
                                                               
                                   

 

 

  

Cambridge Working Papers in Economics: 1683 

 

LONG TERM GOVERNMENT BONDS  
 
 

Elisa Faraglia Albert Marcet Rigas Oikonomou Andrew 
Scott 

 

       

01 June 2016 

We study the impact of debt maturity on optimal fiscal policy by focusing on the case where the government 
issues a bond of maturity N > 1: Isolating these effects helps provide insight into the construction of optimal 
government debt portfolios. We find long bonds may not complete the market even in the absence of 
uncertainty, generate an incentive to twist interest rates and induce additional tax volatility compared to 
short term bonds. By focusing just on the issuance of long bonds we show that as well as their well known 
advantage in providing fiscal insurance long bonds also have less attractive features that induce additional 
tax volatility. In the case of long bonds, governments induce tax volatility in order to twist interest rates at 
maturity. This interest rate twisting effect is what makes optimal debt management models so difficult to 
solve computationally as the state space rapidly becomes cumbersome due to the need to keep track of 
promises about future tax rates. We provide an alternative institutional setup (\independent powers\) that 
eliminates this problem offering a simpler solution method. Introducing maturity requires making more 
institutional assumptions than is the case for one period bonds. In particular assumptions have to be made 
whether the government does or doesn't buy back each period all outstanding debt irrespective of maturity 
and whether long bonds pay coupons. This is important as the literature to date makes assumptions that are 
diametrically opposite to what is observed in practice. We show that this is an important divide as if we 
model optimal policy under the empirically motivated assumption that governments do not buyback bonds 
until maturity then long bonds induce additional tax volatility due to the existence of N period roll over cycles. 
These can be reduced in magnitude by the government issuing long bonds that pay coupons although 
because coupons reduce the duration of a bond below its maturity this does compromise the ability of long 
bonds to provide fiscal insurance. 

Cambridge Working Papers in Economics 

 

Faculty of Economics 



Long Term Government Bonds∗

Faraglia, Elisa † Marcet, Albert ‡ Oikonomou, Rigas § Scott, Andrew ¶

June 2016

Abstract

We study the impact of debt maturity on optimal fiscal policy by focusing on the case where
the government issues a bond of maturity N > 1. Isolating these effects helps provide insight into
the construction of optimal government debt portfolios. We find long bonds may not complete
the market even in the absence of uncertainty, generate an incentive to twist interest rates and
induce additional tax volatility compared to short term bonds. By focusing just on the issuance
of long bonds we show that as well as their well known advantage in providing fiscal insurance
long bonds also have less attractive features that induce additional tax volatility. In the case of
long bonds, governments induce tax volatility in order to twist interest rates at maturity. This
interest rate twisting effect is what makes optimal debt management models so difficult to solve
computationally as the state space rapidly becomes cumbersome due to the need to keep track
of promises about future tax rates. We provide an alternative institutional setup (“independent
powers“) that eliminates this problem offering a simpler solution method.

Introducing maturity requires making more institutional assumptions than is the case for
one period bonds. In particular assumptions have to be made whether the government does or
doesn’t buy back each period all outstanding debt irrespective of maturity and whether long
bonds pay coupons. This is important as the literature to date makes assumptions that are
diametrically opposite to what is observed in practice. We show that this is an important divide
as if we model optimal policy under the empirically motivated assumption that governments do
not buyback bonds until maturity then long bonds induce additional tax volatility due to the
existence of N period roll over cycles. These can be reduced in magnitude by the government
issuing long bonds that pay coupons although because coupons reduce the duration of a bond
below its maturity this does compromise the ability of long bonds to provide fiscal insurance.
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1 Introduction

We study optimal fiscal policy under incomplete markets in the case where the government issues
only long term real risk free bonds. We do so to better understand the implications of maturity for
debt management and the role of long run bonds in constructing an optimal portfolio.

The properties of optimal fiscal policy when the government issues one period bonds are well
understood (see Barro (1979) and Aiyagari, Marcet, Sargent and Seppälä (2002). The advantages
of long bonds in the context of debt management have also been clearly articulated in a number of
papers (see Angeletos (2002), Barro (2003), Buera and Nicolini (2004) in a complete market setting,
or Nosbusch (2008), Lustig, Sleet and Yeltekin (2009) for the incomplete market case). By focusing
on the case of just long bonds we make a number of contributions to the literature.

Firstly the majority of the optimal fiscal policy literature examines the case where governments
issue a single bond and assumes that it has a maturity of one period. Given the average maturity
of US government debt since 1980 is five years and 64% of bonds issued1 have maturity greater
than one year this standard modelling assumption omits the impact of debt maturity on optimal tax
dynamics. Secondly by assuming the government issues only one period bonds the implicit assumption
is that the periodicity of economic shocks coincides with the maturity of government debt. By
modelling long bonds we can consider the impact on taxes of a difference between periodicity and
maturity.

In addition, by modelling long bonds individually we are able to isolate a number of distinct
results and issues which provide insight into the properties long bonds bring to a portfolio approach
to debt management. The existing literature has shown, in the context of a multi-bond setting,
that long bonds play an important role in supporting tax smoothing through their covariance with
expenditure shocks. However we show that, in addition to this fiscal insurance effect, long bonds
provide an additional channel which leads to higher tax volatility. We show, in Section 2, how the
government has an incentive to twist interest rates by varying tax rates at the bond’s maturity date in
order to minimise funding costs. In the standard case, where only one period debt is considered, this
effect is conflated with the usual impact effect on taxes and is not observed. By focusing on a long
bond we can disentangle the impact effect from this intertemporal interest rate twisting effect that
occurs at the maturity date.

A further contribution of this paper is to provide insight into how to solve debt management
models in a more computationally efficient manner. An efficient method to find a recursive solution
is to introduce as state variables N lags of the Lagrange multipliers λ attached to the government’s
intertemporal budget constraint2. For a bond of maturity N the state space for this problem is
2N + 1 which rapidly becomes computationally demanding for even modest maturity levels. From
our reading of the debt management literature it is unclear why these Lagrange multipliers are
needed or how they influence optimal policy and neither is there any explicit discussion of the role of
commitment (with the notable exception of Lucas and Stokey (1983) and Debortoli, Nunes and Yared
(2015)). We show, in Section 3, these two lacunae are related - the role of the co-state variables λ is
to enforce in the appropriate continuation problem the promises for future taxes that drive optimal
interest rate twisting. It is the interest rate twisting feature of long bonds that leads to such a lengthy
state space. This finding motivates our proposal of an alternative model formulation in which the
government sets taxes but takes interest rates as given. In this model of independent powers (IP)
the state space is dramatically reduced offering substantial computational savings in solving multi
bond models of debt management. In Section 4 we perform simulations to consider the quantative
magnitude of interest rate twisting, the performance of the IP model and so implicitly the impact of
commitment.

Our focus on long bonds also enables us to consider additional modelling issues that do not arise
in the case of one period bonds. When a government issues a long term bond it faces a choice each

1 This figure is for the period 1955-2011, taken from Faraglia, Marcet, Oikonomou and Scott (2014b).

2 See Marcet and Marimon (2014). The promised utility approach of Abreu, Pearce and Stachetti (1990) would
require N promised interest rates as state variables.
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period - should it buy back the bond before its redemption or wait until its maturity date? This
issue clearly does not arise with just one period bonds and the literature has to date ignored the
problem for long term bonds by assuming each period the government does buy back its debt. This
is a convenient assumption as it avoids having to deal with N additional state variables that come
from the non-redeemed long bonds previously issued. However this assumption is not trivial as in
practice debt management offices only rarely buy back their debt before redemption (see Faraglia,
Marcet, Oikonomou and Scott (2014b) for evidence).

One interesting issue would be to study the reasons behind why governments do not buy back
bonds early3but instead wait to redeem them only at their maturity date consider the impact of this
empirically motivated assumption in Section 5. This is in line with a large literature on optimal policy
under incomplete markets that just imposes a certain asset market structure. There we show that
the impact of assuming no buyback before maturity is significant. Because ours is an incomplete
market model, the timing of cash flows matter and so ruling out early buyback impacts optimal
policy. Specifically it induces additional rollover cycles in taxes with the same periodicity as the
maturity of debt. A large deficit in t drives bN,t upwards which increases future interest payments.
But higher future interests are only paid in periods t+N , t+2N , ..., thus taxes in these periods are
much higher than in the interim. This introduces additional tax volatility compared to a one-period
bond which would spread interest payments over all periods t, t + 1, t + 2, . . .. A simple example
shows that, even under certainty, a long bond does not serve to complete the market but introduces
tax volatility. We find this additional tax volatility is not significant when we calibrate shocks to
standard business cycle fluctuations but it is very high when we calibrate initial conditions as they
would have been at the end of WWII. In this sense long bonds generate greater tax volatility than
short bonds, introducing a trade off between fiscal insurance and roll over cycles.This trade off will
be a key issue in the determination of optimal portfolio of bonds (see Faraglia, Marcet, Oikonomou
and Scott (2014b).

The final issue our focus on long bonds enables is a consideration of coupon payments between
the issuance and redemption dates, as occurs for most long bonds issued by governments4. For a one
period bond (or long bonds with buyback each period) the issue of coupon payments is redundant
but for long term bonds they become a possibility. Given that observed government long bonds pay
coupons it is a useful exercise considering how this practice impacts the operation of fiscal policy.
Introducing coupons into the model also enables us to consider issues of duration as well as maturity.
In Section 6 some analytic examples and simulations show how long bonds without repurchase but
with coupons help reduce the tax volatility created by rollover cycles. However whilst coupons help
reduce N period volatility they shorten the duration of a bond and so reduce their effectiveness in
achieving fiscal insurance.

2 Interest Rate Twisting

In this section we outline our base model, in essence an extension of Aiyagari et al. (2002) to the
case of a riskless real bond of maturity N where N > 1. We start with the standard modelling
assumptions of zero-coupon bonds and that the government buys back each period all previously
issued bonds regardless of maturity.

3 Intuitively a number of justifications spring to mind and are often cited by Debt Management Offices - transaction
costs, rollover risks, market disturbances due to large scale government interventions, moral hazard and asymetric
information. See Faraglia, Marcet, Oikonomou and Scott (2014b) for a model based around private information.

4 Some recent papers model long bonds as a perpetuity paying geometrically decaying coupons. This is a convenient
assumption for models that do not address optimal bond portfolio issuance. But it seems an inconvenient assumption
for the study of debt management since actual government bonds have a very different payoff structure: actual bonds
make small fixed payments (coupons) in the interim periods and a much larger payment (principal) at maturity.
Hence, we do not discuss decaying bonds here. An earlier version of this paper showed that decaying coupon bonds
also display many of the features we discuss - results are available upon request.
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2.1 The Base Model

The economy produces a single non-storable good with technology

ct + gt ≤ A− xt, (1)

for all t , where xt, ct and gt represent leisure, private consumption and government expenditure
respectively. The exogenous stochastic process gt is the only source of uncertainty. The consumer
is endowed with A units of time that she allocates between leisure and labour. The representative
consumer has utility function:

E0

∞∑
t=0

βt {u (ct) + v (xt)} (2)

and faces a proportional tax rate τt on labor income. The representative firm maximizes profits and
both consumers and firms act competitively by taking prices and taxes as given. Consumers, firms
and government all have full information, i.e. they observe all shocks up to the current period, and
all variables dated t are chosen contingent on histories gt = (gt, . . . , g0). All agents, including the
government, have rational expectations.

Agents can only borrow and lend in the form of a zero-coupon, risk-free, N -period bond so that
the government’s budget constraint is:

gt + pN−1,tbN,t−1 = τt (A− xt) + pN,tbN,t (3)

where bN,t denotes the number of bonds the government issues at time t. Each bond pays one unit
of consumption good in N periods time with complete certainty. The price of an i-period bond at
time t is pi,t . As is standard in the literature to date, we assume that at the end of each period
the government buys back the existing stock of debt and then reissues new debt of maturity N ,
these repurchases are reflected in the left side of the budget constraint (3). In addition, government
bonds have to remain within upper and lower limits M and M so as to rule out Ponzi schemes:5

M ≤ βNbN,t ≤M. (4)

The term βN in this constraint reflects the value of the long bond at steady state so that the limits
M , M appropriately refer to the value of debt and are comparable across maturities.

We assume that after purchasing a long bond the household entertains only two possibilities: one
is to resell the government bond in the secondary market in the period immediately after having
purchased it, the other possibility is to hold the bond until maturity. Letting sN,t be the sales in the
secondary market the household’s problem is to choose stochastic processes {ct, xt, sN,t, bN,t}∞t=0 to
maximize (2) subject to the sequence of budget constraints:

ct + pN,tbN,t = (1− τt) (A− xt) + pN−1,tsN,t + bN,t−N − sN,t−N+1

with prices and taxes {pN,t, pN−1,t, τt} taken as given. The household also faces debt limits analo-
gous to (4). We assume for simplicity that these limits are less stringent than those faced by the
government, so that in equilibrium the household’s problem always has an interior solution.

The consumer’s first order conditions of optimality are given by

vx,t
uc,t

= 1− τt (5)

pN,t =
βNEt (uc,t+N)

uc,t
(6)

pN−1,t =
βN−1Et (uc,t+N−1)

uc,t
(7)

where uc,t ≡ u′(ct) and vx,t = v′ (xt).

5 Similar debt constraints are assumed in Aiyagari et al (2002).
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2.1.1 The Ramsey problem

We follow a standard definition of Ramsey equilibrium, assuming the government has full commit-
ment to implement the best sequence of (possibly time inconsistent) taxes and government debt
knowing equilibrium relationships between prices, taxes and allocations. Using (5), (6) and (7) to
substitute for taxes and consumption the Ramsey equilibrium can be found by solving

max
{ct,bN,t}∞

t=0

E0

∞∑
t=0

βt {u (ct) + v (xt)} (8)

s.t. βN−1Et (uc,t+N−1) bN,t−1 = St + βNEt (uc,t+N) bN,t (9)

and (4) with xt implicitly defined by (1). St = (uc,t − vx,t) (ct + gt)−uc,tgt is the “discounted” surplus
of the government.

We set up the Lagrangian

L = E0

∞∑
t=0

βt
{
u (ct) + v (xt) + λt

[
St + βNuc,t+NbN,t − βN−1uc,t+N−1bN,t−1

]
+ν1,t

(
M − βNbN,t

)
+ ν2,t

(
βNbN,t −M

)}
where λt is the Lagrange multiplier associated with the government budget constraint, i.e. the excess
burden of taxation, and ν1,t and ν2,t are the multipliers associated with the debt limits.

The first-order conditions for the planner’s problem with respect to ct and bN,t are

uc,t − vx,t + λt (ucc,tct + uc,t + vxx,t (ct + gt)− vx,t) + ucc,t (λt−N − λt−N+1) bN,t−N = 0 (10)

Et (uc,t+Nλt+1) = λtEt (uc,t+N) + ν2,t − ν1,t (11)

for all t = 0, 1, . . . , with λ−1 = . . . = λ−N = 0.
Assuming gt is a Markov process, Corollary 3.1 in Marcet and Marimon (2014) implies the solution

satisfies the recursive structure: bN,t
λt
ct

 = F (gt, λt−1, . . . , λt−N , bN,t−1, . . . , bN,t−N) (12)

λ−1 = . . . = λ−N = 0, given bN,−1 (13)

for a time-invariant policy function F . Therefore the state vector in this recursive formulation has
dimension 2N + 1.6

These FOCs help characterize some features of optimal fiscal policy with long bonds. Following
the discussion in Aiyagari et al. (2002) we see that, in the case where debt limits are non binding,
i.e. for t such that ν1,t = ν2,t = 0, (11) implies λt is a risk-adjusted martingale, with risk-adjustment
measure

uc,t+N

Et(uc,t+N)
, indicating that the presence of the state variable λ in the policy function imparts

persistence in the variables of the model.
The term

Dt = (λt−N − λt−N+1) bN,t−N (14)

in (10) is key for our analysis of long bonds and interest rate twisting as it captures the feature
that what happened in period t − N has a specific impact on today’s taxes. In particular, this
term captures the fact that governments when they issue debt at t − N make (time inconsistent)
commitments to influence future taxes in order to affect the interest rate payable on N period debt.

Before outlining some analytical insights consider the following intuition. Since in the first best
we have uc,t−vx,t = 0 and zero taxes, this suggests that the larger is Dt in absolute terms the further

6 This allows for a simpler recursive formulation than the promised utility approach, as the co-state variables λ do
not have to be restricted to belong to the set of feasible continuation variables so that the continuation problem is
well defined. In Section 3.1 we show this continuation problem explicitly.
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the model is pulled away from the first best. In periods when gt−N+1 is very high we have that the
cost of the budget constraint is high so λt−N+1 is high, and if the government is in debt Dt < 0 and
optimal policy is to lower taxes t. Of course this is not a tight argument, as λt also responds to the
shocks that have happened between t and t−N and λt also plays a role in (10), but this argument
is at the core of the interest rate twisting policy we identify below.

2.2 Analytic Results

2.2.1 A model under certainty

Assume for now that government spending is constant, gt = g. In this case long bonds complete
the market so that the standard result ensures that all equilibrium constraints are summarized in a
single implementability constraint, namely

∞∑
t=0

βt
St
uc,0

= bN,−1p
N−1
0 (15)

rewritten as
∞∑
t=0

βtSt = bN,−1β
N−1uc,N−1 .

Consider the case when the government is initially in debt such that bN,−1 > 0. It is clear that the
funding costs of initial debt bN−1 > 0 can be reduced by manipulating consumption so as to achieve
ct < c

N−1
for all t 6= N , as this lowers the total cost of initial debt on the right side of this

equation. As long as the elasticity of consumption with respect to wages is positive, which would be
the case for empirically reasonable calibrations, higher c

N−1
will be achieved by promising a tax cut

in period N − 1 relative to other periods. In other words, the planner sets

τt = τ for all t 6= N − 1 (16)

τ > τ
N−1

.

This promise achieves a reduction of uc,N−1 and so reduces the cost of outstanding debt by twisting
the long end of the yield curve downwards. This is the same interest rate manipulation channel
noted by Lucas and Stokey (1983) except here it is shifted N periods forward due to the maturity of
bonds. Note that even though there are no fluctuations in this economy, (16) shows that the optimal
policy implies that the government desires to introduce variability in taxes.

2.2.2 A model with uncertainty at t = 1

We now introduce uncertainty into our model, although in the interest of obtaining analytic results
only in the first period, i.e. g is given by7:{

gt = g for t = 0 and t ≥ 2
g1 ∼ Fg

for some non-degenerate distribution Fg .
This is a special case of the model in Section 2.1 so the FOCs derived there apply. Since there

is no more uncertainty for t > 1 we have Et (λt+1) = λt+1 for all t ≥ 1, so the martingale condition
(11) implies λt+1uc,t+N = λtuc,t+N and

λt = λ1 t > 1. (17)

Therefore, in the case of short bonds (N = 1) , (10) and feasibility imply ct and τt are constant
for t ≥ 2 reflecting the fact that even though markets are incomplete the government smooths taxes

7 The analytics of this economy are similar to those of Nosbusch (2008), except that this is an infinitely lived
economy so debt is not cancelled in period t = 2, but stays constant.
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after the shock is realized. However, clearly c1 and τ1 will both be a function of the realization of
g1 .

For the case of long bonds when N > 1 , letting Dt = (λt−N − λt−N+1) bN,t−N the FOC with
respect to consumption (10) is satisfied for

Dt = 0 for t ≥ 0 and t 6= N − 1, N (18)

DN−1 = −λ0bN,−1 , DN = (λ0 − λ1) bN,0 . (19)

Combining this with feasibility, (17) and the fact that g2 = g for all t ≥ 2 means that equilibrium
satisfies

ct = c∗ (g1) for all t ≥ 2 and t 6= N,N − 1 (20)

for a certain function c∗ i.e. consumption is the same in all periods t ≥ 2 except t = N,N − 1.
In this model, when the shock g1 is realised the government optimally spreads out the taxation

cost of this shock over current and future periods. Typically the government gets in debt in period
1 if g1 is high, so all future taxes for t ≥ 2 are higher and future consumption lower. This would also
happen with short bonds N = 1. What is new with long bonds is that optimal policy introduces an
additional source of tax volatility, since taxes vary in periods N − 1 and N even though by the time
the economy arrives at these periods no more shocks have occurred for a long time.

To make this argument precise consider the utility function

c1−γct

1− γc
−B (1− xt)1+γl

1 + γl
(21)

for γc, γl, B > 0 , and A = 1.

Result 1. Assume utility ( 21) and bN,−1 > 0. Then

τ1 = τt for all t ≥ 1, t 6= N − 1, N. (22)

Furthermore, for a high enough realization of g1 we have

τ1 > τN−1, τN . (23)

The inequalities are reversed if bN,−1 < 0 or if the realization of g1 is sufficiently low.

Proof.
Towards (22) note first that from (20) we have τt = τ2 for all t ≥ 2 and t 6= N − 1, N .
(10) and (17) give

uc,t
vx,t
− B + (γl + 1)λ1

(1 + (−γc + 1)λ1)B
+ (λt−N − λt−N+1)Ft = 0 for t ≥ 1

where Ft ≡ ucc,tbN,t−N

(1+(1−γc)λ1)B . Consider t = 1. For any long maturity N > 1 we have that λt−N =
λt−N+1 = 0 when t = 1 so that

uc,1
vx,1

=
B + (γl + 1)λ1

(1 + (−γc + 1)λ1)B
. (24)

Therefore we can write

uc,t
vx,t
− uc,1
vx,1

= (λt−N+1 − λt−N)Ft = 0 for t ≥ 1. (25)

For N > 1 and from (13) we have λt−N+1 = λt−N = 0 when t = 2. This and (25) gives τ1 = τ2 so
that we have (22).

Towards (23) we now show that Ft < 0 for t = N − 1, N . Since λ1, B, γl > 0 we have that
B + (γl + 1)λ1 > 0. Since uc,1, vx,1 > 0 clearly (24) implies that (1 + (−γc + 1)λ1)B > 0. Since we
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consider the case of initial government debt bN,−1 > 0 this leads to bN,0 > 0 and since ucc,1 < 0 we
have Ft < 0 for t = N − 1, N .

For t = N − 1 we have λt−N − λt−N+1 = −λ0 < 0 it follows

uc,N−1
vx,N−1

<
uc,1
vx,1

=⇒ τN−1 < τt for all t > 1, t 6= N − 1, N .

Also, it is clear from (24) that high g1 implies a high λ1 . Since the martingale condition implies
Et (uc,Nλ1) = λ0E0 (uc,N) for higher than average g1 we have λ1 > λ0 Therefore, for t = N and g1
high enough we have λt−N − λt−N+1 = λ0 − λ1 < 0 so that (25) implies

uc,N
vx,N

,
uc,N−1
vx,N−1

<
uc,1
vx,1

=⇒ τN , τN−1 < τ1 . �

Intuitively, in period t = N −1 there is a tax cut for the same reasons as in Section 2.2.1. New in
this section is the tax cut (for high g1) at t = N . The intuition for this is clear: when an adverse
shock to spending occurs at t = 1 the government uses debt as a buffer so bN,1 > bN,0. This use of
debt as a buffer is typical of incomplete market models as it allows tax smoothing by financing part
of the adverse shock with higher future taxes. But since future surpluses are higher than expected
as the higher interest payments have to be serviced, the government can lower the cost of existing
debt by announcing a tax cut in period N , since this will reduce the price pN−1,0 of period t = 1
outstanding bonds bN,0. The tax cut at t = N is a stochastic analog of the tax cut described in
Section 2.2.1.

The above result shows that in this model tax policy is not independent of the maturity of
government debt. In models of optimal policy the government usually desires to smooth taxes.
Taxes would be constant in the above model if the government had access to complete markets. But
we find that the government increases tax volatility in period N , long after the economy has
received any shock. It is clear from this discussion that what will matter for the policy function is
the term DN = (λ0 − λ1)bN,0 which captures the government’s commitment to alter future tax and
interest rates. Therefore it is the interaction between past λ’s and past b’s that determines the size
and the sign of today’s tax cut.

To summarize, under incomplete markets and in the presence of an adverse shock to spending in
period t the government has to take three actions: i) increase taxes permanently, ii) increase debt
permanently, iii) announce a tax cut around the time when the outstanding debt matures, namely
at t + N . Effects i) and ii) are well known in the literature of optimal taxation under incomplete
markets, effect iii) is clearly seen in this model with long bonds since the promise is made N periods
ahead. Obviously in the case of short maturity N = 1 the effect of D1 would be felt in deciding
optimally τ1 but would be confounded with the fact g1 is stochastic and influences demand for the
consumption good. However when N > 1 the two effects are disentangled and we see how debt
maturity introduces additional dynamics into taxes - i) reflects the usual increase in the excess
burden of taxation given the adverse fiscal shocks, ii) is the usual incomplete market result that
says the excess burden should follow a risk adjusted martingale leaving debt to fluctuate whereas iii)
captures a distinct interest rate twisting channel due to debt maturity whereby governments induce
additional tax volatility to reduce funding costs.

As mentioned earlier Lucas and Stokey (1983) also identify this interest rate twisting channel in
their discussion of maturity. However because ours is an incomplete market model we identify this
as a factor during all periods and not just the initial period, and because we have long bonds the
interest rate twisting influences consumption N periods ahead.

It is also worth distinguishing this channel, which focuses on real interest rates and how future
tax commitments influence current interest rates, from a number of related results in the literature
that rely on nominal debt and the role of inflation surprises. Chari et al (1991) show how inflation
surprises can bring about fluctuations in ex post real interest rates so as to achieve the complete
market outcome and Schmitt-Grohe and Uribe (2004) and Siu (2004) extend this case to consider how
this role is affected by introducing distortionary pricing. Lustig et al. (2009) develop this approach
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yet further and like us consider the impact of introducing long term bonds. In their model long
bonds have the attraction of postponing and concentrating the increase in nominal interest rates
that adverse fiscal shocks produce. The Lustig et al. model is one of incomplete markets, sticky
prices, nominal bonds as well as long maturities. Their main focus is on extending the result of
Chari et al (1991), about how inflation surprises influence nominal interest rates to achieve fiscal
hedging in a model with long bonds.

3 Commitment and Independent Powers

We have so far followed the majority of the literature and assumed a Ramsey policy equilibrium with
perfect commitment. Governments in Section 2 achieve lower current funding costs by promising
lower future taxes but clearly this is a commitment governments would prefer to renege on. It is
this promise to cut future tax rates in order to influence current funding costs that is at the heart
of why solving optimal tax models under incomplete markets and long bonds is so computationally
demanding. Optimal time consistent policy requires keeping track of all these promises over the last
N periods and as the maturity of the bond increases so too does the state space.

3.1 Time Inconsistency - a Continuation Problem

We stated in equation (12) that a recursive formulation of the full commitment solution involves
introducing N lags of bN and λ as co-state variables. We now discuss the role of these variables in
the solution and their link to interest rate twisting and promises about future taxes. We show how
these state variables appear in an equivalent continuation problem, justifying their role as co-state
variables.

In this subsection we denote the Ramsey equilibrium as
{
cRt , b

R
N,t

}∞
t=0

. Assume the economy

has been following the Ramsey equilibrium until some period t > 0 and that, unexpectedly, the
government can choose alternative policies in the future by maximizing

Et

∞∑
t=0

βt [u(ct+t) + v (xt+t)] (26)

subject to equilibrium constraints (9), feasibility for t = t, t + 1, . . . and given initial conditions(
gt, b

R
N,t−1

)
. In general, this solution would be different from the continuation of the Ramsey policy{

cRt , b
R
1,t

}∞
t=t

. This is the well known time inconsistency problem.
Time inconsistency arises for two reasons in this model: the government maximizing (26) will try

to i) alter the cost of initial debt and, ii) it will “forget” promises that were previously made about
future tax cuts (or tax increases) to promote interest rate twisting.

To discuss issue i) we consider the case N = 1. We claim that in this case, if the government in
period t maximizes

Et

∞∑
t=0

βt [u(ct+t) + v (xt+t)] + λRt−1uc,tb
R
1,t−1 (27)

subject to (9) for t = t, t+ 1 , ... the solution will be precisely
{
cRt , b

R
1,t

}∞
t=t

. In other words, solving

the continuation problem where the term λR
t−1uc,tb

R
1,t−1 is added to the utility function (26) delivers

the Ramsey allocation from t onwards. The reader can convince herself of this statement by checking
that the FOC derived from maximizing (27) coincide with the FOC from the Ramsey equilibrium
for all periods t ≥ t. For a proof and a formal discussion see Marcet and Marimon (2014), Section
3.2 and Proposition 1.

The reason for this result (for N = 1) is that if bg1,−1 > 0 the government would like to induce a
high initial consumption, ie. there is a “bias for high c0”.8 The reason is that this lowers interest

8 This can be seen in the optimality conditions (10) because, given that λ−1 = 0 , the term (λt−1 − λt) b1,t−1 is
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paid on initial debt, an effect that can also be found in Lucas and Stokey (1983) under complete
markets. If the government would maximize (26) at t there would be a “bias for high ct” , leading
the government to choose a ct > cR

t
in a time-inconsistent policy. The reason the term λR

t−1uc,tb
R
N,t−1

needs to be added to the objective function (27) in the continuation problem is that this term lowers
the “total” marginal utility of ct (since the marginal utility of ct in (27) is uc,t+λR

t−1ucc,tb
R
1,t−1 < uc,t).

This avoids the “bias for high ct”.
The second reason for time inconsistency is easier to see in the general case N > 1. We now claim

that the equivalent continuation problem that delivers the Ramsey solution at t is to maximize

Et

(
∞∑
t=0

βt [u(ct+t) + v (xt+t)] +
N−2∑
t=0

βtDRt+tuc,t+t + βN−1λRt−1uc,t+N−1b
R
N,t−1

)
(28)

The terms Dt+t have been defined in (14) and they modify the weight that consumptions ct receive
for t = t, . . . , t + N − 2. These consumptions need to be reweighted because, as we have explained
in section 2.1.1, optimal Ramsey policy involves promises about consumption N periods ahead in
order to twist current interest rates. Such promises were made in periods t = t, t− 1, . . . , t−N + 1
that involve consumptions for t = t, . . . , t + N − 1. The terms Dt+t that appear in (28) are needed
to guarantee that these promises are satisfied. The last term in (28) appears because the “bias for
high c0” becomes a “bias for high cN−1” in the presence of N−period bonds, as highlighted by the
example in section 2.2.1.

Notice that the terms added to agents’ utility in (28) involve N lags of λ , this is why these
multipliers are part of the state vector since they influence the objective function of the continuation
problem along with N lags of bN .

This discussion also clarifies why time inconsistency arises in models of incomplete markets: in
a model of long bonds we see how the effect from interest twisting is separate from the “initial
consumption bias” issue. These two effects are confounded in one period for short bonds, when
N = 1.

The above discussion also highlights why the Lagrangean approach of Marcet and Marimon (2014)
is easier to apply to models of optimal policy over the promised utility approach. The latter would
require to compute the feasible set of N promised utilities (or in this case promised marginal utilities
uc,t) so as to promise policies that in the future can actually be equilibria. Computation of the
feasible set of marginal utilities can be highly involved. The Lagrangean approach sidesteps the
computation of this set, the lagrange multipliers λ do not need a restriction of that type because the
objective functions (27) and (28) give a well defined maximization problem for any value of λ’s.

3.2 Independent Powers

The previous discussion shows that interest rate twisting arises because of the close connection
between current interest rates and future tax policy in our model. In this section we consider a
different institutional set up, one of independent powers, such that governments cannot commit to
influence future tax rates in order to affect current funding costs9 because taxes and interest rates are
determined by different agencies. More specifically we relax the assumption of perfect coordination
and assume the existence of a monetary policy authority/debt management agency that sets interest
rates. In this case the fiscal authority takes interest rates as given and implements optimal policy
given these interest rates, knowing the relation between taxes and allocations given by (5) and
feasibility. We examine an equilibrium where the two policy makers play a dynamic Markov Nash
equilibrium with respect to the strategy of the other policy power and they both play Stackelberg

definitely negative for t = 0 , while the same term can be of either sign for t > 0 since Et−1 [(λt−1 − λt) b1,t−1] is
approximately zero due to the martingale property of multipliers.

9 Debortoli, Nunes and Yared (2015) examine the case when governments cannot commit to future tax policies
and focus on Markov Perfect Competitive Equilibrium rather than our institutional separation of powers. They also
use the complete market solution method of Angeletos (2002) to solve for the optimal portfolio model rather than
numerical state space based approaches.
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leaders with respect to the consumer. More precisely, the fiscal authority chooses taxes and debt
given a sequence for interest rates, the monetary authority simply chooses interest rates that clear the
market and the fiscal authority maximizes the utility of agents. This assumption sidesteps the issues
of commitment, now there is no room for interest rate twisting on the part of the fiscal authority
since this agent takes interest rates as given.

In our simple real model the most straightforward assumption to make is that the monetary
authority/debt management office sets interest rates in equilibrium as:

pN,t =
βNEt (uc,t+N)

uc,t
(29)

pN−1,t =
βN−1Et (uc,t+N−1)

uc,t

given agent’s consumption.

Definition An equilibrium under independent powers (IP) is a sequence of bond prices {pN,t, pN−1,t}
each contingent on gt, such that if the fiscal authority solves

max
{ct,bN,t}∞

t=0

E0

∞∑
t=0

βt {u (ct) + v (xt)} (30)

s.t. pN−1,tbN,t−1 =

(
1− vx,t

uc,t

)
(ct + gt)− gt + pN,tbN,t ,

(1) and (4) taking bond prices as given then (29) holds.

We look for equilibria where bond prices are given by an interest rate policy functionR : R2 → R2

that satisfies
(pN,t, pN−1,t) = R(gt, bN,t−1), (31)

although the relation R is ignored by the authority solving (30).
An advantage of this model is that within equilibria of the form (31) there is no longer any reason

for longer lags to enter the state vector, as past Lagrange multipliers do not play a role. From the
point of view of the fiscal authority the problem now is a standard dynamic programming problem
with the vector of state variables (bN,t−1, gt) .

Multiplying both sides of the budget constraint by uc,t the Lagrangian of (30) becomes

L = E0

∞∑
t=0

βt {u (ct) + v (xt) + λt [St + uc,t (pN,tbN,t − pN−1,tbN,t−1)]

+ν1,t
(
M − βNbN,t

)
+ ν2,t

(
βNbN,t −M

)}
. (32)

The first order condition with respect to consumption combined with the budget constraint gives

uc,t − vx,t + λt (ucc,tct + uc,t + vxx,t (ct + gt)− vx,t)− ucc,tλtSt/uc,t = 0. (33)

In addition, the FOC with respect to bonds combined with (29) gives

λtEt (uc,t+N) = Et (λt+1uc,t+N) + ν2,t − ν1,t. (34)

An IP equilibrium can be computed using these two equations along with the government budget
constraint, debt limits with their slackness conditions, feasibility and the fact that the only state
variables are (bN,t−1, gt) .

Notice that (34) takes the same form as the FOC under full commitment (11). Therefore λt is
again a risk-adjusted martingale off corners. Obviously, the value of λ will be different than in the
Ramsey equilibrium since consumption follows a different process under IP.
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4 Stochastic Simulations

We now turn to a model where gt is stochastic in all periods. We assume a utility function:

c1−γ1t

1− γ1
+ η

x1−γ2t

1− γ2
.

We choose β = 0.98, γ1 = 1, γ2 = 2 and A = 100. We set η such that if the government’s deficit
equals zero in the non stochastic steady state agents work a fraction of leisure equal to 30% of their
time endowment. For the stochastic shock g we assume the following truncated AR(1) process:

gt =


g if (1− ρ) g∗ + ρgt−1 + εt > g
g if (1− ρ) g∗ + ρgt−1 + εt < g

(1− ρ) g∗ + ρgt−1 + εt otherwise
.

We assume εt ∼ N(0, 1.44)2, g∗ = 25, with an upper bound g equal to 35% and a lower bound
g = 15% of average GDP and ρ = 0.95. M is set equal to 80% of average GDP and M = −M .

4.1 Solving the Model with “Condensed PEA”

We solve the model applying the Parameterized Expectations Algorithm (hereafter PEA) of den Haan
and Marcet (1990) to approximate numerically the terms that appear in the equilibrium conditions
Et (uc,t+N), Et (uc,t+N−1) and Et (uc,t+Nλt+1) as functions of the state variables. As highlighted
before, in the model of Section 2 the dimension of the state vector is 2N + 1 which even if we only
consider bonds of 10 year maturities produces a state space of 21.

Faraglia, Marcet, Oikonomou and Scott (2014 a and b) suggest that in order to make the com-
putation of models with large N manageable it is important to reduce the number of states which
enter autonomously in the approximating polynomials. Using a refinement of the PEA called the
“Condensed PEA”, their approach is to partition the state space into variables that are of primary
importance for the solution and variables of secondary importance. The latter are introduced in the
approximating functions as successive linear combinations. We apply this methodology to solve the
commitment model and refer the reader to Faraglia et al. (2014 a and b) for an extensive discussion.
The independent powers model with its state vector of only two variables (gt, b

N
t−1) is solved applying

the standard PEA.
To approximate the optimal policy accurately we make sure that we visit all possible realizations

of the state vector with our simulations. This is more of an issue in our model since government
debt is very persistent and therefore it may be expected that different realizations of spending, or
different initial conditions of debt, may make the debt and tax series follow considerably different
paths. Our approximation to the parameterized expectation is based on 14000 samples each of 200
observations and with initial conditions for bonds uniformly distributed in the interval [M,M ]. When
we later report our simulation results we change our sample and describe the model’s performance
over different horizons for given initial conditions.

4.2 Interest Rate Twisting

Figures 1 and 2 display the impulse response functions of key variables to an unexpected positive
shock in gt. The vertical axis is in units of each of the variables and expresses deviations from the
value that would occur for the given initial condition if gt = g∗. Each subplot shows two lines: the
solid line represents the solution under full commitment of Section 2, the dashed line represents the
case of the “independent powers” model of Section 3.2. Both figures are for a maturity N = 10.

[Figures 1 and 2 About Here ]
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Figure 1 presents the result when the government has zero inherited debt, bN,−1 = 0. The differ-
ences between the two models should highlight the effect of the government keeping past promises
summarised by the variable Dt. In this case there is no effect even under full commitment since
DN = 0. As the Figure shows the rise in spending leads to an initially smaller but more persistent
increase in taxes in the case of full commitment than under independent powers. However the effect
is moderate leading to only small differences. The two models are similar.

Figure 2 shows the results assuming a positive initial debt equal to bN,−1 = 0.5 y∗/βN where y∗

is steady state output. There is a blip in taxes at the time of maturity of the outstanding bonds
N = 10, reflecting the promise to cut taxes with the aim to twist interest rates as discussed in
Section 2.2. Interest rate twisting, and the blip in period t + N − 1, occurs each period gt is high
if the government is in debt. The size of the promised tax cut at t + N − 1 depends on how big
are relative past shocks, (λt−1 − λt) , and debt, bN,t−1. Besides the stronger persistence, the tax rate
with commitment shows clearly the effect to reduce the tax rate and increase consumption N − 1
periods after the shock. These anticipated changes affect also the deficit and the market value of
government debt as illustrated in the bottom panels.

Obviously, the IP model does not show the blip in N − 1 periods although other than that the
responses are similar in the two models. The only notable difference is that in periods other than
N − 1 the response of taxes is smoother under full commitment, reflecting the fact that interest rate
twisting has the beneficial effect of smoothing taxes in periods other than N − 1.

4.3 The Impact of Maturity

To further illustrate the link between the maturity of debt and interest rate twisting, we plot in Figure
3, the response of taxes10 to the shock under four different maturity structures, N = {5, 10, 15, 20}
The top left panel shows the case of commitment and zero initial debt, the top right high debt
with commitment. The bottom panels illustrate the response of the tax schedule in the independent
powers model.

[Figure 3 About Here ]

Consistent with the previous results all tax responses in the top right panel show the interest
rate twisting effect. Given our previous discussion it is clear why the blip in taxes keeps moving to
the right as we increase the maturity. In the case of zero debt, as well as in the case of independent
powers, the maturity structure shows little effect on optimal taxes.

4.4 Moments

We now evaluate the model properties reporting the first and second moments of some key model
variables. In the first four rows of Table 1 and 2 we show the means of consumption, taxes, deficit and
market value of debt for N = 5, 10, 15, 20. In the last four rows we report the standard deviations
of these variables in our simulations. The means and standard deviations are evaluated over three
different horizons: 40 periods (columns 1-4), 200 periods (columns 5-8) and 4500 periods11 (columns
9-12). These three cases enable us to clearly identify the influence of initial conditions on policy
outcomes.

Table 1 reports the result for the model with commitment. With the exception of debt and deficit
all the moments differ only to the second or third decimal place across maturities. However, with the
government only issuing one type of bond in each case, smoothing taxes is mainly achieved by using
debt as a buffer stock so that the fluctuations of the model variables are driven mostly by the strong
low frequency fluctuations of debt leaving only a relatively minor impact of interest rate twisting on
total variance.

10 For the case bN,−1 = 0.5y∗/βN .
11 To get rid of the influence of initial conditions we dropped the first 500 observations from each sample in columns

8-12.
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The main exception are the levels of debt and deficit: the government in the long run holds assets,
but average asset holdings are lower for higher maturities. As is well known, in models of optimal
policy with incomplete markets, there is a force pushing the government to accumulate long bonds in
the long run. More precisely, extending the results in Aiyagari et al (2002) Section III one can easily
prove that in the case of linear utility (u(c) = c) the government would purchase a very large amount
of private long bonds in the long run, enough to abolish taxes. This accounts for the negative means
for debt shown in Table 1 and for the significant differences in the means of the market value of
debt which occur at longer horizons in the simulations.12 On the other hand, as argued in Angeletos
(2002), Buera and Nicolini (2004) and Nosbusch (2008), if the term premium is negatively correlated
with deficits (as it is in our model) it is optimal for the government to issue long bonds, as this
provides fiscal insurance. Hence the government is aware that accumulating a very large amount of
privately issued long bonds increases the volatility of taxes. This force accounts for the lower asset
accumulation with longer maturities shown in Table 1.

To identify the effect of commitment we report the same moments for the “independent powers”
models in Table 2. Comparing Table 1 and Table 2, it is evident that across all horizons and across
all maturity structures, the effect of the interest rate twisting channel is small.

[Tables 1 and 2 About Here.]

To conclude, under the standard assumptions on long bonds, namely that they pay zero coupons
and are purchased one period after issuance, the interest rate twisting policy channel is apparent but it
does not substantially influence unconditional first and second moments. The model of “independent
powers” may be a good model to have in the toolkit as it retains many of the interesting features
of the Ramsey models, it has nearly the same moments, it avoids the technicalities arising from the
very large state vector and it avoids discussion on the role to commitment at very long horizons.

5 No-Buyback and Rollover Cycles

Our modelling so far has been focused on extending the canonical model merely by extending the
maturity of government debt. This has shown how the introduction of long bonds introduces an
additional channel of tax volatility through interest rate twisting and in addition how to simplify the
computational solution of the model by assuming independent powers.

We now consider more substantial deviations from the canonical model and explore additional
dimensions that are introduced by considering long bonds. The first of these is whether or not the
government should each period buyback all existing bonds regardless of their maturity and then
reissue, as is standard in the literature, or leave bonds in the market until their maturity date,
as is standard in government practice. There have essentially been only two periods of buyback
for US debt management purposes over the last 100 years - the 1920s and 2000-1 (Garbade and
Rutherford (2007)). For most periods, as documented by Faraglia, Marcet, Oikonomou and Scott
(2014b) for US debt and Ellison and Scott (2016) for UK, governments do not buyback bonds before
maturity. Given the substantial discrepancy between the literature and observed practice13 it seems
worthwhile to determine whether this is consequential.

In Faraglia, Marcet, Oikonomou and Scott (2104b) we outline a possible model that provides
insight into why a government might choose not to buyback debt before its maturity date. In essence,
the government faces a moral hazard problem whereby early repurchase of debt signals government
knowledge of impending fiscal bad news/default and so sees early buyback as an opportunity to

12 As the table shows the average market value becomes considerably more negative in the long run.
13 Of course the recent case of Quantative Easing does involve the central bank buying outstanding bonds well

before their maturity date and in large quantity. Given that this seems motivated by issues of monetary policy and
not obviously debt management, given that ours is not a monetary model and so does not feature a consolidated
government budget constraint and given that these examples are ones of the central bank and not the debt manager
buying the outstanding debt we do not think that QE is evidence against the long run preference for governments to
buy back debt only at maturity.
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refinance at advantageous terms. As a result the market responds adversely to buyback and so the
government prefers to buyback debt only at maturity14.

Motivated by this discrepancy between the standard assumption usually invoked when modelling
bonds and observed practice in this section we extend our model by assuming the government
never repurchases previously issued bonds, so that N -period government bonds are redeemed by the
government N periods after issuance. As with interest rate twisting, this issue only becomes relevant
for tax dynamics when we consider bonds of maturity greater than one. For one period bonds there
is no possibility of buyback before maturity.

Under no-buyback the budget constraint of the government becomes

bN,t−N =

(
1− vx,t

uc,t

)
(ct + gt)− gt + pN,tbN,t. (35)

Now a bond issued pays a given amount in N periods, while in Section 2 it paid an uncertain amount
pN−1,t+1 next period. Under incomplete markets this is not without loss of generality as the timing
of cash flows matter and so assuming no early buy back will lead to different outcomes. Also, this
budget constraint shows how long bonds only connect every N−th period: a large deficit in t drives
bN,t upwards due to a standard buffer stock effect, the cost of higher future payments is only borne
in periods t + N, t + 2N, ..., thus taxes in these periods are higher than in the interim periods,
hence taxes vary across periods. With one-period bonds the burden of higher debt servicing would
be spread out across all future t’s and this would help to smooth taxes15.

Imposing the bond limits (4) in the current setup for a given value for M,M would result in a
larger total debt, since the government now holds on to N lags of previously issued bonds. Therefore
we modify the bond limits to

N∑
j=1

βjbit ∈
[
M, M

]
(36)

since M,M now give the same upper bound on the total value of debt as in the previous sections
when past bonds are valued at steady state prices pit = βi for maturity i.

Building a Lagrangian in an analogous way as we did in Section 2 gives that, off corners, the
first-order conditions for the planner’s problem with respect to ct and bN,t are16

uc,t − vx,t + λt (ucc,tct + uc,t + vxx,t (ct + gt)− vx,t) + ucc,t (λt−N − λt) bN,t−N = 0 (37)

Et (uc,t+Nλt+N) = λtEt (uc,t+N) . (38)

5.1 Impossibility of completing markets with a long bond

For a striking example of the impact of no early buyback, suppose as in the example of Section 2.2.1
that there is no uncertainty and gt = g for all t. To simplify even further, assume maturity N = 2
(although our results are valid for any N). Moreover assume the government inherits some non-zero
debt b2,−1, b2,−2 and that the (finite) bond limits M , M can be chosen arbitrarily large.

14 This insight helps explain why the buybacks of the 1920s and 2000-1 are very much the exception to the rule of
no buyback coming as they did in the midst of clearly very strong public finances.

15 In specifying the model in this way we are assuming that in each and every period the government chooses not
to buyback outstanding debt. This is obviously the polar opposite of the literature to date which assumes that each
and every period the government chooses to buyback all outstanding debt. An intermediate model would include
the option where the government decided each period how much of the debt to buyback and how much to leave
outstanding. We leave this exercise for future work as the results are clearly sensitive to the precise assumptions made
regarding why governments buyback. In this paper we follow the literature and just assume that the government
makes the same decision every period - we simply make the opposite assumption as to what that decision is and justify
it by reference to observed behaviour of debt management offices.

16 See Faraglia, Marcet, Oikonomou and Scott (2014b) Section 6, for details on the Lagrangean and FOC.
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Since we have no uncertainty and bond limits can be arbitrarily large, it may seem at first sight
that one bond completes the markets, so that all equilibrium constraints are summarized in a single
implementability constraint setting

∞∑
t=0

βt
St
uc,0

= b2,−1β
uc,1
uc,0

+ b2,−2. (39)

But it turns out that this constraint is not sufficient for an equilibrium: a long bond does not complete
the markets, even under certainty.

To see this consider the optimal allocation when (39) is the only implementability constraint. It
is clear that optimal taxes would be constant for t ≥ 2 so that

St = S, uc,t = uc t = 2, 3, . . . (40)

The analog of equation (39) at period t gives that the bonds that implement this allocation satisfy

b2,t =
S/uc

(1− β)β
− 1

β
b2,t−1 t = 1, 2, . . . (41)

Since 1
β
> 1 this is an explosive difference equation in b2,t. Here b2,t would alternate in sign and go

to infinity in absolute value, thereby violating the bond limits (36) for any finite M ,M .17

This shows that (39) cannot be the only implementability constraint, because there are no bond
allocations that implement the optimal consumption allocation under this constraint.

What is going on? The problem is that the standard present value condition (39) is derived under
the assumption that the market value of debt b2,t−1β + b2,t−2 remains bounded and, indeed, it does
in this example. But bounded market value of debt goes along with bond limits that explode in
absolute value, and this is ruled out by the bond limits (36). It is reasonable to impose bond limits
and not only limits to total value: if b2,t−1 and b2,t−2 are eventually huge in absolute value and of
opposite signs (as determined by (41)), the government would hold very large amounts of private
debt and it would risk very high losses from a private default.

To summarize, with bond limits (39) is not a sufficient implementability condition. In fact, by
forward substitution in (35) one can see that under certainty a set of sufficient implementability
conditions is given by the following two conditions

b2,−2 =
∞∑
t=0

β2t S2t

uc,0
(42)

b2,−1 =
∞∑
t=0

β2tS2t+1

uc,1
. (43)

These two conditions imply (39). But the converse is not true, many allocations satisfy (39) but
violate (42)-(43), including the optimal solution with (39). That is the optimal policy under (39)
implies that bond issuance goes to infinity and the bond limits are violated.

Intuitively: under no-buyback and N = 2 there is no way to transfer income between odd and
even periods. High income in, say t = 1, can be transferred to, say t = 7, but not to t = 2. Therefore,
for most initial conditions b2,−2, b2,−1 even and odd periods will have a different primary surplus so
that (40) can not hold. This proves the following:

Optimal policy in the example of this section is

τt = τ o for all t odd (44)

τt = τ e for all t even

17 Note that the values of initial conditions b2,−1, b2,−2 are independent on the constant S/uc

1−β for a given initial

value of debt, so that no end condition holds to guarantee that the difference equation (41) is generically stable. There
is one configuration of b2,−1, b2,−2 that does imply stability for a given wealth level b2,−1β

uc,1

uc,0
+ b2,−2, but this would

only happen by coincidence, almost all combinations of b2,−1, b2,−2 that give rise to the same wealth imply |b2,t| → ∞.
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where τ o 6= τ e generically.

Obviously, this implies that for the optimal policy there is an N−period cycle in bonds in this
example, hence

b2,t = b2,t−2 for all t ≥ 3. (45)

In this setup, long bonds impart tax variability, the opposite of fiscal insurance. Tax smoothing
takes place within odd periods and within even periods but not across all periods. Only when
b2,−2 = b2,−1 can we implement the complete markets allocation in this example.

5.2 Some analytic Results

Maintaining certainty and for arbitrary N note that from the standard first order conditions it holds
that18

λt = λt+N for all t, (46)

entailing that the multiplier λt follows an N cycle, since λ’s repeat every N periods but generally
λt 6= λt+1 6= . . . 6= λt+N−1. Taxes and consumption inherit this N cycle property. Furthermore,
interest rate twisting now causes taxes in the first N periods to respond to a shock differently
depending on current debt. This is because now the government in period t holds bonds issued at
t− 1, . . . , t−N and aims at twisting the interest rates of all these bonds to lower funding costs. We
state this with the following result:

Result 2. Assume no-buyback, an arbitrary non-random {gt} , and the utility function in (21).
Ramsey equilibrium is that there are cycles of order N in taxes for t ≥ N . More precisely

τt = τt+iN t = N, . . . , 2N − 1 for all i = 1, 2, . . . (47)

Assume further bN,−i > 0 for i = 1, .. , N then

τi+N > τi i = 0, . . . , N − 1. (48)

Proof.
We give details for N = 2, it is trivial to extend the proof to arbitrary N.
Equation (46) implies λt = λt−2 for all t ≥ 2. Plugging this into the first order condition of the

problem we have

uc,t − vx,t + λ0 (ucc,tct + uc,t + vxx,t (ct + g)− vx,t) = 0 for all t ≥ 2, t even (49)

uc,t − vx,t + λ1 (ucc,tct + uc,t + vxx,t (ct + g)− vx,t) = 0 for all t ≥ 3, t odd.

A standard derivation gives that for utility function (21) we have

τt = τ2 for all t > 2, t even (50)

τt = τ3 for all t > 3, t odd.

This proves (47) for N = 2.
Finally we show (48). For periods t = 0, 1 we have

uc,0 − vx,0 + λ0 (ucc,0c0 + uc,0 + vxx,0 (c0 + g)− vx,0)− ucc,0 λ0 b2,−2 = 0 (51)

uc,1 − vx,1 + λ1 (ucc,1c1 + uc,1 + vxx,1 (c1 + g)− vx,1)− ucc,1 λ1 b2,−1 = 0

The only difference between equations (51) and (49) is the presence of two extra terms that are
function of the initial condition of debt: ucc,0 λ0 b2,−2 and ucc,1 λ1 b2,−1 . Since we have assumed
that b2,−2, b2,−1 > 0 these terms are clearly negative, implying that

τ2 > τ0

τ3 > τ1 . �

18 This follows from (38) and an argument parallel to the one leading to equation (17).
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This extends the result (44) to the case when g is time-varying but restricting the utility function
to (21). As discussed in Section 5.1, a long bond under no-buyback and bond limits does not complete
the markets, all dates t+ iN are now isolated for different t = 0, . . . , N −1. Therefore the N−period
cycle arises because of the budget constraint, not because of the way we model policy or because of
interest-rate twisting. To show more clearly that (47) depends on the budget constraint and not on
commitment, in an appendix we consider independent powers under no-buyback and find N -period
cycles emerge in that model as well. Notice that (45) does not generalize to the case of arbitrary
{gt} .

The inequality (48) shows that the government commits to twisting interest rates for all first
N periods. This is in contrast with (23) in Result 1 with buyback, where interest rates were only
twisted around the N−th period. Under no-buyback the government holds bonds issued in the last
N − 1 periods so it commits to lowering taxes for the next N − 1 periods in order to cut the cost of
all bonds outstanding.

The following is a special case of Result 2 when {gt} follows the certainty analog of the AR(1)
process we use later in our simulations. This result gives intuition for the evolution of taxes we find
in Figure 4 below.

Result 3. Consider the assumptions of Result 2 except that, to isolate from interest rate twisting,
we assume bN,−i = 0 for i = 1, . . . , N − 1.

Assume in addition, that gt = (1− ρ) g∗ + ρgt−1 for g0 > g∗ > 0 and ρ ∈ (0, 1).
Then

τt > τt+1 t = 0, . . . , N − 1. (52)

Proof.
As argued in Section 5.1 the budget constraints only link the periods of cycle N, so that the set

of sufficient implementability conditions can be written as

0 =
∞∑
i=0

βNi
uc,t+Ni
uc,t

[gt+Ni − τt+Ni (A− xt+Ni)] for t = 0, . . . , N − 1. (53)

For the g process assumed here gt is decreasing geometrically. Therefore it is clear that the
discounted sum of expenditures decreases as t grows from 0 to N − 1 , formally

∞∑
i=0

βNi
uc,t+Ni
uc,t

gt+Ni >
∞∑
i=0

βNi
uc,t+1+Ni

uc,t+1

gt+1+Ni t = 0, . . . , N − 1.

Therefore, if (53) must hold the discounted sum of tax revenues also has to go down as t grows
from 0 to N −1. Since τ has to be in the increasing part of the Laffer curve in order to be an optimal
tax, it means that taxes go down as t grows from 0 to N − 1.�

This says that for the deterministic analog of the AR(1) process used in the simulations, taxes will
go down within each N -period cycle. Since (47) still applies, taxes initially decrease for N periods,
there is a jump at t = N to set τN = τ0, from then on taxes decrease again until t = 2N − 1, there
is a jump at t = 2N to set τ2N = τ0 and so on. Therefore, this is very similar to the dashed line we
find in Figure 4 below.

5.3 Interest Rate Twisting under no-buyback

We now argue that, as in Section 3, interest rate twisting also takes place under no-buyback in all
periods in response to shocks and that the role of the λ’s is to enforce promises involved in the
commitment to change future taxes. But this twisting takes a very different form. Now the presence
of an adverse shock causes all taxes during the next N -period cycle to be slightly different than in
previous cycles, causing an analog response as in (48) but for all periods. This is because under
no-buyback the government owes bonds of maturities 1, . . . , N − 1, since long bonds issued N − 1
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periods ago have not yet been redeemed. Therefore the government promises cuts in taxes in order
to affect consumption during this first cycle since each of them individually influences the value of
currently held debt.

Looking at the FOC of the no-buyback problem (37) and (38), there are only two differences with
respect to the buyback case in (10) and (11), now we have:

1. λt+N in (38) in place of λt+1 in (11) and

2. λt in (37) in place of λt−N+1 in (11).

The first difference implies that the martingale property of λ in Section 2 (see our discussion
after (13) ) now only holds every N−th period. This generates the N−period cycles in taxes that we
have already discussed. The second difference produces a more subtle effect. Notice that the term
that induces interest rate twisting is now (λt−N − λt) bN,t−N instead of Dt as defined in (14). The
difference (λt−N − λt) depends on all the shocks that have happened between t − N and t, while
in Section 2 we had (λt−N − λt−N+1) so that only the shock occurring at t − N + 1 mattered. Due
to (38) we should have λt−N ' λt if all shocks are close to the mean between t − N and t, but if
negative (positive) shocks to g happen between t − N and t the realized values will be λt−N < λt
(>) and the interest-rate twisting term will induce a lower (higher) consumption at t. This implies
that a shock in period t induces interest rate twisting for all taxes in periods t, . . . , t+N − 1. In this
sense the effect of a shock to gt on interest rates twisting is spread out over periods t+ 1, . . . , t+N .
This reflects a stochastic interpretation of the analytic result (48) that occurred in Result 2.

5.4 Simulations

5.4.1 Business Cycle Fluctuations

Consider again our simulations of Section 4 but now amend the model for the case of no buy back. The
calibration is the same as in the previous section, including initial value of debt and the total value for
bond limits M, M . We start with the case when initial conditions are symmetric, bN,−j = bN,−i for
all i, j = 1, . . . , N. In section 5.4.2 we consider an alternative where initial conditions are asymmetric.

Figure 4 shows how taxes respond to an adverse government expenditure shock when the govern-
ment has initial debt equal to half of GDP. This Figure compares the case of buy back at the end
of each period (as in Section 2) and no-buyback zero coupons as in this Section. We see that the
behavior described by Results 2 and 3 arises: there are N−period cycles and taxes go down within
each cycle. Under buy back we saw clearly the interest rate twisting effect but under no-buyback
things are significantly different. The interest rate twisting effect is spread out across each of the
periods and it can be barely seen, however the N−period cycles due to cash flow requirements when
debt is rolled over are obvious.

[Tables 3 and 4 About Here]

Table 3 shows second moments of several variables found with repeated simulations. Comparing
with Table 1 shows that under no buy back the deficit and market value of debt are larger on average
and that taxes, deficit and consumption become more volatile for most maturities and most horizons
although the increase in volatility due to no-buyback is quantitatively minor.

The reason for the minor change is the following: from our discussion around the end of Section
5.1 it is clear that the volatility across different N−period cycles is due to differences in the initial
conditions bN,−i across i = 1, . . . , N. For the simulations summarized in Table 3, given our calibration,
surprises in g in any given period are relatively small. Furthermore, since debt is very persistent
under incomplete markets (as emphasized, for example, in Aiyagari et al. (2002) and Marcet and
Scott (2009)), there are no large differences in state variables bN,t−i across i = 1, . . . , N. Therefore
we expect that the different taxes across N−period cycles are small.

The next section describes a relevant situation where tax volatility does occur under no-buyback
due to asymmetric initial conditions.
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5.4.2 Tax volatility after a war

Consider an economy that has experienced large shocks to its deficit in the last few years and
the impact this would have, if only long bonds under no-buyback can be issued. As a reference,
consider the huge US deficits between 1942-45 of roughly 25%19, such that the initial period t = 0
is represented by year 1946, assume zero coupons and ten year bonds (N = 10). Under incomplete
markets high deficits translate into high bond issuance, this would justify calibrating initial conditions
as bN,−j = 25%GDP for j = 1, . . . , 4. Consider, for simplicity, a situation where the government had
zero debt before 1942 so that bN,−j = 0 for j = 5, . . . , 10. The upper bond limit corresponds to a
maximum value of debt/GDP ratio of 100% so that M = 100%GDP. We assume the government
can not buy private bonds, i.e. M = 0. All other parameters remain as in the previous calibration.
We compare this with a buyback model calibrated in an analogous way.20

Table 5 shows tax volatility after exiting the war under buyback and no-buyback. As we explained,
buyback is closer to a one-period bond in terms of maturity and, therefore, it allows for tax smoothing
after war. But as suggested by the results in Section 5.1 the high levels of bond issuance for j =
1, . . . , 4 reverberate into very high interest rate payments in ten-year cycles and, therefore, high
taxes every 10 years. Tax volatility is four times higher under no-buyback in the first 20 years due
to this cycle. Tax volatility goes down as time goes by, since bonds revert to a situation where state
variables are symmetric in the long run.

[Table 5 About Here]

These results are robust to many changes. For example, if we loosen the lower bound of debt
to M = −M the standard deviation of taxes is still about four times larger: 0.024 for buyback and
0.095 for no-buyback at 20-year horizon. Even if we double the bounds M for the no-buyback case,
therefore giving a much better chance for tax smoothing under no-buyback, standard deviation of
taxes is still very large: 0.061, 0.052, 0.048 at the horizons 20, 40, 60.

6 Coupon Bearing Bonds

A final issue we consider in modelling long bonds is the effect of introducing coupon payments. In
practice long bonds invariably pay a coupon at fixed regular intervals with the coupon fixed for the
duration of the bond (see FMOS (2014b) for documentary evidence). In the case of one period bonds
coupons are unimportant - if coupons are paid at the end when the bond is redeemed all interest
payments are paid at the maturity date and the duration of a bond is the same as its maturity. If
we assume buyback then the impact of coupons is uninteresting as cash flows are unaffected. But if
N > 1 and there is no early buyback then coupons make a substantive difference as duration will no
longer equal maturity. As with buyback our modelling of coupons enables us to assess the impact of
observed debt management behaviour on optimal fiscal policy.

In terms of the rollover cycles of the previous section by spreading interest payments over the life
of the bond and so reducing duration paying coupons should smooth taxes and reduce the N period
cycles. However the volatility of the price of a bond is a direct function of its duration so whilst
coupon payments will reduce the magnitude of N cycles they will also reduce the ability of long bonds
to provide the fiscal insurance that the optimal debt management literature has to date emphasised.
Given this it is worth investigating how the introduction of coupons affects the interest rate twisting,
N -period cycles and tax volatility we have identified above in a model with no-buyback.

Let κt be the coupon payment of a bond issued at t, this payment is constant from t to t+N −1.
In order to denote that non-zero coupon bonds have a different equilibrium price than zero coupon

19 Respectively 14.2, 30.3, 22.7 and 21.5% from 1942 to 1945 of GDP, according to http://www.econdataus.com.
20 More precisely, we set up initial conditions so that the value of initial debt (at steady state bond prices) is

exactly the same both under buyback and no-buyback. More precisely, in the model with buyback we assume that
βN−1bN,−1 = yss and b−j = 0 for j = 2, 10, where yss is output with a balanced budget and gt = E(gt). In the model

with no buyback we assume βj−1bN,−j = 0.25yss for j = 1, 4 so that total value of initial debt is
∑10
j=1 β

jbN,−j = yss.
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bonds, let qNt be the price of such a bond. In equilibrium

qNt = κt

N−1∑
i=1

βiEt

(
uc,t+i
uc,t

)
+ βNEt

(
uc,t+N
uc,t

)
(54)

i.e. qNt is the sum of prices of zero coupon bonds of maturity j < N (pjt = βjEt
(uc,t+i

uc,t

)
) weighted by the

coupon payments promised, plus an N period zero-coupon bond that pays one unit of consumption
at maturity (a normalization). We call this a “fixed coupon bond” as the coupon κt is the same in
all the periods that the bond is alive. Coupons, however, may differ across issuance dates and they
may depend on the shocks gt. Section5 is a special case when κt = 0 for all t.

We normalize the payment at the end of the period to 1 unit of consumption. Therefore this
1-unit payment includes the principal (1 − κt) and the coupon paid in the period when the bond
matures. This is a normalization, it simplifies formulas below.

To determine the size of the coupon we note that in US data long bonds trade at or close to
par. In other words the debt management office designs coupons such that under current market
conditions the bond price is very close to the principal, i.e. qNt ≈ 1− κt.

The government budget constraint is now

qNt bN,t = bN,t−N +
N−1∑
j=1

bN,t−jκt−j + gt −
(

1− vx,t
uc,t

)
(A− xt). (55)

6.1 The Ramsey Program

The planner’s objective is to maximize the agent’s utility subject to (54), (55) and some ad hoc debt
limits. The Lagrangian for the planner’s program is now:

L = E0

∑
βt

{
u(ct) + v(T − ct − gt) + λt

[
bN,t(β

Nuc,t+N +
N−1∑
j=1

uc,t+jκt)

−bN,t−Nuc,t −
N−1∑
j=1

bN,t−jκt−juc,t + St)

]
+ v1,t(M̃N − bN,t) + v2,t(bN,t − M̃)

}
where the appropriate debt limits are :

bN,t ∈

[
M∑N−1

j=1 β
j + κ

∑N−1
j=1

∑j
i=1 β

i
,

M∑N−1
j=1 β

j + κ
∑N−1

j=1

∑j
i=1 β

i

]
≡ [M̃, M̃ ] (56)

for κ = E(κt) . As in the zero-coupon model the limits ensure that the steady state market value
of debt is in [M, M ].

In the simulations we only consider cases when coupons are constant, i.e. κt = κ. From the above
Lagrangian the first order condition for consumption is:

uc,t−vx,t+λt(ucc,tct+uc,t+vxx,t(ct+gt)−vx,t)+ucc,tκ
N−1∑
j=1

(λt−j−λt)bN,t−j+ucc,t(λt−N−λt)bN,t−N = 0

(57)
and the condition for bNt :

λtEt(κ
N∑
j=1

βjuc,t+j + βNuc,t+N) = Et(κ
N∑
j=1

βjuc,t+jλt+j + βNuc,t+Nλt+N) + v2,t − v1,t. (58)

The optimal policies again satisfy bN,t
λt
ct

 = F (gt, λt−1, . . . , λt−N , bN,t−1, . . . , bN,t−N)

λ−1 = . . . = λ−N = 0, given bN,−1, . . . , bN,−N .
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The state vector includes the lags of the multiplier λ and all the lags of the bond quantities so that
the dimensionality of the state vector is again 2N + 1.

Even when the government issues non-zero coupon bonds the incentive to twist interest rates is
present. This may seem surprising since the per period budget constraint in (55) is a function only
of one price, the issuance price. However, bonds which haven’t matured in t affect the governments
intertemporal constraint and its future income and financing needs so that the government will be
interested in twisting that price as well.

In the case of coupon bonds the government has the incentive to promise tax cuts in all periods
from t = 1 to N − 1. Moreover, from (57) we can identify the term Dt:

Dt = κ

N∑
j=1

(λt−j − λt)bNt−j + (λt−N − λt)bNt−N

which drives interest rate twisting. This highlights that not only the level of debt issued from t− 1
to t − N matters (as in the case of zero coupon long bonds and no-buyback) but also the coupon
payments matter to pin down the allocations in each period and in particular the level of taxation.
For instance, in the case of a constant coupon bond and no buy back we have that (58) follows a
complicated pattern which is a function of all the future terms uc,t+jλt+j for j = 1, 2, . . . , N weighted
by the promised payments.

6.2 Some Analytic Results

We already found in Section 5 that long bonds under no-buyback may generate undesired tax volatil-
ity. We now show that this effect is alleviated if bonds pay sufficiently high coupons. However, in
that case the bond positions are likely to be very volatile. We start with a general result.

Sufficiency of Measurability Conditions

We have already pointed out in Section 5.1 that under no-buyback and zero coupons, equilibrium
constraints cannot be summarized in a standard implementability condition, hence the complete
market allocation can not be achieved even under certainty. Now we explore in more generality the
issue of how to write down a set of sufficient implementability conditions by considering coupon
payments in a model with uncertainty.

Consider a feasible sequence of consumption {ct} and, associated with such a sequence, define
the discounted sum of surpluses zt as

zt = Et

∞∑
j=0

βj
uc,t+j
uc,t

[(
1− vx,t+j

uc,t+j

)
(ct+j + gt+j)− gt+j

]
.

The literature has so far focused on finding sufficient implementability conditions for three sep-
arate types of government bonds - complete markets, incomplete markets and effectively complete
markets. In these cases we have the following standard results: it is well known that under complete
markets, where a full range of state contingent securities, exists a necessary and sufficient condition
for equilibrium is that

z0 = b−1 (59)

(see, for example, Lucas and Stokey (1983) and Chari, Christiano and Kehoe (1991)). If by contrast
markets are incomplete and consist of only a real riskless one-period bond (N=1) Aiyagari et al.
(2002) show that, in addition to (59), the following measurability conditions are needed for a set of
sufficient conditions

zt is a function of gt−1 for all t > 0. (60)

A {ct} that satisfies these conditions is supported by a sequence of bonds zt = b1,t−1 for all t > 0.
Finally Angeletos (2002) extends this result to the case of multiple riskless bonds when long bonds
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are bought back one period after issuance (as in our Section 3) and assuming that there are enough
bonds to effectively complete the markets. For simplicity we only state this result for the case where
g takes two values and there are two bonds, a one- and an N -period bond denoted b1,t, bN,t. Angeletos
shows the sufficient equilibrium conditions are :

zt = b1,t−1 + Et

(
βN

uc,t+N
uc,t

)
bN,t−1 (61)

for random variables bi,t measurable with respect to gt for all t ≥ 0 i = 1, N . In this case the
equilibrium is supported by bond positions b1,t = b1,t and bN,t = bN,t for all t > 0.

All three of (59), (60), and (61) share the following feature: sufficient equilibrium conditions
require that private wealth in all periods must equal the discounted sum of primary surpluses zt. We
now show that when bonds are as in the current section the analog condition

N−1∑
j=1

bN,t−j

(
κt−j + qN−jt

)
+ bN,t−N = zt for all t (62)

is not sufficient for an equilibrium, where qN−jt is as in (54) with maturity N − j and coupon κt−j
(instead of κt) .

To prove our point it is enough to show one case where (62) is not sufficient. We consider N = 2
so that (62) becomes

b2,t−1

(
κt−1 + βEt

(
uc,t+1

uc,t

))
+ b2,t−2 = zt. (63)

The example in Section 5.1 showed that for κ = 0 this equation is not sufficient. One may think
that removing the constraint κ = 0 could make (63) sufficient. Indeed, if coupons are contingent on
information available after the date of issuance markets, can be effectively completed. But contingent
coupons are easily ruled out due to issues of moral hazard and because the fluctuations in coupons
needed to complete the markets would be very large.21 Therefore we only consider fixed coupons in
the remainder of the section, where κt is determined at the date of bond issuance t and bN,t pays the
same coupon during all periods t+ 1, . . . , t+N.

We can offer the following set of sufficient conditions

Result 4. Assume N = 2, fixed coupons {κt} , no-buyback. Consider a consumption sequence
{ct} such that the associated discounted sums of surpluses zt satisfies

1. z0 = b1,−1(q
1
0 + κ−1) + b2,−2 for given initial conditions b1,−1, b2,−2, κ−1;

2. (63) for all t > 0 as for some random variables b2,t(g
t).

If, in addition we have the following boundedness condition:

3. the random variables b2,t(g
t) mentioned in 2. satisfy bounds (56) for sufficiently large M , M

for all t a.s.

then {ct} is a competitive equilibrium.

21 In particular, κt−1 can always be chosen contingent on gt so as to guarantee that (63) always holds for a ”properly
designed” coupon. This can be done as follows. A constant bond issuance b2,t = b2,−1 is implemented if κt−1 contingent
on gt can be chosen to satisfy

b2,−1 =
zt

1 + κt−1 + βEt(
uc,t+N

uc,t
)

for all gt so that (63) is certain to hold. In this case we are back to the standard case where (59) is the only
implementability constraint. Obviously such coupons would have very large fluctuations as they would have to match
fluctuations in the discounted sum zt.
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The standard results mentioned above focused on conditions 1. and 2.. The main reason to write
the above result is to highlight that under no-buyback the boundedness condition 3. It will turn
out that condition 3 does not hold in many cases.22 The proof follows a usual pattern and we do not
offer details.23

A reference point will be coupons that are, roughly speaking, close to the net real rate of interest,
so that bonds trade at (or close to) par. It follows from (54) that a coupon

κPt =
1− β2Et

(uc,t+2

uc,t

)
1 + βEt

(uc,t+1

uc,t

) (64)

causes the bond price to trade at par, namely q2t = 1− κPt .
Now, (63) can be rewritten as

b2,t−1 = −ztδt + δtb2,t−2 (65)

δt = −
(
κt−1 + βEt

(
uc,t+1

uc,t

))−1
.

Since this is similar to a first order stochastic difference equation in b2,t it should be clear that if
|δt| < 1 then it is “more likely” that a b2,t satisfying (65) does not explode and, therefore, it satisfies
the boundedness condition 3 of Result 4.

This shows in a generic way that high coupons help to smooth taxes, since a high κt−1 drives
|δt| below 1. But the boundedness condition 3. fails if coupons are small hence, in that case, the
standard measurability conditions 1. and 2. of Result 4 are not sufficient.

We used the word “generic” in the last paragraph because there is always a configuration of initial
conditions where the boundedness condition 3. holds even for low coupons: given a consumption
sequence and a level of initial wealth b1,−1+(β+κ)b2,−2 there is always a value of b1,−1 that guarantees
that bond positions do not go to infinity even if |δ| > 1, this would be an initial condition that satisfies
a standard ending condition in difference equations, but for all other values of b1,−1 and same wealth
bonds go to infinity if |δ| > 1.

The following two results make this generic idea concrete for some special cases.

Result 5. Consider, as in Section 5.1 the case of gt = g and constant taxes. The boundedness
condition 3. is satisfied (generically) if and only if the bond trades at a price higher than par, that is

κt = κ ≥ κP = 1− β. (66)

It is clear that in this case zt = z and |δt| = (κ+ β)−1 so that if (66) holds then b2,t in (65) does
not explode and boundedness condition 3. is satisfied. But for a low coupon κ < κP = 1 − β then
b2,t−1 explodes and bonds violate any finite limit. The example of Section 5.1 is a special case of this
result for κ = 0.

If bonds trade at par κPt = 1− β (63) gives

b2,t−1 = z − b2,t−2

and b oscillates in a two-period cycle: b2,t = b2,t−2.
The next result shows a partial generalization to the case of uncertainty. It says that if coupons

are sufficiently high long bonds and short bonds can implement the same allocations, but with low

22 In some cases fixed coupons can complete the markets and they can satisfy condition 3. For example, the
portfolios of Angeletos, Buera and Nicolini can be implemented with a fixed κt−1, but this would require a very large
and negative coupon. For the calibrated case of Buera and Nicolini a coupon of about minus 200% would implement
the complete market allocation with a constant level of bonds. Again, we find this case of little interest as governments
can not offer huge negative coupons.

23 First prove necessity of (63). Then prove that if b2,t satisfies (63) the period-by-period budget constraints must
hold.
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coupons long bonds implement fewer equilibria. Therefore one would expect less opportunities for
tax smoothing in the presence of long bonds with low coupons. For this result we make the following
assumptions:

A1 - u(c) = c;
A2 - gt iid, stochastic and a.s. bounded: Prob(|gt| < Kg) = 1 for some Kg < M where

M≡ maxx(1− vx)(A− x).

Notice that with this utility 1 − vx = τ , therefore M represents the maximum tax revenue
that can be generated in a given period in equilibrium (the maximum of the Laffer curve).

Define CENκ as the set of all competitive equilibrium allocations {ct}∞t=0 for long bonds of maturity
N, with a constant coupon κ. With this notation Result 4. can be restated as saying that an allocation
belong to CENκ if and only if it satisfies conditions 1,2,3. For short bonds we write CE1 as the coupon
is irrelevant.

Result 6. Assume A1 and A2 above. Consider two identical economies, the first economy has
a short bond N = 1 and the second N = 2 without buyback and coupon κ. Both economies have
identical initial wealth, b1,−1 = b2,−1 (κ+ β) + b2,−2.

a) If long bonds sell at higher than par, namely κ > κP = 1− β, then CE1 = CE2κ.
b) For zero coupons CE1 is strictly larger than CE20 (i.e. CE20 ⊂6= CE1).

Proof.
We first show that CE2κ ⊂ CE1 for any coupon κ. Consider a given allocation {ct}∞t=0 ∈ CE2κ,

with associated discounted sum of surpluses zt and let {b2,t} the bond sequence that implements this
equilibrium with 2−period bonds. Since zt = b2,t−1 (κ+ β) + b2,t−2 it is clear that zt is measurable
with respect to information at t− 1. It follows from proposition 1 in Aiyagari et al. (2002) that this
allocation is also an equilibrium for N = 1 with b1,t−1 = zt. Obviously, since b2,t is uniformly bounded
so is b1,t. Therefore CE2κ ⊂ CE1.

All that remains for part a) is to show CE1 ⊂ CE2κ for sufficiently high κ. Given {ct}∞t=0 ∈ CE1
and the corresponding bond allocation b1,t we construct the following b2,t

b2,t = −b2,t−1
1

β + κ
+ b1,t =

t+1∑
j=0

(
− 1

β + κ

)j
b1,t−j +

(
− 1

β + κ

)t+2

b2,−2.

Clearly, since b1,t−j is uniformly bounded and 1
β+κ

< 1 this b2,t satisfies (63) and the boundedness

condition 3. This proves part a).
To show b) we construct one allocation in CE1 that is not in CE20 . Consider the case b1,−1 = 0.

Fix parameters α, η > 0. Consider a policy such that given the state variables (gt, b1,t−1) tax revenue
at t is given by

(1− vx,t)(A− xt) = E(gt) + α (gt − E(gt)) + ηb1,t−1. (67)

This obviously defines hours, consumption, etc. as a function of (gt, b1,t−1).
For this policy α ≤ 1 governs how much the deficit increases when g is higher than average, thus

it governs how much of an adverse shock is absorbed by deficit and debt. If we set α = 1 this leads
to a balanced budget and no tax smoothing. However if 0 < α < 1 there is some tax smoothing, an
adverse g causes a deficit and higher debt. Parameter η governs the effect of past debt on current
primary deficit. We assume α, η are chosen so that the right side of (67) is lower thanM so there is
always an xt that solves (67), more on this later.

The budget constraint implies that the corresponding bond sequence is

b1,tβ = (1− η)b1,t−1 + (1− α) [gt − E(gt)]

so that

b1,t =
t∑

j=0

β−j−1 (1− η)j (1− α) [gt−j − E(gt)] .
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If η > 1 − β then b1,t is bounded above by 1−α
β+η−1 [K − E(gt)] so that (67) belongs to CE1 for any

α ∈ (0, 1) and η > 1−β such that revenue is feasible. Furthermore, from this equation it is clear that
there are many values of α, η guaranteeing that the right side of (67) is lower than M, as required
above.

Now we check that this allocation does not belong to CE20 . To implement the allocation (67) with
N = 2 and κ = 0 we would need a b2,t such that b1,t = b2,tβ + b2,t−1 hence

b2,t =
t∑

j=0

(−β)−j−1 b1,t−j =
t∑

j=0

(−β)−j−1
t−j∑
i=0

β−i−1 (1− η)i (1− α) [gt−j−i − E(gt)]

= (−β)−t β−1
[
1 + (η − 1) + (η − 1)2 + . . .+ (η − 1)t

]
(1− α) [g0 − E(gt)]

+ (−β)−t β−1
[
1 + (η − 1) + (η − 1)2 + . . .+ (η − 1)t−1

]
(1− α) [g1 − E(gt)] + . . .

= − (−β)−t−1 (1− α)
t∑

j=0

1− (η − 1)j+1

2− η
[gt−j − E(gt)] .

Now

var(b2,t) = (−β)−2t−2 (1− α)2 (2− η)−2
(

t∑
j=0

[
1− (η − 1)j+1

])2

var(gt)

> (−β)−2t−4 (1− α)2 (2− η)−2 η2 var(gt)

where the inequality comes from
∣∣∣1− (η − 1)j+1

∣∣∣ > η for all j.

Since β < 1 then (−β)−2t−4 → ∞ and var(b2,t) → ∞ as t → ∞, therefore any bond limits will
be violated eventually and we can not find a b2,t that implements the policy (67). �

Notice that, in order to obtain a sharp analytic result we had to assume linear utility. For a risk-
averse u, the standard fiscal insurance effect of Angeletos, Buera and Nicolini would be present and
long bonds would help to smooth taxes. In a standard calibration with risk aversion and no-buyback
both effects will be present and the issue can only be resolved by numerical simulations, as we do
below.

Volatility of positions
The previous results suggest that selling long bonds at par may be enough to smooth taxes, but

this could be a bit too optimistic. The fact is that long bond positions that complete the markets
can be very volatile. To see this, take the case used in Result 5. If bonds are sold at par the optimal
solution implies

b2,t = z − b2,t−1. (68)

Therefore bonds display a two-period cycle b2,t = b2,t−2 for all t ≥ 2. Similarly, in a model with
uncertainty as in Result 6. and coupons at par, a shock in say, an even period, would cause higher
debt in all future even periods and not in odd periods, this imparting volatility across even and odd
periods.

Such fluctuations of bond positions would cause large variations in gross issuance of debt from one
period to the next when initial conditions are very asymmetric, as in the war calibration of section
5.4.2. In the current setting this can be a problem because it makes it more likely that the bond
limits are binding in many periods and, therefore, tax volatility arises. In general, high variability in
gross bond issuance is often seen as undesirable in actual debt management practice.

Summary
A summary of all these results is that long bonds without buyback impart rollover cycles of

periodicity N that cause taxes to be volatile. Coupons alleviate the problem but they may introduce
large oscillations in gross bond issuance. If these oscillations are ruled out long bonds will not
complete the markets even with coupons near par.
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6.3 Simulations with coupons

6.3.1 Business cycle fluctuations

To see in detail the impact of paying coupons under uncertainty we need to resort once more to
simulations. Consider again the case of Figure 4 based on persistent shocks, a ten year bond and
positive levels of initial debt. In our simulations we set κt = κ = 1 − β for all t, corresponding to
coupons that trade approximately at par (exactly at par only in the risk neutral case).

Figure 4 shows the response of taxes to an adverse expenditure shock. In Section 5 we showed
that no buy back induces greater volatility in taxes and produces a N period cycle. However as
Figure 4 shows paying coupons produces less volatile N cycles. The intuition is that coupons spread
the timing of cash payments from a bond and so reduce the magnitude of the N cycles.

Results 5. and 6. showed that in some cases coupons help sustain the same tax profile as with
short bonds. Figure 4 does not show such an extreme case, we still find rollover cycles, unlike the case
of short bonds N = 1, but the cycles are less pronounced than with zero coupons. What happens is
that the bond limits we impose make it impossible for the government to smooth taxes as in short
bonds because, as we explained in Section 6.2, this would cause a large variation in bond positions
in order for coupons to achieve tax smoothing as with short bonds and bond limits will bind more
often. Therefore the case with coupons is somewhere between zero-coupon long bonds and short
bonds.

Coupons are essentially short term debt and taxes can now be raised in all periods from t+ 1 to
t + N to finance the deficit caused by a high gt. This suggests a fairly immediate explanation for
why long term bonds pay coupons, governments can use coupons as a way of reducing tax volatility.
This is confirmed by comparing Tables 3 and 6 where paying coupons under no buy back reduces
the volatility of taxes and consumption compared to the case of no coupons and no buy back. It is
even further confirmed by the war calibration.

[ Table 6 About Here.]

6.3.2 Tax volatility after a war

Using the “end-of-war” calibration as in Section 5.4.2 in the model with coupons gives the moments
reported in the last column of Table 5. We can see that there is still a very large tax volatility
compared with buyback but that coupons at par do alleviate the rollover cycles. Again, modelling
repurchase of long bonds and coupons explicitly is important, and the results give a reason for coupon
payments.

7 Conclusions

This paper has studied the implications for debt management of the maturity of government bonds
issued. The existing literature focuses on the case where the government issues just one period bonds
or where long bonds form part of a portfolio of debt issuance. By contrast we isolate the effects of
maturity by focusing on the case where the government issues only long run bonds. In doing so we
believe we provide a greater insight into the role of long term bonds in optimal debt management.

In doing so we show that long run bonds provide an additional channel for tax volatility through
an interest rate twisting effect. Governments manipulate tax rates at the maturity date of bonds in
order to reduce funding costs. It is this interest rate twisting channel that makes the state space of
optimal fiscal models so cumbersome as it is necessary to track government’s promises about future
tax rates at the maturity date of government debt. The longer the maturity of debt the greater the
state space. We show an alternative institutional set up where the fiscal authority takes interest
rates as given which dramatically reduces the state space and offers a computationally much more
efficient way of solving optimal debt management models.

In modelling long bonds a range of further institutional assumptions need to be made compared to
the case of just one period bonds. In particular the issue of whether or not each period governments
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buy back all outstanding debt regardless of maturity and whether bonds pay coupons need to be
considered. In the literature the assumptions made run counter to the practice of actual debt
management offices who only rarely buy debt back before maturity and usually pay coupons on
bonds. We do not address here the issue of why governments persist in these practices but we show
that regardless of the motivation the implications for optimal fiscal policy are important. In the case
where governments do not buy back bonds until close to or at maturity (which is what is observed in
practice) we find long bonds provide a further channel for tax volatility with N period rollover cycles.
These rollover cycles can be mitigated though by issuing long bonds which pay coupons. However
whilst coupons reduce the extent of rollover cycles they serve to reduce the duration of bonds for
any given maturity and so lessens the ability of long run bonds to provide fiscal insurance.

The advantages of long run bonds in providing fiscal insurance have been well documented. In
many models fiscal insurance implies that short government bonds should not be issued in optimal
portfolios. However by focusing on a model with a single bond we show that long bonds also provide
some channels that induce tax volatilty. As shown in Faraglia, Marcet, Oikonomou and Scott (2014b),
when both types of bonds are available it is then optimal to issue both short and long run bonds,
since this helps preserve the fiscal insurance effect of long bonds and offsets the other channels which
induce additional tax volatility. Optimal bond portfolios of FMOS (2014b) display the interest rate
twisting we describe in the current paper. If we assume independent powers then both interest rate
twisting and roll over cycles can be mitigated.
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Econòmica CSIC, Universitat Autònoma de Barcelona.

[22] Marcet, A and A. Scott (2009) “Debt and Deficit Fluctuations and the Structure of Bond
Markets” Journal of Economic Theory 144 (2009) 473–501.

[23] Nosbusch, Y. (2008) “Interest Costs and the Optimal Maturity Structure of Government Debt”,
Economic Journal, 118, 477–498.

[24] Schmitt-Grohe, S. and M. Uribe. (2004), ”Optimal Fiscal and Monetary Policy Under Sticky
Prices”, Journal of Economic Theory, 114, 198-230.

[25] Siu, H. (2004) ”Optimal Fiscal and Monetary policy with sticky prices”, Journal of Monetary
Economics, 51, 575-607.

29



T
ab

le
1:

M
o
m

e
n
ts

:
C

o
m

m
it

m
e
n
t

M
o
d
e
l,

B
u
y
b
a
ck

t=
4
0

t=
2
0
0

lo
n
g

ru
n

N
c

τ
d
e
f
ic
it

M
V

c
τ

d
e
f
ic
it

M
V

c
τ

d
e
f
ic
it

M
V

m
e
a
n

5
52

.4
9

0.
25

3
-0

.2
33

-8
.9

0
52

.5
4

0.
24

8
0.

15
6

-1
5.

98
52

.5
8

0.
24

5
0.

31
7

-1
9.

23
1
0

52
.5

0
0.

25
2

-0
.1

98
-7

.1
8

52
.5

4
0.

24
8

0.
12

0
-1

3.
46

52
.5

6
0.

24
6

0.
25

7
-1

6.
28

1
5

52
.5

0
0.

25
2

-0
.1

84
-6

.5
0

52
.5

3
0.

24
8

0.
09

5
-1

1.
76

52
.5

5
0.

24
7

0.
20

9
-1

4.
01

2
0

52
.5

0
0.

25
2

-0
.1

68
-5

.8
3

52
.5

2
0.

24
9

0.
07

6
-1

0.
47

52
.5

4
0.

24
7

0.
17

8
-1

2.
48

st
d

5
2.

27
0.

02
23

1.
28

11
.8

2
3.

13
0.

03
57

1.
58

23
.8

2
3.

48
0.

04
35

1.
57

30
.9

6
1
0

2.
27

0.
02

24
1.

23
11

.2
2

3.
13

0.
03

57
1.

59
24

.2
3

3.
48

0.
04

38
1.

59
31

.9
7

1
5

2.
27

0.
02

25
1.

29
11

.5
5

3.
13

0.
03

57
1.

60
24

.8
6

3.
48

0.
04

39
1.

65
32

.5
4

2
0

2.
27

0.
02

26
1.

31
11

.5
0

3.
13

0.
03

57
1.

61
25

.0
3

3.
48

0.
04

39
1.

36
7

32
.8

3

N
o
te

s:
T

h
e

ta
b

le
sh

ow
s

ke
y

m
o
m

en
ts

fr
om

th
e

op
ti

m
al

p
ol

ic
y

m
o
d

el
w

it
h

co
m

m
it

m
en

t
u

n
d

er
b

u
y
b

ac
k
.

T
h

e
fi

rs
t

fo
u

r
ro

w
s

p
lo

t
th

e
av

er
ag

es
fo

r
co

n
su

m
p

ti
o
n

,
ta

x
es

,
d

efi
ci

t
a
n

d
th

e
m

ar
k
et

va
lu

e
of

d
eb

t
in

th
e

ca
se

of
fo

u
r

d
iff

er
en

t
m

at
u
ri

ti
es

(N
=
{5
,0

10
,1

5,
20
})

.
T

h
e

la
st

fo
u

r
ro

w
s

sh
ow

th
e

st
a
n

d
ar

d
d

ev
ia

ti
on

s
o
f

th
es

e
q
u

a
n
ti

ti
es

.
T

h
e

ta
b

le
re

p
or

ts
th

e
m

om
en

ts
ov

er
th

re
e

d
iff

er
en

t
h

or
iz

on
s:

1)
40

ob
se

rv
at

io
n

s,
18

00
0

sa
m

p
le

s.
2)

20
00

ob
se

rv
at

io
n

s,
1
80

00
sa

m
p

le
s,

a
n

d
3)

45
00

ob
se

rv
at

io
n

s
18

00
0

sa
m

p
le

s
(5

00
0

ob
se

rv
at

io
n

s
w

er
e

ge
n

er
at

ed
fo

r
ea

ch
sa

m
p

le
,

50
0

ob
se

rv
at

io
n

s
w

er
e

d
ro

p
p

ed
).

T
h

e
in

it
ia

l
co

n
d

it
io

n
s

fo
r

go
ve

rn
m

en
t

d
eb

t
ar

e
u

n
if

or
m

ly
d

is
tr

ib
u

te
d

ov
er

[−
M
N
,M

N
].

T
ab

le
2:

M
o
m

e
n
ts

:
In

d
e
p

e
n
d
e
n
t

P
o
w

e
rs

M
o
d
e
l,

B
u
y
b
a
ck

t=
4
0

t=
2
0
0

lo
n
g

ru
n

N
c

τ
d
e
f
ic
it

M
V

c
τ

d
e
f
ic
it

M
V

c
τ

d
e
f
ic
it

M
V

m
e
a
n

5
52

.4
9

0.
25

3
-0

.2
26

-8
.2

3
52

.5
4

0.
24

8
0.

15
6

-1
5.

88
52

.5
8

0.
24

5
0.

32
3

-1
9.

49
1
0

52
.5

0
0.

25
2

-0
.1

98
-6

.9
5

52
.5

3
0.

24
8

0.
12

0
-1

3.
33

52
.5

6
0.

24
6

0.
26

0
-1

6.
40

1
5

52
.5

0
0.

25
2

-0
.1

78
-6

.0
9

52
.5

3
0.

24
9

0.
09

5
-1

1.
57

52
.5

5
0.

24
7

0.
21

5
-1

4.
23

2
0

52
.5

0
0.

25
2

-0
.1

61
-5

.3
4

52
.5

2
0.

24
9

0.
07

6
-1

0.
01

52
.5

4
0.

24
7

0.
17

5
-1

2.
31

st
d

5
2.

29
0.

02
24

1.
14

11
.0

5
3.

14
0.

03
57

1.
47

23
.4

5
3.

48
0.

04
36

1.
51

31
.1

2
1
0

2.
29

0.
02

24
1.

13
11

.0
0

3.
14

0.
03

57
1.

48
23

.9
3

3.
49

0.
04

38
1.

54
32

.2
0

1
5

2.
29

0.
02

23
1.

12
10

.9
7

3.
14

0.
03

57
1.

48
24

.1
7

3.
49

0.
04

40
1.

55
32

.7
8

2
0

2.
29

0.
02

23
1.

12
10

.9
4

3.
14

0.
03

56
1.

48
24

.3
4

3.
49

0.
04

40
1.

56
33

.2
0

N
o
te

s:
T

h
e

ta
b

le
sh

ow
s

ke
y

m
om

en
ts

fr
om

th
e

in
d
ep

en
d

en
t

p
ow

er
m

o
d

el
u

n
d

er
b

u
y
b

ac
k
.

T
h

e
fi

rs
t

fo
u

r
ro

w
s

p
lo

t
th

e
av

er
ag

es
fo

r
co

n
su

m
p

ti
on

,
ta

x
es

,
d

efi
ci

t
an

d
th

e
m

ar
ke

t
va

lu
e

of
d
eb

t
in

th
e

ca
se

of
fo

u
r

d
iff

er
en

t
m

at
u

ri
ti

es
(N

=
{5
,0

10
,1

5,
20
})

.
T

h
e

la
st

fo
u

r
ro

w
s

sh
ow

th
e

st
an

d
ar

d
d

ev
ia

ti
o
n

s
of

th
es

e
q
u

an
ti

ti
es

.
T

h
e

ta
b

le
re

p
or

ts
th

e
m

om
en

ts
ov

er
th

re
e

d
iff

er
en

t
h

or
iz

on
s:

1)
40

ob
se

rv
at

io
n

s,
18

00
0

sa
m

p
le

s.
2)

20
00

o
b

se
rv

at
io

n
s,

1
80

00
sa

m
p

le
s,

an
d

3)
45

00
ob

se
rv

at
io

n
s

18
00

0
sa

m
p

le
s

(5
00

0
ob

se
rv

at
io

n
s

w
er

e
ge

n
er

at
ed

fo
r

ea
ch

sa
m

p
le

,
50

0
ob

se
rv

at
io

n
s

w
er

e
d

ro
p

p
ed

).
T

h
e

in
it

ia
l

co
n

d
it

io
n

s
fo

r
g
ov

er
n
m

en
t

d
eb

t
ar

e
u

n
if

or
m

ly
d

is
tr

ib
u

te
d

ov
er

[−
M
N
,M

N
].

30



T
ab

le
3:

M
o
m

e
n
ts

:
C

o
m

m
it

m
e
n
t

M
o
d
e
l,

N
o
-B

u
y
b
a
ck

t=
4
0

t=
2
0
0

lo
n
g

ru
n

N
c

τ
d
e
f
ic
it

M
V

c
τ

d
e
f
ic
it

M
V

c
τ

d
e
f
ic
it

M
V

m
e
a
n

5
52

.4
8

0.
25

3
-0

.2
59

-9
.9

3
52

.5
7

0.
24

7
0.

18
4

-1
7.

95
52

.5
8

0.
24

5
0.

33
2

-2
0.

22
1
0

52
.4

8
0.

25
3

-0
.2

30
-8

.3
3

52
.5

6
0.

24
7

0.
14

3
-1

5.
22

52
.5

6
0.

24
6

0.
26

7
-1

7.
07

1
5

52
.4

9
0.

25
2

-0
.2

02
-7

.1
6

52
.5

5
0.

24
7

0.
12

1
-1

3.
48

52
.5

5
0.

24
7

0.
23

3
-1

5.
24

2
0

52
.4

9
0.

25
2

-0
.1

94
-6

.3
2

52
.5

5
0.

24
8

0.
10

7
-1

2.
28

52
.5

5
0.

24
7

0.
21

3
-1

3.
99

st
d

5
2.

29
0.

02
20

1.
29

12
.3

7
3.

13
0.

03
60

1.
60

23
.6

6
3.

51
0.

04
45

1.
63

30
.9

9
1
0

2.
29

0.
02

22
1.

30
12

.6
2

3.
13

0.
03

61
1.

66
25

.2
3

3.
52

0.
04

51
1.

72
34

.5
4

1
5

2.
30

0.
02

33
1.

24
12

.3
8

3.
14

0.
03

69
1.

65
25

.4
9

3.
52

0.
04

59
1.

73
34

.5
4

2
0

2.
33

0.
02

46
1.

14
11

.9
3

3.
16

0.
03

79
1.

61
25

.1
6

3.
53

0.
04

68
1.

70
34

.5
1

N
o
te

s:
T

h
e

ta
b

le
sh

ow
s

k
ey

m
om

en
ts

fr
om

th
e

co
m

m
it

m
en

t
m

o
d

el
u

n
d

er
n

o
b
u

y
b

ac
k

(z
er

o
co

u
p

on
s)

.
T

h
e

ta
b

le
re

p
or

ts
th

e
m

om
en

ts
ov

er
th

re
e

d
iff

er
en

t
h

o
ri

zo
n

s:
1
)

40
ob

se
rv

at
io

n
s,

18
00

0
sa

m
p

le
s.

2)
20

00
ob

se
rv

at
io

n
s,

18
00

0
sa

m
p

le
s,

an
d

3)
45

00
ob

se
rv

at
io

n
s

18
00

0
sa

m
p

le
s

(5
00

0
o
b

se
rv

at
io

n
s

w
er

e
g
en

er
a
te

d
fo

r
ea

ch
sa

m
p

le
,

50
0

ob
se

rv
at

io
n

s
w

er
e

d
ro

p
p

ed
).

T
h

e
in

it
ia

l
co

n
d

it
io

n
s

ar
e
b N

,−
1

=
b N

,−
2

=
..
.

=
b N

,−
N

w
h

er
e

b N
,−
j
,j

=
1,
..
,N

a
re

u
n

if
o
rm

ly
d
is

tr
ib

u
te

d
in

1 ∑ N i=
1

β
i [
−
M
,M

].

T
ab

le
4:

M
o
m

e
n
ts

:
In

d
e
p

e
n
d
e
n
t

P
o
w

e
rs

M
o
d
e
l,

N
o
-B

u
y
b
a
ck

t=
4
0

t=
2
0
0

lo
n
g

ru
n

N
c

τ
d
e
f
ic
it

M
V

c
τ

d
e
f
ic
it

M
V

c
τ

d
e
f
ic
it

M
V

m
e
a
n

5
52

.5
0

0.
25

2
-0

.1
71

-5
.3

6
52

.5
5

0.
24

8
0.

08
9

-1
1.

58
52

.5
5

0.
24

6
0.

20
5

-1
3.

88
1
0

52
.5

0
0.

25
1

-0
.1

51
-4

.4
1

52
.5

4
0.

24
8

0.
05

8
-9

.3
9

52
.5

3
0.

24
8

0.
14

8
-1

1.
06

1
5

52
.5

1
0.

25
1

-0
.1

33
-3

.7
2

52
.5

4
0.

24
9

0.
04

23
-8

.0
3

52
.5

3
0.

24
8

0.
11

9
-9

.4
4

2
0

52
.5

1
0.

25
1

-0
.1

23
-3

.1
9

52
.5

3
0.

24
9

0.
03

1
-7

.0
0

52
.5

2
0.

24
8

0.
10

0
-8

.2
7

st
d

5
2.

32
0.

02
28

1.
11

10
.8

7
3.

15
0.

03
56

1.
47

24
.3

7
3.

52
0.

04
49

1.
56

35
.2

6
1
0

2.
31

0.
02

28
1.

14
11

.2
0

3.
14

0.
03

59
1.

53
25

.2
5

3.
52

0.
04

55
1.

64
36

.5
1

1
5

2.
33

0.
02

38
1.

11
11

.0
8

3.
15

0.
03

68
1.

53
25

.1
1

3.
54

0.
04

63
1.

65
36

.3
9

2
0

2.
34

0.
02

50
1.

03
10

.7
6

3.
17

0.
03

79
1.

51
24

.6
1

3.
55

0.
04

72
1.

64
35

.7
9

N
o
te

s:
T

h
e

ta
b

le
sh

ow
s

ke
y

m
o
m

en
ts

fr
om

th
e

in
d

ep
en

d
en

t
p

ow
er

m
o
d

el
w

it
h

co
u

p
on

s
an

d
n

o
b

u
y
b

ac
k
.

T
h

e
fi
rs

t
fo

u
r

ro
w

s
p

lo
t

th
e

av
er

ag
es

fo
r

co
n

su
m

p
ti

o
n

,
ta

x
es

,
d

efi
ci

t
a
n

d
th

e
m

ar
k
et

va
lu

e
of

d
eb

t
in

th
e

ca
se

of
fo

u
r

d
iff

er
en

t
m

at
u
ri

ti
es

(N
=
{5
,0

10
,1

5,
20
})

.
T

h
e

la
st

fo
u

r
ro

w
s

sh
ow

th
e

st
a
n

d
ar

d
d

ev
ia

ti
on

s
o
f

th
es

e
q
u

a
n
ti

ti
es

.
T

h
e

ta
b

le
re

p
or

ts
th

e
m

om
en

ts
ov

er
th

re
e

d
iff

er
en

t
h

or
iz

on
s:

1)
40

ob
se

rv
at

io
n

s,
18

00
0

sa
m

p
le

s.
2)

20
00

ob
se

rv
at

io
n

s,
1
80

00
sa

m
p

le
s,

a
n

d
3)

45
00

ob
se

rv
at

io
n

s
18

00
0

sa
m

p
le

s
(5

00
0

ob
se

rv
at

io
n

s
w

er
e

ge
n

er
at

ed
fo

r
ea

ch
sa

m
p

le
,

50
0

ob
se

rv
at

io
n

s
w

er
e

d
ro

p
p

ed
).

T
h

e
in

it
ia

l
co

n
d

it
io

n
s

fo
r

go
ve

rn
m

en
t

d
eb

t
ar

e
u

n
if

or
m

ly
d

is
tr

ib
u

te
d

ov
er

[−
M
N
,M

N
].

31



Table 5: Wars and Taxes
Horizon Buyback No Buyback

Coupon=0 Coupon at par
20 mean 0.283 0.305 0.300

std 0.025 0.101 0.077
40 mean 0.278 0.281 0.279

std 0.028 0.078 0.062
60 mean 0.273 0.274 0.272

std 0.031 0.068 0.056

Notes: Tax mean and standard deviation at different horizons after the war for different types of
long bonds.
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Figure 1: Impulse Responses under Zero Initial Debt: Buyback Model

0 5 10 15 20
0.025

0.03

0.035

0.04

0.045

Period

T
ax

 

Commitment
IP

0 5 10 15 20
−0.025

−0.02

−0.015

−0.01

Period

C
on

su
m

pt
io

n 

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

Period

D
ef

ic
it 

0 5 10 15 20
0

2

4

6

8

10

Period

M
ar

ke
t  

V
al

ue

Notes: The Figure plots the impulse response of taxes (top- left panel), consumption (top-right
panel), deficit (bottom- left) and the market value of debt (bottom-right) to a one standard
deviation shock in government spending. The maturity of long debt is N = 10 years. The
quantities represented by the solid (blue) lines correspond to the optimal commitment allocation
and the quantities plotted with dashed (red) lines correspond to the independent power model.
The starting value of debt is zero.
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Figure 2: Impulse Responses under Positive Initial Debt: Buyback Model
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Notes: The Figure plots the impulse response of taxes (top- left panel), consumption (top-right
panel), deficit (bottom- left) and the market value of debt (bottom-right) to a one standard
deviation shock in government spending. The maturity of long debt is N = 10 years. The
quantities represented by the solid (blue) lines correspond to the optimal commitment allocation
and the quantities plotted with dashed (red) lines correspond to the independent power model.
The initial debt level is 50
par
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Figure 3: Impulse Responses of Taxes: Buyback Model
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Notes: The Figure plots the impulse response of taxes to a spending shock. The top panels
show the commitment model under buyback with zero (left) and positive (right) debt levels.
The solid line shows the response of the tax schedule when the maturity is N = 5. The dashed
line corresponds to N = 10 and the crossed and dashed-dotted lines to N = 15 and N =
20 respectively. The bottom panels in the figure show the analogous responses in the case of
independent powers.

36



Figure 4: Impulse Response of Taxes: Commitment Models
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Notes: The Figure plots the impulse response of taxes to a spending shock. The solid line is the
response under the assumption that debt is bought back in every period, the dashed line shows
the case of no buyback and zero coupons. Finally, the crossed line shows the case of non zero
coupon bonds.
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Figure 5: Responses under Zero Initial Debt: No-Buyback Model with Coupons
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Notes: The Figure plots the impulse response of taxes (top- left panel), consumption (top-right
panel), deficit (bottom- left) and the market value of debt (bottom-right) to a one standard
deviation shock in government spending. The maturity of long debt is N = 10 years. The
quantities represented by the solid (blue) lines correspond to the optimal commitment allocation
and the quantities plotted with dashed (red) lines correspond to the independent power model.
The starting value of debt is zero.
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Figure 6: Impulse Responses of Taxes: Buyback Model
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Notes: The Figure plots the impulse response of taxes to a spending shock. The top panels
show the commitment model under decaying coupons with zero (left) and positive (right) debt
levels. The solid line shows the response of the tax schedule when the maturity is N = 5. The
dashed line corresponds to N = 10 and the crossed and dashed-dotted lines to N = 15 and
N = 20 respectively. The bottom panels in the figure show the analogous responses in the case
of independent powers.
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