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Abstract

We propose several multivariate variance ratio statistics. We derive the asymptotic distri-

bution of the statistics and scalar functions thereof under the null hypothesis that returns are

unpredictable after a constant mean adjustment (i.e., under the weak form Effi cient Market Hy-

pothesis). We do not impose the no leverage assumption of Lo and MacKinlay (1988) but our

asymptotic standard errors are relatively simple and in particular do not require the selection

of a bandwidth parameter. We extend the framework to allow for a time varying risk premium

through common systematic factors. We show the limiting behaviour of the statistic under a

multivariate fads model and under a moderately explosive bubble process: these alternative

hypotheses give opposite predictions with regards to the long run value of the statistics. We

apply the methodology to five weekly size-sorted CRSP portfolio returns from 1962 to 2013 in

three subperiods. We find evidence of a reduction of linear predictability in the most recent
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period, for small and medium cap stocks. The main findings are not substantially affected by

allowing for a common factor time varying risk premium.
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1 Introduction

Variance ratio tests (Lo and MacKinlay (1988) and Poterba and Summers (1988)) are widely used

in empirical finance as a way of testing the weak form Effi cient Markets Hypothesis (EMH) and to

measure the degree and (cumulative) direction of departures from this hypothesis in financial time

series. Indeed, this work has been extremely influential in understanding predictability in asset prices

and in measuring market quality. A lot of empirical work followed immediately after the seminal

contributions. Lo and MacKinlay (1988) presented evidence regarding predictability of the US stock

market. They concluded that the Random Walk Hypothesis was soundly rejected by weekly US

stock market returns. The graduate textbook Campbell, Lo, and MacKinlay (1997), henceforth

CLM, presents variance ratios for weekly value weighted and equal weighted CRSP indexes and

five size sorted portfolios over the period 1962-1994; they argue that the EMH is strongly rejected,

although they find that the magnitude of the violation is less in the later subperiod 1978-1994. On the

other hand, Cochrane (2001) writing only two years later argues that: "daily, weekly, and monthly

stock returns are close to unpredictable". He emphasized the more recent work that had shown

that low frequency returns are predictable from dividend price ratio and term premium variables.

Regarding "medium frequency" settings, i.e., daily or weekly, most recent research has focussed

on other markets, specifically: to major exchange rates, Liu and He (1991) and Luger (2003), to

emerging market stock indexes, Chaudhuri and Wu (2003), and commodity markets, Peterson, Ma,

and Ritchey (1992), and to carbon trading markets Montagnoli and de Vries (2010). Another recent

direction for this methodology is in "high frequency" settings, i.e., intraday, where it has informed the

debate on the evolution of market quality in the US. Castura, Litzenberger, Gorelick, and Dwivedi

(2010) investigate trends in market effi ciency in Russell 1000/2000 stocks over the period 1 January

2006 to 31 December 2009. Based on evidence from intraday variance ratios (they look at 10:1 second

variance ratios as well as 60:10 and 600:60 second ratios) they argue that markets have become more

effi cient at the high frequency over time. Chordia, Roll, and Subrahmanian (2011) compared intraday

variance ratios over the period 1993-2000 with the period 2000-2008 and found that the hourly to

daily variance ratios of NYSE listed stocks came closer to the EMH predicted values on average in the
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second period.1 Another use of these measures involves cross sectional or panel data regressions with

variance ratios as dependent variables, see for example O’Hara and Ye (2009). In short, variance

ratios are the de facto measure of predictability/market effi ciency that is adopted universally by

financial empiricists.

There have been some criticisms of the univariate variance ratio methodology as a test of uncor-

relatedness. Specifically, it is not consistent against all (fixed of given order) alternatives unlike the

Box-Pierce statistics. It is a linear functional of the autocorrelation function and so provides no new

information relative to that. It seems like a redundant test. Faust (1992) argues that actually they

form a class of tests optimal against certain alternatives. Specifically, he considers a more general

class of univariate Filtered Variance Ratio tests. Let rφt =
∑m

i=0 φirt−i be a filtered return series for

filter φ. He shows that each such test based on comparing var(rφt )/var(rt) can be given a likelihood

ratio interpretation and so is optimal against a certain alternative that is of the mean reverting type.

The advantage of the variance ratio over the Box-Pierce statistic is that it gives some sense of the

direction of predictability, which is lost in the Box-Pierce or other portmanteau tests. Hillman and

Salmon (2007) have argued that the variance ratio (actually the related variogram) is better suited

to irregularly spaced data and some kinds of nonstationarity than correlogram tests. There is a lot

of work on improving the finite sample performance of both Box-Pierce statistics and variance ratio

statistics, see for example Kim, Nelson, and Startz (1991) and Kan and Wang (2010). See Charles

and Darné (2009) for a recent review of this methodology and its application.

We make several contributions. First, we develop a multivariate methodology. Many tests of

the effi cient markets hypothesis have been carried out using the univariate variance ratio approach,

that is, conducted one asset at a time. This paper proposes a methodology for multivariate variance

ratio tests. The rationale for the test is roughly the following. Suppose that the RW hypothesis is

not rejected for asset i based on univariate variance ratio tests. Suppose however that returns on i

are predicted by lags of some other variable. A univariate test could fail to detect this violation of

the EMH, although a multivariate test could detect it. This generic argument about the effi cacy of

multivariate methods versus univariate is widely accepted. There is a lot of work on multivariate

portmanteau statistics, i.e., generalizations of the Box-Pierce statistic to multivariate time series,

see for example Chitturi (1974) and Hosking (1981). The variance ratio statistics convey directional

information about cross-autocorrelations beyond that contained in the portmanteau statistics, that

is, in the case of a violation of the hypothesis they give some sense of the direction of departure.

1See also Sheppard (2013) for some theoretical results using a continuous time framework.
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The univariate variance ratios describe the behaviour of the asset variances, whereas the multivariate

statistics also measure the behaviour of the cross correlations and their cumulative direction. This

could be important for momentum based trading strategies, for example. It is also useful for judging

the direction of price discovery.

Second, we propose an alternative distribution theory and standard errors (heteroskedasticity

and leverage consistent) than are usually adopted. The limiting distribution established in Lo and

MacKinlay (1988, Theorem 3) and repeated in CLM (and so used in most empirical studies) for the

univariate variance ratio statistics is incorrect under their stated assumptions H1-H4 (i.e., RW3).

The correct distribution would be much more complicated and would depend on a long run variance

that may be hard to estimate well. Either one makes additional assumptions to ensure that the

variance is as claimed, which is what we propose below, or one has to use more complicated inference

methods based on long run variance estimation, Newey and West (1987), or self normalization,

Lobato (2001). In fact, the omitted condition appears quite innocuous, so their essential approach

seems correct. However, we think that the no-leverage assumption (Lo and MacKinlay’s H4) is

untenable, empirically. Although this latter condition is satisfied by GARCH volatility processes

with symmetrically distributed innovations, it is not satisfied by volatility processes that allow for

leverage effects such as the GJR GARCH process or the Nelson’s EGARCH process, and it is not even

satisfied by standard GARCH volatility processes where the innovation is asymmetric. The value of

the restriction is that it simplifies the standard error calculation, although, as we show, the standard

errors that allow for violations of this condition do not entail an inordinate increase in computation

or complexity. Essentially, Lo and MacKinlay (1988) imposed an unnecessary assumption but fail to

impose a necessary one. We propose modified assumptions that still preserve the possibility of simple

inference methods but allow for leverage effects. Specifically, we establish the asymptotic distribution

of our statistics under two sets of assumptions: (a) a stationary martingale difference hypothesis

with fourth unconditional moments; (b) uncorrelatedness as in Lo and MacKinlay (1988) and with

an additional uncorrelatedness condition on the products of returns but without the additional no-

leverage condition. The asymptotic variance is different from that contained in Theorem 3 of Lo

and MacKinlay (1988) (and used in much subsequent empirical work). Furthermore, extending the

univariate framework of Chen and Deo (2006) we also derive the limiting distribution under the

increasing horizon framework, and show that asymptotic normality can be obtained with a slower

rate of convergence. We propose a simple analogue method for conducting inference that does

not require the selection of a bandwidth parameter. We note that much of the evidence about
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predictability has been based on the Lo and MacKinlay (1988) standard errors, which we argue

should be replaced by standard errors that rely on weaker more plausible assumptions. We show

that in practice the standard errors can make a difference, especially when the time series is short

(such as when stationarity is of concern).

Third, we also establish the asymptotic properties of our statistic under several plausible alter-

native models including a multivariate Muth (1960) fads model and the recently developed bubble

process of Phillips and Yu (2010). These alternatives yield quite different predictions regarding the

long run value of the variance ratio statistics.

Fourth, we apply our methods to five CRSP weekly size-sorted portfolio returns from 1962-2013

and the three subperiods 1962-1978, 1978-1994 and 1994-2013; the first two subperiods correspond

to the data used in CLM. We show that the degree of ineffi ciency has reduced over the most recent

period, and in some cases this improvement is statistically significant. Specifically, the univariate

tests do not reject the null hypothesis for medium or large stocks in the most recent period. However,

the multivariate tests do reject, albeit with a lower significance level. We also show that the degree

of asymmetry in the dependence structure has reduced, although it is still significant. We extend

our analysis to allow for a time varying risk premium, but find that the main empirical results are

sustained. We further investigate the variance ratios at the long horizon. Simulation experiments

indicate that our variance ratio tests are reliable, powerful against several alternatives.

In section 2 we introduce the multivariate ratio population statistics in various forms. In section

3 we introduce the estimators, while in section 4 we present the main central limit theorem and

inference methods. In section 5 we consider a number of alternative hypotheses, while in section

6 we extend the analysis to allow for a time varying risk premium. In section 7 we briefly discuss

the large dimensional case. In section 8 we present our application, while Section 9 concludes. The

appendix contains the proofs of all results and a small simulation experiment.

2 Multivariate Variance Ratios

For expositional purposes we shall suppose in this section that we have a vector stationary ergodic

discrete time series Xt ∈ Rd; formal assumptions regarding the data are given below in section 3.
Let X̃t = Xt − µ, where µ = EXt for all t. We are interested in testing the (weak form) Effi cient

Markets Hypothesis and quantifying departures from this hypothesis. This refers to whether past

prices can be used to predict future prices (beyond some risk adjustment, which initially we assume
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to be constant and be denoted by µ). "Prices" are usually taken to mean just a sequence of past

prices for the asset in question, but the spirit of this hypothesis should allow the past history of other

assets not to matter either.

It seems natural in this context to assume that the risk adjusted return process satisfies

E(X̃t|Ft−1) = 0, (1)

where Ft denotes the past history of the prices of all the assets. This is a stronger assumption than
that returns are uncorrelated with the past of all prices, i.e.,

E(X̃itX̃jt−k) = 0 (2)

for all i, j = 1, . . . , d and for all k 6= 0, which itself is a stronger assumption2 than that returns are

uncorrelated with their own past, i.e.,

E(X̃itX̃it−k) = 0 (3)

for all i and for all k 6= 0, which is what is adopted in Lo and MacKinlay (1988) (and referred

to as RW3 in Campbell, Lo, and MacKinlay (1997) and in much subsequent work). RW3 has the

advantage that if one rejects it, then one rejects the martingale hypothesis; on the other hand, if one

does not reject RW3 then one can’t conclude that the martingale hypothesis is valid.3 Throughout

we work with at least the multivariate uncorrelatedness hypothesis (2). We also develop a theory

based on the stronger martingale difference assumption, because the additional regularity conditions

can be stated very simply.

We next define the population versions of the multivariate variance ratios. Let Xt(K) = Xt +

Xt−1 + . . .+Xt−K+1 for each K, and define the following population quantities:

Σ = var(Xt) = E(X̃tX̃
ᵀ
t ) (4)

D = diag
{
E(X̃2

1t), . . . , E(X̃2
dt)
}

(5)

Σ(K) = var(Xt(K)) = E((Xt −KE(Xt)) (Xt −KE(Xt))
ᵀ
) (6)

Γ(j) = cov(Xt, Xt−j) = E(X̃tX̃
ᵀ
t−j) (7)

2This is not quite correct, since the martingale hypothesis only requires E|Xt| <∞, whereas the uncorrelatedness
hypothesis requires EX2

t <∞ in order to be formulated.
3We note that there are many tests of the martingale hypothesis that make use of more information, Hong and Lee

(2005) and Escanciano and Velasco (2006), and thereby obtain power against a larger class of alternatives.
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R(j) = Σ−1/2Γ(j)Σ−1/2 (8)

RL(j) = Γ(j)Σ−1 ; RR(j) = Σ−1Γ(j) (9)

Rd(j) = D−1/2Γ(j)D−1/2 (10)

for j = 0,±1, . . . . Here, A1/2 denotes a symmetric square root of a symmetric matrix A. We shall

assume that Σ is strictly positive definite. Note that Rd(j) is the usual definition of the cross-

(auto)correlation matrix, while R(j) is a multivariate correlation matrix.4

2.1 Two Sided Variance Ratios

Under condition (2), the variance covariance matrices obey the scaling law var(Xt(K)) = Kvar(Xt),

where K is some positive integer, from which we may obtain a number of different variance ratio

statistics.

We define the two sided matrix normalized multivariate ratio (population) statistic as

VR(K) = var(Xt)
−1/2var(Xt(K))var(Xt)

−1/2/K. (11)

Clearly, under the null hypothesis (2) we should have VR(K) = Id. Under the generic (stationary)

alternative hypothesis we have

VR(K) = I +
K−1∑
j=1

(
1− j

K

)
(R(j) +R(j)

ᵀ
), (12)

which is a symmetric matrix. The off-diagonal elements should be zero under the null hypothesis of

no predictability. Both representations (11) and (12) can be used as the basis for estimation.

An alternative multivariate normalization is given by

VRa(K) = var(Xt(K))var(Xt)
−1/K,

which can likewise generically be written

VRa(K) = I +
K−1∑
j=1

(
1− j

K

)(
RL(j) +RR(j)

ᵀ)
. (13)

4All three measures are invariant to common univariate affi ne transformations Xti 7→ α + βXti for any α, β; the

quantity Γ(j) is invariant under multivariate location and scale transformation, meaning Xt 7→ Σ−1/2(Xt − µ), while

Γd(j) is invariant under univariate location and scale transformation Xt 7→ D−1/2(Xt − µ). The cross-autocorrelation

matrix is invariant to marginalization (looking at submatrices), whereas Γ(j), ΓL(j), and ΓR(j) are not.
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This has a regression interpretation, see Chitturi (1974) andWang (2003, p62). Note that VR(K) = I

if and only if VRa(K) = I.

A third quantity is the diagonally normalized variance ratio

VRd(K) = D−1/2var(Xt(K))D−1/2/K (14)

= Rd(0) +
K−1∑
j=1

(
1− j

K

)
(Rd(j) +Rd(j)

ᵀ
), (15)

where Rd(0) = D−1/2Γ(0)D−1/2 is the d × d contemporaneous correlation matrix. Under the null

hypothesis that the series is uncorrelated, we should have VRd(K) = Rd(0) the contemporaneous

correlation matrix, whose off-diagonal elements are unrestricted by the null hypothesis. The diagonal

elements of VRd(K) correspond to the univariate variance ratio statistics, while the off-diagonal

elements provide information about the cumulative cross-dynamics between the assets. Note that

if VR(K) = I, then VRd(K)ii = 1 for all i, but not vice versa. This suggests that if one rejects a

univariate test then one would reject the multivariate test but not necessarily vice versa. Specifically,

suppose that Xt are iid but X1t = X2,t−1 then the univariate tests would fail but the multivariate

one would not.

We also consider the two parameter family of variance ratio statistics

VR(K,L) = VR(L)−1/2VR(K)VR(L)−1/2 (16)

for some positive distinct integers K and L.5 An alternative definition (that does not require com-

putation of var(Xt)) is

VR%(K,L) = var(Xt(L))−1/2var(Xt(K))var(Xt(L))−1/2 × L/K.

Under the null hypothesis (2), we have VR(K,L),VR%(K,L) = Id for all K,L. Likewise we can

define two parameter versions the other statistics:

VRa(K,L) =
L

K
var(Xt(K))var(Xt(L))−1 = VRa(K)× VRa(L)−1,

which satisfies VRa(K,L) = Id under the null hypothesis, and

VRd(K,L) =
L

K
D
−1/2
L var(Xt(K))D

−1/2
L = D

−1/2
VRd(L)VRd(K)D

−1/2
VRd(L),

where DL is the diagonal matrix of variance of sum of L period returns and DVRd(L) is the diagonal

matrix of VRd(L). Under the null hypothesis, we should have VRd(K,L) = Rd(0).

5Poterba and Summers (1988) considered this for the univariate case with monthly data and chose L = 12 through-

out while K = 1, 24, . . . , 96.
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2.2 One Sided Variance Ratios

In the univariate case, the variance ratio process and the autocorrelation function contain the same

information and one can recover the autocorrelation function from the variance ratio function. This

is not so in the multivariate case because VR(K) and VRd(K) are both symmetric matrices whereas

the autocorrelation function Rd(j) is not necessarily symmetric. In fact, one can only recover

Rd(·) + Rd(·)ᵀ or R(·) + R(·)ᵀ from the variance ratio functions VRd(·) and VR(·). This means
that information about lead lag relations are eliminated. Instead we propose the following quanti-

ties:

VR+(K) = I + 2
K−1∑
j=1

(
1− j

K

)
R(j)

VRd+(K) = Rd(0) + 2
K−1∑
j=1

(
1− j

K

)
Rd(j),

and the negative counterparts VR−(K) = VR
ᵀ

+(K) and VRd−(K) = VRdᵀ+(K), which have the

property that: VR(K) = (VR+(K) + VRᵀ
+(K))/2 and VRd(K) = (VRd+(K) + VRdᵀ+(K))/2. One

can test the null hypothesis of lack of linear predictability based on the matrices VRd+(K),VRd−(K)

and one can compare the two statistics to quantify the asymmetry in lead lag effects.

2.3 Univariate Parameters of Interest

We discuss here some univariate parameters of interest both for statistical purposes and economic

interpretatability.

2.3.1 Trace and Determinant

The determinant and trace are commonly used univariate functions of covariance matrices that

feature in a lot of likelihood ratio testing literature, see for example Szroeter (1978).6 The trace

statistic is widely used to capture the average effect of many individual variance ratios, see for

example Table 2.3 in Lo and MacKinlay (1999), and Castura et al. (2010). The Generalized Variance

Ratio (Anderson, 2003) statistic would be

det (VR(K)) =
det (Σ(K)/K)

det (Σ)
=

det (Σ(K))

Kd det (Σ)
.

6These quantities are both invariant to nonsingular linear transformations of the data, i.e., Xt 7→ a+ AXt, where

A is a nonsingular d× d matrix. Furthermore, for both these functions f, f(VRa(K)) = f(VR(K)).
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Cho and White (2014) Lemma 1 says that VR(K) = I if and only if det (VR(K)) = 1 and

tr (VR(K)) = d, so from a statistical point of view these quantities capture the meaning of the

null hypothesis.7

2.3.2 Eigenvalues

Define the spectrum σ(VR(K)) = {λ ∈ R : VR(K)x = λx for some x ∈ Rd\{0}} of the variance ratio
statistic and let λmax(K), λmin(K) denote the largest and smallest elements of σ(VR(K)). Under the

null hypothesis, λmax(K) = λmin(K) = 1, but under the alternative hypothesis they can take any

non-negative values. These quantities give univariate measures of the predictability obtainable within

the series as we next show. Consider a portfolio of assets with fixed weights w ∈ Rd. Denoting vrK(zt)

by the univariate variance ratio of the scalar series zt, and letting w̃ = Σ1/2w and Yt = Σ−1/2Xt, we

have

vrK(w
ᵀ
Xt) = vrK(w

ᵀ
Σ1/2Σ−1/2Xt)

= vrK(w̃
ᵀ
Yt)

=
w̃
ᵀ
VR(K;Yt)w̃

w̃
ᵀ
w̃

=
w̃
ᵀVR(K;Xt)w̃

w̃
ᵀ
w̃

≤ λmax(VR(K;Xt)).

This follows because VR(K;Xt) = VR(K; Σ−1/2Xt) = VR(K;Yt). This says that the largest eigen-

value of the variance ratio matrix is an upper bound on the univariate variance ratio of any portfolio

with fixed ex-post weights. Likewise, the smallest eigenvalue of the variance ratio matrix provides

a lower bound on the variance ratio of any portfolio with fixed weights. The weights that achieve

it are given by the corresponding eigenvectors of the variance ratio matrix. Compare with Lo and

MacKinlay (1999, p258).

2.3.3 Global Minimum Variance

The variance ratio matrix can also tell us about other portfolios constructed from the underlying

assets. The variance of the portfolio w
ᵀ
Xt(K) is w

ᵀ
Σ(K)w. The global minimum variance portfolio

7The Gaussian likelihood ratio test for the equality of two matrices Σ1 and Σ2 can be based on the quantity

det(Σ
−1/2
1 Σ2Σ

−1/2
1 )/(det(I + Σ

−1/2
1 Σ2Σ

−1/2
1 ))2, Anderson (2003, chapter 10).
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weights are wmv(K) = Σ(K)−1i/i
ᵀ
Σ(K)−1i, which results in global minimum variance 1/i

ᵀ
Σ(K)−1i.

By plotting this as a function of K one sees the variation of the least risk portfolio by horizon. This

comparison does not depend on the matrix Σ so if we consider the normalized returns Yt(K) =

K−1/2Σ−1/2(Xt(K)−µ) then the variance of w
ᵀ
Yt(K) is w

ᵀ
Σ−1/2Σ(K)Σ−1/2w/K = w

ᵀVR(K)w and

the best portfolio is wmv(K) = VR(K)−1i/i
ᵀVR(K)−1i with resulting variance

GMV (K) =
1

iᵀVR(K)−1i
. (17)

Under the null hypothesis this should be equal to 1/d for all K.

2.3.4 Off-Diagonal Elements

We are also interested in several other univariate parameters based on VRd+(K). First, the diagonal

elements of VRd+(K) correspond to the univariate variance ratio statistics. Second, the off-diagonal

elements of VRd+(K) provide the information about the directional lead lag pattern between the

assets. Third, the differences between two corresponding off-diagonal elements of VRd+(K) indicate

the asymmetry in the lead lag relationships between the assets. If one of the assets is a common

factor portfolio, the corresponding off-diagonal elements of VRd+(K) and VRd−(K) give an idea

of the dynamic comovement of the asset with the common factor portfolio, which could be used in

cross-sectional regression analysis.

Another parameter of interest is the average of the off diagonal elements of VRd(K), which is

CS(K) =
2

d(d− 1)

d−1∑
i=1

d∑
j=i+1

VRdij(K) =
1

d(d− 1)
{i

ᵀ
VRd(K)i− tr(VRd(K))}, (18)

see Solnik (1991) and Bailey, Kapetanios, and Pesaran (2012) who consider the case K = 0 and large

d. Under the null hypothesis CS(K) = CS(1) for all K. This measures in some average sense the

cross dependence at different lags.

2.3.5 Dynamic Momentum/Contrarian Portfolio Profit

We consider a generalization of the Lo and MacKinlay (1990) type arbitrage portfolio contrarian

strategies. Specifically, consider the following portfolio weights applied to the normalized investments

Zt = D−1/2(Xt − µ)

w̃it(K) = ± 2

d(K − 1)

K−1∑
j=1

(
1− j

K

)(
Zi,t−j − Zt−j

)
(19)
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where Zs =
∑d

i=1 Zis/d = i
ᵀ
Zs/d so that

∑d
i=1 w̃it(K) = 0. This strategy considers the signals

Zi,t−1−Zt−1, . . . , Zi,t+1−K −Zt+1−K and downweights them according to their lag: if the ± factor is
positive, this can be considered a momentum strategy, while if it is negative, this can be considered

a contrarian strategy. The expected profit of this strategy is

π±(K) = Ew̃
ᵀ
t (K)Zt = ± 2

d(K − 1)

K−1∑
j=1

(
1− j

K

)
E
[(
Zt−j − Zt−ji

)ᵀ
Zt

]
= ± 2

d2(K − 1)

K−1∑
j=1

(
1− j

K

)
E
[
i
ᵀ
Zt−jZ

ᵀ
t i
]
−± 2

d(K − 1)

K−1∑
j=1

(
1− j

K

)
E
[
Z
ᵀ
t−jZt

]
= ± 2

d2(K − 1)
i
ᵀ
K−1∑
j=1

(
1− j

K

)
R(j)

ᵀ
i−± 2

d(K − 1)
tr

(
K−1∑
j=1

(
1− j

K

)
R(j)

)

= ± 1

d2(K − 1)
i
ᵀVRd(K)i−± 1

d(K − 1)
tr (VRd(K))± 1

K − 1

(
1− 1

d2
i
ᵀ
R(0)i

)
= ± 2

d2(K − 1)

d−1∑
i=1

d∑
j=i+1

[
VRdij(K)− ρij

]
± d− 1

d2(K − 1)
tr (I − VRd(K)) .

Under the martingale hypothesis, π±(K) = 0 for all K. This quantity weights diagonal departures

and off diagonal departures similarly.

3 Estimation

Suppose that we observe the return vectors {Xt, t = 1, . . . , T} equally spaced in discrete time. We
may estimate the variance ratios in several ways, for example by estimating the sample covariance

matrix of the K frequency data and the original observations and then forming the ratio.8 We can

alternatively explicitly use the population connection with the autocorrelation matrix process in (12)

for example.

We estimate the population quantities by sample averages:

X =
1

T

T∑
t=1

Xt ; Γ̂(j) =
1

T

T∑
t=j+1

(
Xt −X

) (
Xt−j −X

)ᵀ
, j = 0, 1, 2, . . .

Σ̂(K) =
1

T

T∑
t=K

(
Xt(K)−KX

) (
Xt(K)−KX

)ᵀ
8As pointed out by Hillman and Salmon (2007) with unequally spaced data, this approach can yield a "natural"

variance ratio by classifying observations on the duration since the previous trade.
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Σ̂ = Γ̂(0) ; D̂ = diag[Γ̂(0)] ; R̂(j) = Σ̂−1/2Γ̂(j)Σ̂−1/2;

R̂d(j) = D̂−1/2Γ̂(j)D̂−1/2 ; R̂L(j) = Γ̂(j)Σ̂−1 ; R̂R(j) = Σ̂−1Γ̂(j)

V̂R(K) = I +

K−1∑
j=1

(
1− j

K

)
(R̂(j) + R̂(j)

ᵀ
)

V̂R
&

(K) = Σ̂−1/2Σ̂(K)Σ̂−1/2/K

V̂R+(K) = I + 2
K−1∑
j=1

(
1− j

K

)
R̂(j),

and likewise for V̂Rd(K), V̂R(K,L), V̂Rd & (K), etc. Note that by construction V̂R(K) and

V̂R
&

(K) are symmetric and positive semidefinite.

We may also calculate the univariate quantities by analogy. For example, define the estimated

spectrum σ̂(V̂R(K)) = {λ ∈ R : V̂R(K)x = λx for some x ∈ Rd\{0}} of the variance ratio statistic
and let λ̂max(K), λ̂min(K) denote the largest (smallest) elements of σ̂(V̂R(K)).

4 Asymptotic Theory and Inference

4.1 Regularity Conditions

We present two alternative sets of sampling assumptions, which we denote by A and MH∗. Assump-

tions MH∗ are modified versions of the assumptions in Lo and MacKinlay (1988) adapted to the

multivariate case and corrected for what appears to be an error; these conditions do not require

stationarity although certain averages need to converge. Most treatments of variance ratios follow

the Lo and MacKinlay (1988) assumption H, which includes a mixing condition and some further

restriction on the structure of the higher moments (their condition H4), which purportedly implies

that the sample autocorrelations are asymptotically independent.9 In the multivariate context, their

assumption H4 would be that

E[X̃itX̃jtX̃krX̃ls] = 0 for all i, j, k, l, t, and r, s with r < s < t. (20)

This assumption rules out leverage type effects, e.g., E[X̃2
it|X̃irX̃is] 6= 0, which may be important for

some assets, see Nelson (1991). This assumption is not necessary for the distribution theory; imposing

9Some papers including Whang and Kim (2003) dispense with this latter assumption but maintain the mixing and

moment assumption.
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it (along with other conditions) would simplify the asymptotic variance to be single finite sums rather

than double finite sums, but in practice this is not a big issue. We shall dispense with this assumption

below, but we shall make a further assumption that appears to have been omitted by mistake from

Lo and MacKinlay (1988). Namely, implicit in their analysis is that X̃tX̃t−j is uncorrelated with

X̃sX̃s−j but this does not follow from X̃t being an uncorrelated sequence (although it does follow if

X̃t were a martingale difference sequence).

Define for j, k = 0, 1, 2, . . . :

Ξjk = lim
T→∞

1

T

T∑
t=1

E
[(
X̃t−jX̃

ᵀ
t−k ⊗ X̃tX̃

ᵀ
t

)]
; cj,K = 2

(
1− j

K

)

Q(K) =
K−1∑
j=1

K−1∑
k=1

cj,Kck,K
(
Σ−1/2 ⊗ Σ−1/2

)
Ξjk

(
Σ−1/2 ⊗ Σ−1/2

)
Qd(K) =

K−1∑
j=1

K−1∑
k=1

cj,Kck,K
(
D−1/2 ⊗D−1/2

)
Ξjk

(
D−1/2 ⊗D−1/2

)
Qa(K) =

K−1∑
j=1

K−1∑
k=1

cj,Kck,K
(
Σ−1 ⊗ I

)
Ξjk

(
Σ−1 ⊗ I

)
.

We shall assume that the matrices Σ, Q(K), Qd(K), and Qa(K) are strictly positive definite. We

consider the following sets of alternative assumptions:

Assumption A.

A1. The process X̃t is a stationary ergodic Martingale Difference sequence;

A2. The process X̃t has finite fourth moments, i.e., for all i, j, k, l, E[|X̃itX̃jtX̃ktX̃lt|] <∞.

Assumption MH*.

MH1. (i) For all t, X̃t satisfies EX̃t = 0, E
[
X̃tX̃

ᵀ

t−j
]

= 0 for all j 6= 0; (ii) for all t, s with s 6= t and

all j, k = 1, . . . , K, E
[
X̃tX̃

ᵀ

t−j ⊗ X̃sX̃
ᵀ

s−k
]

= 0.

MH2. X̃t is α-mixing with coeffi cient α(m) of size r/(r − 1), where r > 1, such that for all t and

for any j ≥ 0, there exists some δ > 0 for which suptE|X̃itX̃k,t−j|2(r+δ) < ∆ < ∞ for all

i, k = 1, . . . , d;
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MH3. For all j, k, the following limits exist: limT→∞
1
T

∑T
t=1E[X̃tX̃

ᵀ
t ] =: Σ <∞ and

limT→∞ T
−1∑T

t=1E
[
X̃t−jX̃

ᵀ

t−k ⊗ X̃tX̃
ᵀ
t

]
=: Ξjk <∞.

Chen and Deo (2006) work with martingale difference sequence but also assume a no leverage

condition. In MH∗ we include the additional condition (ii) E[X̃tX̃
ᵀ

t−j⊗X̃sX̃
ᵀ

s−k] = 0, for all s 6= t and

all j, k = 1, . . . , K; this is not a consequence of (2) in general. Without this additional assumption the

asymptotic variance of the variance ratio statistics are much more complicated and hard to estimate,

involving the selection of a bandwidth parameter. Condition MH1(ii) is satisfied automatically under

the martingale hypothesis, which itself is consistent with any kind of nonlinear multivariate ("semi-

strong") GARCH process. In assumption A, we have assumed strict stationarity, whereas this is not

required in MH∗ (although certain sums have to converge in MH3, which would rule out explosive

nonstationarity).10 In MH∗ we have assumed higher moments depending on the mixing decay rate,

whereas for assumption A only four moments are required and no explicit mixing conditions are

employed. It should be noted therefore that the conditions A and MH∗ are non-nested. We further

note that under the assumption that returns are i.i.d. (referred to as RW1 in Campbell, Lo, and

MacKinlay (1997)), the univariate version of the CLT’s below are valid under only second moments,

Brockwell and Davis (1991, Theorem 7.2.2), due to the self normalization present in the sample

autocorrelations. For similar reasons, condition MH3 may not be strictly necessary in that mildly

trending moments may still permit a CLT at the same rate due to the cancellation of numerator by

denominator.

We remark that this theory is predicated on the existence of fourth moments, which may be

problematic for some financial time series. Provided only the population variance exists, the matrix

normalized variance ratio converges in probability to the identity, but may have a non-standard

limiting distribution and a slower rate of convergence to it, Phillips and Solo (1992) and Mikosch

and Stărică (2000).11 Even if the population variance does not exist, the sample variance ratio may

converge, due to the self-normalization, but one can expect a different scaling law. For example, if

the return process is iid with a symmetric stable distribution with parameter α ∈ [1, 2], then the

sample variances scale according to K2/α, that is, as T →∞, V̂R(K)→ K(2−α)/α for all K. This is

similar asymptotic behaviour to what is found under the bubble process of section 5.2 below when

10In the working paper version of this paper (HLZ) we extended conditions A to allow for a time varying mean (that

has to be estimated) and a time varying variance (that does not have to be estimated).
11For stationary univariate linear processes, the sample autocorrelations can be root-T consistent and asymptotically

normal under only second moment assumptions, Brockwell and Davis (1991, Theorem 7.2.2), but this result does not

hold for nonlinear processes like GARCH.

15



α = 1. Wright (2000) has proposed variance ratios based on signs and ranks that are robust to heavy

tailed distributions, although require stronger assumptions elsewhere.

4.2 Finite/fixed horizon Limiting Distribution Theory

We next present our main results. In this subsection we consider the finite K framework.

Theorem 1. Suppose that either Assumption A or MH ∗ holds. Then, as T →∞:
√
Tvec

(
V̂R+(K)− Id

)
=⇒ N

(
0, Q(K)

)
√
Tvec

(
V̂Rd+(K)− R̂d(0)

)
=⇒ N

(
0, Qd(K)

)
√
Tvec

(
V̂Ra+(K)− Id

)
=⇒ N

(
0, Qa(K)

)
.

Asymptotic results for the corresponding two-sided statistics can be derived using the matrix

transformation argument of Magnus and Neudecker (1980). In the paper it is shown that for any

square matrix A, 1
2
vech

(
A+ A

ᵀ)
= L1

2
(I +K) vec (A) = D+

n vec (A) where L andK are the so-called

elimination and commutation matrices, respectively, and D+
n is the Moore-Penrose pseudoinverse of

the duplication matrix. The reader is referred to their paper (Lemma 3.1 and 3.6) for precise definition

of these matrices. It now follows that

√
Tvech

(
V̂R(K)− Id

)
=⇒ N

(
0, S(K)

)
, (21)

where S(K) = D+
nQ(K)D+

ᵀ

n . Likewise,
√
Tvech(V̂Rd(K)− R̂d(0)) =⇒ N

(
0, Sd(K)

)
and

√
Tvech(V̂Ra(K)−Id) =⇒ N

(
0, Sa(K)

)
, where Sd(K) = D+

nQd(K)D+
ᵀ

n and Sa(K) = D+
nQa(K)D+ᵀ

n .

We note that (under our conditions) the difference between V̂R
&

(K) and V̂R(K) for example is

negligible, i.e., Op(T
−1), see (51), so these statistics have exactly the same limiting distribution.

Limiting distributions for smooth functions of the variance ratio matrices can be obtained by

the delta method. For any f : Rd(d+1)/2 → R that is differentiable at θ0(≡ vech(Id) or vech(Γ̂d(0)),

respectively), we have

√
T

[
f
(

vech
(
V̂ R(K)

))
− f

(
vech (Id)

)]
=⇒ N

(
0,∇f(θ0)

ᵀ
S(K)∇f(θ0)

)
, (22)

where

∇f(θ0)
ᵀ ≡

(
∂f(y)

∂y1
, . . . ,

∂f(y)

∂yd(d+1)/2

)∣∣∣∣∣
y=θ0
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and likewise for the diagonally normalized statistic and the right normalized one. It is straightforward

to obtain the asymptotic distributions of the CS, GMV , π, and other statistics; we collect the

formulae below in the table.

Statistic Asymptotic Variance12

det(V R(K)), det(V Rd(K)) δ
ᵀ
S(K)δ, δ

ᵀ
Sd(K)δ

tr(V R(K)), tr(V Rd(K)) δ
ᵀ
S(K)δ, δ

ᵀ
Sd(K)δ

GMV (K), CS(K), π(K) d−4i
ᵀ
D+
n S(K)D+ᵀ

n i, 1
d2(d−1)2 b

ᵀ
Sd(K)b, c

ᵀ
Qd(K)c

V Rij(K), V Rdij(K) e
ᵀ
ijS(K)eij, e

ᵀ
ijSd(K)eij

For the individual eigenvalues, we employ a different approach as they are not smooth functions

of the variance ratio matrix under the null hypothesis. Specifically, Eaton and Tyler (1991, Theorem

3.2) show that if the random symmetric matrix
√
T (V̂R(K) − Id) converges in distribution to a

matrix random variable, denoted W, then with id = (1, 1, . . . , 1)
ᵀ

√
T
(
ϕ(V̂R(K))− id

)
=⇒ ϕ(W ), (23)

where ϕ(V̂R(K)) and ϕ(W ) are d×1 vectors of ordered eigenvalues λj ∈ ϕ(V̂R(K)) and λ∗j ∈ ϕ(W ),

respectively. Using the continuous mapping theorem (and/or the delta method) on (23), we may

also derive asymptotics for the functions of univariate eigenvalues. For instance,
√
T (λmax − 1) ,

√
T (λmin − 1) =⇒ (λ∗max, λ

∗
min) .

4.3 Standard Errors

From the expressions in Theorem 1 we can obtain pointwise confidence intervals for scalar functions

of the matrices V̂R(K) or V̂Rd(K)− R̂d(0) or V̂Ra(K). Specifically, let

Ξ̂jk =
1

T

T∑
t=max{j,k}+1

(
Xt−j −X

) (
Xt−k −X

)ᵀ
⊗
(
Xt −X

) (
Xt −X

)ᵀ
(24)

Q̂(K) =
K−1∑
j=1

K−1∑
k=1

cj,Kck,K

(
Σ̂−1/2 ⊗ Σ̂−1/2

)
Ξ̂jk

(
Σ̂−1/2 ⊗ Σ̂−1/2

)
(25)

12Here, i is a conformable column vector of ones, δ = vech(Id), b := i − δ, and c is a column vector that has

(1 − d)/(d2(K − 1)) at (l(d + 1) + 1)th entries (l = 0, . . . , d − 1), and 1/(d2(K − 1)) at other entries. Also, eij is a

column vector having ones at d(j − 1) + i− {1 + · · ·+ (j − 1)} entries and zeros otherwise.
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and Ŝ(K) = D+
nQ(K)D+

ᵀ

n . Similarly, we may define Q̂a(K) and Ŝa(K), replacing Σ̂−1/2 ⊗ Σ̂−1/2 by

Σ̂−1 ⊗ I in (25). For the diagonal statistic define Q̂d(K) and Ŝd(K), replacing Σ̂−1/2 by D̂−1/2 in

(25). Specifically, the standard error for V̂Rdii(K) is

Q̂dii(K) =
1

σ̂2ii

K−1∑
j=1

K−1∑
k=1

cj,Kck,KΞ̂ii;jk (26)

Ξ̂ii;jk =
1

T

T∑
t=max{j,k}+1

(
Xit−j −X i

) (
Xit−k −X i

) (
Xit −X i

)2
σ̂ii =

1

T

T∑
t=1

(
Xit −X i

)2
.

The standard errors for ĜMV (K), π̂(K), and other univariate quantities can be obtained from

this.

Corollary 1. Suppose that either Assumption A or MH ∗ holds. Then (for each fixed K) the

estimator Q̂(K) is weakly consistent for Q(K) (likewise, Q̂d(K) and Q̂a(K) are weakly consistent

for Qd(K) and Qa(K)), i.e., as T →∞,

Q̂(K)
P−→ Q(K).

It follows from this that Theorem 1 can be extended to include the feasible normalized test

statistics.

Note that under the Lo and MacKinlay (1988) condition H4 (i.e. (20)) we have Ξjk = 0 for j 6= k,

so that the asymptotic variance simplifies, a little. The commonly used standard error is in matrix

notation

Q̂dLM(K) =
K−1∑
j=1

c2j,K

(
D̂−1/2 ⊗ D̂−1/2

)
Ξ̂jj

(
D̂−1/2 ⊗ D̂−1/2

)
, (27)

whose diagonal elements can be compared with (26).

In the iid case, we further have Ξjj = Σ⊗ Σ and:

Qiid(K) =
K−1∑
j=1

c2j,KId2 ; Q̂diid(K) =
K−1∑
j=1

c2j,K(R̂d (0)⊗ R̂d (0)) ; Q̂aiid(K) =
K−1∑
j=1

c2j,K(Σ̂−1⊗ Σ̂). (28)

In the scalar case these are all nuisance parameter free. As we show in the application, the standard

errors derived from (25), (27), and (28) can be quite different; generally speaking the standard errors
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from Q̂(K) are larger than the standard errors from Q̂LM(K), which in turn are larger than the

standard errors from the i.i.d special case Q̂iid(K) =
∑K−1

j=1 c
2
j,KId2 .

Alternative inference methods such as self-normalization, or bootstrap and subsampling may

give better results, although they are designed to accommodate the more general uncorrelatedness

assumption that allows E
[
X̃tX̃

ᵀ

t−j⊗ X̃sX̃
ᵀ

s−k
]
6= 0 for some s 6= t. The readers are directed to Lobato

(2001) and Whang and Kim (2003) for description of these methods. In the Appendix we present a

bias correction method based on asymptotic expansions, which may give better performance for long

lags.

4.4 Two Parameter Statistics and Effi ciency

For the two parameter variance ratio statistic V̂R(K,L) we obtain under the same conditions (either

A or MH) that √
Tvech

(
V̂R(K,L)− Id

)
=⇒ N (0, S(K,L)) , (29)

where S(K,L) = D+Q(K,L)D+
ᵀ
with

Q(K,L) =
K−1∑
j=1

K−1∑
k=1

c̃j,K,Lc̃k,K,L
(
Σ−1/2 ⊗ Σ−1/2

)
Ξjk

(
Σ−1/2 ⊗ Σ−1/2

)
,

c̃j,K,L = cj,K − cj,L = 2

(
K − L
KL

j

)
1(j ≤ L− 1) + 2

(
1− j

K

)
1(L ≤ j ≤ K − 1).

Similar results hold for the other two parameter statistics. Note that under the iid case,

Qiid(K,L) =
K−1∑
j=1

c̃2j,K,LId2

We can compare the relative effi ciency of the two parameter variance ratio estimator V̂R(LJ, L)

relative to the one parameter variance ratio estimator V̂R(J), for any positive integers L, J . We

show that the relative effi ciency (when returns are iid) for the general J, L ≥ 2 case is

Qiid(LJ, L)

LQiid(J)
=

∑JL−1
j=1 c̃2j,JL,L

L
∑J−1

j=1 c
2
j,J

=
(2J − 2)L2 + 1

L2 (2J − 1)

= 1− L2 − 1

L2 (2J − 1)
> 2/3

< 1.
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This gives quite modest improvements in effi ciency.

4.5 Increasing horizon Limiting Distribution Theory

In this section we consider the case where K is allowed to increase. Richardson and Stock (1989)

considered the framework in which K = K(T ) and K/T → δ < 1. Deo and Richardson (2003)

point out that under this particular restriction variance ratio test is not consistent against several

important mean reverting alternatives. Chen and Deo (2006) consider an alternative framework that

allows K to increase in such a way that K/T tends to zero. They assumed a set of rather strong

conditions on cross-moments (see their Assumption A3) that include a no-leverage condition, and a

mixing-like condition (Assumption A6) that forces asymptotic independence of the process. We shall

suppose that K2/T → 0 and otherwise impose weaker conditions that include Assumption A above.

Denote by Q(K) = K−1Q(K), Qd(K) = K−1Qd(K), and Qa(K) = K−1Qa(K). Furthermore,

define the matrix

Q(∞) := lim
K→∞

Q(K) = lim
K→∞

1

K

[
K−1∑
j=1

K−1∑
k=1

cj,Kck,K
(
Σ−1/2 ⊗ Σ−1/2

)
Ξjk

(
Σ−1/2 ⊗ Σ−1/2

)]

and similarly Qd(∞) = limK→∞Qd(K), and Qa(∞) = limK→∞Qa(K).

Assumption T. The horizon K = K(T )→∞ in such a way that K2/T → 0 as T →∞.

Assumption C. The following double sum is finite:
∑∞

p=−∞
∑∞

q=−∞ |κ(0, 0, p, q)| < ∞, where
κ(a, b, c, d) is the cumulant of 4th order between (X̃a, X̃b, X̃c, X̃d).

It can be shown that Assumption C (along with Assumption A) is suffi cient to guarantee the

existence and positive definiteness of the matrix limitsQ(∞), Qa(∞) andQd(∞). Assuming absolute

summability of cumulants is rather common in the time series literature as it is rather a weak

condition; it is not necessarily implied by ergodicity, but by a mild α-mixing condition (along with

some higher moment condition) as is shown by Andrews (1991, Lemma 1). For example Assumption

MH2 is suffi cient for Assumption C.

We note that Assumption MH* itself alone is not suitable for deriving the limiting distribution

when K is an increasing sequence, because the mixing property is (usually) not preserved under a

measurable transformation of infinite dimension; g : R∞ → R, although one could work with near
epoch dependence to obtain a similar result.
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Theorem 2. Suppose that Assumptions A, T and C hold. Then:

Q(K)−1/2
√
T

K
vec
(
V̂R+(K)− Id

)
=⇒ N (0, Id2)

Qd(K)−1/2
√
T

K
vec
(
V̂Rd+(K)− R̂d(0)

)
=⇒ N (0, Id2)

Qa(K)−1/2
√
T

K
vec
(
V̂Ra+(K)− Id

)
=⇒ N (0, Id2) .

As in the finite K framework, the ‘two-sided’versions of the variance ratio statistics (and the univari-

ate functions thereof) can be obtained by standard matrix transformation arguments. Now define

Q̂(K) =
K−1∑
j=1

K−1∑
k=1

cj,Kck,K

(
Σ̂−1/2 ⊗ Σ̂−1/2

)
Ξ̂jk

(
Σ̂−1/2 ⊗ Σ̂−1/2

)
Ξ̂jk =

1

T

T∑
t=max{j,k}+1

(
Xt−j −X

) (
Xt−k −X

)T ⊗ (Xt −X
) (
Xt −X

)T
.

Corollary 2. Suppose that either Assumption A, and additionally T and C hold. Then, as T →∞,

K−1Q̂(K)−Q(K)
P−→ 0.

This says that the inference methods we apply in the finite K case can be carried over to the

increasing K case, at least where K is not too large relative to the square root of the sample size.

5 Alternative Hypotheses

There are many plausible alternative hypotheses to the null hypothesis (2). We look in detail at

several alternative models in this section. In general they yield a prediction of the form

ΣT (K) = KΣ + ∆(K,T ), (30)

where ∆(K,T ) is a symmetric matrix such that ΣT (K) > 0.

5.1 Local Alternatives

We first extend the arguments presented by Faust (1992) to the multivariate case and show that a

trace test will be optimal against a certain class of alternatives. The type of mean reversion against

which the test is best at detecting will be shown to be a special case of V AR(K − 1). The main
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idea is to find a statistic that is asymptotically equivalent to the likelihood ratio statistic, since

in such a case the test based on that statistic will possess the same local large-sample optimality

properties of LR tests, see Engle (1984). Below we show that the statistic based on tr(V̂ R(K))

(defined formally in section 8.1.3. below) is optimal (under normality) for testing the null hypothesis

of no predictability/serial correlation, against the alternative hypothesis that each marginal process

{Xjt}t, j = 1, . . . , d belongs to what is called the φ−best class proposed by Faust (1992). The
φ−best class is a particular class of AR(K − 1) models, and is defined as the set of those having AR

polynomials ρq(L) that satisfy

ρq
(
z
)
ρq
(
z−1
)

= α
(
1 + qφ(z)φ(z−1)

)
(31)

for some constants q and α > 0, and z inside the unit circle; the coeffi cients for the moving average

filter φ(L) are φj = +1 for all j = 0, . . . , K−1. From the definition we see that under the alternative

hypothesis, {Xt} essentially belongs to a (particular) class of vector autoregressive process V AR(K−
1). We note that when q = 0 the process is a white noise (in weak sense of uncorrelatedness, although

with joint normality this automatically implies independence). Denote by X the T × d matrix of

sample observations. Then formally, the null and alternative hypotheses can be written as

H0 : X ∼ N T
d

(
iµ

ᵀ
, IT ⊗ Σ

)
[Uncorrelatedness]

H1 : X ∼ N T
d

(
iµ

ᵀ
,Σq∗ ⊗ Σ

)
[‘φ− best’temporal dependence]

where Σq∗ refers to the variance-covariance matrix of the φ− best class process with the index of the
process q = q∗ > 0. The notation N T

d stands for a matrix normal variable; each matrix (separated by

the Kronecker product) in the variance represents the contribution from cross-sectional and temporal

sides, respectively. So essentially, this is a one-sided test of the index q being zero versus q being a

strictly positive constant. Examination of the local large-sample optimality is done by letting the

index q∗ = q∗(T ) = δ/
√
T in the alternatives, where δ determines the direction to which the test

departs from the null hypothesis.

Proposition FaustM. Suppose that the data is normally distributed. Then, the trace test is

locally most powerful (MP) invariant against alternatives in the φ−best class of the form q∗T = δ/
√
T .

It may be possible to characterize the class of alternatives against which other tests, such as the

determinant test, are optimal.

The trace test, while optimal against the specific class above, may have zero power against some

alternatives, as we next discuss. Suppose that ∆(K,T ) = ∆(K)/
√
T , then

√
T (VR(K)− I) =

1

K
Σ−1/2∆(K)Σ−1/2 ;

√
T (VRd(K)−Rd(0)) =

1

K
D−1/2∆(K)D−1/2.
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Provided∆(K) is strictly definite, some tests based on these matrices will have positive power against

this alternative. On the other hand, in some cases, the power may be zero. Specifically, suppose

we take the trace test applied to the diagonally normalized variance ratio matrix, i.e., compare

tr(V̂Rd(K)) − d (c.f. Castura et al. (2010)) with the critical values from its normal limit given

above, then if ∆(K) is of the form

∆ij(K) =

{
δ(K) if i 6= j

0 if i = j

for some nonzero δ(K), then this test will have zero power (although note in this case the trace of

the matrix normalized statistics will have power).

5.2 Multivariate Fads Model

We consider an alternative to the effi cient market hypothesis (2), which allows for temporary mis-

spricing through fads but assures that the rational price dominates in the long run. Consider the

multivariate fads model for log prices:

p∗t = µ+ p∗t−1 + εt (32)

pt = p∗t + ηt, (33)

where εt is iid with mean zero and variance matrix Ωε, while ηt is a stationary weakly dependent

process with unconditional variance matrix Ωη, and the two processes are mutually independent. It

follows that the observed return satisfies

Xt = pt − pt−1 = µ+ εt + ηt − ηt−1. (34)

This is a multivariate generalization of the scalar Muth (1960) model, which was advocated in Poterba

and Summers (1988). It allows actual prices p to deviate from fundamental prices p∗ but only in the

short run through the fad process ηt. This process is a plausible alternative to the effi cient markets

hypothesis. If ηt were i.i.d., then Xt would be (to second order) an MA(1) process, which is a

structure implied by a number of market microstructure issues (Hasbrouck (2007)). In this case,

VR(K) = I + (1− 1

K
)(R(1) +R(1)

ᵀ
) = I − 2(1− 1

K
) (Ωε + 2Ωη)

−1/2 Ωη (Ωε + 2Ωη)
−1/2 ,

and likewise for VRd(K).
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In general, however, ηt might have any type of weak dependence structure. We next derive a

restriction on the long run variance ratio statistic that should reflect the fads process. We do not

restrict the fads process, and so can only obtain long run implications.

Consider the K period returns Xt(K) = Kµ + pt − pt−K =
∑t

s=t−K εs +
∑t

s=t−K(ηs − ηs−1) =

Kµ+
∑t

s=t−K εs + ηt − ηt−K . These have variance

ΣK = var(Xt(K)) = var

(
t∑

s=t−K
εs

)
+ var

(
ηt − ηt−K

)
= KEεsε

ᵀ
s + E

(
(ηt − ηt−K)(ηt − ηt−K)

ᵀ)
= KΩε + Ωη(K),

where Ωη(k) = var
(
ηt − ηt−k

)
≥ 0, k = 1, 2, . . . . Therefore, VR(K) = Σ

−1/2
1 ΣKΣ

−1/2
1 /K and

VRd(K) = D
−1/2
1 ΣKD

−1/2
1 /K. The next result shows the behaviour of this variance ratio statis-

tic in long horizons.

Theorem 3. Suppose that the multivariate fads model (32)-(33) holds and suppose that cov(ηt+j, ηt)→
0 as j → ∞. Then, VR(∞) = limK→∞ VR(K) = I +

∑∞
j=1(R(j) + R(j)

ᵀ
) exists. Further suppose

that Ωη(1) > 0. Then,

VR(∞) < Id

in the matrix partial order sense. Likewise, VRd(∞) = limK→∞ VRd(K) exists, and

VRd(∞) < Rd(0).

This result generalizes the existing results for the scalar fads process, which amount to VRdii(∞) ≤
Rdii(0) for i = 1, . . . , d. In Theorem 3, we obtain stronger constraints on the off diagonal elements

of VRd(∞) and VR(∞). Note that we also obtain GMV (K)→ GMV (∞) > 1/d as a corollary.

For the two parameter statistics we have:

VR(∞, L),VR%(∞, L) < Id = VR(∞,∞),VR%(∞,∞) < VR(K,∞),VR%(K,∞). (35)

Specifically, when both K,L→∞, the limit is the identity matrix. This says that if the fads model
is assumed at very high frequency (consistent with intraday sampling), then the doubly long horizon

statistic approaches the identity matrix. If microstructure were the cause of the misspricing, its effect

would be washed out in long horizon weekly or even daily variance ratios.

We consider what happens to the long horizon sample variance ratio statistic under the fads

model. We will consider the case where K →∞ as T →∞ such that K/T → 0 (in contrast with the

framework of Richardson and Stock (1989)). The consistency follows from the theory for the long run
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variance ratio, Parzen (1957), Andrews (1991), and Liu and Wu (2010). We adopt the framework of

Liu and Wu (2010) and suppose that

Xt = R (. . . , et−1, et) ,

where et are i.i.d random vectors of length p ≥ d. This includes a wide range of linear and nonlinear

processes for ηt, εt. Then define

δt = E [‖(R (. . . , e0, . . . , et−1, et)−R (. . . , e′0, . . . , et−1, et))‖] ,

where e′t is an i.i.d. copy of et and ||.|| denotes the Euclidean norm.
Assumption B. The vector process Xt is stationary with finite fourth moments and weakly

dependent in the sense that
∑∞

t=1 δt <∞.
Theorem 4. Suppose that the multivariate fads model (32)-(33) holds along with Assumption B,

and suppose that K →∞ as T →∞ such that K/T → 0. Then,

V̂R(K)
P−→ VR(∞).

Likewise, V̂Rd(K) consistently estimates VRd(∞). More generally, we could obtain the limiting

distribution of V̂R(K) − VR(K) under either fixed K or K increasing asymptotics applying the

methods of Liu andWu (2010), but the limiting variance in either case is going to be very complicated.

5.3 Bubble Process

Several authors argue that the frequently observed excessive volatility in stock prices may be at-

tributed to the presence of speculative bubbles. Blanchard and Watson (1982) and Flood and Ho-

drick (1986), inter alia, demonstrate in a theoretical framework that bubble components potentially

generate excessive volatility. There is some debate about whether these constitute rational adjust-

ment to fundamental pricing rules or arise from more behavioural reasons. Recently, Phillips and Yu

(2010), and Phillips, Shi, and Yu (2012) have considered the following class of "bubble processes"

for (log) prices pt

pt = µ+ pt−11 (t < τ e) + δT1 (τ e ≤ t ≤ τ f ) pt−1 +

 t∑
s=τf+1

εs + p∗τf

 1 (t > τ f ) + εt1 (t ≤ τ f ) , (36)

where p∗τf represents the restarting price after the bubble collapses at time τ f , and δT = 1 + c/Tα for

α ∈ (0, 1) and c > 0. The process is consistent with the effi cient markets hypothesis during [1, τ e] and
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[τ f , T ] but has an explosive "irrational" moment in the middle. They propose econometric techniques

to test for the presence of a bubble and indeed multiple bubbles. One can imagine this model also

holding for a vector of asset prices caught up in the same bubble, so that εt is a vector of shocks, the

indicator function is applied coordinatewise, and the coeffi cient δT is replaced by a diagonal matrix.

In the appendix we show that in the univariate bubble process with nontrivial bubble epoch (i.e.,

(τ f − τ e)/T → τ 0 > 0), that, as T →∞

V̂R(K)
P−→ K (37)

for all K, so that the variance ratio statistic is greater than one for all K and gets larger with horizon.

Essentially, the bubble period dominates all the sample statistics, and all return autocorrelations

converge to one inside the bubble period, thereby making the ratio equal to the maximum it can

achieve. In the multivariate case, the situation is more complicated, although Magdalinos (2014) has

shown that in some special cases, λmax(V̂R(K))
P−→ K.

In practice, rolling window versions of the variance ratio statistics can detect the bubble period in

a similar way to the Phillips, Shi and Yu (2012) statistics (although they are not explicitly designed

for this purpose and are not optimal for it). Our point here is just that these two different alternative

models generate opposite predictions with regard to the variance ratio. We will check this empirically

below.

5.4 Locally Stationary Alternatives

Suppose that Xt = Xt,T can be approximated by a family of locally stationary processes {Xt(u),

u ∈ [0, 1]}, Dahlhaus (1997). For example, suppose that Xt = εt + Θ(t/T )εt−1, where Θ(·) is a
matrix of smooth functions and εt is iid. This allows for zones of departure from the null hypothesis,

say for u ∈ U, where U is a subinterval of [0, 1], e.g., Θ(u) 6= 0 for u ∈ U . For example, during

recessions the dependence structure may change and depart from effi cient markets, but return to

effi ciency during normal times. This is consistent with the Adaptive Markets Hypothesis of Lo

(2004, 2005) whereby the amount of ineffi ciency can change over time depending on " the number of

competitors in the market, the magnitude of profit opportunities available, and the adaptability of

the market participants".

Let X̃t(u) = Xt(u)− EXt(u) and:

Σ(u) = var(Xt(u)) = E(X̃t(u)X̃
ᵀ
t (u))
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D(u) = diag
{
E(X̃2

1t(u)), . . . , E(X̃2
dt(u))

}
Γu(j) = E(X̃t(u)X̃

ᵀ
t−j(u)).

The sample autocovariances converge, under some conditions, to the integrals of the autocovariances,

e.g., Γ̂(j)→
∫ 1
0

Γu(j)du. Then, define

R(j) =

(∫ 1

0

Σ(u)du

)−1/2 ∫ 1

0

Γu(j)du

(∫ 1

0

Σ(u)du

)−1/2
.

It follows that under local stationarity

V̂R(K)
P−→ I +

K−1∑
j=1

(
1− j

K

)
(R(j) +R(j)

ᵀ
).

The test will have power against some alternatives where Γu(j) 6= 0 for u ∈ U and Γu(j) = 0 for

u ∈ U c.

5.5 Nonlinear Processes

In general, the class of statistics we consider will not have power against all nonlinear alternatives,

Hong (2000). In that case, one may work with nonlinear transformations Yt = τ(Xt) such as the

quantile hit process, Han et al. (2014), and then calculate the "variance ratio" equivalent through

(12)-(14). Wright (2000) has proposed variance ratios based on signs and ranks that have similar

objectives.

6 Time Varying Risk Premium

It is now widely accepted that the risk premium is time varying, Mehra and Prescott (2008), in

which case the tests discussed above are invalid in the sense that any rejection of the null hypothesis

could be ascribed to omitting the risk premium. We investigate here how to adjust the variance

ratio statistics and their critical values in this case. There are many papers that model the market

risk premium and its evolution over time. One line of work specifies a parametric model for the

vector of conditional means µt(θ0) = E(Xt|Ft−1), where the information set includes just past price
information. For example, Engle, Lilien and Robins (1987) consider a multivariate ARCH model

consistent with the conditional CAPM where the dynamic risk premium is related to the conditional

covariance matrix of returns. This is appropriate for the medium frequency settings such as daily
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or weekly data, where only price data are available. Another line of work, associated with lower

frequency macro and accounting data, involves specifying parametrically the stochastic discount

function in terms of state variables like consumption. We note that generally the estimation of the

risk premium parameters would affect the asymptotic distribution of the variance ratio statistics

in a complicated way, and the details vary considerably according to the model adopted. We have

considered two frameworks that allow for time varying risk premia but where the consequence for

inference is not too onerous.13

We adopt a standard linear factor model for returns with constant betas but allow for time varying

risk premia through the common factor dynamics. Specifically, we suppose that

Xit = αi + β
ᵀ
i Ft + εit; i = 1, . . . , d, (38)

where βi = (β1i, β2i, . . . , βPi)
ᵀ
is the vector of factor loadings for stock i, and Ft = (f1t, f2t, . . . , fPt)

ᵀ

is the vector of common factors that may be observed or unobserved, and may be lagged.14 We

assume at least that the factors are uncorrelated with the idiosyncratic errors, which are themselves

cross sectionally and temporally uncorrelated:

E(εit) = 0, for all i, t; cov(fjt, εis) = 0, for all j, i, t, s,

cov(εit, εjs) =

 σ2i (< σ2 <∞) if i = j, t = s

0 otherwise.
(39)

Then define the P × P time invariant covariance matrix of the factors, var(Ft) = ΣF , and likewise

the diagonal covariance matrix of the idiosyncratic errors var(εt) = Dε. It follows that

var(Xt) = βΣFβ
ᵀ +Dε,

var(Xt(K)) = βvar(Ft(K))βᵀ + var(εt(K)),

where Ft(K) and εt(K) are defined similarly to Xt(K).We allow the common risk factors Ft to have

a time varying risk premium that we do not specify. In particular, they may be weakly dependent so

13In the the working paper version of this paper (HLZ, 2014) we considered an approach in which a deterministic

nonparametric specification was adopted. We allowed for a slowly evolving risk premium that perhaps also varied

according to the day of the week. We showed that provided the nonparametric trend functions were estimated suitably,

that essentially the same standard errors could be used to conduct inference about the remaining predictability.
14Lo and MacKinlay (1999, chapter 9) consider a similar setting except they work with scalar lagged factors in a

regression framework. Their purpose is to obtain maximally predictable portfolios based on the factor relation.
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that E (fjt|Ft−1) = µj(Ft−1) for some unknown functions µj(.). This implies that the risk premium
of asset i is of the form E (Xit|Ft−1) = αi + β

ᵀ
i µ(Ft−1) and varies over time in a potentially quite

general way (that we will not model) except that it is only driven by the common risk factors. More

usefully, it follows that

var(Xt(K))/K = β

(
ΓF (0) +

K−1∑
j=1

(
1− j

K

)
(ΓF (j) + ΓF (j)

ᵀ
)

)
βᵀ +Dε,

where ΓF (0) = ΣF and ΓF (j) are the autocovariance matrices of the factor process. In this case, the

variance ratio statistics we developed earlier would reject the null hypothesis, but in a rather specific

way. We have

VR(K)− I = var(Xt)
−1/2 [var(Xt(K))/K − var(Xt)] var(Xt)

−1/2

= (βΣFβ
ᵀ +Dε)

−1/2
K−1∑
j=1

(
1− j

K

)
β(ΓF (j) + ΓF (j)

ᵀ
)βᵀ (βΣFβ

ᵀ +Dε)
−1/2 .

This matrix is zero under the null of no predictability at all. Under the hypothesis that all the

predictability is coming from the common factors, we should have that VR(K)− I is non zero but of
rank less than or equal to P . This hypothesis could be tested under weak assumptions, specifically

without specifying the factors, although it would require a complicated limit theory.

Instead, we shall suppose that the common factors are observed, e.g., the Fama French factors.

We pursue an explicit regression method to obtain residuals ε̂it that can be tested for the hypothesis

that the idiosyncratic error is uncorrelated or a martingale difference sequence

E (εit|Ft−1) = 0. (40)

We estimate θi = (αi, β
ᵀ
i )

ᵀ
by the time series least squares estimator

θ̂i = (α̂i, β̂
ᵀ

i )
ᵀ

=

(
T∑
s=1

GsG
ᵀ
s

)−1 T∑
s=1

GsXis,

where Gs = (1, F
ᵀ
s )

ᵀ
. Then define the residuals ε̂it = Xit − α̂i − β̂

ᵀ

i Ft. We apply the variance ratio

tests described above on these residuals as if we knew the thetas, and show that this is valid.

Define V̂Rε+(K), V̂Rdε+(K), and V̂Raε+(K) as the variance ratio statistics computed with the OLS

residuals. Furthermore, define Qε(K), Qdε(K), Qaε(K) as above but with the vector of idiosyncratic

errors εt replacing X̃t.

29



We now introduce new sets of assumptions required for the asymptotic theory, both of which are

rather direct extensions of Assumptions A and MH* we had before.

Assumption AF.

A1. Ft and εt are jointly stationary and ergodic, and are uncorrelated to each other both cross-

sectionally and temporally. In particular εt and Rt := εt−j ⊗ Ft are Martingale Difference

sequence with respect to past history of F and ε;

A2. The process εt has finite fourth moments, i.e., ∀i, j, k, l, E[|εitεjtεktεlt|] <∞.

A3. The process Ft has finite second moments. E[|FtF
ᵀ
t |] <∞.

Assumption MHF*.

MH1. (i) For all t, εt satisfies Eεt = 0, E[εtε
ᵀ
t ] = 0 for all j 6= 0; (ii) for all t, s with s 6= t and all

j, k = 1, . . . , K, E[εtε
ᵀ
t−j ⊗ εsε

ᵀ
s−k] = 0;

MH2. Zt := (F
ᵀ
t , ε

ᵀ
t ) is α-mixing with coeffi cient α(m) of size r/(r − 1), where r > 1, such that for

all t and for any j ≥ 0, there exists some δ > 0 for which suptE|ZitZk,t−j|2(r+δ) < C <∞ for

all i, k = 1, . . . , d;

MH3. For all j, k, the following limits exist: limT→∞
1
T

∑T
t=1E[εtε

ᵀ
t ] =: Σ <∞ and

limT→∞ T
−1∑T

t=1E[ε
ᵀ
t−jεt−k ⊗ εtε

ᵀ
t ] =: Ξjk <∞

Theorem 5. Suppose that either Assumption AF or MHF* holds. Then, as T →∞:
√
Tvec

(
V̂Rε+(K)− Id

)
=⇒ N (0, Qε(K))

√
Tvec

(
V̂Rdε+(K)− R̂d(0)

)
=⇒ N (0, Qdε(K))

√
Tvec

(
V̂Raε+(K)− Id

)
=⇒ N (0, Qaε(K)) .

Let

Q̂ε(K) =

K−1∑
j=1

K−1∑
k=1

cj,Kck,K

(
Σ̂−1/2 ⊗ Σ̂−1/2

)
Ξ̂jk

(
Σ̂−1/2 ⊗ Σ̂−1/2

)
.

Corollary 3. Suppose that either Assumption AF or MHF* holds, then the estimator Q̂ε(K) is

weakly consistent for Qε(K) (likewise Q̂dε(K) and Q̂aε(K) are weakly consistent for Qdε(K) and

Qaε(K)); i.e.

Q̂ε(K)
P−→ Qε(K). (41)
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In fact, we can allow the betas to vary slowly over time and to vary by day of the week or

recession/boom categorization using the techniques developed in (HLZ, 2014). In practice, working

with subperiods and weekly data goes some way to addressing these issues. In any case, there

are some arguments that return predictability is primarily driven by time-series variation in risk

premiums: Ferson and Korajczyk (1995), for example, argue that less than 1% of the predictable

variation in returns to changing conditional betas.

7 Large Dimensional Data

We briefly consider some issues that arise when the dimensions d are large. In this case, the covariance

matrices Σ and Σ(K) may be ill conditioned, and so forming the ratio (11) may not be practically

feasible or theoretically valid; likewise for any functions derived thereof such as the eigenvalues. The

diagonal variance ratio matrix and simple univariate quantities derived from it like CS(K) may

fare better in this situation, since the marginal variances should be bounded away from zero. We

remark that Castura, Litzenberger, Gorelick, and Dwivedi (2010) report the average variance ratio

of the Russell 1000 and Russell 2000 stocks, which amounts to
∑d

i=1 V̂Rdii(K)/d. They do not

report standard errors for this quantity, perhaps on the grounds that d is large ( since d = 3000).

However, when the individual stocks are contemporaneously correlated, which they typically are15,

the averaging will not reduce the order of magnitude of the standard error. Specifically, under the

iid assumption, the correlation between V̂Rdii(K) and V̂Rdjj(K) will be proportional to ρ2ij, where

ρij is the contemporaneous correlation between the returns on stock i and stock j. Under a factor

model type assumption, it is straightforward to calculate the standard errors for
∑d

i=1 V̂Rdii(K)/d

in the large d, T case. However, for nonlinear functions of VRd(K) such as its eigenvalues, or for

quantities derived from VR(K), the large d theory is more complicated.

An alternative strategy in the large d case may be to calculate scalar ratios from the matrix

scaling law Σ(K) = KΣ. Specifically, if we calculate the ratio of the eigenvalues rather than the

eigenvalues of the ratio, we may obtain better performance for moderate sized d by only looking

at the upper ends of the marginal eigenvalue distributions. However, when d is comparable with

T, one must use some sparsity structure or shrinkage method to obtain reasonable performance for

complicated nonlinear functions of the covariance matrices.

15Although for very high frequency data, the correlation maybe quite small, Sheppard (2013).
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8 Application

We apply our methodology to U.S. stock return data. In particular, we use weekly size-sorted equal-

weighted portfolio returns from the Center for Research in Security Prices (CRSP) from 06/07/1962

to 27/12/2013.16 Essentially the same data were used in Lo and MacKinlay (1988) and Campbell,

Lo and Mackinlay (1997), which allows us to make comparison with their results, and to extend it

to the more recent period.17

8.1 Short to Medium Horizon

8.1.1 Evidence on Linear Predictability

According to the results of Theorem 1 and Corollary 1, we report the test statistics

Zd(K) =
√
T
(
θᵀl Q̂d(K)θl

)−1/2 [
θᵀl vec

(
V̂ Rd+(K)− R̂d (0)

)]
=⇒ N(0, 1),

where θl is a d2 × 1 vector. ZdLM(K) and Zdiid(K) are defined similarly but using Q̂dLM(K) and

Q̂diid(K) respectively. In the following, we use Zd(K), ZdLM(K) and Zdiid(K) statistics to test

some specific linear function of vec
(
V̂Rd+(K)− R̂d (0)

)
matrix.

We first test for the absence of serial correlation in each of three weekly size-sorted equal-weighted

portfolio returns (smallest quintile, central quintile, and largest quintile). The null hypothesis is

[VRd+(K)]ll = 1, l = 1, . . . , d where d = 3 and K = 2, 4, 8, 16. We use Zd(K), ZdLM(K) and

Zdiid(K) statistics by setting θl as a vector that is 1 at the ((l − 1)(d+ 1) + 1)th entry and 0 otherwise.

16The data are obtained from Kenneth French’s Data Library. It was created by CMPT_ME_RETS using the

2013/12 CRSP database. It contains value- and equal-weighted returns for portfolios in five size quintiles. We

compute weekly returns of portfolios by adding up Monday to Friday’s daily returns.
17In general we compute variance ratio statistics over a given window, denoted W, that has a time span TW . This

allows the mean return or even the factor betas to vary with the window. In the working paper version (HLZ, 2014)

we considered a framework where the window size was small relative to the whole available sample and so TW /T → 0.

We invoked theory for kernel smoothing methods to give a theoretical treatment. We shall not pursue this here but

our framework does allow for windows to vary but with sample sizes TW proportional to the full sample size. We

may also allow for "day of the week" effects quite simply in our existing framework. To be specific consider the two

parameter statistic V̂R(K,L).We may compute this using returns computed with different starting points indexed by

∆ with ∆ = 1, . . . , L. In general then we obtain statistics that may be denoted V̂RW,∆(K,L) with W denoting the

particular window and ∆ denoting the "day of the week". Implicitly we are allowing the mean return vector to vary

with W,∆, i.e., µ = µ(W,∆), so that our procedures are robust to variation in the mean across subperiods and days

of the week.
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To compare with the results reported in Campbell, Lo and Mackinlay (1997, P71, Table 2.6), we

divide the whole sample to three subsamples: 62:07:06-78:09:29 (848 weeks), 78:10:06-94:12:23 (847

weeks) and 94:12:30-13:12:27 (992 weeks). Table 1-A reports the results for the portfolio of small-size

firms (smallest CRSP quintile), Table 1-B reports the results for the portfolio of medium-size firms

(central CRSP quintile), and Table 1-C reports the results for the portfolio of large-size firms (largest

CRSP quintile).

Table 1-A: Variance ratios for weekly small-size portfolio returns

Lags

Sample period # of obs K = 2 K = 4 K = 8 K = 16

62:07:06– 78:09:29 848 1.43 1.93 2.46 2.77

(8.82)∗ (8.49)∗ (7.00)∗ (5.59)∗

(8.82)∗ (10.81)∗ (11.00)∗ (9.33)∗

(12.46)∗ (14.47)∗ (14.39)∗ (11.70)∗

78:10:06– 94:12:23 847 1.43 1.98 2.65 3.19

(6.20)∗ (7.07)∗ (7.37)∗ (6.48)∗

(6.20)∗ (8.62)∗ (10.69)∗ (10.70)∗

(12.52)∗ (15.25)∗ (16.26)∗ (14.45)∗

94:12:30– 13:12:27 992 1.21 1.47 1.7 1.82

(3.30)∗ (3.58)∗ (3.35)∗ (2.50)∗

(3.30)∗ (4.13)∗ (4.15)∗ (3.44)∗

(6.59)∗ (7.91)∗ (7.43)∗ (5.82)∗

Table 1-B: Variance ratios for weekly medium-size portfolio returns
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Lags

Sample period # of obs K = 2 K = 4 K = 8 K = 16

62:07:06– 78:09:29 848 1.25 1.54 1.79 1.91

(5.41)∗ (5.55)∗ (4.35)∗ (3.22)∗

(5.41)∗ (6.41)∗ (5.93)∗ (4.69)∗

(7.37)∗ (8.42)∗ (7.78)∗ (6.05)∗

78:10:06– 94:12:23 847 1.20 1.37 1.54 1.56

(3.29)∗ (3.35)∗ (3.18)∗ (2.14)∗

(3.29)∗ (3.72)∗ (3.90)∗ (2.93)∗

(5.73)∗ (5.80)∗ (5.36)∗ (3.74)∗

94:12:30– 13:12:27 992 0.99 1.05 1.02 0.89

(−0.02) (0.38) (0.10) (−0.38)

(−0.02) (0.43) (0.11) (−0.48)

(−0.04) (0.78) (0.20) (−0.78)

Table 1-C: Variance ratios for weekly large-size portfolio returns

Lags

Sample period # of obs K = 2 K = 4 K = 8 K = 16

62:07:06– 78:09:29 848 1.05 1.15 1.21 1.19

(1.05) (1.64) (1.23) (0.68)

(1.05) (1.54) (1.32) (0.84)

(1.59) (2.33)∗ (2.06)∗ (1.29)

78:10:06– 94:12:23 847 1.03 1.06 1.08 1.01

(0.63) (0.61) (0.54) (0.03)

(0.63) (0.65) (0.59) (0.04)

(0.95) (0.91) (0.75) (0.04)

94:12:30– 13:12:27 992 0.93 0.94 0.89 0.81

(−0.99) (−0.46) (−0.53) (−0.62)

(−0.99) (−0.52) (−0.61) (−0.77)

(−2.05)∗ (−1.01) (−1.14) (−1.35)

Variance ratios reported in the main rows are the diagonal elements of V̂ Rd+(K). Test statistics (Zd(K),

ZdLM(K) and Zdiid(K)) in parentheses marked with asterisks indicate that the variance ratios are statistically

different from one at 5% level of significance.
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The results for the earlier sample periods are broadly similar to those in Campbell, Lo and

Mackinlay (1997, P71, Table 2.6) who compared the period 1962-1978 with the period 1978-1994

as well as the combined period 1962-1994. The variance ratios are greater than one and deviate

further from one as the horizon lengthens. The departure from the random walk model is strongly

statistically significant for the small and medium sized firms, but not so for the larger firms.

When we turn to the later period 1994-2013 we see that the variance ratios all reduce in magnitude.

For the smallest stocks the statistics are still significantly greater than one and increase with horizon.

However, they are much closer to one at all horizons and the statistical significance of the departures

is substantially reduced. For medium sized firms, the variance ratios are reduced. They are in some

cases below one and also no longer increasing with horizon. They are insignificantly different from

one. For the largest firms, the ratios are all below one but are statistically inseparable from this value.

One interpretation of these results is that the stock market (at the level of these portfolios) has become

closer to effi cient benchmark. This is consistent with the evidence presented in Castura, Litzenberger,

Gorelick, and Dwivedi (2010) for high frequency stock returns. The biggest improvements seem to

come in the most recent period, especially for the small stocks.

The test statistics change quite a lot depending on which covariance matrix Q̂(K), Q̂LM(K) or

Q̂iid(K) one uses, and in some cases this could affect ones conclusions, for instance, for large-size

portfolio, test statistics based on Q̂iid(K) in some periods are statistically significant. Our sample

size is relatively large, and for smaller samples, the differences could bite.

We may wish to test whether the variance ratio has "improved" significantly from one period (A)

to the next (B). For this purpose we consider the statistic

τAB =
(
V̂Rd

A

+(K)− R̂d
A

(0)
)
−
(
V̂Rd

B

+(K)− R̂d
B

(0)
)
, (42)

where V̂Rd
j

+(K) and R̂d
j
(0) denote the variance ratio statistic and the correlation matrix computed

in period j = A,B. Under the martingale null hypothesis, the two subsample variance ratio statistics

are asymptotically independent and the asymptotic variance of the
√
Tvec(τAB) is just the sum

of the subperiod covariance matrices QdA(K) + QdB(K). For example, we may consider the single

element of statistic [V̂Rd
A

(K)]ll − [V̂Rd
B

(K)]ll and compare it with the square root of the sum of

the square of the associated standard errors to obtain a "test" of the hypothesis that the effi ciency

has improved across subperiods. For example, in Table 1-A, the change of the variance ratio for

small stocks of 1.43 in the period 78:10:06-94:12:23 to 1.21 during 94:12:30-13:12:27 is statistically

significant according to this calculation.
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We have carried out this calculation using the Friday to Friday weekly returns as the base series,

but we have also done it for other days of the week and for the two parameter statistic. Qualitatively

the results are similar. Results are available from the authors upon request. We present here the

two parameter statistics for comparison, i.e., V̂Rd+(5K, 5) for K = 2, 4, 8, and 16 using daily returns

of these three size sorted portfolios. We test the null of
[
V̂Rd+(K5, 5)− R̂d (0)

]
ll

= 0. The test

statistics Zd(5K, 5) are defined similarly as Zd(K) but using V̂Rd+(5K, 5) and Q̂d (5K, 5) . Results

are reported in Table 2.

Table 2: Two parameter variance ratios for daily size sorted portfolio returns

Lags

Sample period # of obs K = 2 K = 4 K = 8 K = 16

A. small-size portfolio

62:07:02– 78:09:29 4240 1.34 1.77 2.24 2.51

(8.58)∗ (8.46)∗ (7.18)∗ (5.74)∗

78:10:02– 94:12:23 4235 1.39 1.88 2.48 2.97

(5.82)∗ (6.30)∗ (7.26)∗ (7.36)∗

94:12:26– 13:12:27 4960 1.20 1.45 1.69 1.80

(5.70)∗ (6.12)∗ (5.62)∗ (4.30)∗

B. medium-size portfolio

62:07:02– 78:09:29 4240 1.21 1.45 1.68 1.79

(6.48)∗ (6.04)∗ (4.88)∗ (3.82)

78:10:02– 94:12:23 4235 1.16 1.28 1.40 1.41

(2.86)∗ (2.48)∗ (2.52)∗ (2.00)∗

94:12:26– 13:12:27 4960 0.98 1.01 0.99 0.88

(−0.84) (0.12) (−0.06) (−0.92)

C. large-size portfolio

62:07:02– 78:09:29 4240 1.06 1.13 1.18 1.17

(2.06)∗ (2.06)∗ (1.66) (1.04)

78:10:02– 94:12:23 4235 1.00 0.98 0.96 0.89

(0.12) (−0.26) (−0.40) (−0.842)

94:12:26– 13:12:27 4960 0.91 0.88 0.86 0.80

(−3.12)∗ (−2.04)∗ (−1.54) (−1.46)

Two parameter variance ratios reported in the main rows are the diagonal elements of V̂ Rd+(5K, 5). Test
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statistics Zd(5K, 5) in parentheses marked with asterisks indicate that the variance ratios are statistically different

from one at 5% level of significance.

The results of two-parameter variance ratio test are similar to the single parameter ones, but the

effi ciency is improved by using two-parameter variance ratio tests. On the other hand the pooled

two parameter statistic effectively imposes the same mean across each day of the week and so is less

robust to such seasonal patterns. The results are similar to Table 1 although in some cases, the test

statistics become marginally significant in the later period.

8.1.2 Lead Lag Relationships

We next test zero cross-autocorrelation (no lead-lag relationship) between returns of different size

portfolios. Based on the multivariate ratio statistic VRd+(K), we test the hypothesis that

[VRd+(K)−Rd(0)]lh = 0, for l, h = 1, 2, 3, l 6= h, using Zd(K) statistics. Results are reported in

Table 3.

Table 3: Lead-lag patterns between weekly size-sorted portfolio returns
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V̂Rd+(K)− R̂d(0) To

Lags Sample period From small medium large

K = 2 62:07:06– 94:12:23 small 0.20 (5.74)∗ 0.04 (1.15)

medium 0.39 (9.61)∗ 0.05 (1.47)

large 0.32 (8.21)∗ 0.21 (5.42)∗

94:12:30– 13:12:27 small −0.02 (−0.33) −0.07 (−1.01)

medium 0.20 (3.32)∗ −0.05 (−0.83)

large 0.17 (2.74)∗ −0.01 (−0.08)

K = 4 62:07:06– 94:12:23 small 0.406 (5.42)∗ 0.08 (1.14)

medium 0.84 (10.39)∗ 0.12 (1.756)

large 0.67 (9.03)∗ 0.41 (5.75)∗

94:12:30– 13:12:27 small −0.00 (−0.00) −0.09 (−0.63)

medium 0.43 (3.54)∗ −0.05 (−0.38)

large 0.34 (2.93)∗ 0.04 (0.38)

K = 8 62:07:06– 94:12:23 small 0.57 (4.11)∗ 0.10 (0.73)

medium 1.38 (10.21)∗ 0.18 (1.53)

large 1.07 (9.29)∗ 0.59 (5.24)∗

94:12:30– 13:12:27 small −0.05 (−0.25) −0.16 (−0.72)

medium 0.60 (3.28)∗ −0.13 (−0.61)

large 0.51 (2.81)∗ 0.05 (0.27)

K = 16 62:07:06– 94:12:23 small 0.54 (2.39)∗ −0.03 (−0.11)

medium 1.77 (9.11)∗ 0.13 (0.68)

large 1.36 (8.42)∗ 0.64 (3.80)∗

94:12:30– 13:12:27 small −0.21 (−0.62) −0.28 (−0.83)

medium 0.67 (2.45)∗ −0.26 (−0.86)

large 0.61 (2.22)∗ −0.03 (−0.10)

The off-diagonal elements of V̂ Rd+(k)−R̂d(0) are reported. Test statistics marked with asterisks indicate that

null hypothesis is rejected at 5% level of significance.

The results suggest there are strong lead-lag relationships, where medium and large firms lead and

small firms lag for all horizons for both sample periods, although the evidence attenuates in the later

period, especially at the longer horizon. Nevertheless, there is statistical significance at the 5% level
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in all such cases. The sign of these terms are all positive and increase with horizon. Also, the size of

the coeffi cients decreases substantially in the later sample period. The evidence is weaker for cross-

autocorrelation between current returns of medium sized firms and past returns of small and large

ones. We do find that there is evidence of such relationships in the earlier sample period. However,

in the later period none of these effects is significant. Finally, with regard to cross-autocorrelation

between current returns of large firms and past returns of small and medium sized ones, in no

period do we find evidence of this. These results may be interpreted as being consistent with the

explanations given in Campbell, Lo and Mackinlay (1997). This is also inconsistent with the random

walk hypothesis, but the declining statistical significance may be consistent with improvements in

the effi ciency of these markets. This test is related to the Granger noncausality test proposed in

Pierce and Haugh (1977), where the series are prewhitened before testing zero cross-autocorrelation.

We also check if the lead-lag patterns are asymmetric. We test the null hypotheses that [VRd+(K)−
Rd(0)]lh −[VRd+(K) − Rd(0)]hl = 0, for l, h = 1, 2, 3, l > h, using Zd(K) statistics. Results are

reported in Table 4.

Table 4: Asymmetry of lead-lag patterns[
V̂Rd+(K)− R̂d(0)

]
lh
−
[
V̂Rd+(K)− R̂d(0)

]
hl

Lags Sample period (S →M)− (M → S) (S → L)− (L→ S) (M → L)− (L→M)

K = 2 62:07:06– 94:12:23 −0.19 (−8.75)∗ −0.28 (−8.58)∗ −0.16 (−8.10)∗

94:12:30– 13:12:27 −0.22 (−6.62)∗ −0.23 (−6.38)∗ −0.05 (−2.31)∗

K = 4 62:07:06– 94:12:23 −0.44 (−9.63)∗ −0.59 (−8.68)∗ −0.29 (−7.46)∗

94:12:30– 13:12:27 −0.43 (−7.15)∗ −0.43 (−6.32)∗ −0.09 (−2.37)∗

K = 8 62:07:06– 94:12:23 −0.81 (−10.58)∗ −0.97 (−8.98)∗ −0.40 (−7.02)∗

94:12:30– 13:12:27 −0.68 (−7.19)∗ −0.67 (−5.79)∗ −0.17 (−3.00)∗

K = 16 62:07:06– 94:12:23 −1.23 (−10.16)∗ −1.38 (−8.18)∗ −0.51 (−6.05)∗

94:12:30– 13:12:27 −0.88 (−6.26)∗ −0.89 (−5.27)∗ −0.23 (−3.03)∗

S is portfolio of small firms,M is portfolio of medium firms, and L is portfolio of large firms. Test statistics marked

with asterisks indicate that the lead-lag relationship is statistically asymmetric at 5% level of significance.

These results can be compared with Campbell, Lo and Mackinlay (1997, P71, Table 2.9) who look

at the asymmetry of the cross-autocorrelation matrices. We find the same direction of asymmetry

consistent with their results. The statistical significance does decline in the second period, but is

still quite strong.
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8.1.3 Multivariate Tests

The above univariate variance ratio tests gave evidence of predictability in smaller size portfolios.

We next test for the absence of serial correlation for the vector of multiple size sorted portfolios,

based on univariate parameters derived from VR(K) and VRd(K). Specifically, we consider CS(K),

GMV (K), and π(K), as well as the trace and determinant of these matrices. We consider the

following test statistics whose distribution theories follow directly from Theorem 1 and Corollary 1:

ZCS(K) =
√
T
(
Q̂CS(K)

)−1/2 [
ĈS(K)− ĈS(1)

]
⇒ N (0, 1)

ZGMV (K) =
√
T
(
Q̂GMV (K)

)−1/2 [
ĜMV (K)− 1

3

]
⇒ N (0, 1)

Zπ(K) =
√
T
(
Q̂π(K)

)−1/2
π̂(K)⇒ N (0, 1)

Ztr(K) =
√
T
(
Q̂tr(K)

)−1/2 [
tr
(
V̂R(K)

)
− 3
]
⇒ N (0, 1)

Zdt(K) =
√
T
(
Q̂dt(K)

)−1/2 [
det(V̂R(K))− 1

]
⇒ N (0, 1)

ZF (K) = Tvech
(
V̂R(K)− I

)ᵀ
Ŝ(K)−1vech

(
V̂R(K)− I

)
=⇒ χ2(d(d+ 1)/2),

where: Q̂CS(K) = θᵀl Q̂d (K) θl and θl is a d2 × 1 vector that is 0 at the ((l − 1)(d+ 1) + 1)th entries

(l = 1, . . . , d) and 1 at the other entries; Q̂GMV (K) = iᵀŜ(K)i
d4

; Q̂π(K) = cᵀQ̂d(K)c, where c is a

vector that is (1− d)/(d2(K − 1)) at ((l− 1)(d+ 1) + 1)th entries (l = 1, . . . , d), and is 1/(d2(K − 1))

at other entries; Q̂tr(K) = δᵀŜ (K) δ = Q̂dt(K), where δ = vech(Id).

Test results based on these statistics are reported in the following table.

Table 5: Multivariate variance ratio tests for weekly size sorted portfolio returns
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Lags

K = 2 K = 4 K = 8 K = 16

First period: 62:07:06-78:09:29

ĈS(K)− ĈS(1) 0.21 0.46 0.69 0.81

(5.04)∗ (5.23)∗ (4.15)∗ (3.09)∗

ĜMV (K) 0.39 0.42 0.43 0.41

(4.30)∗ (3.53)∗ (2.08)∗ (1.01)

π̂(K) 0.0209 0.0180 0.0124 0.0065

(5.20)∗ (7.10)∗ (6.59)∗ (5.01)∗

tr(V̂ R(K)) 3.61 4.16 5.22 5.44

(6.59)∗ (7.79)∗ (6.89)∗ (4.90)∗

det(V̂ R(K)) 1.62 2.67 3.61 3.57

(6.72)∗ (8.95)∗ (8.10)∗ (5.15)∗

ZF (K) 128.51∗ 122.06∗ 86.39∗ 52.06∗

Second period: 78:10:06-94:12:23

ĈS(K)− ĈS(1) 0.19 0.38 0.59 0.65

(3.49)∗ (3.72)∗ (3.68)∗ (2.64)∗

ĜMV (K) 0.39 0.42 0.41 0.37

(4.24)∗ (3.19)∗ (1.87) (0.49)

π̂(K) 0.0210 0.0197 0.0162 0.0119

(4.05)∗ (5.99)∗ (7.17)∗ (6.94)∗

tr(V̂ R(K)) 3.46 4.27 5.33 6.45

(5.08)∗ (7.31)∗ (8.06)∗ (7.57)∗

det(V̂ R(K)) 1.37 1.94 2.48 2.82

(4.03)∗ (5.38)∗ (5.11)∗ (3.99)∗

ZF (K) 114.27∗ 124.62∗ 123.80∗ 103.19∗
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Third period: 94:12:30-13:12:27

ĈS(K)− ĈS(1) 0.04 0.11 0.14 0.08

(0.63) (0.91) (0.71) (0.29)

ĜMV (K) 0.34 0.35 0.33 0.27

(0.42) (0.47) (−0.14) (−0.77)

π̂(K) 0.0067 0.0090 0.0065 0.0039

(2.19)∗ (3.89)∗ (3.36)∗ (2.53)∗

tr(V̂ R(K)) 3.09 3.46 3.79 4.08

(0.87) (2.30)∗ (2.36)∗ (2.03)∗

det(V̂ R(K)) 1.03 1.28 1.38 1.36

(0.31) (1.39) (1.12) (0.69)

ZF (K) 67.28∗ 73.23∗ 61.90∗ 48.20∗

The estimates of statistics are reported in the main rows. Test statistics in parentheses marked with asterisks

indicate statistically significant at 5% level. ZF (K) is marked with asterisks if it is larger than 12.592, the 5%

critical value of χ2(6).

We next check whether our results are driven by the choice of subsamples, which we have chosen

to match the choices made by CLM for the purpose of replication and comparison. We carry out a

rolling window analysis with a (trailing) window of 500 weeks from the beginning of the sample to

the end. Below we show the time series of (standard normal) test statistics ZCS(K), ZGMV (K) and

Zπ(K) for K = 4. This shows that for GMV and CS the sustained decline in statistical significance

happened in the decade ending in 2008, although there was an earlier dip in significance in the decade

ending in 1999. The profits measure π has shown a slower but equally sustained drop in statistical

significance. There are some sudden jumps (both up and down) to the level of this statistic, which

may be a cause for concern in practice.
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Figure 1: Trends of test statistics

8.1.4 Time Varying Risk Premium

In this section we consider whether the above results are explicable as coming from a time varying

systematic risk factor. We use ten size sorted portfolios to run the following Fama and French’s

3-factor regression model,

Xlt = αi + β1,l(Rmt −Rft) + β2,lSMBt + β3,lHMLt + εlt,

where Xlt is lth size sorted portfolio returns, Rmt − Rft is market premium, SMBt is small size

premium, and HMLt is value premium. We then apply the OLS residuals to calculate the variance

ratio statistics, based on which we test the predictability in residuals. The results of ZF (K) statistics

are reported in the following table. To compare the predictability of stock returns before and after

the factor model, we also report the ZF (K) statistics for the constant mean adjustment case.

Table 6: Tests based on ZF (K) statistics (10 size-portfolios)
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Lags

Sample period # of obs Risk Premium K = 2 K = 4 K = 8 K = 16

62:07:06-78:09:29 848 constant mean 207.95∗ 201.88∗ 156.35∗ 126.60∗

factor model 124.35∗ 138.12∗ 109.63∗ 89.16∗

78:10:06-94:12:23 847 constant mean 223.17∗ 229.89∗ 227.92∗ 214.77∗

factor model 205.07∗ 237.23∗ 241.83∗ 234.15∗

94:12:30-13:12:27 992 constant mean 127.04∗ 140.70∗ 128.43∗ 109.81∗

factor model 97.03∗ 116.47∗ 113.11∗ 96.84∗

Test statistics is marked with asterisks if it is larger than 82.267, the 1% critical value of χ2(55).

The results show that while the factor model reduces the level of the test statistic, it remains

strongly significant, suggesting that the time series predictability in stock returns cannot be captured

purely by a time varying risk premium in the common risk factors.

We also look at the quadratic form based on only the diagonal elements of V̂Rd+(K) and a

quadratic form based on only the off-diagonal elements of V̂Rd+(K)

ed(K) = diag
(
V̂Rd+(K)− R̂d (0)

)
; eoff(K) = offdiag

(
V̂Rd+(K)− R̂d (0)

)
,

where diag is the operator to select diagonal elements and offdiag is the operator to select all off-

diagonal elements. Under the null, we have ed(K) = 0 and eoff(K) = 0. The test statistics are

defined as

ZF1(K) = T · ed(K)
ᵀ · αᵀ

1Q̂d(K)−1α1 · ed(K) =⇒ χ2(d)

ZF2(K) = T · eoff(K)
ᵀ · αᵀ

2Q̂d(K)−1α2 · eoff(K) =⇒ χ2(d(d− 1))

where α1 is a d2 × d matrix whose lth column is 1 at the ((l − 1)(d + 1) + 1)th entry and 0 at the

other entries. and α2 is a d2 × (d2 − d) matrix which is obtained by deleting ((l − 1)(d + 1) + 1)th

columns from Id2 matrix. The results of ZF1(K) and ZF2(K) statistics based on constant mean and

factor model adjustment are reported in the following table.

Table 7: Tests based on ZF1(K) and ZF2(K) statistics (10 size-portfolios)
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Lags

Sample period # of obs Statistics Risk Premium K = 2 K = 4 K = 8 K = 16

62:07:06-78:09:29 848 ZF1(K) constant mean 113.90∗ 108.82∗ 85.21∗ 66.17∗

factor model 45.22∗ 47.80∗ 35.81∗ 22.31∗

ZF2(K) constant mean 233.78∗ 245.55∗ 235.64∗ 214.51∗

factor model 141.52∗ 161.35∗ 129.92∗ 110.44∗

78:10:06-94:12:23 847 ZF1(K) constant mean 76.94∗ 85.98∗ 99.55∗ 93.00∗

factor model 108.97∗ 127.47∗ 143.15∗ 152.06∗

ZF2(K) constant mean 204.97∗ 210.81∗ 244.07∗ 248.85∗

factor model 136.04∗ 174.99∗ 196.58∗ 194.68∗

94:12:30-13:12:27 992 ZF1(K) constant mean 67.15∗ 78.33∗ 65.38∗ 52.64∗

factor model 38.42∗ 48.88∗ 45.38∗ 37.20∗

ZF2(K) constant mean 188.12∗ 222.24∗ 218.00∗ 195.87∗

factor model 138.13∗ 134.99∗ 139.21∗ 136.28∗

Test statistics ZF1(K) is marked with asterisks if it is larger than 23.209, the 1% critical value of χ2(10). Test

statistics ZF2(K) is marked with asterisks if it is larger than 124.116, the 1% critical value of χ2(90).

This shows that a lot of the power is coming from the off diagonal elements.

8.2 Long Horizon

We investigate the variance ratios at the long horizon. We again consider the three size-sorted CRSP

portfolios. First, we evaluate the long run behaviour of the variance ratio statistics. In this case, we

work with the bias-corrected estimators (defined in Appendix 10.1)

V̂R
bc

(K) = V̂R(K)

{
1 +

K − 1

T

}
; V̂Rd

bc
(K) = V̂Rd(K)

{
1 +

K − 1

T

}
. (43)

We show below the eigenvalues of V̂R
bc

(K) for three weekly size-sorted CRSP portfolio returns

against lags in three sub-samples: the red dashed lines are for eigenvalues of V̂R
bc

(K) in the first

sub-sample (62:07:06-78:09:29) and the green marked lines are for eigenvalues of V̂R
bc

(K) in the

second sub-sample (78:10:06-94:12:23), and the blue solid lines are for eigenvalues of V̂R
bc

(K) in the

third sub-sample (94:12:30-13:12:27).

45



Figure 2: The eigenvalues of the variance ratio for weekly CRSP size sorted portfolio returns in

three sub-samples as a function of lags.

We see that the largest eigenvalue increases steadily out to the two year horizon we consider

in all three subperiods. In fact, the increase appears to be linear in lag, although the slope is far

less than one. The last subperiod has the lowest values throughout, while surprisingly, the second

period 1978-1994 seems to have the largest amount of potential linear predictability that could have

been exploited during this period. The second and third eigenvalues are quite flat and close to one

throughout. This evidence does not seem to be consistent with the fads model, or even the bubble

process.

We next evaluate the long run behaviour of the CS(K) statistics. Specifically, we consider two

one sided statistics:

ĈS±(K) =
2

d(d− 1)

d−1∑
i=1

d∑
j=i+1

[
V̂Rd

bc

±(K)

]
ij

These statistics measure in some average sense the cross dependence for certain directions. We

show below the CS+(K) and CS_(K) statistics for three weekly size-sorted CRSP portfolio returns

against lag K in three sub-samples: the red solid line is for CS+(K) in the first sub-sample (62:07:06-

78:09:29), the red dashed line is for CS+(K) in the second sub-sample (78:10:06-94:12:23), the red
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marked line is for CS+(K) in the third sub-sample (94:12:30-13:12:27); the blue solid line is for

CS−(K) in the first sub-sample, the blue dashed line is for CS−(K) in the second sub-sample, and

the blue marked line is for CS−(K) in the third sub-sample.

Figure 3: CS+(K) and CS_(K) statistics for weekly size sorted CRSP portfolio returns in three

sub-samples as a function of lags.

In each subperiod, the CS+(K) measures all exceed the CS−(K) measures over all lags, which

means that the average directional cross dependence from larger-size portfolios to smaller-size port-

folios are stronger than those in the opposite directions, up to two years. The CS+(K) measures

decrease in the recent period over the long horizon. Also the shape of the term structure is quite flat

in the most recent period, whereas in the second period, and to a lesser extent in the first period, there

seems to be a hump shaped curve suggesting this dependence reaches a maximum somewhere between

10 and 30 weeks. We can further detect that the average statistic, CS(K) = [CS+(K) + CS−(K)] /2,

measuring the average cross dependence for both directions between three size-sorted CRSP portfo-

lios, becomes weaker (more effi cient) in recent periods along the long horizon.

We then examine the long runGMV (K) statistics. We show below theGMV (K) for three weekly

size-sorted CRSP portfolio returns against lags in three sub-samples: the blue line is for GMV (K) in
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the first sub-sample (62:07:06-78:09:29) and the green line is for GMV (K) in the second sub-sample

(78:10:06-94:12:23), and the red line is for GMV (K) in the third sub-sample (94:12:30-13:12:27).

Figure 4: GMV(K) statistics for weekly size sorted CRSP portfolio returns in three sub-samples as

a function of lags.

We lastly investigate the long run π(K) statistics. We show below the π(K) for three weekly

size-sorted CRSP portfolio returns against lags in three sub-samples: the blue line is for π(K) in

the first sub-sample (62:07:06-78:09:29) and the green line is for π(K) in the second sub-sample

(78:10:06-94:12:23), and the red line is for π(K) in the third sub-sample (94:12:30-13:12:27).
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Figure 5: π(K) statistics for weekly size sorted CRSP portfolio returns in three sub-samples as a

function of lags.

9 Conclusions

The first methodological point we make is to propose confidence intervals that are consistent under

the martingale hypothesis alone and do not require an additional no leverage/symmetric distribution

assumption such as maintained in Lo and MacKinlay (1988), CLM, and in much subsequent work.

Our confidence intervals are typically larger than those used elsewhere, and therefore reduce the

significance of any associated test. We believe our theory is more credible with regard to the data

generating process we expect for daily or even lower frequency stock returns. The second contribution

is about embedding this theory in a multivariate framework. The multivariate variance ratios provides

a basis for aggregating the the cross correlation behaviour of asset returns and providing tests of the

multivariate null hypothesis. It implies many more restrictions on the data than the univariate ratios.

Our empirical work reports that the US size sorted stock portfolios seem to have come closer to
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the effi cient markets prediction, although, especially for small caps, there remains some statistically

significant linear predictability. Although many of the individual variance ratio statistics do not

reject the null hypothesis with our standard errors, the joint tests of the multivariate hypothesis

reject at the 1% level in all cases.

Typically, three competing explanations are advanced for the predictability in short horizon re-

turns based on past prices (Boudoukh, Whitelaw, and Richardson (1994)): First, microstructure

effects such as nonsynchronous trading and bid ask bounce. Second, time varying risk premia.

Third, the irrational behaviour of market participants. It would seem that there is a lot of evidence

that microstructure effects have reduced considerably over time. For example, it is hard to find even

small cap stocks that do not trade now many times during a day. The microstructure explanation

would imply that the long horizon daily or weekly variance ratios should return to unity, but this is

not the case in our data even for the most recent period. We also provided a test of whether the auto-

correlations could be explained by time varying risk premia inside a Fama French factor model. We

found that this approach could not capture all the linear dependency in the data. Therefore, the first

two explanations do not seem to be able to match the magnitude of the effects. On the other hand,

the magnitude of the predictability has reduced in the most recent period. Furthermore, whether

the found departures are exploitable is not clear. Timmerman (2008) investigates the forecasting

performance of a number of linear and nonlinear models and says: "Most of the time the forecasting

models perform rather poorly, but there is evidence of relatively short-lived periods with modest

return predictability. The short duration of the episodes where return predictability appears to be

present and the relatively weak degree of predictability even during such periods makes predicting

returns an extraordinarily challenging task". Our (multivariate) evidence does not substantially con-

tradict that, certainly using linear multivariate methods the amount of predictability we have found

and its durability is limited and has reduced over time even through the recent financial crisis. The

long horizon analysis suggests that the largest eigenvalue of the variance ratio matrix grows linearly

with horizon, although the slope is far less than the unit slope predicted by the bubble process of

section 5.3. Furthermore, the trajectory is flatter in the more recent period, again supporting the

claim that market ineffi ciency has reduced.
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10 Appendix

10.1 Simulation Study

10.1.1 Size

To investigate how our procedures work in practice, we perform a small simulation study for the

V̂R(K) and V̂Rd+(K) statistics under two types of null hypothesis:

H
(1)
0 : i.i.d.

H
(2)
0 : m.d.s.

To simulate the null H(1)
0 , a sequence of T vector of Xt is drawn from a i.i.d normal distribution

N (0, Id) . We simulate the null H
(2)
0 by generating the data from a diagonal multivariate ARCH

model,

Xt = H
1/2
t εt

Ht = $ + αXt−1X
ᵀ
t−1,

where εt ∼ i.i.d.N(0, Id), $ = Id and α = 0.5. All these simulations are based on 10000 replications,

with sample size, T = 1024, dimension d = 3. The nominal size is chosen to be 5%.

We use the test statistics Z(iid)1 (K), Z1(K), Z
(iid)
2 (K) and Z2(K), in which Z1(K) and Z2(K)

are as defined in the Application section. Z(iid)1 (K) and Z(iid)2 (K) are similarly defined except using

Ŝiid(K)

Ŝiid(K) = D+
n Q̂iid(K)D+

ᵀ

n .

The empirical quantiles of Z(iid)1 (K), Z1(K), Z
(iid)
2 (K) and Z2(K) are obtained by simulating the

quantiles of
d∑
i=1

λ
(W )
i and

d∏
i=1

λ
(W )
i respectively, where W is a d × d symmetric matrix such that

vech (W ) ∼ N(0, Id(d+1)/2).

Table 10-1: Empirical quantiles of Z(iid)1 (K), Z1(K), Z
(iid)
2 (K) and Z2(K)

d 0.025 0.975

Z
(iid)
1 (K), Z1(K) 3 −3.4047 3.3841

Z
(iid)
2 (K), Z2(K) 3 −7.9355 7.9863
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Table 10-2 and Table 10-3 report the empirical size of nominal 5% variance ratio tests using

Z
(iid)
1 (K), Z1(K), Z

(iid)
2 (K) and Z2(K) conducted under the null hypothesis: H(1)

0 : i.i.d and H(2)
0 :

m.d.s. respectively.

Table 10-2: Empirical size of nominal 5% variance ratio tests of the null hypothesis H(1)
0

Size of 5 percent test

Sample size K d Z
(iid)
1 (K) Z1 (K) Z

(iid)
2 (K) Z2 (K)

1024 2 3 0.0493 0.0481 0.0518 0.0517

1024 4 3 0.0504 0.0559 0.0517 0.0511

1024 8 3 0.0448 0.0511 0.0489 0.0525

1024 16 3 0.0470 0.0608 0.0487 0.0546

Table 10-3: Empirical size of nominal 5% variance ratio tests of the null hypothesis H(2)
0

Size of 5 percent test

Sample size K d Z
(iid)
1 (K) Z1 (K) Z

(iid)
2 (K) Z2 (K)

1024 2 3 0.2697 0.0517 0.1842 0.0498

1024 4 3 0.2186 0.0523 0.1497 0.0515

1024 8 3 0.161 0.0561 0.1039 0.0501

1024 16 3 0.1177 0.0676 0.0767 0.0516

Table 10-2 shows that the empirical sizes of variance ratio tests using Z(iid)1 (K), Z1(K), Z
(iid)
2 (K)

and Z2(K) are all close to the nominal value 5%. In Table 10-3, we see that under the null of m.d.s.,

the Z(iid)1 (K) and Z(iid)2 (K) are unreliable, for example, when K = 2, the empirical size of the 5%

variance ratio test using Z(iid)1 (K) is 26.97%, using Z(iid)2 (K) is 18.42%. In this case, the empirical

sizes of test using Z1 (K) and Z2 (K) are close to 5%.

Table 10-4 reports the empirical size of nominal 5% variance ratio tests using the [Zd(K)]ii

statistic conducted under the null H(2)
0 . The results show that the [Zd(K)]ii statistic is reliable

under the null of m.d.s.

Table 10-4: Empirical size of nominal 5% variance ratio tests [using the [Zd(K)]ii

statistic] of the null hypothesis H(2)
0
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Size of 5 percent test

Sample size K = 2 K = 4 K = 8 K = 16

[Zd(K)]11 1024 0.0415 0.0389 0.0401 0.0400

[Zd(K)]22 1024 0.0462 0.0504 0.0498 0.0509

[Zd(K)]33 1024 0.0490 0.0478 0.0523 0.0538

10.1.2 Power

Consider the following model:

p∗t = µ+ p∗t−1 + εt

pt = p∗t + ηt

ηt = βηt−1 + ξt

where εt ∼ i.i.d.(0,Ωε), ξt ∼ i.i.d.(0,Ωξ). As shown in Fama and French (1998) for univariate case, if

β < 1, we have V̂R(K) < Id. While Phillips, Wu and Yu (2009) suggested a bubble process which is

a linear explosive process without collapsing, such as β > 1, for which we should have V̂R(K) > Id.

We examine the power of the variance ratio tests using the Z(iid)1 (K) and Z(iid)2 (K) statistics against

two alternative hypotheses:

H
(1)
1 : fads model with β < 1

H
(2)
1 : explosive bubble without collapsing with β > 1

Based on 10000 replications, we have the following results.

Table 10-5: Power of the variance ratio tests [using the Z(iid)1 (K) and Z(iid)2 (K) statistics]

5 percent test

Sample size K d β = 0.85 β = 1.01

1024 16 3 Z
(iid)
1 (K) Z

(iid)
2 (K) Z

(iid)
1 (K) Z

(iid)
2 (K)

0.9995 0.6349 1.0000 0.9971

Table 10-5 shows that the variance ratio tests using Z(iid)1 (K) and Z(iid)2 (K) are powerful against

these alternatives.
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10.2 Proof of Main Results

Proof of Theorem 1. We first present the proof under Assumption A. For j = 1, . . . , K, it is

straightforward to see that

√
T · vec

(
Γ̂(j)

)
=

1√
T

T∑
t=j+1

(
Xt−j −X

)
⊗
(
Xt −X

)
=

1√
T

T∑
t=j+1

(
X̃t−j ⊗ X̃t

)
− 1√

T

T∑
t=j+1

X̃t−j ⊗
(
X − µ

)
−
(
X − µ

)
⊗ 1√

T

T∑
t=j+1

X̃t +
T − j√
T

(
X − µ

)
⊗
(
X − µ

)
(44)

=
1√
T

T∑
t=j+1

(
X̃t−j ⊗ X̃t

)
+ op(1), (45)

where in (45) we made use of
∑T

t=j+1 X̃t = Op(
√
T ), a result implied by the CLT for stationary

ergodic martingale difference. The CLT is justified by the fact that the difference
∣∣√T−1(∑T

t=1 X̃t−∑T
t=j+1 X̃t

)∣∣ = op(1); similar arguments are implicitly used from hereafter. We shall also implicitly

exploit the fact that condition A2 implies all moments less than four exists and finite by Jensen’s

inequality.

In the meantime, since X̃tX̃
ᵀ
t is a measurable transformation of X̃t it is again stationary ergodic,

(although it no longer possesses a martingale difference structure anymore). Therefore, we may

apply Birkhoff’s ergodic theorem and continuous mapping theorem on T−1
∑T

t=1 X̃tX̃
ᵀ
t , yielding

Σ̂−1/2 − Σ−1/2 = op(1). Consequently, for each j we have

vec(R̂(j)) = vec
([

Σ̂−1/2 − Σ−1/2 + Σ−1/2
]

Γ̂(j)
[
Σ̂−1/2 − Σ−1/2 + Σ−1/2

])
= vec

(
Σ−1/2Γ̂(j)Σ−1/2

)
+ T−1/2Op(1) · op(1) + T−1/2Op(1) ·O(1)

=
(
Σ−1/2 ⊗ Σ−1/2

)
vec(Γ̂(j)) + op(1). (46)

because
√
T
−1∑T

t=j+1(X̃t−j ⊗ X̃t) is bounded in probability.
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Next we observe that

√
Tvec

(
V̂R+(K)− Id

)
=
√
T ·

K−1∑
j=1

2

(
1− j

K

)
· vec

(
R̂(j)

)
=
(
Σ−1/2 ⊗ Σ−1/2

)
·
K−1∑
j=1

cj
1√
T

T∑
t=j+1

X̃t−j ⊗ X̃t + op(1)

=
(
Σ−1/2 ⊗ Σ−1/2

)
· 1√

T

T∑
t=K

[
K−1∑
j=1

cj

(
X̃t−j ⊗ X̃t

)]
+ op(1)

=:
(
Σ−1/2 ⊗ Σ−1/2

)
· 1√

T

T∑
t=K

Zt + op(1). (47)

Now to establish the CLT on Zt, take any constant vector a = (a1, . . . , ad2)
ᵀ ∈ Rd2 , and note

that a
ᵀ
Zt is a one-dimensional martingale difference sequence because we have E[X̃btX̃c,t−j

∣∣Ft−1] =

E[X̃bt

∣∣Ft−1]X̃c,t−j a.s. for all j ≥ 1 and b, c = 1, . . . , d. Then, since the moment condition A2 ensure

that

E(a
ᵀ
Zt)

2 = a
ᵀ
var(Zt)a = a

ᵀ

[
K−1∑
j=1

K−1∑
k=1

cjckΞjk

]
a <∞,

where Ξjk = E[X̃t−j ⊗ X̃t][X̃t−k ⊗ X̃t]
ᵀ
, the CLT for stationary ergodic martingale difference gives

a
ᵀ

(
1√
T

T∑
t=1

Zt

)
=⇒ N

(
0, a

ᵀ

[
K−1∑
j=1

K−1∑
k=1

cjckΞjk

]
a

)
. (48)

Hence by the Cramér-Wold device, continuous mapping and Slutsky’s theorem we have

√
Tvec

(
V̂R+(K)− Id

)
=⇒ N

(
0,

K−1∑
j=1

K−1∑
k=1

cjck
(
Σ−1/2 ⊗ Σ−1/2

)
Ξjk

(
Σ−1/2 ⊗ Σ−1/2

))
,

completing the proof.

Deriving the limiting distribution for the same statistic under Assumption MH* closely follows

similar arguments. We note that the expansion for
√
T ·vec(Γ̂(j)) is still valid because the summations

in the second, third and fourth terms in (44) still converges in probability to one in view of the CLT

for mixing sequence, Herrndorf (1985, Theorem 0) whose regularity conditions are satisfied by MH1-

MH3. As a consequence, we end up with (45) as before. Finally, condition MH2 and MH3 allow for

the Law of Large Numbers for mixing variables, White (1984, Corollary 3.48), yielding (46) and (47)

as before.
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Now we are only left with verifying (48). Since any measurable transformation of X̃t preserves

the mixing property with the same rate specified in MH2, for any d2-dimensional constant vector a

Herrndorf’s CLT we have

a
ᵀ

(
1√
T

T∑
t=1

Zt

)
=⇒ N

(
0, a

ᵀ

[
K−1∑
j=1

K−1∑
k=1

cjckΞjk

]
a

)
,

where Ξjk = limT→∞ T
−1∑T

t=1E[X̃t−j⊗X̃t][X̃t−k⊗X̃t]
ᵀ
. The CLT above holds provided the following

regularity conditions are ensured: E(aᵀZtj) = 0, suptE|aᵀZt|β <∞ for some β > 2, and finally

lim
T→∞

1

T
E

(
T∑
t=1

a
ᵀ
Zt

)2
= lim

T→∞

1

T

T∑
t=1

var
(
a
ᵀ
Zt
)

= a
ᵀ

[
K−1∑
j=1

K−1∑
k=1

cjckΞjk

]
a

is positive and finite.

The first condition is trivial by MH1, and the second and third conditions are satisfied by MH2

and MH3 along with positive definiteness of Q(K), respectively. The rest of the arguments are

exactly the same as before, completing the proof.

Similar arguments apply to the diagonally and one-sided normalized statistics. For j = 1, . . . , K−
1,

vec(R̂d(j)) =
(
D−1/2 ⊗D−1/2

)
vec(Γ̂(j)) + op(T

−1/2)

var
(√

Tvec(R̂d(j))
)

=
K−1∑
j=1

K−1∑
k=1

cjck
(
D−1/2 ⊗D−1/2

)
Ξjk

(
D−1/2 ⊗D−1/2

)
,

and also

vec(R̂L(j)) =
(
Σ−1 ⊗ I

)
vec(Γ̂(j)) + op(T

−1/2)

var
(√

Tvec(R̂L(j))
)

=
K−1∑
j=1

K−1∑
k=1

cjck
(
Σ−1 ⊗ I

)
Ξjk

(
Σ−1 ⊗ I

)
,

The entire proof is now complete.

Proof of Corollary 1. Because the proposed estimator Σ̂ for the covariance matrix is
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consistent under both sets of assumptions, it suffi ces to show consistency of Ξ̂jk. Writing

Ξ̂jk =
1

T

T∑
t=max{j,k}+1

(
Xt−j −X

) (
Xt−k −X

)ᵀ
⊗
(
Xt −X

) (
Xt −X

)ᵀ
=

1

T

T∑
t=max{j,k}+1

[
X̃t−jX̃

ᵀ
t−k ⊗ X̃tX̃

ᵀ
t

]
+ op(1)

=
1

T

T∑
t=max{j,k}+1

[(
X̃t−j ⊗ X̃t

)(
X̃t−k ⊗ X̃t

)ᵀ]
+ op(1).

we see that the desired result follows by applying either the Ergodic theorem or the Law of Large

Numbers for mixing variables depending upon the set of assumption being imposed. The regularity

conditions for each theorem are ensured by Assumption A2 and MH3, respectively. Note that these

consistency results can be extended to almost sure sense in both cases, without requiring any further

condition.

Proof of (29). We follow the similar approaches for the two parameter statistics. Under the

null hypothesis, by the geometric series expansion we have
√
T
(
V̂R+(K,L)− Id

)
= 2

√
T
K−1∑
j=1

(
1− j

K

)
Γ̂(j)− 2

√
T

L−1∑
jᵀ=1

(
1− j

L

)
Γ̂(j) + op(1)

= 2
√
T
K−1∑
j=1

[(
1− j

K

)
−
(

1− j

L

)
1(j ≤ L)

]
Γ̂(j) + op(1)

=
K − L
KL

L−1∑
j=1

2j
√
T Γ̂(j) + 2

K−1∑
j=L

(
1− j

K

)√
T Γ̂(j) + op(1).

Hence denoting

c̃j,K,L = cj,K − cj,L = 2

(
K − L
KL

j

)
1(j ≤ L− 1) + 2

(
1− j

K

)
1(L ≤ j ≤ K − 1),

we have

var
(√

Tvec
(
V̂R+(K)− Id

))
= var

(
√
T
K−1∑
j=1

c̃j,K,L · vec
(

Γ̂(j)
))

→
K−1∑
j=1

K−1∑
k=1

c̃j,K,Lc̃k,K,LΞjk,
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so the proof is complete on employing the CLT. As before, the limiting distribution of the two sided

statistic can be obtained by the transformation using the duplication matrix.

Finally, taking K = LJ for positive integers J and L, we have
K−1∑
j=1

c̃2j,LJ,L =

(
JL− L
JL2

)2 L−1∑
j=1

j2 +

JL−1∑
j=L

(
1− j

JL

)2
=

(
J − 1

JL

)2
L(2L− 1)(L− 1)

6
+

(J − 1)(JL− L+ 1)(2JL− 2L+ 1)

6J2L

=
(J − 1)(2JL2 − 2L2 + 1)

6JL
.

whereas L
∑J−1

j=1 c
2
j,J = L(2J−1)(J−1)

6J
. Comparing both terms yield the relative effi ciency as desired.

Proof of Theorem 2. The proof consists of two steps.

Step 1: From (44) we know that for each j = 1, . . . , K,
√
T · vec

(
Γ̂(j)

)
can be decomposed into a

main term plus three error terms. We show that the last three terms are ‘asymptotically’negligible

i.e. op(1) uniformly over j = 1, . . . , K. It suffi ces to prove this for a single arbitrary component, as

we shall do here (but without introducing extra notations for the sake of simplicity; For example,

with a slight abuse of notation X̃t is taken to mean X̃it for some i = 1, . . . , d and so on).

Consider the second term in (44):

max
1≤j≤K

A2 = max
1≤j≤K

[(
X − µ

)
·
(

1√
T

T∑
t=j+1

X̃t

)]
=

(
1

T

T∑
t=1

X̃t

)
· max
1≤j≤K

(
1√
T

T∑
t=j+1

X̃t

)

=
1√
T

(
1√
T

T∑
t=1

X̃t

)
· max
1≤j≤K

(
1√
T

T∑
t=j+1

X̃t

)

=
1√
T
·Op(1) ·Op(K) = Op

(
K√
T

)
= op(1),

because the stochastic error∣∣∣∣∣ 1√
T

T∑
t=K+1

X̃t −
1√
T

T∑
t=1

X̃t

∣∣∣∣∣ =
1√
T

∣∣∣∣∣
K∑
t=1

X̃t

∣∣∣∣∣ =

√
K√
T

∣∣∣∣∣ 1√
K

K∑
t=1

X̃t

∣∣∣∣∣ = Op

(√
K

T

)
= op(1)

ensures 1√
T

∑T
t=j+1 X̃t to be bounded in probability for any j = 1, . . . , K. Similar argument applies

to the first error term, yielding the same result.

As for the last error term A3, because

max
1≤j≤K

[
T − j√
T
· (X − µ) · (X − µ)

]
=

(
max
1≤j≤K

T − j√
T
√
T
√
T

)
·
(

1√
T

T∑
t=1

X̃t

)
·
(

1√
T

T∑
t=1

X̃t

)
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where

max
1≤j≤K

∣∣∣∣ T − j√
T
√
T
√
T

∣∣∣∣ = max
1≤j≤K

∣∣∣∣1− j/T√
T

∣∣∣∣ =

∣∣∣∣∣1− K
T√
T

∣∣∣∣∣ −→ 0

we have asymptotic negligibility of the error terms as desired.

Step 2: The second step involves deriving the limiting distribution under this new asymptotics:√
T

K
vec
(
V̂ R(K)+ − Id

)
=

√
T√
K
·
K−1∑
j=1

2

(
1− j

K

)
· vec

(
R̂(j)

)
=
(
Σ−1/2 ⊗ Σ−1/2

)
· 1√

K

K−1∑
j=1

cj

([
1√
T

T∑
t=j+1

X̃t−j ⊗ X̃t

]
+ op(1)

)

=
(
Σ−1/2 ⊗ Σ−1/2

)
· 1√

KT

T∑
t=1

[
K−1∑
j=1

cj(X̃t−j ⊗ X̃t)

]
+ op(1)

=:
(
Σ−1/2 ⊗ Σ−1/2

)
· 1√

KT

T∑
t=1

ZtK + op(1).

When two summations are ‘swapped’in the above, we used to take the summation of t from K to T

before, ignoring a finite number of terms because the difference was negligible in any case; however,

here we shall instead take summation from 1 to T , and let any X̃t with negative ts be zero.

We now denote by Z̄TK and Z̄T the average of ZtK and limK→∞ ZtK , respectively: i.e.

Z̄TK :=
1

T

T∑
t=1

ZtK , Z̄T =
1

T

T∑
t=1

Zt =
1

T

T∑
t=1

[ ∞∑
j=1

(
X̃t−j ⊗ X̃t

)]
. (49)

We know from Theorem 1 that as T →∞, for each K = 1, 2, . . .

1√
T

1√
K

T∑
t=1

ZtK ≡
√
TZ̄TK =⇒ YK ∼ N

(
0,

1

K

K−1∑
j=1

K−1∑
k=1

cjckE
[
X̃t−jX̃

ᵀ
t−k ⊗ X̃tX̃

ᵀ
t

])
.

Now, provided that limK→∞K
−1∑K

j=1

∑K
k=1E

[
X̃t−jX̃

ᵀ
t−k ⊗ X̃tX̃

ᵀ

t

]
<∞, as K →∞ we have

YK =⇒ Y ∼ N

(
0, lim

K→∞

1

K

K∑
j=1

K∑
k=1

E
[
X̃t−jX̃

ᵀ
t−k ⊗ X̃tX̃

ᵀ

t

])

Hence, if one can show that
√
T
(
Z̄T − Z̄TK

)
is ‘asymptotically negligible’in the sense that

∀ε > 0, lim
K→∞

lim sup
T→∞

P

( ∣∣∣√T (Z̄T − Z̄TK)∣∣∣ > ε

)
= 0
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then by Proposition 6.3.9 of Brockwell and Davis (1991), it will follow that

√
TZ̄T = lim

K→∞

(
1√
T

T∑
t=1

[
K−1∑
j=1

X̃t−j ⊗ X̃t

])
=⇒ Y ∼ N

(
0, lim

K→∞

1

K

K∑
j=1

K∑
k=1

E
[
X̃t−jX̃

′ᵀ

t−k ⊗ X̃tX̃
ᵀ
t

])
.

as T →∞.
Now note that

E

(∣∣∣√T (Z̄T − Z̄TK)∣∣∣2) = E

∣∣∣∣∣ 1√
T

T∑
t=1

( ∞∑
j=K

cj(X̃t−j ⊗ X̃t)

)∣∣∣∣∣
2

=
1

T
var

(
T∑
t=1

( ∞∑
j=K

cj(X̃t−j ⊗ X̃t)

))

=:
1

T
var

(
T∑
t=1

Rt

)
= 2

T−1∑
s=1

(
1− s

T

)
· cov(Rt, Rt−s)

= 2
T−1∑
s=1

(
1− s

T

)
· E
(

1

K

∞∑
j=K

∞∑
k=K

cjck

(
X̃tX̃t−s ⊗ X̃t−jX̃t−s−k

))

→ 2
∞∑
s=1

(
lim
K→∞

1

K

K∑
j=K

K∑
k=K

cjckE
(
X̃tX̃t−s ⊗ X̃t−jX̃t−s−k

))

as T →∞ (so then tends to zero as K →∞).
Hence by Markov’s inequality we have

lim
K→∞

lim sup
T→∞

P
(∣∣∣√T (Z̄T − Z̄TK)∣∣∣ > ε

)
≤ lim

K→∞
lim sup
T→∞

E
∣∣√T (Z̄T − Z̄TK) ∣∣2

ε2
= 0

as desired.

Finally, using the continuous mapping and Slutsky’s theorem we end up with

√
Tvec

(
V̂ R(K)+ − Id

)
=⇒ N

(
0, lim

K→∞

1

K

∞∑
j=1

∞∑
k=1

(
Σ−1/2 ⊗ Σ−1/2

)
E
[
X̃t−jX̃

ᵀ
t−k ⊗ X̃tX̃

ᵀ
t

] (
Σ−1/2 ⊗ Σ−1/2

))
,

completing the proof.

Proof of Proposition FaustM. The proof proceeds by showing asymptotic equivalence of

the trace (of the multivariate variance ratio) test and the likelihood ratio (LR) test under the null

and alternative hypotheses. That is,

f
(

tr
(
V̂ R(K)

))
− LR P−→ 0 (50)
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for some function f , in which case the tests based on two statistics will possess the same large sample

properties.

Recall the alternative version of the estimator V̂R
&

(K). From the definitions it is not diffi cult

to see that

V̂ R(K)− V̂ R
&

(K) =
1

K

K−2∑
r=1

{
Σ̂−1/2

[
(K − r) 1

T

K−1∑
t=r+1

(
Xt −X

) (
Xt−r −X

)ᵀ]
Σ̂−1/2

}

+
1

K

K−2∑
r=1

{
Σ̂−1/2

[
(K − r) 1

T

K−1∑
t=2

(
Xt−r −X

) (
Xt −X

)ᵀ]
Σ̂−1/2

}
+ op(1) (51)

converges in probability to zero because each term in square brackets is op(1) by Chebyshev’s in-

equality, and Σ̂−1/2
P−→ Σ−1/2. Now that we have f(tr(V̂ R(K))) − f(tr(V̂ R

&
(K))) = op(1) due to

linearity of trace, it remains to show that

f
(

tr
(
V̂ R

&
(K)

))
− LR P−→ 0.

We denote by Φ ∈ R(T−K+1)×T the ‘coeffi cient matrix’

Φ =


φK−1 φK−2 · · · φ0 0 0 · · · 0

0 φK−1 · · · φ1 φ0 0 · · · 0
...

...
. . . . . . . . . . . . · · · ...

0 0 · · · 0 0 · · · φ1 φ0

 ,

where φj = 1 for all j = 0, . . . , K − 1. Denoting i by a conformable column vector of ones as before

we can write

v̂ar(Xt + · · ·+Xt−K+1) =: v̂ar(Xφ
t ) =

1

T

T∑
t=1

(
Xφ
t −X

φ
)(

Xφ
t −X

φ
)ᵀ

=
1

T

(
ΦX − ΦiX

ᵀ)ᵀ (
ΦX − ΦiX

ᵀ)
=

1

T

(
X − iX

ᵀ)ᵀ
Φ
ᵀ
Φ
(
X − iX

ᵀ)
,

from which it follows that

V̂ R
&

(K) :=
1

K
v̂ar(Xt)

−1/2v̂ar(Xt + · · ·+Xt−K+1)v̂ar(Xt)
−1/2 =

1

K
Σ̂−1/2Σ̂(K)Σ̂−1/2

=
1

K

[(
X − iXᵀ)ᵀ (

X − iXᵀ)]−1/2 (
X − iXᵀ)ᵀ

Φ
ᵀ
Φ
(
X − iXᵀ) [(

X − iXᵀ)ᵀ (
X − iXᵀ)]−1/2

=:
1

K
[(A

ᵀ
A)−1/2] · [Aᵀ

Φ
ᵀ
ΦA] · [(Aᵀ

A)−1/2]. (52)
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It follows from the explicit expressions of the probability density for the matrix normal distributions

that the rejection region based on the likelihood ratio statistic is given by

LR = log

det
[ (
X − iµ̂ᵀ1

)ᵀ
Σ−1q∗

(
X − iµ̂ᵀ1

) ]
det
[ (
X − iX

ᵀ)ᵀ (
X − iX

ᵀ) ]
 < k

for some positive threshold constant k, where µ̂1 ≡ X̃ is the maximum likelihood estimate of the

mean µ = EXt under the alternative hypotheses. Using a standard property of the logarithmic

determinant we see that

LR = log

(
det

{[(
X − iX

ᵀ)ᵀ (
X − iX

ᵀ) ]−1[ (
X − iX̃ᵀ

)ᵀ
Σ−1q∗

(
X − iX̃ᵀ

) ]})
≤ tr

([(
X − iX

ᵀ)ᵀ (
X − iX

ᵀ) ]−1[ (
X − iX̃ᵀ

)ᵀ
Σ−1q∗

(
X − iX̃ᵀ

) ]
− I
)

≤ tr

(
Σ̂−1 · 1

T

[ (
X − iX̃ᵀ

)ᵀ
Σ−1q∗

(
X − iX̃ᵀ

) ])
. (53)

Besides, it follows by the cyclic property of the trace operator that

tr
(
V̂ R

&
(K)

)
=

1

K
tr
(

[(A
ᵀ
A)−1/2] · [Aᵀ

Φ
ᵀ
ΦA] · [(Aᵀ

A)−1/2]
)

=
1

K
tr
(

[(A
ᵀ
A)−1] · [Aᵀ

Φ
ᵀ
ΦA]

)
=

1

K
tr

(
T

[(
X − iX

ᵀ)ᵀ (
X − iX

ᵀ)]−1
· 1

T

[(
X − iX

ᵀ)ᵀ
Φ
ᵀ
Φ
(
X − iX

ᵀ)])
=

1

K
tr

(
Σ̂−1 · 1

T

[(
X − iX̃ᵀ

+ i
(
X̃

ᵀ −X
ᵀ))ᵀ

Φ
ᵀ
Φ
(
X − iX̃ᵀ

+ i
(
X̃

ᵀ −X
ᵀ))])

.

Now multiplying the last quantity by the horizon K, q > 0, adding d = tr(Id), and then lastly

multiplying by a constant α > 0 give

tr

(
Σ̂−1 · 1

T

[(
X − iX̃ᵀ

+ i
(
X̃

ᵀ −X
ᵀ))ᵀ

·
{
α(I + qΦ

ᵀ
Φ)
}
·
(
X − iX̃ᵀ

+ i
(
X̃

ᵀ −X
ᵀ))])

= tr

(
Σ̂−1 · 1

T

[(
X − iX̃ᵀ

+ i
(
X̃

ᵀ −X
ᵀ))ᵀ {

Σ−1q + 0∗
}(

X − iX̃ᵀ
+ i
(
X̃

ᵀ −X
ᵀ))])

(54)

where 0∗ is a matrix of zeros except for the (K − 1)× (K − 1) blocks in the northwest and southeast

corners. The reader is directed to Faust (1992, Lemma 1) for the proof of the equivalence relationship

α(I + qΦ
ᵀ
Φ) ≡ Σ−1q + 0∗. Now replacing the sample estimator for the cross-sectional variance by
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its population version (with some negligible error), we see that the difference between (54) and (53)

multiplied by
√
T is given by

√
T · tr

(
Σ−1 · 1

T

[(
i
(
X̃

ᵀ −X
ᵀ))ᵀ

· Σ−1q ·
(
i
(
X̃

ᵀ −X
ᵀ))])

+ op(1)

= tr

(
Σ−1 ·

[√
T
(
X̃

ᵀ −X
ᵀ)ᵀ {iᵀ · Σ−1q · i

T

}(
X̃

ᵀ −X
ᵀ)])

+ op(1)

because the trace is a linear mapping. It is trivial to show that the term inside {·} is bounded in
probability. Furthermore, the proof of Proposition 2 in Faust (1992) suggests that the individual

entries of the squared braket converges in probability to zero (hence so does the entire matrix by

definition), yielding
√
T

∣∣∣∣α{d+ qK · tr
(
V̂R

&
(K)

)}
− LR

∣∣∣∣ p−→ 0. (55)

This suggests that there exist some α and q > 0 for which the trace test has the same large sample

properties of the LR test against the φ−best class alternatives. The proof is now complete because
the sequence of the likelihood ratio test with q∗ = δ/

√
T is locally most powerful (MP) invariant in

view of Crowder (1976) and Engle (1984).

Proof of Theorem 3. Note that as K → ∞, Ωη(K) → 2Ωη = 2var (ηt) . It follows that as

K →∞

VR(K) = K−1Σ
−1/2
1 ΣKΣ

−1/2
1 = K−1Σ

−1/2
1 (KΩε + Ωη(K)) Σ

−1/2
1

−→ Σ
−1/2
1 ΩεΣ

−1/2
1 = Σ

−1/2
1 [Σ1 − Ωη(1)] Σ

−1/2
1

= I − Σ
−1/2
1 Ωη(1)Σ

−1/2
1 ≤ I,

since Σ1 and Ωη(1) are positive semidefinite. The strict inequality holds since Ωη(1) is assumed

strictly positive definite.

By similar arguments

VRd(K) = K−1D
−1/2
1 ΣKD

−1/2
1 = K−1D

−1/2
1 (KΩε + Ωη(k))D

−1/2
1

−→ D
−1/2
1 ΩεD

−1/2
1 = D

−1/2
1 (Σ1 − Ωη(1))D

−1/2
1

= D
−1/2
1 Σ1D

−1/2
1 −D−1/21 Ωη(1)D

−1/2
1

= Rd (0)−D−1/21 Ωη(1)D
−1/2
1 ≤ Rd (0)

which is the instantaneous correlation matrix of the return process.
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Proof of Theorem 4. This follows from the multivariate extension of Theorem 1 of Liu

and Wu (2010) applied to the frequency θ = 0. The weighting scheme automatically satisfies their

condition 1. See also Andrews (1991).

Proof of (37). For simplicity we suppose that pt = δTpt−1 + εt with εt iid and δT = 1 + c
kT
, where

kT = Tα, α ∈ (0, 1/2) and some positive constant c. According to Phillips and Magdalinos (2007,

Theorem 4.3) we have(
(δ−TT /kT )

T∑
t=1

pt−1εt, (δ
−2T
T /k2T )

T∑
t=1

p2t−1

)
=⇒ (XY, Y 2),

where X, Y are iid copies of a N(0, σ2ε/2c) distribution.

Since the observed returnXt is the difference of the log prices we haveXt = pt−pt−1 = c
kT
pt−1+εt,

and consequently the sum of the squared return is

T∑
t=1

X2
t =

c2

k2T

T∑
t=1

p2t−1 +
2c

kT

T∑
t=1

pt−1εt−1 +
T∑
t=1

ε2t−1

⇒ c2

k2T
k2T δ

2T
T Y

2 +
2c

kT
kT δ

T
TXY + Tσ2ε +R

= c2δ2TT Y
2 +R,

where R is a generic remainder term that contains smaller order terms. The first term dominates

the others because δ2TT = (1 + c
kT

)2T →∞ very fast. Therefore, we have

δ−2TT

T∑
t=1

X2
t =⇒ c2Y 2. (56)

Likewise,

Xt(2) = pt − pt−2 = (δ2T − 1)pt−2 + εt + δT εt−1 '
2c

kT
pt−2 + εt + δT εt−1,

by the Binomial approximation because c/kT = c/Tα becomes negligible as T gets bigger. Therefore,

δ−2TT

T∑
t=1

Xt(2)2 =⇒ 4c2Y 2.

Similarly for general K, as T →∞ we have:

Xt(K) =
(
δKT − 1

)
pt−K +

K−1∑
j=0

δjT εt−j
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δ−2TT

T∑
t=1

Xt(K)2 =⇒ K2c2Y 2. (57)

In fact, using Cramér-Wold device it can be shown that the convergence in (56) and (57) is joint.

Therefore, by the continuous mapping theorem

V̂R(K) ∼
∑T

t=1Xt(K)2

K
∑T

t=1X
2
t

P−→ K,

as required.

Proof of Theorem 5. As consistency of θ̂ follows by standard arguments we shall only prove the

main theorem under Assumption MHF. It is trivial to see that the same mixing rate and the moment

condition of Ft applies to Gt. Hence the autocovariance is given by

√
T · vec

(
Γ̂(j)

)
=

1√
T

T∑
t=j+1

ε̂t−j ⊗ ε̂t =
1√
T

T∑
t=j+1

(
Xt−j − θ̂

ᵀ

t−jGt

)
⊗
(
Xt − θ̂

ᵀ

Gt

)
=

1√
T

T∑
t=j+1

[
εt−j −

(
θ̂
ᵀ

− θᵀ
)
Gt−j

]
⊗
[
εt −

(
θ̂
ᵀ

− θᵀ
)
Gt

]

=
1√
T

T∑
t=j+1

(εt−j ⊗ εt)−
1√
T

T∑
t=j+1

[(
θ̂
ᵀ

− θᵀ
)
Gt−j ⊗ εt

]

− 1√
T

T∑
t=j+1

[
εt−j ⊗

(
θ̂
ᵀ

− θᵀ
)
Gt

]
+

1√
T

T∑
t=j+1

[(
θ̂
ᵀ

− θ
)
Gt−j ⊗

(
θ̂
ᵀ

− θᵀ
)
Gt

]
.

= τ 1 + τ 2 + τ 3 + τ 4. (58)

Because Ft and εt are jointly mixing with the same mixing coeffi cient, standard arguments yield

that any measurable transformation of Zt is also mixing with same rate. Therefore it follows that

τ 2 = Op(1) · op(1) = op(1) = τ 3 in view of Lemma 6 and the CLT for mixing variables. The last

term τ 4 = op(1) due to similar arguments. Furthermore, since the Law of Large Numbers for mixing

variables, cf. White (1984, Corollary 3.48) yields

1

T

T∑
t=1

εtε
ᵀ
t = Σ̂

P−→ lim
T→∞

1

T

T∑
t=1

E
[
εtε

ᵀ
t

]
= Σ <∞,
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it follows that the variance ratio statistic can be written as

√
Tvec

(
V̂ Rε+(K)− Id

)
=
√
T ·

K−1∑
j=1

2

(
1− j

K

)
· vec

(
R̂(j)

)
=
(
Σ−1/2 ⊗ Σ−1/2

)
·
K−1∑
j=1

cj
1√
T

T∑
t=j+1

εt−j ⊗ εt + op(1)

=
(
Σ−1/2 ⊗ Σ−1/2

)
· 1√

T

T∑
t=K

[
K−1∑
j=1

cj (εt−j ⊗ εt)
]

+ op(1)

the rest follows by mixing conditions on εt and the functional central limit theorem of Herrndorf

(1985). The proof under Assumption AF can be done in a similar manner.

Proof of Corollary 3. It suffi ces to prove consistency of Ξ̂jk because consistency of sample

covariance Σ̂ is trivial by a suitable law of large numbers. We have

Ξ̂jk =
1

T

T∑
t=max{j,k}+1

(ε̂t−j ε̂
ᵀ

t−k)⊗ (ε̂tε̂
ᵀ

t ) (59)

=
1

T

T∑
t=max{j,k}+1

[
εt−j −

(
θ̂
ᵀ

− θᵀ
)
Gt−j

][
εt−k −

(
θ̂
ᵀ

− θᵀ
)
Gt−k

]ᵀ

⊗
[
εt −

(
θ̂
ᵀ

− θᵀ
)
Gt

][
εt −

(
β̂
ᵀ

− θᵀ
)
Gt

]ᵀ
=

1

T

T∑
t=max{j,k}+1

[εt−jε
ᵀ
t−k]⊗ [εtε

ᵀ
t ] + op(1), (60)

and the law of large numbers for mixing variables yields the desired result. Same result holds under

Assumption AF using the Ergodic theorem instead.
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10.3 Bias Correction

We discuss the finite sample biases with a view to proposing a bias correction for the estimated

variance ratios when the sample size is small and/or the lag length is large. We have

E

[
1√
T

T∑
t=j+1

X̃t−j ⊗
(
X − µ

)]
= E

[
1

T
√
T

T∑
t=j+1

X̃t−j ⊗ X̃t−j

]
=
T − j
T
√
T
σ

E

[
(X − µ)⊗ 1√

T

T∑
t=j+1

X̃t

]
=

T − j
T
√
T
σ

E

[
T − j√
T

(
X − µ⊗X − µ

)]
=

T − j
T
√
T
σ,

where σ = vec(Σ). Therefore

Ev̂j = vj −
T − j
T 2

σ + o(T−1),

where vj = vec (Γ(j)) and similarly v̂j = vec
(

Γ̂(j)
)
. Under the iid assumption (which allows us to

ignore the denominator, see below) we have

E
[
V̂R(K)

]
= VR(K)− 2

T

K−1∑
j=1

(
1− j

K

)(
1− j

T

)
Id + o(T−1)

= VR(K)− K − 1

T
Id + o(T−1)

= VR(K)

{
1− K − 1

T

}
+ o(T−1)

under the null hypothesis. Likewise,

E
[
V̂Rd(K)

]
= VRd(K)− K − 1

T
Rd(0) + o(T−1)

= VRd(K)

{
1− K − 1

T

}
+ o(T−1).

For the two parameter statistic, the bias adjustment is a bit more complicated:

E
[
V̂R

∗
(K,L)

]
= VR∗(K,L)− 2

T

[
K − L
KL

L−1∑
j=1

j

(
1− j

T

)
+

K−1∑
j=L

(
1− j

K

)(
1− j

T

)]
Id + o(T−1).

To do a full bias analysis of the variance ratio statistic under the martingale hypothesis, we need

to take account of the denominator. By a Taylor expansion we have

R̂(j) = Σ−1/2Γ̂(j)Σ−1/2 − 1

2
Σ−1

(
Σ̂− Σ

)
Σ−1Γ̂(j)Σ−1/2

−1

2
Σ−1/2Γ̂(j)Σ−1

(
Σ̂− Σ

)
Σ−1 + op(T

−1),
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under the null hypothesis. To calculate the (approximate) expected value of the second and third

terms, it suffi ces to replace
√
T (Σ̂ − Σ) and

√
T Γ̂(j) with their limiting (joint) distributions. We

have

√
T v̂j =

1√
T

T∑
t=j+1

(
X̃t−j ⊗ X̃t

)
+ op(1)

√
T (v̂0 − v0) =

1√
T

T∑
t=1

(
X̃t ⊗ X̃t

)
+ op(1).

Therefore,

acov(
√
T v̂j,
√
T (v̂0 − v0)) = E

[(
X̃−jX̃

ᵀ
0 ⊗ X̃0X̃

ᵀ

0

)]
+

∞∑
s=1

E
[(
X̃−jX̃

ᵀ
s ⊗ X̃0X̃

ᵀ
s

)]
. (61)

From this we can obtain a formula for E[Σ−1(Σ̂ − Σ)Σ−1Γ̂(j)Σ−1/2] in terms of the right hand side

of (61), but clearly it will be very complicated to use in practice. Under full independence we can

ignore this term and just do a simple bias correction as described above.
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