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Abstract

We propose a semi-parametric coupled component GARCH model for intraday and overnight

volatility that allows the two periods to have different properties. To capture the very heavy

tails of overnight returns, we adopt a dynamic conditional score model with t innovations. We

propose a several step estimation procedure that captures the nonparametric slowly moving

components by kernel estimation and the dynamic parameters by t maximum likelihood. We

establish the consistency and asymptotic normality of our estimation procedures. We extend the

modelling to the multivariate case. We apply our model to the study of the component stocks of

the Dow Jones industrial average over the period 1991-2016. We show that actually overnight

volatility has increased in importance during this period. In addition, our model provides

better intraday volatility forecast since it takes account of the full dynamic consequences of the

overnight shock and previous ones.

1 Introduction

The balance between intraday and overnight returns is of considerable interest as it sheds light on

many issues in finance: the efficient markets hypothesis, the calendar time versus trading time mod-

els, the process by which information is impacted into stock prices, the relative merits of auction
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versus continuous trading, the effect of high frequency trading on market quality, and the globaliza-

tion and connectedness of international markets. We propose a time series model for intraday and

overnight returns that respects their temporal ordering and permits them to have different properties.

In particular, we propose a volatility model for each return series that has a long run component

that slowly evolves over time, and is treated nonparametrically, and a parametric dynamic volatility

component that allows for short run deviations from the long run process, which depend on previous

intraday and overnight shocks. We adopt a dynamic conditional score model, Harvey (2013) and

Harvey and Luati (2014), that links the news impact curves of the innovations to the shock distri-

butions, which we assume to be t-distributions with unknown degrees of freedom (which may differ

between day and night). In practice, the overnight return distribution is more heavy tailed than the

intraday return, and in fact very heavily tailed. Our model allows for a difference in tail thickness

in the conditional distributions. The short run dynamic process allows for leverage effects and sep-

arates the overnight shock from the intraday shock. Our model extends Blanc, Chicheportiche, and

Bouchaud (2014) who consider an asymmetric ARCH(∞) process with t shocks. We also introduce

a multivariate model that allows for time varying correlations.

We apply our model to the study of the component stocks of the Dow Jones industrial average

over the period 1991-2016, a period which saw several substantial institutional changes. There are

several purposes for our application. First, many authors have argued that the introduction of

computerized trading and the increased prevalence of high frequency trading strategies in the period

post 2005 has lead to an increase in volatility, see Linton, O’Hara, and Zigrand (2013). A direct

comparison of volatility before and after would be problematic here because of the Global Financial

Crisis (GFC), which raised volatility during the same period that High Frequency Trading (HFT)

was becoming more prevalent. However, this hypothesis would suggest that the ratio of intraday

to overnight volatility should have increased during this period because trading is not taking place

during the market close period. We would like to evaluate whether this has occurred. One could

just compare the daily return variance from the intraday segment with the daily return variance

from the overnight segment, as many studies such as French and Roll (1986) have done. However,

this would ignore both fast and slow variation in volatility through business cycle and other causal

factors. Also, overnight raw returns are very heavy tailed and so sample variances are not very

accurate. We use our dynamic two component model that allows for both fast and slow dynamic

components to volatility, as is now common practice. Our model also allows dynamic feedback

between overnight and intraday volatility, which is of interest in itself. Our model generates heavy

tails in observed returns and parameter estimates that are robust to this phenomenon. Our model

therefore allows us to compare the long run components of volatility over this period without over
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reliance on Gaussian-type theory. We show that for the Dow Jones stocks actually the long run

component of overnight volatility has increased in importance during this period relative to the long

run component of intraday volatility. We provide a formal test statistic that quantifies the strength of

this effect. This seems to be hard to reconcile with the view that trading has increased volatility. We

also document the short run dynamic processes. Notably, we find, unlike Blanc, Chicheportiche, and

Bouchaud (2014), that overnight returns significantly affect future intraday volatility. We also find

overnight return shocks to have t-distributions with degrees of freedom roughly equal to three, which

emphasizes the potential fragility of Gaussian-based estimation routines that earlier work has been

based on. We also estimate the multivariate model and document that there has been an upward

trend in the long run component of contemporary overnight correlation between stocks as well as in

the long run component of contemporary intraday correlation between stocks. However, the trend

development for the overnight correlations started later than for intraday, and started happening

only after 2005, whereas the intraday correlations appear to be slowly increasing more or less from

the beginning of the period.

A second practical purpose for our model is to improve forecasts of intraday volatility or close

to close volatility. Our model allows us to condition on the opening price to forecast intraday

volatility or to update the close to close volatility forecast and also to take account of the full

dynamic consequences of the overnight shock and previous ones. We compare forecast performance

of our model with a procedure based only on close to close returns and find in most cases superior

performance.

Since the seminal work of Engle (1982) and Bollerslev (1986), there is a large literature on GARCH

models. Our work is closely related to the multiplicative GARCH literature, which decomposes the

volatility dynamic into short-run and long-run components; see, e.g., Engle and Lee (1999), Engle and

Rangel (2008), Hafner and Linton (2010), Rangel and Engle (2012), and Han and Kristensen (2015).

We are also related to the dynamic conditional score GARCH models, proposed by Creal, Koopman,

and Lucas (2012), Harvey (2013), and Harvey and Luati (2014), which allow for heavy tailed overnight

innovations. Furthermore, our proposed time varying correlation GARCH model contributes to the

literature on high-dimensional GARCH; see, e.g., Bollerslev (1990), Engle and Kroner (1995), Engle

(2002), Engle, Shephard, and Sheppard (2007), and Francq and Zakoian (2014).

Our work also adds to the study of overnight returns. A large number of studies have found

substantial differences between the overnight and intraday returns. Overnight returns are shown to

be higher than intraday returns in e.g., Cooper, Cliff, and Gulen (2008), Kelly and Clark (2011),

Berkman, Koch, Tuttle, and Zhang (2012), Lachance (2015), while lower in Harris (1986) and Aretz

and Bartram (2015). Overnight returns are in general less volatile than intraday returns ( Lockwood
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and Linn, 1990, French and Roll, 1986, and Aretz and Bartram, 2015), but more leptokurtic (Ng and

Masulis, 1995 and Blanc, Chicheportiche, and Bouchaud, 2014). Several theoretical models have been

developed to explain these differences; see, e.g., Slezak (1994), and Hong and Wang (2000). Another

main stream in the literature focuses on the predictability of overnight information on future stock

returns or volatilities, including Lin, Engle, and Ito (1994), Gallo (2001), Branch and Ma (2006),

Tsiakas (2008), Kang and Babbs (2012), Blanc, Chicheportiche, and Bouchaud (2014), and Fuertes,

Kalotychou, and Todorovic (2015). We propose a time series model to better incorporate these

features of overnight returns, and to reinvestigate these empirical questions. 1

2 Model and Properties

We let rDt denote intraday returns and rNt denote overnight returns on day t. We take the ordering

that night precedes day so that rDt = ln(PC
t /P

O
t ) and rNt = ln(PO

t /P
C
t−1), where PO

t denotes the

opening price on day t and PC
t denotes the closing price on day t. Our model allows intraday returns

to depend on overnight returns with the same t, but overnight returns just depend on lagged variables.

Suppose that (
1 δ

0 1

)(
rDt
rNt

)
=

(
µD

µN

)
+ Π

(
rDt−1
rNt−1

)
+

(
uDt
uNt

)
, (1)

where uDt and uNt are conditional mean zero shocks. Under the EMH, δ = 0 and Π = 0, but we

allow these coefficients to be nonzero to pick up small short run effects such as due to microstructure,

Scholes and Williams (1977).

We further suppose that the error process has conditional heteroskedasticity, both long run and

short run effects. Specifically, we suppose that

ut =

(
exp(λDt ) exp(σD(t/T )) 0

0 exp(λNt ) exp(σN(t/T ))

)(
εDt
εNt

)
, (2)

where: εDt and εNt are i.i.d. mean zero shocks from t distributions with vD and vN degrees of freedom,

respectively, while σD(·) and σN(·) are unknown but smooth functions that will represent the slowly

varying (long-run) scale of the process, and T is the number of observations. Suppose that for

j = D,N,

σj (s) =
∑∞

i=1
θjiψ

j
i (s) , s ∈ [0, 1] (3)

1Some other interesting works include, e.g., Longstaff (1995), Bollerslev, Li, and Todorov (2016), Hansen and Lunde

(2005), Dai, Li, Liu, and Wang (2015),Lou, Polk, and Skouras (2015), and Fong and Martens (2002).
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for some orthonormal basis {ψji (s)}∞i=1 with
∫ 1

0
ψji (s) ds = 0 and∫

ψji (s)ψjk (s) ds =

{
1 if i = k

0 if i 6= k.

We suppose that σD(·) and σN(·) integrate to zero to achieve identification. Note that we choose this

different normalization from Hafner and Linton (2010) and consequently we do not have to restrict

the parameters of the short run dynamic processes. In the following, j is always used to denote D,N

without mentioning.

Regarding the short run dynamic part of (2), we adopt a dynamic conditional score approach,

Creal, Koopman, and Lucas (2012) and Harvey and Luati (2014). Let ejt = exp(−σj(t/T ))ujt , and

the conditional score function is defined as

mj
t =

(1 + vj)(e
j
t)

2

vj exp(2λjt) + (ejt)
2
− 1, vj > 0.

We suppose that λDt and λNt are linear combinations of past values of the shocks determined by the

conditional score function

λDt = ωD(1− βD) + βDλ
D
t−1 + γDm

D
t−1 + ρDm

N
t (4)

+ γ∗D(mD
t−1 + 1)sign(eDt−1) + ρ∗D(mN

t + 1)sign(eNt )

λNt = ωN(1− βN) + βNλ
N
t−1 + γNm

N
t−1 + ρNm

D
t−1 (5)

+ ρ∗N(mD
t−1 + 1)sign(eDt−1) + γ∗N(mN

t−1 + 1)sign(eNt−1).

This gives two dynamic processes for the short run scale of the overnight and intraday return. We

allow the overnight shock to affect the intraday scale through the parameter ρD, and we allow for

leverage effects through the parameters γ∗D, ρ
∗
D, ρ

∗
N , and γ∗N .

2 Let

φ = (ωD, βD, γD, γ
∗
D, ρD, ρ

∗
D, vD, ωN , βN , γN , γ

∗
N , ρN , ρ

∗
N , vN)

ᵀ ∈ R14

be the finite dimensional parameters of interest and θ be the ”parameters” in the functions σD(·)
and σN(·), so that θ is infinite-dimensional.

Harvey (2013) argues that the quadratic innovations that feature in GARCH models naturally

fit with the Gaussian distribution for the shock, but once one allows heavier tail distributions like

the t-distribution, it is anomalous to focus on quadratic innovations, and indeed this focus leads

to a lack of robustness because large shocks are fed substantially into the volatility update. He

2The shock variable mj
t can be expressed as mj

t = (vj + 1)bjt − 1, where bjt has a beta distribution, beta (1/2, vj/2).
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argues it is more natural to link the shock to volatility to the distribution of the rescaled return

shock, which in the case of the t distribution has the advantage that large shocks are automatically

downweighted, and in such a way driven by the shape of the error distribution. This type of argument

is similar to the argument in limited dependent variable models such as binary choice where a linear

function of covariates is connected to the observed outcome by a link function determined by the

distributional assumption. The DCS model has the incidental advantage that there are analytic

expressions for moments, autocorrelation functions, multistep forecasts, and their mean square errors.

Our semiparametric model is also tractable in a number of dimensions. For example, we may obtain

the dynamic intraday value at risk conditional on overnight returns and past information as follows

V aRD
t (α) = µDt + sDt tα(vD),

µDt = µD − δrNt − Π11r
D
t−1 − Π12r

N
t−1

sDt = exp(λDt ) exp(σD(t/T )),

where tα(v) is the α quantile of the t-distribution with degrees of freedom v. Likewise, we can find

the overnight value at risk conditional on the closing price.

3 Estimation

We first outline our estimation strategy. Taking unconditional expectations of the absolute errors

we have for j = N,D,

E
(∣∣ujt ∣∣) = E(

∣∣εjt ∣∣)E (exp
(
λjt
))

exp(σj(t/T )) = cj(φ)× exp(σj(t/T )),

where cj is a constant that depends in a complicated way on the parameter vector φ. Therefore,

we can estimate σN(s), σD(s) as follows. Suppose that we know δ, µ,Π (in practice these can be

replaced by root-T consistent estimators). Although we define the sieve expansion of σ, we use

kernel technology to estimate the nonparametric part. Let K(u) be a kernel with support [−1, 1]

and h a bandwidth, and let Kh(.) = K(./h)/h. Then let

σ̃j(s) = log

(
1

T

T∑
t=1

Kh(s− t/T )
∣∣ujt ∣∣

)
, (6)

for any s ∈ (0, 1). In fact, we employ a boundary modification for s ∈ [0, h]∪ [1−h, 1], whereby K is

replaced by a boundary kernel, which is a function of two arguments K(u, c), where the parameter
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c controls the support of the kernel; thus left boundary kernel K(u, c) with c = s/h has support

[−1, c] and satisfies
∫ c
−1K(u, c)du = 1,

∫ c
−1 uK(u, c)du = 0, and

∫ c
−1 u

2K(u, c)du < ∞. Similarly for

the right boundary. The purpose of the boundary modification is to ensure that the bias property

holds throughout [0, 1]. For identification, we rescale σ̃j(t/T ) as

σ̃j(t/T ) = σ̃j(t/T )− 1

T

T∑
t=1

σ̃j(t/T ). (7)

Let ẽNt = exp(−σ̃N(t/T ))uNt and ẽDt = exp(−σ̃D(t/T ))uDt , and let θ̃ denote {σ̃j(s), s ∈ [0, 1],

j = N,D}. Define the global log-likelihood function for φ (apart from an unnecessary constant and

conditional on the estimated values of θ)

lT (φ; θ̃) =
1

T

T∑
t=1

(
lNt (φ; θ̃) + lDt (φ; θ̃)

)
,

ljt (φ; θ̃) = −λjt(φ; θ̃)− vj + 1

2
ln

(
1 +

(ẽjt)
2

vj exp(2λjt(φ; θ̃))

)
+ ln Γ

(
vj + 1

2

)
− 1

2
ln vj − ln Γ

(vj
2

)
,

(8)

where λjt(φ; θ̃) are defined in (4) and (5). For practical purposes, λj1|0 may be set equal to the

unconditional mean, λj1|0 = ωj. We estimate φ by maximizing lT (φ; θ̃) with respect to φ. Let φ̃ denote

these estimates.

Given estimates of φ and the preliminary estimates of σD(·), σN(·), we calculate

η̃Nt = exp(−λ̃Nt )uNt ; η̃Dt = exp(−λ̃Dt )uDt ,

where λ̃jt = λjt(φ̃; θ̃). We then update the estimates of σD(·), σN(·) using the local likelihood function

in Severini and Wong (1992) given η̃jt and ṽj, i.e., minimize the objective function

L̃jT (γ; λ̃j, s) =
1

T

T∑
t=1

Kh(s− t/T )

[
γ +

ṽj + 1

2
ln

(
1 +

(η̃jt exp(−γ))2

ṽj

)]
(9)

with respect to γ ∈ R, for j = D,N separately, where λ̃j = (λ̃j1, . . . , λ̃
j
T )

ᵀ
. Likewise here we use a

boundary kernel for s ∈ [0, h] ∪ [1− h, 1]. In practice we use Newton-Raphson iterations making use

of the derivatives of the objective functions, which are given in (19).

To summarize, the estimation algorithm is as follows.

Algorithm
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Step 1. Estimate δ, µj,Π by least squares and σ̃j(u), u ∈ [0, 1], j = N,D from (6) and (7)

Step 2. Estimate φ by optimizing lT (φ; θ̃)with respect to φ (by Newton-Raphson) to give φ̃.

Step 3. Given the initial estimates θ̃ and φ̃, we replace λjt with λ̃jt = λjt(φ̃; θ̃). Then let

σ̂j (s) optimize L̃jT (σj (s) ; λ̃, s) with respect to σj (s) . For identification, we rescale σ̂j(t/T ) =

σ̂j(t/T )− 1
T

∑T
t=1 σ̂

j(t/T ).

Step 4. Repeat Steps 2-3 to update θ̂ and φ̂ until convergence. We define convergence in terms of

the distance measure

∆r =
∑
j=D,N

∫ [
σ̂j,[r](u)− σ̂j,[r−1](u)

]2
du+

(
φ̂[r] − φ̂[r−1]

)ᵀ (
φ̂[r] − φ̂[r−1]

)
,

that is, we stop when ∆r ≤ ε for some prespecified small ε.

4 Large Sample Properties of Estimators

In this section we give the asymptotic distribution theory of the estimators considered above. Let

hjt = λjt + σj(t/T ), and let:

At =

[
1 aDNt
0 1

]
, Bt−1 =

[(
βD + aDDt−1

)
0

aNDt−1
(
βN + aNNt−1

)] ,
aDDt−1 = −2

(
γD + γ∗Dsign(uDt−1)

)
(vD + 1) bDt−1

(
1− bDt−1

)
aDNt = −2

(
ρD + ρ∗Dsign(uNt )

)
(vN + 1) bNt

(
1− bNt

)
aNNt−1 = −2

(
γN + γ∗Nsign(uNt−1)

)
(vN + 1) bNt−1

(
1− bNt−1

)
aNDt−1 = −2

(
ρN + ρ∗Nsign(uDt−1)

)
(vD + 1) bDt−1

(
1− bDt−1

)
bDt =

(eDt )2

vD exp(2λDt ) + (eDt )2
; bNt =

(eNt )2

vD exp(2λNt ) + (eNt )2
.

We use the maximum row sum matrix norm, ‖·‖∞ , defined by

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij| .

Assumptions A
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1. ‖E (At ⊗ At)‖∞ < ∞, ‖EBtEAt‖∞ < 1, ‖E (Bt−1At−1 ⊗Bt−1At−1)‖∞ < ‖EBtEAt‖∞ ,and the

top-Lyapunov exponent of the sequence of AtBt−1 is strictly negative. The top Lyapunov expo-

nent is defined as Theorem 4.26 of Douc, Moulines, and Stoffer (2014).

2. |βj| < 1.

3. hjt starts from infinite past. The parameter φ0 is an interior point of Φ ⊂ R14, where Φ is the

parameter space of φ0.

4. The function σj is twice continuously differentiable on [0, 1].

5. E|ujt |2+δ <∞ for some δ > 0.

6. The kernel function K is bounded, symmetric about zero with compact support, that is K(v) = 0

for all |v| > C1 with some C1 <∞. Moreover, it is Lipschitz, that is |K(v)−K(v′)| ≤ L|v−v′|
for some L <∞ and all v, v′ ∈ R.

7. h (T )→ 0,as T →∞ such that T 1/2−δh→∞ for some small δ > 0.

Assumptions A3-A7 are used to derive the properties of σ̃j(s), in line with Vogt and Linton

(2014) and Vogt et al. (2012). But we only require that E|ujt |2+δ < ∞, since we use σ̃j(s) =

log
(

1
T

∑T
t=1Kh(s− t/T )

∣∣ujt ∣∣) . This is in line with the fact that the fourth-order moment of overnight

returns often does not exist. The mixing condition in Vogt and Linton (2014) is replaced by Assump-

tion A2, because of our tight model structure. Assumption A1 is required to derive the stationarity

of score functions, where ‖E (At ⊗ At)‖∞ < ∞ can be verified easily, since bNt in At follows a beta

distribution.

The first result gives the uniform convergence rate of the initial estimator σ̃j(s). The proof mainly

follows Theorem 3 in Vogt and Linton (2014).

Lemma 1 Suppose that Assumptions A2-A7 hold. Then,

sup
s∈[0,1]

∣∣σ̃j(s)− σj0(s)∣∣ = Op

(
h2 +

√
log T

Th

)
.

Proof. See 8.2.1.

Theorem 1 Suppose that Assumptions A1-A4 hold. Then, for each k and i, for k ∈ {1, . . . ,∞} and

i ∈ {1, . . . , 14} , we have

lim
T→∞

1

T

T∑
t=1

E

[
∂lt(θ0, φ0)

∂θk

∂lt(θ0, φ0)

∂φi

]
= 0.
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The proof of Theorem 1 is provided in section 8.2.2. Theorem 1 implies that the score function

with respect to θ and the score function with respect to φ are orthogonal. Therefore, the particular

form of the variance in Theorem 2 follows.

Let

I(φ0) = E

[
∂lt(θ0, φ0)

∂φ

∂lt(θ0, φ0)

∂φᵀ

]
.

Theorem 2 Suppose that Assumptions A1-A7 hold. Then

√
T
(
φ̂− φ0

)
D−→ N

(
0, I(φ0)

−1) .
Theorem 3 Suppose that Assumptions A1-A7 hold. Then

√
Th

(
σ̂D(t/T )

σ̂N(t/T )
−

σD0 (t/T )

σN0 (t/T )

)
=⇒ N

(
0, ||K||22

(
(vD+3)
2vD

0

0 (vN+3)
2vN

))
. (10)

Theorem 2 and Theorem 3 give the consistency and asymptotic normality of φ̂ and σ̂j(s). The

form of the limiting variance in (10) is consistent with the known Fisher information for the estimation

of scale parameter of a t-distribution with known location and degrees of freedom (these quantities

are estimated at a faster rate), which makes this part of the procedure also efficient in the sense

considered in Tibshirani (1984).

The proofs of Theorem 2 and 3 are provided in the Appendix. The information matrix, I(φ0), can

be computed explicitly, as in Appendix 2. We can conduct inference with Theorem 2 and Theorem

3 using plug-in estimates of the unknown quantities.

5 A Multivariate model

We next consider an extension to a multivariate model. We keep a similar structure to the univariate

model except that we allow the slowly moving component to be matrix valued. Suppose that

rt =

(
rDt
rNt

)
; µ =

(
µD

µN

)
,

where rDt , r
D
t are n× 1 vectors containing all the intraday and overnight returns respectively, and let

Drt = µ+ Πrt−1 + ut,

10



where uDt and uNt are mean zero shocks, while

D =

(
In diag (∆)

0 In

)
; Π =

(
diag(Π11) diag(Π12)

diag(Π21) diag(Π22)

)
,

and ∆,Π11,Π12,Π21,and Π22 are n× 1 vectors. We further suppose that

ut =

(
ΣD( t

T
)

1
2 diag

(
exp(λDt )

)
0

0 ΣN( t
T

)
1
2 diag

(
exp(λNt )

) )( εDt
εNt

)
,

where: εjit is i.i.d. shocks from univariate t distributions with vij degrees of freedom, while λjt are

n× 1 vectors.

We assume that ΣD(.) and ΣN(.) are smooth matrix functions but are otherwise unknown. We

can write these covariance matrices in terms of the correlation matrices and the variances as follows

Σj(s) = diag
(
exp(σj(s))

)
Rj(s)diag

(
exp(σj(s))

)
, (11)

with diag (exp(σj(s))) being the volatility matrix and Rj(s) being the correlation matrix. For iden-

tification, we still assume
∫ 1

0
σji (s)ds = 0, for i ∈ {1, . . . n}.

As with the univariate model, define ejt = diag
(
exp(λjt)

)
εjt , and suppose that

mj
it =

(1 + vij)(e
j
it)

2

vij exp(2λjit) + (ejit)
2
− 1,

λDit = ωiD(1− βiD) + βiDλ
D
it−1 + γiDm

D
it−1 + ρiDm

N
it

+ γ∗iD(mD
it−1 + 1)sign(uDit−1) + ρ∗iD(mN

it + 1)sign(uNit )

λNit = ωiN(1− βiN) + βiNλ
N
it−1 + γiNm

N
it−1 + ρiNm

D
it−1

+ ρ∗iN(mD
it−1 + 1)sign(uDit−1) + γ∗iN(mN

it−1 + 1)sign(uNit−1).

For each i define the parameter vector φi = (ωiD, βiD, γiD, γ
∗
iD, ρiD, ρ

∗
iD, viD, ωiN , βiN , γiN , γ

∗
iN , ρiN , ρ

∗
iN , viN)

ᵀ ∈
R14 and let φ = (φ

ᵀ

1, . . . , φ
ᵀ

n)
ᵀ

denote all the dynamic parameters.

Define ιi the vector with the ith element 1 and all others 0, so that εjit = ιᵀi diag
(
exp(−λjt)

) (
Σj( t

T
)
)−1/2

ujt .

The global log-likelihood function is

lT (φ; Σ(.)) =
1

T

T∑
t=1

(
lNt + lDt

)
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ljt (φ; Σj(.)) =
n∑
i=1

(
−λjt −

vij + 1

2
ln

(
1 +

(ιᵀi diag
(
exp(−λjt − σj(t/T ))

) (
Σj
(
t
T

))−1/2
ujt)

2

vij

))

− 1

2
log

∣∣∣∣Σj

(
t

T

)∣∣∣∣+
n∑
i=1

(
ln Γ

(
vij + 1

2

)
− 1

2
ln vij − ln Γ

(vij
2

))
.

We first define an initial estimator for Σj( t
T

) and then obtain an estimator of φ, and then we

update them. Suppose that we know ∆,Π and µ. To give an estimator of Σj( t
T

) robust to heavy

tails, we estimate the volatility parameter

σ̃ji (s) = log

(
1

T

T∑
t=1

Kh(s− t/T )
∣∣ujit∣∣

)
.

Supposing that the heavy tails issue is less severe in the estimation of correlation, which seems

reasonable; we estimate the correlation parameter by standard procedures

R̃j
ik(s) =

∑T
t=1Kh(s− t/T )ujiku

j
ik√∑T

t=1Kh(s− t
T

)ujitu
j
it

∑T
t=1Kh(s− t

T
)ujktu

j
kt

(12)

for s ∈ (0, 1), and boundary modification as before. For identification, we rescale σ̃j(t/T ) as

σ̃ji (t/T ) = σ̃ji (t/T )− 1

T

T∑
t=1

σ̃ji (t/T ),

and compute

Σ̃j(s) = diag
(
exp(σ̃j(s))

)
R̃j(s)diag

(
exp(σ̃j(s))

)
. (13)

Letting ẽjt = Σ̃j( t
T

)−1/2ujt , we obtain φ̃i by maximizing the univariate log-likelihood function of

ẽjit in (8) for each i.

To update the estimator for each Σj( t
T

), denote Θ = Σj−1/2. We first obtain Θ̂ with the local

likelihood function given λ̃jt and ṽj,i.e., maximize the local objective function

LjT (Θ; λ̃, s) =
1

T

T∑
t=1

Kh(s− t/T )

log |Θ| −
n∑
i=1

 ṽij + 1

2
ln

1 +
(ιᵀi diag

(
exp(−λ̃jt)

)
Θujt)

2

ṽij


with respect to vech(Θ), and let Σ̂j(t/T ) = Θ̂−2. The derivatives of the objective function are

given in (29) and (30). Then we rescale Σ̂j(s) with the same procedure of Σ̃j(s). Likewise, define

12



êjt = Σ̂j(s)−1/2ujt and obtain φ̂i by maximizing the univariate log-likelihood function of êjit. One can

iterate this procedure by updating Θ with the local likelihood using the new φ̂i and λ̂j and so on.

Our multivariate model can be considered as a GARCH model with a slowly moving correlation

matrix. Assuming diagonality on the short run component λjt enables us to estimate the model easily

and fast. Especially, the computation time of the initial estimator is only of order n, with n being

the number of assets considered; it is thus feasible even with quite large n. The extension to models

with non-diagonal short run components is possible, but only feasible with small n.

6 Application

We investigate 28 components of the Dow Jones industrial average index over the period 1991-

11-12 to 2016-04-13. The 28 stocks are: MMM, AXP, AAPL.O, BA, CAT, CVX, CSCO.O, KO,

DD, XOM, GE, HD, IBM, INTC.O, JNJ, JPM, MCD, MRK, MSFT.O, NKE, PFE, PG, TRV,

UNH, UTX, VZ, WMT, DIS. GS and V are excluded since they did not officially go public until

1999 and 2008, respectively. The data is obtained from Thompson Reuters Eikon, and has been

adjusted for corporate actions. We define overnight returns as the log price change between the close

of one trading day to the opening of the next trading day. We do not incorporate weekend and

holiday effects into our model, since they are not the focus of this paper, and our model is already

rather complicated in terms of both model specification and estimation. In addition, although the

weekend effect is documented by e.g. French (1980) and Rogalski (1984), and further supported by

Cho, Linton, and Whang (2007) with a stochastic dominance approach, many studies suggest the

disappearance of the weekend effect, e.g. Mehdian and Perry (2001) and Steeley (2001). Especially,

Sullivan, Timmermann, and White (2001) claim that calendar effects are the result of data-snooping.

6.1 Overnight Returns

Many studies find significant higher overnight returns, e.g. Cooper, Cliff, and Gulen (2008) and

Berkman, Koch, Tuttle, and Zhang (2012). Cooper, Cliff, and Gulen (2008) even suggest US equity

premium is solely due to overnight returns during the research period from 1993 to 2006. To inves-

tigate this, Fig. 1 plots the cumulative returns for these 28 stocks . For AAPL, CAT, CSCO, HD,

INTC, JPM, PFE, UTX and WMT, positive cumulative returns indeed mainly come from overnight

periods, but for MMM, KO, DD,XOM, JNJ, MCD, MRK, NKE, PG, TRV, VZ and DIS, positive

cumulative returns mainly come from intraday periods. There is no clear dominance of positive

overnight returns from this figure.
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Furthermore, Berkman, Koch, Tuttle, and Zhang (2012) find significant positive mean overnight

returns of +10 basis points per day, along with -7 basis points for the intraday returns from 3000

largest U.S. stocks. With the same procedure of Berkman, Koch, Tuttle, and Zhang (2012), we first

compute the cross-sectional mean(or median) returns for each day, then compute the time series

mean and the standard derivation of these cross-sectional mean(or median). The mean intraday

return is 0.0218% with the standard deviation 0.0096, while the mean overnight return is 0.0164%

with the standard deviation 0.0060. The mean of the cross-sectional median for intraday return

is 0.0084% with the standard deviation 0.0092, and its overnight counterpart is 0.0113% with the

standard deviation 0.0054. Still, we do not observe this significant overnight anomaly from the 28

Dow Jones stocks.

Table 1 gives the summary statistics for intraday and overnight returns. Compared with intraday

returns, overnight returns exhibit more negative skewness and leptokurtosis. More specific, 10 of

those 28 stocks have negative intraday skewness, while 26 of 28 stocks have negative overnight

skewness. The largest sample kurtosis for overnight returns is extremely high, 884.7702, suggesting

the non-existence of the population kurtosis.

6.2 Univariate Model Estimates

We multiply returns by 100 to give more readable coefficients. Table 2 reports the estimates and

their robust standard errors in the mean equations. Πij refers to the element of the ith row jth

column in the coefficient matrix Π. For the prediction of intraday returns, 12 of the 28 stocks have

significant Π11 which are all negative, 7 of 28 stocks have significant δ which are all positive. This

suggests that both overnight and intraday returns tend to have reversal effect in their subsequent

intraday return, in line with Branch and Ma, 2006 and Berkman et al., 2012. However, we do not

find clear patterns for predicting overnight returns. The constant terms, µD and µN , are positive for

most Dow Jones stocks.

Table 3 gives the estimates of the variance equations. The parameters βD and βN are significantly

different from 1, ρD, γD, ρN and γN are positive and significant. In addition, we find significant

leverage effects, negative and significant ρ∗D, γ∗D, ρ∗N and γ∗N , suggesting higher volatility after negative

returns.

We also concern about the difference between the overnight and intraday parameters. Table 4

reports the Wald tests with the null hypothesis that the intraday and overnight parameters are equal

within each stock. The parameter, ωD, determining the unconditional short-run scale, is significantly

larger than ωN . The overnight degree-of-freedom parameter is around 3, significantly smaller than
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the intraday one, around 8. Both are in line with the descriptive statistics in Table 1 and previous

studies that overnight returns are more leptokurtic but less volatile. With other pairs of intraday and

overnight parameters, βj, γ, ρj, γ
∗
j , ρ
∗
j , the null hypothesis is seldom rejected. However, the joint null

hypothesis, (βD, γ, ρD, γ
∗
D, ρ

∗
D) = (βN , γ, ρN , γ

∗
N , ρ

∗
N), is rejected by many stocks. It is noteworthy

that the null hypothesis H0 : γN = ρD is not rejected by our data, which is inconsistent with Blanc,

Chicheportiche, and Bouchaud (2014). They suggest that past overnight returns affect weakly the

future intraday volatilities, except for the very next one, but impact substantially future overnight

volatilities. This inconsistency is probably because the dynamic conditional score model shrinks the

impact of extreme overnight observations. After this shrinkage, overnight innovations become closer

to the intraday innovations.

Fig. 2 displays the ratios of the overnight to intraday variances. The stocks all exhibit upward

trends over the 24-year period considered here, and many of them had peaks around August 2011,

corresponding to the August 2011 stock markets fall event. Fig. 3 depicts the long-run intraday and

overnight components, σD(t/T ) and σN(t/T ), and their 95% point-wise confidence intervals. Most

stocks arrived at their first peaks around 10 March 2000, corresponding to the Dot-com bubble event,

while some arrived around September 2011, the 9-11 attacks. The intraday components reached the

second peaks during the financial crisis in September 2008, while overnight components still went

up and reached their highest points during the 2010 Flash crash. Roughly speaking, the intraday

components were larger than the overnight ones before the first peaks, but smaller after financial

crisis in September 2008. But remember that the long-run components are constructed with rescaling∫ 1

0
σ(s)ds = 0. In general, the intraday variances are still larger.

We test the constancy of the ratio of overnight to intraday variance through the null hypothesis

H0 : exp
(
σN0 (·)

)
= ρ exp

(
σD0 (·)

)
(14)

for some ρ ∈ R+ versus the general alternative. By Theorem 3 and the delta method, exp(σ̂D(s)) and

exp(σ̂N(s)) converge jointly to a normal distribution, and are asymptotically mutually independent.

It follows that

τ̂(s) =
√
Th
(
exp

(
σ̂N(s)

)
− ρ̂ exp

(
σ̂D(s)

))
=⇒ N

(
0, ρ2V D

s + V N
s

)
ρ̂ =

1

T

T∑
t=1

exp
(
σ̂N(t/T )

)
exp (σ̂D(t/T ))

,

where V j
s = exp

(
2σj0(s)

) (vj+3)

2vj
||K||22, for j = D,N.
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Fig. 4 displays the test statistics τ̂(s) and the 95 % point-wise confidence intervals for s ∈ [0, 1].

Consistent with the results above, the equal ratio null hypothesis is mostly rejected before the first

peaks (in 2000) and after the second peaks (in 2010).

The Ljung-Box tests on the absolute and the squared standardised residuals are used to ver-

ify whether the coupled component GARCH model is adequate to capture the heteroscedasticity,

shown in Table 6. With the absolute form, strong heteroskedasticity exists in both intraday and

overnight returns, but disappears in the standardised residuals, saying that our model captures the

heteroscedasticity well. On the other hand, we are sometimes unable to detect the heteroscedasticity

in overnight returns with squared values. In general, the use of the absolute form is more robust

when the distribution is heavy tailed.

Fig. 6 displays the quantile-quantile(Q-Q) plots of the intraday innovations, comparing with the

student t distribution with ν̂D degrees of freedom. The points in the Q-Q plots approximately lie on a

line, saying that the intraday innovations closely approximate the t distribution. Fig. 7 displays the

Q-Q plots of the overnight innovations. Many stocks have several outliers in the lower left corners.

Our model only partly captures the negative skewness and leptokurtosis of overnight innovations.

We also want to compare our coupled component GARCH model with its one component version

for the open to close return to see the improvement in volatility forecast from using overnight returns.

We construct 10 rolling windows, each containing 5652 in-sample and 50 out-of-sample observations.

In each rolling window, the parameters in the short-run variances are estimated with the in-sample

data once and stay the same during the one-step out-of-sample forecast. In the one-step ahead

forecast of the long-run covariance matrices, the single-side weight function is used. For instance, to

forecast the long-run covariance matrix of period τ (s = τ/T ), we set the two-side weight function

Kh(s − t/T ) = 0, for t >= τ , and then rescale Kh(s − t/T ) to get a sum of 1. Table 5 reports

Giacomini and White (2006) model pair-wise comparison tests with the out-of-sample quasi Gaussian

and student t log-likelihood loss functions. For most stocks, the coupled component GARCH model

dominates the one component model. Some dominances are statistically significant. We omit the

comparison for overnight variance forecast between the one component and the coupled component

model, since it is not plausible to estimate a GARCH model with overnight returns alone.

As a robustness check, we investigate the ratio of VIX to the Rogers and Satchell (1991)(RS)

volatility. The idea is that the VIX measures one month ahead volatility, total volatility including

presumably intraday and overnight, whereas the aggregated RS volatility only includes intraday

volatility. Therefore, the ratio reflects the variability of intraday to overnight to some extent, although

it is quite noisy. Fig. 5 presents: (1)the RS volatility on daily Dow Jones stocks, (2)one month ahead

volatility from RS, sqrt(
∑2

i=1 2(volrst+i.
2)), (3)VIX, and (4) the ratio of VIX to the one month ahead
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RS volatility. The reported RS volatility is the average RS volatility across the 28 stocks. The ratio

of VIX to the one month ahead RS volatility shows a upward trend during the research period, in

line with our previous finding that the ratio of overnight to intraday volatility is increasing.

6.3 Multivariate Model

Fig. 9 and Fig. 8 present the long-run correlations between intraday returns and between overnight

returns, respectively. Each subplot presents the 27 time series of long-run correlations between that

stock and the rest of stocks. The correlations exhibited an obvious upward trend during our research

period of 1998-2014, and were typically high in 2008 financial crisis.

Fig. 10 displays the eigenvalues of the dynamic covariance matrices, as well as their proportions

(the eigenvalues divided by the sum of eigenvalues). The dynamic of eigenvalues reinforces the

previous remark that the stock markets had high risk in the 11 September attacks and in the 2008

financial crisis. The largest eigenvalue represents a strong common component, saying that a large

proportion of the market financial risk can be explained by one single factor. More specific, the

largest eigenvalue proportion increased substantially between 1998 and 2016. The second and third

largest eigenvalues still counted for a considerable amount of proportion in the volatile period from

2000 to 2002, but became rather insignificant in the volatile period from 2008 to 2011. The largest

intraday eigenvalue proportion reached the peak in 2008, while the largest overnight one remained

high until 2011. Remarkably, the largest eigenvalue explained nearly 50% of intraday risk in the 2008

financial crisis, and 70% of overnight risk in the August 2011 stock markets fall period.

Table 7 provides the estimates of the multivariate model. Compared to the univariate models,

the average βD decreases to 0.8796 from 0.9515, and the average βN decreases to 0.8926 from 0.9553.

Together with the increase of γj and ρj, it says that more weights are given to information in the

most recent days by considering correlations.

One concern is that our initial correlation estimator is based on the Pearson product moment

correlation. This Pearson estimator may perform poorly due to the heavy tails of overnight innova-

tions. So we now investigate the estimates by using a robust correlation estimator in the initial step.

More specific, we first compute the pairwise Kendall tau

τ̂k,l (s) =

T∑
i=1

T−1∑
j=i

Kh(s− i/T )Kh(s− j/T ) (I {(ui,k − uj,k) (ui,l − uj,l) > 0} − I {(ui,k − uj,k) (ui,l − uj,l) < 0})

T∑
i=1

T−1∑
j=i

Kh(s− i/T )Kh(s− j/T ) (I {(ui,k − uj,k) (ui,l − uj,l) > 0}+ I {(ui,k − uj,k) (ui,l − uj,l) < 0})
.

Applying the relation between Kendall tau and the linear correlation coefficient for the elliptical
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distribution suggested by Lindskog, Mcneil, and Schmock (2003) and Battey and Linton (2014), we

obtain the robust linear correlation estimator,

ρ̂k,l (s) = sin
(π

2
τ̂k,l (s)

)
.

In some cases, the matrix of pairwise correlations must be adjusted to ensure that the resulting

matrix is positive definite, although we did not encounter this problem here.

Fig. 3 plots the largest eigenvalue proportions of the estimated covariance matrices to see the

difference of using robust (in black) and using non-robust (in red) correlation estimators in the initial

step. We use solid lines for the initial estimators, and dash lines for the updated estimators. The

updated estimators are obtained in the final estimation step, the one we report in previous parts.

Despite the large difference of the initial estimators, especially for the overnight returns, the updated

estimators are roughly the same. Like the eigenvalues, the updated covariances themselves also

remain unchanged for different initial estimators. To save space, we omit the plot of covariances.

7 Conclusion

We have introduced a new coupled component GARCH model for intraday and overnight volatility.

This model is able to capture the heavy tails of overnight returns. For each component, we fur-

ther specify a non-parametric long run smoothly evolving component with a parametric short term

fluctuates. The large sample properties of the estimators are provided for the univariate model.

The empirical results show that the ratio of overnight to intraday volatility has increased during

previous 20 years when accounting for slowly changing and rapidly changing components. This is

contrary to what is often argued with regard to the change in market structure and the predatory

practices of certain traders. The information in overnight returns is valuable for updating the forecast

of the close to close volatility. In the multivariate model we found that (slowly moving) correlations

between assets have increased during our sample period
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8 Appendix

8.1 Appendix 1: some further properties

We consider the prediction problem. Note that λDt is not the conditional predictor given the day

before, but given the updated information set, and the linear predictor of λDt given only Ft−1 is

E
[
λDt |Ft−1

]
= ωD(1− βD) + βDλ

D
t−1 + γDm

D
t−1 + γ∗D(mD

t−1 + 1)sign(eDt ) 6= λDt .

The expectation of exp(2λDt ) given Ft−1 is

E
[
exp(2λDt )|Ft−1

]
= ΛtE

[
exp(2ρDm

N
t + 2ρ∗D(mN

t + 1)sign(eNt ))|Ft−1
]
,

where Λt = exp(2ωD(1 − βD) + 2βDλ
D
t−1 + 2γDm

D
t−1 + 2γ∗D(mD

t−1 + 1)sign(eDt−1). We can express

E
[
exp(2ρDm

N
t + 2ρ∗D(mN

t + 1)sign(eNt ))|Ft−1
]

as

1

2
exp(−2ρD)

{
E
[
exp((2ρD + 2ρ∗D)(vN + 1)bNt ) + exp((2ρD − 2ρ∗D)(vN + 1)bNt |Ft−1

]}
.

Since bNt follows a beta (1/2, vN/2) distribution,

E
[
exp((2ρD + 2ρ∗D)(vN + 1)bNt )

]
= 1F1(1/2, 1/2 + vN/2, (2ρD + 2ρ∗D)(vN + 1)),

where 1F1 is the Kummer’s function

1F1(α, β, c) = 1 +
∞∑
k=0

(
k−1∏
r=1

α + r

β + r

)
ck

k!
, α, β > 0.

Hence, we have

E
[
exp(2λDt )|Ft−1

]
=

1

2
exp(−2ρD)Λt 1F1(1/2, 1/2 + vN/2, (2ρD + 2ρ∗D)(vN + 1))

+
1

2
exp(−2ρD)Λt 1F1(1/2, 1/2 + vN/2, (2ρD − 2ρ∗D)(vN + 1)).

Note that we have 2 different information sets, Ft−1 and Ft−1∪{rNt }, where Ft−1 is sigma field gen-

erated by {rDt−1, rNt−1, rDt−2, rNt−2, . . .} and Ft−1∪{rNt } is sigma field generated by {rNt , rDt−1, rNt−1, rDt−2, rNt−2, . . .}.
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intraday overnight

mean std.dev. skew kurt mean std.dev. skew kurt

MMM 0.0003 0.0127 0.0040 7.1842 0.0000 0.0073 -0.6030 20.3340

AXP 0.0003 0.0192 -0.0473 9.7455 0.0001 0.0109 -1.3220 30.8063

AAPL -0.0004 0.0242 0.1903 6.3090 0.0010 0.0180 -7.2410 288.9583

BA 0.0002 0.0159 -0.0091 6.3725 0.0001 0.0103 -2.4955 59.8270

CAT -0.0001 0.0174 0.0190 5.7938 0.0005 0.0110 -0.8610 18.7038

CVX 0.0001 0.0137 0.0810 10.6472 0.0002 0.0074 -0.9206 13.1831

CSCO -0.0001 0.0229 0.0227 10.6339 0.0008 0.0141 -0.6753 22.9465

KO 0.0006 0.0126 0.0474 8.3962 -0.0003 0.0071 -0.3592 12.6505

DD 0.0003 0.0157 0.0273 7.1028 -0.0002 0.0091 -0.3597 16.1463

XOM 0.0004 0.0131 0.0861 10.8546 -0.0002 0.0071 -0.9341 14.7103

GE -0.0001 0.0157 -0.0019 11.2698 0.0004 0.0101 0.1864 30.3115

HD 0.0001 0.0172 0.2999 6.9232 0.0004 0.0108 -3.0134 81.4299

IBM 0.0003 0.0150 0.0487 7.3880 -0.0001 0.0100 -0.7826 39.9142

INTC 0.0001 0.0204 0.1913 7.2270 0.0005 0.0141 -2.6159 51.1115

JNJ 0.0003 0.0120 0.0789 6.4480 0.0000 0.0071 -3.0637 79.0347

JPM 0.0000 0.0210 0.4353 14.1952 0.0003 0.0124 0.1249 19.7644

MCD 0.0005 0.0137 -0.0941 8.1253 -0.0001 0.0083 -0.4635 15.1683

MRK 0.0004 0.0149 -0.0381 7.6085 -0.0002 0.0096 -6.2306 172.5119

MSFT 0.0003 0.0171 0.1528 5.6204 0.0003 0.0109 -0.5826 32.3796

NKE 0.0006 0.0177 0.1389 9.5287 -0.0001 0.0104 -2.0513 50.5907

PFE -0.0001 0.0152 -0.0349 5.6494 0.0004 0.0097 -2.0215 40.9346

PG 0.0009 0.0124 -0.0109 9.0587 -0.0006 0.0085 -18.5373 884.7702

TRV 0.0002 0.0163 -0.1116 16.1477 0.0001 0.0087 -1.7067 65.3085

UNH 0.0003 0.0203 -0.1451 13.8989 0.0004 0.0117 -2.9957 64.2616

UTX 0.0001 0.0145 -0.2758 9.4068 0.0004 0.0084 -1.6782 38.7102

VZ 0.0001 0.0142 0.4456 7.6871 0.0000 0.0079 -0.4672 15.4566

WMT -0.0000 0.0147 0.1238 7.9677 0.0003 0.0084 -0.7025 16.3198

DIS 0.0004 0.0161 0.1634 7.1087 0.0000 0.0110 -1.0887 47.8462

This table gives the summary statistics for the intraday and overnight returns.

Table 1: Summary statistics for intraday and overnight returns

25



δ µD µN Π11 Π12 Π21 Π22

MMM -0.0094 0.0304 0.0035 -0.0201 -0.0079 -0.0245 -0.0186

(0.0331) (0.0163) (0.0093) (0.0180) (0.0297) (0.0108) (0.0201)

AXP -0.0482 0.0302 0.0112 -0.0530 0.0055 -0.0112 -0.0463

(0.0449) (0.0245) (0.0139) (0.0218) (0.0444) (0.0141) (0.0259)

AAPL 0.0473 -0.0468 0.1009 -0.0609 0.0794 -0.0137 0.0113

(0.0433) (0.0310) (0.0233) (0.0172) (0.0262) (0.0188) (0.0220)

BA -0.0284 0.0149 0.0120 -0.0048 0.0162 -0.0100 0.0239

(0.0313) (0.0203) (0.0132) (0.0197) (0.0413) (0.0144) (0.0184)

CAT 0.0142 -0.0095 0.0531 -0.0013 -0.0159 0.0155 -0.0132

(0.0342) (0.0223) (0.0140) (0.0185) (0.0260) (0.0113) (0.0179)

CVX -0.0847 0.0130 0.0163 -0.0515 -0.0449 -0.0059 -0.0316

(0.0435) (0.0176) (0.0095) (0.0211) (0.0452) (0.0137) (0.0226)

CSCO 0.0319 -0.0120 0.0832 -0.0615 0.0081 0.0268 -0.0205

(0.0322) (0.0294) (0.0181) (0.0203) (0.0303) (0.0105) (0.0181)

KO 0.0516 0.0571 -0.0250 -0.0188 0.0354 -0.0134 0.0537

(0.0372) (0.0162) (0.0091) (0.0193) (0.0353) (0.0123) (0.0171)

DD 0.0627 0.0343 -0.0174 0.0025 -0.0230 -0.0094 -0.0083

(0.0370) (0.0201) (0.0117) (0.0204) (0.0315) (0.0114) (0.0172)

XOM -0.0482 0.0475 -0.0148 -0.0898 -0.0144 -0.0287 -0.0222

(0.0465) (0.0166) (0.0090) (0.0220) (0.0447) (0.0147) (0.0236)

GE 0.1066 -0.0125 0.0382 -0.0276 0.0234 -0.0020 0.0159

(0.0493) (0.0201) (0.0130) (0.0283) (0.0429) (0.0173) (0.0289)

HD 0.0306 0.0143 0.0362 0.0217 -0.0563 0.0208 -0.0054

(0.0414) (0.0220) (0.0139) (0.0191) (0.0288) (0.0120) (0.0197)

IBM -0.0067 0.0365 -0.0061 -0.0375 0.0609 0.0070 -0.0477

(0.0297) (0.0191) (0.0127) (0.0177) (0.0254) (0.0112) (0.0190)

INTC 0.0335 0.0034 0.0475 -0.0542 0.0742 0.0061 -0.0515

(0.0277) (0.0260) (0.0180) (0.0180) (0.0307) (0.0121) (0.0192)

JNJ 0.0866 0.0346 0.0013 -0.0327 0.0016 0.0254 0.0271

(0.0309) (0.0154) (0.0092) (0.0181) (0.0334) (0.0122) (0.0200)

JPM -0.0020 0.0037 0.0308 -0.0701 0.0065 0.0195 -0.0601

(0.0493) (0.0268) (0.0158) (0.0288) (0.0462) (0.0161) (0.0237)

MCD 0.1500 0.0546 -0.0089 -0.0169 0.0221 -0.0216 0.0235

(0.0329) (0.0175) (0.0106) (0.0200) (0.0305) (0.0112) (0.0177)

MRK 0.0032 0.0352 -0.0202 -0.0084 -0.0151 0.0165 -0.0022

(0.0292) (0.0190) (0.0123) (0.0197) (0.0271) (0.0114) (0.0187)

MSFT -0.0200 0.0268 0.0277 -0.0536 0.0461 0.0033 -0.0247

(0.0322) (0.0218) (0.0139) (0.0182) (0.0265) (0.0107) (0.0153)

NKE 0.0226 0.0616 -0.0059 0.0153 -0.0228 -0.0081 -0.0132

(0.0339) (0.0227) (0.0133) (0.0197) (0.0287) (0.0127) (0.0160)

PFE 0.1283 -0.0078 0.0355 0.0014 -0.0094 -0.0024 0.0222

(0.0285) (0.0195) (0.0124) (0.0168) (0.0283) (0.0114) (0.0187)

PG 0.0929 0.0986 -0.0530 -0.0612 0.0729 -0.0268 -0.0029

(0.0275) (0.0160) (0.0112) (0.0216) (0.0289) (0.0134) (0.0121)

TRV 0.1594 0.0264 0.0070 -0.0423 -0.0529 -0.0194 -0.0312

(0.0686) (0.0208) (0.0111) (0.0299) (0.0460) (0.0191) (0.0220)

UNH -0.0305 0.0332 0.0353 0.0229 -0.0370 0.0058 -0.0084

(0.0593) (0.0261) (0.0150) (0.0205) (0.0400) (0.0145) (0.0214)

UTX -0.0565 0.0096 0.0395 -0.0216 -0.0386 0.0032 -0.0458

(0.0698) (0.0186) (0.0107) (0.0197) (0.0323) (0.0105) (0.0181)

VZ 0.0621 0.0143 0.0012 -0.0405 -0.0316 -0.0129 0.0012

(0.0429) (0.0181) (0.0101) (0.0202) (0.0376) (0.0119) (0.0188)

WMT 0.0852 -0.0054 0.0310 -0.0436 0.0315 -0.0053 0.0361

(0.0347) (0.0188) (0.0107) (0.0185) (0.0341) (0.0100) (0.0175)

DIS 0.0376 0.0373 0.0024 -0.0236 0.0026 -0.0155 -0.0019

(0.0290) (0.0205) (0.0140) (0.0197) (0.0369) (0.0132) (0.0234)

DJI -0.0549 0.0328 -0.0020 -0.0615 0.1050 0.0034 -0.0282

(0.0393) (0.0208) (0.0128) (0.0205) (0.0342) (0.0130) (0.0198)

average 0.0311 0.0223 0.0165 -0.0297 0.0042 -0.0029 -0.0086

pool est. 0.0299 0.0223 0.0162 -0.0313 0.0121 -0.0011 -0.0103

pool s.e. (0.0034) (0.0023) (0.0015) (0.0018) (0.0032) (0.0012) (0.0019)

num of + 18 22 20 5 15 11 9

num of − 10 6 8 23 13 17 19

num of signi + 7 6 11 0 4 2 2

num of signi − 0 0 2 12 0 2 4

This table gives the estimates of the mean equations in the univariate coupled component models, and

their asymptotic standard errors in parenthesis. ’pool est.’ and ’pool s.e.’ represent the MLE pool

estimates and their standard errors.

Table 2: Estimates of the mean equations
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βD γD ρD γ∗D ρ∗D νD ωD

MMM 0.9716 0.0213 0.0273 -0.0189 -0.0107 6.8817 -0.0611

(0.0055) (0.0036) (0.0042) (0.0025) (0.0025) (0.5291) (0.0266)

AXP 0.9710 0.0348 0.0298 -0.0162 -0.0112 9.6898 0.3035

(0.0052) (0.0040) (0.0041) (0.0025) (0.0027) (1.0451) (0.0336)

AAPL 0.9177 0.0394 0.0381 -0.0157 -0.0109 8.9059 0.6216

(0.0166) (0.0056) (0.0068) (0.0032) (0.0035) (0.8917) (0.0213)

BA 0.9587 0.0340 0.0261 -0.0110 -0.0116 8.6091 0.2315

(0.0087) (0.0045) (0.0050) (0.0026) (0.0027) (0.8269) (0.0263)

CAT 0.9752 0.0236 0.0239 -0.0157 -0.0105 8.1879 0.3253

(0.0050) (0.0038) (0.0042) (0.0021) (0.0022) (0.7801) (0.0298)

CVX 0.9626 0.0309 0.0256 -0.0177 -0.0137 14.2545 0.1014

(0.0066) (0.0039) (0.0040) (0.0025) (0.0027) (2.1566) (0.0268)

CSCO 0.9527 0.0305 0.0314 -0.0187 -0.0183 11.8282 0.5052

(0.0080) (0.0041) (0.0046) (0.0029) (0.0028) (1.4338) (0.0239)

KO 0.9616 0.0279 0.0262 -0.0163 -0.0143 8.9666 -0.0507

(0.0082) (0.0041) (0.0048) (0.0027) (0.0026) (0.9389) (0.0258)

DD 0.9541 0.0351 0.0302 -0.0130 -0.0144 8.8106 0.1858

(0.0102) (0.0050) (0.0053) (0.0028) (0.0029) (0.8545) (0.0258)

XOM 0.9605 0.0382 0.0263 -0.0095 -0.0157 12.8135 0.0350

(0.0068) (0.0043) (0.0040) (0.0026) (0.0028) (1.6619) (0.0287)

GE 0.9590 0.0351 0.0351 -0.0182 -0.0152 11.7415 0.1273

(0.0065) (0.0041) (0.0045) (0.0025) (0.0027) (1.4348) (0.0284)

HD 0.9559 0.0326 0.0345 -0.0245 -0.0176 8.7982 0.2666

(0.0071) (0.0041) (0.0049) (0.0030) (0.0030) (0.8661) (0.0260)

IBM 0.9614 0.0331 0.0311 -0.0195 -0.0096 8.0274 0.1107

(0.0076) (0.0046) (0.0051) (0.0028) (0.0027) (0.7189) (0.0276)

INTC 0.9638 0.0263 0.0221 -0.0116 -0.0125 13.8716 0.4828

(0.0072) (0.0034) (0.0043) (0.0023) (0.0027) (1.9630) (0.0250)

JNJ 0.9440 0.0399 0.0394 -0.0226 -0.0131 9.2874 -0.1001

(0.0084) (0.0045) (0.0051) (0.0032) (0.0032) (0.9551) (0.0255)

JPM 0.9739 0.0386 0.0370 -0.0187 -0.0102 8.9114 0.3347

(0.0042) (0.0042) (0.0043) (0.0025) (0.0026) (0.8937) (0.0394)

MCD 0.7771 0.0677 0.0622 0.0017 0.0017 9.0474 0.2359

(0.1108) (0.0393) (0.0097) (0.0111) (0.0102) (1.0475) (0.0945)

MRK 0.9391 0.0397 0.0400 -0.0153 -0.0105 7.6928 0.1438

(0.0132) (0.0054) (0.0066) (0.0032) (0.0032) (0.6331) (0.0239)

MSFT 0.9366 0.0437 0.0495 -0.0111 -0.0073 11.3473 0.2991

(0.0108) (0.0047) (0.0063) (0.0030) (0.0034) (1.3919) (0.0253)

NKE 0.9670 0.0315 0.0290 -0.0171 -0.0067 6.9838 0.2606

(0.0069) (0.0044) (0.0051) (0.0028) (0.0026) (0.5738) (0.0292)

PFE 0.9640 0.0275 0.0322 -0.0144 -0.0077 11.3019 0.2051

(0.0071) (0.0038) (0.0046) (0.0025) (0.0025) (1.3785) (0.0270)

PG 0.9480 0.0356 0.0332 -0.0163 -0.0108 8.7109 -0.0845

(0.0096) (0.0045) (0.0051) (0.0030) (0.0032) (0.8227) (0.0246)

TRV 0.9660 0.0413 0.0333 -0.0119 -0.0101 8.2381 0.1086

(0.0067) (0.0050) (0.0050) (0.0028) (0.0028) (0.7880) (0.0331)

UNH 0.9470 0.0405 0.0344 -0.0210 -0.0110 7.4073 0.3985

(0.0099) (0.0048) (0.0058) (0.0033) (0.0033) (0.6330) (0.0254)

UTX 0.9596 0.0288 0.0336 -0.0182 -0.0163 9.3467 0.0982

(0.0075) (0.0044) (0.0048) (0.0027) (0.0028) (1.0045) (0.0261)

VZ 0.9676 0.0278 0.0279 -0.0070 -0.0146 11.3300 0.0931

(0.0062) (0.0037) (0.0042) (0.0023) (0.0026) (1.3386) (0.0280)

WMT 0.9742 0.0270 0.0238 -0.0097 -0.0085 8.0639 0.0663

(0.0062) (0.0037) (0.0042) (0.0023) (0.0025) (0.7403) (0.0308)

DIS 0.9516 0.0344 0.0329 -0.0151 -0.0115 9.6181 0.1953

(0.0116) (0.0056) (0.0051) (0.0030) (0.0031) (1.0518) (0.0298)

average 0.9515 0.0345 0.0327 -0.0151 -0.0115 9.5955 0.1943

pool est. 0.9861 0.0316 0.0314 -0.0059 -0.0022 8.0103 -0.8937

pool s.e. (0.0004) (0.0009) (0.0006) (0.0003) (0.0003) (0.1339) (0.0374)

Continued on the next page.

Table 3: Estimates of variance equations in the univariate coupled component models
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βN γN ρN γ∗N ρ∗N νN ωN

MMM 0.9683 0.0344 0.0322 -0.0127 -0.0235 2.9893 -0.9498

(0.0063) (0.0054) (0.0049) (0.0033) (0.0032) (0.1333) (0.0325)

AXP 0.9722 0.0387 0.0379 -0.0188 -0.0229 3.7613 -0.5535

(0.0046) (0.0055) (0.0042) (0.0032) (0.0029) (0.1895) (0.0385)

AAPL 0.9234 0.0619 0.0629 -0.0154 -0.0146 2.6745 -0.3351

(0.0117) (0.0081) (0.0064) (0.0045) (0.0040) (0.0977) (0.0278)

BA 0.9710 0.0206 0.0327 -0.0120 -0.0168 3.0865 -0.6114

(0.0062) (0.0051) (0.0043) (0.0026) (0.0026) (0.1367) (0.0298)

CAT 0.9708 0.0305 0.0393 -0.0103 -0.0197 2.8998 -0.5496

(0.0057) (0.0058) (0.0049) (0.0030) (0.0029) (0.1229) (0.0350)

CVX 0.9778 0.0197 0.0264 -0.0110 -0.0157 4.1452 -0.7624

(0.0039) (0.0039) (0.0031) (0.0023) (0.0024) (0.2379) (0.0324)

CSCO 0.9631 0.0368 0.0344 -0.0140 -0.0212 3.5092 -0.3252

(0.0065) (0.0058) (0.0044) (0.0029) (0.0030) (0.1532) (0.0306)

KO 0.9658 0.0409 0.0275 -0.0189 -0.0201 3.7388 -0.8462

(0.0058) (0.0053) (0.0042) (0.0031) (0.0029) (0.1821) (0.0319)

DD 0.9566 0.0337 0.0425 -0.0175 -0.0159 3.5630 -0.6296

(0.0084) (0.0060) (0.0050) (0.0035) (0.0030) (0.1734) (0.0290)

XOM 0.9729 0.0258 0.0310 -0.0122 -0.0140 5.0318 -0.7701

(0.0052) (0.0043) (0.0037) (0.0026) (0.0025) (0.3115) (0.0322)

GE 0.9614 0.0401 0.0463 -0.0204 -0.0221 4.7818 -0.6118

(0.0062) (0.0056) (0.0046) (0.0031) (0.0030) (0.2773) (0.0340)

HD 0.9537 0.0452 0.0373 -0.0220 -0.0259 3.1685 -0.6014

(0.0076) (0.0062) (0.0048) (0.0039) (0.0036) (0.1418) (0.0299)

IBM 0.9632 0.0414 0.0389 -0.0121 -0.0218 2.7722 -0.7656

(0.0064) (0.0062) (0.0048) (0.0033) (0.0030) (0.1088) (0.0330)

INTC 0.9662 0.0300 0.0305 -0.0131 -0.0155 2.8768 -0.4046

(0.0083) (0.0064) (0.0047) (0.0033) (0.0027) (0.1116) (0.0295)

JNJ 0.9596 0.0323 0.0348 -0.0166 -0.0262 4.0828 -0.8547

(0.0063) (0.0050) (0.0043) (0.0030) (0.0030) (0.2189) (0.0281)

JPM 0.9754 0.0350 0.0366 -0.0198 -0.0226 4.0152 -0.4103

(0.0038) (0.0046) (0.0040) (0.0027) (0.0026) (0.2098) (0.0397)

MCD 0.8012 0.0488 0.0800 -0.0018 -0.0000 4.0211 -0.2824

(0.0159) (0.0477) (0.0787) (0.0082) (0.0069) (0.1751) (0.0458)

MRK 0.9458 0.0398 0.0435 -0.0135 -0.0209 3.2409 -0.6822

(0.0111) (0.0064) (0.0062) (0.0036) (0.0035) (0.1456) (0.0271)

MSFT 0.9433 0.0543 0.0452 -0.0098 -0.0115 2.8706 -0.6569

(0.0102) (0.0076) (0.0053) (0.0038) (0.0035) (0.1101) (0.0293)

NKE 0.9543 0.0396 0.0456 -0.0147 -0.0177 2.3998 -0.8391

(0.0095) (0.0068) (0.0061) (0.0037) (0.0038) (0.0876) (0.0301)

PFE 0.9619 0.0424 0.0364 -0.0112 -0.0118 3.4040 -0.6243

(0.0074) (0.0058) (0.0045) (0.0032) (0.0031) (0.1577) (0.0324)

PG 0.9445 0.0292 0.0370 -0.0206 -0.0235 3.6016 -0.9050

(0.0097) (0.0058) (0.0050) (0.0035) (0.0033) (0.1717) (0.0240)

TRV 0.9740 0.0398 0.0347 -0.0125 -0.0170 2.9686 -0.9225

(0.0049) (0.0060) (0.0044) (0.0031) (0.0029) (0.1268) (0.0393)

UNH 0.9354 0.0521 0.0547 -0.0076 -0.0202 2.2533 -0.7491

(0.0109) (0.0077) (0.0066) (0.0045) (0.0042) (0.0836) (0.0293)

UTX 0.9708 0.0303 0.0324 -0.0202 -0.0195 3.3906 -0.7534

(0.0048) (0.0048) (0.0041) (0.0030) (0.0027) (0.1623) (0.0332)

VZ 0.9661 0.0302 0.0325 -0.0224 -0.0138 3.7265 -0.7555

(0.0057) (0.0052) (0.0040) (0.0031) (0.0028) (0.1886) (0.0300)

WMT 0.9756 0.0240 0.0302 -0.0111 -0.0126 3.4965 -0.7485

(0.0052) (0.0047) (0.0038) (0.0026) (0.0026) (0.1641) (0.0328)

DIS 0.9552 0.0369 0.0396 -0.0147 -0.0183 3.4211 -0.6600

(0.0074) (0.0073) (0.0074) (0.0034) (0.0032) (0.1618) (0.0320)

Average 0.9553 0.0369 0.0394 -0.0145 -0.0180 3.4247 -0.6629

pool est. 0.9823 0.0426 0.0307 -0.0086 -0.0130 3.2019 -1.5104

pool s.e. (0.0006) (0.0010) (0.0009) (0.0005) (0.0005) (0.0265) (0.0322)

This table presents the estimates of the variance equations in the univariate coupled component models,

and their asymptotic standard errors in parenthesis. ’pool est.’ and ’pool s.e.’ represent the MLE pool

estimates and their standard errors.

Table 3: Estimates of variance equations in the univariate coupled component model model(cont.)
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This figure shows the cumulative intraday (in red) and the cumulative overnight (in black) returns: one

subplot for each stock.

Figure 1: Cumulative intraday and overnight returns29



This figure shows the dynamic ratio of overnight to intraday variance, based on the univariate coupled

component model: one subplot for each stock. The five dash vertical lines from left to right represent the

dates: 10 March 2000(dot-com bubble), 11 September 2001(the September 11 attacks), 16 September

2008(financial crisis), 06 May 2010 (flash crash) and 01 August 2011 (August 2011 stock markets fall),

respectively.

Figure 2: Ratios of overnight to intraday variance: univariate model
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This figure shows the estimated intraday (in red) and overnight (in black) long run components,σD(t/T )

and σN (t/T ), based on the univariate coupled component model: one subplot for each stock. The five

dash vertical lines from left to right represent the dates: 10 March 2000(dot-com bubble), 11 September

2001(the September 11 attacks), 16 September 2008(financial crisis), 06 May 2010 (flash crash) and 01

August 2011 (August 2011 stock markets fall), respectively.

Figure 3: Long run component σ: univariate model
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The red lines represent the statistics of the ratio tests, with the null hypothesis H0 : exp
(
σN
0 (t/T )

)
=

ρ exp
(
σD
0 (t/T )

)
. The black lines indicate the 95% confidence intervals of the statistics under the null.

The five dash vertical lines from left to right represent the dates: 10 March 2000(dot-com bubble),

11 September 2001(the September 11 attacks), 16 September 2008(financial crisis), 06 May 2010 (flash

crash) and 01 August 2011 (August 2011 stock markets fall), respectively.

Figure 4: Statistics of ratio tests: univariate model

32



The figure shows the Rogers and Satschell(RS) volatility, the one-month ahead monthly RS volatility,

VIX, and the ratio of VIX to the one-month ahead monthly RS volatility. The RS volatility is the average

RS volatility across the 28 stocks.

Figure 5: RS, VIX and their ratio
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This figure displays Q-Q plots of the quantiles of the intraday innovations (X axis), versus the theoretical

quantiles of the student t distribution with the ν̂D degrees of freedom (Y axis): one panel for each stock.

Figure 6: QQ plot of the intraday innovations
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This figure displays Q-Q plots of the quantiles of the overnight innovations (X axis), versus the theoretical

quantiles of the student t distribution with the ν̂D degrees of freedom (Y axis): one panel for each stock.

Figure 7: QQ plot of the overnight innovations
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Each panel presents the long-run intraday correlations between that stock and the rest of stocks, implied

by the multivariate coupled component model. The five dash vertical lines from left to right indicate the

dates: 10 March 2000(dot-com bubble), 11 September 2001(the September 11 attacks), 16 September

2008(financial crisis), 06 May 2010 (flash crash) and 01 August 2011 (August 2011 stock markets fall),

respectively.

Figure 8: Long-run overnight correlations
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Each panel presents the 27 time series of long-run overnight correlations between that stock and the rest

of stocks, implied by the multivariate coupled component model. The five dash vertical lines from left to

right indicate the dates: 10 March 2000(dot-com bubble), 11 September 2001(the September 11 attacks),

16 September 2008(financial crisis), 06 May 2010 (flash crash) and 01 August 2011 (August 2011 stock

markets fall), respectively.

Figure 9: Long-run intraday correlations
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The upper panel plots the eigenvalues of the covariance matrices, and the lower panel plots the eigenvalues

divided by the sum of eigenvalues. The five dash vertical lines from left to right indicate the dates: 10

March 2000(dot-com bubble), 11 September 2001(the September 11 attacks), 16 September 2008(financial

crisis), 06 May 2010 (flash crash) and 01 August 2011 (August 2011 stock markets fall), respectively.

Figure 10: Eigenvalues of covariance matrices
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(βD, γD, ρD, γ
∗
D, ρ

∗
D)

βD = βN γD = γN ρD = ρN γ∗D = γ∗N ρ∗D = ρ∗N νD = νN ωD = ωN γN = ρD = (βN , γN , ρN , γ
∗
N , ρ

∗
N )

MMM 0.4463 0.0404 0.4074 0.1300 0.0015 0.0000 0.0000 0.1158 0.0015

AXP 0.7387 0.5529 0.1337 0.5090 0.0031 0.0000 0.0000 0.0587 0.0004

AAPL 0.6655 0.0175 0.0047 0.9604 0.5031 0.0000 0.0000 0.0016 0.0000

BA 0.0412 0.0357 0.2624 0.7881 0.1553 0.0000 0.0000 0.2269 0.0222

CAT 0.2142 0.2870 0.0058 0.1250 0.0090 0.0000 0.0000 0.1444 0.0015

CVX 0.0010 0.0332 0.8557 0.0381 0.5759 0.0000 0.0000 0.1356 0.0106

CSCO 0.0811 0.3699 0.6042 0.2516 0.4850 0.0000 0.0000 0.3166 0.0169

KO 0.5108 0.0408 0.8287 0.5255 0.1401 0.0000 0.0000 0.0035 0.0122

DD 0.7178 0.8493 0.0533 0.2979 0.7134 0.0000 0.0000 0.5036 0.0953

XOM 0.0113 0.0358 0.3672 0.4597 0.6693 0.0000 0.0000 0.9082 0.0377

GE 0.5704 0.4586 0.0643 0.5741 0.0904 0.0000 0.0000 0.2692 0.0004

HD 0.7339 0.0834 0.6725 0.6071 0.0790 0.0000 0.0000 0.0616 0.1236

IBM 0.7507 0.2660 0.2244 0.0799 0.0027 0.0000 0.0000 0.0597 0.0032

INTC 0.7053 0.6005 0.1628 0.7053 0.4233 0.0000 0.0000 0.1713 0.1426

JNJ 0.0149 0.2568 0.4710 0.1707 0.0027 0.0000 0.0000 0.1627 0.0049

JPM 0.5514 0.5603 0.9484 0.7509 0.0008 0.0000 0.0000 0.6026 0.0012

MCD 0.8264 0.8265 0.8190 0.8200 0.8627 0.0000 0.0001 0.7875 0.9999

MRK 0.4594 0.9906 0.6508 0.7012 0.0283 0.0000 0.0000 0.9729 0.1458

MSFT 0.4468 0.2405 0.5895 0.7901 0.3990 0.0000 0.0000 0.5058 0.3634

NKE 0.0625 0.2967 0.0206 0.5988 0.0159 0.0000 0.0000 0.0646 0.0362

PFE 0.7098 0.0303 0.4915 0.4023 0.2893 0.0000 0.0000 0.0508 0.0377

PG 0.6715 0.3739 0.5645 0.3481 0.0069 0.0000 0.0000 0.4775 0.0481

TRV 0.0957 0.8364 0.8171 0.8814 0.0976 0.0000 0.0000 0.2369 0.0499

UNH 0.2059 0.1949 0.0139 0.0167 0.0901 0.0000 0.0000 0.0113 0.0028

UTX 0.0310 0.8085 0.8380 0.6094 0.4181 0.0000 0.0000 0.4670 0.0098

VZ 0.7429 0.6957 0.3921 0.0001 0.8273 0.0000 0.0000 0.6222 0.0015

WMT 0.7214 0.5910 0.2347 0.6712 0.2528 0.0000 0.0000 0.9611 0.4234

DIS 0.5415 0.7408 0.2892 0.9213 0.1324 0.0000 0.0000 0.4689 0.0731

This table presents the p-values of the Wald tests for several sets of null hypothesis: H0 : βD = βN ,

H0 : γD = γN , H0 : ρD = ρN , H0 : γ∗D = γ∗N , H0 : ρ∗D = ρ∗N , H0 : νD = νN , H0 : ωD = ωN ,

H0 : γN = ρD, and H0 : (βD, γD, ρD, γ
∗
D, ρ

∗
D) = (βN , γN , ρN , γ

∗
N , ρ

∗
N ).

Table 4: Wald tests

Left(right) panel plots the largest eigenvalue proportion of estimated intraday(overnight) covariance

matrix: red(black) lines for using non-robust(robust) correlation in the initial step. Solid(dash) lines are

further used to indicate the initial(updated) estimators,

Figure 11: comparison of robust and non-robust initial correlation estimator
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student t log-likelihood quasi Gaussian log-likelihood

lcogarch lgarch GW stat. p-val. lcogarch lgarch GW stat. p-val.

MMM 1.1832 1.1963 6.3242 0.0119 1.1901 1.2092 6.2041 0.0127

AXP 1.3335 1.3473 2.7307 0.0984 1.3727 1.3974 2.2438 0.1342

AAPL 1.6569 1.6701 2.5099 0.1131 1.6642 1.6854 2.0921 0.1481

BA 1.4584 1.4715 4.7922 0.0286 1.4830 1.5048 5.5787 0.0182

CAT 1.5693 1.5761 1.9846 0.1589 1.5834 1.5915 1.4751 0.2245

CVX 1.6026 1.6058 0.2129 0.6445 1.6135 1.6178 0.2728 0.6015

CSCO 1.3807 1.3936 3.5761 0.0586 1.3832 1.4027 3.4340 0.0639

KO 1.1211 1.1347 2.3200 0.1277 1.1281 1.1483 2.6316 0.1048

DD 1.4821 1.4956 2.8619 0.0907 1.4996 1.5218 3.2895 0.0697

XOM 1.4198 1.4284 1.9184 0.1660 1.4304 1.4448 3.1887 0.0742

GE 1.3125 1.3328 1.8666 0.1719 1.3371 1.3638 0.7425 0.3889

HD 1.4018 1.4148 3.1614 0.0754 1.4179 1.4408 2.4230 0.1196

IBM 1.3442 1.3538 3.0191 0.0823 1.3586 1.3730 2.1378 0.1437

INTC 1.5674 1.5736 0.6431 0.4226 1.5913 1.6025 1.4440 0.2295

JNJ 1.1759 1.1807 0.2140 0.6436 1.1863 1.2141 1.0331 0.3094

JPM 1.3844 1.3902 0.4479 0.5033 1.3933 1.4047 0.5767 0.4476

MCD 1.1675 1.1772 0.6391 0.4240 1.2151 1.2332 0.6079 0.4356

MRK 1.4255 1.4298 0.4247 0.5146 1.4483 1.4694 1.0146 0.3138

MSFT 1.5373 1.5511 3.8529 0.0497 1.5612 1.5889 4.4249 0.0354

NKE 1.4760 1.4811 0.6902 0.4061 1.4872 1.5010 1.2014 0.2730

PFE 1.3581 1.3701 1.4091 0.2352 1.3698 1.3924 1.0637 0.3024

PG 1.0967 1.0992 0.1259 0.7227 1.1153 1.1345 1.0687 0.3012

TRV 1.1117 1.1185 0.5408 0.4621 1.1186 1.1280 0.8314 0.3619

UNH 1.6005 1.6018 0.1291 0.7193 1.5949 1.5961 0.0506 0.8219

UTX 1.3216 1.3336 2.1103 0.1463 1.3437 1.3566 0.7855 0.3755

VZ 1.1679 1.1791 3.5395 0.0599 1.1797 1.2149 1.9419 0.1635

WMT 1.2735 1.2720 0.0452 0.8316 1.4252 1.4429 1.3135 0.2518

DIS 1.3163 1.3222 0.4560 0.4995 1.3300 1.3439 0.9672 0.3254

The table presents the GW test of the null that the one-component and the coupled component model have equal

expected loss, with minus the out-of-sample t log-likelihood or quasi Gaussian log-likelihood as the loss function.

lcogarch represents the average loss value of the coupled component model, and lgarch represents the average loss value

of the one component BETA-T-EGARCH model with open-close returns.

Table 5: GW tests: univariate model
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|εd| |εn| |rd| |rn| ε2d ε2n r2d r2n
MMM 0.7102 0.2692 0.0000 0.0000 0.9611 0.9923 0.0000 0.0000

AXP 0.3953 0.1358 0.0000 0.0000 0.1828 0.9900 0.0000 0.0000

AAPL 0.7447 0.4793 0.0000 0.0000 0.0757 0.9997 0.0000 0.9558

BA 0.1846 0.2596 0.0000 0.0000 0.2914 0.9962 0.0000 0.0000

CAT 0.9292 0.2899 0.0000 0.0000 0.7909 0.9988 0.0000 0.0000

CVX 0.3064 0.5760 0.0000 0.0000 0.0637 0.5412 0.0000 0.0000

CSCO 0.0739 0.7701 0.0000 0.0000 0.0170 1.0000 0.0000 0.0000

KO 0.5040 0.7539 0.0000 0.0000 0.5222 0.9752 0.0000 0.0000

DD 0.6311 0.7901 0.0000 0.0000 0.0710 0.2432 0.0000 0.0000

XOM 0.4986 0.1337 0.0000 0.0000 0.3109 0.7145 0.0000 0.0000

GE 0.1884 0.8045 0.0000 0.0000 0.0138 0.9978 0.0000 0.0000

HD 0.3390 0.4095 0.0000 0.0000 0.1141 0.9977 0.0000 0.0120

IBM 0.4555 0.2208 0.0000 0.0000 0.7846 0.9603 0.0000 0.0000

INTC 0.3869 0.0606 0.0000 0.0000 0.8838 0.9853 0.0000 0.0003

JNJ 0.2579 0.4742 0.0000 0.0000 0.5205 0.9366 0.0000 0.0286

JPM 0.2962 0.4567 0.0000 0.0000 0.3807 1.0000 0.0000 0.0000

MCD 0.1996 0.3503 0.0000 0.0000 0.3556 0.9685 0.0000 0.0000

MRK 0.2003 0.7233 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000

MSFT 0.5201 0.8494 0.0000 0.0000 0.7620 1.0000 0.0000 0.0000

NKE 0.0407 0.8972 0.0000 0.0000 0.0924 0.9980 0.0000 0.9857

PFE 0.1066 0.6689 0.0000 0.0000 0.0957 1.0000 0.0000 0.0025

PG 0.8185 0.8830 0.0000 0.0000 0.9378 1.0000 0.0000 1.0000

TRV 0.4188 0.3676 0.0000 0.0000 0.1089 0.9992 0.0000 0.0000

UNH 0.0045 0.4844 0.0000 0.0000 0.2356 0.9829 0.0000 0.0000

UTX 0.0096 0.1683 0.0000 0.0000 0.0018 0.9999 0.0000 0.0017

VZ 0.1302 0.2894 0.0000 0.0000 0.5510 0.0343 0.0000 0.0000

WMT 0.1704 0.5944 0.0000 0.0000 0.9867 0.9023 0.0000 0.0000

DIS 0.9257 0.1840 0.0000 0.0000 0.7475 1.0000 0.0000 0.0000

This table gives the p-values of the Ljung-Box Q-tests for absolute(squared) residuals and returns.

Table 6: Diagnostic checking for GARCH effects
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βD γD ρD γ∗D ρ∗D νD ωD

MMM 0.8504 0.0350 0.0788 -0.0094 0.0001 5.1024 -0.1047

(0.0811) (0.0097) (0.0226) (0.0053) (0.0047) (0.3138) (0.0196)

AXP 0.9332 0.0442 0.0466 -0.0138 -0.0082 8.5370 -0.0540

(0.0132) (0.0054) (0.0066) (0.0033) (0.0035) (0.8093) (0.0247)

AAPL 0.8056 0.0587 0.0646 -0.0169 0.0026 7.4693 -0.0421

(0.0419) (0.0080) (0.0100) (0.0047) (0.0049) (-0.6579) (0.0190)

BA 0.7165 0.0636 0.0721 0.0000 0.0089 7.8943 -0.0268

(0.0519) (0.0079) (0.0098) (0.0050) (0.0059) (0.7117) (0.0176)

CAT 0.9447 0.0271 0.0311 -0.0098 -0.0004 7.3387 -0.0276

(0.0158) (0.0047) (0.0072) (0.0026) (0.0028) (0.6330) (0.0221)

CVX 0.9475 0.0331 0.0285 -0.0116 -0.0038 9.7347 -0.0069

(0.0139) (0.0050) (0.0056) (0.0029) (0.0030) (1.1058) (0.0238)

CSCO 0.9282 0.0412 0.0412 -0.0152 -0.0134 8.3211 -0.0515

(0.0154) (0.0057) (0.0067) (0.0035) (0.0031) (0.7676) (0.0229)

KO 0.8383 0.0477 0.0567 -0.0139 0.0001 8.9520 -0.0161

(0.0471) (0.0078) (0.0101) (0.0042) (0.0049) (0.9210) (0.0189)

DD 0.7722 0.0523 0.0792 -0.0018 -0.0009 7.0406 -0.0625

(0.0409) (0.0072) (0.0093) (0.0049) (0.0050) (0.5741) (0.0180)

XOM 0.9316 0.0417 0.0334 0.0029 -0.0031 11.2320 0.0081

(0.0188) (0.0063) (0.0065) (0.0032) (0.0033) (1.3386) (0.0229)

GE 0.9905 0.0307 0.0366 -0.0093 -0.0065 7.4505 -0.1456

(0.0015) (0.0029) (0.0048) (0.0023) (0.0021) (1.0314) (0.0300)

HD 0.8657 0.0573 0.0591 -0.0155 -0.0081 7.8864 -0.0342

(0.0430) (0.0098) (0.0114) (0.0042) (0.0044) (0.7215) (0.0208)

IBM 0.9459 0.0324 0.0186 -0.0097 -0.0066 6.3196 -0.0476

(0.0279) (0.0046) (0.0049) (0.0021) (0.0023) (0.4762) (0.0903)

INTC 0.9108 0.0322 0.0294 -0.0062 -0.0046 8.7912 -0.0289

(0.0264) (0.0059) (0.0077) (0.0032) (0.0033) (0.8483) (0.0192)

JNJ 0.7695 0.0648 0.0760 -0.0137 0.0043 7.3108 -0.0319

(0.0555) (0.0087) (0.0109) (0.0051) (0.0063) (0.6096) (0.0185)

JPM 0.9661 0.0407 0.0367 -0.0108 -0.0026 7.1034 -0.0644

(0.0065) (0.0047) (0.0051) (0.0027) (0.0027) (0.5958) (0.0333)

MCD 0.7385 0.0545 0.0691 -0.0059 0.0033 7.1915 -0.0341

(0.0757) (0.0089) (0.0121) (0.0054) (0.0057) (0.5940) (0.0174)

MRK 0.7964 0.0649 0.0799 -0.0090 -0.0066 6.8163 -0.0495

(0.0443) (0.0082) (0.0110) (0.0051) (0.0052) (0.5228) (0.0190)

MSFT 0.8637 0.0554 0.0675 0.0003 0.0042 8.8889 -0.0320

(0.0247) (0.0063) (0.0085) (0.0040) (0.0044) (0.8994) (0.0205)

NKE 0.9706 0.0200 0.0187 -0.0062 0.0005 5.8409 -0.0863

(0.0069) (0.0023) (0.0037) (0.0021) (0.0016) (-0.3850) (0.0303)

PFE 0.9422 0.0316 0.0375 -0.0049 0.0014 8.5675 -0.0273

(0.0147) (0.0049) (0.0064) (0.0030) (0.0032) (0.8417) (0.0230)

PG 0.7537 0.0369 0.0639 -0.0130 -0.0092 10.1869 0.0162

(0.0910) (0.0037) (0.0080) (0.0026) (0.0025) (1.4107) (0.0305)

TRV 0.9248 0.0517 0.0502 -0.0078 -0.0002 7.3641 -0.0564

(0.0154) (0.0060) (0.0075) (0.0035) (0.0035) (0.6169) (0.0248)

UNH 0.9465 0.0178 -0.0073 -0.0275 -0.0209 13.3228 0.2249

(0.0098) (0.0071) (0.0091) (0.0032) (0.0036) (3.6346) (0.0761)

UTX 0.8583 0.0511 0.0591 -0.0072 -0.0071 8.4000 -0.0176

(0.0331) (0.0070) (0.0092) (0.0041) (0.0042) (0.8074) (0.0201)

VZ 0.9098 0.0350 0.0528 0.0000 -0.0085 8.9866 -0.0281

(0.0222) (0.0059) (0.0077) (0.0034) (0.0035) (0.8905) (0.0206)

WMT 0.9397 0.0355 0.0291 -0.0031 -0.0034 7.1862 -0.0342

(0.0222) (0.0063) (0.0081) (0.0031) (0.0032) (0.5837) (0.0227)

DIS 0.8600 0.0279 0.0593 -0.0066 -0.0017 7.2250 -0.0372

(0.0350) (0.0050) (0.0087) (0.0040) (0.0039) (0.5754) (0.0175)

Average 0.8793 0.0423 0.0489 -0.0088 -0.0032 8.0879 -0.0321

Continued on the next page.
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βN γN ρN γ∗N ρ∗N νN ωN

MMM 0.8804 0.0483 0.0383 0.0039 -0.0076 2.9933 -1.0124

(0.0339) (0.0076) (0.0073) (0.0046) (0.0050) (0.1300) (0.0228)

AXP 0.9295 0.0595 0.0444 -0.0066 -0.0102 3.2091 -0.9629

(0.0138) (0.0081) (0.0060) (0.0042) (0.0039) (0.1363) (0.0271)

AAPL 0.8619 0.0800 0.0798 -0.0005 -0.0141 2.3334 -1.2202

(0.0196) (0.0098) (0.0081) (0.0055) (0.0051) (0.0781) (0.0241)

BA 0.7390 0.0558 0.0706 -0.0001 -0.0039 2.5584 -1.0268

(0.0478) (0.0111) (0.0095) (0.0064) (0.0063) (0.0950) (0.0194)

CAT 0.9330 0.0449 0.0496 0.0055 -0.0104 2.4952 -1.0838

(0.0157) (0.0084) (0.0071) (0.0041) (0.0039) (0.0918) (0.0267)

CVX 0.9692 0.0139 0.0232 -0.0016 -0.0069 3.4551 -0.8353

(0.0080) (0.0043) (0.0038) (0.0024) (0.0024) (0.1676) (0.0244)

CSCO 0.9394 0.0547 0.0444 0.0003 -0.0138 2.7603 -1.1515

(0.0137) (0.0086) (0.0062) (0.0037) (0.0039) (0.1023) (0.0283)

KO 0.8793 0.0422 0.0404 -0.0074 -0.0141 3.1641 -0.9414

(0.0330) (0.0077) (0.0079) (0.0045) (0.0047) (0.1354) (0.0205)

DD 0.8112 0.0585 0.0546 -0.0072 0.0021 3.0657 -0.9734

(0.0406) (0.0098) (0.0083) (0.0055) (0.0055) (0.1278) (0.0199)

XOM 0.9375 0.0329 0.0330 -0.0023 0.0007 4.0204 -0.8168

(0.0158) (0.0065) (0.0051) (0.0034) (0.0034) (0.2057) (0.0228)

GE 0.9930 0.0345 0.0393 -0.0055 -0.0079 3.4604 -1.0347

(0.0009) (0.0046) (0.0032) (0.0023) (0.0022) (0.1365) (0.0408)

HD 0.9001 0.0420 0.0540 -0.0070 -0.0183 2.7342 -1.0060

(0.0231) (0.0080) (0.0080) (0.0044) (0.0045) (0.1052) (0.0225)

IBM 0.8994 0.0474 0.0490 -0.0028 -0.0150 2.3921 -1.1149

(0.0642) (0.0089) (0.0067) (0.0037) (0.0038) (0.0844) (0.0833)

INTC 0.8185 0.0799 0.0611 0.0005 -0.0028 2.2863 -1.1842

(0.0341) (0.0112) (0.0089) (0.0061) (0.0055) (0.0772) (0.0219)

JNJ 0.9383 0.0284 0.0334 -0.0031 -0.0172 3.3619 -0.8759

(0.0158) (0.0072) (0.0066) (0.0034) (0.0035) (0.1521) (0.0226)

JPM 0.9683 0.0387 0.0391 -0.0103 -0.0093 3.3407 -0.9096

(0.0063) (0.0059) (0.0048) (0.0029) (0.0028) (0.1506) (0.0350)

MCD 0.8857 0.0353 0.0441 -0.0046 -0.0117 2.9313 -0.9419

(0.0349) (0.0093) (0.0088) (0.0043) (0.0043) (0.1162) (0.0201)

MRK 0.9148 0.0484 0.0430 -0.0056 -0.0100 2.7916 -1.0097

(0.0205) (0.0094) (0.0081) (0.0042) (0.0042) (0.1113) (0.0240)

MSFT 0.8783 0.0725 0.0494 0.0040 -0.0022 2.4788 -1.1938

(0.0251) (0.0100) (0.0075) (0.0049) (0.0047) (0.0850) (0.0233)

NKE 0.8054 0.0584 0.0628 -0.0084 -0.0159 2.2388 -1.1941

(0.0842) (0.0122) (0.0128) (0.0046) (0.0062) (0.0766) (0.0240)

PFE 0.9505 0.0434 0.0375 -0.0001 0.0008 2.9088 -0.9905

(0.0113) (0.0068) (0.0053) (0.0036) (0.0034) (0.1175) (0.0285)

PG 0.7464 0.0492 0.0486 -0.0188 -0.0070 3.1622 -0.9233

(0.0823) (0.0066) (0.0060) (0.0037) (0.0032) (0.1351) (0.0259)

TRV 0.9478 0.0548 0.0408 -0.0060 -0.0065 2.7246 -0.9799

(0.0105) (0.0072) (0.0060) (0.0036) (0.0037) (0.1042) (0.0300)

UNH 0.8028 0.0429 0.0800 0.0013 -0.0132 3.4955 -0.5698

(0.0158) (0.0480) (0.0489) (0.0079) (0.0067) (0.1653) (0.0722)

UTX 0.9419 0.0323 0.0361 -0.0080 -0.0104 2.9737 -0.9300

(0.0131) (0.0058) (0.0058) (0.0033) (0.0035) (0.1238) (0.0246)

VZ 0.9333 0.0429 0.0364 -0.0104 -0.0027 3.1833 -0.8965

(0.0133) (0.0071) (0.0055) (0.0035) (0.0035) (0.1345) (0.0244)

WMT 0.9604 0.0249 0.0294 -0.0005 -0.0061 2.9159 -0.9766

(0.0127) (0.0054) (0.0055) (0.0028) (0.0029) (0.1159) (0.0254)

DIS 0.8282 0.0800 0.0708 0.0010 0.0010 2.8703 -1.0500

(0.0322) (0.0108) (0.0094) (0.0056) (0.0056) (0.1147) (0.0223)

Average 0.8926 0.0481 0.0476 -0.0036 -0.0083 2.9395 -0.9931

This table gives the estimates of the variance equations in the multivariate coupled component model,

and their asymptotic standard errors in parenthesis. The last row shows the average estimated values.

Table 7: Estimates of variance equations in the multivariate coupled component model(cont.)
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The conditional second order moments conditioning on different information sets are

var
[
rDt |Ft−1, rNt

]
=

vD
vD − 2

exp(2λDt + 2σD(t/T ))

var
[
rNt |Ft−1

]
=

vN
vN − 2

exp(2λNt + 2σN(t/T ))

var
[
rDt |Ft−1

]
= δ2

vN
vN − 2

exp(2λNt + 2σN(t/T )) +
vD

vD − 2
exp(2σD(t/T ))E

[
exp(2λDt )|Ft−1

]
cov

(
rDt , r

N
t |Ft−1

)
= −δ vN

vN − 2
exp(2λNt + 2σN(t/T ))

corr
(
rDt , r

N
t |Ft−1

)
=

−δ
√

vN
vN−2

exp(λNt + σN(t/T ))√
δ2 vN

vN−2
exp(2λNt + 2σN(t/T )) + vD

vD−2
exp(2σD(t/T ))E [exp(2λDt )|Ft−1]

var
(
rDt + rNt |Ft−1

)
=
vN(1− δ)2

vN − 2
exp(2λNt + 2σN(t/T )) +

vD
vD − 2

exp(2σD(t/T ))E
[
exp(2λDt )|Ft−1

]
For the unconditional second order moments, we first write the dynamic function of λjt as

λDt = βt−1D λD1 + ωD(1− βD)
∑t−1

k=1
βk−1D + γD

∑t−1

k=1
βk−1D mD

t−k + ρD
∑t−1

k=1
βk−1D mN

t−k+1

+ γ∗D
∑t−1

k=1
βk−1D (mD

t−k + 1)sign(eDt−k) + ρ∗D
∑t−1

k=1
βk−1D (mN

t−k+1 + 1)sign(eNt−k+1)

λNt = βt−1N λN1 + ωN(1− βN)
∑t−1

k=1
βk−1N + γN

∑t−1

k=1
mN
t−kβ

k−1
N + ρN

∑t−1

k=1
βk−1N mD

t−k

+ ρ∗N
∑t−1

k=1
βk−1N (mD

t−k + 1)sign(eDt−k) + γ∗N
∑t−1

k=1
βk−1N (mN

t−k + 1)sign(eNt−k)

When λjt starts from infinite past,

λDt = ωD + γD
∑∞

k=1
βk−1D mD

t−k + ρD
∑∞

k=1
βk−1D mN

t−k+1 (15)

+ γ∗D
∑∞

k=1
βk−1D (mD

t−k + 1)sign(eDt−k) + ρ∗D
∑∞

k=1
βk−1D (mN

t−k+1 + 1)sign(eNt−k+1)

λNt = ωN + γN
∑∞

k=1
mN
t−kβ

k−1
N + ρN

∑∞

k=1
βk−1N mD

t−k

+ ρ∗N
∑∞

k=1
βk−1N (mD

t−k + 1)sign(eDt−k) + γ∗N
∑∞

k=1
βk−1N (mN

t−k + 1)sign(eNt−k).

The unconditional second order moments var
(
uDt
)

and var
(
uNt
)

are

var
(
ujt
)

=
vj

vj − 2
E exp(2λjt)E exp

(
2σj(t/T )

)
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with with

E exp
(
2λNt

)
=

1

4
exp

(
2ωN −

2 (γN + ρN)

1− βN

)
[∏∞

k=0
1F1

(
1

2
,
vN + 1

2
, 2 (γN + γ∗N)

(
vN + 1

)
βkN

)
+
∏∞

k=0
1F1

(
1

2
,
vN + 1

2
, 2 (γN − γ∗N)

(
vN + 1

)
βkN

)]
[∏∞

k=0
1F1

(
1

2
,
vD + 1

2
, 2 (ρN + ρ∗N) (vD + 1)βkN

)
+
∏∞

k=0
1F1

(
1

2
,
vD + 1

2
, 2 (ρN − ρ∗N) (vD + 1)βkN

)]

E exp
(
2λDt

)
=

1

4
exp

(
2ωD −

2 (γD + ρD)

1− βD

)
[∏∞

k=0
1F1

(
1

2
,
vD + 1

2
, 2 (γD + γ∗D)

(
vD + 1

)
βkD

)
+
∏∞

k=0
1F1

(
1

2
,
vD + 1

2
, 2 (γD − γ∗D)

(
vD + 1

)
βkD

)]
[∏∞

k=0
1F1

(
1

2
,
vN + 1

2
, 2 (ρD + ρ∗D)

(
vN + 1

)
βkD

)
+
∏∞

k=0
1F1

(
1

2
,
vN + 1

2
, 2 (ρD − ρ∗D)

(
vN + 1

)
βkD

)]
.

8.2 Appendix 2: proof of asymptotics

8.2.1 Proof of Lemma 1

Denote Hj(s) = exp(σj(s)). We drop the subscribe j here and have

|ut| = H(t/T ) |et| = E |et|H(t/T ) +H(t/T ) (|et| − E |et|)
|ut|
E |et|

= H(t/T ) +
H(t/T )

E |et|
(|et| − E |et|)

=: H(t/T ) + ξt

where Eξt = 0. Suppose we know E |et| .This gives a non-parametric regression function, so we can

invoke Nadaraya-Waston estimator

H̃(s)
∗

=

∑T
t=1Kh(s− t/T ) |ut|

E|et|∑T
t=1Kh(s− t/T )

.

From Lemma 2, {et} is a β mixing process with exponential decay, and ξt thereby is also a β

mixing process with exponential decay. Invoking Theorem 3 in Vogt and Linton (2014), Theorem
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4.1 in Vogt et al. (2012) or Kristensen (2009) yields

sup
s∈[C1h,1−C1h]

∣∣∣H̃(s)
∗ −H0(s)

∣∣∣ = Op

(√
log T

Th
+ h2

)
.

Denote σ̃(s)
∗

= log(H̃(s)
∗
). Taylor expansion at H0(s) gives

σ̃(s)
∗

= σ(s) +
(
H̃(s)

∗ −H(s)
)

log′H(s) +
1

2

(
H̃(s)

∗ −H(s)
)2

log′′H(s)
∗∗
,

with H(s)
∗∗

between H̃(s)
∗

and H0(s). Therefore,

sup
s∈[C1h,1−C1h]

∣∣σ̃(s)
∗ − σ0(s)

∣∣ = Op

(
h2 +

√
log T

Th

)
.

For s ∈ [0, h] ∪ [1− h, 1], we use a boundary kernel to ensure the bias property holds through [0, 1].

Until now we have obtained the property for the un-rescaled estimator σ̃(s)
∗
. Next, we are going

to show the convergence rate of the rescaled estimator σ̃(s). Recall that

σ̃(s) = σ̃(s)− 1

T

T∑
t=1

σ̃(
t

T
),

and we can rewrite σ̃(s) as

σ̃(s) = σ̃(s)
∗ − 1

T

T∑
t=1

σ̃(
t

T
)
∗
,
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as E |et| in σ̃(s)
∗

vanished by the rescaling. Plugging this into sups∈[C1h,1−C1h] |σ̃(s)− σ0(s)| gives

sup
s∈[0,1]

|σ̃(s)− σ0(s)|

= sup
s∈[0,1]

∣∣∣∣∣σ̃(s)
∗ − 1

T

T∑
t=1

σ̃(
t

T
)
∗ − σ0(s)

∣∣∣∣∣
= sup

s∈[0,1]

∣∣∣∣∣σ̃(s)
∗ − 1

T

T∑
t=1

σ̃(
t

T
)
∗ − σ0(s)−

1

T

T∑
t=1

σ0(
t

T
) +

1

T

T∑
t=1

σ0(
t

T
)

∣∣∣∣∣
≤ sup

s∈[0,1]

∣∣σ̃(s)
∗ − σ0(s)

∣∣+

∣∣∣∣∣ 1

T

T∑
t=1

(
σ̃(
t

T
)
∗ − σ0(

t

T
)

)∣∣∣∣∣+

∣∣∣∣∣ 1

T

T∑
t=1

σ0(
t

T
)

∣∣∣∣∣
= Op

(
h2 +

√
log T

Th

)
+Op

(
h2 +

√
log T

Th

)
+

∣∣∣∣∣ 1

T

T∑
t=1

σ0(
t

T
)

∣∣∣∣∣
= Op

(
h2 +

√
log T

Th

)
+

∣∣∣∣∣ 1

T

T∑
t=1

σ0(
t

T
)

∣∣∣∣∣ .
We only have to work out the second term

∣∣∣ 1T ∑T
t=1 σ0(

t
T

)
∣∣∣ . According to Theorem 1.3 in Tasaki

(2009),

lim
T→∞

T 2

(∫ 1

0

σ0(s)ds−
1

2T

T∑
t=1

σ0(
t

T
)− 1

2T

T−1∑
t=0

σ0(
t

T
)

)
= − 1

12
(σ′0(1)− σ′0(0)) .

Since
∫ 1

0
σ0(s)ds = 0 and σ′0(1)− σ′0(0) is bounded by Assumption A4, it follows∣∣∣∣∣ 1

2T

T∑
t=1

σ0(
t

T
) +

1

2T

T−1∑
t=0

σ0(
t

T
)

∣∣∣∣∣ = O(T−2)

and ∣∣∣∣∣ 1

T

T∑
t=1

σ0(
t

T
)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

2T

T∑
t=1

σ0(
t

T
) +

1

2T

T−1∑
t=0

σ0(
t

T
)

∣∣∣∣∣+

∣∣∣∣∣ 1

2T

T∑
t=1

σ0(
t

T
)− 1

2T

T−1∑
t=0

σ0(
t

T
)

∣∣∣∣∣
= O(T−2) +

1

2T
|σ0(1)− σ0(0)|

= O(T−1).
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Therefore, the uniform convergence rate is

sup
s∈[0,1]

|σ̃(s)− σ0(s)| = Op

(
h2 +

√
log T

Th

)
+O(T−1)

= Op

(
h2 +

√
log T

Th

)
.

8.2.2 Proof of Theorem 1

Let φi = βD and θk be an element in function σD(·) (for simplicity, the subscript k is omitted in

what follows). Recall that hjt = λjt + σj(t/T ), and the log-likelihood function, without unnecessary

constant, can be rewritten as a function of hjt

ljt = −hjt −
vj + 1

2
ln

(
1 +

(ujt)
2

vj exp(2hjt)

)
+ ln Γ

(
vj + 1

2

)
− 1

2
ln vj − ln Γ

(vj
2

)
with the score functions

∂lt
∂θ

=
∂lDt
∂hDt

∂hDt
∂θ

+
∂lNt
∂hDt

∂hDt
∂θ

= mD
t

∂hDt
∂θ

+mN
t

∂hDt
∂θ

∂lt
∂βD

=
∂lDt
∂hDt

∂hDt
∂βD

= mD
t

∂hDt
∂βD

+mN
t

∂hDt
∂βD

.

Recall that mj
t = (vj + 1)bjt − 1,with bjt independent and identically beta distributed, we have

E
(
mN
t m

D
t

)
= 0, E

(
mj
t

)2
is time invariant, and E

(
mj
t

)2
<∞. Therefore, we can write

lim
T→∞

1

T

T∑
t=1

E
∂lt
∂θ

∂lt
∂βD

= lim
T→∞

1

T
E
(
mD
t

)2 T∑
t=1

∂hDt
∂θ

∂hDt
∂βD

+ lim
T→∞

1

T
E
(
mN
t

)2 T∑
t=1

E
∂hNt
∂θ

∂hNt
∂βD

.

To prove the theorem, it then suffices to show that

lim
T→∞

∥∥∥∥∥ 1

T

T∑
t=1

E

(
∂hDt
∂θ
∂hNt
∂θ

)(
∂hDt
∂βD

∂hNt
∂βD

)∥∥∥∥∥
∞

= 0.
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By expressing λjt as a function of ϕ and
{(
σj( t−i

T
), ujt−i

)
, i ≥ 0

}
, we can write

∂hjt
∂θ

as

(
∂hDt
∂θ
∂hNt
∂θ

)
=

T∑
k=0

 ∂hDt
∂σD( t−k

T
)

∂σD( t−k
T

)

∂θ

∂hNt
∂σD( t−k

T
)

∂σD( t−k
T

)

∂θ


=

T∑
k=0

 ∂hDt
∂σD( t−k

T
)

∂hNt
∂σD( t−k

T
)

ψDi

(
t− k
T

)
,

when the limit exists. We obtain,

1

T

T∑
t=1

E

(
∂hDt
∂θ
∂hNt
∂θ

)(
∂hDt
∂βD

∂hNt
∂βD

)

=
1

T

T∑
k=0

T∑
t=1

E

 ∂hDt
∂σD( t−k

T
)

∂hNt
∂σD( t−k

T
)

(∂hDt
∂βD

∂hNt
∂βD

)
ψDi

(
t− k
T

)

=
1

T

T∑
k=0

E

 ∂hDt
∂σD( t−k

T
)

∂hNt
∂σD( t−k

T
)

(∂hDt
∂βD

∂hNt
∂βD

) T∑
t=1

ψDi

(
t− k
T

)
.

The second equality follows since E

 ∂hDt
∂σj( t−k

T
)

∂hNt
∂σj( t−k

T
)

(∂hDt
∂βD

∂hNt
∂βD

)
is invariant across time t by Lemma 4.

Taylor expansion of
∑T

t=1 ψ
D
i

(
t−k
T

)
around

∑T
t=1 ψ

D
i

(
t−k
T

)
gives

1

T

∑
t

ψDi

(
t− k
T

)
=

1

T

∑
t

ψDi

(
t

T

)
− 1

T

k

T

∑
t

ψD
′

i

(
t

T

)
+O

(
k

T

)2

= O

(
1

T

)
+O

(
k

T

)
+O

(
k

T

)2

= O

(
k

T

)

Hence, it suffices to show
∑T

k=0

∥∥∥∥∥∥k
E

 ∂hDt
∂σD( t−k

T
)

∂hNt
∂σD( t−k

T
)

(∂hDt
∂βD

∂hNt
∂βD

)∥∥∥∥∥∥
∞

< ∞, which is obtained by

Lemma 3.

The proof with respect to vD is similar, but the score function is slightly different. The score
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functions of lDt and lNt with respect to vD are

∂lDt
∂vD

= −1

2
ln

(
1 +

(uDt )2

vD exp(2hDt )

)
+

∂

∂vD

(
ln Γ

(
vD + 1

2

)
− ln Γ

(vD
2

))
− 1

2vD

+
vD + 1

2
(

1 +
(uDt )2

vD exp(2hDt )

) (uDt )2

v2D exp(2hDt )

(
1 + 2vD

∂hDt
∂vD

)
+
∂hDt
∂vD

(16)

∂lNt
∂vD

=
vN + 1

2
(

1 +
(uNt )2

vN exp(2hNt )

) (uNt )2

v2N exp(2hNt )

(
1 + 2vN

∂hNt
∂vD

)
+
∂hNt
∂vD

.

Then we can have

lim
T→∞

1

T

T∑
t=1

E
∂lDt
∂θ

∂lDt
∂vD

= lim
T→∞

1

T

T∑
t=1

EmD
t

∂hDt
∂θ

[
∂hDt
∂vD

− 1

2
ln

(
1 +

(uDt )2

vD exp(2hDt )

)]

+ lim
T→∞

1

T

T∑
t=1

EmD
t

∂hDt
∂θ

∂ ln Γ
(
vD+1

2

)
− 1

2
ln vD − ln Γ

(
vD
2

)
∂vD

+ lim
T→∞

1

T

T∑
t=1

EmD
t

∂hDt
∂θ

 vD + 1

2
(

1 +
(uDt )2

vD exp(2hDt )

) (uDt )2

v2D exp(2hDt )

(
1 + 2vD

∂hDt
∂vD

)
= lim

T→∞

1

2
E

(
mD
t

(
− ln

(
1 +

(εDt )2

vD

)
+

vD + 1

2vD + (εDt )2
(εDt )2

vD

))
1

T

T∑
t=1

E
∂hDt
∂θ

+ lim
T→∞

E

(
mD
t

(
1 +

(vD + 1) (εDt )2

2vD + (εDt )2

))
1

T

T∑
t=1

E
∂hDt
∂vD

∂hDt
∂θ

.

The first term vanishes by lemma 5. Then we can use the same procedure above to obtain

limT→∞
1
T

∑T
t=1E

∂hDt
∂vD

∂hDt
∂θ

= 0, and to finish the proof for vD.

8.2.3 Proof of Theorem 2

Harvey (2013) gives the consistency and asymptotic normality of the MLE estimator in the beta-t-

egarch model. The key point is the first three derivatives of lt with respect to φ (except vj) are linear

combinations of bht (1 − bt)k, h, k = 0, 1, 2, . . ., with bt = (1+v)(et)2

v exp(2λt)+(et)2
. Since bt is beta distributed,

these first three derivatives are all bounded. It is then straightforward to show that the score function

satisfies a CLT, and its derivative converges to the information matrix by the ergodic theorem.
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In the information matrix, we only provide the result for E ∂lt
∂βD

∂lt
∂βN

, and without leverage effects

(γ∗D, γ
∗
N , ρ

∗
D, ρ

∗
N = 0) . The generalization to other elements or to the case with leverage effects is

straightforward. We have

E
∂lt
∂βD

∂lt
∂βN

= E
(
mD
t

)2
E
∂hDt
∂βD

∂hDt
∂βN

+ E
(
mN
t

)2
E
∂hNt
∂βD

∂hNt
∂βN

,

with (
∂

∂βD
hDt

∂
∂βD

hNt

)
=
∞∑
i=1

At

(
i−1∏
k=1

Bt−kAt−k

)(
λDt−i − ωD

0

)
(17)(

∂
∂βN

hDt
∂

∂βN
hNt

)
=
∞∑
j=1

At

(
j−1∏
k=1

Bt−kAt−k

)(
0

λNt−1 − ωN

)
. (18)

We can write λDt−i − ωD and λNt−j − ωN

λDt−i − ωD = γD
∑j−i

k=1
βk−1D mD

t−k−i + ρD
∑j−i

k=1
βk−1D mN

t−k+1−i + βj−iD

(
λDt−j − ωD

)
, when i < j

λNt−j − ωN = γN
∑i−j

k=1
mN
t−kβ

k−1
N + ρN

∑i−j

k=1
βk−1N mD

t−k + βi−jN

(
λNt−i − ωN

)
, when i > j.

When i < j, taking the expectation of the cross product of the ith term in (17) and the jth term in

(18) gives

vecEAt

i−1∏
k=1

Bt−kAt−k

(
λDt−i − ωD

0

)(
0 λNt−j − ωN

)(
At

j−1∏
k=1

Bt−kAt−k

)ᵀ

= E (At ⊗ At) gi−1vec

(
E

(
λDt−i − ωD

0

)(
0 λNt−j − ωN

)(
At

j−1∏
k=i

Bt−kAt−k

))
,

with g = (E (Bt−1 ⊗Bt−1) (At−1 ⊗ At−1)) , and

E

(
λDt−i − ωD

0

)(
0 λNt−j − ωN

)(
At

j−1∏
k=i

Bt−kAt−k

)

= E

(
γD
∑j−i

k=1 β
k−1
D mD

t−k−i + ρD
∑j−i

k=1 β
k−1
D mN

t−k+1−i + βj−iD

(
λDt−j − ωD

)
0

)

×
(

0 λNt−j − ωN
)(

At

j−1∏
k=i

Bt−kAt−k

)

= E

(
βj−iD

(
λDt−j − ωD

)
0

)(
0 λNt−j − ωN

)(
At

j−1∏
k=i

Bt−kAt−k

)
.
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The second equality follows since λNt−j is independent of
{(
At−s, Bt−s,m

D
t−s,m

N
t−s
)
, s ≤ j

}
, and

E(λNt−j − ωN) = 0. Therefore,

vecEAt

i−1∏
k=1

Bt−kAt−k

(
λDt−i − ωD

0

)(
0 λNt−j − ωN

)(
At

j−1∏
k=1

Bt−kAt−k

)ᵀ

= E (At ⊗ At) gi−1βj−iD ((EAtBt)⊗ I)j−i vec

([
0 E

(
λDt−j − ωD

) (
λNt−j − ωN

)
0 0

])
.

Similarly, when i > j,

vecEAt

i−1∏
k=1

Bt−kAt−k

(
λDt−i − ωD

0

)(
0 λNt−j − ωN

)(
At

j−1∏
k=1

Bt−kAt−k

)ᵀ

= E (At ⊗ At) gj−1βNi−j−1γNρD (I ⊗ (EBtAt))
i−j vec

[
0 EmN

t−im
N
t−i

0 0

]

+ E (At ⊗ At) gj−1βNi−j (I ⊗ (EBtAt))
i−j vec

[
0 E

(
λNt−i − ωN

) (
λDt−i − ωD

)
0 0

]
,

as for any t, λDt−i is independent of
{(
At−s, Bt−s,m

D
t−s
)
, s ≤ i

}
and

{
mN
t−s+1, s ≤ i

}
. Finally, we

obtain

vecE

(
∂

∂βD
hDt

∂
∂βD

hNt

)(
∂

∂βN
hDt

∂
∂βN

hNt

)ᵀ

=
∞∑
i=1

∞∑
j=i

E (At ⊗ At) gi−1βj−iD ((EAtBt)⊗ I)j−i vec

([
0 E

(
λDt−j − ωD

) (
λNt−j − ωN

)
0 0

])

+
∞∑
i=1

i−1∑
j=1

E (At ⊗ At) gj−1βNi−j−1γNρD (I ⊗ EAtBt)
i−j vec

([
0 EmN

t−im
N
t−i

0 0

])

+
∞∑
i=1

i−1∑
j=1

E (At ⊗ At) gj−1βNi−j (I ⊗ EAtBt)
i−j vec

([
0 E

(
λNt−i − ωN

) (
λDt−i − ωD

)
0 0

])

= E (At ⊗ At) (I − g)−1 (I − βD ((EAtBt)⊗ I))−1 vec

[
0 E

(
λDt − ωD

) (
λNt − ωN

)
0 0

]

+
γNρD
βN

E (At ⊗ At) (I − g)−1
(
(I − βN (I ⊗ EAtBt))

−1 − I
)

vec

[
0 EmN

t m
N
t

0 0

]

+ E (At ⊗ At) (I − g)−1
(
(I − βN (I ⊗ EAtBt))

−1 − I
)

vec

[
0 E

(
λNt − ωN

) (
λDt − ωD

)
0 0

]
,
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with EmN
t m

N
t = 2vN

vN+3
, and E

(
λDt − ωD

) (
λNt − ωN

)
= βDγNρD

1−βNβD
2vN
vN+3

+ γDρN
1−βNβD

2vD
vD+3

.

The consistency and asymptotic normality also hold for v̂ following Harvey (2013).

8.2.4 Proof of Theorem 3

Consider the local likelihood function given ηjt and vj, i.e., minimize the objective function

LjT (σj; s) =
1

T

T∑
t=1

Kh(s− t/T )

[
σj +

vj + 1

2
ln

(
1 +

(ηjt exp(−σj))2

vj

)]

with respect to ω, for j = D,N separately. The first order and second order derivatives are

∂LjT (σj; s)

∂σj
=

1

T

T∑
t=1

Kh(s− t/T )
[
−(vj + 1)bjt(σ

j) + 1
]

∂2LjT (σj; s)

∂σj2
= 2(vj + 1)

1

T

T∑
t=1

Kh(s− t/T )
[
bjt(σ

j)
(
1− bjt(σj)

)]
(19)

bjt(σ
j) =

(ηjt )
2

vj

exp(2σj) +
(ηjt )

2

vj

.

We have
√
Th
(
σ̂j(s)− σj0(s)

)
=

[
1

Th

∂2LjT (σj0; s)

∂σj2

]−1
1√
Th

∂LjT (σj0; s)

∂σj
+ op(1),

when the t distribution is correct (likelihood theory). This is asymptotically normal with mean zero

and variance

var

[
1√
Th

∂LjT (σj0; s)

∂σj

]
= ||K||22E

[(
1− (vj + 1)bjt(σ

j
0(s))

)2]
t/T=s

.

This follows because

E
[(

1− (vj + 1)bjt(σ
j
0(s))

)2]
= f(t/T )

for some smooth function f, and recall ηjt = exp(σj(t/T ))εjt . Denote ||K||22 =
∫
K(s)2ds, since∑T

t=1K
2( s−t/T

h
) 1
Th
→
∫
K(s)2ds, h2

∑T
t=1K

2
h(s− t/T ) 1

Th
= ||K||22. It follows that

h2

Th

T∑
t=1

K2
h(s− t/T )f(t/T )→ ||K||22f(s),
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Therefore,

√
Th
(
σ̂j(s)− σj0(s)

)
=⇒ N

0,
||K||22

E
[(

1− (vj + 1)bjt
)2]

t/T=s


Further, since bjt is distributed as beta(1

2
,
vj
2

), with

E
[(

1− (vj + 1)bjt
)2]

t/T=s
=

2vj
(vj + 3)

.

It thus follows that
√
Th
(
σ̂j(s− σj0(s)

)
=⇒ N

(
0,

√
(vj + 3)

2vj
||K||22

)
.

when the t distribution is correct (likelihood theory). This is asymptotically normal with mean zero

and variance

8.2.5 Other Lemmas

Lemma 2 If |βD| < 1 and |βN | < 1, ejt and λjt are β-mixing with exponential decay.

Proof. For simplicity, we consider the model without leverage effects

λDt = ωD(1− βD) + βDλ
D
t−1 + γDm

D
t−1 + ρDm

N
t

λNt = ωN(1− βN) + βNλ
N
t−1 + γNm

N
t−1 + ρNm

D
t−1.

Let us write it as
λDt
λNt
mD
t

mN
t

 =


βD 0 γD 0

0 βN ρN βN

0 0 0 0

0 0 0 0



λDt−1
λNt−1
mD
t−1

mN
t−1

+


ρDm

N
t + ωD(1− βD)

ωN(1− βN)

mD
t

mN
t

 .

Since mN
t and mD

t are i.i.d random variables and follow a beta distribution, we can easily find

an integer s ≥ 1 to satisfy E

∣∣∣∣∣∣∣∣∣
ρDm

N
t + ωD(1− βD)

ωN(1− βN)

mD
t

mN
t

∣∣∣∣∣∣∣∣∣

s

< ∞ (Condition A2 in Carrasco and Chen
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(2002)). The largest eigenvalue of the matrix

∣∣∣∣∣∣∣∣∣
βD 0 γD 0

0 βN ρN βN

0 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣∣ is smaller than 1 by assumption.

Define Xt =
(
λDt λNt mD

t mN
t

)ᵀ
. According to Proposition 2 in Carrasco and Chen (2002), the

process Xt is Markov geometrically ergodic and E |Xt|s < ∞. Moreover, if Xt is initialized from

the invariant distribution, it is then strictly stationary and β-mixing with exponential decay. The

process {ejt} is a generalized hidden Markov model and β-mixing with a decay rate at least as fast

as that of {λjt} by Proposition 4 in Carrasco and Chen (2002). The extension to the model with

leverage effects is straightforward, by defining Xt =
(
λDt λNt mD

t mN
t sign

(
eDt
)

sign
(
eNt
))ᵀ

.

Lemma 3 Under Assumption A1-A4, it holds that

∑
k

k

∥∥∥∥∥E
([

∂hDt
∂σD(t−k/T )

∂hNt
∂σD(t−k/T )

](
∂

∂βD
hDt

∂
∂βD

hNt

))∥∥∥∥∥
∞

<∞.

Proof. By (22) and (23), we have

E

 ∂hDt+1

∂σD(t+k/T )
∂hNt+1

∂σD(t+k/T )

( ∂
∂βD

hDt+1
∂

∂βD
hNt+1

)
= EAt+1

(
aDDt
aNDt

)(
λDt − ωD 0

)
ATt+1; k = 1

E

 ∂hDt+1

∂σD(t+k/T )
∂hNt+1

∂σD(t+k/T )

( ∂
∂βD

hDt+1
∂

∂βD
hNt+1

)
= E

(
1

0

)(
λDt − ωD 0

)
ATt+1 = 0; k = 0.
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When k > 1, it holds

vec

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)(
∂

∂βD
hDt

∂
∂βD

hNt

)
= vecAt

(
k−1∏
i=1

Bt−iAt−i

)
Λt−k

(
λDt−1 − ωD 0

)
ATt

+ vecAt

(
k−1∏
i=1

Bt−iAt−i

)
Λt−k

(
λDt−2 − ωD 0

)
ATt−1B

T
t−1A

T
t

+ ...

+ vecAt

(
k−1∏
i=1

Bt−iAt−i

)
Λt−k

(
λDt−k+1 − ωD 0

)
ATt−k+2B

T
t−k+2...A

T
t−1B

T
t−1A

T
t

=
k−1∑
j=1

(At ⊗ At)

(
j−1∏
i=1

(Bt−i ⊗Bt−i) (At−i ⊗ At−i)

)
vec

((
k−1∏
i=j

Bt−iAt−i

)
Λt−k

(
λDt−j − ωD 0

))
.

Since (Bt−1 ⊗Bt−1) (At−1 ⊗ At−1) and BtAt are i.i.d, and EBtAt = EBtEAt, we obtain

Evec

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)(
∂

∂βD
hDt

∂
∂βD

hNt

)
(20)

=
k−1∑
j=1

E (At ⊗ At)E (Bt−i ⊗Bt−i) (At−i ⊗ At−i)j−1Evec

((
k−1∏
i=j

Bt−iAt−i

)
Λt−k

(
λDt−j − ωD 0

))
.

By (15), we can express λDt−1 as a function of
{(
mD
t−i,m

N
t−i+1

)
, i > 1

}
. Note that Bt, At,and Λt are

independent of
{(
mD
s ,m

N
s

)
, s 6= t

}
. Therefore, we have

E

((
k−1∏
i=j

Bt−iAt−i

)
Λt−k

(
λDt−j − ωD

))

= γDE

(
k−1∏
i=j

Bt−iAt−i

)
Λt−k

∑k

i=j+1
βi−1D

(
mD
t−i +

(
mD
t−i + 1

)
sign(eDt−i)

)
+ ρDE

(
k−1∏
i=j

Bt−iAt−i

)
Λt−k

∑k

i=j+1
βi−1D

(
mN
t−i+1 + (mN

t−i+1 + 1)sign(eNt−i+1)
)
,
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with the first term∥∥∥∥∥E
(
k−1∏
i=j

Bt−iAt−i

)
Λt−k

∑k

i=j+1
βi−1D

(
mD
t−i +

(
mD
t−i + 1

)
sign(eDt−i)

)∥∥∥∥∥
∞

≤
(∑k−1

i=j+1
βi−1D

)∥∥E (Bt

(
mD
t + (mD

t + 1)sign(eDt )
)
At
)∥∥
∞ ‖EBtEAt‖k−j−1∞ ‖EΛt‖∞

+ βk−jD

∥∥EΛt−k
(
mD
t−k + (mD

t−k + 1)sign(eDt−k)
)∥∥
∞ ‖EBtEAt‖k−j∞

≤ βD
1− βD

∥∥E (Bt

(
mD
t + (mD

t + 1)sign(eDt )
)
At
)∥∥
∞ ‖EΛt‖∞ ‖EBtEAt‖k−j−1∞

+ βk−jD

∥∥EΛt−k
(
mD
t−k + (mD

t−k + 1)sign(eDt−k)
)∥∥
∞ ‖EBtEAt‖k−j∞

and the second term∥∥∥∥∥E
(
k−1∏
i=j

Bt−iAt−i

)
Λt−k

∑k

i=j+1
βi−1D

(
mN
t−i+1 + (mN

t−i+1 + 1)sign(eNt−i+1)
)∥∥∥∥∥
∞

≤ βD
1− βD

∥∥E (Bt

(
mN
t + (mN

t + 1)sign(eNt )
)
At
)∥∥
∞ ‖EΛt‖∞ ‖EBtEAt‖k−j−1∞ .

According to the definition of ‖‖∞ ,∥∥∥∥∥Evec

((
k−1∏
i=j

Bt−iAt−i

)
Λt−k

(
λDt−j − ωD 0

))∥∥∥∥∥
∞

≤

∥∥∥∥∥E
((

k−1∏
i=j

Bt−iAt−i

)
Λt−k

(
λDt−j − ωD 0

))∥∥∥∥∥
∞

Therefore, ∥∥∥∥∥Evec

((
k−1∏
i=j

Bt−iAt−i

)
Λt−k

(
λDt−j − ωD 0

))∥∥∥∥∥
∞

≤ cT ‖EBtEAt‖k−j−1 (21)

with

cT =
βD

1− βD
|γD|

∥∥E (Bt

(
mD
t + (mD

t + 1)sign(eDt )
)
At
)∥∥
∞ ‖EΛt‖∞

+ ‖EBtEAt‖∞
∥∥EΛt−k

(
mD
t−k + (mD

t−k + 1)sign(eDt−k)
)∥∥
∞

+
βD

1− βD
|ρD|

∥∥E (Bt

(
mN
t + (mN

t + 1)sign(eNt )
)
At
)∥∥
∞ ‖EΛt‖∞ .
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Substituting (21) into (20) gives∥∥∥∥∥Evec

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)(
∂

∂βD
hDt

∂
∂βD

hNt

)∥∥∥∥∥
∞

≤
k−1∑
j=1

‖E (At ⊗ At)‖∞ ‖E (Bt−i ⊗Bt−i) (At−i ⊗ At−i)‖j−1∞ cT ‖EBtEAt‖k−j−1∞

≤ cT ‖E (At ⊗ At)‖∞
k−1∑
j=1

‖E (Bt−i ⊗Bt−i) (At−i ⊗ At−i)‖j−1∞ ‖EBtEAt‖k−j−1∞

≤ cT ‖E (At ⊗ At)‖∞
‖EBtEAt‖k−2∞

1− ‖E(Bt−i⊗Bt−i)(At−i⊗At−i)‖∞
‖EBtEAt‖∞

,

provided that ‖EBtEAt‖∞ < 1 and ‖E (Bt−1At−1 ⊗Bt−1At−1)‖∞ < ‖EBtEAt‖∞ .It is then straight-

forward to show ∑
k

k

∥∥∥∥∥Evec

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)(
∂

∂βD
hDt

∂
∂βD

hNt

)∥∥∥∥∥
∞

<∞

and thereby ∑
k

k

∥∥∥∥∥E
(

∂hDt
∂σD(t−k/T )

∂hNt
∂σD(t−k/T )

)(
∂

∂βD
hDt

∂
∂βD

hNt

)∥∥∥∥∥
∞

<∞.

Lemma 4 The score functions of hjt with respect to βD, vD and σj(t/T ) are(
∂

∂βD
hDt

∂
∂βD

hNt

)
= At

(
λDt−1 − ωD

0

)
+ AtBt−1

(
∂

∂βD
hDt−1

∂
∂βD

hNt−1

)
(22)

=
∞∑
j=1

At

j−1∏
i=1

Bt−iAt−i

(
λDt−j − ωD

0

)
.

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)
= AtBt−1

 ∂hDt−1

∂σD(t−k/T )
∂hNt−1

∂σD(t−k/T )

 (23)

= At

(
k−1∏
i=1

Bt−iAt−i

)
Λt−k, k > 1(

∂hDt
∂σD(t/T )
∂hNt

∂σD(t/T )

)
=

(
1

0

)
; and

(
∂hDt

∂σD(t−1/T )
∂hNt

∂σD(t−1/T )

)
= At

(
aDDt−1
aNDt−1

)
,
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with Λt =

(
aDDt
aNDt

)
.If the top-Lyapunov exponent of the sequence of AtBt−1 is strictly negative,

(
∂

∂βD
hDt

∂
∂βD

hNt

)
,(

∂hDt
∂σD(t−k/T )

∂hNt
∂σD(t−k/T )

)
and

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)(
∂hDt
∂βD

∂hNt
∂βD

)
are strictly stationary.

Proof. Since hjt = λjt + σj(t/T ), we can write hjt in a recursive formula as

hDt = σD(t/T )− βDσD(
t− 1

T
) + ωD(1− βD) + βDh

D
t−1 + γDm

D
t−1

+ ρDm
N
t + γ∗D(mD

t−1 + 1)sign(uDt−1) + ρ∗D(mN
t + 1)sign(uNt ) (24)

hNt = σN(t/T )− βNσN(
t− 1

T
) + ωN(1− βN) + βNh

N
t−1 + γNm

N
t−1

+ ρNm
D
t−1 + ρ∗N(mD

t−1 + 1)sign(uDt−1) + γ∗N(mN
t−1 + 1)sign(uNt−1). (25)

and mD
t and mN

t can be expressed as

mD
t =

(1 + vD)(uDt )2 exp(−2hDt )

vD + (uDt )2 exp(−2hDt )
− 1, vD > 0

mN
t =

(1 + vN)(uNt )2 exp(−2hNt )

vN + (uNt )2 exp(−2hNt )
− 1, vN > 0.

Taking the first order derivative of equation (24) and (25) with respect to βD gives

∂hDt
∂βD

= −σD(
t− 1

T
)− ωD + hDt−1 + βD

∂

∂βD
hDt−1 +

∂

∂βD
γDm

D
t−1 +

∂

∂βD
ρDm

N
t

+
∂

∂βD
γ∗D(mD

t−1 + 1)sign(uDt−1) +
∂

∂βD
ρ∗D(mN

t + 1)sign(uNt ) (26)

∂hNt
∂βD

= βN
∂

∂βD
hNt−1 +

∂

∂βD
γNm

N
t−1 +

∂

∂βD
ρNm

D
t−1

+
∂

∂βD
ρ∗N(mD

t−1 + 1)sign(uDt−1) +
∂

∂βD
γ∗N(mN

t−1 + 1)sign(uNt−1) (27)

and the derivatives of mD
t−1 and mN

t−1 are

∂

∂βD
mD
t−1 =

∂mD
t−1

∂hDt−1

∂

∂βD
hDt−1 = −2 (vD + 1) bDt−1

(
1− bDt−1

) ∂

∂βD
hDt−1

∂

∂βD
mN
t−1 =

∂mN
t−1

∂hNt−1

∂

∂βD
hNt−1 = −2 (vN + 1) bNt−1

(
1− bNt−1

) ∂

∂βD
hNt−1.
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Substituting them back into (26) and (27) gives

∂hDt
∂βD

= λDt−1 − ωD +
(
βD + aDDt−1

) ∂

∂φ
hDt−1 + aDNt

∂

∂φ
hNt

∂hNt
∂βD

= 0 +
(
βN + aNNt−1

) ∂

∂φ
hNt−1 + aNDt−1

∂

∂φ
hDt−1

with the matrix form (
∂

∂βD
hDt

∂
∂βD

hNt

)
= At

(
λDt−1 − ωD

0

)
+ AtBt−1

(
∂

∂βD
hDt−1

∂
∂βD

hNt−1

)
.

Note that AtBt−1 and At

(
λDt−1 − ωD

0

)
are strictly stationary and ergodic, by Theorem 4.27 in

Douc et al. (2014), when the top-Lyapunov exponent of the sequence of AtBt−1 is strictly negative,(
∂

∂βD
hDt

∂
∂βD

hNt

)
converges and is strictly stationary.

Likewise, taking the first order derivative of hjt with respect to σD
(
t−k
T

)
yields

∂hDt
∂σD((t− k) /T )

=
(
βD + aDDt−1

) ∂hDt−1
∂σD((t− k) /T )

+ aDNt
∂hNt

∂σD((t− k) /T )
, k > 1

∂hDt
∂σD(t/T )

= 1,
∂hDt

∂σD((t− 1) /T )
= aDDt−1 + aDNt aNDt−1

∂hNt
∂σD((t− k) /T )

=
(
βN + aNNt−1

) ∂hNt−1
∂σD((t− k) /T )

+ aNDt−1
∂hDt−1

∂σD((t− k) /T )
, k > 1

∂hNt
∂σD(t/T )

= 0,
∂hNt

∂σD((t− 1) /T )
= aNDt−1 ,

and (23) follows. Similarly,

(
∂hDt

∂σD((t−k)/T )
∂hNt

∂σD((t−k)/T )

)
is strictly stationary across time t.

Finally, we can write
∂hDt

∂σD((t−k)/T )
∂hNt

∂σD((t−k)T )
∂hDt
∂βD
∂hNt
∂βD

 =

(
AtBt−1 0

0 AtBt−1

)
∂hDt−1

∂σD((t−k)/T )
∂hNt−1

∂σD((t−k)/T )
∂hDt−1

∂βD
∂hNt−1

∂βD

+

At
(
λDt−1 − ωD

0

)
0

 .
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Both


∂hDt

∂σD((t−k)/T )
∂hNt

∂σD((t−k)/T )
∂hDt
∂βD
∂hNt
∂βD

 and

(
∂hDt

∂σD((t−k)/T )
∂hNt

∂σD((t−k)/T )

)(
∂hDt
∂βD

∂hNt
∂βD

)
are strictly stationary, since the top-Lyapunov

exponent of the sequence

(
AtBt−1 0

0 AtBt−1

)
, same as that of AtBt−1, is strictly negative by as-

sumption.

Lemma 5 When Assumption A1-A4 holds, we have 1
T

∑T
t=1E

∂hDt
∂θ

= 0.

Proof. Similar to the proof of Theorem 1, we only need to show
∑T

t=1 k

∥∥∥∥∥E
(

∂hDt
∂σN ((t−k)/T )

∂hNt
∂σN ((t−k)T )

)∥∥∥∥∥
∞

<

∞ . Note that E

(
∂hDt

∂σN ((t−k)/T )
∂hNt

∂σN ((t−k)/T )

)
= EAtBt−1At−1Bt−2..At−k+2Bt−k+1At−k+1Λt−k = A (BA)k−1 Λ,

when k > 1. Obviously,
∑T

t=1 k

∥∥∥∥∥E
(

∂hDt
∂σN ((t−k)/T )

∂hNt
∂σN ((t−k)/T )

)∥∥∥∥∥
∞

<∞.

8.3 Appendix 3: Derivatives in the multivariate model

We now give the first and second order derivatives of the global log-likelihood function in the mul-

tivariate model, given λt and v. Without subscripts j, the log-likelihood function, ignoring some

unnecessary parts, is

lt = log |Θ| −
n∑
i=1

(
vi + 1

2
ln

(
1 +

(ιᵀi diag (exp(−λt)) Θut)
2

vi

))
.
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Then

dlt = d log |Θ| −
n∑
i=1

(vi + 1) (ιᵀi diag (exp(−λt)) Θut) exp(−λit)
vi + (ιᵀi diag (exp(−λt)) Θut)

2 trutι
ᵀ
i dΘ

= tr
(
Θ−1dΘ

)
− tr

(
n∑
i=1

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + exp(−2λit) (ιᵀiΘut)
2 utι

ᵀ
i dΘ

)

= tr

[(
Θ−1 −

n∑
i=1

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + exp(−2λit) (ιᵀiΘut)
2 utι

ᵀ
i

)
dΘ

]

=

[
vec

(
Θ−1 −

n∑
i=1

ιiu
ᵀ
t

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + exp(−2λit) (ιᵀiΘut)
2

)]ᵀ
dvecΘ

=

[
vec

(
Θ−1 −

n∑
i=1

ιiu
ᵀ
t

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + exp(−2λit) (ιᵀiΘut)
2

)]ᵀ
DndvechΘ, (28)

where Dn is the duplication matrix so that vecΘ = DnvechΘ. Therefore, the first order derivative of

the global log-likelihood function is

∂LT (Θ;λt, s)

∂vechΘ
= − 1

T
Dᵀ
nvec

n∑
i=1

(
ιi

T∑
t=1

(
Kh(s− t/T )uᵀt

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + exp(−2λit) (ιᵀiΘut)
2

))
+Dᵀ

nvec
(
Θ−1

)
. (29)

To compute the Hessian matrix, we evaluate the differential of the Jacobian matrix in (28)

dvecDᵀ
n

(
Θ−1 −

n∑
i=1

ιiu
ᵀ
t

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + (exp(−2λit)ι
ᵀ
iΘut)

2

)
Dn

= Dᵀ
ndvecΘ−1 −Dᵀ

nvec
n∑
i=1

(
d

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + exp(−2λit) (ιᵀiΘut)
2

)
ιiu

ᵀ
t

= Dᵀ
ndvecΘ−1 −Dᵀ

n

n∑
i=1

(
vi − exp(−2λit) (ιᵀiΘut)

2
)

(vi + 1) exp(−2λit)(
vi + exp(−2λit) (ιᵀiΘut)

2
)2 vec (ιiι

ᵀ
i dΘutu

ᵀ
t )

= −Dᵀ
n

(
Θ−1 ⊗Θ−1

)
DndvechΘ

−Dᵀ
n

n∑
i=1

(
vi − exp(−2λit) (ιᵀiΘut)

2
)

(vi + 1) exp(−2λit)(
vi + exp(−2λit) (ιᵀiΘut)

2
)2 (utu

ᵀ
t )⊗ (ιiι

ᵀ
i )DndvechΘ.
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The Hessian matrix of the global log-likelihood function is thus

∂2LT (Θ;λt, s)

∂vechΘ∂ (vechΘ)ᵀ

= −Dᵀ
n

 n∑
i=1

 T∑
t=1

Kh(s− t/T )
(
vi − exp(−2λit) (ιᵀiΘut)

2
)

(vi + 1)

T
(
vi + exp(−2λit) (ιᵀiΘut)

2
)2

exp(2λit)
utu

ᵀ
t

⊗ (ιiι
ᵀ
i )

Dn

−Dᵀ
n

(
Θ−1 ⊗Θ−1

)
Dn (30)
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