
                                                               
                                   

 

 

  

 

Cambridge-INET Working Paper Series No: 2017/17 

Cambridge Working Papers in Economics: 1737 

 

 

 
RETURNS TO ON-THE-JOB SEARCH AND THE 

DISPERSION OF WAGES 

 

 

Axel Gottfries Coen Teulings 
(University of Cambridge) (University of Cambridge) 

 
 
 
 
 
A wide class of models with On-the-Job Search (OJS) predicts that workers gradually select into better-paying 
jobs. We develop a simple methodology to test predictions implied by OJS using two sources of identification: 
(i) time-variation in job-finding rates and (ii) the time since the last lay-off. Conditional on the termination 
date of the job, job duration should be distributed uniformly. This methodology is applied to the NLSY 79. 
We find remarkably strong support for all implications. The standard deviation of the wage offer distribution 
is about 15%. OJS accounts for 30% of the experience profile, 9% of total wage dispersion and an average 
wage loss of 11% following a lay-off. 

Cambridge-INET Institute 

Faculty of Economics 



Returns to on-the-job search and the
dispersion of wages∗

Axel Gottfries† Coen Teulings‡

August 22, 2017

Abstract

A wide class of models with On-the-Job Search (OJS) predicts that
workers gradually select into better-paying jobs. We develop a simple
methodology to test predictions implied by OJS using two sources of
identification: (i) time-variation in job-finding rates and (ii) the time
since the last lay-off. Conditional on the termination date of the job,
job duration should be distributed uniformly. This methodology is
applied to the NLSY 79. We find remarkably strong support for all
implications. The standard deviation of the wage offer distribution
is about 15%. OJS accounts for 30% of the experience profile, 9%
of total wage dispersion and an average wage loss of 11% following a
lay-off.
Keywords: On-the-job search, Wage dispersion, Job duration
JEL Classification: J31, J63, J64

∗We would like to thank Jim Albrecht, Jake Bradley, Jan Eeckhout, Marcus Hagedorn,
John Kennan, Philipp Kircher, Moritz Kuhn, Hannes Malmberg, Iourii Manovskii, Fabien
Postel-Vinay, Robert Shimer and participants at the 12th Nordic Summer Institute in
Labor Economics, NBER SI 2015, Dale Mortensen Centre Conference on Labor Market
Models and Their Applications 2015, ESSLE (2015, 2016), SaM conferences in Amsterdam
and Cambridge, NYU macro student lunch and Cambridge University. Gottfries thanks
the Economic and Social Research Council and the Tom Hedelius Foundation for financial
support. Teulings thanks the Cambridge Inet Institute, Centre for Macroeconomics and
the Cooperation for European Research in Economics (COEURE) for financial support.
†University of Cambridge, email: axel.gottfries@gmail.com.
‡University of Cambridge & University of Amsterdam, email: cnt23@cam.ac.uk.

1

https://www.sites.google.com/site/axelgottfries/
http://www.coenteulings.com/
mailto:axel.gottfries@gmail.com
mailto:cnt23@cam.ac.uk


1 Introduction

Labour market models with on-the-job search (OJS) as developed by Bur-
dett and Mortensen (1998) and Bontemps, Robin, and den Berg (2000) have
become the workhorse model for explaining job-to-job transitions and wage
dynamics in macro economics. By and large, these models predict an in-
creasing and concave wage-experience profile with workers moving up the
job ladder up until the point of lay-off. Some related models deviate slightly
from this set up, but yield largely similar implications.1

Though this process clearly captures important features of real-life labour
markets, no one has yet studied the extent to which this process adequately
describes the finer details of the interrelation between job-to-job transitions
and wage growth over the career of a worker. This paper fills that gap. We
derive detailed predictions on both job-to-job transitions and wage growth
which are then brought to the data. We find remarkably strong empirical
support for this model. The returns to OJS are highly stable over the life
cycle. The standard deviation of the wage offer distribution is about 15%.
The return to OJS explain about 30% of the overall return to labour market
experience. OJS accounts for 9% of the wage dispersion among male work-
ers.2 The standard deviation of the offer distribution is one and a half times
larger for higher educated workers. For the latter group, the dispersion is
one and a half times larger in urban areas rather than in the countryside.
Our estimates suggest that the loss in match quality after lay-off results in an
average wage loss of about 11%, compare Jacobson, LaLonde, and Sullivan
(1993) and Davis and Wachter (2011).

Our methodology builds on ideas developed by Wolpin (1992), Barlevy
(2008) and Hagedorn and Manovskii (2013). Wolpin (1992) introduces the
concept of an employment cycle. An employment cycle starts at the begin-
ning of an unemployment spell, follows the worker when he moves to his
first job and subsequently to ever better jobs. The employment cycle ends
when the worker gets laid off and becomes unemployed again, which starts
a new cycle. In a model with OJS and efficient transitions, this corresponds
to a sequence of ever-better draws from the job-offer distribution. Barlevy

1Postel-Vinay and Robin (2002) deviates on wage formation, but generates the same
transition dynamics to ever ”better” jobs. In Burdett and Coles (2003) workers do not
necessarily transition to more productive jobs.

2For related decompositions, see Manovskii and Hagedorn (2010), Tjaden and
Wellschmied (2014) and Bagger, Fontaine, Postel-Vinay, and Robin (2014).
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(2008) shows how results from record theory can be used to characterise the
distribution of job offers. Our approach is different. We use the informa-
tion embedded in the sequence of job-durations. Our methodology has the
advantage that it applies independently of the cyclical behavior of lay-off
rates.

Hagedorn and Manovskii (2013) use cyclical variation in the labour mar-
ket tightness to control for the effect of match quality in wage regressions.
Job offers arrive more frequently when labour market conditions are tight.
Hence, workers move up the job ladder more quickly. However, they do not
derive the exact process. As a consequence, their regression model is mis-
specified. We derive the exact relation between the time elapsed since the
start of the current employment cycle until the end of the current job. The
starting date of a job is shown not to provide any additional information
above its termination date. Moreover, it matters whether a job ends by a
quit rather than a layoff: jobs that end by a quit have lower expected quality,
as this raises the likelihood of the arrival of a better job.3

There are at least three reasons why wages tend to increase over the course
of a worker’s career: general experience, within-job tenure profiles (due to
either job specific experience or a tenure specific retention bonus as in Burdett
and Coles (2003)), and the gains from selection by OJS. This paper combines
two sources of variation to disentangle the return to OJS from the other two
sources: (i) individual variation in the timing of lay-offs: a lay-off restarts
the selection of ever better offers; (ii) business cycle variation in job-offer
arrival rates. While the returns to experience accumulate proportionally to
calendar time, job search accumulates proportionally to what we refer to
as labour market time. In a tight labour market, the clock of labour market
time runs faster than that of calendar time, thereby speeding up the selection
process. The speed of labour market time is measured by the job-offer arrival
rate for unemployed.

We show that the model predicts that the starting date of the current job
is uniformly distributed over the length of the employment cycle up until the
termination date of this job measuring all durations in labour market time.
The intuition is simple. The current job is the maximum of all job offers
received over the course of the employment cycle. Since we have no further
information on which of these offers is the maximum, its arrival must be

3See Fredriksson, Hensvik, and Nordstrom Skans (2015), Guvenen, Kuruscu, Tanaka,
and Wiczer (2015) and Postel-Vinay and Lise (2015) for alternative approaches.
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uniformly distributed over the employment cycle. This implication allows us
to test an important assumption. If job-specific experience were important,
this result would not hold, as the likelihood of a job-to-job transition would
decline over the employment cycle (since, by switching jobs, a worker spoils
the returns of job-specific experience accumulated sofar). Surprisingly, our
empirical result do not reject the null of a uniform distribution.

We show that there is a one-to-one correspondence between the expected
wage of the current job as a function of the number of job offers and the shape
of the offer distribution. The Gumbel distribution for log wages is not rejected
against any alternative. This distribution has an unbounded upper support
with a fat tail. This runs counter to models with assortative matching with
an interior upper bound of the matching set (for example Shimer and Smith
(2000) and Gautier, Teulings, and Van Vuuren (2010)), because in these
models the offer distribution has finite upper support. Hence, sorting cannot
be the only source of variation in the offer distribution.

The structure of the model of OJS in the spirit of Burdett and Mortensen
(1998) and Bontemps et al. (2000) is very restrictive. This structure yields
strong testable implications. We test these implications using data from the
NLSY 79. We find remarkably strong support for all derived predictions. In
particular i) log wages increase logarithmically by the time elapsed between
the start of the current employment cycle and the moment that the current
job will end. ii) this logarithmic shape is (almost) constant across all em-
ployment cycles over the life-cycle of the worker, suggesting that the offer
distribution is constant over the career. iii) the two sources of variation, (a)
the individual variation in the timing of lay-off shocks, and (b) cyclical varia-
tion in the job offer arrival rate, yield a similar shape of the offer distribution.
iv) the model makes a specific prediction regarding the difference in expected
log wages for jobs ending in a lay-off and in a quit; this prediction is sup-
ported by the data. v) the starting date of a job is irrelevant for the expected
wage in that job. vi) the starting date of the current job is indeed uniformly
distributed over the length of the current employment cycle. vii) the model
implies that there is no within-job tenure profile in wages. Though we find
some return to tenure, the estimates are small.4 Point iii) and iv) imply that
the empirical distinction between quits and lay-offs in the data squares well

4Many papers, e.g. Dustmann and Meghir (2005), directly estimate the tenure profile,
treating the return to OJS as a residual item. This paper takes the opposite approach by
providing direct estimates of the return to OJS and treating the return to tenure as the
residual item
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with the difference between quits versus lay-offs in the theoretical model.
The applied theoretical framework implies that workers accept any job

offer that pays more than their current job. This framework fits the the-
oretical models of Burdett and Mortensen (1998), Bontemps et al. (2000),
Pissarides (1994) and Shimer (2006) well. It also fits well the model of se-
quential auctions by Postel-Vinay and Robin (2002). However, in that model,
wages are not simply an increasing function of productivity and they may
change over the duration of a job. Our framework can be applied to test this
characteristic, as we do in a companion paper, see Gottfries and Teulings
(2017a). Similarly, the current paper assumes that firms can adjust wages
in ongoing jobs to changes in aggregate labour market conditions. Again,
our framework can be extended to test this assumption, as we do in another
companion paper, see Gottfries and Teulings (2017b).

The structure of this paper is as follows. Section 2 develops the main
theoretical concepts and derives the relation between wages and accumu-
lated labour market experience. Section 3 presents our empirical results and
section 4 concludes.

2 The theoretical argument

2.1 Assumptions

At an arbitrary time t, during their labour market career, workers receive
job offers at a rate λt. A job offer is characterized by a log wage w, which
is drawn from a job offer distribution function F (w); F (·) is assumed to be
differentiable; F (w) will be referred to as the rank of a job offer. Without
loss of generality, we limit the offer distribution to all jobs that are acceptable
to unemployed job seekers. Lower job offers are irrelevant, as they will not
be accepted by any job seeker. As the labour market history of workers
accumulates, they receive ever more job-offers. We assume that there are no
switching cost. Hence, workers will accept any offer that pays a higher wage
than their current job. Hence, the wage in their current job is the maximum
of all wage offers that they have received in their employment cycle. Hence,
the expected wage is increasing in the accumulated labour market history.
This selection process of ever better matches continues until the worker is
laid off. We assume that this happens at a, time dependent, rate δt. Then,
the worker becomes unemployed and the selection process of job offers starts
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all over again.
This set of assumptions is consistent with the models discussed in in

Burdett and Mortensen (1998), Bontemps et al. (2000), Pissarides (1994) and
Shimer (2006). In Bontemps et al. (2000) and Pissarides (1994), a job offer
is characterized by its productivity. However, since wages are an increasing
function of this productivity in both models, we can just as well characterize
a job offer by its wage rather than by its productivity. These assumption
are also consistent with the model of sequential auctions by Postel-Vinay
and Robin (2002), with one exception: workers do accept any job offer that
is more productive than their current job, but wages are not an increasing
function of productivity in that model. Firms can increase their wage offer
at any time as to match outside offers that comes. Our methodology can
be extended to allow for this type of wage setting, which we do in Gottfries
and Teulings (2017a). Our assumptions are not consistent with the model
by Burdett and Coles (2003), where firms pay tenure profiles as to seduce
workers not to quit. In that model, workers might reject a more productive
offer, since they benefit from receiving a tenure premium in their current job,
while they have to accumulate tenure from scratch in their new job.

We refer to the time elapsing between two consecutive lay-offs as an
employment cycle (the first employment cycle starts at the beginning of a
worker’s career). Hence, a worker’s current employment cycle has started
either at the last lay-off or -for the first employment cycle- at the start of
the labour career. We normalize our measure of calendar time t such that it
takes the value 0 at the start of the first job of the current employment cycle.
Hence, as long as a worker has not experienced a lay-off, t is equal to labour
market experience as usually defined. Note that this definition of t does not
include the unemployment spell at the beginning of the employment cycle.

It is useful to define:

Λt ≡
∫ t

0

λrdr,

∆t ≡
∫ t

0

δrdr.

We refer to Λt as the labour market time elapsed since the start of the first
job of the current employment cycle, in contrast to t, which is the calendar
time since the start of the first job. While the clock of calendar time runs at
a constant rate, the clock of labour market time runs faster during a boom
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(when λt is high) than during a bust (when λt is low). We define a and b
as the start and end date of the current job respectively. Hence, Λa is the
labour market time elapsed since the beginning of the employment cycle up
until the date of the start of the current job, and Λb is the labour market
time elapsed up until the date of job termination. We define wa as the wage
offer receive at the start of the current job at time a, which is therefore equal
to the current wage. Finally, let n denote the number of job offers received
during the current employment cycle, that is, in the time interval [0, b] (so:
includeing the offer received at the start of the employment cycle at time 0
and at the end of the current job at time b, in case the current job ends by
a quit rather than a lay-off).

We assume that the job-offer arrival rate for employed job seekers λt
varies proportionally to the job-offer arrival rate for unemployed job seekers
λut:

λt = ψλut. (1)

2.2 Job duration and job transition

This section derives the pattern of job duration and job-to-job transitions
implied by the model. Since workers will always move to a better paying
job, the only relevant statistic for the transition dynamics of workers is a job
offer’s rank in the offer distribution F (w), where by construction, the rank F
is normalized such that it is uniformly distributed on [0, 1]. The proposition
below specifies the relation between the elapsed labour market times Λa and
Λb, the number of job offers n, and the of the expected rank of the current
job F .

Proposition 1 Transition dynamics

1. The expected number of job offers n in the time interval [0, b] satisfies:

E[n] = Λb + 1 if the job ends in a lay-off;

E[n] = Λb + 1 +O(Λ−1
b ) if the jobs ends in a quit.

2. For each job other than the first job of an employment cycle, Λa/Λb is
uniformly distributed on the unit interval [0, 1];

3. For jobs ending in a lay-off, the expected rank of the current job satisfies

E [F ] = 1− Λ−1
b +O

(
Λ−2
b

)
;
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4. For jobs ending in a quit, the expected rank satisfies

E [F ] = 1− 2Λ−1
b +O

(
Λ−2
b

)
.

The proof is presented in Appendix A. However, all results can be under-
stood intuitively. The first statement says that the number of job offers until
the moment of separation from the current job at time b is equal to Λb + 1.
The term Λb measures the expected number of job offers after the start of the
first job of the employment cycle until the moment of separation from the
current job, that is, the expected number of offers in the time interval (0, b).

This number follows a Poison distribution with arrival rate Λb =
∫ b

0
λtdt,

that is, the arrival rate is equal to the integral over the time interval (0, b)
of the arrival rate λt per unit of calendar time. Since the expectation of the
Poison distribution is equal to the arrival rate, the expected number of offers
during this time interval is equal to Λb. We should add one for the job offer
that yielded the first job of the employment cycle, which allowed the worker
to transition from unemployment to employment at t = 0. Since the unem-
ployed accept any job offer, we know that a job seeker transitioning from
unemployment to employment has received exactly one offer at t = 0. This
relation is exact for lay-offs. As will be explained in relation to statement 4,
the relation applies only up until a term of order Λ−1

b for quits, as the fact
that a better offer comes at time b provides information about the number
of job offers received up until time b.

The second statement states that for all jobs except for the first job of
an employment cycle, the time a of the start of the current job is uniformly
distributed over the labour market time from the start of the first job of the
cycle at time 0 until the end of the current job at time b. The intuition for
this result is that, unless a worker is still in the first job of this employment
cycle, the job that a worker holds at a particular time b is the maximum
of all job offers the worker has received in the time interval (0, b). Since
job offers arrive proportional to labour market time and since conditional on
the total number of offers received over this time interval, there is no prior
information about which of these offers is the highest offer, the arrival is
uniformly distributed over labour market time in this time interval.

The third and the fourth statements are about the expectation of the
rank of the current job, conditional on the labour market time elapsed until
the end of that job. This expectation depends on the reason for separation
from the current job: either a lay-off or a quit. First, consider the case of
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separation by means of a lay-off (see statement 3). Then, the rank of the
current job is the max of Λb+1 expected draws from the job-offer distribution
(see statement 1). The expected maximum of n+ 1 draws from the uniform
distribution is 1− (n+ 2)−1,5 which explains the result. The relation applies
only up to a term of order Λ−1

b , because we replace the actual number of job
offers n+1 by its expectation, Λb+1. By Jensen’s inequality, E

[
(n+ 1)−1] >

E[n+ 1]−1. The difference is of order Λ−2
b . Note that the difference between

(Λb + 2)−1 and Λ−1
b is also of order Λ−2

b ; hence, this difference is encompassed
in the term O

(
Λ−2
b

)
.

Next, consider the case of separation from the current job by means of a
quit (see statement 4). An easy way to calculate the max is to consider the
number of offers received up until time b, including the offer of the job to
which the worker transitions at time b. The number of offers is n+ 2. In this
case, the job that the worker holds up until time b is not the maximum offer,
but the second highest, since the offer to which the worker transits at time
b is higher (otherwise the worker would not have moved to that job). The
expectation of the second to highest job offer after n+2 offers is 1−2(n+2)−1.
Again applying E

[
(n+ 2)−1] = E[n+ 2]−1 +O

(
Λ−2
b

)
= Λ−1

b +O
(
Λ−2
b

)
yields

the result. Note that in both statements 3 and 4, E[F ] → 1 if Λb → ∞: if
the selection of ever-better offers is allowed to continue forever, the actual
rank will converge to maximum rank, F = 1.

Proposition 1 provides a framework for understanding the methodology
to test the model discussed in Section 2.1. A particularly attractive feature of
Proposition 1 is that none of its statements depend on the lay-off rate δt and
its integral over the time interval [0, t], ∆t and hence that we do not have to
worry about the covariation of λt and δt. The intuition for this result is that
a lay-off only stops the selection process in the current employment cycle. It
does not interfere with the selection process itself. Statement 3 implies that
the expected rank of the current job E[F ] depends on its termination date b,
but does not depend on its starting date a. Hence, we can ignore the value of
a in our analysis of the effect of OJS on log wages. Hagedorn and Manovskii
(2013) use a concave (logarithmic) transformation of labour market tightness
elapsed over the interval [0, a] and over the interval [a, b] (that is: they use
ln Λa and ln (Λb − Λa)) to control for match quality in their wage regression.
These measures are not sufficient statistics for the expected match quality,

5The expectation of the i-th order statistic for n draws of a uniform distribution is
i/ (n+ 1).
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since ln Λb is not a linear combination of ln Λa and ln (Λb − Λa).
Statement 3 allows an analysis of the potential role of job specific-experience

in the model. For the sake of the argument, let us assume that on-the-job
experience has a linear impact on wt:

wt = wa + βx (t− a) .

It is easy to see that the optimal strategy of the worker is no longer to quit
at time b for any job for which wb > wa. Instead, the optimal strategy is to
quit if wb > wa + βx (b− a). This statement can be generalized. Let S be
the set of arrival times s of new job offers during the current employment
cycle. Then, the job offer wa currently held by the worker satisfies

wa = arg max
s∈S

[ws + βx (a− s)] .

The worker is prepared to move to a better job only if the gain in wa offsets
the loss in job-specific experience in the previous job. The selection process
can still be described as the max over a number of draws from an offer distri-
bution, but the offer distribution is non-stationary: it gradually deteriorates
at a rate βx per unit of calendar time. Hence, labour market time spent early
in the career is more valuable for the selection process than time spent later
as job offers at that stage are more attractive since they leave a longer time
period to accumulate job-specific experience. This implies that workers will
change jobs more often early in their career than is predicted by statement
2. If the distribution of Λa/Λb is skewed to the left, this shows that job-
specific experience plays a role. Hence, the distribution of Λa/Λb provides
a test for the relevance of job-specific experience. The equations are more
complicated for the case with, rather than without, job-specific experience.
For the sake of transparency, we therefore focus the subsequent discussion on
the case without job-specific experience. Extending the theory to the case
with job-specific experience is straightforward, in principle.

2.3 Measuring match quality

2.3.1 Identifying the offer distribution

Thus far, we have made no assumptions regarding the shape of the offer dis-
tribution except for the differentiability of F (w). This section discusses how
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information of the conditional expectations can be used to identify the dis-
tribution. Proposition 2 states that the function E [wa|Λb,Lay off] identifies
the distribution F (w).

Proposition 2 Non-parametric identification If the expected maximum
from n iid draws from an distribution F (w) is finite for all n then the function
E[wa|Λb,Lay-off] non-parametrically identifies the distribution F (w).

The proof is presented in Appendix B. F (w) can be non-parametically
identified from entry wages, or the steady state distribution of wages, if wages
are perfectly measured (see Bontemps et al. (2000)). Barlevy (2008) shows
that the sequence of wage changes at job moves (sequence of record changes:
from the first to the second job, from the second to the third etc) charac-
terises the distribution up to the location parameter. In practice only the first
few wage changes can be precisely estimated as there are few employment
cycles with more than 4 jobs. Our approach uses another source of informa-
tion, namely variation in the length of the job duration measured in labour
market time (the record time in Barlevy (2008)) to estimate the distribution
more precisely. Though in theory the offer distribution is fully identified and
though our method uses more information than Barlevy (2008), this informa-
tion is still insufficient for a full identification of the distribution in practice.
In the next section we show how we can nevertheless make strong statements
about the class of distributions that is consistent with the observed pattern
of job-to-job transitions and wage growth observed in the data.

2.3.2 Measuring the expected match quality for high values of b

For sufficiently large values of b we can make strong predictions regarding
the shape of E[wa|Λb,Lay off] without knowing the exact distribution F (w).
A high value of b implies that the expected number of job offers received
since the beginning of the employment cycle is large. In that case we can
invoke Extreme Value Theory. The normalised maximum of a large number of
draws from a from a broad class of distributions converges to the Generalized
Extreme Value (GEV) distribution. Denote the maximum wn of n i.i.d.
draws from some distribution F (w) and let µn and σn be some normalizing
constants. If the distribution of wn−µn

σn
converges to a stable distribution, then

this distribution is the Generalized Extreme Value distribution. Intuitively,
the constants µn and σn ensure that the mean and variance respectively are
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well-behaved. Theorems 1.13 and 1.2.1 in De Haan and Ferreira (2007) prove
the relevant results.

The GEV distribution has three parameters: (i) ξ the shape parameter,
(ii) the scale parameter σ and (iii) the location parameter µ. The cases ξ < 0,
ξ = 0 and ξ > 0 correspond to the Weibull, Gumbel and Frechet distribution,
respectively. If the normalized maximum of a distribution converges to the
GEV distribution with ξ < 1 then the expectation of the normalised maxi-
mum converges to the expected value of the GEV distribution (see Theorem
5.3.1 in De Haan and Ferreira (2007)). Using the normalising constant σn
and µn we can find a measure of the expected match quality for large values
of n. In particular since E[wn]−µn

σn
≈E[x], where E[x] denotes the expectation

of the extreme value distribution, the following expression is a measure of
the expected match quality

E [wn] ≈ µn + σnE [x] (2)

The speed of convergence to the GEV distribution differs across distribu-
tions; it is n−1 for the exponential distribution, whereas it is much lower for
the normal distribution, only at a rate (lnn)−1. The speed of convergence
depends on the shape of the right tail of the distribution. For example, after
just four job offers, Pr (F < 0.5) = 0.0625 and E[F ] = 0.80. The left tail
of the distribution becomes irrelevant even for a low number of job offers
and only the upper deciles of the distribution matter. If these deciles fit the
Weibull, Gumbel or Frechet distribution well, then convergence will be fast.

If F is the GEV distribution then the relation is exact and the expected
value takes a particularly simple form

E [wn] =


µ+ γ + σ lnn if ξ = 0

µ+ σξ−1
[
[Γ(1− ξ)]nξ − 1

]
if ξ < 1 ∨ ξ 6= 0

∞ if ξ ≥ 1

, (3)

Var [wn] =


π2

6
σ2 if ξ = 0

Γ(1−2ξ)−Γ(1−ξ)2
ξ2

σn2ξ if ξ < 1
2
∨ ξ 6= 0

∞ if ξ ≥ 1
2

(4)

where γ = 0.577 is Euler’s constant. The variance decreases with n if
ξ < 0, increases if ξ > 0, and remains constant if ξ = 0. Similarly, the
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expectation of wn per unit increase in lnn decreases with n if ξ < 0, in-
creases if ξ > 0, and remains constant if ξ = 0. Intuitively, it is relatively
quickly to climb up a thin tailed distribution whereas it takes a long time
if the distribution if fat tailed. When F (w) follows the Gumbel distribu-
tion, F (w) = exp

(
−e−(w−µ)/σ

)
, the transformation of F (w) to the GEV

distribution G (x) is particularly simple since µn = µ+ σ lnn and σn = σ.
The formulas presented are for the case when the number of offers is fixed.

In our case, this number is stochastic, following a Poisson distribution. We
use the notation ∼= whenever the approximation E[f (n)] ∼= f(E [n]) is used6.
Propositions 1 and equation 3 can be used for the derivation of expressions
for E[wa|b,lay-off] and E[wa|b,quit]. When a job ends with a lay-off, wa is the
maximum of n+ 1 offers and E[n|Λb] = Λb; see Proposition 1. The expected
value of wa is the max of an expected number of offers equal to Λb satisfies

E [wa|b,lay-off] ∼= µ+ σ ln (Λb + 1) (5)

Figure 1 plots the expected maximum for the case of a fixed number of
offers of Λb + 1 compared to the case where the number of offers follows
a Poisson distribution. We plot the GEV distribution for values of ξ ∈
{−0.4, 0, 0.4} and the Normal distribution. The location and scale parameter
for each distribution is chosen such that the underlying job-offer distribution
F (w) has a zero expectation and a unit variance. The figure shows that the
difference between a fixed number of offers and a Poisson distributed number
is small relative to the effect of the shape of the offer distribution.

When a job ends by a quit, the distribution of wa is the the second highest
draw from n draws. The second highest draw is in turn given by the linear
combination nE[wa|n − 1] − (n − 1)E[wa|n] of the highest draw. Using the
approximation for the number of offers from Proposition 1, statement 4, and
the approximation n ∼= E [n] and the Gumbel distribution yields an appealing
result7:

E[wa|b,quit] ∼= µ+ σ ln (Λb + 1)− σ +O(Λ−1
b ). (6)

6The exact formula applies the expectation

E [wa|b] =

∞∑
0

Pr (n|b) E [wa|n] = µ+

∞∑
0

(n!)
−1

Λn
b e
−Λbσ ln (n+ 1) .

The formula in the text uses the first-order expansion E[wa|b] ∼=E[wa|E [n]].
7Where we use that n ln

(
n

n−1

)
σ = −σ +O(n−1).
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Figure 1: Expectation of the maximum as a function of the number of draws
for four distributions

Lay-offs

For large values of Λb the difference between quits and lay-offs is only a
location shifter, where the size of the shift is equal to σ. Hence, we combine
data on Λb for jobs ending in a quit or lay-off by including a dummy for jobs
that end in quits. The coefficient for this dummy should be equal to σ.

2.3.3 Measuring the expected match quality for any value of b

As we discussed before, distributions such as the Normal distribution con-
verge slowly to the GEV distribution. For such distributions using the ap-
proximations from extreme value theory provides little guidance for the val-
ues of Λb that are relevant in practice. An alternative approach is to fit
a flexible function of Λb to the conditional expectation. We illustrate this
approach for a range of distributions. For values of Λb + 1 ≤ 30, the ex-
pectation is approximated well by a second-order polynomial in ln(Λb + 1).
Figure 2 plots the expected value for lay-offs and quits as a function of Λb

for different distributions and the predicted values based on the regression
using β0 +β1 ln(Λb + 1) +β2 ln(Λb + 1)2.8 The approximation of the expected
match quality fits the conditional expectation for the different distributions

8We use 3× 106 random draws for each value of Λb to calculate the conditional expec-
tations. The conditional expectation is then regressed on β0 +β1 ln(Λb+1)+β2 ln(Λb+1)2
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very well. This is important, as it suggests a simple test for the null hy-
pothesis whereby the data is generated from a particular distribution. Each
distribution implies values for β1 and β2, which can be derived numerically.
We can then test the actual coefficients against any null hypothesis.

Figure 2: Approximation of the expected maximum

Lay-offs Quits

3 Empirical analysis

3.1 Data

We use the cross-sectional sample from NLSY79 over the years from 1979 to
2012. Since many women interrupt their working career for childbearing, a
phenomenon that is not covered in our theoretical model, we focus on males.
Similarly, since our model applies to primary jobs, the sample is restricted
to the primary jobs for men over the age of 18 who are not enrolled in full-
time education.9 We exclude job observations in cases when hours worked
per week are less than 15 and when job spells lasted shorter than four weeks

9Enrollment is not recorded in some waves in 2008, 2010 and 2012 but at this point in
the sample the respondents were in their 40s and few were enrolled in the previous waves.
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or started before 1979.10 When there are multiple jobs, the primary job is
defined as the job with highest number of hours.11 Jobs with inconsistencies
in their start and end date are adjusted or removed.12 If schooling is not re-
ported for a given month, we assign the maximum from the previous months;
if it is less than previously reported, we use the max previously reported.13

For the construction of the variable Λb, we have to categorise job termina-
tions into either quits (belonging to the same employment cycle) or lay-offs
(starting a new cycle). We follow Barlevy (2008), who define a separation
as a quit when the new job starts within eight weeks of the termination of
the previous job and the stated reason for separation was voluntary (where a
non-response is treated as voluntary).14 If two jobs overlap, we consider the
transition to be voluntary if the last job is the primary job, over the overlap-
ping period. Jobs that begin as non-primary jobs and then become primary
jobs are dropped, as are all jobs following in the employment cycle. This
definition is used to determine whether or not two consecutive jobs belong
to the same employment cycle.

Having defined employment cycles, we have to decide which jobs to in-
clude in our analysis of jobs. We exclude jobs which have not ended. Jobs end
if the worker reports that he no longer works at the job, if the job becomes
a secondary job or if the worker at an interview during the subsequent year

10If information on the number of hour’s is not available for an observation in a job spell
we assigned the average over that job spell.

11If hours are the same, the average hours for that job spell, the length of the job spell
and then the wage are used to determine which is the main job. 40 observations are
dropped where the value, for all these variables, is the same as another observation for the
individual.

12Observations missing information on the month or year when the job started or ended
were removed from the data. If the day is unknown we set it to 15. If the day reported
is greater than the number of days in the month (e.g. 31st of February), we set the day
to the last day of the month. If at the interview the worker reported that the job ended
after the interview date, we set the end date to the interview date. Jobs where the start
date is reported as being after either the interview date or the end date are dropped.

13We use the “adjusted”schooling variable.
14We deviate in our approach for cases where the worker stated ”leaving to look for

another job” . We consider a job change a quit only if the next job starts within two
weeks. A worker might have had an outside offer but quit his job to look for an even
better offer. Alternatively, the worker’s requirements for the job might have changed (e.g.
the worker has to move to another city). The first example should be classified as a quit
(hence as a continuation of the current employment cycle), while the second ends the
employment cycle.
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does not mention working for the firm during the past year. Jobs where the
worker reports being self-employed or working for a family business, or where
the hourly wage is below $1 or above $500, or where some of the covariates
are missing values are dropped from the analysis. Wages are deflated using
seasonally adjusted national CPI (CPIAUCSL).

We calculate the transition rates using the monthly CPS data. We re-
strict our analysis to a sample of males age 25-54 in order to match our
NLSY dataset and avoid moves involving voluntary participation decisions
as opposed to job-offer arrivals.15 To calculate the job-finding rate of the
unemployed, we calculate the fraction of the workers who are unemployed
less than five weeks and are employed in the next month.16 In appendix C
we discuss how we can estimate of ψ from the observed value of b in the
first and subsequent jobs. The variable Λb is the created as the sum of the
monthly job finding rate scaled by ψ. We use the non-seasonally-adjusted
unemployment rate for men 25-54 created by BLS (LNU04000061). Table 1
provides summary statistics for the variables of interest.

3.2 The distribution of job tenure

We derive an estimate for ψ from the difference in the value of Λb for the
first job in an employment cycle and for all subsequent jobs, the method is
discussed in Appendix C. From this we can derive estimates for the average
value of δt and λt over all t; ψ is equal to the ration of this calculated average
value of λt and the observed average value of λut. The latter is observed from
the monthly transitions rates from unemployment to employment in the CPS
monthly data. In table 2 we show the value of Λb in the first and subsequent
jobs together with the estimated average transition rates.

Statement 2 of Proposition 1 implies that for all jobs except the first
job of an employment cycle the labour market time at the moment of the
start of a job should be uniformly distributed over the employment cycle
up until the termination date of the job. This implies that Λa/Λb for all
jobs other than the first job of an employment cycle should be distributed

15We match the monthly CPS using variables suggested by Drew and Warren (2014).
In addition, we use race and age as extra controls.

16Due to changes to the CPS classification, the monthly files cannot be matched for
a small number of months (07/1985, 10/1985, 01/1994, 06/1995, 07/1995, 08/1995 and
09/1995). For these months we use the predicted values from a regression of the transition
rate on a linear trend, a monthly fixed effect and the current unemployment rate.
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Table 1: Summary Statistics

First Job Second Job Subsequent Jobs Total

Fraction urban 0.799 0.796 0.786 0.789
(0.418) (0.419) (0.430) (0.426)

Fraction high Edu. 0.315 0.395 0.443 0.359
(0.465) (0.489) (0.497) (0.480)

ln real hourly wage -2.840 -2.653 -2.531 -2.681
(0.540) (0.558) (0.584) (0.558)

ln(Λb + 1) 0.709 1.300 1.797 1.345
(0.598) (0.690) (0.668) (0.879)

ln(ΛTb + 1) 1.569 1.952 2.190 1.968
(0.837) (0.666) (0.582) (0.803)

ln(λb+ 1) 0.716 1.307 1.803 1.352
(0.596) (0.682) (0.660) (0.874)

Individuals 2572 1470 607 2582
Jobs 12623 2254 991 15868
Observations 33386

Notes: For the columns First job, Second job and Subsequent jobs, only the
first observation for each job is used. For the Total column, all observations
are included. Standard deviations are in parentheses. High Edu. refers
to more than 12 years of education. Tb refers to the sum of all previous
employment cycles up until the end of the current job. Individuals refers to
the number, in our sample, without missing values of individuals.

Table 2: Transition rates

E
[
Λb|1st job in emp.cycle

]
= 1.6,

E[Λb|subsequent jobs] = 4.6.

λu = 0.40
λ = 0.08
δ = 0.02
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uniformly. Figure 3 presents the histogram of Λa/Λb, separately for low- and
highly educated workers. The actual distributions fit the uniform distribution
remarkably well. If job-specific human capital had played a major role, the
distribution would have been downward sloping. There is no evidence of that,
except for the last decile of the distribution, where the density function falls
sharply. The latter can be explained by the fact that we ignore jobs lasting
less than four weeks. For example, if the employment cycle at the termination
date of the current job has lasted for two years, Λa/Λb can never be above
23/24 = 0.958. To test this more formally, we run the test separately for
b < 2 years and b ≥ 2 years; see Figure 3. The sample for b ≥ 2 year exhibits
a much smaller decline of the density function, and the decline starts at a
higher point in the distribution. Performing a Kolmogorov-Smirnov test for
the null hypothesis on all data we reject the null of a uniform distribution
the 1% level. If we restrict the sample to Λa/Λb ∈ [0.05, 0.95] in order to deal
with the censoring at the extremes of the distribution, we can not reject null
hypothesis at the 10% level.

Figure 3: Test of the arrival rate of the maximum

By Skill By Employment Length

These results provide a strong and unexpected confirmation of the simple
theoretical model of OJS that we apply. We had expected that job-specific
human capital would play an important role, leading to a negative duration
dependence in the job-to-job transition rate, even after controlling for the
initial match quality wa. Our results show the opposite.
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3.3 The shape of the offer distribution

The uniform distribution of Λa/Λb justifies the application of Proposition 3
for the analysis of the evolution of the match-specific component in log wages
over the employment cycle. This section presents the tests of the model as
well as an estimate for the shape of the offer distribution. Worker i’s log
wage at time t, denoted w̄it, satisfies

w̄it = βi + β′Xit + wia + εit, (7)

where βi is a worker fixed effect measuring unobserved general human capital,
Xit is a vector measuring observed general human capital obtained by either
education or work experience, a is the time at which the worker started in
her current job, wia measures the component of wages that is specific to the
current job, and εit is a random variable. The three components βi+β

′Xit, wia
and εit are mutually uncorrelated. For the moment, we abstract from job-
specific work experience. Taking expectations conditional on Λb we obtain
the expression

w̄it = βi + β′Xit + E[wia|Λb] + νia + εit, (8)

where νia ≡ wia−E[wia|Λb]. We estimate the above equation where we include
in the vector Xit tenure and experience up to a third order (with interactions)
and quadratics in years of education and time (measured in months), as well
as dummies for region, marriage, and urban versus rural location. We add
the unemployment rate as a proxy for the effect of general labour market
conditions on wages as well as a dummy for jobs that end in a quit in order
to correct for the difference in expected job quality for jobs ending by a quit
or a lay-off (see Proposition 1). Standard errors are clustered at the job level.

Our model is inconsistent with a return to tenure, since it would imply
that the match-specific term wia is non-constant over the duration of the job.
If there would be a deterministic tenure profile in wages as in Burdett and
Coles (2003), then the optimal strategy of workers would no longer be to
accept each job offering a higher value of wia than in the current job. The
results on the distribution of Λa/Λb presented in the previous section suggest
that job-specific returns are irrelevant. Nevertheless, we include this third-
order polynomial to test this prediction. As discussed in the introduction
of the paper, our framework can be extended to test for the presence of a
stochastic return to tenure that which characterizes the sequential auction
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Table 3: Test for the measure of match quality

All Data Low-Edu. High-Edu.

ut -0.011∗∗∗ -0.014∗∗∗ -0.008∗∗∗

(0.002) (0.002) (0.003)

ln(Λb + 1) 0.116∗∗∗ 0.106∗∗∗ 0.123∗∗∗

(0.012) (0.015) (0.021)

ln(Λb + 1)1(First) -0.023∗ -0.024 -0.005
(0.012) (0.015) (0.021)

ln(Λa) 0.002 -0.012 0.020∗

(0.007) (0.008) (0.011)

First job 0.016 0.023 -0.015
(0.019) (0.023) (0.034)

Observations 33386 20885 11722
R2 0.645 0.565 0.675

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

model by Postel-Vinay and Robin (2002). We do this in a companion paper,
see Gottfries and Teulings (2017a).

Conditional on ln (Λb + 1) and if it is the first job the start date of the
current job provides no further information. In table 3 we test this prediction
by including ln(Λa), with value zero for first jobs. The coefficient on ln(Λa)
is small and only significant at the 10% level.

Proposition 2 shows that the function E[Λb,Lay-off] non-parametrically
identifies the distribution. We create 20 bins based on the value of ln(Λb +
1) such that each has equal number of observations. We create dummy
variables for each bin and regress the log wage on the controls and the dummy
variable. The coefficients, together with estimated standard deviations, for
the different dummies from the regressions are presented in Figure 4. The
results show that the conditional expectation is approximated well by a linear
function in ln (Λb + 1) as would be the case if the data were generated by the
Gumbel distribution.

We perform a separate test for the Normal, Gumbel, Uniform and Expo-
nential distribution. From Figure 2 we take the coefficients from the poly-
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Figure 4: Test for the shape of the distribution

nomial in ln(Λb + 1) to create the conditional expectation of the distribution
denoted E[wa|Dist,Λb]. We then run a regression using E[wa|Dist,Λb] and
ln(Λb + 1)2 as explanatory variables. Under the null hypothesis, that the
data came from a particular distribution, the coefficient of ln(Λb+1)2 should
be zero. The results appear in table 4. The null-hypothesis of the offer dis-
tribution being uniformly distribution is clearly rejected whereas the other
distributions are not rejected.

The rejection of the uniform distribution has an important theoretical im-
plication. It rules out pure sorting models with assortative matching, where
matching sets are convex in the type space and the best match is an interior
maximum over this set (e.g. Shimer and Smith (2000) and Gautier et al.
(2010)). An interior maximum implies that the upper support of the dis-
tribution should be finite. The estimation results are inconsistent with this
prediction. Though there is empirical support for this type of sorting (see
Gautier and Teulings (2015)), sorting cannot be the full story. In all sub-
sequent regressions, we use the Gumbel distribution and hence logarithmic
transformation of Λb + 1.
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Table 4: Test for the distribution

Normal Normal Gumbel Gumbel Uniform Exponential

ut -0.012∗∗∗ -0.012∗∗∗ -0.012∗∗∗ -0.012∗∗∗ -0.012∗∗∗ -0.012∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

E[w|Dist,Λb] 0.160∗∗∗ 0.141∗∗∗ 0.135∗∗∗ 0.138∗∗∗ 0.117∗∗∗ 0.117∗∗∗

(0.008) (0.019) (0.007) (0.021) (0.016) (0.022)

ln(Λb + 1)2 0.005 -0.001 0.012∗∗∗ 0.001
(0.004) (0.006) (0.003) (0.006)

Observations 33386 33386 33386 33386 33386 33386
R2 0.645 0.645 0.644 0.644 0.645 0.644

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Regressions of the logarithm of the real wage on the conditional expectation
for different distributions.

3.4 Further tests of the OJS model

This section presents some tests of the detailed implications of the model for
the evolution of wages over the career of a worker, maintaining the assump-
tion that job offers are generated by a Gumbel distribution. All regressions
that we run for this purpose are done separately for low- and highly ed-
ucated workers. Across all regressions, the effect of OJS tends to be one
and half times bigger for high- rather than low-educated workers. For the
sake of comparison with the literature, we report the value of the coefficient
for the unemployment ut for all regressions. This coefficient is remarkably
stable across all specifications and all subgroups at a value of about −0.01:
one percentage point increase in unemployment reduces real wages by one
percent.

Our first test checks whether the coefficient σ for ln (Λb + 1) is stable
across subsequent employment cycles, as is predicted by the model. The ta-
ble provides a test for the role of the two different sources of identification.
In Table 13, this coefficient is allowed to be different for the different em-
ployment cycles, e.g. the first cycle of the career starting at labour market
entry versus subsequent cycles after lay-offs. The results provide strong sup-
port for the prediction that σ is stable across employment cycles. Though
the coefficient for ln(Λb + 1) is somewhat lower for later cycles, the order
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Table 5: Estimation for the different employment cycles

All Data Low-Edu. High-Edu.

ut -0.012∗∗∗ -0.014∗∗∗ -0.008∗∗∗

(0.002) (0.002) (0.003)

ln(Λb + 1)1(cycle = 1) 0.119∗∗∗ 0.093∗∗∗ 0.150∗∗∗

(0.011) (0.013) (0.018)

ln(Λb + 1)1(1 < cycle ≤ 4) 0.118∗∗∗ 0.088∗∗∗ 0.149∗∗∗

(0.006) (0.007) (0.010)

ln(Λb + 1)1(4 < cycle ≤ 7) 0.103∗∗∗ 0.095∗∗∗ 0.115∗∗∗

(0.007) (0.009) (0.014)

ln(Λb + 1)1(7 < cycle) 0.066∗∗∗ 0.071∗∗∗ 0.072∗∗∗

(0.009) (0.010) (0.019)

Quit -0.042∗∗∗ -0.056∗∗∗ -0.014
(0.007) (0.008) (0.013)

Observations 33386 20885 11722
R2 0.645 0.565 0.676

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

of magnitude is the same and the coefficient is highly significant for each
cycle. This is a strong confirmation of our model. In Appendix D we present
separate estimates for each of the first eight cycles. These results yield the
same conclusion.

Table 13 provides a further test of the model. Jobs ending by a quit
should pay less than jobs ending by a lay-off, since the arrival of a better
offer (which is required for a worker willing to quit) signals that —other
things equal— the current job has a relatively low wage. Our theoretical
derivation shows that this affect is of order σ. Our results show indeed that
jobs ending in a quit pay less, though the effect smaller is than σ.

For our next test we check whether the coefficient σ for ln (Λb + 1) is sta-
ble across experience, as is predicted by our model. We interact the measure
of match quality with the level of experience to test if the scale parameter is
stable across the career. The test does not reject the null when we combine
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Table 6: Estimation by level of experience

All Data Low-Edu. High-Edu.

ut -0.011∗∗∗ -0.014∗∗∗ -0.008∗∗∗

(0.002) (0.002) (0.003)

ln(Λb + 1) 0.094∗∗∗ 0.100∗∗∗ 0.105∗∗∗

(0.008) (0.010) (0.014)

exp ln(Λb + 1) 0.001 -0.002 0.004∗∗∗

(0.001) (0.001) (0.001)

Observations 33386 20885 11722
R2 0.645 0.565 0.675

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

low and highly educated workers, but it rejects it when the high skilled are
analyzed separately. The regression results suggests that the scale parame-
ter decreases with experience and age for the low-educated workers whereas
it increases for the highly educated. A one standard deviation increase in
experience (about 6.5 years) raises σ by about 25% for the high educated.

Our model assigns a clear role to lay-offs. After a lay-off, the job search
process has to start all over again from the lowest rung of the job ladder.
Suppose that this were not true, but that the returns to search accumulate
during the career, irrespective of the lay-off of a worker. Then, the estimated
effects of the log number of offers during this employment cycle, ln(Λb + 1),
is just a proxy for the omitted variable, the log number of offers accumulated
during the whole career, ln(ΛTb + 1). The latter is correlated to ln(Λb + 1)
by construction, since both variables are equal during the first cycle. To test
this, we run a regression including both variables, see Table 7. For both low-
and high-educated workers, the number of offers during the current cycle
turns out to be the most important and highly significant, although for the
low-educated the number of offers during the whole career matters, as well.
This might be explained by misclassification of the reason for separation.
If some quits are classified as lay-offs, we would expect ln (ΛTb + 1) to be
positive, even if the OJS model was correct.

In Table 8 we include —next to ln(Λb+1)— the variable ln(λb+1), where
λ measures the average number of offers per unit of calendar time and where
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Table 7: Robustness test for OJS

All Data Low-Edu. High-Edu.

ut -0.012∗∗∗ -0.015∗∗∗ -0.008∗∗∗

(0.002) (0.002) (0.003)

ln(Λb + 1) 0.094∗∗∗ 0.065∗∗∗ 0.144∗∗∗

(0.008) (0.010) (0.015)

ln(ΛTb + 1) 0.024∗ 0.050∗∗∗ -0.020
(0.013) (0.016) (0.023)

Observations 33386 20885 11722
R2 0.645 0.565 0.675

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

b measures calendar time in the current employment cycle. Hence, Λb and
λb measure the time elapsed during the same interval, but using different
clocks, labour market time in the case of Λb and calendar time in the case of
λb. By entering ln(Λb+1) and ln(λb+1) simultaneously, we can test whether
labour market time is indeed the relevant variable, as our model predicts. In
the same spirit, we run regressions where we only include the calendar time
of an employment run, ln(λb+ 1), to test whether the variation in the length
of employment cycles due to the random arrival of lay-offs alone can identify
the effect of OJS on wages.

Columns 1-3 report the results with both calendar- and labour market
time. Labour market time outperforms calendar time. The coefficients on
calendar time have a negative sign, though it is only significant when com-
bining low- and highly educated workers and the standard errors are very
large. Columns 4-6 report the results with only calendar time. This yields
similar estimates for σ as when one only includes labour market time; the
coefficient on ln(λb+1) varies between 0.10 and 0.15. Hence, both sources of
variation, the random arrival of lay-offs and the business cycle fluctuations
in the job-offer arrival rate, can separately identify the effect of OJS - and
they both yield estimates for σ of similar magnitude.

In Table 9 we estimate the variance of match quality separately for the
rural and urban samples. The variance is greater for those working in the
city, in particular for highly educated workers. This is consistent with models
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Table 8: Robustness test for OJS

Calendar and labour market time Only calendar time

All Data Low-Edu. High-Edu. All Data Low-Edu. High-Edu.
ut -0.010∗∗∗ -0.013∗∗∗ -0.007∗∗ -0.013∗∗∗ -0.015∗∗∗ -0.010∗∗∗

(0.002) (0.002) (0.003) (0.002) (0.002) (0.003)

ln(Λb + 1) 0.265∗∗∗ 0.203∗ 0.254
(0.092) (0.111) (0.172)

ln(λb+ 1) -0.161∗ -0.117 -0.120 0.104∗∗∗ 0.086∗∗∗ 0.134∗∗∗

(0.092) (0.111) (0.173) (0.005) (0.006) (0.010)
Observations 33386 20885 11722 33386 20885 11722
R2 0.645 0.564 0.675 0.644 0.564 0.675

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 9: Estimation for subgroups

Low-Edu. High-Edu.

Rural Urban Rural Urban

ut -0.010∗∗ -0.015∗∗∗ 0.003 -0.010∗∗∗

(0.004) (0.002) (0.009) (0.004)

ln(Λb + 1) 0.073∗∗∗ 0.074∗∗∗ 0.020 0.138∗∗∗

(0.016) (0.008) (0.039) (0.013)

Observations 3786 13589 1124 8036
R2 0.584 0.571 0.705 0.666

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

with returns to scale in job search where search intensive activities are located
in cities (see Gautier and Teulings (2009) and Elliott (2014)).

As discussed in Section 2.1 (see statement (3) and (4)), the expected
productivity of a match depends on whether it ends with a quit or a lay-
off. The difference in intercept should be equal to σ. As a further test
we run the regressions of wages on labour market history for both groups
separately. Table 10 reports the results, allowing the intercept and slope to
be different for workers subsequently moving into unemployment compared
to those that move to another job. As suggested by the theory, the difference
in the coefficient for ln (Λb + 1) is small. The difference in means captured
by the dummy for quits is close to the estimate of σ.
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Table 10: Regressions using the reason for separation

All Data Low-Edu. High-Edu.

ut -0.011∗∗∗ -0.015∗∗∗ -0.008∗∗

(0.002) (0.003) (0.004)

ln(Λb + 1)1(Fired) 0.079∗∗∗ 0.075∗∗∗ 0.097∗∗∗

(0.009) (0.010) (0.019)

ln(Λb + 1)1(Quit) 0.104∗∗∗ 0.080∗∗∗ 0.121∗∗∗

(0.009) (0.012) (0.016)

Quit -0.125∗∗∗ -0.101∗∗∗ -0.114∗∗∗

(0.015) (0.017) (0.034)

Observations 18990 11840 6730
R2 0.707 0.607 0.747

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Conditional on the number of offers, the variance of wages is constant for
the Gumbel distribution. However, the actual number of offers conditional
on its expectation is random, following a log Poisson distribution. The vari-
ance of the log number of offers is approximately (Λb + 1)−1 (this is discussed
in relation to equation (9)). To test this prediction, we regress the squared
residuals of the wage regression on individual controls and (Λb + 1)−1. Since
this squaring of the residuals yields a heavily right tailed distribution, we
exclude the largest 5% of the squared residuals to reduce the impact of out-
liers. The results appear in Table 11. We find a positive coefficient, as
suggested by the theory. The variance of wages is highest at the beginning
of an employment cycle, since the sensitivity of the worker’s wage to an ad-
ditional wage offer is higher in the beginning of a new employment cycle. If
the job offers are Poisson distributed we would expect the coefficient to be
equal to σ2 ∼= 0.01− 0.02. The estimated coefficient is about twice as large.
This indicates that the distribution might be thinner tailed than the Gumbel
distribution, since then the variance of wages conditional on the number of
offers n is decreasing in n (see equation 4).
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Table 11: Regressions for the variance of wages

All Data Low-Edu. High-Edu.

(Λb + 1)−1 0.027∗∗∗ 0.017∗∗∗ 0.043∗∗∗

(0.003) (0.003) (0.005)

Observations 31717 19841 11136
R2 0.026 0.021 0.043

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

3.5 Applications of the OJS model

We can use this framework to analyse the contribution of job search to wage
dispersion. The variance of log wages can be decomposed into three orthog-
onal components: (i) observed and unobserved general human capital, (ii)
random shocks, and (ii) match quality:

Var [w̄it] = Var [βi + β′Xit + εit + wia] .

The latter term can be further decomposed in three orthogonal terms: (i) the
length of the current employment cycle until the end of the current job Λb

(i.e. variation due to the random arrival of lay-off shocks), (ii) the number
of job offers received, conditional on Λb, and (iii) conditional on the number
of offers received, the distribution the maximum wage offer. For the case of
the Gumbel distribution, we obtain a particularly simple formula:

Var [wia] = Var [E [wia|Λb]] + E [Var [lnn|Λb]]σ
2 + Var [wia|n] (9)

∼=
(

Var [ln(Λb + 1)] + E
[
Λ−1
b

]
+
π2

6

)
σ2,

where π = 3.14. We apply the first-order approximation for the variance of
the log Poisson distribution.17 Furthermore, we use Var [wia|n] = π2

6
σ2; this

expression does not depend on n for the Gumbel distribution (see equation
(4)). Estimates for the first two terms can be obtained from the data. The

17

Var [lnn|Λb + 1] ∼=
(
d ln E [n]

dE [n]

)2

Var [n|Λb + 1] =
Λb

(Λb + 1)2
= Λ−1

b +O
(
Λ−2
b

)
,

since Var [n|Λb + 1] = Λb and E[n] = Λb + 1.
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value of σ is derived from the estimation of equation (5). We can use our
estimate of σ to calculate the contribution of OJS to the wage dispersion (see
equation (9)). We apply a benchmark estimate of the coefficient σ of 0.10
and use the variance of ln (Λb + 1) from Table 1. We obtain the following
result:

Table 12: Variance decomposition

Var[E [lnn]] Var [ln(Λb + 1)]σ2 0.0075
Var[lnn|E [lnn]] E

[
Λ−1
b

]
σ2 0.0016

Var[wia|n] π2

6
σ2 0.0176

Var[wia]
(

Var [ln(Λb + 1)] + E
[
Λ−1
b

]
+ π2

6

)
σ2 0.0266

Var[wit] 0.2970
Share Var[wia] /Var[wit] 9%

The model can also be applied for the calculation of the expected wage
loss after lay-off by comparing the wage in the job from which the worker is
fired and in the first job after the lay-off. This is equivalent to comparing
the expected wage in the last job of the current employment cycle (for which
E[n] = Λb + 1) with the expected log wage in the first job of the new em-
ployment cycle (for which n = 1). Using the average value of δt and λt the
expected loss in log wages can be calculated as

E [wia|Λb]− E [wia|Λb = 0]

=

∫ ∞
0

Pr (t)σ ln (λt+ 1) dt = −σ exp (δ/λ) Ei(−δ/λ) (10)

since Pr (t) = δ exp [−δt]. The result from Table 10 provides an estimate
for the relation between the experience level of the worker and the wage loss
associated with separation. The result suggests that doubling the labour
market history increases this wage loss by 8%. Using the steady-state distri-
bution of experience, we derived a simple expression (equation (10)) for the
average wage loss in terms of just two parameters, λ/δ and σ. λ/δ measures
the job-offer arrival rate relative to the rate of separation. If this ratio is
high, workers receive more offers on average before they exogenously sepa-
rate. The higher is λ/δ, the better are the outstanding matches compared to
the average match of a worker coming out of unemployment. σ measures the
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scale of the distribution. For a given drop in match quality, the loss in wages
increases in σ. Using σ = 8% and our estimate of λ/δ ∼= 4, yields an average
wage loss of about 11%. In addition, our estimates suggest that the offer
distribution is fat-tailed, which means that the earnings losses are persistent.
Our estimate of 11% is smaller than the empirical estimates of earnings losses
following mass displacement (Jacobson et al. (1993) and Davis and Wachter
(2011)), but these studies restrict analysis to high tenured workers who on
average have a higher match quality. Davis and Wachter (2011) emphasize
the importance of the labour market conditions at the time of separation.The
job-arrival rates vary roughly by a factor of two: the simple model with OJS
therefore results in an earnings loss that is twice as persistent in recessions.

The increase in workers wages over the life cycle has several potential ex-
planations. We seek to decompose the increase into three components: (i) the
accumulation of general human capital; (ii) a pure tenure profile in wages;
and (iii) the selection into better matches due to OJS. We do this by (i)
calculating an “total” increase in wages with experience without controlling
for tenure or match quality (ii) estimate increase in wages with experience
controlling for the returns to tenure (iii) estimate increase in wages with
experience controlling for the returns to tenure and OJS. If we change the
order of the decomposition the result remains the same. We use our method-
ology for estimating the return to OJS and making this decomposition. First,
we obtain the total experience profile by running a wage regression with a
fourth-order polynomial in experience with the same controls as in all of our
previous regressions, but omitting ln(Λb + 1) and the polynomial in tenure.
We use the estimated coefficient on the polynomial in experience to gener-
ate a predicted experience profile. This gives the total return to experience.
The estimated tenure profile would be upward biased if we do not control for
match quality due to survival bias. In order to quantify the contribution of
tenure to the experience profile, we need an unbiased estimate of the tenure
profile. First we derive an unbiased tenure profile, which we then use to
correct for the effect of tenure on the experience profile. Regressing wages on
match quality ln(Λb+1), controls, and correcting for tenure and experience up
to a fourth-order polynomial yields us an estimate of the pure tenure profile.
For each observation we subtract from the wage the predicted contribution
of tenure. We regress the tenure-corrected wage on a fourth-order polyno-
mial in experience and controls. The predicted experience profile includes
the returns to OJS and the pure returns to experience. The gap between
this experience profile and the total experience profile is the contribution of
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tenure to the experience profile. Finally, we get the pure experience profile
by regressing wages on fourth-order polynomials in experience and tenure
including ln(Λb + 1). The estimated coefficients on the polynomial yields the
pure experience profile. These estimates appear in Figure 5. The return to
OJS explains a large part of the total return to experience, (some 30%), and
results in a much flatter experience profile. The contribution of tenure to the
total return to experience is small.

Figure 5: Experience Profile with and without controlling for OJS

Low Edu. High Edu.

We perform a similar decomposition for the tenure profile. First, we
obtain the total return to tenure by running a wage regression with the
standard controls and fourth-order polynomials in experience and tenure but
omitting ln(Λb+1). Next, we run the same regression, but include ln(Λb+1).
The tenure profiles derived from both regressions appear in Figure 6. The
results suggest that most of the raw tenure profile is due to survival bias. This
result explains why we find that Λa/Λb is uniformly distributed. The return
to job-specific experience and the true tenure profile in wages are apparently
not that important.

Job-offer arrival rates differ between individuals. Some job seekers receive
offers frequently, while others have to wait a long time. As a robustness
check, we investigate how our analysis should be adapted when the job-offer
arrival rate depends on time-invariant observable human capital of the job
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Figure 6: Tenure Profile with and without controlling for OJS

Low Edu. High Edu.

seeker, denoted Xi.
18 We assume that the arrival rate follows the well-known

proportional hazard model: λt exp
(
θ′X̃i

)
, X̃i is the deviation of Xi from its

mean; exp
(
θ′X̃i

)
is the baseline hazard rate, and θ is a parameter vector.

Compared to equation (5), we should replace Λb by Λb exp
(
θ′X̃i

)
. Again,

focusing on the Gumbel distribution for the sake of convenience, we obtain

E[wia|Λb] ∼= E[wia|E [n|Λb]] = µ+ σγ + σ ln
[
Λb exp

(
θ′X̃i

)
+ 1
]

= µ+ σγ + σ ln
[
Λb + exp

(
−θ′X̃i

)]
+ σθ′X̃i

∼= µ+ σγ + σ ln (Λb + 1) + σθ′X̃i +O (Var [Xi]) .

Differences in the job-offer arrival rate between individuals are therefore ab-
sorbed in the fixed effects up to a term of order Var[Xi]. As long as the
coefficient of variation of Xi is small relative to Λb, variation in the hazard
rate is absorbed in the term βi in equation (8).

18In the current specification, Xi can include the fixed worker effect βi; it cannot include
experience, since then λt would depend on time not only due to the business cycle but
also due to the return to experience.
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4 Conclusion

No single structural model will be able to fully explain the empirical pattern
of job-to-job transitions and wage-dynamics. Too many mechanisms play a
role for all of them to be captured in a single structural framework. From that
perspective, the results presented in this paper are surprising. We posited the
simple common framework used in Burdett and Mortensen (1998), Bontemps
et al. (2000), and Shimer (2006), with common job offer arrival and job
destruction rates where workers accept any offer that pays more than their
current job. This simple structure has many testable implications both for
wages and job durations. Reiterating the main implications: the selection
process proceeds at the same speed during subsequent employment cycles, a
lay-off restarts the selection process, jobs pay lower wages when ending in a
quit rather than a lay-off, and the duration of the current job is uniformly
distributed over the length current employment cycle. Apart from some
minor deviations, these implications have all been confirmed by the data. In
particular the confirmation of the final implication -the uniform distribution
of the job duration over the current employment cycle- came as a surprise.
One would expect the quit rate to go down over the duration of a job by
workers acquiring firm specific human capital or by tenure premiums paid by
firms as a retention bonus, see Burdett and Coles (2003), implying that the
current job is more likely to have started in the beginning rather than the
end of the current employment cycle.

Our empirical inference is based on a rigorous derivation of the model’s
implications for the distribution of job durations over the course of an employ-
ment cycle and the implications for the expected quality of a job at different
points during the employment cycle. We have shown that the length of the
employment cycle at the moment that a job ends is a sufficient statistic for
the expected quality of a job. Surprisingly, the starting date of a job does
not provide any additional information. We show that one has to correct
for the difference between jobs ending by a quit rather than a lay-off, since
an ending by a quit reveals that still better jobs were available, which is a
negative sign on the quality of the current job. Our methodology allow us to
estimate the contribution of OJS to the dispersion of wages. Search frictions
explain 9% of wage dispersion.

Our method allows inference about the shape of the wage offer distribu-
tion. Though many distribution are consistent with the data, our results rule
out the uniform distribution, and a fortiori distributions where the density
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reaches a maximum at its upper support. This is important as it implies
that search frictions cannot be fully ascribed to sorting models in which the
optimal assignment is an interior point of the matching set, as Shimer and
Smith (2000) and Gautier et al. (2010), since these models yield a peak in
the density at its upper support. Hence, sorting can only offer a partial
explanation for the wide dispersion of the wage offer distribution.

The assumptions applied in this paper are consistent with the models by
Burdett and Mortensen (1998), Bontemps et al. (2000), Pissarides (1994) and
Shimer (2006), but not with the sequential auctioning model by Postel-Vinay
and Robin (2002). We assume that wages within a job increase only due to
general human capital, not as a result of receiving outside offers that drive up
the wage as in Postel-Vinay and Robin (2002). However, since the transition
dynamics of both models are the same (workers accept any job offer that is
”better” than their current job), our methodology can be easily adapted to
encompass this wage determination mechanism and to test its implication, as
we do in accompanying paper, see Gottfries and Teulings (2017a). Similarly,
our methodology can be adapted to investigate how wages respond to cyclical
fluctuations in the job offer arrival rate, as we do in another paper, see
Gottfries and Teulings (2017b).

Given the robustness of the support for the basic framework, OJS is of
first order importance for any model of the labour market. There might
be learning as in Moscarini (2005), there might be adverse selection as in
Gibbons and Katz (1991), but as a first order approximation one does not
make a big mistake by focusing on the process of gradual selection into better
matches over the course of an employment cycle and the restart of this process
after a lay-off. A macro model for the labour market that accounts for this
process is likely to have the first order phenomena right.
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A Proof of Proposition 1

1. The expected number of job offers n in the time interval [0, b]:

Define k to be the number of job offers in the time interval (0, b).

(a) Consider the case of a job ending by a lay-off. By definition, the
worker receives one offer at time 0, since at that time he transits
from unemployment to employment. The probability of an offer
exactly at time b has measure zero. Hence, k = n − 1. The
distribution of k conditional termination via a lay-off at time b
and Λb is

Pr(k|Λb, lay-off at b) =
Pr(k,lay-off at b|Λb)

Pr(lay-off at b|Λb)

= Pr(k|Λb)
Pr(lay-off at b|k,Λb)

Pr(lay-off at b|Λb)
= Pr(k|Λb).

where the final equality uses that the separation shock is indepen-
dent of the number of previous offers. k follows a Poisson distribu-
tion with parameter Λb. Since the expectation of this distribution
is Λb, we have

E [n] = 1 + Λb.

(b) Consider the case of a job ending by a quit. Again, by definition,
the worker must have receive an offer at time 0. However, in
this case the worker must also have received an offer at time b,
for otherwise he could not have quited for a better job. Hence,
k = n − 2. Conditional on the arrival of an offer at time b, the
probability that this offer leads to a quit is n−1, since for this
offer to lead to a quit, it must be the highest of n offers and since
all i.i.d. draws in a sequence of n are equally likely to be the
maximum. The distribution of k conditional termination via a
lay-off at time b and Λb is

Pr(k|Λb, quit at b) =
Pr(k, quit at b|Λb, offer at b)

Pr(quit at b|Λb, offer at b)

= Pr(k|Λb)
Pr(quit at b|k,Λb, offer at b)

Pr(quit at b|Λb, offer at b)

=
Λk
be
−Λb

k! (k + 2)
Pr(quit at b|Λb, offer at b)−1.
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using Pr(k|Λb,offer at b) = Pr(k|Λb). Hence

E[k + 2|Λb, quit at b] =

(
∞∑
k=0

Λk
b

k! (k + 2)

)−1 ∞∑
k=0

Λk
b

k!
=

Λ2
b

Λb − (1− e−Λb)

= Λb + 1 +O(Λ−1
b ).

2. Λa/Λb is uniformly distributed on the unit interval [0, 1]:

The probability that the length b of a worker’s employment cycle ex-
ceeds t and that his job has a rank less than F satisfies

Pr (F ≤ F, b > t|t) = F × exp [−Λt (1− F )−∆t] , (11)

The first factor F is the probability that the first offer of the employ-
ment cycle at time 0 is less than F , while the second factor is the
probability that now offer higher than F has come in during the time
interval (0, t). Conditional on the starting date of the job a and its
rank F , the end date b satisfies

Pr(b|F, a) = [λb (1− F ) + δb]× (12)

exp [− (Λb − Λa) (1− F )− (∆b −∆a)] .

The joint density of a, b, F is the product of four probabilities: (i) the
probability that there is an offer at a, which is λa; (ii) the probability
that this offer has rank F , which is unity since F is uniformly dis-
tributed; (iii) the probability that there has been no prior offer greater
than F conditional on a; and (iv) the probability that this job ends at
b conditional on F and a. Equation (11) for t = a gives the probability
(iii). Equation (12) gives probability (iv). Hence

Pr(F, b, a) = Pr (offer at a) Pr (F |offer at a) Pr (F < F, b > a|a) Pr(b|F, a)

= λaF exp [−Λb (1− F )−∆b] [δb + λb (1− F )] .

Integrating over F and dividing by the probability of b gives

Pr(a|b) = λaC3(b)−1.

Since a ∈ [0, b], C3(b) =
∫ b

0
λada = Λb. The distribution of a is therefore

Pr(a ≤ a|b) =
Λa

Λb

.

Λa/Λb is therefore uniformly distributed.
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3. Expected rank for jobs ending in a lay-off:

Pr (F |Λb, lay-off at b) =
Pr (F, lay-off at b|Λb)

Pr (lay-off at b|Λb)

= Pr (F |Λb)
Pr (lay-off at b|Λb, F )

Pr (lay-off at b|Λb)
= Pr (F |Λb) ,

where we use the fact that the probability of a lay-off at b is independent
of the value of F in the last equality. The cumulative distribution
function of F conditional on the initial offer at time 0 and Λb is

Pr (F ≥ F |Λb) = F exp [−Λb(1− F )] .

Hence
Pr (F |Λb) = (ΛbF + 1) exp [−Λb (1− F )] . (13)

Using this, the expectation of F can be written as

E(F |Λb) =

∫ 1

0

F (ΛbF + 1) exp [−Λb (1− F )] dF

= 1− Λ−1
b + Λ−2

b [1− exp (−Λb)] = 1− Λ−1
b +O

(
Λ−2
b

)
.

4. Expected rank for jobs ending in a quit:

Pr (F |Λb, quit at b) =
Pr (F, quit at b|Λb)

Pr (quit at b|Λb)

=
Pr (F |Λb) Pr (quit at b|Λb, F )

Pr (quit at b|Λb)

By equation (13) and since Pr (quit at b|Λb, F ) = λb (1− F ), the con-
ditional distribution is therefore

Pr (F |Λb, quit at b) = C−1
4 (1− F ) (ΛbF + 1) exp [−Λb (1− F )] ,

where

C4 =

[∫ 1

0

(1− F ) (ΛbF + 1) exp [−Λb (1− F )] dF

]−1

= Λ−1
b

(
1− Λ−1

b [1− exp (−Λb)]
)
.

The expected match quality is

E(F |Λb, quit at b) = C−1
4

∫ 1

0

F (1− F ) (ΛbF + 1) exp [−Λb (1− F )] dF

= 1− 2Λ−1
b +O

(
Λ−2
b

)
.
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B Proof of proposition 2

The distribution of the number of offers given a lay off is

Pr(n|Λb,Lay-off) =
Λn−1
b e−Λb

(n− 1)!
.

The expectation given Λb can therefore be written as

E [w|Λb,Lay-off] =
∞∑
n=1

Λn−1
b e−Λb

(n− 1)!
wn.

where wn the expected maximum from n draws. First we prove that the
function E[w|Λb,Lay-off] characterises the sequence wn. This equation holds
identically for all Λb. Hence, its derivative with respect to Λb should also
apply. Multiplying both sides by eΛb and taking the kth derivative yields

eΛb

[
k∑
i=0

k!

(k − i)!i!
∂iE [w|Λb,Lay-off]

∂Λi
b

]
=

∞∑
n=k+1

Λn−k−1
b

(n− k − 1)!
wn,

where we adopt the convention that the (i = 0)th derivative of a function is
the function itself. This expression holds for all Λb. Evaluating it for Λb = 0
yields

wk+1 =
k+1∑
i=0

k!

(k − i)!i!
∂iE [w|Λb,Lay-off]

∂Λi
b

|Λb=0.

The function E[w|Λb,Lay-off] therefore characterises the sequence wn. The
sequence of expectated maxima wn in turn identifies any distribution, see
Theorem 6.3.1 in Arnold, Balakrishnan, and Nagaraja (2008).

C Identification of ψ

For the estimation of ψ, we rely on a steady-state argument, where labour
market time runs at a constant rate. Hence, we drop the suffix t of λt and δt.
First, we derive the expected duration of the first job of an employment cycle.
The duration of a job of rank F follows an exponential distribution with
parameter δ + λ (1− F ). Hence, the expected duration of a job conditional
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on its rank is [δ + λ (1− F )]−1. Since the rank of the first job is a random
draw from the uniform distribution, its expected duration satisfies

E
[
b|1st job in emp.cycle

]
=

∫ 1

0

[δ + λ(1− F )]−1 dF = λ−1 ln (1 + λ/δ) .

(14)
Next, we derive the expected termination date b of all subsequent jobs. First,
we calculate the joint density among all jobs of the rank F of the current
job, its start date a, and its termination date b. This density is comprised of
three parts: (i) the fraction F exp [− (δ + λ (1− F )) a] of workers remaining
at a with rank less than F , (ii) the arrival rate λ of an offer at a, and (iii) the
probability [δ + λ (1− F )] exp [− (δ + λ (1− F )) (b− a)] that a match ends
at b conditional on it having started at a. Hence, this density is proportional
to

Pr(F, a, b) ∝ F exp [− (δ + λ (1− F )) a]× λ× [δ + λ (1− F )] exp [− (δ + λ (1− F )) (b− a)]

∝ F exp [− (δ + λ (1− F )) b] [δ + λ (1− F )] .

In the second line, a drops out. We can ignore the job-offer arrival rate λ,
since it depends on neither F , nor a, nor b. We integrate this density over
the possible start dates a ∈ (0, b) to get the joint density of match quality F
and end date b:

Pr(F, b) =
F exp [− (δ + λ (1− F )) b] [δ + λ (1− F )] b

δ+λ
λ2

ln
(
δ+λ
δ

)
− λ−1

,

Hence:

E [b|subseq.jobs] =

∫ 1

0

∫ ∞
0

bPr(F, b) db dF =
2

λ

λ/δ − ln (1 + λ/δ)

(1 + δ/λ) ln (1 + λ/δ)− 1
.

(15)
We can derive information on E[b|1st job in emp.cycle] and E[b|subseq.jobs] from
the data. This yields a system of two equations, which can be solved for δ
and λ. The ratio of λ to λu provides an estimate for ψ.

D Estimation results by employment cycle
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Table 13: Estimation for the different employment runs

All Data Low-Edu. High-Edu.

ut -0.012∗∗∗ -0.014∗∗∗ -0.008∗∗∗

(0.002) (0.002) (0.003)

ln(Λb + 1)1(cycle 1) 0.121∗∗∗ 0.094∗∗∗ 0.150∗∗∗

(0.011) (0.014) (0.018)

ln(Λb + 1)1(cycle 2) 0.120∗∗∗ 0.090∗∗∗ 0.149∗∗∗

(0.008) (0.010) (0.012)

ln(Λb + 1)1(cycle 3) 0.123∗∗∗ 0.092∗∗∗ 0.151∗∗∗

(0.007) (0.009) (0.013)

ln(Λb + 1)1(cycle 4) 0.111∗∗∗ 0.085∗∗∗ 0.145∗∗∗

(0.008) (0.009) (0.014)

ln(Λb + 1)1(cycle 5) 0.097∗∗∗ 0.091∗∗∗ 0.109∗∗∗

(0.009) (0.011) (0.016)

ln(Λb + 1)1(cycle 6) 0.113∗∗∗ 0.105∗∗∗ 0.111∗∗∗

(0.010) (0.013) (0.019)

ln(Λb + 1)1(cycle 7) 0.095∗∗∗ 0.093∗∗∗ 0.132∗∗∗

(0.012) (0.014) (0.022)

ln(Λb + 1)1(cycle 8) 0.075∗∗∗ 0.074∗∗∗ 0.081∗∗∗

(0.012) (0.013) (0.024)

ln(Λb + 1)1(8 < cycle) 0.059∗∗∗ 0.069∗∗∗ 0.068∗∗∗

(0.010) (0.012) (0.023)

Quit -0.042∗∗∗ -0.055∗∗∗ -0.015
(0.007) (0.008) (0.013)

Observations 33386 20885 11722
R2 0.645 0.565 0.676

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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