradicts the assumption that R is a remainder and

does not contain any essential separators of g−E. Hence it must be that i ∈ ∂g−E(C)

and, consequently, i ∈ ∂g(C).

(iv). For all C ′ ∈ C(g −X ′) with i ∈ ∂(C ′), C ′ ⊆ ∆.

For assume the opposite. Then there exists C ′ ∈ C(g − X ′) with i ∈ ∂(C ′) (and

consequently i /∈ C ′) such that i′ ∈ C ′ \∆. Consider a strategy X ′′ = (X ′ \{i})∪{i′}.
Since X ′ ∩∆′ = ∅ and i′ /∈ ∆ so X ′′ ∩∆′ = ∅. Notice that Φ(g −X ′′) ≤ Φ(g −X ′),
as both the residual networks agree at all the components apart from what remains

of C ′ ∪ {i} after i′ is removed (at the least it is one component of the same size as

C ′). Since |X ′| = |X ′′| so ΠA(∆′, X ′′; g) ≥ ΠA(∆′, X ′; g) and so X ′′ is a best response

to ∆′. But then we get a contradiction with point (ii), as i /∈ X ′′. Hence it must be

that C ′ ⊆ ∆.

(v). There exists C ′ ∈ C(g −X ′) ∪ {∅} such that C = C ′ ∪ {i} ∈ C(g −X) and

C ⊆ ∆.

Let C ′ = ∅, if {i} ∪ ∂(i) ⊆ X ′, or let C ′ be the unique C ′ ∈ C(g − X ′) with

i ∈ ∂(C ′), otherwise. By point (iii) such C ′ exists. By point (iv) and by the fact that

i ∈ ∆, C ⊆ ∆. Thus there exists a component C ′′ ∈ C(g − X) such that C ⊆ C ′′.

Suppose that C ( C ′′. We will show that in this case X ∪ {i} is a better response to

∆′ than X ′, a contradiction.

Notice that since X∩∆ = ∅ and ∆′ = ∆\{i} so (X∪{i})∩∆′ = ∅. By point (iii)

either {i}∪∂(i) ⊆ X∪{i} or there exists exactly one component C ′′′ ∈ C(g−(X∪{i}))
such that i ∈ ∂(C ′′′). Hence C ′′ = C ′′′ ∪{i} and C ′′ must be unique in C(g−X) with

i ∈ ∂(C ′′). The residual network g − (X ∪ {i}) differs from g −X at one component

35



only: instead of C ′′ it has C ′′ \ {i}. Thus the value of residual network g− (X ∪ {i})
is

Φ(g − (X ∪ {i})) = Φ(g −X)− (f(|C ′′|)− f(|C ′′| − 1)) (36)

Similarly, since either C ′ = ∅ or i ∈ ∂(C ′), so residual network when using X ′\{i}
against ∆′, g− (X ′ \ {i}), differs from g−X ′ by one component: it has C instead of

C ′. Additionally, since ∆ = ∆′ ∪ {i} and X ′ ∩ ∆′ = ∅ so X ′ \ {i} = X ′ \ ∆. Thus

the value of residual network g − (X ′ \ {i}) can be written as

Φ(g − (X ′ \ {i})) = Φ(g −X ′) + f(|C|)− f(|C| − 1) (37)

Since X is a best response to ∆, so it is not worse than X ′ \ {i}. Hence

−Φ(g −X)− cA|X| ≥ −Φ(g − (X ′ \ {i}))− cA(|X ′| − 1). (38)

This, together with Equation (37), implies

Φ(g −X) ≤ Φ(g −X ′) + f(|C|)− f(|C| − 1)− cA(|X| − |X ′|+ 1). (39)

Similarly, since X ′ is a best response to ∆′, so it is not worse than X ∪{i}. Hence

−Φ(g −X ′)− cA|X ′| ≥ −Φ(g − (X ∪ {i}))− cA(|X|+ 1) (40)

This, together with Equation (36), implies

Φ(g −X) ≥ Φ(g −X ′) + (f(|C ′′|)− f(|C ′′| − 1))− cA(|X| − |X ′|+ 1) (41)

From (39) and (41) we get

f(|C ′′|)−f(|C ′′|−1)−(f(|C|)−f(|C|−1) ≤ cA(|X|+1)−cA|X|−(cA|X ′|−cA(|X ′|−1)) = 0

(42)

If C ( C ′′, then |C| < |C ′′|, and, by strict convexity of f , LHS > 0, a contradiction.

Thus it must be that C ′′ = C.

(vi). ΠD(∆, X; g) = ΠD(∆′, X ′; g) + f(|C|)− f(|C| − 1)− cD.

Since X is a best response to ∆ so it is not worse than X ′ \ {i}. Hence

−Φ(g −X)− cA|X| ≥ −Φ(g − (X ′ \ {i}))− cA(|X ′| − 1). (43)
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Adding f(|C|)− f(|C| − 1) to both sides we get

− (Φ(g −X)− (f(|C|)− f(|C| − 1)))− cA|X| ≥ (44)

− (Φ(g − (X ′ \ {i}))− (f(|C|)− f(|C| − 1)))− cA(|X ′| − 1).

As we observed in proof of point (v) (Equations (36) and (37) and the fact that

C ′′ = C)

Φ(g − (X ∪ {i})) =Φ(g −X)− (f(|C|)− f(|C| − 1)) (45)

Φ(g −X ′) =Φ(g − (X ′ \ {i}))− (f(|C|)− f(|C| − 1)) (46)

Hence, from (44), we get

−Φ(g − (X ∪ {i}))− cA(|X|+ 1) ≥ −Φ(g −X ′)− cA|X ′|. (47)

On the other hand, since X ′ is a best response to ∆′ so

−Φ(g − (X ∪ {i}))− cA(|X|+ 1) ≤ −Φ(g −X ′)− cA|X ′|. (48)

Combining these two inequalities we get

−Φ(g − (X ∪ {i}))− cA(|X|+ 1) = −Φ(g −X ′)− cA|X ′|. (49)

Since X ′ is the equilibrium response to ∆′ and by tie-breaking Assumption 2,

Φ(g −X ′) ≤ Φ(g − (X ∪ {i})). (50)

Additionally this, together with Equations (45,46), implies

Φ(g − (X ′ \ {i})) ≤ Φ(g −X). (51)

From Equation (49) and Equations (45,46) we get

−Φ(g −X)− cA|X| = −Φ(g − (X ′ \ {i}))− cA(|X ′| − 1). (52)

Again, since X is the equilibrium response to ∆ and by tie-breaking Assumption 2,

Φ(g −X) ≤ Φ(g − (X ′ \ {i})), (53)

and, by Equations (45,46) and (51),

Φ(g −X) =Φ(g − (X ′ \ {i})), (54)

Φ(g − (X ∪ {i})) =Φ(g −X ′). (55)
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Thus both both X and X ′ \ {i} are best responses to ∆ and both X ′ and X ∪{i} are

best responses to ∆′. This, together with Equation (46), implies

ΠD(∆, X; g) = ΠD(∆′, X ′; g) + f(|C|)− f(|C| − 1)− cD. (56)

(vii). cA ≤ f(|C|)− f(|C| − 1).

Since X ′ is a better response to ∆′ than X ′ \ {i} so

−Φ(g −X ′)− cA|X ′| ≥ −Φ(g − (X ′ \ {i}))− cA(|X ′| − 1) (57)

and, consequently,

cA ≤ Φ(g − (X ′ \ {i}))− Φ(g −X ′). (58)

By Equation (45),

cA ≤ f(|C|)− f(|C| − 1). (59)

Proof of Part 1 of Proposition 2: Characterization of optimal strategies of the

adversary follows directly from Lemma 1. Thus in what follows we concentrate on

equilibrium defence.

Let ∆ be an equilibrium defence. We will show first that if ∆ ( N , then ∆ must

be a minimal transversal of D(∆, E(g, cA)).

Assume the opposite. Then there exists i ∈ ∆ such that D(∆ \ {i}, E(g, cA)) =

D(∆, E(g, cA)). Let X be the equilibrium response to ∆ and X ′ be the equilibrium

response to ∆′ = ∆ \ {i}. Clearly X ∩∆ = ∅ and X ′ ∩∆′ = ∅.

Recall that C(g −X ′) is the set of components in the residual network when the

strategies ∆′ and X ′ are used by the players, and C(g −X) is the set of components

in the residual network when ∆ and X are used. By the assumption that ∆ ( N ,

both these sets are non empty. We will show that either ∆′ or ∆′′ (described below)

is a better strategy for the defender than ∆, which will contradict the assumption

that ∆ is an equilibrium strategy.

Let C ∈ C(g − X) be a component such that C ⊆ ∆ and either C = {i} or

C \ {i} ∈ C(g −X ′). By Lemma 6 such C exists.

Since for all j ∈ ∂g(C), D(∆, E(g, cA)) ( D(∆ ∪ {j}, E(g, cA)), so any such j

belongs to an essential separator not covered by ∆. Take any j ∈ ∂g(C) and let

{C1, . . . , Cm} ⊆ C(g − X) be all the components in g − X such that j ∈ ∂g(Cl) for
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all l ∈ {1, . . . ,m} (assume, without loss of generality, that C1 = C; notice that in

particular it may be that m = 1 and the argument below works for that case as well).

Consider defence ∆′ = ∆ \ {i} and ∆′′ = ∆∪ {j} ∪
⋃m

l=2Cl. We will show that either

∆′ or ∆′′ is a better strategy for the defender than ∆.

Let X ′′ be the equilibrium response of the adversary to ∆′′ and let C ′′ = {j} ∪⋃m
l=1Cl. We show first that C ′′ ∈ C(g − X ′′). Since ∆′′ protects C ′′, so there is

component C ′′′ ∈ C(g − X ′′) such that C ′′ ⊆ C ′′′. Suppose that C ′′ ( C ′′′. Then

there exists v ∈ C ′′′ such that v /∈ C ′′. We will show that v /∈ ∆′′. If v ∈ ∂g(Cl),

for some l ∈ {1, . . . ,m}, then it cannot be that v ∈ ∆ (because these components

are separated by X used as an equilibrium response to ∆). Thus the only possibility

is that v ∈ ∂g({j}). But then v would be one of the components Cl created by

applying X to g and, consequently, it would be v ∈ C ′′, a contradiction with the

assumption that v /∈ C ′′. Since v /∈ ∆ and v /∈ C ′′ so v /∈ ∆′′. Now, consider

a response X ′′ ∪ {v} to ∆′′. At the very least it removes a node from component

C ′′′ (it may additionally disconnect the component). Hence Φ(g − (X ′′ ∪ {v})) ≤
Φ(g−X ′′)− f(|C ′′′|) + f(|C ′′′| − 1). On the other hand, by Lemma 6, Equation (35),

cA ≤ f(|C|)−f(|C|−1) < f(|C ′′′|−f(|C ′′′|−1)) (by convexity of f and |C ′′′| ≥ |C|+1).

Thus it follows that

−Φ(g − (X ′′ ∪ {v}))− cA(|X ′′|+ 1) > −Φ(g −X ′′)− cA|X ′′|, (60)

which contradicts the assumption that X ′′ is a best response to ∆′′. Therefore it must

be C ′′′ = C ′′.

As we have shown above, C ′′ = {j}∪
⋃m

l=1 Cl ∈ C(g−X ′′). After attack X ′′ ∪{j}
is applied to g, component C ′′ is replaced with components C1, . . . , Cm. Hence

Φ(g −X ′′) = Φ(g − (X ′′ ∪ {j})) + f

(
1 +

m∑
l=1

|Cl|

)
−

(
m∑
l=1

f (|Cl|)

)
. (61)

On the other hand, since C is a component in g − X, so every node in ∂g(C) is

removed by X. Thus, when nodes in ∆ ∪ {j} ∪
⋃m

l=2 Cl are defended, the residual

network g−(X\{j}) differs from g−X by having component C ′′ instead of components

C1, . . . , Cm. Hence

Φ(g − (X \ {j})) = Φ(g −X) + f

(
1 +

m∑
l=1

|Cl|

)
−

(
m∑
l=1

f (|Cl|)

)
. (62)

Since X ′′ is a better response to ∆′′ than X \ {j} so

−Φ(g −X ′′)− cA|X ′′| ≥ −Φ(g − (X \ {j}))− cA(|X| − 1) (63)
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and Φ(g−X ′′) ≤ Φ(g−(X\{j})) in the case of equality (notice that (X\{j})∩∆′′ = ∅
as X ∩ Cl = ∅, for all l ∈ {1, . . . ,m}, and X ∩∆ = ∅).

Equations (61,62) and (63) imply

−Φ(g − (X ′′ ∪ {j}))− cA|X ′′| ≥ −Φ(g −X)− cA(|X| − 1). (64)

Subtracting cA from both sides we get

−Φ(g − (X ′′ ∪ {j}))− cA(|X ′′|+ 1) ≥ −Φ(g −X)− cA|X|. (65)

On the other hand, since X is a best response to ∆ than X ′′ ∪ {j}, we have

−Φ(g −X)− cA|X| ≥ −Φ(g − (X ′′ ∪ {j}))− cA(|X ′′|+ 1) (66)

and Φ(g −X) ≤ Φ(g − (X ′′ ∪ {j})), in the case of equality.

By (65) and (66), X ′′ ∪ {j} is a best response to ∆ as well, and since X is an

equilibrium response to ∆, it must be that Φ(g−X) ≤ Φ(g−(X ′′∪{j})). Combining

this with Equation (61) we get

Φ(g −X ′′) ≥ Φ(g −X) + f

(
1 +

m∑
l=1

|Cl|

)
−

(
m∑
l=1

f (|Cl|)

)
. (67)

From (34) and (67) it follows that

ΠD(∆, X; g) = ΠD(∆′, X ′; g) + f(|C|)− f(|C| − 1)− cD (68)

ΠD(∆′′, X ′′; g) ≥ ΠD(∆, X; g) + f

(
1 +

m∑
l=1

|Cl|

)
−

(
m∑
l=1

f (|Cl|)

)
− cD.

Since ∆ is a better strategy than ∆′, so f(|C|) − f(|C| − 1) ≥ cD. On the other

hand, since ∆ is a better strategy than ∆′′ so cD ≥ f(1 +
∑m

l=1 |Cl|)− (
∑m

l=1 f(|Cl|)).
Hence f(|C|)−f(|C|−1) ≥ f(1+

∑m
l=1 |Cl|)−(

∑m
l=1 f(|Cl|)), which contradicts strict

convexity of f .

Thus we have shown that ∆ ( N , then ∆ must be a minimal transversal of

D(∆, E(g, cA)).

Proof of Proposition 3: The non-monotonicities have been established in the text.

Here we establish monotonicity of defender’s payoff in cost of attack and monotonicity

of adversary’s payoff in cost of defence.

We start with monotonicity of payoff to the defender in cost of attack. The

argument here is straightforward in the generic case, where equilibrium payoffs are
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unique: suppose (∆∗, X∗) is an equilibrium with network g and costs (cA, cD). Let

c′A > cA. If defender retains defence strategy ∆∗, it must be the case that attack

strategy will be weakly smaller under high cost c′A. This in turn implies that defender’s

payoff must be weakly larger if he maintains original strategy ∆∗. So, in equilibrium

under (c′A.cD), he must also do better. However, the monotonicity holds for any values

of the parameters. The problem here is that non-uniqueness of equilibrium payoffs.

However, this is not a concern, because if this was the case, the more costly attacks

would cease being equally good for the adversary as the less costly ones. The precise

argument is as follows. Let cA and c′A be costs of attack such that c′A > cA. Let

(∆∗, X∗) be an equilibrium under cA and let (∆∗∗, X∗∗) be an equilibrium under c′A.

Since X∗(∆∗) is a best response to ∆∗ under cA, so it is not worse than X∗∗(∆∗),

hence

−Φ(g −X∗(∆∗))− cA|X∗(∆∗)| ≥ −Φ(g −X∗∗(∆∗))− cA|X∗∗(∆∗)| (69)

which yields

Φ(g −X∗(∆∗))− Φ(g −X∗∗(∆∗)) ≤ cA (|X∗∗(∆∗)| − |X∗(∆∗)|) . (70)

Similarly, since X∗∗(∆∗) is a best response to ∆∗ under c′A, so it is not worse than

X∗(∆∗). This yields

Φ(g −X∗(∆∗))− Φ(g −X∗∗(∆∗)) ≥ c′A (|X∗∗(∆∗)| − |X∗(∆∗)|) . (71)

Equations (70) and (71) imply cA(|X∗∗(∆∗)|−|X∗(∆∗)|) ≥ c′A(|X∗∗(∆∗)|−|X∗(∆∗)|).
By c′A > cA it follows that

|X∗∗(∆∗)| ≤ |X∗(∆∗)|. (72)

Now, assume to the contrary, that

ΠD (∆∗, X∗(∆∗); g, cD) > ΠD (∆∗∗, X∗∗(∆∗∗); g, cD) . (73)

Since ∆∗∗ is an equilibrium defence under c′A so

ΠD (∆∗∗, X∗∗(∆∗∗); g, cD) ≥ ΠD (∆∗, X∗∗(∆∗); g, cD) . (74)

The two equations above imply

ΠD (∆∗, X∗(∆∗); g, cD) > ΠD (∆∗, X∗∗(∆∗); g, cD) , (75)
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that is

Φ(g −X∗(∆∗))− cD|∆∗| > Φ(g −X∗∗(∆∗))− cD|∆∗| (76)

and, consequently,

Φ(g −X∗(∆∗))− Φ(g −X∗∗(∆∗)) > 0. (77)

Equations (70) and (77) imply cA(|X∗∗(∆∗)| − |X∗(∆∗)|) > 0. By cA > 0, it follows

that |X∗∗(∆∗)| > |X∗(∆∗)|, a contradiction with Equation (72). Thus it must be that

ΠD (∆∗, X∗(∆∗); g, cD) ≤ ΠD (∆∗∗, X∗∗(∆∗∗); g, cD) Notice that this argument holds

for any parameters of the model, not only in the generic case.

We now turn to the monotonicity of payoff to the adversary in cost of defence.

Let cD and c′D be costs of defence such that c′D > cD. Let (∆∗, X∗) be an equilibrium

under cD and let (∆∗∗, X∗∗) be an equilibrium under c′D. Since X∗(∆∗) is a best

response to ∆∗ and X∗∗(∆∗) is a best response to ∆∗ in adversary’s subgame, so

−Φ(g −X∗(∆∗))− |X∗(∆∗)|cA = −Φ(g −X∗∗(∆∗))− |X∗∗(∆∗)|cA. (78)

Thus another equilibrium under cD is (∆∗, X ′) where X ′ equals to X∗ at all defence

profiles but ∆∗, where it is equal to ∆∗∗. By Lemma 3, generically, Φ(g−X∗(∆∗)) =

Φ(g−X∗∗(∆∗)). By analogous arguments, Φ(g−X∗∗(∆∗∗)) = Φ(g−X∗(∆∗∗)). Since

∆∗ is an equilibrium defence under cD and ∆∗∗ is an equilibrium defence under c′D, so

Φ(g −X∗(∆∗))− |∆∗|cD ≥ Φ(g −X∗(∆∗∗))− |∆∗∗|cD (79)

Φ(g −X∗∗(∆∗∗))− |∆∗∗|c′D ≥ Φ(g −X∗∗(∆∗))− |∆∗|c′D (80)

which can be rewritten as

Φ(g −X∗(∆∗∗))− Φ(g −X∗(∆∗)) ≤ (|∆∗∗| − |∆∗|)cD (81)

Φ(g −X∗∗(∆∗∗))− Φ(g −X∗∗(∆∗)) ≥ (|∆∗∗| − |∆∗|)c′D (82)

Since c′D > cD, these inequalities imply

Φ(g −X∗∗(∆∗∗))− Φ(g −X∗∗(∆∗)) > Φ(g −X∗(∆∗∗))− Φ(g −X∗(∆∗)). (83)

This, combined with Φ(g − X∗(∆∗)) = Φ(g − X∗∗(∆∗)) and Φ(g − X∗∗(∆∗∗)) =

Φ(g−X∗(∆∗∗)) leads to contradiction. Hence it must be that payoff to the adversary

increases when cost of defence increases. Notice that this argument holds for generic

values of parameters of the model. There are non-generic examples where payoff to

the adversary decreases when cost of defence increases.
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Before proving Proposition ??, we need the following auxiliary lemma, stating a

useful property of of a convex function.

Lemma 7. Let f : R → R be a strictly convex and differentiable function. Then

function

g(x, y) =
yf(x)− xf(y)

x− y
(84)

is strictly increasing in both arguments, as long as x > y.

Proof. To show the result we compute partial derivatives of h:

gx(x, y) =

(
y

x− y

)(
f ′(x)− f(x)− f(y)

x− y

)
gy(x, y) =

(
x

x− y

)(
f(x)− f(y)

x− y
− f ′(y)

)
.

By strict convexity of f , f ′(y) < (f(x) − f(y))/(x − y) < f ′(x), as long as x > y,

hence gx, gy > 0 and so g is strictly increasing in x and in y. This completes the

proof.

Now we are ready to prove Proposition ??.

Proof of Proposition ??. Part 1 follows directly; we omit a proof. For Part 2,

observe from Proposition 2 that with cA ∈ (∆f(n − 1), f(n) − (n − 1)f(1)), and

g ∈ E(g, cA) = 0, the optimal attack targets no nodes. So the optimal defence also

consists of defending no node. Thus costs of conflict are 0.

For points ?? and ??, assume that cA ∈ (∆f(m−1),∆f(m)) with m ∈ {1, . . . , n−
1}. With such cost of attack, on any connected network, the adversary best responds

to any incomplete defence by removing at least one node. Therefore the lower bound

for costs of conflict are min(cA, ncD) in this case.

Part 3: Suppose that cD > c(n,m) (point ??). We show first that in every equilib-

rium on hmn the defender chooses the empty defence and the adversary responds to

it with attack {1} (the separator of hmn ). By Proposition 2, an equilibrium defence

must be either empty, or complete, or equal to {1}. Moreover, best response of the

adversary to empty defence either contains {1}, in which case the reducing attack

part of it must be empty (because components of hmn − {1} have sizes at most m),

or does not contain {1}, in which case it must be a reducing attack leaving a resid-

ual network consisting of a single component of size m. It is easy to check that the
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former is the best response to the empty defence and the latter is the best response

to defence {1}. Hence empty defence is better than {1}. Payoff to the defender from

using empty defence is

ΠD(∅, {1};hmn , cD) = Φ(hmn − {1}) =

⌊
n− 1

m

⌋
f(m) + f((n− 1) mod m). (85)

With cost of defence cD > c(m,n), payoff to the defender from complete defence,

ΠD(N,∅;hmn , cD) = f(n)− ncD, (86)

is lower than the payoff from empty defence. Hence on equilibrium path the defender

chooses ∅ and the adversary responds with {1}.
Second, we show that for the ranges of costs in question, ncD > cA. Since cD >

c(n,m) so

ncD > f(n)−
⌊
n− 1

m

⌋
f(m)− f((n− 1) mod m). (87)

Right hand side of this inequality can be rewritten as

f(n)− n− 1− (n− 1) mod m

m
f(m)− f((n− 1) mod m). (88)

Since f is strictly convex and (n − 1) mod m < m so ((n − 1) mod m)f(m) >

mf((n− 1) mod n). Therefore

cD > f(n)−
(
n− 1

m

)
f(m). (89)

Right hand side can be rewritten as

f(n)−
(
n− 1

m

)
f(m) =

n−1∑
j=m

∆f(j)−(n−m−1)

(
f(m)

m

)
= ∆f(m)+

n−1∑
j=m+1

(
∆f(j)− f(m)

m

)
.

(90)

By convexity of f , for all j > m, ∆f(j) > f(m)
m

. Thus ncD > ∆f(m) and, since

cA ∈ (∆f(m− 1),∆f(m)), ncD > cA. Hence the minimal costs of conflict are cA.

Part 4 suppose that cD < c(n,m) (point ??). We will show that with such cost of

defence, in any equilibrium on a connected network the defender chooses the complete

defence. Notice that with cD < c(n,m), on any connected network g, any defence
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∆ of size |∆| ≤ m is worse to the defender than the complete defence. This is

because the residual network after the adversary best responding to ∆ consist of

components of sizes at most m and the upper bound on value of such residual networks

is b(n− 1)/mcf(m) + f((n− 1) mod m) (this upper bound is attained by hmn ). With

cD < c(n,m) the defender prefers complete defence to ∆.

Consider defence ∆ of size d = |∆| such that m < d < n. Let X be a best response

to ∆. Payoff to the defender from ∆ and X is

ΠD(∆, X; g, cD) = Φ(g−X)−dcD ≤ f(d)+

⌊
n− d− 1

m

⌋
+f((n−d−1) mod m)−dcD.

(91)

The upper bound on the value of the residual network above comes from the following

observation. With cA ∈ (∆f(m − 1),∆f(m)), in any best response the adversary

removes unprotected nodes from any component of size greater than m. Therefore in

the best case the adversary removes one node and the only component of size greater

than m in the residual network is a fully protected component of size d (by convexity

of f it is better to have one fully protected component of size d than several fully

protected and smaller ones summing up to d). Thus if

cD <
f(n)− f(d)−

⌊
n−d−1

m

⌋
− f((n− d− 1) mod m)

n− d
(92)

then complete defence is better to ∆ for the defender. We will show that c(n,m) is

lower than the RHS of the inequality above, which will imply that for costs of defence

under consideration the complete defence is better for the defender. The inequality

c(n,m) =
f(n)−

⌊
n−1
m

⌋
− f((n− 1) mod m)

n
<
f(n)− f(d)−

⌊
n−d−1

m

⌋
− f((n− d− 1) mod m)

n− d
(93)

can be rewritten as

df(n)−nf(d)−
(
n− d
m

)
(r1f(m)−mf(r1)) +

( n
m

)
(r2f(m)−mf(r2)) > 0, (94)

where r1 = (n − 1) mod m and r2 = (n − d − 1) mod m.9 Since r2 < m and f is

convex, so r2f(m)−mf(r2) > 0 and to show that the inequality above holds it suffices

to show that

df(n)− nf(d)−
(
n− d
m

)
(r1f(m)−mf(r1)) > 0. (95)

9 Recall that for integer x and y,
⌊
x
y

⌋
= x−x mod y

y .
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Since d < n and f is convex, so df(n)− nf(d) > 0. Moreover, by Lemma 7,

df(n)− nf(d)

n− d
>
r1f(m)−mf(r1)

m− r1

(96)

(as n > d > m > r1). Hence

df(n)− nf(d)

n− d
−
(
m− r1

m

)(
r1f(m)−mf(r1)

m− r1

)
> 0, (97)

which implies (95), by multiplying both sides by (n − d). Hence any equilibrium

defence is complete and costs of conflict are ncD.

Example of no conflict networks: Even if marginal of f do not grow very rapidly,

there may exist networks (other than complete network) that do not feature active

conflict. Take f(x) = x2, for example. Consider a family of core-periphery networks,

{cpk}k∈N. Given k ∈ N, network cpk has 2k nodes: a fully connected core of k nodes,

and a periphery of k nodes. Each core node is connected to exactly one, unique,

periphery node (c.f. Figure 8).

Figure 8: Core-periphery networks cp2, cp4 and cp6.

When cost of attack is high, cA > 4m − 1, then it is easy to verify that in

equilibrium the defender will either defend all the core nodes or use an empty defence.

When cost of attack is low, cA < 4m−1, then, again, there are two types of equilibrium

defence: either no node is defended or all nodes are defended. It is easy to verify

that three types of defence would be candidates for equilibrium defence here: empty

defence, complete defence and defence with all core nodes protected. To rule out the

last one, suppose that 2(2m − k) − 1 ≤ cA < 2(2m − k) + 1, where 1 ≤ k ≤ m − 1.

With such cost of attack, the adversary would remove a single node from a component
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of size greater than 2m − k and would not remove single nodes from a component

of size 2m − k or less. Thus, when all the core nodes are protected, the adversary

removes k spokes. When no node is protected, the adversary removes k core nodes.

Since defending only the core nodes is better than defending all the nodes, so mcD ≥
(2m)2 − (2m − k)2. On the other hand, protecting all the core nodes is better than

no protection, so mcD ≤ (2m − k)2 − (2m − 2k)2 − k. The two inequalities imply

2k2 − k ≤ 0, a contradiction for k ≥ 1.

Notice, in the example above, that if each core node was connected to a higher

number of periphery nodes, active conflict would be possible (as illustrated by Exam-

ple 1). With more periphery nodes per core node (and with suitable costs of defence

and attack), protecting the separators may create enough value for such a defence

to be attractive. Increasing the value of residual network requires defending all the

nodes, which is too high an investment and to low a gain to be profitable. This

illustrates one reason for possibility of active conflict in the model: blocking all the

individually rational essential separators may secure high value of the residual net-

work at a relatively low cost, while increasing the value further may require a much

higher cost.

To get more insight into why active conflict is possible, despite the convexity of f

and linearity of costs, consider the network in Figure 9. Figure 10 illustrates function

Figure 9: Network that allows for active conflict (under f(x) = x2).

Φ∗(m; g, cA) under different ranges of costs of attack. The dotted line is an upper

convex hull of that function. Optimal size of defence is at a point of that hull adjacent

to a line with slope cD. In the case of low cost of attack, if the convex hull contains any

points of Φ∗(m; g, cA), for 0 < m < n, then active conflict is possible for some suitable

range of costs of defence. In the case of high cost of attack, active conflict is possible,

if the convex hull contains any points of Φ∗(m; g, cA), for 0 < m < τ(E(g, cA)).

In Figure 10, low cost of attack is cA < 9 and cA > 9 is high cost of attack.

Active conflict is possible for cA ∈ (5, 9). When cA ∈ (5, 7) and cD ∈ (3.75, 4),
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Figure 10: Optimal defences of different sizes for network in Figure 9.

then the unique equilibrium defence is ∆∗ = {b}, and the best response to it in the

adversary’s subgame is X∗(∆∗) = {a}. When cA ∈ (7, 9) and cD ∈ (5, 9), then the

unique equilibrium defence is ∆∗ = {a, b} and removing any unprotected node is a

best response to it in the adversary’s subgame. When cA ∈ (9, 15), τ(E(g, cA)) = 2

and there is no equilibrium outcome with active conflict.

Proof of Proposition 5: For point 1, suppose that cD > f(n)/n. We will show

that in this case equilibrium defence ∆ = ∅. Assume, to the contrary, that ∆ 6= ∅
and let X be the equilibrium response to ∆. Pick any i ∈ ∆ and let C(i) be the

component of i in the residual network g −X. Payoff to i is

Πi(∆, X; g) =
f(|C(i)|)
|C(i)|

− cD. (98)

By the fact that f is strictly increasing and strictly convex, f(x)/x is increasing.

Hence Πi(∆, X; g) ≤ f(n)/n − cD < 0. Thus i is better off by not protecting, a
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contradiction with the assumption that ∆ is an equilibrium defence. Hence it must

be that ∆ = ∅.

For point 2, suppose that cD < f(n)/n.

Assume that cA < f(n) − f(n − 1). We will show that ∆ = N is an equilibrium

defence. For assume otherwise. Then there exists i ∈ ∆ which is better off by

deviating and choosing no protection. Since cA < f(n) − f(n − 1), so the best

response to ∆ \ {i} is X = {i}, and so the deviating node gets removed, obtaining

payoff 0 instead of f(n)/n − cD ≥ 0. Hence i is not better off by deviating and so

∆ = N is an equilibrium defence. This proves point 2a.

Assume that cA > f(n)− f(n− 1). Let ∆ be minimal transversal of E(g, cA). We

will show that ∆ is an equilibrium defence. By Lemma 1, the best response to ∆

is the empty attack X = ∅. Assume, to the contrary, that ∆ is not an equilibrium

defence. Then there exists i ∈ ∆ that is better off by choosing no protection instead of

protection. Since ∆ is a minimal transversal, it must be that there exists an essential

separator E ∈ E(g, cA) such that ∆ \ {i} ∩ E = ∅. Moreover, any such separator

contains i. Since any such separator is better than the empty attack, the adversary

responds to ∆ \ {i} with one of these separators, removing i. But then i gets payoff

0 instead of f(n)/n− cD ≥ 0. Hence it is not better of by deviating, a contradiction.

Therefore ∆ must be an equilibrium defence. This proves point 2b.

Since adversary’s sub-game remains like in the centralized defence game, so an

equilibrium response X∗ is as described in Proposition 2.

Appendix B: Key players and Centrality

Essential separators and their transversals determine the key nodes in our study of

attack and defence. These key groups of nodes give rise to new notions of centrality

distinct from other notions such as closeness, betweenness or eigenvector centralities.

To see how these notions are different, consider the network in Figure 11 (for simplicity

the example is based on individual, rather than group, notions of centrality). Assume

that network value is based on function f(x) = x2 and suppose that cost of attack,

cA ∈ (25, 89), so that the adversary attacks only the nodes that separate the network

and so that removing node 2 is better than not attacking at all. Suppose also that

cD ∈ (0, 89), so that defending node 2 constitutes an optimal defence as well. However,

this node is less central than node 1 in the sense of degree, closeness, betweenness,
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eigenvector, Bonacich and inter-centrality measures.10 The numerical values for these

centralities are summarized in Table 1. For Bonacich centrality, we consider three

values of the parameters: high (α = 0.237), intermediate (α = 0.1) and low (α =

0.01).

Figure 11: Separators and other centrality measures

Centrality Node 1 Node 2

Degree 9 5

Closeness 0.684 0.619

Betweenness 42.5 37.5

Eigenvector 0.5765 0.3036

Bonacich, high 532.2 281.18

Bonacich, medium 2.4311 1.8208

Boncacich, low 1.093 1.0519

Inter-centrality, high 2940.9 2863.2

Inter-centrality, medium 5.2438 3.1263

Inter-centrality, low 1.1936 1.1061

Table 1: Centralities of nodes 1 and 2 in network from Figure 11.

10Following Ballester et al. (2006), we define for a parameter α ∈ R: b(g, α) = M(g, α)1, where

M(g, α) = (I − αG)−1, I is the identity matrix and G is the adjacency matrix of the network.

We require α to be relatively small so that M(g, α) is well defined and non-negative. The inter-

centrality measure we consider, also defined in that paper, is ci(g, α) = bi(g,α)
2

Mii(g,α)
. We define closeness

as cli(g) = n−1∑
j 6=i d(i,j;g)

where d(i, j; g) is the length of the shortest path between i and j in g.
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Appendix C: Separators and transversals in families

of networks

Interlinked stars: Interlinked stars are networks with two disjoint non-empty sets

of nodes: the set of centers C and the set of periphery nodes P . The centers are

fully connected forming a clique. Each of the periphery nodes is connected to all

the centers. Interlinked stars have one essential separator: the set of all the centers,

E(g) = {C}. All minimal transversals of E(g) are singleton sets consisting of one

central node. The essential separator and a minimal transversal for interlinked star

are illustrated in Figure 12.

Figure 12: Separators and transversals in interlinked stars (n = 12)

Complete bipartite networks: In a complete bipartite network the set of nodes,

N , can be partitioned into two disjoint sets, N1 and N2, N1 ∩ N2 = ∅, such that

the set of links is the set of all possible links connecting nodes from N1 and nodes

from N2. There are two essential separators in these networks, E(g) = {N1, N2}.
Every transversal, consists of one node from N1 and one node from N2. Minimal

essential separators and transversal for complete bipartite networks are illustrated in

Figure 13.

Trees: In any tree network, every non-empty set of internal nodes (nodes which are

not leaves) constitutes a separator. Essential separators are sets of internal nodes

such that no two of them are neighbours. Transversals of essential separators are

subsets of internal nodes. In particular, there is a unique transversal of the set of all

essential separators: the set of all internal nodes. Minimal essential separators and

transversal for tree networks are illustrated in Figure 14.
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Figure 13: Separators and transversals in complete bipartite networks (n = 12)

Figure 14: Separators and transversals in trees (n = 12)

Core-periphery networks: Nodes are divided in two disjoint sets: the core and

the periphery. Each node of the periphery is connected to exactly one node of the

core, while the nodes of the core are connected with periphery nodes and the core

constitutes a clique. Essential separators are subset of the core. There is a unique

transversal: the set of all core nodes. Minimal essential separators and transversal

for core-periphery networks are illustrated in Figure 15.

Figure 15: Separators and transversals in core periphery networks (n = 12)
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Appendix D: Order of moves and nature of conflict

This section explores the role of sequential choice and perfect defence.

Simultaneous moves: Consider a variant of the model studied in the paper

where the players make their choice simultaneously. In this case the set of strategies

of the defender remains unchanged. A pure strategy of the adversary is now a set of

nodes, X ⊆ N , chosen to attack. It is important to note that the timing of moves does

not affect Lemma 1 which remains unchanged. Suppose that cost of attack is high.

Any strategy, X, in the support of equilibrium strategy of the adversary must be an

individually rational essential separator, i.e. X ∈ E(g, cA). Similarly, any strategy, ∆,

in the support of equilibrium strategy of the defender must be a minimum transversal

of the set of essential separators it blocks, D(∆, E(g, cA)).

The second observation is that depending on the network, the players may use pure

or mixed strategies in equilibrium. This is a departure from our existing results, where

equilibrium always exist in pure strategies. But note that the use of mixed strategies is

sensitive to the network. In particular, if the network is such that one unit of defence

is sufficient to block all the individually rational essential separators of the adversary,

then in equilibrium both players use pure strategies and equilibrium outcomes are

the same as in the sequential model studied in the paper. When τ(E(g, cA)) > 1,

the defender may choose to block more individually rational essential separators, by

mixing across several transversals.

The model of conflict: We have assumed perfect defence. A more natural way

to proceed would be to suppose that the number of resources assigned by each player

to a node determines the probability of winning/loosing the node. Following Tullock

(1980), suppose that the probability of successfully attacking the node is given by a

contest success function (CSF)

π(a, d) =

{
0, if a = 0

dγ

aγ+dγ
, otherwise,

(99)

where γ ∈ R+ and a and d are resources assigned by the adversary and defender,

respectively. The probability of successfully defending the node is π(d, a) = 1 −
π(a, d).11

11The perfect defence model studied in the paper can be seen as a limiting case of the general

contest model: the probability of successful attack is given by αaγ

δdγ+αaγ with α = 1 and δ → +∞.
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A strategy of the defender is a vector d ∈ NN such that di is the number of defence

resources assigned to node i. A strategy of the adversary is a function X : NN → NN

such that, given vector of defence allocation d, maps it to a vector of attack allocation

a = X(d) such that ai is the number of attack resources assigned to node i. We will

call the set of nodes receiving positive number of defence resources the defended nodes

and the set of nodes receiving positive number of attack resources the attacked nodes.

Given defence and attack allocations, (d, a), the probability that set M ⊆ N of nodes

is won by the adversary and removed from g is

w(M |a,d) =
∏
j∈M

π(aj, dj). (100)

The expected payoffs to the defender and the adversary from defence and attack

allocations, (a,d), are

ΠA(a,d|g, cA) = −
∑

M⊆N w(M |a,d)(1− w(N \M |a,d))Φ(g −M)− cA

∑
j∈N ai

ΠD(a,d|g, cD) =
∑

M⊆N w(M |a,d)(1− w(N \M |a,d))Φ(g −M)− cD

∑
j∈N di.

Lemma 1 still obtains. The set of attacked nodes can be decomposed into an

essential separator and a reducing cut. In what follows we restrict attention to high

costs of attack and we focus on the benchmark model of linear contests: γ = 1. The

main point we wish to make is that with Tullock contests optimal defence will extend

beyond minimal transversals and may cover multiple nodes in the same separator.

Consider an interlinked star with two core nodes: 1, 2, and n− 2 periphery nodes

(n ≥ 4). Suppose that cost of attack is high, cA > ∆f(n − 1). The unique essential

separator of g is the set of core nodes, {1, 2}. Let a1, a2 be the amount of resources

assigned by the adversary to the two core nodes and d1, d2 be the defence resources

assigned by the defender to the two core nodes. Expected payoff to the adversary

from assignment (a1, a2, d1, d2) is:

ΠA(d, a|g, cA) =− π(a1, d2)π(a2, d2)(n− 2)f(1)

− (π(a1, d1) + π(d2, a2)− 2π(d1, a1)π(a2, d2))f(n− 1)

− (1− π(a1, d1)− π(d2, a2) + π(d1, a1)π(a2, d2))f(n)

− cA(a1 + a2)

=− f(n) + π(a1, d1)π(a2, d2)V1(n)

+ (π(a1, d1) + π(a2, d2)− π(a1, d1)π(a2, d2))V2(n)

− cA(a1 + a2) (101)
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where V1(n) = f(n − 1) − (n − 2)f(1) and V2(n) = f(n) − f(n − 1). Notice that

V2(n) is the gain from removing the first node of the core, and V1(n) is the gain from

removing the second node of the core. Since cost of attack is high, V2(n) < cA. Hence

if V1(n) ≤ V2(n), then it is not profitable for the adversary to attack, and both players

assign no resources to the nodes in equilibrium. Consider now the more interesting

case, where V1(n) > V2(n).

The expected payoff to the defender is:

ΠD(d, a|g, cA) =f(n)− π(a1, d1)π(a2, d2)V1(n)

− (π(a1, d1) + π(a2, d2)− π(a1, d1)π(a2, d2))V2(n)

− cD(d1 + d2) (102)

The defender chooses (d1, d2) to maximize his expected payoff subject to the con-

straints that d1, d2 ≥ 0 and that the adversary chooses (a1, a2) to maximise his ex-

pected payoff, subject to a1, a2 ≥ 0.

It is simpler to begin with the case where the defender is given 2d ≥ 0 defence

resources and the adversary is given 2a ≥ 0 attack resources. This turns the op-

timization problem above into a zero-sum bi-level optimization problem, where the

defender chooses an allocation of 2d to maximize:

π(a1, d1)π(a2, d2)V1(n) + (π(a1, d1) + π(a2, d2)− π(a1, d1)π(a2, d2))V2(n). (103)

It is possible to show the partition (d, d) is a maximizer of both π(a1, d1)π(a2, d2)V1(n)

and (π(a1, d1)+π(a2, d2)−π(a1, d1)π(a2, d2))V2(n), and hence of the whole expression

above. In response the adversary chooses the partition (a, a). Thus (d, d) and (a, a)

are the equilibrium defence and attack strategies as well.

When both players distribute their resources evenly, the payoff to the adversary

is

ΠA(d, a|g, cA) =− f(n) + π(a, d)2V1(n)

+ (2π(a, d)− π(a, d)2)V2(n)

− 2cAa (104)

If d ≥ V2(n)/cA, it is not profitable for the adversary to attack. Thus with

sufficiently low ratio cD/cA, the adversary distributes his resources evenly and the

adversary does not attack. Otherwise both players compete, choosing optimal levels

of attack and defence resources and distributing them evenly.
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