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Abstract

In many matching markets bargaining determines who matches with whom
and on what terms. We experimentally investigate allocative efficiency and how
subjects’ payoffs depend on their matching opportunities in such markets. We
consider three simple markets. There are no information asymmetries, subjects
are patient and a perfectly equitable outcome is both feasible and efficient. Ef-
ficient perfect equilibria of the corresponding bargaining game exist, but are
increasingly complicated to sustain across the three markets. Consistent with
the predictions of simple (Markov perfect) equilibria, we find considerable mis-
match in two of the markets. Mismatch is reduced but remains substantial when
we change the nature of bargaining by moving from a structured experimental
protocol to permitting free-form negotiations, and when we allow players to
renege on their agreements. Our results suggest mismatch is driven by players
correctly anticipating that they might lose their strong bargaining positions,
and by players in weak bargaining positions demanding equitable payoffs.

1 Introduction

A fundamental question in economics is whether the “right” people end up in the
“right” jobs. Labor markets are important and their allocative efficiency is crucial for
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the productivity of the economy. The typical way that frictions have been modeled is
through costly search and imperfect information.1 However, in many high-skill labor
markets these frictions are limited. Workers typically know which firms are looking
to hire, and similarly firms know which workers would be appropriate for a given
vacancy. Does this mean that the right workers will end up in the right firms? More
specifically, absent these frictions can decentralized bargaining be expected to result
in an efficient allocation of workers to firms?

On the one hand, if the aforementioned frictions are absent then in line with a
Coasian logic it might be hoped that two parties leave no gains from trade on the
table when bargaining. If so, and this holds across all possible worker-firm pairs that
could match, then by results from Shapley and Shubik (1972), the matching market
will clear efficiently.

On the other hand, agreements in decentralized matching markets are typically
reached sequentially causing the composition of the market to change over time. As
this market context evolves so can the bargaining positions of those remaining in it.
Suppose it is efficient for a worker, Ann, to match to a firm, B, but that Ann is
currently in a strong negotiating position; there is another firm, C, with a vacancy
Ann could instead fill. Although Ann would be less productive with firm C, Ann
would still like to use this alternative possible match to bid up her wage with firm
B. However, this alternative vacancy at C might be filled by someone else, in which
case Ann would lose her strong bargaining position. Indeed, if there is no chance Ann
will match inefficiently with firm C, then firm B might as well wait for C’s vacancy
to be filled and for Ann’s bargaining position to deteriorate. Can agents who find
themselves in temporarily strong bargaining positions benefit from these positions
without sometimes matching inefficiently?

No empirical work we are aware of investigates whether bargaining frictions, i.e.,
the strategic actions of market participants to improve their terms of trade, can lead
to allocative inefficiency. Fundamental identification problems inhibit such an investi-
gation. Even under very strong assumptions it is hard to identify whether matches are
positively or negatively assortative from wage data (Eeckhout and Kircher, 2011).2

More generally, to observe the extent of mismatch, an econometrician must estimate
the counterfactual productivities of matching different people to different jobs. But
unobservable worker characteristics that are valued differently by different firms can
generate any counterfactual productivities and rationalize any given match as effi-
cient. Even if it is possible to detect inefficient matches, it would be hard to separate
the role of bargaining frictions and other frictions. To overcome these problems, and

1See Rogerson et al. (2005) and Rogerson and Shimer (2011) for surveys of the search literature.
Informational frictions are studied in Calvo-Armengol and Jackson (2004), among others.

2Specifically, assuming that workers are vertically differentiated, firms are vertically differentiated,
and surpluses are either supermodular or submodular. Under these assumptions the welfare loss from
inefficient matching can be identified.
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provide some first empirical evidence on bargaining frictions, as opposed to search or
informational frictions, we take an experimental approach.

We use laboratory experiments to study how payoffs are affected by the structure
of the market and whether allocative efficiency, matching the “right” worker to the
“right” job, is achieved by decentralized bargaining. Matching is one-to-one and we
consider the simplest markets in which a player can lose a matching possibility as
others reach agreement and exit. Our experiments feature two characteristics which
are common in many labor markets: heterogeneous match surpluses and endogenous
agreements regarding how the surplus generated by a match is split.3 In the lab, we
control the entire set of possible match surpluses, removing unobserved heterogeneity
in match quality and observing counterfactual match productivities. We also track
individuals’ bargaining patterns in full.

In our main experiment, Experiment I, we use a standard bargaining protocol
from the theoretical literature to study three simple markets. In all three markets
there are two players on each side of the market, and on each side of the market
one player is in a strong bargaining position while the other is in a weak bargaining
position—the weak worker is only a good fit for the strong firm and the weak firm
can only productively employ the strong worker, while the strong worker and strong
firm can also productively match with each other causing the weak buyer and weak
seller to be left unmatched. It is always efficient for the strong worker to match to
the weak firm and the weak worker to match to the strong firm. The three markets
vary only by the value of the surplus the strong worker and strong firm can obtain
by matching with each other.

These markets are designed so that increasingly complex strategies in the corre-
sponding non-cooperative game are required to reach an efficient outcome. As more
complicated strategies are required, we find increasing rates of mismatch. The rates
of inefficient matching are substantial, increasing from 0% to 49% to 70% across the
three treatments. Players in strong bargaining positions, with alternative possible
matches, are able to exploit these bargaining positions and receive higher payoffs
as the value of their alternative (inefficient) match increases. We also find that the
market composition at the time agreements are reached matters. Once strong partic-
ipants’ alternative possible matches have been lost, they receive a lower payoff.

The Markov perfect equilibria (MPE) organize our data very well across a number
of dimensions, including comparisons across the three markets of efficiency and the
payoffs of players in strong and weak bargaining positions. The essential logic of the

3Many labor markets are characterized by heterogeneous surpluses so that it matters which worker
is employed by which firm. We expect, however, that getting the “right” worker to be employed
by the “right” firm is likely to matter more in high-skill labor markets. These markets are also
characterized by wages being negotiated (Hall and Krueger, 2012) and are economically important:
the top 10% of earners accounted for 45% of overall income and for 68% of federal income tax
receipts in the US in 2011 (http://www.heritage.org).
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MPE predictions is that players in strong bargaining positions match inefficiently be-
cause they correctly anticipate the possibility they might lose their strong bargaining
position. The main discrepancy between the data and MPE predictions is that there
is more mismatch than predicted. An explanation for this, that is consistent with our
analysis of players’ strategies, is that players sometimes demand at least equitable
payoffs. For players in strong positions, this constraint is non-binding, but for weak
players it means that, in comparison to the MPE, they ask for too much when mak-
ing offers and reject offers they should accept. While in the ultimatum game, players
playing in this way induces others to make more equitable offers, in our market setting
our results suggest it leads players in strong positions to inefficiently match with each
other, thereby excluding weak players and leading to both less equitable outcome and
more mismatch than predicted by the MPE.

An important question concerning our findings, especially when considering their
external validity, is what features of our environment drive the inefficiency we find?
Two features, in particular, merit closer examination. The first is our bargaining
protocol, which constrains the interactions among our participants. This creates
artificial frictions that could be responsible for the inefficiencies we document—in
practice, interactions in markets are much less constrained than in our experimental
protocol, or in fact any protocol corresponding to a dynamic bargaining model from
the theoretical literature. Second, our experiment endows players with commitment
power—after an agreement is reached players are unable to renege on it. As whenever
an inefficient outcome is obtained there exists at least two players that could both
do better by instead matching with each other, this commitment power seems likely
to be important. However, unlike the constraints on interactions imposed by the
bargaining protocol, this is a feature that seems to be present in many matching
markets. Firms, and to a large degree also workers, rarely renege on agreements they
have reached.

In Experiments II and III we investigate these two explanations. In Experiment
II we let participants interact in an unstructured way, allowing them to make and
remove offers to anyone at any time. The market composition at the time agreements
are reached continues to affect the terms of trade, and although the rate of mismatch
is reduced, substantial inefficiencies remain. In Experiment III we instead adjust the
bargaining protocol to let participants renege on agreements they have reached at a
small cost. This reduces inefficiencies a bit more than removing the protocol, but
again inefficiencies remain.

We contend that in many real labor markets the bargaining positions of players
change as others reach agreements and exit the market. Our experimental investiga-
tion replicates and studies this feature. Alternative matches affect the average terms
of trade agreed upon. The composition of the market, which workers and which firms
are still searching for a match, thus matters and players’ bargaining positions are
non-stationary. Evidence across our three experiments collectively suggests that this
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non-stationarity is intimately tied to high rates of inefficient matching. Our experi-
ments provide some first evidence for the role of bargaining frictions, as opposed to
search or informational frictions, in decentralized matching markets.

Finally, before we dive into our investigation, we want to step back and address
concerns regarding the general ability of laboratory experiments to obtain results that
can be generalized to real markets. This is an important question as the ultimate goal
of our investigation is to obtain qualitative insights that inform us about the world
outside the lab.4 Our paper joins the branch of experimental literature termed theory-
based experiments.5 The philosophy behind theory-based experiments is to capture
key aspects of real economic environments in simplified settings, and to observe real
subjects making decisions with monetary consequences. This can enable clean tests
of important workhorse theories, and speak to important economic outcomes, which
can be very hard to test using field data. In general, the impediments to such field
data examinations include the scarcity of data, unobservability of counterfactuals,
endogeneity problems and other confounding factors that prevent identifying causal
effects. The very complexity and existence of these confounds in naturally occurring
data is precisely why controlled laboratory tests provide a valuable additional source
of data. If the theoretical predictions fail in the simplest and most transparent ap-
plications of the model, then that casts serious doubt on the usefulness of the theory
when applied to more complex settings. Further, the data created from carefully
controlled settings can be used toward the development of better theoretical models.

1.1 Related Literature

We focus in this section on the related experimental literature. We discuss the theo-
retical literature in the context of our different experimental protocols.

There is a large experimental literature on bargaining.6 The most relevant to our
paper is the study by Binmore et al. (1989), which investigates the effect of exogenous
outside options on the bargaining position of players in a two-person bargaining setup
that has features of both the alternating-offer and ultimatum-game protocols. The
authors find that responders receive a payoff equal to their binding outside option,
providing support for the “outside option principle.”

4See Kessler and Vesterlund (2015) for a recent discussion regarding the external validity of
laboratory experiments.

5The tradition of theory-based experiments goes back to the market experiments of Vernon Smith
and Charles Plott, which had a profound effect on our understanding of the functioning of markets
and the performance of economic institutions.

6See Roth (1987) for an overview of experimental work on coalition bargaining, which was mostly
concerned with testing cooperative game theory concepts, Roth (1995) for a survey of early exper-
iments exploring non-cooperative theories of bargaining, and Palfrey (2016) for a recent survey of
multilateral bargaining games.
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Our paper is also related to the experimental literature on decentralized two-
sided matching markets, which is relatively thin and for the most part focuses on
matching markets with non-transferable utility. The prominent studies in this space
include Echenique and Yariv (2013) and Pais and Veszteg (2011). Echenique and
Yariv (2013) consider fully decentralized two-sided matching markets with complete
information and find that most markets reach stable outcomes. When more than
one stable outcome exists, the outcomes gravitate towards the median stable match.
Pais and Veszteg (2011) study both complete and incomplete information matching
markets and vary search costs and the degree of commitment to formed matches;
this last variation is similar to us allowing players to renege on their agreements,
which we do in our Experiment III. The authors find that in complete information
markets, which are the closest to our setup, the degree of commitment affects both
the frequency of efficient final matchings and the level of market activity as captured
by the number of match offers made by subjects. Contrary to our main finding, the
authors document that the treatments with commitment correspond to the highest
proportion of efficient final outcomes.7

The main difference between our paper and those discussed above is that we allow
bargaining over the terms of trade, studying decentralized matching markets with
transferable utility. This brings to light an additional dimension of the bargaining
process which is missing, by construction, from games with non-transferable utility:
Bargainers need to agree not only on who is matched with whom but also how to
split the available surplus between the pair of potential match partners. The only
other experimental study of decentralized matching markets with transferable utility
that we are aware of is the study by Nalbantian and Schotter (1995). In this paper,
the authors analyze several procedures for matching with players who are privately
informed about their payoffs.8 The authors find that while efficiency levels were
relatively high in all treatments, different mechanisms suffer from different types of
problems: Some produce a considerable number of no-matches while others produce
a substantial number of suboptimal matches.

There is a small experimental literature studying bargaining on networks, which
is surveyed in Choi et al. (2016). The study most closely related to ours is Char-
ness et al. (2007), which examines experimentally the effects of network structure on
market outcomes following the model of Corominas-Bosch (2004). The bargaining is

7For an experimental study of one-sided matching markets with non-transferable utility see Molis
(2010). For studies with a more rigid bargaining structure, such as the one in which one side of
the market makes offers to the other side but not vice-versa, see Haruvy and Ünver (2007) and
Niederle and Roth (2009). Finally, see Kagel (2000) and Featherstone and Mayefsky (2010), who
study unravelling and the transition between a decentralized market and a centralized clearinghouse.

8These matching procedures range from the free-agency system similar to the problem of matching
baseball players to teams, to the simultaneous bid mechanism, in which participants on each side of
the market simultaneously submit the maximum amount they are willing to pay to be matched to
each participant on the other side of the market.
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structured as a sequential alternating public-offer bargaining game over the shrinking
value of homogeneous and indivisible goods. Offers made by players on one side of the
market alternate with offers made by players on the other side of the market, and all
players on a given side of the market make offers simultaneously. An offer is a price
which is announced to all players on the other side of the market, who then choose
which offers to accept. Experimental results qualitatively support the theoretical pre-
dictions and display a high degree of efficiency: Total payoffs of players constitute
over 95% of the maximum attainable surplus, and three-quarters of all agreements
are reached in the first bargaining round.9

Finally, there is an experimental literature in sociology that studies how network
structures confer power. Two foundational papers are Cook and Emerson (1978) and
Cook et al. (1983), and there is a nice albeit brief discussion in Jackson (2010). A
typical experimental design in this literature has several features different from us, and
more importantly, the focus is on identifying strong and weak network positions rather
than evaluating the efficiency of markets. As far as we are aware, this literature does
not investigate the interaction between changing market composition and efficiency,
and the typical protocol considered does not lend itself to such an investigation by
preventing players from exiting before negotiations among all possible matches have
taken place.10

2 Environment

2.1 Basic setup

We set out to test whether the endogenous evolution of thin, heterogeneous matching
markets can result in an inefficient allocation of workers to firms in the case of labor
markets, buyers to sellers in product markets, or men to women in the marriage
market. As we suspect that inefficiencies will be more likely in more complicated
settings, we consider the simplest possible markets capable of exhibiting the effects
we are interested in. For bargaining positions to change as others exit we need the
market to be able to support at least two matches, requiring at least four players and
at least three different matches among these four players to be possible.

Figure 1 presents three different market structures (Game 15, Game 25, and Game
30) which will serve as a basis of our investigation. These are four-person markets,
with each player identified by the letter A, B, C, or D. A link between two players

9See also Gale and Kariv (2009) and Choi et al. (2014) for a study of trading in networks with
intermediaries, implemented through a simultaneous bid-ask protocol and posted prices respectively.

10Perhaps closest papers to ours are Bienenstock and Bonacich (1993) and Skvoretz and Willer
(1993). Both consider a variety of theories including some from cooperative game theory.
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Figure 1: The three markets considered in this study.

(a) Game 15
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Notes: We refer to players A and D as the strong players and players B and C as the weak players.

indicates the joint surplus that this pair of players generate by matching with each
other, with the surplus indicated by a number next to the link. These are one-to-one
matching markets, that is, each player can be matched with at most one other player
in the market. The payoffs of unmatched players are normalized to 0. In all three
markets, the vertical links (the link between A and C and the link between B and
D) generate a surplus of 20 units. The markets differ in one feature only: the value
of the diagonal link between A and D. In Game 15 this link is worth 15 units, in
Game 25 it is worth 25 units, and in Game 30 it is worth 30 units. This diagonal
link determines the bargaining position of A and D vis-a-vis C and B. We will refer
to A and D as the strong players, and to B and C as the weak players. In all three
markets it is efficient for A and C to match and for B and D to match. Across these
three markets we study how the average payoffs of players differ and the frequency
with which the efficient match is reached.

2.2 Key issues and experimental approach

There are several fundamental questions we hope to address through our experiments.

Efficiency: First, and foremost, when can decentralized bargaining in matching
markets be expected to efficiently match the two sides of the market? What are the
mechanisms that facilitate efficient matches being reached? What causes inefficient
outcomes?

Network Bargaining power: How do players’ network positions affect their
payoffs? Can players with alternative matching opportunities play these alternatives
off against each other to extract most of the rents? Does the possibility that these
alternative matching opportunities will be lost limit the extent to which agents can
exploit strong network positions?
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To explore these questions we focus mainly on an experimental protocol that mir-
rors a standard non-cooperative bargaining game (Experiment I). There are compet-
ing theories that offer different predictions about both efficiency and network bargain-
ing power. A general finding from the non-cooperative bargaining literature is that
there is a tension between using simple strategies, and using strategies that can sus-
tain efficient outcomes. An advantage of using this protocol is that the corresponding
non-cooperative game is tractable, and we can cleanly test how this trade-off between
complexity and efficiency is resolved. Better understanding this can inform us about
what insights regarding efficiency and network bargaining power from the theoretical
literature are most applicable in different situations.

However, it is also important to understand the limitations of this approach. In
particular, there are two key features of the bargaining environment in Experiment
I we would like to understand better. First, how important is the rigid bargaining
protocol? Does it prevent players from achieving efficient outcomes by limiting the
interactions between them, or aid efficiency by limiting the extent to which players
can try to manipulate each other? Second, in the bargaining protocol of Experiment
I, agents leave the market after reaching an agreement. Thus players are endowed
with commitment power by the protocol—they commit not to renege on an agreement
whenever they reach one. Does removing this commitment power and allowing players
to renege on agreements increase or reduce efficiency? On the one hand, commitment
is often useful in a variety of setting for achieving efficient outcomes. On the other
hand, it makes the environment less stationary and more complicated. We thus
conduct two additional experiments. In Experiment II, we remove the experimental
protocol and allow players to make offers to whom they want, when they want. Hence
we investigate the role the protocol plays in our Experiment I results. In Experiment
III, we follow a structured protocol similar to Experiment I, but with the exception
that players remain in the market after they have reached an agreement and can renege
on that agreement at a small cost. Hence we investigate the role of commitment in
our Experiment I results.

3 Experiment I: Theory

To guide our experimental investigation, it is helpful to consider some alternative
theories. These theories yield different predictions of players’ expected payoffs and
matches—and thus the level of efficiency in the market. For each theory, we briefly
describe the main idea and implications for the three games depicted in Figure 1. We
refer the reader to Sections A, B and C in the Appendix for additional details.

The experimental protocol we consider is standard and extends Rubinstein bar-
gaining to accommodate many players. The corresponding game has an infinite-
horizon with a common discount factor δ ∈ (0, 1). In round t there is a set of
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unmatched players who are active. One player is chosen uniformly at random to be
a proposer. If the proposer is already matched, we move to round t + 1; otherwise
the proposer can choose to propose a match or to do nothing. To propose a match,
the proposer must select an unmatched player and suggest a division of the surplus
their match would generate. If a proposal is made, then the player who receives the
proposal must either accept or reject it. If the proposal is accepted, then a match
is formed and those two players, having reached agreement, leave the market. If the
proposal is rejected, then both players remain unmatched and we move to round t+1.
The game ends when there is no positive surplus between any two unmatched players.

Although there will often be multiple equilibria of this dynamic game, follow-
ing the literature we focus on two criteria on which equilibrium selection can be
based—simplicity and efficiency. Simplicity has led a large literature to study the
Markov perfect equilibria (MPE) of related bargaining problems, including Ru-
binstein and Wolinsky (1985), Rubinstein and Wolinsky (1990), Gale (1987), Chat-
terjee and Sabourian (2000), Sabourian (2004), Gale and Sabourian (2006), Polanski
and Winter (2010), Abreu and Manea (2012b), and Elliott and Nava (2019). In our
context, the Markov perfect equilibria are perfect equilibria in which players choose
strategies that depend only on which other players remain active in the market, rather
than on the entire history of play.11 While this prevents players from having to keep
track of complicated histories of play, it also limits the ability of players to punish and
reward each other. When there are no efficient Markov Perfect equilibria, a natural
question that then arises is whether more complicated strategies could obtain efficient
outcomes? A second type of equilibria we will consider are efficient perfect equi-
libria (PE). By design the markets we study require increasingly complex strategies
for an efficient perfect equilibrium. In Game 15 there is an efficient Markov perfect
equilibrium. In Game 25 there is no efficient MPE, but there is an efficient PE that
punishes deviations by reverting to the MPE. In Game 30, there is no efficient MPE,
or efficient PE that relies on Markov reversion, but there is an efficient perfect equi-
librium that relies on more complicated strategies. Thus, as we move from Game 15,
to Game 25 to Game 30 ever more complicated equilibrium strategies are required to
obtain the efficient outcome.

3.1 Quantitative Theoretical Predictions

We begin by describing the limit MPE payoffs and provide some intuition for Games
15, 25 and 30. In all these games there is a unique MPE. In Game 15, all players
always proposing efficiently is an MPE. When all players do so, it is as if they bargain
bilaterally with their efficient partner and all players receive limit payoffs of 10. Given

11The MPE are motivated in Maskin and Tirole (2001), and have been theoretically justified on
complexity grounds as those selected when there is a second-order lexicographic preference for simple
strategies (Sabourian, 2004).
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that offers of less than 10 will be rejected, it is unprofitable for A or D to deviate
and instead offer to each other. Thus in Game 15 the efficient match is reached with
probability 1.

In Game 25 it is no longer an equilibrium for only efficient offers to be made. If
A and D never use their link they will get limit payoffs of 10 as before, but now they
will have a profitable deviation to instead offer to each other when selected as the
proposer. In equilibrium A and D mix between offering to each other and making
efficient offers. Whenever A and D match with each other, players C and B get a
payoff of 0. This reduces the amount players C and B are willing to accept when they
do receive offers. In Game 25 the efficient match is obtained when C or B propose,
but not always when A or D propose. Given the equilibrium probability with which
A and D offer to each other, the probability the efficient match is reached is 0.72.

As the value of the diagonal link increases to 30 we reach a corner solution in
which A and D can no longer push down the expected payoffs of C and B enough
for them to be indifferent about whom to offer to. Hence A and D always offer to
each other. Nevertheless, when selected as the proposer players C and B continue to
make acceptable offers to A and D respectively, and we get the efficient match with
probability 0.5.12

There are also equilibria in which non-Markovian strategies are played. In all our
games an efficient perfect equilibrium exists, reflecting results in Abreu and Manea
(2012a)13.

There are two constraints that make constructing an efficient perfect equilibrium
hard. First, a player who makes an off-path offer cannot be punished if that offer is
accepted (as the player exits). Second, in any efficient perfect equilibrium a subgame
will be reached in which either just A and C are active or just B and D are active. In
these subgames there is a unique subgame perfect equilibrium, and in this equilibrium
both players’ limit payoffs are 10. So once these subgames are entered there is no
scope for rewards or punishments and all players receive relatively high payoffs.

In Game 25 there is an efficient PE supported by the threat of reverting to the
MPE. We label these outcomes efficient perfect equilibria with Markov rever-
sion (and sometimes use Markov Reversion for short). Interestingly, the threat of
reverting to the MPE can only support on-path play that yields a unique vector of
expected payoffs in an efficient perfect equilibrium (see Section B in the Appendix).
Constructing an efficient PE in Game 30 is more complicated. The threat of reverting

12For example, we can thus calculate the expected payoff of C as follows: With probability 0.5,
A or D proposes and C gets 0; with probability 0.25 B proposes and reaches agreement with D
leaving C to get 10 from bargaining bilaterally with A; and with probability 0.25, C proposes and
gets 20 less the minimum offer A will accept.

13They show that by cleverly constructing punishments, an efficient perfect equilibrium always
exists in markets where the gains from trade are either 1 or 0.
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to the MPE does not provide sufficient incentives to induce the strong players to offer
to their efficient partners, but more complicated strategies can be used. In Section
B in the Appendix we derive such strategies and show the range of payoffs they can
support. We call these outcomes efficient perfect equilibria with rewards and
punishments (Carrot and Stick). These strategies entail both rewards for not ac-
cepting offers that deviate from the prescribed play and punishments for deviating.
Finally, we note that in Games 25 and 30 there does not exist an efficient perfect
equilibrium in which the expected limit payoffs of players B and C sum to less than
10, which means that the average expected payoff of weak players must be at least
5.14

In addition to the non-cooperative theories we outline above, a variety of coop-
erative solution concepts have been proposed for matching markets like the ones we
study. While these theories abstract from the timing of offers and agreements, they
are founded on appealing principals and provide a useful benchmark.15

A basic principle it might be hoped matching markets satisfy is for no buyer-seller
pair to leave any gains from trade on the table when agreements are reached. This
motivates considering the outcomes that are robust to pairwise deviations, such that
there is no buyer-seller pair who could both do better by reaching some agreement be-
tween themselves. In seminal work that sparked a literature on market games, Shapley
and Shubik (1972) show that ruling out pairwise deviations in matching environments
such as ours is necessary and sufficient for ruling out coalitional deviations.16

For the markets we consider, pairwise stable outcomes, or equivalently core out-
comes, require that A is matched to C and B is matched to D for sure, while the
combined payoffs of the strong players (A and D) must sum to weakly more than
x = 15, 25, 30 for Game 15, Game 25 and Game 30, respectively. Thus, although
the match is pinned down payoffs are not, and many different payoff profiles can be
supported. In Appendix C we derive the range of each player’s payoffs that can be
supported in a pairwise stable outcome.

Various theories have refined the set-valued predictions provided by pairwise sta-
bility into point predictions. One alternative is to look at the mid-point of the sup-

14The reason is that in any efficient perfect equilibrium either B or C will be left to bargain
bilaterally with their efficient partner, thus, receiving a limit payoff of 10.

15Experiments II and III are not amenable to a non-cooperative analysis. For example, in Exper-
iment II the corresponding non-cooperative game would be in continuous time with an endogenous
ordering and timing of moves. In such settings, these cooperative solution concepts may be partic-
ularly relevant.

16If the market outcome was not efficient, then the grand coalition would be able to form and
implement the match that maximized total surplus, and then redistribute this surplus in a way that
made everyone better off. Thus only efficient market outcomes are robust to coalitional deviations,
and hence by Shapley and Shubik’s result only efficient market outcomes are robust to pairwise
deviations.
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ported payoffs (e.g., Elliott (2015)).17 A second alternative proposed by Rochford
(1984), and independently by Kleinberg and Tardos (2008), extends Nash bargain-
ing to matching markets. These symmetrically pairwise balanced (SPB) outcomes
coincide with several other cooperative solution concepts—specifically the nucleolus,
kernel and pre-kernel. We develop these theoretical predictions for the markets we
consider in Appendix C and record them in Table 2 below.18

Table 2 summarizes the quantitative predictions of the theories discussed above in
terms of final outcomes: the frequency with which an efficient match is reached, and
players’ payoffs by their network position. When a range of payoffs can be supported,
we report this range.

Table 1: Theoretical predictions about final matches

Game 15 Game 25 Game 30
eff. B (C) A (D) eff. B (C) A (D) eff. B (C) A (D)

Coop.
SPB 100% 8.3 11.7 100% 5 15 100% 3.3 16.7
Core 100% [0,20] [0,20] 100% [0,15] [5,20] 100% [0,10] [10,20]
Core Mid-Point 100% 10 10 100% 7.5 12.5 100% 5 15

Non-Coop.
MPE 100% 10 10 72% 6.45 11.45 50% 4.17 13.33
Markov Reversion 100% 10 10 100% 8.75 11.25 — — —
Carrot and Stick 100% 10 10 100% (7 7

9
, 9 4

9
) (10 5

9
, 12 2

9
) 100% (6 1

9
, 9 4

9
) (10 5

9
, 13 8

9
)

Notes: For the non-cooperative theories we list limiting expected payoffs of players as δ → 1. For efficient PE, we
consider two specifications: In (i) there is MPE reversion following a deviation, while in (ii) there are two off-path
punishment states: one to punish A and B while rewarding C and D, and another to punish C and D while rewarding
A and B.

We also examine the specific amounts that players offer and accept. While the
cooperative theories do not make predictions in this regard that are any more nuianced
than their payoff predictions, the non-cooperative theories do. Table 2 summarizes
these predictions.19

17This is the transferable utility equivalent to median stable matches in a non-transferable utility
environment (Schwarz and Yenmez, 2011), which has received some experimental support in NTU
matching experiments (Echenique and Yariv, 2013).

18The Shapley value makes unappealing predictions in matching markets, and so we do not con-
sider it. For example, with one worker and two firms the Shapley value will typically require the
firm which ends up unmatched to receive a transfer of surplus from the matched pair.

19We decided to look at these predictions ex-post, after considering the performance of the theories
quantitatively and qualitatively in other dimensions.
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Table 2: Theoretical predictions about offer and acceptance strategies

Game 15 Game 25 Game 30
Ask Accept Ask Accept Ask Accept

MPE Strong 10 10 13.55 11.45 16.67 13.33
MPE Weak 10 10 8.55 6.45 6.67 4.17
Markov Reversion Strong 10 10 11.25 11.25 — —
Markov Reversion Weak 10 10 8.75 8.75 — —
Carrot and Stick Strong 10 10 (11 1

9
, 14 4

9
) (11 1

9
, 14 4

9
) (11 1

9
, 17 7

9
) (11 1

9
, 17 7

9
)

Carrot and Stick Weak 10 10 (5 5
9
, 8 8

9
) (5 5

9
, 8 8

9
) (2 2

9
, 8 8

9
) (2 2

9
, 8 8

9
)

Notes: The amounts players are predicted to ask to keep themselves when making offers, and the minimum amounts
they would be willing to accept are reported. When strong players make offers to both other strong players and weak
players in the equilibrium they ask to keep the same amount for themselves. The amounts reported are for when all
players are still present in the market. When only two players (whom can match to each other) are left in the market
there is a unique perfect equilibrium in which both players ask to keep 10 when proposing and are willing to accept
offers that give them 10 or more. The amounts reported are for the limit as δ → 1.

3.2 Qualitative predictions

In evaluating the usefulness of the theories we also consider their qualitative predic-
tions. Even when the quantitative predictions a theory makes are not supported by
the data, it can provide a useful guide to understanding patterns in the data and the
key forces underlying a given situation.

First we consider how efficiency is predicted to vary across treatments. The coop-
erative theories predict efficient outcomes across all games. For the non-cooperative
theories we consider, efficiency is tied to the complexity of equilibria played. Our the-
oretical predictions show that more complex strategies are required for efficiency as
we move from Game 15 to 25 to 30. Studying the relative rates of efficient matching
across these treatments may speak to the complexity of equilibria subjects are able
to coordinate on in order to reach efficient outcomes.

The MPE predict that the efficient match should be reached with higher prob-
ability in Games 25 and 30 if a weak player is selected to propose first. If there is
inefficiency, but this pattern is not observed, it would be suggestive of forces other
than those present in the MPE driving inefficiencies. These qualitative predictions
are summarized in Table 3.20

A consistent prediction across the theories is that the players in weak positions
in Game 25 and Game 30 get lower payoffs than the players in strong positions, and
that the payoffs of strong players increase from Game 15 to Game 25 to Game 30,
while the payoffs of weak players decline from Game 15 to Game 25 to Game 30.
If we see that this prediction is not borne out in our experiment, it would suggest

20We took the decision to look at these more nuanced predictions of the MPE ex-post, after we
found substantial rates of mismatch.
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that our theories are missing the mark and other forces, for example equity concerns,
other regarding preferences or other behavioral phenomena, are swamping the basic
incentives captured by the theories.

A further interesting prediction all the non-cooperative theories make for Game
25 and Game 30 is that, when an efficient match is reached, the first strong player to
reach agreement does better than the second strong player to reach agreement, while
the second weak player to reach agreement does better than the first weak player
to reach agreement. Moreover, this difference is predicted to be greater in Game 30
than Game 25. This prediction is important because it tests whether the environ-
ment is non-stationary. If this is borne out in the data, then, as we discuss in the
introduction, there is scope for players in temporarily strong bargaining positions to
match inefficiently from fear that they will lose this strong position. These qualitative
predictions are summarized in Table 3.

Finally, Table 3 also summarizes qualitative predictions regarding strategies. As
the cooperative theories are silent on how outcomes are reached, these predictions are
confined to the non-cooperative theories.21

Table 3: Qualitative predictions

Cooperative theories Non-cooperative theories
Core Markov Carrot

Core SPB Mid-Point MPE Reversion and Stick
Efficiency
(1) Matching is efficient in Game 15 Yes Yes Yes Yes Yes Yes
(2) The rate of efficient matching declines No No No Yes No No

from Game 15 to Game 25 to Game 30
(3) Games 25 and 30: eff outcomes are more likely No No No Yes No No

to be reached if a weak player proposes first
Players’ Payoffs
(1) Strong players’ payoffs increase — Yes Yes Yes Yes —

from Game 15 to Game 25 to Game 30
(2) Weak players’ payoffs decrease — Yes Yes Yes Yes —

from Game 15 to Game 25 to Game 30
(3) Diff in payoffs of strong players in eff matches — No No Yes Yes —

from exiting first rather than second is positive
and higher in Game 30 than in Game 25

Players’ Strategies
(1) Players do not delay — — — Yes Yes Yes
(2) Freq of eff proposals by strong player declines — — — Yes No No

from Game 15 to Game 25 to Game 30

Notes: We consider a theory to predict an outcome if it would be violated by the opposite finding, in which case we
market the cell “Yes,” and to not predict an outcome if the theory would be violated by the finding, in which case we
mark the cell with a “No.” If the theory would be consistent with such a finding, but would also be consistent with
the opposite finding, we mark the cell with a —.

21We decided to look at predictions regarding strategies ex-post, after analyzing the performance
of the theories in the other dimensions.
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4 Experiment I: Design and Procedures

Experiment I consists of three treatments (Game 15, Game 25, and Game 30) corre-
sponding to the three markets described in Figure 1. All our experimental sessions
were conducted at two locations: the Experimental Social Science Laboratory (ESSL)
at University of California, Irvine and the Experimental and Behavioral Economics
Laboratory (EBEL) at University of California, Santa Barbara. At both locations,
subjects were recruited from a database of undergraduate students enrolled in these
universities.22,23 Ten sessions were conducted, with a total of 176 subjects.24 No sub-
ject participated in more than one session. The experiments lasted about one hour
and a half. Average earnings, including a $15 showup fee, were $23.5 with a standard
deviation of $5.3.

In each experimental session subjects played ten repetitions of the same game with
one or more rounds in each repetition and random re-matching between games (i.e.
between repetitions). In other words, before the beginning of each game subjects were
randomly divided into groups of four and assigned one of the four letters (A, B, C
or D), which determined their network position. This procedure is standard practice
in the experimental literature and is often used in relatively complicated games in
which it is natural to expect learning.

Within each game, we implement the following bargaining protocol. At the be-
ginning of a game all players are unmatched. At the beginning of each round all
unmatched players then choose a) whom, if anyone, to make an offer to and b) how
to split the available surplus. One player is then selected at random to be the pro-
poser, and her offer is implemented. This timing differs in a strategically irrelevant
way from the game described and allows us to collect more data on proposals. If
the offer of the selected player is rejected, then both players remain unmatched and
the group proceeds to the next round of the game. If the offer is accepted, then the
matched players exit the market permanently. All players in the group observe the
move of the selected player and the move of the responder. There are two ways in
which the game can come to an end. The first one is the situation in which the sur-
plus generated by any pair of unmatched players who have made proposals in the last
round is 0.25 The second one is discounting implemented as a random termination

22The software for the experiment was developed from the open source Multistage package, avail-
able for download at http://software.ssel.caltech.edu/.

23In the Supplementary Appendix Section 3, we report the location at which each session was
conducted and compare the behavior of subjects across the two labs. Our data suggest that subjects’
behavior is similar across these two subject pools.

2440 subjects participated in Game 15 treatment, 68 subjects participated in Game 25 treatment,
and 68 subjects participated in Game 30 treatment.

25In other words, this rule means that there are no possible matches between any two players who
are both still proposing, which indicates that these two players are not finished bargaining. This
includes the situation in which the two strong players (players with two links) match with each other
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of the game: There is a 1% chance that each round is the last one in a game and
a 99% chance that the game is not over. When the game ends unmatched players
receive a payoff of 0 while matched players earn payoffs according to their agreements.
At the end of the experiment, the computer randomly selects one of the ten games
played, with all ten game being equally likely to be selected. Subjects’ earnings in
the experiment consist of a show-up fee plus their earnings in the randomly selected
game.

In Section 5 of the Supplementary Appendix, we present the instructions that were
distributed to the subjects and read out loud by the experimenter before the beginning
of the experiment. Before starting the experiment, subjects were asked to complete a
quiz, which tested their understanding of the game rules. Subjects could not move on
to the experiment until they correctly answered all the questions on the quiz.26 Two
features of our interface are worth mentioning. First, at all times the subjects saw
the network structure and the available surpluses on the left-hand side of the screen.
Second, on the right-hand side of the screen, subjects could observe how the matches
evolved over the course of the previous rounds for the current game, by clicking arrow
buttons below the diagram that depicted the network structure. These features were
implemented to ensure that the subjects had complete information about what had
transpired in the previous rounds of a game, in order to eliminate reliance on the
subjects’ memory of the history of play.

5 Experiment I: Results

In this section we present the results from Experiment I. We are interested in two
fundamental economic questions—do we get efficient matches and how do players’
network positions affect their payoffs? At the same time, we run a horse race between
the theories presented in Section 3.1 in terms of how their predictions fit the data.

Our main interest is in subjects’ behavior after they have had the opportunity
to experience the game. Allowing for the presence of an initial learning phase, our
statistical tests use data from the last five repetitions of a game played in each experi-
mental session. We think play in these games will better reflect the market situations
we seek to capture—in these markets the stakes are higher and many participants will
have some experience. We refer to these games as experienced games. We refer the
reader to the Supplementary Appendix, Section 4 for the detailed analysis of initial
repetitions of the game and learning.

and exit the market leaving the two weak players unmatched as well as the situation in which all
four players are matched (each weak players is matched with a strong player).

26The list of questions and the screenshots of the game are also presented in Section 5 of the
Supplementary Appendix.
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When we compare final outcomes between games, we focus on the groups that
finished the game naturally rather than those that were interrupted by the random
termination.27 When we investigate the strategies used by our experimental sub-
jects, we use all the collected data, including all the submitted proposals rather than
just proposals randomly selected for implementation. Finally, to account for inter-
dependencies of observations that come from the same session due to subjects being
rematched between repetitions of the game, we cluster standard errors at the session
level.

5.1 Efficiency

Figure 2 presents the rate of efficient matching across our treatments. The evolution
of final match efficiency across rounds of play is presented in Figure 9 in Appendix
D.

Figure 2: Efficiency levels in Experiment I, experienced games
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Notes: The average efficiency levels and the corresponding 95% confidence intervals are reported for each game. Robust
standard errors are obtained by clustering observations by session.

The statistical analysis of efficiency is documented in Tables 4 and 5. Table
4 reports the outcomes of a regression analysis in which we regress an indicator
for whether the efficient match is reached (1Eff) on indicators for two out of three
treatments (1Game25 and 1Game30) and these interacted with whether the first player
in the game selected to be the proposer is a strong player or not (1Strong First):

1Eff = β0 + β1 · 1Game25 + β2 · 1Game30 + β3 · 1Game15 · 1Strong First

+β4 · 1Game25 · 1Strong First + β5 · 1Game30 · 1Strong First + ε

27Random termination was very rare: about 6% of games in all treatments of Experiment I ended
because of random termination.
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Table 4: Efficiency in Experiment I, experienced games

Regression (1) Regression (2)
Dependent Variable Efficiency Efficiency
Constant (β0) 1.00∗∗∗ (0.00) 1.00∗∗∗ (0.00)
Game 25 (β1) −0.49∗∗∗ (0.03) -0.34∗∗∗ (0.03)
Game 30 (β2) −0.70∗∗∗ (0.01) -0.47∗∗∗ (0.04)
Strong First × Game 15 (β3) 0.00 (1.00)
Strong First × Game 25 (β4) -0.37∗∗ (0.09)
Strong First × Game 30 (β5) -0.49∗∗∗ (0.04)
# of obs n=197 n=197
# of clusters 10 10
R-squared 0.2841 0.4238

Notes: Linear regressions with standard errors clustered at the session level are reported. The significance is indicated
by ∗∗∗ and ∗∗ for 1% and 5% significance level.

Table 5: Hypothesis tests for efficiency in Experiment I, experienced games

Regression Null Hypothesis Alternative Hypothesis P-Value
Test 1 Regression (1) β0 + β1 = β0 + β2 β0 + β1 > β0 + β2 p < 0.0001
Test 2 Regression (2) β4 = β5 β4 > β5 p = 0.1042
Test 3 Regression (1) β0 + β1 = 0.72 β0 + β1 < 0.72 p < 0.0001
Test 4 Regression (1) β0 + β2 = 0.50 β0 + β2 < 0.50 p < 0.0001

Table 5 runs comparative tests of the coefficients from the regressions.

While all the final matches in Game 15, in the experienced games, are efficient, the
probability the efficient match is reached drops to 51% in Game 25 and even further
to 30% in Game 30. Regression (1) and Test 1 confirm these changes. The positive
and significant values of β1 and β2 in Regression (1) show that the decline in efficiency
in Game 25 and Game 30 in comparison to Game 15 is significant (p < 0.0001 in both
cases). Test 1 shows that there is also a significant decline in efficiency from Game
25 to Game 30 (p < 0.0001). With respect to the theoretical predictions outlined in
Section 3.1, this monotonic decrease in efficiency is predicted by the MPE, but not
by any other theory that we consider.

Further, according to the MPE theory, whether or not the market clears efficiently
in Games 25 and 30 depends on the network position of the first mover: if the first
mover is a player with two links (strong player), then the market should end in an
inefficient outcome with positive probability, while if it is a player with one link (weak
player), then an efficient outcome will be reached with certainty.28 The negative and
significant values of β4 and β5 in Regression (2) support this prediction: markets are
less likely to reach efficient outcomes in Games 25 and 30 respectively when the first

28On the contrary, in Game 15, the MPE predicts that the network position of the first mover
plays no role as all outcomes are expected to be efficient.
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player randomly selected to make a move is a strong player. The same is true if we
condition the efficiency of the final match on the network position of the player who
makes the first accepted offer. Details of this analysis are presented in Table 19 in the
Appendix D. Finally, Test 2 evaluates whether the decline in efficiency is larger in
Game 30 compared with Game 25 when the first-mover is the strong player, as also
predicted by the MPE (p = 0.1084).

Despite the MPE making qualitative predictions about efficiency that are in agree-
ment with our data, the quantitative predictions of MPE don’t match the data so
well. In Game 15 all the theories we considered predict that the efficient match will
be reached for sure, and this is borne out in the data. Indeed, in every observation of
Game 15 we have, the efficient match is reached. However, in Games 25 and 30 the
MPE predicts that the rate of efficient matching will be 72% and 50%, respectively.
Our observed rates of efficient matching are considerably lower. In Game 25 only 51%
of markets reach efficient outcome, which is significantly lower than the predicted 72%
(p < 0.0001, Test 3). In Game 30 only 30% of markets reach efficient outcome, which
is also significantly lower than the predicted 50% (p < 0.0001, Test 4).

To summarize, we find strong evidence that matching is inefficient in Games 25
and 30, but not Game 15. This is only consistent with the MPE predictions of the
theories we considered. Moreover, the various qualitative predictions made by the
MPE about inefficient matching are borne out in the data. However, while the MPE
does well qualitatively, there are significant deviations from its quantitative predic-
tions. Interestingly, these deviations take the data further away from the predictions
made by the other theories rather than towards them—there is even more inefficient
matching than is predicted by the MPE.

5.2 Players’ Payoffs

Figure 3 presents the average payoffs of strong players (players A and D) and the
average payoffs of weak players (players B and C) across our three treatments.

The statistical analysis of players’ payoffs is documented in Tables 6 and 7. Table
6 reports regression analysis in which we regress players’ payoffs on indicators for
different games (treatments), these indicators interacted with whether the player was
strong (1Strong), and also interacted with whether the player exited the market first
(1Exit First):

Payoff = β0 + β1 · 1Game25 + β2 · 1Game30 + β3 · 1Game15 · 1Strong

+β4 · 1Game25 · 1Strong + β5 · 1Game30 · 1Strong + β6 · 1Game15 · 1Exit First

+β7 · 1Game25 · 1Exit First + β8 · 1Gaeme30 · 1Exit First + ε

20



Figure 3: Players’ payoffs depending on their network position in Experiment I,
experienced games

0	

2	

4	

6	

8	

10	

12	

14	

16	
Payoffs	B/C	(weak)	
Payoffs	A/D	(strong)	

				Game	15									Game	25										Game	30		

Notes: The average payoffs and the corresponding 95% confidence intervals are reported for each game. Robust
standard errors are obtained by clustering observations by session.

Table 6: Players’ payoffs in Experiment I, experienced games

Regression (3) Regression (4)
Dependent Variable Players’ Payoffs Players’ Payoffs

(all players) (strong players in efficient matches)
Constant (β0) 10.04∗∗∗ (0.03) 9.97∗∗∗ (0.02)
Game 25 (β1) −5.53∗∗∗ (0.23) 0.13∗∗ (0.05)
Game 30 (β2) −7.68∗∗∗ (0.10) −0.02 (0.04)
Strong × Game 15 (β3) −0.07 (0.05)
Strong × Game 25 (β4) 7.26∗∗∗ (0.25)
Strong × Game 30 (β5) 11.81∗∗∗ (0.14)
Exit first × Game 15 (β6) −0.01 (0.02)
Exit first × Game 25 (β7) 2.21∗∗∗ (0.14)
Exit first × Game 30 (β8) 4.62∗∗∗ (0.23)
# of obs n = 788 n=218
# of clusters 10 10
R-squared 0.6977 0.8067

Notes: Linear regressions with robust standard errors clustered at the session level. Regression (3) considers payoffs
of all players, while Regression (4) focuses on the payoffs of strong player (those with two links, players A and D) in
the markets that reached efficient outcome. The significance is indicated by ∗∗∗ and ∗∗ for 1% and 5% significance
level.

As the value of β3 in Regression (3) is insignificant, there is no evidence that in
Game 15 strong players receive higher payoffs. However, the significant values of β4

and β5 in Regression (3) shows that strong players do receive higher payoffs in Game
25 and Game 30 than weak players. Further, weak players receive statistically higher
payoffs in Game 25 than Game 30 (Test 5), while strong players obtain significantly
lower payoffs in Games 25 than Game 30 (Test 6).
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Table 7: Hypothesis tests for players’ payoffs in Experiment I, experienced games

Regression Null Hypothesis Alternative Hypothesis P-Value
Test 5 Regression (3) β0 + β1 = β0 + β2 β0 + β1 > β0 + β2 p < 0.0001
Test 6 Regression (3) β0 + β1 + β4 = β0 + β2 + β5 β0 + β1 + β4 < β0 + β2 + β5 p < 0.0001
Test 7 Regression (4) β7 = β8 β7 < β8 p < 0.0001

Linking these observations regarding players’ payoffs back to the theories described
in Section 3.1 we note that the observed trends are consistent with the predictions
of all the theories. This is reassuring as it suggests that the theories we consider are
able to capture key forces operating in our environment.

To further examine players’ payoffs across treatments we consider whether the
order in which players reach deals affects their payoffs, conditional on the final match
being efficient.29 In any perfect equilibrium of the dynamic game that reaches an
efficient match, the pair of players exiting second receive the same payoff on aver-
age. This makes sense. These players end up in a bilateral bargaining game with
a unique perfect equilibrium, and this equilibrium is symmetric. Thus, for all our
non-cooperative theories, the payoffs of strong players are predicted to be higher in
Games 25 and 30 when they reach agreement first, while the payoffs of weak players
are predicted to be lower in Games 25 and 30 when they reach agreement first.

These predictions are supported in the data. Figure 4 presents histograms of
the final payoffs of the strong players by their order of exit and conditional on an
efficient outcome being reached, where grey bars depict payoffs of players that exited
the market first and black bars represent payoffs of players that exited the market
second.30 In Game 25, the average payoff of strong players is 12.3 if they exited
first, while it is only 10.1 if they exited second. For weak players it is 7.7 if they
exited first and 9.9 if they exited second. Similarly, in Game 30, the average payoff of
strong players is 14.5 if they exited first, while it is 10 if they exited second; the weak
players’ average payoff is 5.5 when exiting first compared to 10 when exiting second.
As reported in Table 6, the positive and significant coefficients on β7 and β8, but not
on β6 show that in Games 25 and 30, strong players do better when they move first,
but there is no evidence that they do better moving first in Game 15. Further, Test 7,
reported in Table 7, shows that for the strong players, the relative benefit of moving
first is larger in Game 30 than in Game 25 (p < 0.0001).

We turn now to compare the quantitative outcomes observed in our experiments
with the payoff predictions of the theories. These predictions and outcomes are sum-

29Note that when the inefficient match is reached, weak players must receive a payoff of 0 and
the average payoff of a strong player must be 12.5 in Game 25 and 15 in Game 30.

30Only the payoffs of strong players are shown, but the expected payoffs of weak players conditional
on reaching the efficient match are 20 less the payoff of the strong players conditional on reaching
the efficient match.
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Figure 4: Distribution of strong player payoffs in efficient matches by the market
composition at the time of exit, experienced games
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marized in Table 8 (along with, for ease of reference, predictions and outcomes for
the rate of efficient matching).

In neither Game 25 nor Game 30 does any theory predict payoffs for both weak and
strong players within a 95% confidence interval of those observed. Moreover, despite
the efficient perfect equilibria being able to support a range of payoffs (possibly even
a larger range than the one we constructed if more complicated strategies are used)
there does not exist an efficient perfect equilibrium that closely matches the observed
payoffs in Game 30. As discussed in Section 3.1, in any efficient perfect equilibrium
the weak players must receive expected payoffs of at least 5, well outside the 95%
confidence interval for the observed average payoffs of 2.4.

The average combined payoffs of players mechanically depends on the frequency
with which an efficient match is reached. Given the high rate of inefficient matching
observed in Game 25 and Game 30 treatments, considerably above the predicted
rate of inefficient matching for any of the theories, it is impossible for any of the
theories to do very well in their quantitative predictions of matching payoff. Further,
as the MPE is only theory predicting any inefficient matching, it also has a relative
advantage matching the observed payoffs in comparison to the other theories. To
strip away the efficiency dimension, and focus on the division of the surplus between
strong and weak players, we also present the payoffs of players conditional on reaching
an efficient outcome (last row of Table 8). For comparison, we also present the MPE-
predicted payoffs of players who reach efficient outcomes (third row of Table 8). The
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Table 8: Predicted versus observed outcomes in Experiment I, experienced games

Game 15 Game 25 Game 30
eff. B (C) A (D) eff. B (C) A (D) eff. B (C) A (D)

Theories
MPE all 100% 10 10 72% 6.45 11.45 50% 4.17 13.33
MPE | eff. 10 10 8.95 11.05 8.34 11.67
Markov Reversion 100% 10 10 100% 8.75 11.25 — — —
Carrot & Stick 100% 10 10 100% (7 7

9
, 9 4

9
) (10 5

9
, 12 2

9
) 100% (6 1

9
, 9 4

9
) (10 5

9
, 13 8

9
)

SPB 100% 8.3 11.7 100% 5 15 100% 3.3 16.7
Mid-Point 100% 10 10 100% 7.5 12.5 100% 5 15
Core 100% [0,20] [0,20] 100% [0,15] [5,20] 100% [0,10] [10,20]

Data
all 100% 10 10 51% 4.5 11.8 30% 2.4 14.2

(0.00) (0.03) (0.03) (0.03) (0.25) (0.10) (0.01) (0.11) (0.05)
| efficient 10 10 8.8 11.2 7.7 12.3

(0.03) (0.03) (0.10) (0.10) (0.09) (0.09)

Notes: The last four rows report efficiency rates and average payoffs of players by their network position, with the
corresponding robust standard errors in the parenthesis where observations are clustered at the session level. The
first two rows under the category of Data report players’ payoffs and robust standard errors in all the final outcomes,
while the last two rows under the category of Data focus on the groups that reached an efficient outcome.

MPE then predicts players’ payoffs within a 95% confidence interval in Game 25, and
comes close to doing so in Game 30. There also then exist efficient PE strategies and
core outcomes that generate consistent payoffs in both games.

5.3 Players’ strategies

So far, market outcomes and market dynamics observed in our experiments fit well
with the predictions of the MPE, and considerably better than with any of the other
theories we have considered. In this section, we zoom in on the players’ strategies to
determine whether MPE also provides helpful guidance for organizing the strategies
used by our subjects. While none of our subjects use strictly Markovian strategies,31

the analysis below shows that strategies used by our subjects are consistent with
several qualitative features predicted by MPE.

The strategy of a player specifies a probability distribution over whom to make an
offer to or choose the “Do Nothing” button, details of such offers (amounts kept), and
the minimum amount a player is willing to accept from others after every possible
history of play. The restriction to Markovian strategies only allows players’ strategies
to depend on the state variable, which is the set of unmatched players. This greatly
simplifies the strategy space and, given the structures of the markets we consider,
there are just two different states for us to analyze. First is the state in which all

31Indeed, any subject who proposed two different amounts to the player in the same network
position conditional on the same market composition cannot be playing a Markovian strategy.
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the players are unmatched and active, and the other is the one in which one of the
efficient pairs has exited the market and the market consists of the one remaining
strong player and one remaining weak player.

When only two players remain active in the market, both the weak and the strong
players receive average payoffs of 10 in all three games, as the MPE predicts. Statisti-
cal analysis confirming this result is presented in Table 20 in Appendix D. Thus, in the
remainder of this section, we focus on characteristics of strategies our experimental
subjects use when all four players are unmatched and active.

We start by looking at the frequency with which players choose the “Do Nothing”
button. As we have documented in the previous section, weak players earn more
when they exit second rather than first. However, this should not incentivize weak
players to delay in equilibrium because doing so increases the probability they will
be left unmatched. Nevertheless, do experimental subjects that are assigned weak
positions in a network try to reach agreement second? To answer this question, we
look at the frequency with which players choose the “Do Nothing” button in each
game. Pressing this button can be seen as the manifestation of delay, i.e., the choice
not to make a proposal. Our data shows that players almost never choose to delay
irrespective of their network position: there are no delays in Game 15, 1 instance of
a delay in Game 25 (0.64%) by a strong player, and 3 instances of delays in Game
30 (1.56%) two of which are by a weak player and one by a strong player. Statistical
analysis confirms that there is no significant difference between the frequency of delays
between the strong and the weak players in both Game 25 and Game 30 (Table 20
in Appendix D). The absence of delay also provides some support for subjects using
simple strategies.

Figure 5: Frequency of efficient proposals by strong players, experienced games
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Notes: For each subject, we compute the frequency of proposing to her efficient partner in the first round of the last five
repetitions conditional on this player being assigned a strong position. Black bars are the observed frequencies. Light
grey bars take the distribution over the number of offers different players make from the data, and then simulate the
frequencies with which these players make efficient offers assuming that they all play exactly the strategy prescribed
by MPE. We run 10,000 simulations and report the average frequencies as well as the range of frequencies between
the 5th and 95th percentiles.

Next, we examine the frequency with which strong players make offers to their
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efficient partners rather than to each other when all players are present in the market.
The MPE predicts that this frequency is 100% in Game 15, 42% in Game 25, and
0% in Game 30. In Figure 5 we present the empirical histogram of strong players’
individual frequencies of proposing efficiently in each game. As the MPE predicts that
an agreement will always be reached in the first round we restrict attention to first
round proposals.32 The observed proposal frequencies, across the three treatments,
fit the MPE theory well. As Figure 5 shows, we observe a significant shift in the
strategies used by the strong players as the value of the diagonal link increases. In
particular, in Game 15 over 80% of subjects always propose only to their efficient
partner in every game in which they are assigned to a strong bargaining position. In
contrast, in Game 30 over 80% of subjects never propose to their efficient partner
when in strong bargaining positions. To confirm this we regress an indicator for a
strong player making a proposal to their efficient partner (1Strong Proposes Efficient Match)
on indicators for the treatments (games):

1Strong Proposes Efficient Match = β0 + β1 · 1Game25 + β2 · 1Game30 + ε

Table 9: Regression analysis of frequency of efficient proposals by strong players in
Experiment I, experienced games

Regression (5)
Dependent Variable Indicator of proposing efficiently by a strong player

(four players are active)
Constant (β0) 0.95∗∗∗ (0.03)
Game 25 (β1) -0.56∗∗∗ (0.04)
Game 30 (β2) -0.85∗∗∗ (0.04)
# of obs 428
# of clusters 10
R-squared 0.2518

Notes: Linear regression with robust standard errors clustered at the session level. The significance is indicated by
∗∗∗ and ∗∗ for 1% and 5% significance level.

The regression analysis, reported in Table 9, confirms that subjects in strong
network positions are more likely to make efficient proposals in Game 15 than in
Game 25 and Game 30.33

Next, we consider the amount that players propose to keep for themselves when
making an offer and compare this to the amounts predicted by the MPE. Table 10

32A figure that is very similar to Figure 5 is obtained when all rounds in which strong players have
a choice to make are included. This figure is presented in the Supplementary Appendix, Section 1.4.
In this figure, we also plot (in grey bars) the expected ratios for each game were all players to play
the MPE strategy, along with the 95% confidence intervals based on simulations given the number
of data points we have in our experimental sessions.

33We also run a hypothesis test with a null hypothesis of β1 = β2 and an alternative hypothesis
of β1 > β2 and find evidence to reject the null (p = 0.0002). This provides evidence that subjects in
strong positions are more likely to make efficient proposals in Game 25 than in Game 30.
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Table 10: Predicted and observed ask amounts when all players are unmatched in
Experiment I, experienced games.

Game 15 Game 25 Game 30
MPE DATA MPE DATA MPE DATA

mean (robust st err) mean (robust st err) mean (robust st err)
[95% CI] [95% CI ] [95% CI]

Strong to Strong – – 13.55 12.79 (0.10) 16.67 15.27 (0.04)
[12.49, 13.10] [15.12, 15.42]

Strong to Weak 10 10.54 (0.13) 13.55 13.27 (0.42) – –
[9.96, 11.12] [11.92, 14.21]

Weak to Strong 10 10.62 (0.14) 8.55 9.07 (0.37) 6.67 7.86 (0.17)
[10.02, 11.22] [7.89, 10.26] [7.13, 8.60]

Notes: For the observed ask amounts, we report average ask amounts when the markets are complete (all four players
are active). Robust standard errors are reported in the parenthesis, where observations are clustered by session. A −
indicates that MPE predicts no offers of this kind.

reports these average ask amounts by offer type, distinguishing between offers from
strong players to strong players, weak players to strong players and strong players to
weak players.34 On average, observed ask amounts are close to those predicted by
MPE. The closest fit we get are for the offers from strong to weak players for which
the MPE predicted offers fall into the 95% confidence intervals of those observed in
our experimental data. In terms of deviations from the MPE, the strong players tend
to ask for less than predicted when making offers to each other while the weak players
ask for more than predicted when making offers to the strong players in Game 30.
All else equal, this helps the strong players to reach agreement with each other and
hinders the weak players from reaching agreement with the strong players.

The low offers made by weak players to strong players would result in surplus
being more equitably distributed between the strong and weak players if accepted.
Indeed, we frequently observe weak players demanding exactly equitable splits of 10
each in both Game 25 and Game 30. In Game 25, for the experienced games when all
players are active, 50% of weak subjects ask for an even split some times. In Game
30, the corresponding percentage is 68%. Of the 50% in Game 25 who sometimes
propose equal splits, the average frequency with which an equal split is demanded is
60%. In Game 30 it is 50%.35

A similar picture emerges from the analysis of offers that subjects accept and
those they reject as responders.36 Consistent with MPE predictions, as the value

34Figure 10 in Appendix D depicts box plots of average absolute differences between amounts
offered and those predicted by MPE both in the first and in the second halves of the experiment in
order to document how subjects’ behavior changes as they gain experience with the game.

35These frequencies are even higher in the first five repetitions of a game: 65% of weak players
demand equal split of surplus at least once in Game 25 and 81% of weak players do so in Game
30. The average frequency with which an equal split is demanded is 61% in both games among the
players who demand equal split at least once.

36Figures 11 and 12 in Appendix D depict the acceptance/rejection behavior of our responders in
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of the diagonal link increases, strong responders tend to accept higher offers, while
weak responders settle for lower shares. However, while the above qualitative dif-
ference between treatments is in line with the MPE, there are also some notable
deviations. Strong players’ acceptance strategies are roughly in line the MPE pre-
dictions. In Game 25 they accept 84% of offers above their predicted continuation
value of rejecting, 11.45 (69 out of 82 cases), and reject 86% of offers below 11.45.
In Game 30 they accept 89% of offers above their predicted continuation value of re-
jecting, 13.33, and reject 93% of offers below 13.33. At the same time, weak players’
acceptance strategies are often at odds with the MPE. Theoretically, weak players
should accept payoffs weakly above 6.45 in Game 25. In practice, they reject 50% of
proposals from the strong players that offered them strictly less than an equal split
of 10, but more than 6.45.37 In Game 30, weak players should never receive an offer
and in line with this there are too few observations of weak players receiving offers for
us to evaluate their acceptance strategies. These deviations again make it less likely
that strong and weak players will reach agreement with one another.

5.4 Horse race between theories

Overall we interpret the evidence from Experiment I as providing broad support for
the MPE theory over the other theories, and consider that the MPE organizes the
data well. The data matches the MPE theory on many, albeit related, dimensions
qualitatively, but differs from the quantitative predictions.

Table 11 summarizes the qualitative performance of the different theories. The
theories generally do well at describing how the payoffs of the strong and weak players
vary across games, and the non-cooperative theories also predict how this depend on
whether they exit first or second. However, these theories perform differently in
terms of their efficiency predictions. While the efficient PE theories and cooperative
theories predict no inefficiencies, the MPE predicts, as we observe, that there will
be no inefficiencies in Game 15, but that inefficiencies then increase monotonically
moving from Game 15 to Game 25, and then to Game 30. In terms of strategies the
MPE also do a little better. All the theories correctly predict that players do not delay
by making no offer, but the MPE is the only theory that predicts that strong players
offer to each other with increasing frequency as we move from Game 15, to Game 25,
to Game 30. Indeed, the MPE theory also does relatively well quantitatively in this
dimension.

Our paper thus joins the emerging experimental literature that examines MPE in a
variety of dynamic games (see Battaglini and Palfrey (2012), Battaglini et al. (2016),
Salz and Vespa (2016), and Vespa (2016)). Similar to our results, in combination

each of the games in the first and the second halves of the experiment, respectively.
37Of the 10 offers we observe weak players receiving below 6.45, 9 are rejected.
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Table 11: Predicted versus observed outcomes in the experienced games

Cooperative theories Non-cooperative theories
Core Markov Carrot

Core SPB Mid-Point MPE Reversion and Stick
Efficiency
(1) Matching is efficient in Game 15 3 3 3 3 3 3
(2) The rate of efficient matching declines 7 7 7 3 7 7

from Game 15 to Game 25 to Game 30
(3) Games 25 and 30: eff outcomes are more likely 7 7 7 3 7 7

to be reached if a weak player proposes first
Players’ Payoffs
(1) Strong players’ payoffs increase — 3 3 3 3 3

from Game 15 to Game 25 to Game 30
(2) Weak players’ payoffs decrease — 3 3 3 3 3

from Game 15 to Game 25 to Game 30
(3) Diff in payoffs of strong players in eff matches — 7 7 3 3 —

from exiting first rather than second is positive
and higher in Game 30 than in Game 25

Players’ Strategies
(1) Players do not delay — — — 3 3 3
(2) Freq of eff proposals by strong player declines — — — 3 7 7

from Game 15 to Game 25 to Game 30

Notes: When a theory is consistent with the data and would be violated by the opposite finding we mark the cell
with a 3. If the theory does not make this prediction, but is consistent with it we mark the cell with a —, and if the
predictions of the theory are violated by the data we mark the cell with a 7.

these papers show that comparative statics predictions implied by MPE organize
experimental data quite well across a variety of dynamic games. Simplicity seems to
be a useful guiding tool for equilibrium selection, even when, as in our case, it runs
contrary to efficiency.

5.5 An adjustment to the MPE

While we view the MPE as doing a good job of capturing some of the key forces at
play, the systematic deviations from the quantitative predictions suggest that it is
also missing something. To gain a better understanding of what this might be it is
helpful to consider again the systematic deviations from players’ MPE strategies that
we observe in the data.

We have seen that weak players are frequently unwilling to reach inequitable
agreements they should be willing to reach according to the MPE. This is reflected
both in them offering less to strong players than they should, and refusing to accept
offers they should. Taking inspiration from the large experimental literature analyzing
two-person bargaining games (see Roth (1995) for a survey), and motivated by our
analysis of players’ strategies, suppose that some players always demand an equal
shares of surplus with their efficient partner, while others, whom we term rational,
seek to maximize their expected payoffs.
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As already noted, because weak players often demand a higher share of surplus
than predicted by the MPE they often fail to reach agreements when proposing or
receiving an offer. The same does not apply when strong players are making offers
to each other. Indeed, the likelihood of reaching an agreement in the first round is
significantly higher if the first mover is a strong player rather than a weak player.38

This can account for inefficient agreements being reached with a higher frequency than
predicted by the MPE. Further, as weak players get a payoff of zero in these cases,
the payoffs of strong and weak players are also likely to be less equal than predicted.
So, the presence of weak players demanding too much can help explain both the
observed deviations in the rate of efficient matching from the MPE predictions, and
the deviations in the average payoffs of weak and strong players.39

In Section 2 of the Supplementary Appendix we develop this idea in more detail
by calculating the MPE of an extended model that includes some behavioral players.
The behavioral players always demand a payoff of at least 10 when both proposing and
accepting. We find that by adjusting the MPE in this way it can do a considerably
better job of matching the data quantitatively.

Interestingly, and in contrast to the ultimatum game where evidence for the pres-
ence of behavioral players like this has also been documented, the introduction of
behavioral types demanding equality results in more unequal outcomes as well as
more inefficient outcomes being predicted. Strong players respond to the demands of
these behavioral weak players by more frequently excluding them from agreements,
yielding more mismatch and inequality. Rules of thumb that are adopted by some
players and do well limiting inequality in the ultimatum game also seem to be adopted
in our setting, but with the consequence of exacerbating inequality.40

5.6 Key Forces and External validity

There are two key things that we take away from Experiment I. First, even in our
simple setting, markets very frequently fail to reach efficient outcomes. Second, bar-
gaining positions matter. Strong players, those with two links, do better than weak
players, those with one link, and how much better depends on the value of their al-
ternative match. Players’ payoffs also depend on the market composition at the time

38In particular, in Game 25 only 50% of offers made by weak players who were first movers were
accepted, while this fraction is 70% for strong players who were selected to be first movers. Similarly,
in Game 30 only 53% of offers made by weak players who were first movers were accepted, while
this fraction is 87% for strong players who were first movers.

39These patterns cannot be explained by the rates at which strong and weak players are selected
to be the proposer. We find no statistical difference between these rates in any treatment.

40A closely related finding is that the players in strong positions are typically not willing to accept
the perfectly equitable and efficient outcome, and instead want to exploit their strong positions.
This is consistent with findings in Weg et al. (1990) and Kagel et al. (1996).
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they exit. Strong players do better if they reach agreement when both matches are
still available to them.

This raises crucial questions about the possibility of the bargaining frictions we
find in the lab also being present in practice. In real world high skill markets, with
limited search and informational frictions, will there still be a serious impediment to
the efficient matches being reached in the form of bargaining frictions? If bargaining
frictions do matter in such markets, might they also exacerbate problems in other
markets more prone to search and informational frictions?

Addressing these questions is hard. The laboratory setting is removed from the
real world in several ways. Nevertheless, better understanding what is driving the
inefficiency we find in the lab can help to inform us better about the likelihood of
bargaining frictions having a substantial impact in real markets. To this end we
advance two related explanations about what might be underlying the inefficiencies
we find.

We know that whenever an inefficient match occurs, there are least two players
whom have a deviation to match with each other that can make them both strictly
better off. So, in our experiment, there are pairs of participants who are leaving
surplus on the table. Moreover, there are simple heuristics that exploit profitable
deviations and which, if followed, will lead the market to converge to a pairwise stable
and efficient outcome (see, for example, Bayati et al. (2015)). Two related features
of our experimental design could be causing problems that prevent this logic from
being realized. First, the presence of a rigid protocol governing who can interact with
whom and when might be preventing participants (in weak bargaining positions)
who are about to be excluded, from making offers that would exploit a profitable
pairwise deviation. For example, after a weak player’s efficient partner has received
an offer to match inefficiently this offer must be accepted or rejected before the weak
player has the chance to put a counter proposal on the table. Second, agreements are
reached sequentially and after a proposal has been accepted the players in question
exit the market preventing them from exploiting profitable pairwise deviations that
might remain. If instead players could renege on agreements, there would be no
impediment to profitable pairwise deviations being exploited and efficient outcomes
might be reached.41

41This explanation is also consistent with the outside option principle from bargaining theory.
Consider the inefficiencies we would expect to find were two players to bargain bilaterally, but with
one of them having a long-lived outside option. In this case, the “outside option principle” predicts
that the two players should reach agreement with probability 1 such that there is no mismatch, and,
if the outside option is binding, the player with the binding outside option should receive a payoff
equal to its value. Experimental support for precisely this is presented in Binmore et al. (1989). The
reason the outside option principle does not apply to Experiment I is that it based on outside options
always being available. When alternative matches can be lost, because others exit the market, they
do not act like outside options. If instead players did not exit the market, and could renege on their
current deals, then the same alternative matches would always be available. In this case the logic
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Although our two explanations are closely related to each other, they have different
implications for the conclusions that can be drawn from our experiment. If it is the
experimental protocol that is generating the inefficiencies we find, then the external
validity of our experiment would be quite limited. In the real world interactions are
not constrained by a protocol. If instead it is the sequential order in which agreements
are reached, and the inability of people to renege on deals, external validity is less
compromised. Jobs in labor markets are typically filled sequentially, while firms very
rarely renege on agreements and it is unusual for people to do so too.42

To test these explanations and better understand what is driving inefficiencies in
Experiment I, we run two new experiments. In Experiment II we allow the partici-
pants to interact freely with each other and do not impose an experimental protocol
on interactions. In Experiment III we allow people to renege on existing agreements,
for a small cost, while otherwise maintaining the protocol from the first experiment.

6 Experiment II: Unstructured Bargaining

6.1 Experimental Design and Procedures

Experiment II consists of one treatment, which uses the market structure of Game 30
(see Figure 1). This treatment was conducted at the University of California, Irvine.
A total of 88 subjects participated in three experimental sessions, which lasted less
than one hour including the instruction period and quiz. Subjects earned on average
$23.5 including a $15 showup fee.

Similarly to the Game 30 treatment of Experiment I, in each session of Experi-
ment II, subjects play ten repetitions of Game 30 with random re-matching between
games. Within each game there is no pre-determined structure of bargaining. In-
stead, subjects can make offers to any other player they might match with, withdraw
offers they have previously proposed, and accept any currently standing offer they
have received. Just like in the Experiment I, offers specify the player to whom it is
made as well as the surplus split.43 Once an offer is accepted, the match between
these two players is formed and these players exit the market, i.e., have no more
opportunities to move in the game. When a match is formed, all currently standing

of the outside option principle seems more applicable.
42See, for example, Avery et al. (2001).
43Specifically, to make an offer a subject has to click on the ID letter of the subject she wants

to receive the offer, and to type in the amount that she proposes to keep for herself; the remaining
portion of the surplus the match would generate is allocated to the recipient. The offer then imme-
diately appears in the column OFFERS YOU PROPOSED on the screen of the proposer and in the
column OFFERS PROPOSED BY OTHERS on the screens of all the subjects still in the market.
By clicking on a button the recipient can accept the offer at any time up until it is withdrawn.
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offers are voided, and bargaining starts afresh. Similarly to Experiment I, there are
two ways in which the game can come to an end in Experiment II. First, the game
ends if there are no new matches that can be formed between any two subjects who
are not matched yet. Second, the game may end because of discounting, implemented
as a random termination of the game: There is a 1% chance that the game ends at
the end of each 30-second interval. When the game ends unmatched players receive
a payoff of 0 while matched players earn payoffs according to their agreements. We
refer the reader to the Supplementary Appendix for the complete instructions used
in these sessions as well as the screenshots and the quiz that subjects were asked to
complete before the beginning of the experiment (Sections 6.1, 6.2, and 6.3).

6.2 Results

Our approach to the data analysis is the same as in the Experiment I. In particular,
we focus on behavior in the experienced games (the last 5 repetitions of the game in
each session) and perform most of the tests using a regression analysis with standard
errors clustered by session.

Our data shows that with unstructured bargaining markets continue to often
match players inefficiently. In Experiment II Game 30 the market cleared efficiently
only 59% of the time. This is better than in Experiment I Game 30, which had an
efficiency rate of 30%, but considerably less than all the time.

To investigate this further we run the following regression on our Game 30 data
from Experiments I and II, 1Eff = β0 + β1 · 1Exp II + ε. This confirms that the
efficiency rate in Experiment II, Game 30 is higher than that in Experiment I, Game
30 (p < 0.0067, Regression (6) reported in Table 12).

To compare players’ payoffs by their bargaining positions across Experiments I and
II we run the regression, 1Payoff = β0 +β1 ·1Exp II +ε, for strong and then weak players.
Weak players earn significantly and substantially higher amounts in Experiment II
than Experiment I (see Regression (8) in Table 12). The difference between payoffs
of strong players in Experiments I and II is significant but negative and rather small.
Weak players appropriate all the additional gains from trade obtained from the higher
rates of efficient matching in Experiment II, and then a little bit more.

Figure 6 shows the histogram of the final payoffs of the strong players in Exper-
iment II Game 30 treatment by their order of exit, and conditional on an efficient
outcome being reached. The grey bars in this figure depict the payoffs of players that
exited the market first and black bars present the payoffs of players that exited the
market second.

The average payoff of strong players is 13.8 if they exited first, while it is 10.4
if they exited second, while the weak players earn on average 6.2 when exiting first
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Table 12: Efficiency and Players’ Payoffs in Experiment I vs Experiment II for Game
30, experienced games

Regression (6) Regression (7) Regression (8)
Dependent Variable Efficiency Players’ Payoffs Players’ Payoffs

(strong players) (weak players)
Constant 0.30∗∗∗ (0.01) 14.17∗∗∗ (0.05) 2.36∗∗∗ (0.10)
Experiment II 0.29∗∗∗ (0.06) -0.89∗∗∗ (0.26) 5.53∗∗∗ (0.35)
# of obs 179 357 269
# of clusters 6 6 6
R-squared 0.0779 0.0296 0.3856

Notes: Linear regression with robust standard errors clustered at the session level. Regression (7) concerns payoffs of
strong players only, while Regression (8) focuses on payoffs of weak players only. The significance is indicated by ∗∗∗

and ∗∗ for 1% and 5% significance level.

compared to 9.6 when exiting second. This suggests that strong players continue to
benefit from reaching agreement first in Experiment II.

To confirm these observations we regress players’ payoffs on an indicator for
whether they are strong or not, and whether they exited the market first:

Payoff = β0 + β1 · 1Strong + β2 · 1Exit First + ε.

Similarly to the Experiment I Game 30 treatment, we observe that the strong players
obtain higher payoffs than the weak players (see Regression (9) in Table 13). More-
over, as in Experiment I Game 30 treatment, in Experiment II Game 30 treatment
the order of exit also continues to matter. Regression (10) in Table 13 confirms that
strong players benefit from exploiting their bargaining position when they exit the
market first rather than second.

Table 13: Players’ payoffs in Game 30 in Experiment II, experienced games

Regression (9) Regression (10)
Dependent Variable Players’ Payoffs Players’ Payoffs

(all players) (strong players in efficient matches)
Constant (β0) 4.70∗∗∗ (0.57) 10.38∗∗∗ (0.11)
Strong (β1) 8.52∗∗∗ (0.77)
Exit first (β2) 3.38∗∗ (0.69)
# of obs 440 130
# of clusters 3 3
R-squared 0.5510 0.2953

Notes: Linear regressions with robust standard errors clustered at the session level. Regression (9) concerns payoffs
of all players, while Regression (10) focuses on the payoffs of strong player (players A and D) in the markets that
reached efficient outcome. The significance is indicated by ∗∗∗ and ∗∗ for 1% and 5% significance level.

To sum up, when our experimental subjects can act as they see fit in an unstruc-
tured manner, substantial inefficiencies persist and our data shows strong support for
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Figure 6: Payoffs of strong payers in efficient matches in Game 30 in Experiment II
by market composition at the time of exit, experienced games
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Notes: We consider only groups that reached efficient match.

the market composition continuing to affect the payoffs of the players.

6.2.1 Experiment II conclusions

There are two main things we take away from Experiment II. First and foremost, de-
spite allowing for unstructured bargaining we continue to find high rates of mismatch,
albeit lower than in Experiment I. Second, bargaining positions continue to matter.
Players with two links do better than players with one link when both links are still
available, but not once their alternative match has left the market.

There is a simple logic we expound in the introduction that can explain why it
is hard to get efficient matching. Suppose there are two parties who match with
each other in the efficient match, but that one of them is in a stronger bargaining
position than the other. If the efficient match is reached for certain, then the player
in the weaker bargaining position can wait for others in the market to exit until she
is no longer in a weak position. But given this, strong players would strictly prefer
to match inefficiently, and in contradiction to the premise, we wouldn’t reach the
efficient match for sure. This logic is reflected in the results from Experiment II,
as well as those from Experiment I. In both experiments players whose bargaining
position might deteriorate sometimes match inefficiently. This creates a real prospect
that weak players will find themselves unmatched, and it is likely that this plays a role
in persuading weak players to accept lower payoffs (thus allowing the strong players
to gain from their bargaining positions).
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7 Experiment III: Reneging Experiment

We now test the hypothesis that if we limit the non-stationarities in bargaining posi-
tions, efficient outcomes will obtain. We test this hypothesis by running Experiment
III in which we allow players to renege on existing agreements for a small cost.

7.1 Design and Procedures

The design and experimental procedures of Experiment III are very similar to those
of the Experiment I. Experiment III consisted of 3 treatments, Game 15, Game 25,
and Game 30, with each treatment corresponding to one of the markets described
in Figure 1.44 Just like Experiment I, Experiment III was conducted in the same
two locations: at the ESSL at University of California, Irvine and at the EBEL
at University of California, Santa Barbara. Ten sessions were run, with a total of
156 subjects, recruited from a database of undergraduate students enrolled in these
universities.45 The experiments lasted about two hours. Average earnings, including
a $15 showup fee, were $23.7 with a standard deviation of $4.9.

In each session, subjects played ten repetitions of the same game, with random
rematching between games. The main feature of Experiment III is the possibility
of reneging on agreements formed in previous rounds. Recall that in Experiment I
players have no opportunity of reneging, as those who reach agreements are forced to
exit the market permanently, which means they cannot make any further moves.46 On
the contrary, in Experiment III, players who reach agreements do not exit the market
and can unilaterally break agreements they are part of at a small cost c.47 In all three
treatments of Experiment III, we used the same separation cost of c = 10 cents per
broken agreement. Thus, a player who has formed a match remains active and can
both propose new matches and accept new offers when proposed to her. If a currently
matched player accepts a new offer, then she pays the separation cost for dissolving
the previous match she was involved in and forms a new match in its place. If a
currently matched player makes a new offer which is accepted by the responder, then

44In this section, we briefly summarize the main features of Experiment III and refer the reader
to the Supplementary Appendix, Sections 7.1, 7.2, and 7.3, in which we present instructions, the
screenshots, and the quiz for this experiment.

4540 subjects participated in the Game 15 treatment, 60 subjects in the Game 25 treatment, and
56 subjects in the Game 30 treatment.

46Specifically, when a player reaches an agreement with another player, the button responsible for
submitting offers is disabled and the only active button on the screen of a matched player is the
“Do Nothing” button, which she has to press in every round thereafter. We chose such a design in
order to keep all the subjects engaged and focused on a game irrespective of the order in which they
formed matches.

47In other words, the button responsible for submitting offers is never disabled no matter whether
a player is matched with another player or not.
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the proposer pays the separation cost for breaking the match she was part of. The
person who was part of an agreement that is broken by their partner in the current
round does not pay the separation cost, but starts the next round unmatched. At the
top of the screen subjects were reminded of the separation cost and of the number of
times they have paid it in the current game.

All the remaining protocol details of Experiment III mirror those of Experiment
I. In particular, there are two ways in which a game can end. First, there is a 1%
chance that the game ends after each round, determined by a random draw of the
computer. Second, the game ends if there was no positive surplus remaining between
any pair of players who both made proposals in the last round.

7.2 Results

In this section we report several key comparisons of final outcomes observed in Ex-
periments I and III. As before, we focus on the experienced games and use regressions
with standard errors clustered at the session level to perform statistical analysis.

The premise of Experiment III is that the ability of players to renege on their
current deals will make the bargaining environment stationary. To investigate the va-
lidity of this premise, we compare the monetary offers that unmatched strong players
receive and accept, and the offers unmatched strong players make and have accepted,
when (i) all players are unmatched, versus (ii) when the other strong player has
already formed a tentative match with their efficient partner.

Table 14: Offers made to and received by unmatched strong players in Experiment
III, experienced games

Game 15 Game 25 Game 30
No match Match p-value No match Match p-value No match Match p-value

Offer made 10.57 10.43 0.52 12.98 12.30 0.09 15.54 15.41 0.71
And accepted 9.21 9.70 0.18 9.41 9.32 0.93 10.56 9.38 0.27
Offer received 9.71 9.31 0.30 11.77 11.67 0.79 13.58 13.14 0.46
And accepted 10.00 10.00 1.00 12.30 12.06 0.59 14.56 14.48 0.21

Notes: This table reports the efficient offers made by strong players (i.e., those to their efficient match), the accepted
efficient offers made by strong players, the efficient offers received by strong players and the accepted efficient offers
received by strong players. It does so for: (i) when all players are unmatched (no match); and (ii) when the other
strong player is efficiently matched (match). The offers made by the strong players correspond to the amount the
strong players proposed to keep for themselves. The offers received by strong players correspond to the payoffs the
strong players get if these offers are accepted by them. The p-values are computed based on the regressions, in which
we regress the observed offers on a constant and an indicator for one of the groups, while clustering standard errors
by session.

Table 14 shows that there is little evidence, in any of the three treatments Game
15, Game 25 or Game 30, that the offers received or made by unmatched strong
players, conditional on being accepted or not, depend on whether the other strong
player was matched or not. This corroborates our hypothesis that, if reneging is
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possible, the bargaining positions of players remains relatively stationary irrespective
of whether the other players in the market are matched or not.

Our main hypothesis is in regard to a comparison of the efficiency levels observed
in Experiment I with those in Experiment III. Figure 7 depicts the efficiency in each
treatment in the experienced games, along with the 95% confidence intervals. As
expected, in Game 15 we observe almost full efficiency regardless of the possibility
of renegotiation. In the remaining two games, the possibility of reneging affects the
final outcomes and significantly increases efficiency: In Game 25 efficiency increases
from 51% to 82%, and in Game 30 it increases from 30% to 73%.

Figure 7: Efficiency of the final match in Experiments I and III, experienced games
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Notes: Average efficiency per treatment is reported, along with the 95% confidence interval, computed using robust
standard errors, where errors are clustered at the session level.

To confirm that these differences are statistically significant we combine our data
from Experiments I and III and regress an indicator for whether the efficient match is
reached on indicators for the treatments within the experiments (Game 15, Game 25,
Game 30), and these treatment indicators interacted with an indicator for Experiment
III (1Experiment III):

1Eff = β0 + β1 · 1Game25 + β2 · 1Game30 + β3 · 1Game15 · 1Experiment III

+β4 · 1Game25 · 1Experiment III + β5 · 1Game30 · 1Experiment III + ε

Regression analysis confirms that in Games 25 and 30 efficiency levels achieved
in Experiment III are significantly higher than those in Experiment I: estimated
coefficients β4 and β5 are positive and significant in Regression (11) presented in
Table 15 (p < 0.01 for coefficients).48

48The regression presented in Table 15 also reveals that in Game 15 efficiency is significantly lower
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Table 15: Efficiency in Experiments I and III, experienced games

Regression (11) Regression (12)
Dependent Variable Efficiency Efficiency

Games 15, 25 and 30 Games 25 and 30
Exp I and Exp III Exp III only

Constant (β0) 1.00∗∗∗ (0.00) 0.73∗∗∗ (0.02)
Game 25 (β1) -0.49∗∗∗ (0.03) 0.09 (0.04)
Game 30 (β2) -0.70∗∗∗ (0.01)
Experiment III × Game 15 (β3) -0.04∗∗ (0.02)
Experiment III × Game 25 (β4) 0.32∗∗∗ (0.05)
Experiment III × Game 30 (β5) 0.42∗∗∗ (0.02)
# of obs 369 127
# of clusters 20 7
R-squared 0.2735 0.0130

Notes: Linear regression with robust standard errors clustered at the session level. The significance is indicated by
∗∗∗ and ∗∗ for 1% and 5% significance level.

While there is no statistical difference between the efficiency levels observed in the
Game 25 and Game 30 treatments in Experiment III (see Regression (12) reported
in Table 15), these levels are statistically less than 100% and so some inefficiency
remains.49

Table 16: Payoffs of players by network position in Experiments I and III, experienced
games

Game 15 Game 25 Game 30
B (C) A (D) B (C) A (D) B (C) A (D)

All Final Matches
Experiment I 10.0 (0.03) 10.0 (0.03) 4.5 (0.25) 11.8 (0.10) 2.4 (0.11) 14.2 (0.05)
Experiment III 9.8 (0.12) 9.8 (0.09) 6.2 (0.35) 12.3 (0.16) 3.6 (0.05) 14.8 (0.15)

Efficient Final Matches
Experiment I 10.0 (0.03) 10.0 (0.03) 8.8 (0.10) 11.2 (0.10) 7.7 (0.09) 12.3 (0.09)
Experiment III 10.0 (0.03) 10.0 (0.03) 7.5 (0.18) 12.3 (0.08) 4.9 (0.18) 15.0 (0.14)

Notes: We report average payoffs of players by their network positions, with the corresponding robust standard errors
in the parentheses, where observations are clustered at the session level.

We report the payoffs of players in Experiment I and Experiment III in Table 16.
To confirm the patterns apparent in table 16, we regress their payoffs on indicators

in Experiment III than in Experiment I. While in Experiment I there are no inefficient matches, in
Experiment III there are inefficient matches in about 4% of cases. We do not view this as substantial.

49Based on the estimated coefficients presented in Regression (12) we reject both H0: β0 = 1.00
in favor of H1: β0 < 1 with p < 0.0001 and H0: β0 + β1 = 1.00 in favor of H1: β0 + β1 < 1
with p = 0.0024. Moreover, comparing efficiency levels in Game 30 obtained in Experiment II and
Experiment III, we find that this difference is statistically significant at the 10% level (p = 0.0895).
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for the different games, and these interacted with an indicator for Experiment III:

Payoffs = β0 + β1 · 1Game25 + β2 · 1Game30 + β3 · 1Game15 · 1Experiment III

+β4 · 1Game25 · 1Experiment III + β5 · 1Game30 · 1Experiment III + ε

The positive and significant values of β4 and β5 in Regressions (13) and (14)
(p < 0.01) show that in Games 25 and 30 both strong and weak players receive higher
payoffs in Experiment III than in Experiment I. However, the average payoffs of the
players has to be higher because of the higher rate of efficient matching, so these
regressions just tell us that these gains are shared among the strong and weak players
(although the weak players seem to benefit a little more). However, conditional on
an efficient match being reached, strong players’ payoffs increase while weak players
payoffs decrease (Regressions (15) and (16)). This makes sense. The advantageous
bargaining positions of strong players are transitory in Experiment I, but more per-
manent in Experiment III.

Table 17: Players’ payoffs in Experiments I and III, experienced games

Regression (13) Regression (14) Regression (15) Regression (16)
Dependent Variable Payoffs Payoffs Payoffs Payoffs

Strong Players Weak Players Strong Players Weak Players
efficiently matched efficiently matched

Constant (β0) 9.97∗∗∗ (0.03) 10.03∗∗∗ (0.03) 9.96∗∗∗ (0.03) 10.03∗∗∗ (0.03)
Game 25 (β1) 1.80∗∗∗ (0.09) -5.53∗∗∗ (0.22) 1.24∗∗∗ (0.08) -1.24∗∗∗ (0.09)
Game 30 (β2) 4.20∗∗∗ (0.05) -7.68∗∗∗ (0.09) 2.30∗∗∗ (0.05) -2.30∗∗∗ (0.08)
Exp III × Game 15 (β3) -0.18∗∗ (0.08) -0.27∗∗ (0.10) 0.05 (0.04) -0.05 (0.04)
Exp III × Game 25 (β4) 0.52∗∗∗ (0.17) 1.71∗∗∗ (0.38) 1.15∗∗∗ (0.12) -1.31∗∗∗ (0.18)
Exp III × Game 30 (β5) 0.67∗∗∗ (0.14) 1.26∗∗∗ (0.10) 2.69∗∗∗ (0.14) -2.85∗∗∗ (0.17)
# of obs 740 740 502 502
# of clusters 20 20 20 20
R-squared 0.5726 0.4243 0.6860 0.6543

Notes: Linear regression with robust standard errors clustered at the session level. The significance is indicated by
∗∗∗ and ∗∗ for 1% and 5% significance level.

7.2.1 Takeaways from Experiment III

There are two main things we take away form Experiment III. First, bargaining po-
sitions continue to matter but unlike before there is no evidence that they change as
agreements are reached. Our intention was to make the environment more stationary,
and reassuringly the evidence is consistent with this. Second, and more importantly,
with more stationary bargaining positions efficiency increases quite considerably, al-
though non-trivial and statistically significant rates of mismatch remain.
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8 Conclusions

Market clearing is a fundamental question in economics. It is important to get the
“right” people into the “right” jobs, especially in the high-skill labor markets in
which mismatches can be very costly in term of efficiency. In this paper we remove
standard frictions and study mismatch. We turn off search frictions by letting players
be patient, remove information problems by giving everyone symmetric information
about match surpluses, remove coordination problems by considering very simple
markets and give norms a good chance of yielding the efficient outcome by considering
markets in which a perfectly equitable and efficient outcome is feasible. We still find
persistent and extensive mismatch across our three experiments.

Inefficiencies are highest when interactions are constrained by an experimental
protocol and participants are not permitted to renege on agreements they reach. In
this experiment (our main experiment) the Markov perfect equilibria of the corre-
sponding bargaining game does a good job of organizing the data across a variety of
dimensions. This includes market outcomes as well as a more nuanced predictions
regarding players’ strategies. Nevertheless, some participants’ strategies are sugges-
tive of systematic deviations that exhibit a particular behavioral bias—similarly to
previous experimental work on the ultimatum game, some players in weak positions
demand a more equitable split of surplus than theory suggests they should. How-
ever, unlike in the ultimatum game, in our setting this reduces efficiency and makes
outcomes less equal. Instead of being offered more, behavioral players are left un-
matched more often, and market outcomes are both less efficient and less equitable
than predicted by the Markov perfect equilibria.

We remove the bargaining protocol in Experiment II, thereby permitting much
richer endogenous interactions, and inefficiency improves but remains substantial.
This suggests the results from the first experiment are not just driven by the rigid
bargaining protocol. Permitting agents to renege on agreements, making the environ-
ment more stationary, efficiency improves more, but again non-trivial inefficiencies
persist. As bargaining positions seem non-stationarity in many high-skill labor mar-
kets, we view our results as being consistent with the bargaining frictions we document
contributing towards mismatch in actual markets. Frictions in our experiment arise
because of both the protocol and commitment. While we view the constraints put
on interactions by the protocol as an unrealistic representation of interactions in real
markets, there is often commitment.
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A Experiment I: Markov Perfect Equilibria

In this section we derive the MPE predictions summarized in Section 3.1. A more
formal and general derivation is provided in Elliott and Nava (2019). We start with
Game 25. Let W (δ) be the continuation value of players in the subgames where they
are bargaining bilaterally with their efficient partners. By Rubinstein (1982) there
is a unique perfect equilibrium in these subgames and limδ→1W (δ) = 10. Letting
Vi be the continuation value of player i when no one has yet been matched, we
look for a symmetric solution in which VA = VD := VS is the continuation value
for both the strong players and VB = VC := VW is the continuation value for both
the weak players. We guess and verify that in Game 25 there is an equilibrium in
which the strong players mix between offering to each other and offering to their
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efficient partners. Letting q be the probability that the strong players, A and D,
offer inefficiently to each other if either is selected as the proposer, we then have the
following system of equations.

VS =
1

4
(20− δVW + δ(1 + q)VS + (2− q)δW (δ))

VW =
1

4
(20− δVS + (1− q)δVW + (2− q)δW (δ))

20− δVW = 25− δVS,

The first two equations state the continuation values of the strong and weak players
as determined by the possible transitions in states that can occur and the payoffs
associated with these transitions. The last equation is an indifference condition that
must be satisfied for the strong players to strictly mix who they offer to.

Solving this system of equations and taking limits,

q → 16−
√

160

6
= 0.56

VS → 11.45

VW → 6.45

Given these continuation values, it is easily verified that no players have a prof-
itable deviation. As players are always offered their continuation values, acceptance
is optimal, and as the strong players mix, by construction they are indifferent be-
tween offering to each other and offering to their efficient partners. Finally, delaying
is unprofitable. In the limit, by deviating and delaying a weak player receives an ex-
pected payoff of 6.45 < 20− 11.45, while a strong player receives an expected payoff
of 11.45 < 20− 6.45 = 25− 11.45.

For Game 30, players A and D strictly prefer offering to each other. The system
of equations is then

VS =
1

4
(30− δVS + 2δVS + δW (δ))

VW =
1

4
(20− δVS + δW (δ))

Solving this system of equations and taking limits, we get
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VS →
40

3
= 13.33

VW → 25

6
= 4.17

It is again easily verified that this is an equilibrium. For example, were a strong
player to deviate and make an offer to a weak player, the lowest acceptable offer they
could make would leave the strong player with a payoff of 20− 4.17 < 30− 13.33.

B Experiment I: Efficient Perfect Equilibria

To construct an efficient perfect equilibrium, we need to create the right system of
rewards and punishments for players to play efficiently. One measure of the complex-
ity of strategies is the extent to which the players’ prescribed actions vary with the
history of play (see, for example, Kalai and Stanford (1988)). In this sense Marko-
vian stratagies are particularly simple, as they depend only on the history through
the state—in this case the set of active players. In order to incentivize the players to
play efficiently, more complicated strategies are necessary to create the right system
of rewards and punishments.

We start by considering a particularly simple class of efficient perfect equilibria,
those where (only) reversion to the Markov perfect equilibrium is used as a punish-
ment. Thus equilibrium play depends only on the state and whether there has been
a deviation. It doesn’t matter who deviated or when. In Game 25 there is a perfect
equilibrium that can be supported by reversion to the MPE. Let the expected MPE
payoff of player i be V M

i (δ), and as before let W (δ) be the payoff of a player in the
unique perfect equilibrium of the subgame where all other players except her efficient
partner has exited.

We construct an efficient perfect equilibrium in which, on path, player i offers her
efficient partner µ∗(i) a payoff δV M

i and the offer is accepted. Any deviation from this
play is punished by moving to the Markov perfect equilibrium. Thus, by construction,
player i best responds by accepting the offer. Indeed, given that deviations are
supported by reversion to the MPE, player i must offer her efficient partner exactly
δV M

µ∗(i). Anything less would be rejected by µ∗(i). If the strategy prescribed i offering

anything more than δV M
µ∗(i) to µ∗(i), then i would have a profitable deviation to offer

a little less and, knowing that because i has deviated play will revert to the MPE
strategies thereafter, µ∗(i) would accept.

It is easily verified that δV M
i < 20 − δV M

µ∗(i) for all players and thus all players
prefer making the prescribed offers to delaying. The final deviation to check is that
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the strong players cannot do better by offering to each other. In Game 25 this requires
that 25 − δV M

S ≤ 20 − δV M
W . As a strong player offering to another strong player

constitutes a deviation, thereafter the MPE will be played. Hence each strong player
will just be willing to accept an offer from the other strong player that leaves her
with a payoff of δV M

S . In the MPE the strong players mix between making offers to
each other and offering to their efficient partner, and so are indifferent between these
alternatives implying that 25−δV M

S = 20−δV M
W . Thus the above inequality is satisfied

and the strong players do not have a profitable deviation. However, this is not the
case for Game 30. In Game 30 the strong players do not have a profitable deviation
if 30− δV M

S ≤ 20− δV M
W (where these MPE continuation values are for Game 30 and

not for Game 25 as before). As in the MPE of Game 30 the strong players strictly
prefer offering to each other than offering efficiently, 30− δV M

S > 20− δV M
W . Thus in

Game 30 Markov reversion does not provide sufficient incentives for the strong players
to offer efficiently and there is no efficient MPE with Markov revision for Game 30.

In the efficient PE with MPE reversion for Game 25, the limit payoffs of the
players are

VS =
1

4

(
20− δV M

W + δV M
S + δ2W (δ)

)
→ 11.25

VW =
1

4

(
20− δV M

S + δV M
W + δ2W (δ)

)
→ 8.75

To further illustrate that there is no such efficient PE for Game 30, and letting
V M
i now refer to the expected MPE payoff of player i in game 30 (as opposed to

Game 25 above), the limit payoffs of the players would be

VS =
1

4

(
20− δV M

W + δV M
S + δ2W (δ)

)
→ 12.29

VW =
1

4

(
20− δV M

S + δV M
W + δ2W (δ)

)
→ 7.71

But then if selected as the proposer, a strong player can either stick with the
prescribed strategy that offers their (weak) efficient partner a payoff δV M

W , leaving
them with a limit payoff of 15.83, or deviate and offer the other strong player a payoff
δV M

S , which the other strong player would accept, leaving them with a limit payoff
of 16.66.

To find a limit MPE for Game 30 we need to consider more complicated strategies,
in which players are both rewarded for rejecting off-path offers and punished for
making off-path offers. The rewards are important because we can punish an off-path
offer only if it is rejected. On-path, we look for an equilibrium in which players B
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Figure 8: Constructing an efficient perfect equilibrium for Game 30. Panel (b) shows
the transitions between states when players deviate from the prescribed play, while
panels (c)–(e) show how players play in each state. Red arrows indicate whom a player
offers to if selected as the proposer; and the numbers next to the arrows indicate the
payoffs that the offering players will keep.

and C make efficient acceptable offers that leave them with a payoff of x and accept
offers of x from their efficient partners. This is shown in panel (c) of Figure 8. On-
path, after the first efficient pair of players exit the market the remaining efficient
pair bargain bilaterally with each other. In such subgames there is a unique perfect
equilibrium (Rubinstein, 1982) and the remaining active players receive payoffs W (δ)
that converge to 10. Thus, in any efficient equilibrium the last weak player to reach
agreement receives a limit payoff of 10. In order to get these weaker players to accept
and make offers that give them a payoff of x < 10 we need to punish them if they
deviate.

We construct off-path punishments that are credible and create the appropriate
incentives for players to remain on path. This is achieved by defining two different
punishment states, prescribing play in each of these states and a rule for transitioning
between them in a way that creates the appropriate incentives. These transitions are
such that they occur only if someone deviates from their prescribed strategy, in which
case the person who initiated the deviation is punished by moving to the state that
punishes her. Importantly, these transitions also reward all the players with whom

49



the punished player is linked. These transitions are illustrated in panel (b) of Figure
8.

To show that the punishments are credible, suppose we are in the Punish A,B
state. If everyone plays as prescribed we remain in this state and the payoffs of the
players are given by the following value functions:

V̂A =
1

4

(
30− δV̂D + 2δW (δ) + δV̂A

)
=

30− δV̂D + 2δW (δ)

4− δ
→ 11

1

9

V̂B =
1

4

(
20− δV̂D + 3

1

3
+ δV̂B

)
=

20− δV̂D + 31
3

4− δ
→ 2

2

9

V̂C =
1

4

(
δV̂C + 2W (δ)

)
=

2W (δ)

4− δ
→ 6

2

3

V̂D =
1

4

(
16

2

3
+ 3δV̂D

)
=

162
3

4− 3δ
→ 16

2

3

By symmetry, the punish C,D state value functions of the players are

ṼA =
162

3

4− 3δ
→ 16

2

3

ṼB =
2W (δ)

4− δ
→ 6

2

3

ṼC =
20− δV̂D + 31

3

4− δ
→ 2

2

9

ṼD =
30− δV̂D + 2W (δ)

4− δ
→ 11

1

9

Consider now the deviations available to the players in the punish A,B state.
First, suppose that A deviates and offers D less than δV̂D. By rejecting the offer, D
ensures that we remain in the same state and that he will receive, in expectation,
δV̂D. Alternatively, A may delay, in which case A receives δV̂A < 30−δV̂D. Finally, A
could offer to C. C would accept anything greater than δV̂C and reject anything less,
because we would remain in the punish A,B state. Thus A must offer C a limit payoff
of 62

3
, leaving A with 131

3
≤ 30 − 162

3
= 131

3
.50 The alternative deviations available

to B are to offer D less than δV̂D, which D would reject, leaving B with 21
3
< 31

3
,

or to delay, which would also leave B with 21
3
< 31

3
. The only deviation available to

50This inequality would becomes strict, while the others remain satisfied, were the offer D makes
to B to be increased slightly. We make this incentive constraint tight to make the punishment as
harsh as possible so that we can find the full range of payoffs that can be supported.
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C is to make an offer to A. As rejecting C’s offer will result in a switch of states,
A would accept only a limit payoff which is weakly greater than 162

3
, leaving C with

31
3
< 62

3
. Finally, D could deviate. As a deviation by D would result in a switch of

states if rejected, for an off-path offer to be accepted D must offer B at least 62
3

in the
limit, or A at least 162

3
in the limit. Both deviations are thus unprofitable. Finally,

as delay would also result in a switch of states, that alternative is unprofitable for
D as well. This covers all the possible deviations from the punish A,B state. By
symmetry, there are no profitable deviations from the punish C,D state.

For these punishments to be effective, in the on-path state C and B must be
required to accept only offers, in the limit, of weakly more than 22

9
in the limit, or to

make offers that leave them with at least 22
9

in the limit. Similarly, A and D must
be required to accept only offers of weakly more than 111

9
in the limit, or to make

offers that leave them with at least 111
9

in the limit. Thus for any x ∈ (22
9
, 88

9
) there

exists an efficient perfect equilibrium. This places bounds on the offers that can be
supported when all the players are active. In the subgame reached once an efficient
pair has exited, the remaining players get limit payoffs of 10. Thus the weak players
will have limit expected payoffs in the range (61

9
, 94

9
), while the strong players will

have limit expected payoffs in the range (105
9
, 138

9
).

The construction we use to find an efficient perfect equilibrium for Game 30 also
works for Game 25. In that case, in the punish A,B state we would need to make A
offer D no more than 112

3
, leaving A with 131

3
, so that A does not want to deviate and

instead offer to C. As A offers D his continuation value, this implies that VD = 112
3
,

which means that B also offers 112
3

to D and that D offers 81
3

to B. This gives a
limit payoff to B of VB = 55

9
. As before, C’s limit payoff is VD = 62

3
. Finally, A’s

limit payoff is 111
9
. Given these strategies and limit payoffs, it can be verified that all

the incentive constraints are satisfied. Thus, there is an efficient perfect equilibrium
for any x ∈ (55

9
, 88

9
). As limit payoffs in the subgame are again 10, weak players have

limit expected payoffs in the range (77
9
, 94

9
), while strong players have limit payoffs in

the range (105
9
, 122

9
).

While for Game 15 the MPE is efficient, this construction cannot be used in this
Game to extend the payoffs that can be supported in an efficient perfect equilibrium.
The intuition is that the strong players can always guarantee themselves 10 by ig-
noring their link, while they cannot use this link to get more than 10 because the
threat of matching inefficiently and receiving an average payoff of 7.5 is not credible.
To see what specifically goes wrong with the construction let x be the amount player
D asks to keep when making an offer to B in the Punish A,B state. Note that C’s
limit continuation value is still 62

3
and that C is required to delay. If C deviates and

does not delay, then C is punished by moving to the punish C,D state. In that case,
C gets the same limit payoff that B gets in the Punish A,B state. That limit payoff
is 2

3
(20− x), so we require that x ≥ 10. However, in that case, the limit payoff of A

is 1
3
(15 − x) + 2

3
(10) ≤ 81

3
. But this means that A has an incentive to deviate and
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delay. This deviation does not change the state (as we are already in the Punish A,B
state), but does mean that B and D will match first for sure, leaving A with a limit
payoff of 10.

C Cooperative Theories

With unstructured bargaining, efficiency enhancing norms could emerge to the mu-
tual benefit of everyone. The participants have much more freedom to reach implicit
agreements that exploit inefficiencies for their mutual gain. This logic is present in
several solution concepts from cooperative game theory, and with unstructured bar-
gaining we might expect their predictions to be born out. To guide our experiment
we consider two such theories: (i) an extension of Nash bargaining where the dis-
agreement points are defined endogenously by the market; and (ii) the mid-point of
the core.51

The first solution concept we consider is Symmetric Pairwise Bargained (SPB)
outcomes, first developed by Rochford (1984) and independently discovered by Klein-
berg and Tardos (2008). This approach extends Nash bargaining to networks. A
player’s disagreement payoff is the surplus they could obtain by just enticing some-
one else to match with them. Given these disagreement payoffs, two players reaching
agreement each get their disagreement payoff plus an equal share of the remaining
surplus. Of course, the disagreement payoff for a given player depends on the agree-
ments others reach, and so the solution boils down to finding a fixed point of a large
system of equations. We derive predictions for Game 15, 25 and 30 in the Supplemen-
tary Appendix Section 1.1. These predictions coincide with the predictions of three
other cooperative solution concepts, the kernel, pre-kernel and nucleolus.

Our next cooperative theory is an alternative refinement of the core. The core com-
prises the set of bargaining outcomes that allocate the surplus generate by matching
such that there is no coalition of players that could find a match among themselves,
and then allocate that surplus in a way that makes them all better off. Shapley and
Shubik (1972) show that there are no profitable coalitional deviations if and only if
there are no profitable pairwise deviations, which just requires that for all workers
firm pairs that the sum of their payoffs is weakly greater than the surplus they could
generate by matching with each other. This implies that the match implemented must
be efficient. It also follows by results from Shapley and Shubik (1972) that there is
a mid-point of the core (mid-point) in which two players reaching an agreement

51We do not consider the Shapley value or related concepts. The Shapley value makes predictions
that can be infeasible in our setting when each matched pair of players is required to split between
themselves the surplus they generate. For example, if there is one worker and two firms and all
matches generate a positive surplus the Shapley value requires that all players receive strictly positive
payoffs.
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receive their worst possible core payoff for sure, and then split the remaining surplus
equally.52 In a non-transferable utility (NTU) environment, Echenique and Yariv
(2013) find experimentally that the median stable match is reached. For the markets
we consider, the mid-point of the core corresponds to the transferable utility (TU)
median stable matching (Schwarz and Yenmez, 2011). These predictions are derived
in the Supplementary Appendix Section 1.2 and reported below in Table 18.

Table 18: Theoretical predictions about final matches

Game 15 Game 25 Game 30
eff. B (C) A (D) eff. B (C) A (D) eff. B (C) A (D)

SPB 100% 8.3 11.7 100% 5 15 100% 3.3 16.7
Core 100% [0,20] [0,20] 100% [0,15] [5,20] 100% [0,10] [10,20]
Core Mid-Point 100% 10 10 100% 7.5 12.5 100% 5 15

52These payoffs are special cases of Corominas-Bosch (2004) and Elliott (2015) while Kranton and
Minehart (2001) use a related selection.
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D Further Analysis of Experiment I

D.1 Efficiency in Experiment I

Figure 9: Evolution of final match efficiency in Experiment I, by market
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Table 19: Effect of First Mover’s Network Position in the First Accepted Offer on
Final Match Efficiency in Experiment I, experienced games

Dependent variable Efficiency of final match
Constant (β0) 1.00∗∗ (< 0.01)
Game 25 (β1) -0.83∗∗∗ (0.08)
Game 30 (β2) -0.98∗∗∗ (0.02)
First accepted offer made by weak player × Game 15 (β3) 0.00 (0.00)
First accepted offer made by weak player × Game 25 (β4) 0.80∗∗∗ (0.07)
First accepted offer made by weak player × Game 30 (β5) 0.93∗∗∗ (0.04)
# of obs 197
# of clusters 10
R-squared 0.8041

Notes: Linear regressions with the dependent variable being an indicator of an efficient final match. Standard errors
are clustered at the session level. The significance is indicated by ∗∗∗ and ∗∗ for 1% and 5% significance level.
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D.2 Payoffs and delays in Experiment I

Table 20: Players’ payoffs and frequency of delays in Experiment I, experienced games

Dependent variable Players’ Payoffs Players’ Payoffs Delay
in efficient matches if two players active if four players active

Constant (β0) 10.04∗∗∗ (0.03) 10.03∗∗∗ (0.02) 0.02∗∗ (0.007)
Game 25 (β1) -1.24∗∗∗ (0.10) -0.13∗∗ (0.05) -0.02∗∗ (0.007)
Game 30 (β2) -2.30∗∗∗ (0.08) 0.02 (0.04)
Strong × Game 15 (β3) -0.07 (0.05) -0.06 (0.03)
Strong × Game 25 (β4) 2.40∗∗∗ (0.19) 0.20∗ (0.09) 0.01 (0.01)
Strong × Game 30 (β5) 4.52∗∗∗ (0.16) -0.10 (0.07) -0.01 (0.008)
# of obs 436 218 348
# of clusters 10 10 7
R-squared 0.4301 0.0170 0.1070

Notes: Linear regressions with the standard errors clustered at the session level. The significance is indicated by ∗∗∗

and ∗∗ for 1% and 5% significance level.

As we discussed in Section 5.2, the strong players obtain higher payoffs in Games
25 and 30 when they exit the market first rather than second. Another way to
statistically examine this claim is to construct two observations per subject in the
following way. For each subject, we compute her average payoff when she was in
a strong position and exited first and her average payoff when she was in a strong
position and exited second (averages are taken over different repetitions of the game in
a session). We then compare the distribution of average payoffs of subjects when they
exit the market first and second as a strong player conditional on markets reaching
efficient outcome, and find that average payoffs of strong players who exited first are
higher than those who exited second in both Game 25 and Game 30. This refutes the
concern that our result is driven by the selection of subjects, e.g., that some subjects
are better at bargaining so tend to obtain higher payoffs, and these subjects also tend
to exit the market first when in strong positions. Specifically, using two observations
per subject, in Game 25 the average payoff of strong players when exiting first is 12.0,
while the average payoff of strong players when exiting second is 10.1. Similarly, in
Game 30, the average payoff of strong players when exiting first is 12.9, while the
average payoff of strong players when exiting second is 10.1. Moreover, while different
subjects have different numbers of times that they were assigned to the position of
a strong player and exited first or second, in Game 25, for 65% (84%) of subjects,
the number of times they exited first versus second differs at most by one (two)
instance(s). The same statistics for Game 30 are 77% and 98%, respectively.
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D.3 Players’ strategies in Experiment I

Figure 10: Average absolute deviations of the amounts offered by players from the
MPE predictions in Experiment I
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Figure 11: Responders’ behavior by network position in Experiment I, experienced
games
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Notes: Offers received by responders are depicted on the horizontal axes. The height of each bar represents the number
of observations in each offer range
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Figure 12: Responders’ behavior by network position in Experiment I in the first half
of the experiment
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Notes: Offers received by responders are depicted on the horizontal axes. The height of each bar represents the number
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