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ABSTRACT

The dynamic conditional score (DCS) models with variants of

Student’s t innovation are gaining popularity in volatility modeling, and

studies have found that they outperform GARCH-type models of

comparable specifications. DCS is typically estimated by the method of

maximum likelihood, but there is so far limited asymptotic theories for

justifying the use of this estimator for non-Gaussian distributions. This

paper develops asymptotic theory for Beta-t-GARCH, which is DCS with

Student’s t innovation and the benchmark volatility model of this class.

We establish the necessary and sufficient condition for strict stationarity of

the first-order Beta-t-GARCH using one simple moment equation, and

show that its MLE is consistent and asymptotically normal under this

condition. The results of this paper theoretically justify applying DCS

with Student’s t innovation to heavy-tailed data with a high degree of

kurtosis, and performing standard statistical inference for model selection

using the estimator. Since GARCH is Beta-t-GARCH with infinite degrees

of freedom, our results imply that Beta-t-GARCH can capture the size of

the tail or the degree of kurtosis that is too large for GARCH.
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1. INTRODUCTION

Asset price volatility is a key ingredient in many aspects of finance, including

risk management, security pricing, and trading derivatives that are written on

volatility. It is also monitored as an indicator of vulnerability in financial

markets and used in assessing the portfolio risks of financial institutions by

policymakers. The generalized autoregressive heteroscedasticity (GARCH)

model introduced by Engle (1982) and Bollerslev (1986) is perhaps the most

popular mode of forecasting volatility. Its empirical success stems from its

simplicity, practicality, and intuitive structure. The dynamic equation in

GARCH is a linear function of squared observations and analogous to the sample

variance formula, which is an efficient estimator for Gaussian data. Studies have

found that the widely-documented non-Gaussian, particularly heavy-tailed,

features of financial returns determine the efficiency, robustness, and asymptotic

normality of (quasi-)maximum likelihood estimators ((Q)MLE) in GARCH. An

enormous GARCH literature dedicated to developing robust-modifications of it

have highlighted the need for a simple, practical, and unified approach to

modeling heavy-tailed data. The dynamic conditional score (DCS) model1

developed by Creal et al. (2011, 2013) and Harvey (2013) takes a step in the

direction called for above.

DCS is a new class of simple and elegant observation-driven model that

encompasses as its special or limiting cases popular existing models including

GARCH, the autoregressive conditional duration (ACD) or intensity (ACI)

models by Engle and Russell (1998) and Russell (1998), and Poisson count

models with dynamic mean (see Davis et al. (2005)). DCS models with variants

of Student’s t innovation are gaining popularity in volatility forecasting and

contrast with GARCH models of comparable specifications.2 DCS is also

extended to time-varying copula functions, non-negative distributions, and

multivariate distributions.3 These studies find that DCS captures heavy-tails

well and outperforms existing, particularly GARCH-type, forecasting

methodologies in respective applications. Successful applications of DCS abound:

they include high-frequency trade volume prediction, inflation forecasting in

macroeconomics, forecasting value-at-risk, modeling credit or sovereign-default

1DCS is also called the generalized autoregressive score (GAS) model.
2See, for instance, Harvey and Chakravarty (2008), Harvey and Sucarrat (2014), Janus et al.

(2014), Harvey and Lange (2015), Gao and Zhou (2016), and Lucas and Zhang (2016).
3See, for instance, Creal et al. (2011), Ito (2013, 2016), Avdulaj and Barunik (2015), and

Salvatierra and Patton (2015).
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risk, modeling mixed-measurement and mixed-frequency panel data, and

dynamic location modeling.4

In these applications, DCS is typically estimated by the method of maximum

likelihood, but there is so far limited asymptotic theories for justifying the use of

this estimator for non-Gaussian distributions. In this paper, we develop

asymptotic theory for Beta-t-GARCH, which is a version of DCS with Student’s

t innovation and a benchmark volatility model in DCS capable of capturing

heavy-tails in asset returns. In particular, we derive the necessary and sufficient

condition for strict stationarity of the first-order Beta-t-GARCH, and show that

its MLE is consistent and asymptotically normal under this condition. We show

that the asymptotic normality does not require the fourth moment of the error

distribution to be finite. The only restriction instead is a finite second moment

since Beta-t-GARCH is a volatility model.5 The results of this paper

theoretically justify applying Beta-t-GARCH to heavy-tailed data with a high

degree of kurtosis, and performing standard statistical inference for model

selection using the estimator. Since GARCH is Beta-t-GARCH with infinite

degrees of freedom, our results also imply that Beta-t-GARCH can capture the

size of the tail or the degree of kurtosis that is too large for GARCH.

QMLE is perhaps the most popular mode of estimation for GARCH when

the data exhibits non-Gaussian features. The properties of this estimator are

studied by Lumsdaine (1996), Lee and Hansen (1994), Boussama (2000), Berkes

et al. (2003), Francq and Zaköıan (2004), Straumann and Mikosch (2006), and

Jensen and Rahbek (2004), among others. Also see Francq and Zaköıan (2010,

Ch. 7 and 9) for a review. The asymptotic normality of the estimator fails (for

both the strictly stationary and the nonstationary cases) when the fourth

moment of the error distribution is not finite. Moreover, the efficiency of the

estimator is determined by how far the data is from normality. These are

relevant issues in high-frequency finance as emphasized above, since it primarily

deals with heavy-tailed data with a high degree of kurtosis. See, for instance,

Bollerslev and Wooldridge (1992), Caviano and Harvey (2013a, 2013b), and

Ibragimov et al. (2013).

The dynamic equation of GARCH is sensitive to large-sized observations

since it is a linear function of past squared observations. Its robust modifications

typically take approaches classified as Winsorising or trimming. However, many

4See, for instance, Creal et al. (2014), Harvey and Luati (2014), Lucas et al. (2014), and
Caviano and Harvey (2014), as well as the above references.

5Even this moment assumption may be relaxed if we reformulate the Student’s t likelihood
to model dynamic scale instead of volatility.
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robust-GARCH models are still found to lack robustness against isolated

additive outliers. See, for instance, Li et al. (2010), Park (2002), and Muler and

Yohai (2008). To deal with non-Gaussianity, some attention in this literature has

shifted to nonparametric procedures or the use of non-Gaussian likelihood in

(Q)MLE. See, for instance, Hall and Yao (2003), Francq et al. (2011), and Fan

et al. (2014). The asymptotic properties of MLE in GARCH with Student’s t is

shown by Berkes and Horváth (2004), Straumann (2005, Ch. 6), and Pedersen

and Rahbek (2016),6 but its dynamic equation is still sensitive to large-sized

observations.

In contrast to the dynamic equation in question, a novel feature of DCS is

that the score function of the error distribution drives its dynamic equation.

Thus, the choice of likelihood influences the sensitivity of time-varying

parameters to large-sized observations. For instance, the score of Student’s t

dampens the effect of large-sized observations when the distribution is

heavy-tailed. This is also how applying the model to non-Gaussian distributions

leads to unified formulations of different observation-driven models including,

and not limited to, ACI, ACD, and Poisson count models as mentioned above.

Harvey (2013) studies the asymptotic properties of MLE in weakly stationary

DCS with the exponential link function and a selection of well-known

heavy-tailed distributions. This version of DCS can be compared with EGARCH

of Nelson (1991). Blasques et al. (2014) derive a list of sufficient conditions of

the error distribution for MLE in DCS to be consistent and asymptotically

normal. In contrast, we derive the necessary and sufficient condition of the

parameter space for which Beta-t-GARCH(1,1) is strictly stationary. Thus, we

identify the parameter space for Beta-t-GARCH(1,1) that is larger than implied

in the results by Blasques et al. (2014). The condition we derive is given by one

simple and explicit moment equation.

We impose very mild assumptions on the parameter space: the first moment

(or the location parameter, denoted by γ) of observations is finite, the dynamic

parameters are bounded and strictly positive (so that volatility is positive), and

the second moment of Student’s t is finite. To derive asymptotic normality, we

also assume that the persistence parameter on the lagged conditional variance

(denoted by β) is less than one.7 This upper-bound is also a standard

6The asymptotic normality does not require the fourth moment of the error distribution is
finite.

7See Lemmas 15-16 in Appendix D.
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assumption in the GARCH literature.8 In the strictly stationary case, apart from

the initial volatility parameter (ω), consistency and asymptotic normality are

established for all other parameters. In the nonstationary case, we conjecture

from simulation results that the asymptotic results can be established for three

parameters: β and the coefficients on the lagged score (α and the degrees of

freedom parameter, ν). We think that the asymptotic results do not hold for γ

and the intercept parameter (δ) in the nonstationary case since the second

derivatives of the log-likelihood with respect to these parameters collapse to zero

asymptotically (see Lemma 11). These parameters are not identified when the

process loses ergodicity and stationarity.9 These findings of this paper are

reinforced by our simulation results in Section 5.

2. THE MODEL

The first-order Beta-t-GARCH is given by

yt = γ0 + εt, εt =
√
h0tzt, b0t =

z2
t

z2
t + (ν0 − 2)

,

h0t = δ0 + β0h0t−1 + α0(ν0 + 1)h0t−1b0t−1,

(1)

for t ∈ N>0. Each zt is assumed to be an independently and identically

distributed (i.i.d.) Student’s t random variable with the degrees of freedom

parameter, ν0, and the first two moments, E[zt] = 0, and E[z2
t ] = 1.

Beta-t-GARCH encompasses GARCH as its limiting case for when ν0 →∞. This

is because Student’s t becomes standard normal and (ν0 + 1)b0t → ε2
t/h0t = z2

t as

ν0 →∞. Then the dynamic equation becomes h0t = δ0 + β0h0t−1 + α0ε
2
t−1.

This model is nested in the first-order DCS, which is

yt = γ0 + εt, εt = s0tzt, s0t = link(h0t),

h0t = δ0 + φ0h0t−1 + κ0ut−1

(2)

for t = 1, . . . , n. link(·) denotes some link function with the canonical link

parameter, h0t. zt is some i.i.d. centered standard random variable, and its

8See, for instance, Lee and Hansen (1994) and Berkes et al. (2003). The consistency of global
QMLE in Lee and Hansen (1994) also requires α+ β < 1, where α and β are the coefficients on
the lagged squared observation and the lagged conditional variance, respectively. The (strong)
consistency of QMLE in GARCH(p, q) requires that the coefficients on the lags of conditional
variance sum to less than one (i.e.

∑p
j=1 βj < 1), which is implied by the strict stationarity

assumption (Corollary 2.3 of Bougerol and Picard (1992)).
9This compares with the results by Jensen and Rahbek (2004), which require γ, δ and ω to

be fixed and known. The QMLE of δ is found to be inconsistent in nonstationary GARCH(1, 1).
(See the discussions in Jensen and Rahbek (2004) and Francq and Zaköıan (2010, p. 180)).
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distribution characterizes the conditional distribution, Fy(·), with the density,

fy(·), of an observation yt. ut is the score of fy(·) standardized by the conditional

Fisher information quantity:

ut =
∂ log fy(yt)

∂h0t

/
E
[
−∂

2 log fy(yt)

∂h2
0t

∣∣∣∣Ft−1

]
,

where Ft−1 denotes the set of information available at time t− 1.

Beta-t-GARCH is DCS with the centered standard Student’s t distribution and

the square-root link function, in which case

ut =
h0t

2

(
(ν0 + 1)ε2

t

(ν0 − 2)h0t + ε2
t

− 1

)
=
h0t

2
((ν0 + 1)b0t − 1) .

This gives (1) by setting φ0 = α0 + β0 and α0 = κ0/2. A higher-order DCS model

includes additional lags of h0t and ut in the dynamic equation of (2). If no lags

of h0t are included, the model becomes analogous to the ARCH model of Engle

(1982).

3. STATIONARITY AND ERGODICITY

Our analysis is conditional on the initial value y0 ∈ R. The initial value of the

conditional variance, h0t, is parameterized by h00 = ω0 ∈ R>0, where

R>0 = {x ∈ R : x > 0}. The vector of true parameters are denoted by

θ0 = (ν0, α0, β0, δ0, γ0, ω0)> ∈ Θ, where

Θ = {θ ∈ R6 : 2 < νl ≤ ν ≤ νu <∞, 0 < αl ≤ α ≤ αu <∞, 0 < βl ≤ β ≤ βu <∞,

0 < δl ≤ δ ≤ δu <∞,−∞ < γl ≤ γ ≤ γu <∞, 0 < ωl ≤ ω ≤ ωu <∞}.

Assuming that θ0 is unknown, we estimate the model,

yt = γ + et, ht(θ) = δ + βht−1(θ) + α(ν + 1)ht−1(θ)bt−1(θ),

bt(θ) =
e2
t

e2
t + (ν − 2)ht(θ)

,
(3)

for θ ∈ Θ, where t ∈ N≥0 and θ = (ν, α, β, δ, γ, ω)> ∈ Θ. At θ = θ0, we have

ht(θ0) = h0t and bt(θ0) = b0t. Furthermore, we split Θ into two regions;

ΘL ≡ {θ0 ∈ Θ : E [ln(β0 + α0(ν0 + 1)b0t)] < 0} ,

ΘU ≡ {θ0 ∈ Θ : E [ln(β0 + α0(ν0 + 1)b0t)] ≥ 0} .

THEOREM 1. If θ0 ∈ ΘL, (h0t)t∈N>0
is strictly stationary and ergodic with a

well-defined probability measure µ∞ on (δ0,∞). If θ0 ∈ ΘU , (h0t)t∈N>0
is

divergent almost surely (a.s.) and its reciprocal converges to zero a.s. as well as

in Lp for any p ≥ 1 as t→∞.
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When ν0 →∞, Nelson (1990) shows that E[ln(β0 + α0z
2
t )] < 0 is the

necessary and sufficient condition for the true GARCH(1, 1) process to be

strictly stationarity. Theorem 1 is consistent with this since (ν0 + 1)b0t becomes

z2
t when ν0 is large.

Note that, if zt is centered standard Student’s t, b0t is a beta random variable

with shape parameters (1/2, ν0/2) (denoted by Beta(1/2, ν0/2)). These

distributions are defined in Appendix A. Using this property, it may be possible

to rewrite E [ln(β0 + α0(ν0 + 1)b0t)] as an explicit function of β0, α0, and ν0.

Then we know the exact values of these parameters for which h0t is strictly

stationary.

In what follows, the i-th element of θ = (ν, α, β, δ, γ, ω)> ∈ Θ may be denoted

by θi for i = 1, 2, . . . , 6, so that θ1 ≡ ν and so on. Define

hθit(θ) ≡
∂ht(θ)

∂θi

1

ht(θ)
, hθiθjt(θ) ≡

∂2ht(θ)

∂θi∂θj

1

ht(θ)
, hθiθjθkt(θ) ≡

∂3ht(θ)

∂θi∂θj∂θk

1

ht(θ)

for i, j, k = 1, 2, . . . , 6, so that hβt(θ) = ht(θ)
−1(∂ht(θ)/∂β) and so on. The

analytic expressions for the derivatives of the log-likelihood, as well as hθit(θ),

hθiθjt(θ), and hθiθjθkt(θ) for i, j, k = 1, 2, . . . , 6 are given in Appendix B.1. We

also set
∏0

j=1 · = 1 for notational convenience.

Next, we consider the stationarity property of the log-likelihood function.

Given a finite sequence of observations (yt)
n
t=1 for some n ∈ N>0, the

log-likelihood for the Beta-t-GARCH model is

Ln(θ) = n−1

n∑
t=1

lt(θ),

where

lt(θ) ≡ ln

(
Γ

(
ν + 1

2

))
− 1

2
ln(ν − 2)− 1

2
ln(π)− ln

(
Γ
(ν

2

))
− 1

2
ln (ht(θ))−

ν + 1

2
ln

(
1 +

e2
t

(ν − 2)ht(θ)

)
.

Theorem 2 establishes the stationarity and ergodicity properties of the

log-likelihood function and its first two derivatives with respect to θ evaluated at

θ = θ0 ∈ ΘL.

THEOREM 2. If θ0 ∈ ΘL, (lt(θ0))t∈N and its first two derivatives of (lt(θ))t∈N

with respect to θ evaluated at θ = θ0, denoted by (∇θlt(θ0))t∈N and (∇2
θlt(θ0))t∈N,

are strictly stationary and ergodic.
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4. CONSISTENCY AND ASYMPTOTIC NOR-

MALITY

We assume that the true initial value of the volatility process is known (i.e.

h0(θ) ≡ ω = ω0 ≡ h0t) throughout Section 4. Thus, throughout Section 4, we

reduce the dimension of the parameter space to

θ = (ν, α, β, δ, γ)> ∈ Θ ⊂ R5,

where the dimension of Θ is adjusted accordingly. We write

Ln(θ) ≡ Ln(δ, α, β, γ, ν, ω0), and likewise for the single log-likelihood function,

lt(·), and ht(·).
Theorem 3 states that the MLE of θ0 is consistent and asymptotically normal

when θ0 ∈ ΘL, ω = ω0, and zt ∼ i.i.d. Student’s tν0 with ν0 > 2.

Define Q(θ0) ≡ E[∇2
θlt(θ0)] and R(θ0) ≡ E[∇θlt(θ0)∇θlt(θ0)>]. The existence

of these moments are by Lemmas 6 and 9. These notations mean that the

derivatives of the log-likelihood function are taken with respect to the free

parameters only, i.e.

∇θlt(θ0) = (∂lt(θ0)/∂ν, ∂lt(θ0)/∂α, ∂lt(θ0)/∂β, ∂lt(θ0)/∂δ, ∂lt(θ0)/∂γ).

We denote the convergence in probability by
P→ and in distribution by

D→. We

use ‖ · ‖p for p ≥ 1 to denote the Lp-norm on (Ω,F ,P).

THEOREM 3 (Consistency and Asymptotic Normality of MLE). Suppose θ0

is an interior point of Θ. Assume that θ0 ∈ ΘL. Assume also that zt ∼ i.i.d.

Student’s tν0 with ν0 > 2. Then, with probability tending to one, there exists a

unique maximum point θ̂n of Ln(θ) such that θ̂n
P→ θ0 and

√
n(θ̂n − θ0)

D→ N(0, V (θ0))

as n→∞, where V (θ0) ≡ Q(θ0)−1R(θ0)Q(θ0)−1 = Q(θ0)−1.

Our asymptotic results are derived using Lemma 1 of Jensen and Rahbek

(2004). A notable feature of this lemma is the condition (A.3), which requires

the third derivative of log-likelihood to be bounded in some neighborhood of true

parameter values by a process that is convergent in probability. In contrast,

Lumsdaine (1996) and Lee and Hansen (1994) apply the uniform convergence

results of functionals by Andrews (1987 or 1992), and the convergence results,

described in Amemiya (1985), for the maximizer of a function defined over a

compact parameter space. The use of the results in Amemiya (1985) in

8



establishing asymptotic normality require the authors to prove that the

third-derivative of log-likelihood is bounded in L1 over some admissible

parameter region. We found that the parameters for the unconditional mean of

observations (γ0) and the degrees of freedom (ν0) were the most difficult to

handle.

In this paper, we do not show that the above results are asymptotically

independent of the value of ω in the strictly stationary case. We will consider

this in our future research.

4.1. Remark on QMLE

In the GARCH literature, QMLE using Student’s t likelihood function has been

proposed to deal with non-Gaussianity in the data. See, for instance, Fan et al.

(2014) and Francq et al. (2011). Non-Gaussian QMLE in GARCH is possible

partly because the score is a martingale difference as long as the second moment

of the error distribution exists. We do not think that non-Gaussian QMLE in

Beta-t-GARCH using Student’s t likelihood is generally possible. This is because

there is no guarantee that there exists a value of ν0 for which the score variable,

ut, is a martingale difference when zt is not Student’s t.

5. Simulation results

We simulate the asymptotic distribution of MLE and check its large-sample

behavior. We generate K = 500 sets of data from the model, (1) and compute

MLE at each simulation. The sample length at each simulation is up to

n = 5, 000.

The simulation results in Table 1 suggest that biases and the size of errors

generally decrease as sample size increases, suggesting consistency.10 The 95%

coverage probabilities seem to validate standard statistical inference for model

selection using this estimator at sample size as large as n = 5, 000. The

Kolmogorov-Smirnov (KS) statistics testing the null of Gausianity of MLE at

n = 5, 000 are outside the rejection region at the 5% level for all parameters

except for ν in the stationary case 1. But this result for ν is largely due to the

fact that ν is difficult to estimate when it is large, and appears inconsequential

given the farily close coverage probability.

10The median bias and absolute deviation quantities are more reliable than the mean bias or
squared error quantities, as we do not know the existence of these moments in small sample.
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Following Theorem 1, we check stationarity of generated series by computing

the sample counterpart of E[β0 +α0(ν0)bt(θ0)] at each simulation. If the resulting

500 sample means for a given θ0 are comfortably in the negative (positive)

region, that θ0 gives a stationary (nonstationary) case. Figure 1 shows that that

the first two cases of θ0 in Table 1 comfortably give stationary cases (i.e.

θ0 ∈ ΘL), and the last case of θ0 in the same table comfortably gives a

nonstationary case (i.e. θ0 ∈ ΘU).

Thus, the simulation results support Theorem 3. When θ0 ∈ ΘU , the

simulation results suggest that MLE for ν, α, and β are consistent and

asymptotically normal. We found that these results do not hold for γ and δ

when the process is nonstationary since the second derivatives of the

log-likelihood with respect to these parameters collapse to zero asymptotically

(see Lemma 11). These parameters are not identified when the process loses

ergodicity and stationarity.

The selected three cases of θ0 are roughly in line with parameter estimates we

would obtain in empirical applications. For instance, if we fit the first-order

Beta-t-GARCH model to the daily returns (computed using the daily closing

level) of the Dow Jones Industrial Average index between 1 October 1975 and 5

July 2011, we obtain θ̂ = (ν̂, α̂, β̂, δ̂, γ̂, ω̂)> = (5.96, 0.13, 0.83, 0.04, 0.05, 6.2)>.

The parameter values are chosen also to ensure that the sample counterpart of

E[β0 + α0(ν0)bt(θ0)] is comfortably and always positive or always negative at

each simulation, so that we can be farily certain about the stationarity of

generated data.

10



(a) Stationary case 1 (ω = 1)

True value Mean bias MSE KS test (p-val.)

n 500 1000 2000 5000 500 1000 2000 5000 5000
ν 10 0.9 0.6 0.7 0.4 12.5 9.0 8.7 2.2 0.0
α 0.13 0.003 0.001 0.000 0.000 0.004 0.002 0.001 0.000 0.735
β 0.7 -0.064 -0.024 -0.015 -0.004 0.065 0.017 0.007 0.002 0.172
δ 1 0.34 0.13 0.08 0.02 1.56 0.37 0.15 0.04 0.616
γ 0 -0.002 0.001 -0.001 -0.001 0.009 0.005 0.003 0.001 0.648

Median bias Med. abs. dev. 95% cov. prob.

n 500 1000 2000 5000 500 1000 2000 5000 500 1000 2000 5000
ν 0.2 -0.1 0.1 0.2 2.2 1.7 1.3 0.8 0.97 0.93 0.92 0.93
α -0.001 0.001 0.001 0.000 0.042 0.029 0.019 0.013 0.93 0.94 0.95 0.95
β -0.019 -0.010 -0.007 -0.005 0.098 0.066 0.051 0.031 0.89 0.89 0.91 0.95
δ 0.07 0.04 0.04 0.01 0.41 0.27 0.21 0.13 0.90 0.91 0.92 0.95
γ -0.001 -0.003 0.001 -0.001 0.065 0.049 0.034 0.021 0.97 0.94 0.95 0.95

(b) Stationary case 2 (ω = 1)

True value Mean bias MSE KS test (p-val)

n 500 1000 2000 5000 500 1000 2000 5000 5000
ν 5 0.7 0.3 0.1 0.0 3.8 0.9 0.4 0.1 0.5
α 0.12 -0.001 0.001 0.002 0.001 0.005 0.002 0.001 0.000 0.426
β 0.7 -0.073 -0.034 -0.021 -0.008 0.082 0.028 0.011 0.004 0.158
δ 2 0.78 0.37 0.22 0.08 7.72 2.76 0.86 0.28 0.107
γ 0 -0.001 0.000 0.000 -0.001 0.014 0.008 0.004 0.002 0.836

Median bias Med. abs. dev. 95% cov. prob.

n 500 1000 2000 5000 500 1000 2000 5000 500 1000 2000 5000
ν 0.2 0.2 0.1 0.0 0.9 0.5 0.4 0.2 0.89 0.93 0.94 0.94
α -0.003 -0.002 -0.002 -0.001 0.048 0.031 0.020 0.013 0.92 0.92 0.95 0.94
β -0.023 -0.014 -0.006 -0.003 0.115 0.086 0.062 0.037 0.88 0.91 0.93 0.93
δ 0.07 0.10 0.08 0.00 0.91 0.73 0.50 0.32 0.87 0.90 0.93 0.93
γ 0.001 0.000 0.000 0.000 0.081 0.061 0.043 0.028 0.97 0.94 0.95 0.95

(c) Nonstationary case (ω = 1, δ = 1, γ = 0)

True value Mean bias MSE KS test (p-val)

n 500 1000 2000 5000 500 1000 2000 5000 5000
ν 10 0.8 0.6 0.6 0.3 12.4 8.6 6.6 1.9 0.1
α 0.18 -0.009 -0.004 -0.003 -0.001 0.002 0.001 0.000 0.000 0.641
β 0.86 0.008 0.004 0.003 0.001 0.001 0.000 0.000 0.000 0.250

Median bias Med. abs. dev. 95% cov. prob.

n 500 1000 2000 5000 500 1000 2000 5000 500 1000 2000 5000
ν 0.2 0.0 0.0 0.1 2.2 1.7 1.2 0.8 0.95 0.93 0.93 0.94
α -0.008 -0.005 -0.004 -0.001 0.025 0.019 0.013 0.008 0.95 0.95 0.94 0.96
β 0.009 0.004 0.003 0.001 0.020 0.015 0.011 0.006 0.95 0.95 0.95 0.96

Table 1 Selected statistics from the simulated asymptotic distribution of MLE. The
sample length of n = 5, 000 is simulated K = 500 times and the MLE is computed
at each simulation to simulate its asymptotic distribution. The KS statistics test the
null of Gaussianity as in Theorem 3 with n = 5000. The in-sample computation of the
information quantity takes the sample mean of the outer-product of the first derivative
of the log-likelihood.
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(a) Stationary case 1: θ0 = (ν0, α0, β0, δ0, γ0, ω0)> = (10, 0.13, 0.7, 1, 0, 1)>

0 1000 2000 3000 4000 5000
−15

−10

−5

0

5

10

15

y

Time
0 100 200 300 400 500

−0.21

−0.205

−0.2

−0.195

Simulation round

 

 

E[log(β
0
+α

0
(ν

0
+1)b

t
)]

(b) Stationary case 2: θ0 = (ν0, α0, β0, δ0, γ0, ω0)> = (5, 0.12, 0.7, 2, 0, 1)>
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(c) Nonstationary case: θ0 = (ν0, α0, β0, δ0, γ0, ω0)> = (10, 0.18, 0.86, 1, 0, 1)>
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Figure 1 The time series plot of (yt)
n
t=1 (left) and n−1

∑
t log(β0 +α0(ν0 +1)b0t) at each

of the K = 500 simulations (right) when n = 5, 000. We should have θ0 ∈ ΘL for the
top two cases and θ0 ∈ ΘU in the last case, since this sample mean quantity is always
comfortably in the negative or positive region.
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APPENDIX A: Student’s t-distribution

The standard Student’s t-distribution has the probability density function (pdf),

f(x; ν) =
Γ((ν + 1)/2)

Γ(ν/2)
√

(ν − 2)π

(
1 +

x2

(ν − 2)

)−(ν+1)/2

, x ∈ R, ν > 2, h > 0,

where ν > 0 is the degrees of freedom and Γ(·) is the gamma function. The mean

is 0 and variance is 1.

If a random variable Y follows the standard Student’s t-distribution after it is

standardized by a scaling parameter h > 0, the pdf of Y denoted by

fY : R>0 → R is fY (y;h, ν) = f(y/h; ν)/h for y ∈ R. Since the variance of the

standard Student’s t-distribution is normalized, the variance of Y is determined
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by h and not by ν. For a set of i.i.d. observations y1, . . . , yN where each follows

the non-standardized Student’s t, the log-likelihood function of a single

observation yt can be written as:

log fY (yt) = log

(
Γ

(
ν + 1

2

))
− log

(
Γ
(ν

2

))
− 1

2
log((ν − 2)πh)

− ν + 1

2
log

(
1 +

y2
t

(ν − 2)h

)
.

The score of fY (i.e. the first derivative with respect to h) computed at yt and

standardized by the Fisher information, h−2, is

∂ log fY (yt)

∂h
=
h

2

(
(ν + 1)y2

t

(ν − 2)h+ y2
t

− 1

)
=
h

2
((ν + 1)bt(ν)− 1) (A.1)

where we used the notation bt(ν) ≡ y2
t /((ν − 2)h+ y2

t ). It is easy to check that

the mean of (A.1) is zero. By the properties of Student’s t, bt(ν) follows the beta

distribution with parameters (1/2, ν/2). The beta distribution with parameters

(α, β) characterized by the pdf is

f(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1, x ∈ [0, 1], α, β > 0.

where B(·, ·) is the beta function. We denote this distribution by Beta(α, β).

APPENDIX B: Functions and Equations

B.1. Derivatives of lt(θ)

The first three derivatives of lt(θ) with respect to β are

∂lt(θ)

∂β
=

1

2
hβt(θ) [(ν + 1)bt(θ)− 1] ,

∂2lt(θ)

∂β2
=

1

2
hβt(θ)

2 [(ν + 1)bt(θ)(bt(θ)− 2) + 1] (B.1)

+
1

2
hββt(θ) [(ν + 1)bt(θ)− 1] ,

∂3lt(θ)

∂β3
= (ν + 1)bt(θ)(1− bt(θ))

[
hβt(θ)

3 − 3

2
hβt(θ)hββt(θ)

]
(B.2)

+(ν + 1)hβt(θ)
3bt(θ)(1− bt(θ))2

−1

2

(
3hβt(θ)hββt(θ)− 2hβt(θ)

3 − hβββt(θ)
)

[(ν + 1)bt(θ)− 1] .
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Using the fact that

∂bt(θ)

∂β
= −bt(θ)(1− bt(θ))hβt(θ),

∂2bt(θ)

∂β2
= 2bt(θ) (1− bt(θ))2 hβt(θ)

2 − bt(θ) (1− bt(θ))hββt(θ),

recursive substitution gives

hβt(θ) =
t∑

k=1

ĥβt−k(θ)

β + α(ν + 1)bt−k(θ)2

k∏
j=1

ht−j(θ)(β + α(ν + 1)bt−j(θ)
2)

ht−j+1(θ)
,

hββt(θ) =
t−1∑
k=1

ĥββt−k(θ)

β + α(ν + 1)bt−k(θ)2

k∏
j=1

ht−j(θ)(β + α(ν + 1)bt−j(θ)
2)

ht−j+1(θ)
,

hβββt(θ) =
t−1∑
k=1

ĥβββt−k(θ)

β + α(ν + 1)bt−k(θ)2

k∏
j=1

ht−j(θ) (β + α(ν + 1)bt−j(θ)
2)

ht−j+1(θ)
,

where
ĥβt(θ) = 1

ĥββt(θ) = 2hβt(θ)
[
1− α(ν + 1)bt(θ)

2(1− bt(θ))hβt(θ)
]
,

ĥβββt(θ) = 3hββt(θ)− 6α(ν + 1)bt(θ)
2 (1− bt(θ))2 hβt(θ)

3

+ 2α(ν + 1)bt(θ)
2 (1− bt(θ))hβt(θ)hββt(θ).

With respect to other parameters, we have

∂lt(θ)

∂δ
=

1

2
hδt(θ) ((ν + 1)bt(θ)− 1) ,

∂lt(θ)

∂α
=

1

2
hαt(θ) ((ν + 1)bt(θ)− 1) ,

∂lt(θ)

∂γ
=

1

2
((ν + 1)bt(θ)− 1)hγt(θ) + (ν + 1)

et
e2
t + (ν − 2)ht(θ)

,

∂lt(θ)

∂ν
=

1

2

(
ψ0

(
ν + 1

2

)
− ψ0

(ν
2

))
− 1

2
ln

(
1 +

e2
t

(ν − 2)ht(θ)

)
+

(ν + 1)bt(θ)− 1

2(ν − 2)
+

(ν + 1)bt(θ)− 1

2
hνt(θ),

where ψ0(·) is the digamma function. By recursion, we have

hθit(θ) =
t∑

k=1

ĥθit−k(θ)

β + α(ν + 1)bt−k(θ)2

k∏
j=1

(β + α(ν + 1)bt−j(θ)
2)ht−j(θ)

ht−j+1(θ)
, (B.3)

for i = 1, 2, . . . , 6, where

ĥδt(θ) = 1/ht(θ)

ĥαt(θ) = (ν + 1)bt(θ)

ĥγt(θ) = −2α(ν + 1)(1− bt(θ))
et

e2
t + (ν − 2)ht(θ)

(B.4)
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ĥνt(θ) = αbt(θ)− α(ν + 1)bt(θ)(1− bt(θ))(ν − 2)−1. (B.5)

The diagonal elements of ∇2lt(θ) are

∂2lt(θ)

∂δ2
= −1

2
hδt(θ)

2((ν + 1)bt(θ)− 1)− 1

2
(ν + 1)bt(θ)(1− bt(θ))hδt(θ)2

+
1

2
((ν + 1)bt(θ)− 1)hδδt(θ)

∂2lt(θ)

∂α2
= −1

2
(ν + 1)bt(θ)(1− bt(θ))hαt(θ)2 − 1

2
((ν + 1)bt(θ)− 1)hαt(θ)

2

+
1

2
((ν + 1)bt(θ)− 1)hααt(θ)

∂2lt(θ)

∂γ2
= −2(ν + 1)(1− bt(θ))hγt(θ)

et
e2
t + (ν − 2)ht(θ)

− 1

2
(ν + 1)bt(θ)(1− bt(θ))hγt(θ)2 +

1

2
((ν + 1)bt(θ)− 1)hγγt(θ)

− (ν + 1)(1− 2bt(θ))

(ν − 2)ht(θ) + e2
t

∂2lt(θ)

∂ν2
= 2ψ1(ν) +

1

2(ν − 2)2
+

1

2
hνt(θ)

2 − 1

2
hννt(θ) + bt(θ)hνt(θ)

− ν + 1

ν − 2
bt(θ)(1− bt(θ))hνt(θ)−

ν + 1

2
bt(θ)(1− bt(θ))hνt(θ)2

+
1

2(ν − 2)2
bt(θ)((ν + 1)bt(θ) + (ν − 5)).

For the cross derivatives, with i, j = 2, 3, 4, (i.e. θi = α or β or δ, and θj = α or

β or δ), we have

∂2lt(θ)

∂θi∂θj
= −1

2
(ν + 1)bt(θ)(1− bt(θ))hθit(θ)hθjt(θ)−

1

2
((ν + 1)bt(θ)− 1)hθit(θ)hθjt(θ)

+
1

2
((ν + 1)bt(θ)− 1)hθiθjt(θ)

∂2lt(θ)

∂θi∂γ
= −1

2
(ν + 1)(1− bt(θ))hθit(θ)

2et
e2
t + (ν − 2)ht(θ)

− 1

2
(ν + 1)bt(θ)(1− bt(θ))hθit(θ)hγt(θ)−

1

2
((ν + 1)bt(θ)− 1)hθit(θ)hγt(θ)

+
1

2
((ν + 1)bt(θ)− 1)hθiγt(θ)

∂2lt(θ)

∂θi∂ν
=

1

2
bt(θ)hθit(θ)−

ν + 1

2(ν − 2)
bt(θ)(1− bt(θ))hθit(θ)

− 1

2
(ν + 1)bt(θ)(1− bt(θ))hθit(θ)hνt(θ)−

1

2
((ν + 1)bt(θ)− 1)hθithνt(θ)

+
1

2
((ν + 1)bt(θ)− 1)hνθit(θ)
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∂2lt(θ)

∂ν∂γ
=

1

2
bt(θ)hγt(θ)−

ν + 1

2(ν − 2)
bt(θ)(1− bt(θ))hγt(θ)

− 1

2
(ν + 1)bt(θ)(1− bt(θ))hγt(θ)hνt(θ)−

1

2
((ν + 1)bt(θ)− 1)hγt(θ)hνt(θ)

+
1

2
((ν + 1)bt(θ)− 1)hνγt(θ) +

1

ν − 2

bt(θ)

et
((ν + 1)bt(θ)− 3)

− (ν + 1)
bt(θ)

et
(1− bt(θ))hνt(θ).

By recursion, we have

hθiθjt(θ) =
t∑

k=1

ĥθiθjt−k(θ)

β + α(ν + 1)bt−k(θ)2

k∏
j=1

(β + α(ν + 1)bt−j(θ)
2)ht−j(θ)

ht−j+1(θ)
(B.6)

for all t and i, j = 1, 2, . . . , 6, where

ĥααt(θ) = −2α(ν + 1)bt(θ)
2(1− bt(θ))hαt(θ)2

ĥδδt(θ) = −2α(ν + 1)bt(θ)
2(1− bt(θ))hδt(θ)2,

ĥγγt(θ) = −α(ν + 1)bt(θ)(1− bt(θ))

[
− 2

e2
t

+ 2bt(θ)

(
2

et
+ hγt(θ)

)2
]
,

ĥννt(θ) = α(ν − 2)−1bt(θ)hνt(θ)[4(ν + 1)bt(θ)
2 − 2(ν − 4)bt(θ)− (ν − 2)]

− 2α(ν + 1)bt(θ)
2(1− bt(θ)2)hνt(θ)

2

+ 2α(ν − 2)−2bt(θ)(1− bt(θ))(3− (ν + 1)bt(θ)),

ĥδαt(θ) = (ν + 1)bt(θ)
2hδt(θ)− 2α(ν + 1)bt(θ)

2(1− bt(θ))hδt(θ)hαt(θ),

ĥδβt(θ) = hδt(θ)− 2α(ν + 1)bt(θ)
2(1− bt(θ))hδt(θ)hβt(θ),

ĥδγt(θ) = −2α(ν + 1)bt(θ)
2(1− bt(θ))hδt(θ)

(
2

et
+ hγt(θ)

)
,

ĥδνt(θ) = αbt(θ)
2hδt(θ)− 2α(ν + 1)bt(θ)

2(1− bt(θ))hδt(θ)((ν − 2)−1 + hνt(θ)),

ĥαβt(θ) = (ν + 1)bt(θ)
2hβt(θ) + hαt(θ)− 2α(ν + 1)bt(θ)

2(1− bt(θ))hαt(θ)hβt(θ),

ĥαγt(θ) = −(ν + 1)bt(θ)(1− bt(θ))
(

2

et
+ hγt(θ)

)
+ (ν + 1)bt(θ)hγt(θ)

− 2α(ν + 1)bt(θ)
2(1− bt(θ))hαt(θ)

(
2

et
+ hγt(θ)

)
,

ĥανt(θ) = bt(θ)− (ν + 1)bt(θ)(1− bt(θ))((ν − 2)−1 + hνt(θ))

+ (ν + 1)bt(θ)hνt(θ) + αbt(θ)
2hαt(θ)

− 2α(ν + 1)bt(θ)
2(1− bt(θ))hαt(θ)((ν − 2)−1 + hνt(θ)),

ĥβγt(θ) = hγt(θ)− 2α(ν + 1)bt(θ)(1− bt(θ))hβt(θ)
(

2

et
+ hγt(θ)

)
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ĥβνt(θ) = hνt(θ) + αbt(θ)
2hβt(θ)

− 2α(ν + 1)bt(θ)(1− bt(θ))hβt(θ)((ν − 2)−1 + hνt(θ)),

ĥγνt(θ) = −αbt(θ)(1− bt(θ))
(

2

et
+ hγt(θ)

)
+ αbt(θ)hγt(θ)

− α(ν + 1)(ν − 2)−1bt(θ)(1− bt(θ))hγt(θ)

+ α(ν + 1)(ν − 2)−1(1− 2bt(θ))bt(θ)(1− bt(θ))
(

2

et
+ hγt(θ)

)
− 2α(ν + 1)bt(θ)

2(1− bt(θ))hνt(θ)
(

2

et
+ hγt(θ)

)
.
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B.2. Definition of ũθiθjt(θ0)

ũααt(θ0) = 2αu(νu + 1)u∗αt(θ0)2,

ũδδt(θ0) = 2αu(νu + 1)u∗δt(θ0)2,

ũββt(θ0) = 2u∗βt(θ0)
(
1 + αu(νu + 1)u∗βt(θ0)

)
,

ũγγt(θ0) = αu(νu + 1)

[
1

(νl − 2)δl
+ 2

(
2

(νl − 2)δl
+ u∗γt(θ0)

)2
]
,

ũννt(θ0) = αu(νl − 2)−1u∗νt(θ0)[4(νu + 1) + 2(νu − 4) + (νu − 2)]

+ 2αu(νu + 1)u∗νt(θ0)2 + 2αu(νl − 2)−2(3 + (νu + 1)),

ũδαt(θ0) = (νu + 1)u∗δt(θ0) + 2αu(νu + 1)u∗δt(θ0)u∗αt(θ0),

ũδβt(θ0) = u∗δt(θ0) + 2αu(νu + 1)u∗δt(θ0)u∗βt(θ0),

ũδγt(θ0) = 2αu(νu + 1)u∗δt(θ0)
(
2 max{1, ((νl − 2)δl)

−1}+ u∗γt(θ0)
)
,

ũδνt(θ0) = αuu
∗
δt(θ0) + 2αu(νu + 1)u∗δt(θ0)((νl − 2)−1 + u∗νt(θ0)),

ũαβt(θ0) = (νu + 1)u∗βt(θ0) + u∗αt(θ0) + 2αu(νu + 1)u∗αt(θ0)u∗βt(θ0),

ũαγt(θ0) = (νu + 1)
(
2 max{1, ((νl − 2)δl)

−1}+ u∗γt(θ0)
)

+ (νu + 1)u∗γt(θ0)

+ 2αu(νu + 1)u∗αt(θ0)
(
2 max{1, ((νl − 2)δl)

−1}+ u∗γt(θ0)
)
,

ũανt(θ0) = 1 + (νu + 1)((νl − 2)−1 + u∗νt(θ0)) + (νu + 1)u∗νt(θ0) + αuu
∗
αt(θ0)

+ 2αu(νu + 1)u∗αt(θ0)((νl − 2)−1 + u∗νt(θ0)),

ũβγt(θ0) = 2αu(νu + 1)u∗βt(θ0)
(
2 max{1, ((νl − 2)δl)

−1}+ u∗γt(θ0)
)

+ u∗γt(θ0),

ũβνt(θ0) = u∗νt(θ0) + αuu
∗
βt(θ0) + 2αu(νu + 1)u∗βt(θ0)((νl − 2)−1 + u∗νt(θ0)),

ũγνt(θ0) = αu
(
2 max{1, ((νl − 2)δl)

−1}+ u∗γt(θ0)
)

+ αuu
∗
γt(θ0)

+ αu(νu + 1)(νu − 2)−1u∗γt(θ0)

+ αu(νu + 1)(νl − 2)−1
(
2 max{1, ((νl − 2)δl)

−1}+ u∗γt(θ0)
)

+ 2αu(νu + 1)u∗νt(θ0)
(
2 max{1, ((νl − 2)δl)

−1}+ u∗γt(θ0)
)
.
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B.3. Definition of ûθiθjt(θ)

ûδδt(θ) = 0,

ûααt(θ) = −2α(ν + 1)bt(θ)
2(1− bt(θ))uαt(θ)2

ûββt(θ) = 2uβt(θ)
[
1− α(ν + 1)bt(θ)

2(1− bt(θ))uβt(θ)
]
,

ûγγt(θ) = 0,

ûννt(θ) = α(ν − 2)−1bt(θ)uνt(θ)[4(ν + 1)bt(θ)
2 − 2(ν − 4)bt(θ)− (ν − 2)]

− 2α(ν + 1)bt(θ)
2(1− bt(θ))uνt(θ)2

+ 2α(ν − 2)−2bt(θ)(1− bt(θ))(3− (ν + 1)bt(θ)),

ûδαt(θ) = (ν + 1)bt(θ)
2uδt(θ)− 2α(ν + 1)bt(θ)

2(1− bt(θ))uδt(θ)uαt(θ),

ûδβt(θ) = uδt(θ)− 2α(ν + 1)bt(θ)
2(1− bt(θ))uδt(θ)uβt(θ),

ûδγt(θ) = −2α(ν + 1)bt(θ)
2(1− bt(θ))uδt(θ)

(
2

et
+ uγt(θ)

)
,

ûδνt(θ) = αbt(θ)
2uδt(θ)− 2α(ν + 1)bt(θ)

2(1− bt(θ))uδt(θ)((ν − 2)−1 + uνt(θ)),

ûαβt(θ) = (ν + 1)bt(θ)
2uβt(θ) + uαt(θ)− 2α(ν + 1)bt(θ)

2(1− bt(θ))uαt(θ)uβt(θ),

ûαγt(θ) = −(ν + 1)bt(θ)(1− bt(θ))
(

2

et
+ uγt(θ)

)
+ (ν + 1)bt(θ)uγt(θ)

− 2α(ν + 1)bt(θ)
2(1− bt(θ))uαt(θ)

(
2

et
+ uγt(θ)

)
,

ûανt(θ) = bt(θ)− (ν + 1)bt(θ)(1− bt(θ))((ν − 2)−1 + uνt(θ))

+ (ν + 1)bt(θ)uνt(θ) + αbt(θ)
2uαt(θ)

− 2α(ν + 1)bt(θ)
2(1− bt(θ))uαt(θ)((ν − 2)−1 + uνt(θ)),

ûβγt(θ) = uγt(θ)− 2α(ν + 1)bt(θ)(1− bt(θ))uβt(θ)
(

2

et
+ uγt(θ)

)
ûβνt(θ) = uνt(θ) + αbt(θ)

2uβt(θ)

− 2α(ν + 1)bt(θ)(1− bt(θ))uβt(θ)((ν − 2)−1 + uνt(θ)),

ûγνt(θ) = −αbt(θ)(1− bt(θ))
(

2

et
+ uγt(θ)

)
+ αbt(θ)uγt(θ)

− α(ν + 1)(ν − 2)−1bt(θ)(1− bt(θ))uγt(θ)

+ α(ν + 1)(ν − 2)−1(1− 2bt(θ))bt(θ)(1− bt(θ))
(

2

et
+ uγt(θ)

)
− 2α(ν + 1)bt(θ)

2(1− bt(θ))uνt(θ)
(

2

et
+ uγt(θ)

)
.
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APPENDIX C: Theorem proofs

Proof for Theorem 1. The proof of this lemma is analogous to Theorem 1 of

Nelson (1990). By recursion, we have

h0t = δ0

(
1 +

t−1∑
k=1

k∏
j=1

(β0 + α0(ν0 + 1)b0t−j)

)
+ ω0

t∏
j=1

(β0 + α0(ν0 + 1)b0t−j) .

(C.1)

Clearly, δ0 < h0t a.s. for all t ∈ N>0 and any θ0 ∈ Θ. Moreover, (C.1) is

absolutely convergent almost surely as t→∞ if E[ln(β0 + α0(ν0 + 1)b0t)] < 0

(i.e. θ0 ∈ ΘL), and otherwise it is divergent [Stout (1974, p. 332) or Theorem 1

of Brandt (1986)].

Thus h0t for each t ∈ N and limt→∞ h0t are measurable if θ0 ∈ ΘL. Since b0t is

strictly stationary and ergodic for all θ0 ∈ Θ and h0t is a measurable function of

(b0t, b0t−1, . . . ) if θ0 ∈ ΘL, h0t is strictly stationary and ergodic by Theorem 3.5.8

of Stout (1974).

The Lp convergence of (1/h0t)t∈N to zero when θ0 ∈ ΘU is by dominated

convergence, since 0 < 1/h0t ≤ 1/δl <∞ a.s. for all t and θ0 ∈ Θ. �

Proof for Theorem 2. By Theorem 1 and Lemma 3, we know that

(h0t)t∈N, (hθit(θ0))t∈N, and (hθiθjt(θ0))t∈N are strictly stationary and ergodic for

all θ0 ∈ ΘL and i, j = 1, . . . , 6. (b0t)t∈N is i.i.d., and so it is also strictly

stationary and ergodic. Thus, the desired property holds by Theorem 13.3 of

Billingsley (1986) and Theorem 3.5.8 of Stout (1974). �

Proof for Theorem 3. By Lemmas 16, 8, and 10, the necessary conditions

(A.1)-(A.3) in Lemma 1 of Jensen and Rahbek (2004) are satisfied. �

APPENDIX D: Lemmas

Throughout the following analysis, note that et is a function of γ because

et = εt + (γ0 − γ) = εt + g

with g ≡ γ0 − γ. We repeatedly use Lemma 1 to bound several quantities in the

subsequent lemmas and obtain the convergence results of Sections 4.
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LEMMA 1. For all θ0, θ ∈ Θ and t ∈ N, we have

|et|
e2
t + (ν − 2)ht(θ)

≤

1 if |et| ≥ 1,

((ν − 2)δ)−1 <∞ if |et| < 1,
(D.1)

a.s. If we take the Lp-norm of the LHS quantity, it has the following simple

upper-bound; ∥∥∥∥ et
e2
t + (ν − 2)ht(θ)

∥∥∥∥
p

≤

√
1

(ν − 2)δ
<∞ (D.2)

for any p ≥ 1, t ∈ N, and θ ∈ Θ. Moreover, at θ = θ0 ∈ ΘU , the quantity on the

LHS of (D.2) tends to zero as t→∞ for any p ≥ 1.

Proof. For all θ0, θ ∈ Θ and t, we have

|et|
e2
t + (ν − 2)ht(θ)

≤ e2
t

e2
t + (ν − 2)ht(θ)

≤ 1,

if |et| ≥ 1, and

|et|
e2
t + (ν − 2)ht(θ)

≤ 1

(ν − 2)ht(θ)
≤ 1

(ν − 2)δ
<∞,

if |et| < 1 a.s. This gives (D.1). As the Lp-norms are increasing in p, we have(
E
[(

et
e2
t + (ν − 2)ht(θ)

)p])1/p

≤

√
1

(ν − 2)δ

(
E
[(

e2
t

e2
t + (ν − 2)ht(θ)

)p])1/(2p)

≤

√
1

(ν − 2)δ
<∞,

for all t, p ≥ 1, and θ0, θ ∈ Θ. This shows (D.2). Finally, using the property that

‖XY ‖p ≤ ‖X‖2p‖Y ‖2p for any random variables X and Y , we obtain for any

θ = θ0 ∈ ΘU ,∥∥∥∥ εt
ε2
t + (ν0 − 2)h0t

∥∥∥∥
p

≤
∥∥∥∥ zt
z2
t + (ν0 − 2)

∥∥∥∥
2p

∥∥∥∥ 1√
h0t

∥∥∥∥
2p

=

∥∥∥∥ z2
t

(z2
t + (ν0 − 2))2

∥∥∥∥1/2

p

∥∥∥∥ 1

h0t

∥∥∥∥1/2

p

≤
√

1

ν0 − 2

∥∥∥∥ 1

h0t

∥∥∥∥1/2

p

and the last quantity on the RHS tends to zero as t→∞ for any p ≥ 1 by

Theorem 1. �

The following lemma is used to show that several quantities, especially the

derivatives of the log-likelihood, in the subsequent lemmas are bounded in the

Lp-norm.

LEMMA 2. For any θ0 ∈ Θ and t ∈ N,
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(i) hθit(θ0) is bounded in Lp for any p ≥ 1 and i = 1, . . . , 5. For instance, we

write ‖hβt(θ0)‖p ≤ Hp(θ0) <∞ for some Hp(θ0) > 0.

(ii) hθiθjt(θ0) is bounded in Lp for any p ≥ 1 and i, j = 1, . . . , 5. For instance,

we write ‖hββt(θ0)‖p ≤ H†p(θ0) <∞ for some H†p(θ0) > 0.

(iii) hθiθjθkt(θ0) is bounded in Lp for any p ≥ 1 and i, j, k = 1, . . . , 5. For

instance, we write ‖hβββt(θ0)‖p ≤ H‡p(θ0) <∞ for some H‡p(θ0) > 0.

Proof. (i) For all t and θ0 ∈ Θ, we have

0 <
h0t(β0 + α0(ν0 + 1)b2

0t)

h0t+1

<
β0 + α0(ν0 + 1)b2

0t

β0 + α0(ν0 + 1)b0t

< 1 (D.3)

a.s. because b0t ∈ (0, 1) a.s. and it is a non-degenerate continuous random

variable for each t and θ0 ∈ Θ. Define∥∥∥∥β0 + α0(ν0 + 1)b2
0t

β0 + α0(ν0 + 1)b0t

∥∥∥∥
p

≡ Dp(θ0) ∈ (0, 1)

for each p ≥ 1, t, and θ0 ∈ Θ. We have Dp(θ0) ∈ (0, 1) for each t by (D.3). Note

that, for any k ∈ N>0, p ≥ 1, and θ0 ∈ Θ, we have∥∥∥∥∥
k∏
j=1

β0 + α0(ν0 + 1)b2
0t

β0 + α0(ν0 + 1)b0t

∥∥∥∥∥
p

=
k∏
j=1

∥∥∥∥β0 + α0(ν0 + 1)b2
0t

β0 + α0(ν0 + 1)b0t

∥∥∥∥
p

= Dp(θ0)k

by the i.i.d. property of (b0t)t∈N. Then (B.3) implies that

‖hθit(θ0)‖p ≤ β−1
l

t∑
k=1

∥∥∥ĥθit−k(θ0)
∥∥∥

2p
D2p(θ0)k

for all t, θ0 ∈ Θ, p ≥ 1, and i = 1, . . . , 5 by the Minkowski inequality and the

property that ‖XY ‖p ≤ ‖X‖2p‖Y ‖2p for any random variables X and Y . Since

Dp(θ0) ∈ (0, 1) for any p ≥ 1 and θ0 ∈ Θ, ‖hθit(θ0)‖p is bounded in Lp for any

p ≥ 1, t and θ ∈ Θ if so is ĥθit−k(θ0). For i = 3, since ĥβt(θ0) = 1, we obtain

‖hβt(θ0)‖p ≤ β−1
l

t∑
k=1

D2p(θ0)k ≤ D2p(θ0)

βl(1−D2p(θ0))
≡ Hp(θ0) <∞. (D.4)

for all t, p ≥ 1, and θ0 ∈ Θ. For i = 1, 2, 4, we have∣∣∣ĥνt(θ0)
∣∣∣ ≤ α0 + α0(ν0 + 1)(ν0 − 2)−1 <∞,∣∣∣ĥαt(θ0)
∣∣∣ ≤ (ν0 + 1) <∞,

∣∣∣ĥδt(θ0)
∣∣∣ ≤ δ−1

0 <∞,

for all t and θ0 ∈ Θ. Thus, we have

‖hνt(θ0)‖p ≤ (αu + αu(νu + 1)(νl − 2)−1)Hp(θ0) <∞, (D.5)

‖hαt(θ0)‖p ≤ (νu + 1)Hp(θ0) <∞,
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‖hδt(θ0)‖p ≤
D2p(θ0)

βlδl(1−D2p(θ0))
= Hp(θ0)/δl <∞,

for all t and θ0 ∈ Θ. For i = 5, we have∥∥∥ĥγt(θ0)
∥∥∥
p
≤ 2α0(ν0 + 1)√

(ν0 − 2)δ0

<∞

for any p ≥ 1, t, and θ0 ∈ Θ by Lemma 1. Then we have

‖hγt(θ0)‖p ≤
2αu(νu + 1)√
δl(νl − 2)

Hp(θ0) <∞

for any t, p ≥ 1 and θ0 ∈ Θ.

(ii) By (B.6), we have∥∥hθiθjt(θ0)
∥∥
p
≤ β−1

l

t∑
k=1

∥∥∥ĥθiθjt−k(θ0)
∥∥∥

2p
D2p(θ0)k.

for all t, p ≥ 1, i, j = 1, . . . , 5, and θ0 ∈ Θ by the Minkowski and Hölder

inequalities. Thus,
∥∥hθiθjt(θ0)

∥∥
p

is bounded for any p ≥ 1, t, and θ0 ∈ Θ if so is∥∥∥ĥθiθjt−k(θ0)
∥∥∥
p
. For instance, we have∥∥∥ĥββt(θ0)

∥∥∥
p
≤ 2H2p(θ0) (1 + αu(νu + 1)H2p(θ0)) <∞

for all t and θ0 ∈ Θ by Lemma 2 (i). Then we have

‖hββt(θ0)‖p ≤
2H2p(θ0) (1 + αu(νu + 1)H2p(θ0))

βl

t∑
k=1

D2p(θ0)k

≤ 2H2p(θ0)Hp(θ0) (1 + αu(νu + 1)H2p(θ0)) ≡ H†p(θ0) <∞

for all t and θ0 ∈ Θ. Similarly, it is easy to establish that
∥∥hθiθjt(θ0)

∥∥
p
<∞ for

all t, p ≥ 1, θ0 ∈ Θ, and i, j = 1, 2, 3, 4 by Lemma 2 (i). For i = 5 (or θi = γ) and

j = 1, . . . , 5, first note that∣∣∣∣b0t

ε2
t

∣∣∣∣ =
1

ε2
t + (ν0 − 2)h0t

≤ 1

(ν0 − 2)δ0

<∞,∥∥∥∥b0t

(
2

εt
+ hγt(θ0)

)∥∥∥∥
p

≤ 2

∥∥∥∥ εt
ε2
t + (ν0 − 2)h0t

∥∥∥∥
p

+ ‖hγt(θ0)‖p <∞,
(D.6)

for all t, p ≥ 1, and θ ∈ Θ by the Minkowski inequality, Lemma 1, and Lemma 2

(i). Using these properties, it is easy to establish that
∥∥∥ĥθiθjt(θ0)

∥∥∥
p
<∞ for any

p ≥ 1, t, and θ0 ∈ Θ when i = 5 and j = 1, . . . , 5.

(iii) Derivations analogous to the above show that the desired property holds

for
∥∥hθiθjθkt(θ0)

∥∥
p

with i, j, k = 1, . . . , 5 for any t, p ≥ 1, and θ0 ∈ Θ. For

instance, for the case of i = j = k = 3, we have∥∥∥ĥβββt(θ0)
∥∥∥
p
≤ 3H†p(θ0) + 6αu(νu + 1)H3p(θ0)3 + 2αu(νu + 1)H2p(θ0)H†2p(θ0) <∞
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for any p ≥ 1, t, and θ0 ∈ Θ by the Minkowski and Hölder inequalities and

Lemma 2 (i)(ii). Thus we have

‖hβββt(θ0)‖p
≤
(

3H†p(θ0) + 6αu(νu + 1)H3p(θ0)3 + 2αu(νu + 1)H2p(θ0)H†2p(θ0)
)
Hp(θ0)

≡ H‡p(θ0) <∞

for any p ≥ 1, t, and θ0 ∈ Θ. �

The following lemma is used to show the strict stationarity and ergodicity of

∇lt(θ0) in Theorem 2.

LEMMA 3. If θ0 ∈ ΘL, (hθit(θ0))t∈N and
(
hθiθjt(θ0)

)
t∈N are strictly stationary

and ergodic for i, j = 1, . . . , 5.

Proof. Note that 0 < (β0 + α0(ν0 + 1)b2
0t)h0t/h0t+1 < 1 a.s. for all t ∈ N and

θ0 ∈ Θ, and the middle term is strictly stationary and ergodic if θ0 ∈ ΘL. Then

we have

E
[
log

(
β0 + α0(ν0 + 1)b2

0th0t)

h0t+1

)]
< 0

for all θ0 ∈ ΘL. By Lemma 1 and Theorem 1,
(
ĥθit(θ0)

)
t∈N

is strictly stationary

and ergodic and bounded by some fixed real number a.s. for all θ0 ∈ ΘL and

i = 1, . . . , 5. Then we have

E

[
max

{
0, log

(
ĥθit(θ0)

β0 + α0(ν0 + 1)b2
0t

)}]
<∞.

Thus hθit(θ0) is convergent absolutely a.s. for all t ∈ N, i = 1, . . . , 5, and θ0 ∈ ΘL

by Theorem 1 of Brandt (1986). Then hθit(θ0) is measurable for all t ∈ N,

i = 1, . . . , 5, and θ0 ∈ ΘL. Hence (hθit(θ0))t∈N is strictly stationary and ergodic

for all θ0 ∈ ΘL and i = 1, . . . , 5 by Theorem 3.5.8 of Stout (1974).

Then
(
ĥθiθjt(θ0)

)
t∈N

is strictly stationary and ergodic for all θ0 ∈ ΘL and

i, j = 1, . . . , 5. Moreover, using the properties that b0t ∈ (0, 1) a.s. for all t ∈ N
and max {0, log |X|} ≤ |X| for any real-valued random variable X, we obtain

E

[
max

{
0, log

(
ĥθiθjt(θ0)

β0 + α0(ν0 + 1)b2
0t

)}]
≤ β−1

0 E
[∣∣∣ĥθiθjt(θ0)

∣∣∣] <∞
for all t ∈ N, i, j = 1, . . . , 5, and θ0 ∈ ΘL by Lemma 2 (i). Then

(
hθiθjt(θ0)

)
t∈N is

strictly stationary and ergodic for all θ0 ∈ ΘL and i, j = 1, . . . , 5 by Theorem 1 of

Brandt (1986) and Theorem 3.5.8 of Stout (1974). �
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Lemma 4 is used to show Lemmas 5 and 9. Note that the condition,

1 ≤ p ≤ 4, in Lemma 4 may be relaxed to any p ≥ 1 if one uses the properties of

the beta distribution to express the quantity,∥∥∥∥ln

(
1 +

ε2
t

(ν0 − 2)h0t

)∥∥∥∥
p

=

∥∥∥∥ln

(
1 +

z2
t

(ν0 − 2)

)∥∥∥∥
p

= ‖ln(1− b0t)‖p ,

in terms of polygamma functions. This quantity should be finite for any ν0 in

our parameter space.

LEMMA 4. For 1 ≤ p ≤ 4, t ∈ N>0 and θ0 ∈ Θ, we have∥∥∥∥ln

(
1 +

ε2
t

(ν0 − 2)h0t

)∥∥∥∥
p

<∞. (D.7)

Proof. As the Lp-norm is increasing in p ≥ 1, it is enough to show (D.7) for

p = 4. Using the property that (ln(1 + x))4 < 5x for all x > 0, we have

E

[(
ln

(
1 +

ε2
t

(ν0 − 2)h0t

))4
]
< E

[
5ε2

t

(ν0 − 2)h0t

]
≤ 5

(νl − 2)
<∞.

�

The preceding results can be used to establish that the elements of ∇lt(θ0)

and ∇2lt(θ0) are bounded in Lp for some p.

LEMMA 5. ‖∂lt(θ0)/∂θi‖p <∞ for 1 ≤ p ≤ 4, i = 1, . . . , 5, t ∈ N>0, and any

θ0 ∈ Θ.

Proof. For the derivative with respect to β, we have∥∥∥∥∂lt(θ0)

∂β

∥∥∥∥
p

≤ νu + 2

2
‖hβt(θ0)‖p ≤

νu + 2

2
Hp(θ0) <∞

for any p ≥ 1, t, and θ0 ∈ Θ by Lemma 2 (i). Similar derivations show that

∂lt(θ0)/∂δ and ∂lt(θ0)/∂α are bounded in Lp for all t, p ≥ 1, and θ0 ∈ Θ by

Lemma 2 (i). ∂lt(θ0)/∂γ is bounded in Lp for all p ≥ 1, t, and θ0 ∈ Θ by Lemma

1 and Lemma 2 (i). Finally, ∂lt(θ0)/∂ν is bounded in L4 for all t and θ0 ∈ Θ by

Lemma 2 (i) and Lemma 4. �

LEMMA 6. ‖∂2lt(θ0)/∂θi∂θj‖p <∞ for all p ≥ 1, i, j = 1, . . . , 5, t ∈ N>0,

and θ0 ∈ Θ.

Proof. This can be established by the Minkowski and Hölder inequalities,

Lemma 1 and Lemma 2 (i)(ii). For instance, consider ∂2lt(θ0)/∂β2. We obtain
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from (B.1) that∥∥∥∥∂2lt(θ0)

∂β2

∥∥∥∥
p

≤ 2νu + 3

2
‖hβt(θ0)‖2

2p +
νu + 2

2
‖hββt(θ0)‖p

and the RHS is bounded for all t, p ≥ 1, and θ0 ∈ Θ by Lemma 2 (i)(ii). Similar

derivations show the desired property for other second derivatives. �

In order to establish the asymptotic properties of ∇Ln(θ) and ∇2Ln(θ), we

define the following new processes

uθit(θ) =
t∑

k=1

ûθit−k(θ)

β + α(ν + 1)bt−k(θ)2

k∏
j=1

β + α(ν + 1)bt−j(θ)
2

β + α(ν + 1)bt−j(θ)

for i = 1, . . . , 5, where ûθit(θ) is set to be the limit of ĥθit(θ) when θ = θ0 ∈ ΘU

and t→∞. Thus, we define

ûνt(θ) = αbt(θ)− α(ν + 1)(ν − 2)−1bt(θ)(1− bt(θ)),

ûαt(θ) = (ν + 1)bt(θ), ûβt(θ) = 1, ûδt(θ) = 0, ûγt(θ) = 0.

Furthermore, define

uθiθjt(θ) =
t∑

k=1

ûθiθjt−k(θ)

β + α(ν + 1)bt−k(θ)2

k∏
j=1

β + α(ν + 1)bt−j(θ)
2

β + α(ν + 1)bt−j(θ)

for i, j = 1, . . . , 5, where ûθiθjt(θ) is set to be the limit of ĥθiθjt(θ) when

θ = θ0 ∈ ΘU and t→∞. They are defined in Appendix B.3. The following

lemma establishes some of the useful properties of these processes.

LEMMA 7. The processes, (uθit(θ))t∈N and
(
uθiθjt(θ)

)
t∈N, satisfy the following

properties.

(i) (uθit(θ0))t∈N is strictly stationary and ergodic for all θ0 ∈ Θ and

i = 1, . . . , 5.

(ii) uθit(θ0) is bounded in Lp for all p ≥ 1, t ∈ N, θ0 ∈ Θ, and i = 1, . . . , 5.

(iii) 0 ≤ hθit(θ0) ≤ uθit(θ0) for all θ0 ∈ Θ and i = 2, 3 (i.e. θi = α or β).

(iv) Define

y∗t−k(θ) ≡
k∏
j=1

β + α(ν + 1)bt−j(θ)
2

β + α(ν + 1)bt−j(θ)
−

k∏
j=1

(β + α(ν + 1)bt−j(θ)
2)ht−j(θ)

ht−j+1(θ)

for k, t ∈ N and θ, θ0 ∈ Θ. Then ‖y∗t−k(θ0)‖p → 0 as t→∞ for any p ≥ 1,

k ∈ N, and θ0 ∈ ΘU .
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(v) hθit(θ0)− uθit(θ0) is bounded in Lp for all p ≥ 1, t ∈ N, θ0 ∈ Θ and

i = 1, . . . , 5.

(vi) We have

‖hθit(θ0)− uθit(θ0)‖p → 0 (D.8)

as t→∞ for any p ≥ 1, θ0 ∈ ΘU , and i = 1, . . . , 5.

(vii) We have ∥∥∥∥∥ 1

n

n∑
t=1

(hθit(θ0)− uθit(θ0))

∥∥∥∥∥
p

→ 0, (D.9)∥∥∥∥∥ 1

n

n∑
t=1

(hγt(θ0)− uγt(θ0))
εt

ε2
t + (ν0 − 2)h0t

∥∥∥∥∥
p

→ 0, (D.10)∥∥∥∥∥ 1

n

n∑
t=1

(
hθit(θ0)hθjt(θ0)− uθit(θ0)uθjt(θ0)

)∥∥∥∥∥
p

→ 0, (D.11)

as n→∞ for all p ≥ 1, θ0 ∈ ΘU , and i, j = 1, . . . , 5.

(viii) uθiθjt(θ0) is strictly stationary ergodic for all θ0 ∈ Θ and i, j = 1, . . . , 5.

(ix) uθiθjt(θ0) is bounded in Lp for any p ≥ 1, t ∈ N, θ0 ∈ Θ, and i, j = 1, . . . , 5.

(x)
∥∥hθiθjt(θ0)− uθiθjt(θ0)

∥∥
p
<∞ for all t ∈ N, p ≥ 1, θ0 ∈ Θ, and

i, j = 1, . . . , 5.

(xi)
∥∥hθiθjt(θ0)− uθiθjt(θ0)

∥∥
p
→ 0 as t→∞ for all p ≥ 1, θ0 ∈ ΘU , and

i, j = 1, . . . , 5.

(xii)
∥∥n−1

∑n
t=1

(
hθiθjt(θ0)− uθiθjt(θ0)

)∥∥
p
→ 0 as n→∞ for all p ≥ 1, θ0 ∈ ΘU ,

and i, j = 1, . . . , 5.

Proof. (i) (viii) By (D.3), we have

E
[
ln

(
β0 + α0(ν0 + 1)b2

0t

β0 + α0(ν0 + 1)b0t

)]
< 0.

Moreover, using the property that ln(x) ≤ x− 1 for all x > 0, we have

E [max{0, ln |ũθi |}] ≤ E [max{0, |ũθi |}] = E [|ũθi |] <∞

for i = 1, . . . , 5. Then (uθit(θ0))t∈N is strictly stationary and ergodic for all

θ0 ∈ Θ by Theorem 1 of Brandt (1986). Likewise, we can show that

E
[
max{0, ln |ũθiθjt(θ0)|}

]
<∞ and E

[
max{0, ln |ũθiθjθmt(θ0)|}

]
<∞ for all t,

θ0 ∈ Θ, and i, j,m = 1, . . . , 5. Then we can deduce that (u∗θiθjt(θ0))t∈N and
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(u∗θiθjθmt(θ0))t∈N are strictly stationary and ergodic for any θ0 ∈ Θ and

i, j,m = 1, . . . , 5 by Theorem 1 of Brandt (1986).

(ii) The proof for i = 4, 5 (i.e. θi = δ or γ) is trivial as ûδt(θ) = ûγt(θ) = 0 for

all t and θ ∈ Θ. Recalling (D.3) and Dp(θ0) defined in in Lemma 2 (i), we obtain

‖uαt(θ0)‖p ≤
νu + 1

βl

∞∑
k=1

Dp(θ0)k =
(νu + 1)Dp(θ0)

βl(1−Dp(θ0))
<∞,

‖uβt(θ0)‖p ≤
1

βl

∞∑
k=1

Dp(θ0)k =
Dp(θ0)

βl(1−Dp(θ0))
<∞,

‖uνt(θ0)‖p ≤
αu + αu(νu + 1)(νl − 2)−1

βl

∞∑
k=1

Dp(θ0)k

≤ (αu + αu(νu + 1)(νl − 2)−1)Dp(θ0)

βl(1−Dp(θ0))
<∞.

(D.12)

for all t, p ≥ 1, and θ0 ∈ Θ.

(iii) This is by (D.3) and the fact that ûθit(θ0) = ĥθit(θ0) for all t, θ0 ∈ Θ,

and i = 2, 3 (i.e. θi = α or β).

(iv) By Theorem 1 and (D.3), we have

0 <
β0 + α0(ν0 + 1)b2

0t−j

β0 + α0(ν0 + 1)b0t−j
−

(β0 + α0(ν0 + 1)b2
0t−j)h0t−j

h0t−j+1

→ 0

a.s. as t→∞ for any j ∈ N and θ0 ∈ ΘU . Thus 0 ≤ y∗t−k(θ0)→ 0 a.s. as t→∞
for any k ∈ N and all θ0 ∈ ΘU . Moreover, y∗t (θ)

p ≤ 1 for any p ≥ 1, t ∈ N and

θ, θ0 ∈ Θ. Thus ‖y∗t−k(θ0)‖p → 0 as t→∞ for any k ∈ N, p ≥ 1, and θ0 ∈ ΘU by

dominated convergence.

(v) This is by the Minkowski inequality, Lemma 2 (i), and Lemma 7 (ii).

(vi) We prove (D.8) for p = 1 first. For any t0 < t and θ0 ∈ ΘU , we have

E [|uαt(θ0)− hαt(θ0)|]

= E

[∣∣∣∣∣
∞∑
k=1

(ν0 + 1)b0t−k

β0 + α0(ν0 + 1)b2
0t−k

k∏
j=1

β0 + α0(ν0 + 1)b2
0t−j

β0 + α0(ν0 + 1)b0t−j

−
t∑

k=1

(ν0 + 1)b0t−k

β0 + α0(ν0 + 1)b2
0t−k

k∏
j=1

h0t−j(β0 + α0(ν0 + 1)b2
0t−j)

h0t−j+1

∣∣∣∣∣
]
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≤
t0∑
k=1

E
[∣∣∣∣ (ν0 + 1)b0t−k

β0 + α0(ν0 + 1)b2
0t−k

y∗t−k(θ0)

∣∣∣∣]

+
∞∑

k=t0+1

E

[∣∣∣∣∣ (ν0 + 1)b0t−k

β0 + α0(ν0 + 1)b2
0t−k

k∏
j=1

β0 + α0(ν0 + 1)b2
0t−j

β0 + α0(ν0 + 1)b0t−j

∣∣∣∣∣
]

≤ νu + 1

βl

t0∑
k=1

E
[∣∣y∗t−k(θ0)

∣∣]+
νu + 1

βl

D1(θ0)t0+1

1−D1(θ0)

by the triangle inequality and (D.3). The first term in the final line tends to zero

as t→∞ for any t0 < t and θ0 ∈ ΘU by Lemma 7 (iv). As the choice of t0 < t

was arbitrary and D1(θ0) ∈ (0, 1) for any θ0 ∈ Θ, the second term in the final

line tends to zero as t0 →∞. Thus ‖uαt(θ0)− hαt(θ0)‖1 → 0 as t→∞ for all

θ0 ∈ ΘU . Analogous derivations show that ‖uβt(θ0)− hβt(θ0)‖1 → 0 and

‖uνt(θ0)− hνt(θ0)‖1 → 0 as t→∞ for all θ0 ∈ ΘU . For i = 4 (i.e. θi = δ), note

that, for any k ∈ N, we have

0 ≤
(

1

(β0 + α0(ν0 + 1)b2
0t−k)h0t−k

)p
→ 0

a.s. as t→∞ for any p ≥ 1 and θ0 ∈ ΘU by Theorem 1. The term in the middle

is also bounded above by 1/(βlδl)
p a.s. Thus, by dominated convergence,∥∥∥∥ 1

(β0 + α0(ν0 + 1)b2
0t−k)h0t−k

∥∥∥∥
p

→ 0 (D.13)

as t→∞ for any p ≥ 1, k ∈ N, and all θ0 ∈ ΘU . Then, for any arbitrary t0 < t,

0 ≤ ‖hδt(θ0)− uδt(θ0)‖1 ≤
t0∑
k=1

∥∥∥∥ 1

(β0 + α0(ν0 + 1)b2
0t−k)h0t−k

∥∥∥∥
2

D2(θ0)k

+
D2(θ0)t0+1

β0δ0(1−D2(θ0))
.

By (D.13), the first term on the RHS tends to zero as t→∞ for any t0 < t and

θ0 ∈ ΘU . The second term on the RHS also tends to zero as t0 →∞. Hence

‖hδt(θ0)− uδt(θ0)‖1 → 0 as t→∞ for all θ0 ∈ ΘU . For i = 5 (i.e. θi = γ), note

that

0 ≤ E
[
|ĥγt−k(θ0)|

]
≤ 2α0(ν0 + 1)E

[
|εt|

ε2
t + (ν0 − 2)h0t

]
→ 0

as t→∞ for all θ0 ∈ ΘU by Lemma 1. Moreover, ĥγt(θ0) is bounded in Lp for

any p ≥ 1, θ0 ∈ Θ, and t by Lemma 2 (i). Thus, we can show that

‖hγt(θ0)− uγt(θ0)‖1 → 0 as t→∞ by derivations similar to the i = 4 (i.e.

θi = δ) case.

By these properties of L1 convergence to zero and the uniform integrability
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established in Lemma 7 (v), we have (D.8) for any p ≥ 1, θ0 ∈ ΘU , and

i = 1, . . . , 5.

(vii) (D.9) is by the Minkowski inequality and Lemma 7 (vi). We also have∥∥∥∥∥ 1

n

n∑
t=1

(hγt(θ0)− uγt(θ0))
εt

ε2
t + (ν0 − 2)h0t

∥∥∥∥∥
p

≤ 1

n

n∑
t=1

‖hγt(θ0)− uγt(θ0)‖2p

∥∥∥∥ εt
ε2
t + (ν0 − 2)h0t

∥∥∥∥
2p

→ 0,

as n→∞ for any θ0 ∈ ΘU by Lemma 7 (vi) and Lemma 1. This establishes

(D.10). Next we show (D.11). For any p ≥ 1, θ0 ∈ ΘU , and i, j = 1, . . . , 5, we

have∥∥uθit(θ0)uθjt(θ0)− hθit(θ0)hθjt(θ0)
∥∥
p

≤
∥∥uθit(θ0)

(
uθjt(θ0)− hθjt(θ0)

)∥∥
p

+
∥∥hθjt(θ0)(uθit(θ0)− hθit(θ0))

∥∥
p

≤ ‖uθit(θ0)‖2p

∥∥uθjt(θ0)− hθjt(θ0)
∥∥

2p
+
∥∥hθjt(θ0)

∥∥
2p
‖uθit(θ0)− hθit(θ0)‖2p

→ 0

(D.14)

as t→∞ by Lemma 2 (i) and Lemma 7 (ii)(vi). Thus we obtain∥∥∥∥∥ 1

n

n∑
t=1

(
hθit(θ0)hθjt(θ0)− uθit(θ0)uθjt(θ0)

)∥∥∥∥∥
p

≤ 1

n

n∑
t=1

∥∥(hθit(θ0)hθjt(θ0)− uθit(θ0)uθjt(θ0)
)∥∥

p
→ 0

as n→∞ for all θ0 ∈ ΘU , p ≥ 1, and i, j = 1, . . . , 5. This shows (D.11).

(ix) The proof is analogous to Lemma 2 (i)(ii), and thus omitted.

(x) This is by the Minkowski inequality, Lemma 2 (ii), and Lemma 7 (ix).
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(xi) For any t0 < t, we have∥∥hθiθjt(θ0)− uθiθjt(θ0)
∥∥
p

≤
t0∑
k=1

∥∥∥∥∥ ĥθiθjt−k(θ0)

β0 + α0(ν0 + 1)b2
0t−k

y∗t−k(θ0)

∥∥∥∥∥
p

+

t0∑
k=1

∥∥∥∥∥ ĥθiθjt−k(θ0)− ûθiθjt−k(θ0)

β0 + α0(ν0 + 1)b2
0t−k

k∏
j=1

β0 + α0(ν0 + 1)b2
0t−j

β0 + α0(ν0 + 1)b0t−j

∥∥∥∥∥
p

+
t∑

k=t0+1

∥∥∥∥∥ ûθiθjt−k(θ0)

β0 + α0(ν0 + 1)b2
0t−k

k∏
j=1

β0 + α0(ν0 + 1)b2
0t−j

β0 + α0(ν0 + 1)b0t−j

∥∥∥∥∥
p

≤ β−1
l

t0∑
k=1

∥∥∥ĥθiθjt−k(θ0)
∥∥∥

2p

∥∥y∗t−k(θ0)
∥∥

2p

+ β−1
l

t0∑
k=1

∥∥∥ĥθiθjt−k(θ0)− ûθiθjt−k(θl)
∥∥∥

2p
D2p(θ0)k

+ β−1
0 sup

i,j

∥∥ûθiθjt−k(θ0)
∥∥

2p

D2p(θ0)t0+1

1−D2p(θ0)

(D.15)

for all t and θ0 ∈ Θ. The second inequality used the property that ûθiθjt(θ0) is

bounded in Lp and strictly stationary for all p ≥ 1, θ0 ∈ Θ, and i, j = 1, . . . , 5.

Note that we have ∥∥∥ĥθiθjt(θ0)− ûθiθjt(θ0)
∥∥∥
p
→ 0 (D.16)

as t→∞ for any p ≥ 1, θ0 ∈ ΘU , and i, j = 1, . . . , 5 by (D.14), Lemma 7 (vi),

and Lemma 1. Then, by (D.16), Lemma 2 (ii), Lemma 7 (iv)(ix), and the

property that Dp(θ0) ∈ (0, 1) for all p ≥ 1 and θ0 ∈ Θ, the terms after the second

inequality of (D.15) tends to zero as t→∞ and t0 →∞ (since the choice of

t0 < t was arbitrary) for any θ0 ∈ ΘU , p ≥ 1, and i, j = 1, . . . , 5.

(xii) This is by Lemma 7 (xi) and derivations analogous to the proof for

(D.9) in Lemma 7 (vii). �

Lemma 7 is used in the following lemma, which is used to show the

asymptotic property of ∇θLn(θ0) and ∇θ∗Ln(θ∗0).

LEMMA 8. Assume that θ0 ∈ ΘL. Then

1

n

n∑
t=1

∇2
θlt(θ0)

P→ E
[
∇2
θlt(θ0)

]
≡ Q(θ0), (D.17)
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where Q(θ0) is a constant symmetric matrix given θ0. Moreover, if θ0 ∈ ΘU , then

1

n

n∑
t=1

∇2
θ∗lt(θ0)

P→ E
[
∇2
θ∗lt(θ0)

]
≡ Q∗(θ0) (D.18)

for all θ0 ∈ ΘU , where Q∗(θ0) is a constant symmetric matrix given θ0.

Proof. For all θ ∈ ΘL, ∇2
θlt(θ0) is strictly stationary and ergodic by Theorem 2.

Moreover, E [|∂2lt(θ0)/∂θi∂θj|] <∞ for all θ0 ∈ Θ and i, j = 1, . . . , 5 by Lemma

6. Thus (D.17) holds for all θ0 ∈ ΘL by replacing the almost sure convergence of

Theorem 3.5.7 of Stout (1974) by convergence in probability. For θ0 ∈ ΘU , we

have

1

n

n∑
t=1

∂2lt(θ0)

∂β2
=

1

2n

n∑
t=1

[(ν0 + 1)b0t(b0t − 2) + 1]
(
hβt(θ0)2 − uβt(θ0)2

)
+

1

2n

n∑
t=1

((ν0 + 1)b0t − 1) (hββt(θ0)− uββt(θ0))

+
1

2n

n∑
t=1

[(ν0 + 1)b0t(b0t − 2) + 1]uβt(θ0)2

+
1

2n

n∑
t=1

((ν0 + 1)b0t − 1)uββt(θ0)

P→ 1

2
E [(ν0 + 1)b0t(b0t − 2) + 1]E

[
uβt(θ0)2

]
=

1

2

(
3

ν0 + 3
− 1

)
E
[
uβt(θ0)2

]
< 0

as n→∞ by Lemma 7 (i)(vii)(viii)(xi)(xii) and the property that b0t for each

t ∈ N is i.i.d. with the distribution Beta(1/2, ν0/2). Similarly, we can use the

results of Lemma 7 to establish the desired convergence of other diagonal and

off-diagonal elements of (D.18). �

The following lemma verifies that the limiting distribution of ∇θLn(θ0) and

∇θ∗Ln(θ0) in Lemma 10 have well-defined variances.

LEMMA 9. E [|(∂lt(θ0)/∂θi)(∂lt(θ0)/∂θj)| ] <∞ for all t ∈ N, i, j = 1, . . . , 5,

and θ0 ∈ Θ.

Proof. Using the property that ‖X2‖1 = ‖X‖2
2 for any random variable X, we

know that E
[
|∂lt(θ0)/∂θi|2

]
is bounded for all θ0 ∈ Θ and i = 1, . . . , 5 by Lemma

5. For i 6= j, (∂lt(θ0)/∂θi)(∂lt(θ0)/∂θj) are also bounded in L1 since∥∥∥∥∂lt(θ0)

∂θi

∂lt(θ0)

∂θj

∥∥∥∥
1

≤
∥∥∥∥∂lt(θ0)

∂θi

∥∥∥∥
2

∥∥∥∥∂lt(θ0)

∂θj

∥∥∥∥
2

<∞
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for all i, j = 1, . . . , 5 and i 6= j by the Hölder inequality and Lemma 5. �

The following proposition is used to establish Lemma 10.

PROPOSITION 1. Let (Xt)
∞
t=1 be a sequence of random variables satisfying

n−1
∑n

t=1 Xt
P→ 0 as n→∞. If n−1

∑n
t=1 E[Xt] converges as n→∞, then its

limit is zero.

Proof. We can find a subsequence (Xtk)
∞
k=1 such that n−1

∑n
k=1 Xtk → 0 a.s. as

n→∞. Then n−1
∑n

k=1 E[Xtk ]→ 0 as n→∞, and since n−1
∑n

t=1 E[Xt] is

convergent, its limit must be zero. �

We are now ready to show that the asymptotic distribution of ∇θLn(θ0) and

∇θ∗Ln(θ0) are normal with a well-defined covariance matrices.

LEMMA 10. For all θ0 ∈ ΘL,

R(θ0)−1/2
√
n∇θLn(θ0)

D→ N(0, 1) as n→∞, (D.19)

where R(θ0) ≡ E[∇θlt(θ0)∇θlt(θ0)>]. Moreover, for all θ0 ∈ ΘU ,

R∗(θ0)−1/2
√
n∇θ∗Ln(θ0)

D→ N(0, 1) as n→∞, (D.20)

where R∗(θ0) ≡ E[∇θ∗lt(θ0)∇θ∗lt(θ0)>].

Proof. We first verify that (∇θlt(θ0))t∈N and (∇θ∗lt(θ0))t∈N are martingale

difference sequences (MD). Since (b0t)t∈N is i.i.d. with the distribution,

Beta(1/2, ν0/2), for each t, we have

E
[
∂lt(θ0)

∂δ

∣∣∣∣Ft−1

]
= E

[
∂lt(θ0)

∂α

∣∣∣∣Ft−1

]
=

[
∂lt(θ0)

∂β

∣∣∣∣Ft−1

]
= 0,

for all t. Moreover, we have

E
[

ln

(
1 +

z2
t

(ν0 − 2)

)∣∣∣∣Ft−1

]
= −E [ ln(1− b0t)| Ft−1] = ψ0

(
ν0 + 1

2

)
− ψ0

(ν0

2

)
,

for all t by the properties of the beta distribution. Thus E [∂lt(θ0)/∂ν|Ft−1] = 0.

Finally, we have E [∂lt(θ0)/∂γ| Ft−1] = 0 if

E
[

zt
z2
t + (ν0 − 2)

∣∣∣∣Ft−1

]
= 0. (D.21)
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Computing the integral directly, we obtain

E
[

zt
z2
t + (ν0 − 2)

∣∣∣∣Ft−1

]
∝
∫ ∞
−∞

z

z2 + (ν0 − 2)

(
1 +

z2

ν0 − 2

)− ν0+1
2

dz

=

∫ π/2

−π/2

tanx

tan2 x+ 1

(
1 + tan2 x

)− ν0+1
2 sec2 x dx

∝
∫ π/2

−π/2
sinx (cosx)ν0 dx

= 0,

for all t ∈ N, where the second line is by the change of variable,

z/
√
ν0 − 2 = tan x, the third line is by basic trigonometric identities, and the

last line is by the fact that the integrand is an odd function for any ν0 ∈ R. Thus

(D.21) holds. Then, since ∇θlt(θ0) and ∇θ∗lt(θ0) are integrable for all θ0 ∈ ΘL

and θ0 ∈ ΘU , respectively, by Lemma 5, (∇lt(θ0))t∈N and (∇θ∗lt(θ0))t∈N are MDs.

If θ0 ∈ ΘL, ∇θlt(θ0) is a strictly stationary and ergodic martingale difference

with finite unconditional second moment by Theorem 2 and Lemma 9. Thus

(D.19) holds at θ = θ0 by the central limit theorem for stationary ergodic

martingales [Theorem 6.11 of Varadhan (2001, p.144)].

For θ0 ∈ ΘU , we aim to show that

1

n

n∑
t=1

E
[
∇θ∗lt(θ0)∇θ∗lt(θ0)>

]
→ R∗(θ0), (D.22)

E
[
∂lt(θ0)

∂θi

∂lt(θ0)

∂θj

∂lt(θ0)

∂θk

]
<∞ for all t, and (D.23)

1

n

n∑
t=1

∇θ∗lt(θ0)∇θ∗lt(θ0)>
P→ R∗(θ0), (D.24)

where i, j, k = 1, 2, 3, convergence is as n→∞, and R∗(θ0) is a deterministic and

finite positive definite matrix for each θ0 ∈ ΘU . (D.22)-(D.24) imply that (D.20)

holds for θ0 ∈ ΘU by Proposition 7.9 of Hamilton (1994, p.194). (Note that the

proofs for (D.22) and (D.23) presented below holds for all θ0 ∈ Θ, whereas the

proof for (D.24) holds only for θ0 ∈ ΘU .)

By the integrability of ∇θ∗lt(θ0)∇θ∗lt(θ0)> shown in Lemma 9,

E
[
∇θ∗lt(θ0)∇θ∗lt(θ0)>

]
≡ R∗t (θ0) is a finite positive definite matrix for each t ∈ N

and θ0 ∈ Θ. Since (R∗t (θ0))t∈N is a deterministic sequence of real matrices, its

sample average, n−1
∑n

t=1 R
∗
t (θ0), converges to some constant positive definite

matrix R∗(θ0) as n→∞. (This convergence is verified easily by considering a

special case of the law of large numbers where the sequence of i.i.d. random

variables are replaced by a deterministic sequence.) Thus (D.22) holds for all
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θ0 ∈ Θ.

(D.23) holds if ∥∥∥∥∂lt(θ0)

∂θi

∥∥∥∥
3

∥∥∥∥∂lt(θ0)

∂θj

∥∥∥∥
3

∥∥∥∥∂lt(θ0)

∂θk

∥∥∥∥
3

<∞ (D.25)

for i, j, k = 1, 2, 3 and all t ∈ N, since

|E[XY Z]| ≤ ‖XY Z‖1 ≤ ‖X‖3‖Y ‖3‖Z‖3

for any random variables X, Y , and Z. (D.25) holds if ∇θ∗lt(θ0) is bounded in

L3. By Lemma 5, (D.25) holds for all θ0 ∈ Θ. Thus, we have (D.23) for all

θ0 ∈ Θ.

Finally, we show (D.24) for θ0 ∈ ΘU . If we can show that

n−1
∑n

t=1∇θ∗lt(θ0)∇θ∗lt(θ0)> converges in probability to some constant positive

definite matrix as n→∞, then the limiting quantity must be the same as the

RHS of (D.22) by Proposition 1. Thus there is no need to verify that the limit of

(D.22) and (D.24) are the same. We deal with the diagonal elements first. For

all θ0 ∈ ΘU and i = 2, 3, we have

1

n

n∑
t=1

(
∂lt(θ0)

∂θi

)2

=
1

n

n∑
t=1

(
(ν0 + 1)b0t − 1

2

)2

(hθit(θ0)2 − uθit(θ0)2)

+
1

n

n∑
t=1

(
(ν0 + 1)b0t − 1

2

)2

uθit(θ0)2,

where the RHS converges in probability to ((ν0 + 1)2/4)Var(b0t)E[uit(θ0)2] <∞
by Lemma 7 (i)(ii)(vii). (Note also that b0t and uit(θ0) are independent for all t.)

Next, we have

1

n

n∑
t=1

(
∂lt(θ0)

∂ν

)2

=
1

n

n∑
t=1

[
(ν0 + 1)b0t − 1

2(ν0 − 2)
− 1

2
ln

(
1 +

z2
t

ν0 − 2

)
+

1

2

(
ψ0

(
ν0 + 1

2

)
− ψ0

(ν0

2

))]2

+
1

n

n∑
t=1

(
(ν0 + 1)b0t − 1

2

)2 (
hνt(θ0)2 − uνt(θ0)2

)
+

2

n

n∑
t=1

{[
(ν0 + 1)b0t − 1

2(ν0 − 2)
− 1

2
ln

(
1 +

z2
t

ν0 − 2

)
+

1

2

(
ψ0

(
ν0 + 1

2

)
− ψ0

(ν0

2

))]
×
(

(ν0 + 1)b0t − 1

2

)
(hνt(θ0)− uνt(θ0))

}
+

1

n

n∑
t=1

(
(ν0 + 1)b0t − 1

2

)2

uνt(θ0)2

39



+
2

n

n∑
t=1

{[
(ν0 + 1)b0t − 1

2(ν0 − 2)
− 1

2
ln

(
1 +

z2
t

ν0 − 2

)
+

1

2

(
ψ0

(
ν0 + 1

2

)
− ψ0

(ν0

2

))]
×
(

(ν0 + 1)b0t − 1

2

)
uνt(θ0)

}
The summand of the first, fourth, and fifth terms are stationary and ergodic by

Lemma 7 (i). By (D.9) and (D.11) of Lemma 7 (vii), and by the properties that

uνt(θ0) and hνt(θ0) are independent of b0t and zt, the second and third terms

converge to zero in L1 for all θ0 ∈ ΘU . Then we obtain

1

n

n∑
t=1

(
∂lt(θ0)

∂ν

)2
P→ Var

(
(ν0 + 1)b0t

2(ν0 − 2)
− 1

2
ln

(
1 +

z2
t

ν0 − 2

))
+

(ν0 + 1)2

4
Var(b0t)E[uνt(θ0)2]

+
ν0 + 1

2
Cov

(
(ν0 + 1)b0t

ν0 − 2
− ln

(
1 +

z2
t

ν0 − 2

)
, b0t

)
E[uνt(θ0)]

<∞

as n→∞ for all θ0 ∈ ΘU .

Next, we consider the off-diagonal elements of (D.24). We have

1

n

n∑
t=1

∂lt(θ0)

∂θi

∂lt(θ0)

∂θj
=

1

n

n∑
t=1

(
(ν0 + 1)b0t − 1

2

)2 (
hθit(θ0)hθjt(θ0)− uθit(θ0)uθjt(θ0)

)
+

1

n

n∑
t=1

(
(ν0 + 1)b0t − 1

2

)2

uθit(θ0)uθjt(θ0)

P→ (ν0 + 1)2

4
Var(b0t)E[uθit(θ0)uθjt(θ0)] <∞

for all θ0 ∈ ΘU , i, j = 2, 3, and i 6= j by Lemma 7 (i)(ii)(vii). Similarly, we obtain

1

n

n∑
t=1

∂lt(θ0)

∂β

∂lt(θ0)

∂ν
=

1

4n

n∑
t=1

((ν0 + 1)b0t − 1)2 (hβt(θ0)hνt(θ0)− uβt(θ0)uνt(θ0))

+
1

4n

n∑
t=1

{(
ψ0

(
ν0 + 1

2

)
− ψ0

(ν0

2

)
− ln

(
1 +

z2
t

ν0 − 2

)
+

(ν0 + 1)b0t − 1

ν0 − 2

)
× ((ν0 + 1)b0t − 1) (hβt(θ0)− uβt(θ0))}

+
1

4n

n∑
t=1

((ν0 + 1)b0t − 1)2 uβt(θ0)uνt(θ0)
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+
1

4n

n∑
t=1

{(
ψ0

(
ν0 + 1

2

)
− ψ0

(ν0

2

)
− ln

(
1 +

z2
t

ν0 − 2

)
+

(ν0 + 1)b0t − 1

ν0 − 2

)
× ((ν0 + 1)b0t − 1)uβt(θ0)}

P→ (ν0 + 1)2

4
Var(b0t)E [uβt(θ0)uνt(θ0)]

+
ν0 + 1

4
Cov

(
(ν0 + 1)b0t

ν0 − 2
− ln

(
1 +

z2
t

ν0 − 2

)
, b0t

)
E [uβt(θ0)] <∞.

for all θ0 ∈ ΘU by Lemma 7 (i)(ii)(vii). Analogous derivations show that

1

n

n∑
t=1

∂lt(θ0)

∂α

∂lt(θ0)

∂ν

P→ (ν0 + 1)2

4
Var(b0t)E [uαt(θ0)uνt(θ0)]

+
ν0 + 1

4
Cov

(
(ν0 + 1)b0t

ν0 − 2
− ln

(
1 +

z2
t

ν0 − 2

)
, b0t

)
E [uαt(θ0)] .

for all θ0 ∈ ΘU . This completes the proof of (D.24) for θ0 ∈ ΘU . �

In the next lemma, we show that, if θ0 ∈ ΘU , the joint log-likelihood function

is asymptotically flat in the δ and γ dimensions, so that the consistency and

asymptotic normality of MLE do not hold for these parameters when θ0 ∈ ΘU .

LEMMA 11. For i = 4, 5 and j = 1, . . . , 5, we have

1

n

n∑
t=1

∂lt(θ0)

∂θi

∂lt(θ0)

∂θj

P→ 0.

when θ0 ∈ ΘU .

Proof. For all θ0 ∈ ΘU and i = 4 (i.e. θi = δ), we have

1

n

n∑
t=1

(
∂lt(θ0)

∂δ

)2

=
1

n

n∑
t=1

(
(ν0 + 1)b0t − 1

2

)2

(hδt(θ0)2 − uδt(θ0)2)

+
1

n

n∑
t=1

(
(ν0 + 1)b0t − 1

2

)2

uδt(θ0)2,

where the RHS converges in probability to ((ν0 + 1)2/4)Var(b0t)E[uδt(θ0)2] = 0

by Lemma 7 (i)(ii)(vii). Next, we have

1

n

n∑
t=1

(
∂lt(θ0)

∂γ

)2

=
1

2n

n∑
t=1

((ν0 + 1)b0t − 1)2 (hγt(θ0)2 − uγt(θ0)2
)

+
ν0 + 1

n

n∑
t=1

((ν0 + 1)b0t − 1) (hγt(θ0)− uγt(θ0))
εt

ε2
t + (ν0 − 2)h0t

+
(ν0 + 1)2

n

n∑
t=1

ε2
t

(ε2
t + (ν0 − 2)h0t)2

.
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The first two terms on the RHS converges in probability to zero by (D.10) and

(D.11) of Lemma 7 (vii). The third term converges in L1 to zero because

0 ≤

∥∥∥∥∥ 1

n

n∑
t=1

ε2
t

(ε2
t + (ν0 − 2)h0t)2

∥∥∥∥∥
1

≤ 1

n

n∑
t=1

∥∥∥∥ εt
ε2
t + (ν0 − 2)h0t

∥∥∥∥2

2

→ 0

as n→∞ for all θ0 ∈ ΘU by Lemma 1. Thus n−1
∑n

t=1 (∂lt(θ0)/∂γ)2 P→ 0 for all

θ0 ∈ ΘU . We also have

1

n

n∑
t=1

∂lt(θ0)

∂θi

∂lt(θ0)

∂θj
=

1

n

n∑
t=1

(
(ν0 + 1)b0t − 1

2

)2 (
hθit(θ0)hθjt(θ0)− uθit(θ0)uθjt(θ0)

)
+

1

n

n∑
t=1

(
(ν0 + 1)b0t − 1

2

)2

uθit(θ0)uθjt(θ0)

P→ (ν0 + 1)2

4
Var(b0t)E[uθit(θ0)uθjt(θ0)] = 0

for all θ0 ∈ ΘU , i = 4, and j = 2, 3 by Lemma 7 (i)(ii)(vii). Analogous

derivations show that
1

n

n∑
t=1

∂lt(θ0)

∂δ

∂lt(θ0)

∂ν

P→ 0

for all θ0 ∈ ΘU . Next, for i = 2, 3, 4, we have

1

n

n∑
t=1

∂lt(θ0)

∂θi

∂lt(θ0)

∂γ
=

1

4n

n∑
t=1

((ν0 + 1)b0t − 1)2 (hθit(θ0)hγt(θ0)− uθit(θ0)uγt(θ0))

+
ν0 + 1

2n

n∑
t=1

((ν0 + 1)b0t − 1)hθit(θ0)
εt

ε2
t + (ν0 − 2)h0t

.

By (D.11) of Lemma 7 (vii), the first term converges in L1 to zero for all

θ0 ∈ ΘU . The second term also converges in L1 to zero for all θ0 ∈ ΘU by the

Minkowski and Hölder inequalities, Lemma 2 (i), and Lemma 1. Thus

n−1
∑n

t=1(∂lt(θ0)/∂θi)(∂lt(θ0)/∂γ)
P→ 0 for all θ0 ∈ ΘU and i = 2, 3, 4. Finally, we
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have

1

n

n∑
t=1

∂lt(θ0)

∂ν

∂lt(θ0)

∂γ

=
1

4n

n∑
t=1

{[
ψ0

(
ν0 + 1

2

)
− ψ0

(ν0

2

)
− ln

(
1 +

z2
t

ν0 − 2

)
+

(ν0 + 1)b0t − 1

ν0 − 2

]
× ((ν0 + 1)b0t − 1) (hγt(θ0)− uγt(θ0))}

+
1

4n

n∑
t=1

((ν0 + 1)b0t − 1)2 (hγt(θ0)hνt(θ0)− uγt(θ0)uνt(θ0))

+
ν0 + 1

2n

n∑
t=1

{[
ψ0

(
ν0 + 1

2

)
− ψ0

(ν0

2

)
− ln

(
1 +

z2
t

ν0 − 2

)
+

(ν0 + 1)b0t − 1

ν0 − 2

]
×
(

εt
ε2
t + (ν0 − 2)h0t

)}
+
ν0 + 1

2n

n∑
t=1

((ν0 + 1)b0t − 1) (hνt(θ0)− uνt(θ0))
εt

ε2
t + (ν0 − 2)h0t

+
1

4n

n∑
t=1

[
ψ0

(
ν0 + 1

2

)
− ψ0

(ν0

2

)
− ln

(
1 +

z2
t

ν0 − 2

)
+

(ν0 + 1)b0t − 1

ν0 − 2

]
×

× ((ν0 + 1)b0t − 1)uγt(θ0)

+
1

4n

n∑
t=1

((ν0 + 1)b0t − 1)2 uγt(θ0)uνt(θ0)

+
ν0 + 1

2n

n∑
t=1

((ν0 + 1)b0t − 1)uνt(θ0)
εt

ε2
t + (ν0 − 2)h0t

.

Note that uγt(θ0) = 0 for all t ∈ N and θ0 ∈ Θ by definition. By (D.9) and (D.11)

of Lemma 7 (vii), the first, second, and fourth terms converge in L1 to zero. The

third and seventh terms converge in L1 to zero by the Minkowski and Hölder

inequalities, Lemma 1, and Lemma 7 (ii). Thus we have shown that

n−1
∑n

t=1(∂lt(θ0)/∂ν)(∂lt(θ0)/∂γ)
P→ 0 for all θ0 ∈ ΘU .

�

Next, we aim to show that the elements of ∇3
θLn(θ) and ∇3

θ∗Ln(θ∗) are

bounded by some stationary processes for all n ∈ N>0 and θ0, θ ∈ Θ. For this
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purpose, we introduce the stationary process wt(θ0) defined by

wt(θ0) = 1 +
δu − δ0

δ0

1

1− βu
+
βu − β0

βl

t∑
k=1

k∏
j=1

βu
β0 + α0(ν0 + 1)b0t−j

+
αu(νu + 1)

βl(νl − 2)

t∑
k=1

1

b0t−k

(
|zt−k|+

ḡ√
δ0

)2 k∏
j=1

βu
β0 + α0(ν0 + 1)b0t−k

,

(D.26)

for any 0 < βl ≤ β ≤ βu < 1 and θ0 ∈ Θ, where ḡ ≡ max{γu − γ0, γ0 − γl}.

LEMMA 12. There exists βu ∈ (0, 1) such that wt(θ0) is strictly stationary

and ergodic for each p ≥ 1, t ∈ N, 0 < βl ≤ β ≤ βu < 1, and θ0 ∈ Θ.

Proof. First, note that

E

[
max

{
0, log

(
1

b0t

(
|zt|+

ḡ√
δ0

)2
)}]

≤ E [max {0,− log (b0t)}] + E
[
max

{
0, 2 log

(
|zt|+

ḡ√
δ0

)}]
<∞

for all t ∈ N by the property of the beta and Student’s t distributions. Moreover,

E
[
log

(
β

β0 + α0(ν0 + 1)b0t

)]
≤ E

[
βu

β0 + α0(ν0 + 1)b0t

]
< 1

for some βu ∈ (0, 1) as b0t is non-degenerate for all t ∈ N. Thus, the proof is

complete by Theorem 1 of Brandt (1986) and Theorem 3.5.8 of Stout (1974).

�

In order to show that the elements of ∇3
θLn(θ) and ∇3

θ∗Ln(θ∗) are bounded

by some stationary processes for all n ∈ N>0 and θ0, θ ∈ Θ, we show in Lemma

15 that hθi(θ), hθiθj(θ), and hθiθjθk(θ) are bounded by some stationary processes

for all t, θ, θ0 ∈ Θ, and i, j, k = 1, . . . , 5. In order to show Lemma 15, we use the

properties of ht(θ) and h0t shown in Lemmas 13 and 14. Lemma 14 is the only

place where we use the unit upper-bound on β.

LEMMA 13. For all t ∈ N and θ, θ0 ∈ Θ, we have

ht(θ) = h0t + (δ − δ0)
t−1∑
k=0

βk + (β − β0)
t∑

k=1

βk−1h0t−k

+
t∑

k=1

βk
[
α(ν + 1)bt−k(θ)ht−k(θ)− α0(ν0 + 1)b0t−kh0t−k

]
,

(D.27)
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h0t = ht(θ) + (δ0 − δ)
t−1∑
k=0

βk0 + (β0 − β)
t∑

k=1

βk−1
0 ht−k(θ)

+
t∑

k=1

βk0

[
α0(ν0 + 1)b0t−kh0t−k − α(ν + 1)bt−k(θ)ht−k(θ)

]
.

(D.28)

Proof. Since δ0 = h0t − β0h0t−1 − α0(ν0 + 1)b0t−1h0t−1, adding and subtracting

δ0 in the equation for ht(θ) give

ht(θ) = δ − δ0 + βht−1(θ) + h0t − β0h0t−1 − α0(ν0 + 1)b0t−1h0t−1

+ α(ν + 1)bt−1(θ)ht−1(θ).

Then (D.27) follows by noting that h0(θ) = h00 = ω0. Similarly,

h0t = δ0 − δ + β0h0t−1 + ht(θ)− βht−1(θ)− α(ν + 1)bt−1(θ)ht−1(θ)

+ α0(ν0 + 1)b0t−1h0t−1.

Then (D.28) follows. �

LEMMA 14. For all t ∈ N and θ, θ0 ∈ Θ, we have

(i)

0 ≤ bt(θ)ht(θ)

h0t

≤ 1

ν − 2

(
|zt|+

ḡ√
δ0

)2

.

(ii) Define qt ≡ qt(θ0) ≡ 1l{zt≥gu}(zt + gu/
√
δ0)2 + 1l{zt≤gl}(zt + gl/

√
δ0)2, where

gu ≡ γ0 − γl and gl ≡ γ0 − γu. Then

0 ≤ qt(θ0)

qt(θ0) + (νu − 2)ht(θ)/h0t

≤ bt(θ) ≤
(
|zt|+ ḡ/

√
δ0

)2(
|zt|+ ḡ/

√
δ0

)2
+ (νl − 2)ht(θ)/h0t

≤ 1

a.s. for all t ∈ N and θ, θ0 ∈ Θ.

(iii)

0 < ht(θ)/h0t ≤ wt(θ0) (D.29)

a.s. for some strictly stationary process wt(θ0) for all t ∈ N and θ, θ0 ∈ Θ.

Moreover,

0 < xt(θ0) ≤ ht(θ)/h0t (D.30)

a.s. for some strictly stationary process xt(θ0) for all t ∈ N, θ ∈ Θ, and

θ0 ∈ ΘL.

(iv) 0 ≤ bt(θ0) ≤ bt(θ), where bt(θ0) is some strictly stationary process, for all

t ∈ N and θ, θ0 ∈ Θ. Moreover, 0 ≤ bt(θ) ≤ b̄t(θ0) ≤ 1, where b̄t(θ0) is some

strictly stationary processes, for all t ∈ N, θ ∈ Θ, and θ0 ∈ ΘL.
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Proof. (i)-(ii) Note that we have

qt ≤
(
zt +

g√
h0t

)2

≤
(
|zt|+

ḡ√
δ0

)2

. (D.31)

Then, for all t ∈ N and θ, θ0 ∈ Θ, we have a.s.

bt(θ)ht(θ)

h0t

=

(
zt + g/

√
h0t

)2
ht(θ)/h0t(

zt + g/
√
h0t

)2
+ (ν − 2)ht(θ)/h0t

≤ 1

ν − 2

(
zt +

g√
h0t

)2

≤ 1

νl − 2

(
|zt|+

ḡ√
δ0

)2

.

Likewise, (ii) also follows from (D.31).

(iii) First, we show (D.29). By Lemma 13, we obtain, for all θ, θ0 ∈ Θ and

t ∈ N,

ht(θ)

h0t

= 1 +
δ − δ0

h0t

t−1∑
k=0

βk +
β − β0

β

t∑
k=1

k∏
j=1

βh0t−j

h0t−j+1

+
α0(ν0 + 1)

β

t∑
k=1

βk
b0t−kh0t−k

h0t

[
α(ν + 1)bt−k(θ)ht−k(θ)

α0(ν0 + 1)b0t−kh0t−k
− 1

]

≤ 1 +
δu − δ0

δ0

1

1− βu
+
βu − β0

βl

t∑
k=1

k∏
j=1

βu
β0 + α0(ν0 + 1)b0t−j

+
αu(νu + 1)

βl(νl − 2)

t∑
k=1

1

b0t−k

(
|zt−k|+

ḡ√
δ0

)2 k∏
j=1

βu
β0 + α0(ν0 + 1)b0t−j

= wt(θ0),

where the inequality in the middle is by Lemma 14 (i).

Next, we show (D.30). By Lemma 14 (ii) and the just derived inequality, we

have

bt(θ) ≥
qt(θ0)

qt(θ0) + (νu − 2)wt(θ0)
≡ bt(θ0) ≥ 0,

where the process bt(θ0) is in terms of the i.i.d. process zt for any θ0 ∈ Θ and

t ∈ N. bt(θ0) is strictly stationary and ergodic by Lemma 12 and Theorem 3.5.8

of Stout (1974) [also see the relevant results in Royden (1988, p.66-68)]. Note

that, by (D.28) of Lemma 13,

h0t

ht(θ)
= 1 +

δ0 − δ
ht(θ)

t−1∑
k=0

βk0 +
β0 − β
β0

t∑
k=1

βk0
ht−k(θ)

ht(θ)

+
t∑

k=1

βk0
ht(θ)

[α0(ν0 + 1)b0t−kh0t−k − α(ν + 1)bt−k(θ)ht−k(θ)] .
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Since at−k/at =
∏k

j=1 at−j/at−j+1 for any sequence (at)t∈N and 0 < k < t, we get

0 ≤ h0t

ht(θ)

=

∣∣∣∣∣1 +
δ0 − δ
ht(θ)

t−1∑
k=0

βk0 +
β0 − β
β0

t∑
k=1

k∏
j=1

β0ht−j(θ)

ht−j+1(θ)
− α(ν + 1)

t∑
k=1

bt−k(θ)
k∏
j=1

β0ht−j(θ)

ht−j+1(θ)

∣∣∣∣∣
÷

∣∣∣∣∣1− α0(ν0 + 1)
t∑

k=1

b0t−k

k∏
j=1

β0h0t−j

h0t−j+1

∣∣∣∣∣ (D.32)

The numerator of (D.32) is bounded above by

1 +
δu − δl

δl(1− βu)
+
βu − βl
β0

t∑
k=1

k∏
j=1

β0

βl + αl(νl + 1)bt(θ0)

+ αu(νu + 1)
t∑

k=1

k∏
j=1

β0

βl + αl(νl + 1)bt(θ0)
.

Since bt(θ0) is non-degenerate, strictly stationary and ergodic, there exists

βl ∈ (0, 1) such that this quantity is strictly stationary and ergodic by Theorem

1 of Brandt (1986) and Theorem 3.5.8 of Stout (1974). In the denominator of

(D.32), we have

t∑
k=1

b0t−k

k∏
j=1

β0h0t−j

h0t−j+1

=
t∑

k=1

b0t−k

k∏
j=1

β0

δ0/h0t−j + β0 + α0(ν0 + 1)b0t−j
(D.33)

Since max{0, log |X|} ≤ |X| for any real valued random variable X, we have

E[max{0, |b0t|}] ≤ E[|b0t|] < 1 for all t ∈ N and θ0 ∈ Θ. Moreover,

E
[
log

∣∣∣∣ β0

δ0/h0t + β0 + α0(ν0 + 1)b0t

∣∣∣∣] < 0

for all t ∈ N and θ0 ∈ Θ. Thus, the denominator of (D.32) is strictly stationary

and ergodic if θ0 ∈ ΘL by Theorem 1 of Brandt (1986) and Theorem 3.5.8 of

Stout (1974).11 Thus, we have found a strictly stationary process xt(θ0) such

that 0 < xt(θ0) ≤ ht(θ)/h0t for all t ∈ N, θ ∈ Θ and θ0 ∈ ΘL.

(iv) By Lemma 14 (iii), we obtained bt(θ) ≥ bt(θ0) ≥ 0. Moreover, by Lemma

11This is the only place that limits us from proving the consistency and asymptotic normality
results for the nonstationary case (i.e. when θ0 ∈ ΘU ). In order to show the asymptotic
properties for θ0 ∈ ΘU , we would need to find a strictly stationary and ergodic process that
bounds the denominator of (D.32) from below. We find showing this difficult when the RHS of
(D.33) is greater than or equal to one.

47



14 (ii)(iii), we have

bt(θ) ≤
(
|zt|+ ḡ/

√
δ0

)2(
|zt|+ ḡ/

√
δ0

)2
+ (νl − 2)ht(θ)/h0t

≤
(
|zt|+ ḡ/

√
δ0

)2(
|zt|+ ḡ/

√
δ0

)2
+ (νl − 2)xt(θ0)

≡ b̄t(θ0),

where, for all θ ∈ Θ and θ0 ∈ ΘL, b̄t(θ) ∈ [0, 1] and (b̄t(θ))t∈N is strictly stationary

and ergodic by Theorem 3.5.8 of Stout (1974) and Royden (1988, p.66-68). �

Finally, in order to show Lemma 15, define the following process.

u∗θit(θ0) ≡
t∑

k=1

ũθi
βl

k∏
j=1

mt−j(θ0)

for i = 1, . . . , 5, where

mt(θ0) ≡ max

{
βu + αu(νu + 1)bt(θ0)2

βl + αl(νl + 1)bt(θ0)
,
βu + αu(νu + 1)b̄t(θ0)2

βl + αl(νl + 1)b̄t(θ0)

}
is strictly stationary and ergodic by Theorem 3.5.8 of Stout (1974) and Royden

(1988, p.66-68). ũθi bounds ĥθit(θ) for all t, θ ∈ Θ, and i = 1, . . . , 5. We set

ũδ = 1/δl, ũα = νu + 1, ũβ = 1,

ũγ = 2αu(νu + 1) max{1, ((νl − 2)δl)
−1},

ũν = αu + αu(νu + 1)(νl − 2)−1.

Moreover, define the following process;

u∗θiθjt(θ0) ≡
t∑

k=1

ũθiθjt−k(θ0)

βl

k∏
j=1

mt−j(θ0)

for i, j = 1, . . . , 5, where ũθiθjt(θ0) bounds ĥθiθjt(θ) for any t, θ ∈ Θ, and θ0 ∈ ΘL.

They are defined in Appendix B.2. Similarly, we define

u∗θiθjθmt(θ0) ≡
t∑

k=1

ũθiθjθmt−k(θ0)

βl

k∏
j=1

mt−j(θ0)

for i, j,m = 1, . . . , 5, where ũθiθjθmt(θ0) bounds ĥθiθjθmt(θ) for any t, θ ∈ Θ, and

θ0 ∈ ΘL. For instance, for i = j = m = 3 (i.e. θi = θj = θm = β), we set

ũβββt(θ0) = 3u∗ββt(θ0) + 6αu(νu + 1)u∗βt(θ0)3 + 2αu(νu + 1)u∗βt(θ0)u∗ββt(θ0).

Lemma 15 establishes some of the useful properties of these processes.

LEMMA 15. For all θ ∈ Θ, θ0 ∈ ΘL, and i, j,m = 1, . . . , 5;

(i) |hθit(θ)| ≤ u∗θit(θ0) for all t ∈ N.
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(ii) |hθiθjt(θ)| ≤ u∗θiθjt(θ0) for all t ∈ N.

(iii) |hθiθjθmt(θ)| ≤ u∗θiθjθmt(θ0) for all t ∈ N.

(iv)
(
u∗θit(θ0)

)
t∈N,

(
u∗θiθjt(θ0)

)
t∈N

, and
(
u∗θiθjθmt(θ0)

)
t∈N

are strictly stationary

and ergodic.

Proof.

(i) It is easy to show that
∣∣∣ĥθit(θ)∣∣∣ < ũθi for all t and i = 1, . . . , 5. Note that

|ĥγt(θ)| < ũγ can be verified by the condition, (D.1), of Lemma 1. Then, by the

condition, (D.3), of Lemma 2 (i), we obtain

|hθit(θ)| ≤
t∑

k=1

|ĥθit(θ)|
βl

k∏
j=1

ht−j(θ)(β + α(ν + 1)bt−j(θ)
2)

ht−j+1(θ)

≤
t∑

k=1

ũθi
βl

k∏
j=1

βu + αu(νu + 1)bt−j(θ0)2

βl + αl(νl + 1)bt−j(θ0)

≤ u∗θit(θ0),

where the last inequality used the fact that

β + α(ν + 1)bt(θ)
2

β + α(ν + 1)bt(θ)
≤ max

{
βu + αu(νu + 1)bt(θ0)2

βl + αl(νl + 1)bt(θ0)
,
βu + αu(νu + 1)b̄t(θ0)2

βl + αl(νl + 1)b̄t(θ0)

}
≡ mt(θ)

for all t, θ ∈ Θ, θ0 ∈ ΘL, and i = 1, . . . , 5 by Lemma 14 (iv).

(ii) Derivations analogous to Lemma 15 (i) show that |hθiθjt(θ)| ≤ u∗θiθjt(θ0)

for all t, θ ∈ Θ, θ0 ∈ ΘL, and i, j = 1, . . . , 5. Note that we can verify

|ĥθiθjt(θ)| < ũθiθjt(θ0) whenever i = 4 or j = 4 (i.e. θi = θ4 = γ or θj = γ) by the

condition, (D.1), of Lemma 1 and by noting that∣∣∣∣bt(θ)et

∣∣∣∣ =
|et|

e2
t + (ν − 2)ht(θ)

,

which is bounded a.s. by Lemma 1.

(iii) This proof is analogous to the proofs for Lemma 15 (i)(ii).

(iv) (mt(θ0))t∈N is strictly stationary, and we can find (βu, βl, αu, αl, νu, νl)

such that E [ln (mt(θ0))] < 0 for all θ0 ∈ ΘL since b̄(θ0) ∈ (0, 1) and b(θ0) ∈ (0, 1)

are non-degenerate. Moreover, using the property that ln(x) ≤ x− 1 for all

x > 0, we have

E [max{0, ln |ũθi |}] ≤ E [max{0, |ũθi |}] = E [|ũθi |] <∞

for i = 1, . . . , 5. Then (uθit(θ0))t∈N is strictly stationary and ergodic for all

θ0 ∈ ΘL by Theorem 1 of Brandt (1986) and Theorem 3.5.8 of Stout (1974).
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Likewise, we can show that E
[
max{0, ln |ũθiθjt(θ0)|}

]
<∞ and

E
[
max{0, ln |ũθiθjθmt(θ0)|}

]
<∞ for all t, θ0 ∈ Θ, and i, j,m = 1, . . . , 5. Then we

can deduce that (u∗θiθjt(θ0))t∈N and (u∗θiθjθmt(θ0))t∈N are strictly stationary and

ergodic for any θ0 ∈ ΘL and i, j,m = 1, . . . , 5 by Theorem 1 of Brandt (1986)

and Theorem 3.5.8 of Stout (1974). �

We are now ready to show that the elements of ∇3
θLn(θ) are bounded by

some stationary and ergodic sequence for all n ∈ N>0, θ ∈ Θ, and θ0 ∈ ΘL.

LEMMA 16. For any θ0 ∈ ΘL and n ∈ N, we have

max
i,j,m=1,...,5

sup
θ∈Θ

∣∣∂3Ln(θ)/∂θi∂θj∂θm
∣∣ ≤ cn,

where 0 ≤ cn
P→ c as n→∞ and 0 < c <∞.

Proof. For the third derivative with respect to β, from (B.2), we have∣∣∂3Ln(θ)/∂β3
∣∣ =

1

n

∣∣∣∣∣
n∑
t=1

∂3lt(θ)

∂β3

∣∣∣∣∣
≤ 1

n

n∑
t=1

(ν + 1)bt(θ)(1− bt(θ))
[∣∣hβt(θ)3

∣∣+
3

2
|hβt(θ)hββt(θ)|

]
+

1

n

n∑
t=1

(ν + 1)
∣∣hβt(θ)3

∣∣ bt(θ)(1− bt(θ))2

+
1

2n

n∑
t=1

(
3 |hβt(θ)hββt(θ)|+ 2

∣∣hβt(θ)3
∣∣+ |hβββt(θ)|

)
[(ν + 1)bt(θ)− 1]

≤ νu + 1

n

n∑
t=1

(
2u∗βt(θ0)3 +

3

2
u∗βt(θ0)u∗ββt(θ0)

)
+
νu + 2

2n

n∑
t=1

(
3u∗βt(θ0)u∗ββt(θ0) + 2u∗βt(θ0)3 + u∗βββt(θ0)

)
P→ (νu + 1)

(
2E
[
u∗β1(θ0)3

]
+

3

2
E
[
u∗β1(θ0)u∗ββ1(θ0)

])
+
νu + 2

2

(
3E
[
u∗β1(θ0)u∗ββ1(θ0)

]
+ 2E

[
u∗β1(θ0)3

]
+ E

[
u∗βββ1(θ0)

])
∈ (0,∞)

as n→∞ by Lemma 15(i)-(iv) and Theorem 3.5.7 of Stout (1974).

Straightforward differentiation shows that the desired inequality holds for other

third derivatives by Lemma 15(i)-(iv) and Lemma 1. �
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