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TESTING IN HIGH-DIMENSIONAL SPIKED MODELS

By Iain M. Johnstone∗ and Alexei Onatski†

Stanford University and University of Cambridge

We consider the five classes of multivariate statistical problems

identified by James (1964), which together cover much of classical

multivariate analysis, plus a simpler limiting case, symmetric ma-

trix denoising. Each of James’ problems involves the eigenvalues of

−1 where  and  are proportional to high dimensional Wishart

matrices. Under the null hypothesis, both Wisharts are central with

identity covariance. Under the alternative, the non-centrality or the

covariance parameter of has a single eigenvalue, a spike, that stands

alone. When the spike is smaller than a case-specific phase transition

threshold, none of the sample eigenvalues separate from the bulk,

making the testing problem challenging. Using a unified strategy for

the six cases, we show that the log likelihood ratio processes para-

meterized by the value of the sub-critical spike converge to Gaussian

processes with logarithmic correlation. We then derive asymptotic

power envelopes for tests for the presence of a spike.

1. Introduction. High-dimensional multivariate models and methods,

such as regression, principal components, and canonical correlation analysis,

repay study in frameworks where the dimensionality diverges to infinity

together with the sample size. “Spiked” models that deviate from a reference

model along a small fixed number of unknown directions have proven to be

a fruitful abstraction and research tool in this context. A basic statistical

question that arises in the analysis of such models is how to test for the

presence of spikes in the data.

James (1964) arranges multivariate statistical problems in five different

groups with broadly similar features. His remarkable classification, recalled

in Table 1, relies on the five most common hypergeometric functions pq. In

this paper, we describe rank-one spiked models that represent each of James’

classes in a high dimensional setting. We derive the asymptotic behavior of

the corresponding likelihood ratios in a regime where the dimensionality

 of the data and the degrees of freedom 1 2 increase proportionally.

Specifically, we study the ratios of the joint densities of the relevant data
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2 I. M. JOHNSTONE AND A. ONATSKI

Table 1

The five cases of James (1964)

Statistical method 1 2

00 PCA Principal components analysis (1Σ+Φ) 2Σ
[latent roots of covariance matrix]

10 SigD Signal Detection (1Σ+Φ) (2Σ)
[equality of covariance matrices]

01 REG0 Multivariate regression, known error (1Σ 1Φ) 2Σ
covariance [non-central means]

11 REG Multivariate regression, unknown error (1Σ 1Φ) (2Σ)
covariance [non-central latent roots]

21 CCA Canonical correlation analysis (1ΣΦ( )) (2Σ)

James’ names for the cases, when different from ours, are shown in brackets. Final two

columns interpret  and  of (1) for Gaussian data, so that  denotes a -variate
central or noncentral Wishart distribution, see Definitions. Matrix Φ has low rank, equal

to one in this paper. For CCA, Φ( ) is a random noncentrality matrix, see

Supplementary Material (SM) 3.2 for definition. In cases 1 and 3,  is deterministic, Σ
is known, and 2 disappears. Otherwise  is assumed independent of .

under the alternative hypothesis, which assumes the presence of a spike, to

that under the null of no spike. The relevant data consist, in each case, of

the maximal invariant statistic represented by eigenvalues of a large random

matrix.

We find that the joint distributions of the eigenvalues under the alterna-

tive hypothesis and under the null are mutually contiguous when the values

of the spike is below a phase transition threshold. The value of the threshold

depends on the problem type. Furthermore, we find that the log likelihood

ratio processes parametrized by the value of the spike are asymptotically

Gaussian, with logarithmic mean and autocovariance functions. These find-

ings allow us to compute the asymptotic power envelopes for the tests for

the presence of spikes in five multivariate models representing each of James’

classes.

Our analysis is based on classical results that assume Gaussian data. All

the likelihood ratios that we study correspond to the joint densities of the

solutions to the basic equation of classical multivariate statistics,

(1) det ( − ) = 0

where the hypothesis  and error sums of squares  are proportional to

Wishart matrices, as summarized for the various cases in Table 1. The five

cases can be linked via sufficiency and invariance arguments to the statistical

problems listed in the table. We briefly discuss these links in the next section.
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James’ classification suggests common features that call for a systematic

approach. Thus the main steps of our asymptotic analysis are the same for all

the five cases. The likelihood ratios have explicit forms that involve hyperge-

ometric functions of two high-dimensional matrix arguments. However, one

of the arguments has low rank under our spiked model alternatives. Indeed,

for tractability, we focus on the rank one setting. We can then represent the

hypergeometric function of two high-dimensional matrix arguments in the

form of a contour integral that involves a scalar hypergeometric function of

the same type, Lemma 1, using the recent result of [12]. Then we deform

the contour of integration so that the integral becomes amenable to Laplace

approximation analysis, extending [27, ch. 4].

Using the Laplace approximation technique, we show that the log like-

lihood ratios are asymptotically equivalent to simpler random functions of

the spike parameters, Theorems 10 and 11. The randomness enters via a

linear spectral statistic of a large random matrix of either sample covariance

or  -ratio type. Using central limit theorems for the two cases, due to [6]

and [38] respectively, we derive the asymptotic Gaussianity and obtain the

mean and the autocovariance functions of the log likelihood ratio processes,

Theorem 12.

These asymptotics of the log likelihood processes show that the corre-

sponding statistical experiments do not converge to Gaussian shift models.

In other words, the experiments that consist of observing the solutions to

equation (1) parameterized by the value of the spike under the alternative

hypothesis are not of Locally Asymptotically Normal (LAN) type. This im-

plies that there are no ready-to-use optimality results associated with LAN

experiments that can be applied in our setting. However at the fundamen-

tal level, the derived asymptotics of the log likelihood ratio processes is all

that is needed for the asymptotic analysis of the risk of the corresponding

statistical decisions.

In this paper, we use the derived asymptotics together with the Neyman-

Pearson lemma and Le Cam’s third lemma to find simple analytic expres-

sions for the asymptotic power envelopes for the statistical tests of the null

hypothesis of no spike in the data, Theorem 13. The form of the envelope

depends only on whether both  and  in equation (1) are Wisharts or

only  is Wishart whereas  is deterministic.

For most of the cases, as the value of the spike under the alternative

increases, the envelope, at first, rises very slowly. Then, as the spike ap-

proaches the phase transition, the rise quickly accelerates and the envelope

‘hits’ unity at the threshold. However, in cases of two Wisharts and when

the dimensionality is not much smaller than the degrees of freedom of 



4 I. M. JOHNSTONE AND A. ONATSKI

the envelope rises more rapidly. In such cases, the information in all the

eigenvalues of −1 might be useful for detecting population spikes which

lie far below the phase transition threshold.

A type of the analysis performed in this paper has been previously imple-

mented in the study of the principal components case by [30]. Our work here

identifies common features in James’ classification of multivariate statistical

problems and uses them to extend the analysis to the full system. One of

the hardest challenges in such an extension is the rigorous implementation

of the Laplace approximation step. With this goal in mind, we have devel-

oped asymptotic approximations to the hypergeometric functions 11 and

21 which are uniform in certain domains of the complex plane, Lemma 3.

The simple observation that the solutions to equation (1) can be inter-

preted as the eigenvalues of random matrix −1 relates our work to the

vast literature on the spectrum of large random matrices. Three extensively

studied classical ensembles of random matrices are the Gaussian, Laguerre

and Jacobi ensembles, e.g. [22]. However, only the Laguerre and Jacobi en-

sembles appear in high-dimensional analysis of James’ five-fold classification.

This prompts us to look for a “missing” class in James’ system that could

be linked to the Gaussian ensemble.

Such a class is easy to obtain by taking the limit of
√
1 ( −Σ) with

Σ =  as 1 → ∞ for  fixed. We call the corresponding statistical prob-

lem “symmetric matrix denoising”(SMD). Under the null hypothesis, the

observations are given by a  ×  matrix 
√
 with  from the Gaussian

Orthogonal Ensemble. Under the alternative, the observations are given by


√
+Φ where Φ is a deterministic symmetric matrix of low rank, again of

rank one for this paper. We add this “case zero”to James’ classification and

derive the asymptotics of the corresponding log likelihood ratio and power

envelope.

To summarize, the contributions of this paper are as follows.

• We revisit James’ classification, which covers a large part of classi-
cal multivariate analysis, now in the setting of high-dimensional data

and show that the classification accommodates low rank structures as

departures from the classical null hypotheses.

• We show that in such high dimensional settings with rank-one struc-
ture, random matrix theory allows tractable approximations to the

joint eigenvalue density functions, in place of slowly converging zonal

polynomial series.

• We show that the log likelihood ratio processes, when parametrized

by spike magnitude, converge to Gaussian process limits in the sub-

critical interval.
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• Hence, we show that informative tests are possible based on all the

eigenvalues whereas tests based on the largest eigenvalue alone are

uninformative.

• As a tool, we develop new uniform approximations to certain hyper-

geometric functions.

• We identify symmetric matrix denoising as a limiting case of each of
James’ models. It is the simplest model displaying all the phenomena

seen in the paper. We clarify the manner in which the simpler cases

are limits of the more complex ones.

The rest of the paper fleshes out this program and its conclusions. The

proofs are largely deferred to the extensive Supplementary Material (SM).

They reflect substantial effort to identify and exploit common structure in

the six cases. Indeed some of this common structure appears remarkable and

not yet fully explained.

Definitions and global assumptions. Let  be an ×  data matrix with

rows drawn i.i.d. from (0Σ), a -dimensional normal distribution with

mean 0 and covariance Σ. Suppose that  is also  × , but determin-

istic. If  =  + , then  =  0 has a  dimensional Wishart dis-

tribution (ΣΨ) with  degrees of freedom, covariance matrix Σ and
non-centrality matrix Ψ = Σ−1 0 . The central Wishart distribution, cor-
responding to  = 0, is denoted (Σ).
Throughout the paper, we shall assume that

 ≤ min {1 2} 

where  is the dimensionality of matrices and , and 1 2 are the degrees

of freedom of the corresponding Wishart distributions, as summarized in

Table 1. The assumption  ≤ 2 ensures almost sure invertibility of matrix

 in (1), whereas the assumption  ≤ 1 while not essential, is made for

brevity, as it reduces the number of various situations which need to be

considered.

2. Links to statistical problems. We briefly review examples of sta-

tistical problems, old and new, that lead to each of James’ five cases, plus

symmetric matrix denoising, and explain our choice of labels for those cases.

PCA. In the first case 1 i.i.d.  (0Ω) observations are used to test the
null hypothesis that the population covariance Ω equals a given matrix Σ.
The alternative of interest is

Ω = Σ+Φ with Φ = 0
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where   0 and  are unknown, and  is normalized so that kΣ−12k = 1.
Without loss of generality (wlog), we may assume that Σ = . Then

under the null, the data are isotropic noise, whereas under the alternative,

the first principal component explains a larger portion of the variation than

the other principal components.

The null and the alternative hypotheses can be formulated in terms of

the spectral ‘spike’ parameter  as

(2) 0 : 0 = 0 and 1 : 0 =   0

where 0 is the true value of the ‘spike’. This testing problem remains in-

variant under the multiplication of the ×1 data matrix from the left and

from the right by orthogonal matrices, and under the corresponding trans-

formation in the parameter space. A maximal invariant statistic consists of

the solutions 1 ≥  ≥  of equation (1) with 1 equal to the sample

covariance matrix and  = Σ. We restrict attention to the invariant tests.
Therefore, the relevant data are summarized by 1  . For convenience,

details of the invariance and sufficiency arguments for all cases are in SM

2.1.

SigD. Consider testing the equality of covariance matrices, Ω and Σ,
corresponding to two independent -dimensional zero-mean Gaussian sam-

ples of sizes 1 and 2. The alternative hypothesis is the same as for case

PCA. Invariance considerations lead to tests based on the eigenvalues of the

 -ratio of the sample covariance matrices. Matrix  from (1) equals the

sample covariance corresponding to the observations that might contain a

‘signal’ responsible for the covariance spike, whereas matrix  equals the

other ‘noise’ sample covariance matrix. We again can assume that the pop-

ulation covariance of the ‘noise’ Σ = , although this time it is unknown

to the statistician (SM explains why such an assumption is wlog). Here, we

find it more convenient to work with the  solutions to the equation

(3) det

µ
 − 

µ
 +

1

2


¶¶
= 0

which we also denote 1 ≥  ≥  to make the notations as uniform across

the different cases as possible. Note that as the second sample size 2 →∞,
while 1 and  are held constant, equation (3) reduces to equation (1), 

converges to Σ, and SigD reduces to PCA.

REG0, REG. Now consider linear regression with multivariate response

 =  + 
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when the goal is to test linear restrictions on the matrix of coefficients . In

case REG0 the covariance matrix Σ of the i.i.d. Gaussian rows of the error
matrix  is assumed known. REG corresponds to unknown Σ
As explained in [24, pp. 433—434], the problem of testing linear restrictions

on  can be cast in the canonical form, where the matrix of transformed

response variables is split into three parts, 1 2 and 3. Matrix 1 is

1×  where  is the number of response variables and 1 is the number of

linear restrictions (per each of the  columns of matrix ). Under the null

hypothesis, E1 = 0 whereas under the alternative,

(4) E1 =
p
1

0

where   0 kΣ−12k = 1 and kk = 1Matrices 2 and 3 are ( − 1)×
and ( − ) ×  respectively, where  is the number of regressors and  is

the number of observations. These matrices have, respectively, unrestricted

and zero means under both the null and the alternative. SM contains a

discussion of the relationship between alternative (4) and a corresponding

constraint on the coefficients of the untransformed regression model.

In the important example of comparison of  group means, i.e. one-way

MANOVA, the null hypothesis imposes equality of all means, while a rank

one alternative would posit that the  mean vectors lie along a line, for

example  = 1+  for scalar   = 2      and  ∈ R. This will be a

plausible reduction of a global alternative hypothesis in some applications.

For REG0, sufficiency and invariance arguments lead to tests based on

the solutions 1   of (1) with

 =  0111 and  = Σ

These solutions represent a multivariate analog of the difference between

the sum of squared residuals in the restricted and unrestricted regressions.

Under the null hypothesis, 1 is distributed as (1Σ) whereas under
the alternative, it is distributed as (1Σ 1Φ), where Φ = Σ−10.
Without loss of generality, we may assume that Σ = .

The canonical form of REG0 is essentially equivalent to the recently stud-

ied setting of matrix denoising

1 = + 

References which point to a variety of applications include [11, 35, 25, 15].

Often is assumed to have low rank, and the matrix valued noise  to have

i.i.d. Gaussian entries. Here we test  = 0 versus a rank one alternative.
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For REG, similar arguments lead to tests based on the  solutions 1  
of (3) with

 =  0111 and  =  0332

where the error d.f. 2 =  − . These solutions represent a multivariate

analog of the  ratio: the difference between the sum of squared residuals in

the restricted and unrestricted regressions to the sum of squared residuals

in the restricted regression. Again, we may assume wlog that Σ, although
unknown to the statistician, equals . Note that, as 2 →∞ while 1 and

 are held constant, REG reduces to REG0.

CCA. Consider testing for independence between Gaussian vectors  ∈
R and  ∈ R1  given zero mean observations with  = 1  1 + 2

Partition the population and sample covariance matrices of the observations

(0 0)
0
into Ã

Σ Σ
Σ Σ

!
and

Ã
 
 

!


respectively. Under 0 : Σ = 0 the alternative of interest is

(5) Σ =

s
1

1 + 1 + 2
0

where the vectors of nuisance parameters  ∈ R and  ∈ R1 are normalized

so that

kΣ−12 k = kΣ−12 k = 1
The peculiar parameterizations of the alternative  6= 0 in (4) and (5) are
chosen to allow unified treatments of PCA and REG0 and of SigD, REG

and CCA in our main results, Theorems 11 and 12 below.

The test can be based on the squared sample canonical correlations, which

are solutions to (1) with

 = 
−1
  and  = 

Remarkably, the squared sample canonical correlations scaled by 21,

which we denote as 1  , also solve (3) with different  and  such

that  is a central Wishart matrix and  is a non-central Wishart matrix

conditionally on a random non-centrality parameter (see SM 3.2).

SMD. We observe a  ×  matrix  = Φ + 
√
 where  is a noise

matrix from the Gaussian Orthogonal Ensemble (GOE), i.e. it is symmetric

and

 ∼  (0 2) and  ∼  (0 1) if   .
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We seek to make inference about a symmetric rank-one “signal” matrix Φ =
0. The null and the alternative hypotheses are given by (2). The nuisance
vector  ∈ R is normalized so that kk = 1. The problem remains invariant
under the multiplication of  from the left by an orthogonal matrix, and

from the right by its transpose. A maximal invariant statistic consists of the

solutions 1   to (1) with  =  and  =  We consider tests based

on 1  .

The SMD case can be viewed as a degenerate version of each of the above

cases. For example, consider PCA with  held fixed and 1 → ∞. Take
Σ =  for convenience and set Ω =  +

p
1Φ with Φ = 0, so that

the original value of the spike is rescaled to be a local perturbation. Now

write  in the form Ω12̌Ω12 where ̌ ∼ (1 ). A standard matrix
central limit theorem for  fixed, e.g. [16, Th. 2.5.1], says that

̌ =  + 
√
1 + P(

−12
1 )

where  belongs to GOE. Writing Ω12 =  +
1
2

p
1Φ + (

−12
1 ), and

introducing  =
p
1 (− 1), we can rewrite

det( − ) = (1)
2 det[Φ+ 

√
−  + P(1)]

so that PCA degenerates to SMD. Compare also [4].

Indeed, each of the cases eventually degenerate to SMD via sequential

asymptotic links (SM 2.2 has details). For convenience, we summarize links

between the different cases and the definitions of the corresponding matrices

 and  in Figure 1. We note that the SMDmodel has been studied recently,

e.g. [9, 20] and references therein, though not with our techniques.

Cases SMD, PCA, and REG0, forming the upper half of the diagram,

correspond to random  and deterministic  The cases in the lower half

of the diagram correspond to both  and  being random. Cases PCA and

SigD are “parallel” to cases REG0 and REG in the sense that the alternative

hypothesis is characterized by a rank one perturbation of the covariance

and of the non-centrality parameter of  for the former and for the latter

two cases, respectively. Case CCA “stands alone” because of the different

structure of  and  As discussed above, CCA can be reinterpreted in

terms of  and  such that  is Wishart, but  is a non-central Wishart

only after conditioning on a random non-centrality parameter.

3. The likelihood ratios. Our goal is to study the asymptotic behav-

ior of likelihood ratios based on the observed eigenvalues

Λ = diag {1  } 
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H = SxyS
−1
yy Syx

E = Sxx

CCA
n1H = Wp(n1, Ip, n1Φ)
n2E =Wp(n2, Ip)

REG

n1H = Wp(n1, Ip, n1Φ)
E = Ip

REG0

n2 → ∞ n2 → ∞

SigD
n1H = Wp(n1, Ip +Φ)
n2E =Wp(n2, Ip)

PCA
n1H = Wp(n1, Ip +Φ)
E = Ip

n1 → ∞
θ →

√
p/n1θ

n1 → ∞
θ →

√
p/n1θ

H = GOE/
√
p+Φ

E = Ip

SMD

n2 → ∞

Fig 1. Matrices  and  and links between the different cases. Without loss of generality,
matrix  or, in SigD, REG, and CCA cases, its population counterpart Σ is assumed to

be equal to . Matrix Φ has the form 0 with  ≥ 0 and kk = 1.
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Let (Λ; ) be the joint density of the eigenvalues under the alternative and
(Λ; 0) the corresponding density under the null. James’ formulas for these
joint densities lead to our starting point, which is a unified form for the

likelihood ratio

(6) (;Λ) =
(Λ; )

(Λ; 0)
=  () pq( ;ΨΛ) 

where Ψ = Ψ() is a -dimensional matrix diag {Ψ11 0  0}  and the values
of Ψ11,  (), p, q, , and  are as given in Table 2.

For SMD, we prove that  (;Λ) is as in (6) in SM 3.1. For PCA, the

explicit form of the likelihood ratio is derived in [30]. For SigD, REG0, and

REG, the expressions (6) follow, respectively, from equations (65), (68), and

(73) of [18]. For CCA, the expression is a corollary of [24, Th. 11.3.2]. Further

details appear in SM 3.2.

Recall that hypergeometric functions of two matrix arguments Ψ and Λ
are defined as

pq ( ;ΨΛ) =
∞X
=0

1

!

X
`

(1)  (p)
(1)  (q)

 (Ψ) (Λ)

 ()


where  = (1  p) and  = (1  q) are parameters,  are partitions
of the integer , () and () are the generalized Pochhammer symbols,
and  are the zonal polynomials, e.g. [24, Def. 7.3.2.]. Note that some

links between the cases illustrated in Figure 1 can also be established via

asymptotic relations between the hypergeometric functions. For example,

the confluence relations

00 (ΨΛ) = lim
→∞ 10

³
; −1ΨΛ

´
and

01 (;ΨΛ) = lim
→∞ 11

³
 ; −1ΨΛ

´
Table 2

Parameters of the explicit expression (6) for the likelihood ratios. Here  ≡ 1 + 2.

Case pq  ()   Ψ11

SMD 00 exp
¡−24¢ _ _ 2

PCA 00 (1 + )−12 _ _ 1(2 (1 + ))

SigD 10 (1 + )−12 2 _ 1 (2 (1 + ))

REG0 01 exp (−12) _ 12 214

REG 11 exp (−12) 2 12 21 (22)

CCA 21 (1 + 1)
−2 (2 2) 12 21

¡
22 + 21 (1 + )

¢
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e.g. [28, eq. 35.8.9], imply the links SigD 7→ PCA and REG 7→ REG0 as

2 →∞ for  and 1 held constant.

In the next section, we shall study the asymptotic behavior of the likeli-

hood ratios (6) as 1 2 and  go to infinity so that

(7) 1 ≡ 1 → 1 ∈ (0 1) and 2 ≡ 2 → 2 ∈ (0 1] 

We denote this asymptotic regime by n  → ∞ where n = {1 2} and
γ = {1 2}  To make our exposition as uniform as possible, we use this

notation for all the cases, even though the simpler ones, such as SMD, do

not refer to n. We briefly discuss possible extensions of our analysis to the
situations with 1 ≥ 1 in Section 7.
We are interested in the asymptotics of the likelihood ratios under the

null hypothesis, that is when the true value of the spike, 0, equals zero.

First, some background on the eigenvalues. Under the null, 1   are the

eigenvalues of 
√
 in the SMD case; of  (1 ) 1 for PCA and

REG0; and of a -dimensional multivariate beta matrix, e.g. [23, p. 110],

with parameters 12 and 22 and here scaled by a factor of 21, in the
SigD, REG, and CCA cases. The empirical distribution of 1  

̂ =
1



X
=1

{ ≤ }

is well known, [3], to converge weakly almost surely (a.s.) in each case:

̂ ⇒  =

⎧⎪⎪⎨⎪⎪⎩
 SC for SMD

MP for PCA, REG0

W for SigD, REG, CCA

the semi-circle, Marchenko-Pastur and (scaled) Wachter distributions re-

spectively. Table 3 recalls the explicit forms of these limiting distributions.

The cumulative distribution functions  lim () are linked in the sense that

W () → MP1 () as 2 → 0

MP1 (
√
1+ 1)→  SC() as 1 → 0

If  is a ‘well-behaved’ function, the centered linear spectral statistic

(8)

X
=1

 ()− 

Z
 () d limc () 
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Table 3

Semi-circle, Marchenko-Pastur and scaled Wachter distributions

Case  lim
 Density,  ∈ [− +] ± Threshold ̄

SMD SC
()

2
±2 1

PCA

REG0

MP
()

21
(1±√1)2 √

1

SigD

REG

CCA

W
(1 + 2)()

21(1 − 2)
1

µ
± 1
± 2

¶2
+ 2
1− 2

() =
p
(+ − )(− −)  =

√
1 + 2 − 12

converges in distribution to a Gaussian random variable in each of the semi-

circle [7], Marchenko-Pastur [6] and Wachter [38] cases. Note that the cen-

tering constant is defined in terms of c where c = {1 2}  That is, the
“correct centering” can be computed using the densities from Table 3, where

1 and 2 are replaced by 1 ≡ 1 and 2 ≡ 2, respectively.

Finally, let us recall the behavior of the largest eigenvalue 1 under the

alternative hypothesis. As long as  ≤ ̄, the phase transition threshold

reported in Table 3, the top eigenvalue 1 → +, the upper boundary of

support of  , almost surely. When   ̄, 1 separates from ‘the bulk’ of

the other eigenvalues and a.s. converges to a point strictly above +. For

details, we refer to [21, 8, 26, 29, 12, 10] for the respective cases SMD, PCA,

SigD, REG0, REG, and CCA.

The fact that 1 converges to different limits under the null and under

the alternative hypothesis sheds light on the behavior of the likelihood ratio

when  is above the phase transition threshold ̄. In such super-critical cases,

the likelihood ratio degenerates. The sequences of measures corresponding

to the distributions of Λ under the null and under super-critical alternatives
are asymptotically mutually singular as n  → ∞, as shown in [21] and
[30] for SMD and PCA respectively. In contrast, as we show below, the

sequences of measures corresponding to the distributions of Λ under the
null and under sub-critical alternatives   ̄ are mutually contiguous, and

the likelihood ratio converges to a Gaussian process. In the super-critical

setting, an analysis of the likelihood ratios under local alternatives appears

in [13].
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4. Contour integral representation. The asymptotic behavior of the

likelihood ratios (6) depends on that of pq ( ;ΨΛ). When the dimension
of the matrix arguments remains fixed, there is a large and well established

literature on the asymptotics of pq ( ;ΨΛ) for large parameters and
norm of the matrix arguments, see [23] for a review. In contrast, relatively

little is known about when the dimensionality of the matrix arguments ΨΛ
diverge to infinity. It is this regime we study in this paper, noting that in

single-spiked models, the matrix argument Ψ has rank one. This allows us to
represent pq ( ;ΨΛ) in the form of a contour integral of a hypergeometric
function with a single scalar argument. Such a representation implies contour

integral representations for the corresponding likelihood ratios.

Lemma 1. Assume that  ≤ min {1 2}  Let K be a contour in the

complex plane C that starts at −∞, encircles 0 and 1   counterclock-

wise, and returns to −∞. Then
(9)

 (;Λ) =
Γ (+ 1) () 

Ψ
112i

Z
K
pq (−  − ;Ψ11)

Y
=1

( − )
−12 d

where  = 2− 1 the values of  ()  Ψ11   p and q for the different
cases are given in Table 2; − and − denote vectors with elements −
and  −  respectively; and

 =
pY

=1

Γ ( − )

Γ ()

qY
=1

Γ ()

Γ ( − )


In cases SigD and CCA, we require, in addition, that the contour K does

not intersect
h
Ψ−111 ∞

´
, which ensures the analyticity of the integrand in an

open subset of C that includes K.

The statement of the lemma immediately follows from [12, Prop. 1] and

from equation (6). Our next step is to apply the Laplace approximation to

integrals (9). To this end, we shall transform the right hand side of (9) so

that it has a “Laplace form”

(10)  (;Λ) =
√


1

2i

Z
K
exp {−(2)(; )} (; )d

The dependence on  will usually not be shown explicitly. Leaving
√
 (2i)

separate from () allows us to choose () and () that are bounded in
probability, and makes some of the expressions below more compact. In or-

der to apply the Laplace approximation, we shall deform the contour of
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Table 4

Values of c and ̌c = c(1 + (1)) for the different cases. The terms (1) do not depend
on  and converge to zero as n → ∞. In the table, () = 1 + (1 + )21 and

2 = 1 + 2 − 12.

Case  ̌ = (1 + (1))

SMD 1 + 22 + log  

PCA 1 +
1− 1
1

log(1 + ) + log


1
(1 + )−1−11

SigD PCAc + 10 ̌PCA ̌10

REG0 1 +
 + 1
1

+ log


1
+
1− 1
1

log(1− 1) −11 (1− 1)
−12

REG REG0c + 10 ̌REG0 ̌10

CCA REGc + 21 ̌REG ̌10()

10 = −1− 2

12
log

2

1 + 2
+ log

1 + 2
1

̌10 = −11 (1 + 2)
12

21 = −1− 

1
− 2

12
log

2

1()

integration so that it passes through a critical point 0 of () and is such
that Re () is strictly increasing as  moves away from 0 along the contour,

at least in a vicinity of 0.

4.1. The Laplace form. We shall transform (9) to (10) in three steps. As

a result, functions  and  will have the forms of a sum and a product,

 () = c + e () + h () and(11)

() = c × e ()× h()

where c and c do not depend on . The subscripts (c,e,h) are mnemonic

for ‘coefficient’, ‘eigenvalues’ and ‘hypergeometric’.

First, using the definitions of  ()   Ψ11 and employing Stirling’s ap-
proximation, we obtain a decomposition

(12)
Γ (+ 1) () √

Ψ
11

= exp {−(2)c} c

where c remains bounded as n → ∞. The values of c and c are given

in Table 4. Details of the derivation are given in SM 4.1.

Second, we consider the decomposition

(13)

Y
=1

( − )
−12 = exp {−(2)e()} e()
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where

(14) e() =

Z
ln ( − ) dc()

and

(15) e() = exp

½
−(2)

Z
ln ( − ) d

³
̂ ()− c ()

´¾


For e() and e() to be well-defined we need  not to belong to the support
of c which we assume. In addition,  ∈ supp(̂ ) since by definition contour
K encircles it. Note that e() is the exponent of a linear spectral statistic,
which converges to a Gaussian random variable as n → ∞ under the null

hypothesis.

Third and finally, we describe a decomposition

(16) pq (−  − ;Ψ11) = exp {−(2)h()} h()
For the q = 0 cases, the corresponding pq can be expressed in terms of

elementary functions. Indeed, 00() =  and 10(; ) = (1− )−. We set

(17) h() =

⎧⎪⎨⎪⎩
− for SMD

− (1 (1 + )) for PCA

ln [1− 2 {1 (1 + )}] 2 (12) for SigD,

and

(18) h() =

(
1 for SMD and PCA

[1− 2 {1 (1 + )}]−1 for SigD.

Unfortunately, for the q = 1 cases, the corresponding pq do not admit

exact representations in terms of elementary functions. Therefore, we shall

consider their asymptotic approximations instead. Let

 = (1 − ) 2 and  = (− )  (1 − ) 

Further, let

(19)  =

⎧⎪⎨⎪⎩
 (1− 1)

2 for  = 0
2 [1 (1− 1)] for  = 1
22

£
21 ()

¤
for  = 2



where

(20)  () = 1 + (1 + ) 21
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With this notation, we have

(21) pq =

⎧⎪⎨⎪⎩
01

¡
+ 1;20

¢ ≡ 0 for REG0

11 (+ 1;+ 1;1) ≡ 1 for REG

21 (+ 1+ 1;+ 1; 2) ≡ 2 for CCA.

The function 0() can be expressed in terms of the modified Bessel func-
tion of the first kind  (·), see [2, eq. 9.6.47], as

(22) 0 = Γ (+ 1)
³
20

´−2

¡
2

12
0

¢


This representation allows us to use a known uniform asymptotic approx-

imation of the Bessel function [2, eq. 9.7.7] to obtain Lemma 2, proven in

SM 4.2. To state it let

(23) 0 () = ln − − 0+ 1 and 0 =
³
1 +

p
1 + 40

´
2

Further, for any   0 let Ω0 be the set of 0 ∈ C such that

|arg 0| ≤  −  and 0 6= 0

Lemma 2. As →∞ we have

(24) 0 = (1 + 40)
−14 exp {−0 (0)} (1 + (1)) 

The convergence (1)→ 0 holds uniformly with respect to 0 ∈ Ω0 for any
  0.

To foreshadow our results for 1() and 2(), we note that the right
hand side of (24) can be formally linked, via (22), to the saddle-point ap-

proximation of the integral representation, see [37, p. 181],



³
2

12
0

´
=


2
0 

2i

Z (0+)

−∞
exp {−0 ()} −1d

Point 0 can be interpreted as a saddle point of 0 ()  and the term (1 + 40)
−14

in (24) can be interpreted as a factor of (000 (0))
−12

.

Turning now to functions 1() and 2(), to obtain uniform asymptotic

approximations, we use the contour integral representations, see [28, eqs.

13.4.9 and 15.6.2],

(25)  =


2i

Z (1+)

0
exp {− ()} () d
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where

(26)  =
Γ (+ 1)Γ ( (− 1) + 1)

Γ (+ 1)


(27) () =

(
−−  ln + (− 1) ln (− 1) for  = 1
− ln ( (1− )) + (− 1) ln (− 1) for  = 2



and

(28)  () =

(
(− 1)−1 for  = 1

(− 1)−1 (1− )
−1 for  = 2



For  = 2, the contour does not encircle 12 and the representation is valid
for 2 such that |arg (1− 2)|  . We derive a saddle-point approximation

to the integral in (25) to be summarized in Lemma 3 below. The relevant

saddle points are

(29)  =

⎧⎪⎨⎪⎩
1
2

½
 − 1 +

q
( − 1)2 + 4

¾
for  = 1

1
2(−1)

n
−1 +

q
1 + 4 (− 1) 

o
for  = 2



We shall need the following additional notation. Let

(30)  = arg
00
 () +  and 0 = arg ( − 1) 

where the branches of arg (·) are chosen so that | + 20 | ≤ 2

Lemma 3. As →∞ we have for  = 1 2

(31)  =  () 
−i2

¯̄̄
200 ()

¯̄̄−12
exp {− ()} (1 + (1)) 

The convergence (1) → 0 holds uniformly with respect to ( ) ∈ Ω for
any   0, where Ω are as defined in Table 5.

Point-wise asymptotic approximation (31) was established in [34] for  =
1 and in [32, 33] for  = 2 However, those papers do not study the uni-
formity of the approximation error, which is important for our analysis.

Lemma 3 is proved at length in SM 4.3. It is fair to say that the corre-

sponding derivations constitute the technically most challenging part of our

analysis. This further highlights the technical difficulties that occur when

going from SMD, PCA, and SigD cases to REG0, REG, and CCA.
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Using Lemmas 2 and 3, and Stirling’s approximation

(32)  =

p
 (1− 1)


exp { (− 1) ln (− 1)− ln} (1 + (1))

we set the components of the “Laplace form” (16) of pq for the q = 1 cases
as follows

(33) h() =

(
1−1
1

0 (0) REG0
1−1
1
( () +  ln− (− 1) ln (− 1)) REG, CCA

and

(34) h() =

⎧⎨⎩(1 + 40)
−14 (1 +  (1)) REG0p

12
−i2

¯̄̄
00 ()

¯̄̄−12
 () (1 +  (1)) REG, CCA

To express  and  in terms of  one should use (29) and (19). We do not

need to know how exactly the  (1) in (34) depend on . For our purposes,

the knowledge of the fact that  (1) are analytic functions of  that converge
to zero uniformly with respect to ( ) ∈ Ω is sufficient. The analyticity
of (1) follows from the analyticity of the functions on the left hand sides,

and of the factors of 1 + (1) on the right hand sides of the equations (24)
and (31).

Confluences of functions  . As 2 → 0 with 1 held fixed, we have

SigD()→ PCA()

REG() CCA()→ REG0()
(35)

Also, as 1 → 0,

(36) PCA() REG0()→ SMD()

after making the substitutions  →√1 and  →
√
1+1 on the left hand

side. Some details appear in SM 4.4.

Table 5

Definition of Ω from Lemma 3.

Ω = Ω ∩ Ω̂ with the following Ω and Ω̂

Set Definition: pairs ( ) ∈ R×C s.t.
Ω  ≤ − 1 ≤ 1, || ≤ 1, and inf∈R\[0∞) | − | ≥ 

Ω̂1 Re  ≥ −2+ 1
Ω̂2 inf∈R\(−∞1] | − | ≥  and  is unconstrained.
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4.2. Saddlepoints and Contours of steep descent. We shall now show how

to deform contours K in (10) into the contours of steep descent. First, we

find saddle points of functions () for each of the six cases. Note that

−de()d =
Z
(− )−1dc() = c () 

the Stieltjes transform of c. Although the Stieltjes transform is formally

defined on C+, the definition remains valid on the part of the real line outside
the support [− +] of c. Since we assume that  ≤ 1, c does not have

any non-trivial mass at 0.
To find saddle points 0 of () we therefore solve the equation

(37) c () = dh()d

A proof of the following lemma appears in SM 4.5.

Lemma 4. The saddle points 0( c) of () satisfy

(38) 0( c) =

⎧⎪⎨⎪⎩
 + 1 for SMD

(1 + ) ( + 1)  for PCA and REG0
(1 + ) ( + 1)  [ ()] for SigD, REG, and CCA.

For  ∈ ¡0 ̄c¢, 0  +, where ̄c is the threshold corresponding to c, which

is an analogue of the threshold ̄ ≡ ̄ corresponding to  given in Table 3.

As 2 → 0 while 1 stays constant, the value of 0 for SigD, REG, and CCA
converges to that for PCA and REG0 The latter value in its turn converges

to the value of 0 for SMD when 1 → 0, after the transformations  7→√1
and 0 7→√10 + 1. Precisely, solving equation

√
10 + 1 = (1 +

√
1) (

√
1 + 1)  (

√
1)

for 0 and taking limit as 1 → 0 yields 0 =  + 1.

Remark 5. For all the six cases that we study, (0) equals zero. SM
4.6 has a verification of this important fact.

Remark 6. As n  → ∞, 0( c) → 0(γ)  +, where the latter

inequality holds for any  ∈ ¡0 ̄¢. Since 1 → + the inequality 0( c) 
1 must hold with probability approaching one as n → ∞.
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K1

K2

i2z0

−i2z0

z0

Fig 2. Deformed contour K for SMD, PCA, and SigD.

For the rest of the paper, assume that  ∈ ¡0 ̄¢. We deform contour K
in (10) so that it passes through the saddle point 0 as follows. Let K =
K+∪K− where K− is the complex conjugate of K+ and K+ = K1∪K2 For
SMD, PCA, and SigD, let

K1 = {0 + i : 0 ≤  ≤ 20} and(39)

K2 = {+ i20 : −∞   ≤ 0} (40)

The deformed contour is shown on Figure 2.

Note that the singularities of the integrand in (10) are situated at  = 
(plus an additional singularity at  = 1(1 + ) (2)  0 for SigD). Since

0  1 holds with probability approaching one as n  → ∞, Cauchy’s
theorem ensures that the deformation of the contour does not change the

value of  (;Λ) with probability approaching one as n → ∞

Strictly speaking, the deformation of the contour is not continuous be-

cause K+ does not approach K− at −∞. In particular, in contrast to the
original contour, the deformed one is not “closed” at −∞. Nevertheless,
such an “opening up” at −∞ does not lead to the change of the value of

the integral because the integrand converges fast to zero in absolute value

as Re  → −∞.

Remark 7. In the event of asymptotically negligible probability that the

deformed contour K does not encircle all   we not only lose the equality
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z0z1

K2

K1

Fig 3. Deformed contour K for REG0 and CCA.

(10) but also face the difficulty that function () ceases to be well defined
as the definition of e() contains a logarithm of a non-positive number. To

eliminate any ambiguity, if such an event holds we shall redefine e() as
unity.

For REG0 and CCA, let

1 =

(
− (1− 1)

2  [4] for REG0
−1 (1− 1)

2  () 
£
42

¤
for CCA



and let

K1 = {1 + |0 − 1| exp {i} :  ∈ [0 2]} and
K2 = {1 − + |0 − 1| exp {i2} :  ≥ 0} 

The corresponding contour K is shown on Figure 3. Similarly to the SMD,
PCA and SigD cases, the deformation of the contour in (10) to K does not
change the value of  (;Λ) with probability approaching one as n → ∞

For REG, deformed contour K in -plane is simpler to describe as an

image of a contour C in  -plane, where  = 11 with

(41) 1 = 2 [1 (1− 1)]
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and 1 as defined in (29). Let C = C+∪C− where C− is the complex conjugate
of C+ and C+ = C1 ∪ C2 and let

C1 = {−+ |0 + | exp {i} :  ∈ [0 2]} and
C2 = {−− + |0 + | exp {i2} :  ≥ 0} 

where 0 = ( + 1)  (1− 1) 
Using (41) and the identity

(42) 1 =  ( + 1) ( + )

we obtain

(43)  =
1 (1− 1)

2

 ( + 1)

 + 


We define the deformed contour K in -plane as the image of C under the
transformation  →  given by (43). The parts K+K−K1 and K2 of K
are defined as the images of the corresponding parts of C. Note that 0 is
transformed to 0 so that K passes through the saddle point 0
The next lemma, proven in SM 4.7, shows that K1 are contours of steep

descent of −Re  () for all the six cases, SMD, PCA, SigD, REG0, REG,
and CCA.

Lemma 8. For any of the six cases that we study, as  moves along the

corresponding K1 away from 0, −Re  () is strictly decreasing.

5. Laplace approximation. The goal of this section is to derive Laplace

approximations to the integral (9) for the six cases that we study. First, con-

sider a general integral

 =

Z
K

−()()d

where  is large,  ∈ Ω ⊂ R is a -dimensional parameter, and K is

a path in C that starts at  and ends at . We allow () to be a
random element of the normed space of continuous functions on K with

the supremum norm. Assume that there is a domain  ⊃ K on which

for sufficiently large , () and () are single-valued holomorphic
functions of , in the case of  with probability increasing to 1.
We describe an extension of the Laplace approximation detailed by Olver

[27, p. 127] to a situation in which functions   and contour K depend

on  and  and in addition  is random. In Olver’s original theorem, both
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functions and contour are fixed. In what follows, however, we omit subscripts

 and  from   K etc. to lighten notation.

Suppose that 0() = 0 at 0 which is an interior point of K and suppose
that Re() is strictly increasing as  moves away from 0 along the path. In

other words, the path K is a contour of steep descent of −Re(). Denote a
closed segment of K contained between 1 and 2 as [1 2]K. Similarly de-
note the segments that exclude one or both endpoints as [1 2)K  (1 2]K 
and (1 2)K. Let  be the limiting value of arg ( − 0) on the principal
branch as  → 0 along (0 )K. Finally, let  and  be the coefficients in

the power series representations

(44)  () =
∞X
=0

 ( − 0)
  () =

∞X
=0

 ( − 0)
 

We assume that there exist positive constants 1  4 that do not de-

pend on  or  such that for all  ∈ Ω, for sufficiently large  :
A0 The length of the path K is bounded, uniformly over  ∈ Ω and all

sufficiently large  Furthermore,

sup
∈(0)K

| − 0|  1 and sup
∈(0)K

| − 0|  1

A1 Functions  () and () are holomorphic in the ball | − 0| ≤ 1
A2 The coefficient 2 satisfies 2 ≤ |2| ≤ 3
A3 The third derivative of  () satisfies inequality

sup
|−0|≤1

¯̄̄
d3 () d3

¯̄̄
≤ 4

A4 For any positive   1 which does not depend on  and , and for all

1 ∈ K such that |1 − 0| =  there exist positive constants 5 6,

such that

Re ( (1)− 0)  5 and |Im ( (1)− 0)|  6

A5 For a subset Θ of C that consists of all points whose Euclidean distance
from K is no larger than 1

sup
∈Θ

|()| = P(1)

as →∞ where P(1) is uniform in  ∈ Ω.
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Assumptions A0—A5 ensure that Olver’s proof of the Laplace approxima-

tion theorem (Theorem 7.1 on p. 127 of Olver (1997)) can be extended to

cases where functions () and (), as well as the contour K, depend on
 and . Note that in Olver’s notations, () () and  are, respectively

() () and .

The first part of A0, which requires the boundedness of |K|, taken together
with A5 and the assumption that K is a contour of steep descent guarantee
the absolute convergence of the integral

R
K 

−(()−0)()d in probability.
The second part of A0 ensures that as →∞, K does not collapse to a point.
Assumption A1 excludes situations where 0 approaches singular points

of () or () as  → ∞. Assumption A2 guarantees that the second
derivative of () at 0 does not degenerate to 0 or infinity as  → ∞.
Assumption A3 implies that |()− (0)| can be bounded from below by

a fixed quadratic function of  in a vicinity of 0 as →∞. This ensures a
regular behavior of function (()− (0))

12. Assumption A4 implies that

|arg (()− (0))|  2 is some neighborhood of 0 as  → ∞. We need
this condition to be able to use an asymptotic expansion of an incomplete

Gamma function in our proofs (Section 5.1 of SM). Assumption A5 ensures

that | ()| remains bounded in probability as →∞.

Lemma 9. Under assumptions A0-A5, for any positive integer , as

→∞ we have

 = 2
−0

"
−1X
=0

Γ

µ
+

1

2

¶
2

+12
+

P (1)

+12

#


where P (1) is uniform in  ∈ Ω and the coefficients 2 can be expressed
through  and  defined above. In particular we have 0 = 0[2

12
2 ]

where 
12
2 = exp {(log |2|+ i arg2) 2} with the branch of arg2 chosen

so that |arg2 + 2| ≤ 2

Lemma 9 is proved in SM 5.1. We use it to obtain the Laplace approxi-

mation to

(45) 1 (;Λ) =
√


1

2i

Z
K1∪K̄1

−(2)()()d

Then we show that 1 (;Λ) asymptotically dominates the “residual”  (;Λ)−
1 (;Λ). For this analysis, it is important to know the values of (0) and
d2(0)d

2. As was mentioned in Remark 5, (0) = 0 for all the six cases
that we study. The values of d2(0)d

2 are derived in SM 5.2. All of

them are negative. The explicit form of 2 ≡ 2
¡−d2(0)d2¢−1  which
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Table 6

The values of 2 ≡ 2(−d2(0)d2)−1 for the different cases.

Case Value of 2 Case Value of 2

SMD 1− 2 REG0 1 (1 + 1 + 2)
¡
1 − 2

¢
PCA 1

¡
1 − 2

¢
(1 + )2 REG 1 (1 +  + (1 + ) ) 4

SigD 2 (1 + )2 4 CCA 21 (2 (1 + ) +  (1− 1)) 
¡
3 (1 + 2)

¢
 ≡ () = 1 + (1 + )21  ≡ () = 1 + 2(1 + )2 − 2

is somewhat shorter than that for d2(0)d
2, is reported in Table 6. We

formulate the main result of this section in the following theorem, proven in

SM 5.3.

Theorem 10. Suppose that the null hypothesis holds, that is, 0 = 0.
Let ̄ be the threshold corresponding to  as given in Table 3, and let  be

an arbitrarily small fixed positive number. Then for any  ∈ ¡0 ̄ − 
¤
 as

n → ∞, we have

(46)  (;Λ) =
(0)p−d2(0)d2 +P

³
−1

´


where P
¡
−1

¢
is uniform in  ∈ ¡0 ̄ − 

¤
and the principal branch of the

square root is taken.

6. Asymptotics of LR. Combining the results of Theorem 10 with

the definitions of () and the values of −d2(0)d2, given in Table 6, it
is straightforward to establish the following theorem, details in SM 6.1. Let

∆() = 

Z
ln (0()− ) d

³
̂ ()− c ()

´


In accordance with Remark 7, we define ∆() as zero in the event of as-
ymptotically negligible probability that 0 ≤ 1.

Theorem 11. Suppose that the null hypothesis holds, that is 0 = 0.
Let ̄ be the threshold corresponding to  as given in Table 3, and let  be

an arbitrarily small fixed positive number. Then for any  ∈ ¡0 ̄ − 
¤
 as

n → ∞, we have

 (;Λ) = exp

½
−1
2
∆() +

1

2
ln
³
1− [ ()]2

´¾
(1 + P(1)) 
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where

 () =

⎧⎪⎨⎪⎩
 for SMD


√
1 for PCA and REG0

 (1 ()) for SigD, REG, and CCA,

2 = 1 + 2 − 12 and P(1) is uniform in  ∈ ¡0 ̄ − 
¤
.

Statistic ∆() is a linear spectral statistic. As follows from the CLT for

such statistics derived by [7], [6], and [38] for the Semi-circle, Marchenko-

Pastur, and Wachter limiting distributions c  respectively, statistic ∆()
weakly converges to a Gaussian process indexed by  ∈ ¡

0 ̄ − 
¤
 The

explicit form of the mean and the covariance structure can be obtained

from the general formulae for the asymptotic mean and covariance of linear

spectral statistics given in [7, Th. 1.1] for SMD, in [6, Th. 1.1] for PCA and

REG0, and in [38, Th. 4.1 and Exmpl. 4.1] for the remaining cases. SM 6.2

provides details on the use of [7, 6, 38] to establish convergence of ∆(),
and the use of Theorem 11 to obtain the following theorem.

Theorem 12. Suppose that the null hypothesis holds, that is 0 = 0. Let
̄ be the threshold corresponding to  as given in Table 3, and let  be an ar-

bitrarily small fixed positive number. Further, let 
£
0 ̄ − 

¤
be the space of

continuous functions on
£
0 ̄ − 

¤
equipped with the supremum norm. Then

ln (;Λ) viewed as random elements of 
£
0 ̄ − 

¤
converge weakly to L ()

with Gaussian finite dimensional distributions such that

EL () = 1
4 ln(1− 2())

and

C (L (1) L (2)) = −12 ln (1−  (1)  (2))

with

 () =

⎧⎪⎨⎪⎩
 for SMD


√
1 for PCA and REG0

 (1 + 2 + 2) for SigD, REG, and CCA



Here  1 2 are the limits of  1 2 as n → ∞.

Let {P} and {P0} be the sequences of measures corresponding to the
joint distributions of 1   when 0 =  and when 0 = 0 respectively.
Then Theorem 12 implies, via Le Cam’s first lemma, the mutual contiguity

of {P} and {P0} as n → ∞, for each   ̄. This reveals the statistical

meaning of the phase transition thresholds as the upper boundaries of the

contiguity regions for spiked models.
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The precise form of the autocovariance of L () shows that,1 although
the experiment of observing 1   is asymptotically normal, it does not

converge to a Gaussian shift experiment. In particular, the optimality results

available for Gaussian shifts cannot be used in our framework. To analyze

asymptotic risks of various statistical problems related to the experiment of

observing 1   one should directly use Theorem 12.

Here we use it to derive the asymptotic power envelopes for tests of the

null hypothesis 0 = 0 against the point alternative 0  0 By the Neyman-
Pearson lemma, the most powerful test would reject the null when ln (;Λ)
is above a critical value. By Theorem 12 and Le Cam’s third lemma (see

[36, Ch. 6]),

ln (;Λ)
→ 

³
±1
4 ln(1− 2())−12 ln(1− 2())

´
with the plus sign holding under the null, and the minus under the alterna-

tive. This implies the following theorem.

Theorem 13. Let ̄ be the threshold corresponding to  as given in

Table 3. For any  ∈ £0 ̄¢  the value of the asymptotic power envelope for
the tests of the null 0 = 0 against the alternative 0  0 which are based on
1   and have asymptotic size  is given by

 () = 1−Φ
h
Φ−1 (1− )− ()

i
 () =

q
−12 ln(1− 2())

Here Φ denotes the standard normal cumulative distribution function. For
 ≥ ̄ the value of the asymptotic power envelope equals one.

The envelopes differ only for cases with different limiting spectral dis-

tributions: Semi-circle, Marchenko-Pastur, and Wachter, denoted SC(),
MP( 1) and W(γ) respectively. Figure 4 shows the graphs of the
envelopes for  = 005 and 1 = 2 = 09 Such large values of 1 and
2 correspond to situations where the dimensionality  is not very different

from the degrees of freedom 1 and 2

Envelope MP ( 1) can be obtained from W (γ) by sending 2 to
zero. Further, SC () can be obtained from MP ( 1) by transforma-
tion  7−→ √1 Further, note the difference in the horizontal scale of the
bottom panel of Figure 4 relative to the two other panels. For 1 = 2 = 09

1 [17] has an interesting discussion of ubiquity of random processes with logarithmic

covariance structure in physics and engineering applications. In that paper, such processes

appear as limiting objects related to the behavior of the characteristic polynomials of large

matrices from Gaussian Unitary Ensemble.
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Fig 4. The asymptotic power envelopes SC() MP( 1) and W() for  =
005 1 = 2 = 09

the phase transition threshold corresponding to the Wachter distribution is

relatively large. It equals (2 + ) (1 − 2) ≈ 189. Moreover, the value of
W () becomes substantially larger than the nominal size  = 005 for 
that are situated far below this threshold. This suggests that the information

in all the eigenvalues 1   might be effectively used to detect spikes that

are small relative to the phase transition threshold in two sample problems.

We leave a confirmation or rejection of this speculation for future research.

7. Concluding remarks. Note that Theorem 12 establishes the weak

convergence of the log likelihood ratio viewed as a random element of the

space of continuous functions. This is much stronger than simply the con-

vergence of the finite dimensional distributions of the log likelihood process.

In particular, the theorem can be used to find the asymptotic distribution

of the supremum of the likelihood ratio, and thus, to find the asymptotic

critical values of the likelihood ratio test. It also can be used to construct

asymptotic confidence intervals for a sub-critical spike as well as to describe

the asymptotic properties of its maximum likelihood estimator. We do not
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pursue this line of research here, but provide a general outline.

Consider the log likelihood ratio ln (;Λ) − ln (0;Λ)  According to
Theorem 12, this ratio converges to  () ≡ L () − L (0)  By Le Cam’s
third lemma, under the null hypothesis that the true value of the spike equals

0  () is a Gaussian process with mean

E () =
1

4
ln

¡
1− 2 ()

¢ ¡
1− 2 (0)

¢
(1−  ()  (0))

2

and covariance function

C ( (1)  (2)) = −1
2
ln
(1−  (1)  (2)) (1−  (0)  (0))

(1−  (1)  (0)) (1−  (2)  (0))


An approximation to the distribution of the supremum of such a process

over  ∈ £0 ̄ − 
¤
can be obtained via simulation. Alternatively, it might

be expressed analytically in the form of converging Rice series (see e.g. [1]).

Quantiles of the distribution can be used as asymptotic critical values for the

likelihood ratio test of the hypothesis  = 0. Inverting the test, we obtain

asymptotic confidence intervals for the true value of a sub-critical spike.

The maximum likelihood estimator for the spike, ̂, equals the argmax
of ln (;Λ) − ln (0;Λ) over  ∈

£
0 ̄ − 

¤
. By Lemma 2.6 of [19], the

limiting process  () achieves maximum at a unique point with probability
one. Therefore by the argmax continuous mapping theorem, ̂ converges

in distribution to the argmax of  (). The distribution of such an argmax
can be approximated using simulations.

Unfortunately, the quality of the estimator ̂ cannot be “good”. For

PCA, we were able to prove that no estimator of  has root mean squared

error better than the order of magnitude of the sub-critical parameter .

This result will appear in another work.

Our asymptotic discussion of James’ framework can likely be extended

to a fixed number of sub-critical spikes. Such an extension would require

developing Laplace approximations to multiple contour integrals, and uni-

form approximations to hypergeometric functions of two matrix arguments

in terms of elementary functions. Alternatively, one may employ large devi-

ation analysis of spherical integrals as in [31], which covers the PCA case.

As this paper is already long, the extension will appear separately.

Addressing the case of slowly increasing number of spikes may require

new techniques, perhaps, similar to those developed in [14]. In such a case,

relatively little is known even about the phase transition phenomenon. For

sample covariance matrices, Theorem 1.1 of [5] can be used to show that the

phase transition still happens at the usual threshold ̄ =
√
1. However, it is
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not clear whether the experiments of observing sample covariance eigenval-

ues corresponding to the null case and an alternative with a growing number

of sub-critical eigenvalues remain mutually contiguous.

Note that, intuitively, the asymptotic power of the likelihood ratio test of

the null hypothesis of no spikes against the alternative of one spike should

not decrease if the rank-one assumption on the alternative is wrong and

there are additional spikes. In SM, we confirm this intuition for SMD and

PCA cases. A confirmation or refutation of the intuition for the other James’

cases requires further analysis and is left for future research.

In this paper, we make the assumption that 2 ≥  to ensure the in-

vertibility of matrix  in (1) with probability one. However, we also make

the assumption 1 ≥  which probably can be lifted without a substan-

tial reformulation of the problem. We make the latter assumption mostly to

simplify our exposition. The assumption is irrelevant for SMD. For PCA the

case   1 was explicitly covered in [30]. For REG0 the assumption can be

relaxed using the symmetry of the problem.

Specifically, the canonical REG0 problem tests restriction  = 0 in the
model  =  + , where all matrices are 1 ×  and  has i.i.d. standard

normal components. Clearly, interchanging roles of 1 and  yields essentially

the same problem.

For CCA, the sample canonical correlations are not well defined for  

1 so we are not interested in such a case. This leaves us with SigD and REG

cases, which we mark as more difficult from the point of view of relaxing

1 ≥  assumption.

For SigD, our derivations (not reported here) show that the equivalent

of (6) for   1 involves the hypergeometric function 21 Therefore, SigD

with   1 represents the fifth, rather than the second, group of multivari-

ate statistical problems according to James’ (1964) classification. For REG,

an equivalent of (6) for   1 can be obtained using [18, eq. (74)]. However,

further analysis of SigD and REG in the situation where   1 needs more

substantial changes to our derivations. We leave such an analysis for future

research.

Finally, many existing results in the random matrix literature do not

require that the data are Gaussian. This suggests that some results about

tests for the presence of the spikes in the data may remain valid without the

Gaussian assumption. We hope that the results of this paper might provide

a benchmark for such future studies.
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SUPPLEMENTARY MATERIAL

Supplement A:

(link TBA). The supplement has proofs for all results in the paper, organized

by section for easier cross-reference.
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1. Introduction. There is no supplementary material for the Introduction section of JO.

2. Links to classical statistical problems.

2.1. Sufficiency and invariance considerations. In this subsection, we clarify which sufficiency

and invariance arguments lead us to consider tests based on the solutions of

(1) det ( − ) = 0

and

(2) det

µ
 − 

µ
 +

1

2


¶¶
= 0

1
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2 I. M. JOHNSTONE AND A. ONATSKI

for SMD, PCA, SigD, RED0, REG, and CCA problems. Most of this discussion is standard and

can be found, for example, in Muirhead (1982).

SMD: Consider the group of transformations

(3)  = { :  ∈ O()} 

where O() is the group of  ×  orthogonal matrices, acting on the space of  ×  symmetric

matrices  = 0 +
√
 by

 ◦ =  0

The corresponding induced group of transformations on the parameter space of points ( ) is
given by

 ◦ ( ) = ( ) 
A maximal invariant in the parameter space is  whereas that in the sample space is given by the

ordered eigenvalues 1 ≥  ≥  of  Since neither the null nor the alternative hypothesis,

(4) 0 : 0 = 0 and 1 : 0  0

is affected by the transformations, it is natural to base the test on the maximal invariant in the

sample space.

PCA: In this case, the data are given by  ∼  (0Ω⊗ 1)  where Ω = Σ+ 0 where Σ is
a known positive definite symmetric matrix and

°°°Σ−12°°° = 1. Without loss of generality, we can
set Σ = . A sufficient statistic is  =  01 Consider the group of transformations (3) that
acts on the sample space of the sufficient statistic by

 ◦ =  0

and on the parameter space by

 ◦ ( ) = ( ) 
The maximal invariant in the parameter space is  and we base the test of (4) on a maximal

invariant in the sample space of the sufficient statistic, which is given by the ordered eigenvalues of

the sample covariance matrix 

SigD: The data are given by independent matrices

 ∼  (0Ω⊗ 1) and  ∼  (0Σ⊗ 2) 

where Ω = Σ + 0 Σ is an unknown positive definite symmetric matrix, and
°°°Σ−12°°° = 1.

A sufficient statistic consists of the sample covariance matrices  =  01 and  =   02
Let GL () be the group of non-singular  ×  matrices. Consider the group of transformations

 = { :  ∈ GL ()} that acts on the space of points () ∈ S × S, where S is the space of
positive definite symmetric ×  matrices, by

 ◦ () =
¡
0 0

¢
and on the parameter space by

 ◦ (Σ  ) = ¡
Σ0  

¢
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Note that we restrict the sample space to S × S that is we exclude from consideration zero-

probability event where the matrix  is singular. The maximal invariant in the parameter space

is  and we base the test of (4) on a maximal invariant in the sample space of the sufficient statistic,

which is given by the ordered solutions to (1) or to (2) (see Theorem 8.2.2 of Muirhead (1982)).

The links between SigD and PCA become particularly clear when we work with the solutions to

(2).

Note that we can assume that Σ =  wlog. It is because 1 ≥  ≥  that solve equation (2)

are invariant with respect to the transformation

() 7→ (Σ−12Σ−12Σ−12Σ−12)

In particular, the joint distribution of 1 ≥  ≥  under the null hypothesis 0 : Ω = Σ is the
same as in the case where Ω = Σ = . Similarly, the joint distribution of 1 ≥  ≥  under

the alternative 1 : Ω = Σ + 0 with
°°°Σ−12°°° = 1 is the same as in the situation where

Ω =  + 0 with kk = 1 and Σ = .

REG0: Consider linear regression  =  + , where  is  × ,  is  × ,  is  × , and 

has i.i.d. (0Σ) rows. For REG0, Σ is a know symmetric positive definite matrix, which can be
set to  wlog. We would like to test a general linear hypothesis  = 0, where  is a known 1× 

matrix of rank 1.

As explained in Muirhead (1982, pp 433-434), the problem can be cast in the canonical form,

where the matrix of transformed response variables is split into three parts: an 1 ×  matrix 1,

a ( − 1) ×  matrix 2, and an 2 ×  matrix 3 with 2 =  − . Under the null hypothesis,

 ≡ E1 = 0 whereas under the alternative,
(5)  =

p
1

0

where   0 kΣ−12k = 1 and kk = 1. Matrices 2 and 3 have, respectively, unrestricted and

zero means under both the null and the alternative.

In terms of the original regression model, matrix  can be expressed as the product of an

invertible matrix, which depends only on  and , and matrix . In particular,  = 0 if and
only if  = 0. Alternative (5) corresponds to a rank-one alternative  =

√
1̃

0 in the
original model, where vector ̃ is obtained from vector  via a linear transformation that depends

on matrices  and .

A sufficient statistic for
√
1

0 is 1. Consider a group of transformations

 = {(  ) :  ∈ O ()   ∈ O (1)}
that acts on the points 1 of the sample space R1× by

(  ) ◦ 1 =  1
0

and on the parameter space by

(  ) ◦ ( ) = (  ) 
A maximal invariant in the parameter space is  whereas the maximal invariant statistic consists

of the ordered eigenvalues of  = 1
0
11

REG: The difference between the cases REG and REG0 is that in REG Σ is assumed to be an
unknown matrix from S. The sufficient statistic now is (1 2 )  where  =  0332. Consider
a group of transformations

 =
n
() :  ∈ GL ()   ∈ O (1)   ∈ R(−1−2)×

o
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4 I. M. JOHNSTONE AND A. ONATSKI

that acts on the points (1 2 ) of the sample space R1× ×R−1−2× × S by

() ◦ (1 2 ) =
¡
 1

0 20 +0
¢

and on the parameter space by

() ◦ ( Σ) =
¡
  0 +Σ0

¢


A maximal invariant in the parameter space is  whereas the maximal invariant in the sample

space consists of the ordered roots of equation (2), where  = 1011 and  =  0332 (see
Theorem 10.2.1 on page 437 of Muirhead (1982)).

CCA: For this case, the sufficient statistic is  =

Ã
 
 

!
. Consider a group of transfor-

mations

 = { :  =  {1 2}  1 ∈ GL ()  2 ∈ GL (1)}
acting on the sample space, restricted so that  and  are invertible, by

 ◦  = 0

On the parameter space, the group acts by

 ◦ (ΣΣ   ) =
¡
1Σ

0
1 2Σ

0
2 12 

¢


As follows from Muirhead’s (1982) Theorem 11.2.2, a maximal invariant in the parameter space is

 and that in the sample space consists of the solutions to (1) with

 = 
−1
  and  = 

2.2. Sequential asymptotic links between the cases. PCA→SMD: Recall that the relevant data
for PCA case are represented by the solutions to equation (1) with  = Σ and 1 ∼ (1Ω).
Let

(6) Ω = Σ+
q
1

0

with
°°°Σ−12°°° = 1 That is, let the value of the spike in the original version of PCA be scaled byp

1. Equation (6) implies that

Σ−1 = Ω−1 +
p
1

1 +
p
1

Σ−10Σ−1

and therefore, equation (1) is equivalent to

det

ÃÃ
Ω−1 +

p
1

1 +
p
1

Σ−10Σ−1
!
 − 

!
= 0

which, in its turn, is equivalent to

(7) det

µ
Ω−12Ω−12 +

q
1

0Ω−12Ω−12 − 

¶
= 0
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SUPPLEMENTARY MATERIAL 5

where

 = Ω12Σ−1
µ
1 +

q
1

¶12
is such that kk = 1 The latter equality follows from the fact 0Σ−1ΩΣ−1 = 1 +

p
1 which

is a consequence of (6) and of the normalization
°°°Σ−12°°° = 1.

Now assume that 1 diverges to infinity while  is held constant. Then, by a CLT

(8) Ω−12Ω−12 =  + 
√
1 + P

³

−12
1

´


where  belongs to GOE. Multiplying (7) by (1)
2 and using (8), we see that, as 1 → ∞

equation (7) degenerates to

det
¡

√
+ 0 − 

¢
= 0 with  =

q
1 (− 1) 

Hence, PCA degenerates to SMD.

SigD→PCA: As shown in JO, SigD degenerates to PCA as 2 → ∞ while 1 and  are held

constant. Therefore, SigD can be linked to SMD via PCA.

REG0 →SMD: Consider REG0 with

E1 =
q
(1)

12 1
0

so that the original value of the spike  (see equation (JO4)) is scaled by (1)
12. Suppose now

that 1 diverges to infinity while  is held constant. Then, by a CLT,

(9) Σ−12Σ−12 −  = 
√
1 +

q
1

0 + P

³

−12
1

´


where  belongs to GOE and  = Σ−12. On the other hand, equation (1) is equivalent to

(10) det
³
Σ−12Σ−12 − 

´
= 0

Multiplying it by (1)
2 and using (9), we see that equation (10) degenerates to

det
¡

√
+ 0 − 

¢
= 0 with  =

q
1 (− 1) 

Hence, REG0 degenerates to SMD.

REG→REG0: The REG case degenerates to REG0 as 2 →∞ while 1 and  are held constant.

Therefore, REG can be linked to SMD via REG0.

CCA→REG0: Recall that the CCA case is based on the solutions to equation (1) with

 = 
−1
  and  = 

where  and  are sample covariance matrices corresponding to i.i.d.  (0Σ) sample  ∈ R

 = 1  1 + 2 and i.i.d.  (0Σ) sample  ∈ R1   = 1  1 + 2 respectively. Matrices

 and  are the corresponding sample cross-covariance matrices. Since the transformations
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6 I. M. JOHNSTONE AND A. ONATSKI

 7→ Σ
−12
  and  7→ Σ

−12
  do not affect the roots of (1), we shall assume without loss of

generality that Σ =  and Σ = 1  Recall that, by assumption,

Σ =

s
1

1 + 1 + 2
0

Suppose that 2 diverges to infinity while 1 and  are held constant. Then, by a CLT,

 =  + P (1)   = 1 + P (1) 

whereas

 = Σ + 
√
1 + 2 + P

³
(1 + 2)

−12´ 
where  is a × 1 matrix with i.i.d. (0 1) entries. Therefore, equation (1) degenerates to

(11) det

µ
1

1

³
Σ̃ + 

´³
Σ̃ + 

´0 − 

¶
= 0

with

Σ̃ =
p
1

0

and

 = (1 + 21)

Hence, CCA degenerates to REG0. It can further be linked to SMD via REG0.

3. The likelihood ratios.

3.1. SMD entry of Table JO2. The explicit expression for (SMD) (;Λ) given in Table JO2
follows from the following lemma.

Lemma 1. For SMD case, the joint density of the diagonal elements of Λ evaluated at the

diagonal elements of  = diag {1  } with 1 ≥  ≥  equals

(12)  () exp
n
−24

o
00 (Ψ ) 

where  () is a quantity that depends on  and  but not on , and Ψ = diag {2 0  0}. The
density under the null hypothesis is obtained from the above expression by setting  = 0.

Proof: The proof is based on the “symmetrization trick” used by James (1955) to derive the

density of non-central Wishart distribution. Let  =  0 where  is a random matrix from

O() and  = 
√
 + 0 with  from GOE,  ≥ 0 and kk = 1 Note that the eigenvalues of

 and  are the same. The joint density of the functionally independent elements of  evaluated

at  is

(2)−(+1)4 2−2
Z
O()

etr

½
−
4

¡
0 − 0

¢2¾
(d)

where etr{·} denotes the exponential trace function, and (d) is the normalized uniform measure

over O(). Taking the square under etr and factorizing, we obtain an equivalent expression

(2)−(+1)4 2−2 exp
½
−
4
2
¾
etr

½
−
4
2
¾Z

O()
etr

½


2
00

¾
(d)
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SUPPLEMENTARY MATERIAL 7

Now change the variables from  to ()  where  =  0 is the spectral decomposition of .
Using the strategy of the proof of Muirhead’s (1982) Theorem 3.2.17, integrate  out to obtain

(12) with

 () =
(+1)4(−1)4

2(−1)4+Γ (2)
etr

µ
−
4
2
¶ Y


( − ) 

where Γ (2) is the multivariate Gamma function. ¤

3.2. Identification of the parameters of expression (JO6). For the reader’s convenience, we pro-

vide some extra detail on the identification of the parameters of expression (JO6) for the likelihood

ratio (;Λ) summarized in Table JO2. To have a self-contained source for derivations, we refer
below to Muirhead (1982), henceforth [M], in addition to James (1964), [J] below.

Some Notational conventions. || = det(), and  for a constant depending only on  . The
hypergeometric function

pq( ;) =

Z
O()

pq( ; 0)(d)

We sometimes drop explicit mention of the parameter vectors  , and write pq[;]. In particular,
we have

(13) pq[;] = pq[;] and pq[;] = pq[; ]

and

pq[; 0] = pq[0] = 1

For 00() = etr() we also have

(14) 00(  + ) = etr() 00()

To indicate the extension to rank  perturbations, we write  = [1 · · ·] for a ×  matrix with

0Σ−1 = ,  = diag(1     ), 1 +  for  +  and
√
 for diag(

√
1    

√
).

PCA. [J, eq. (58)], [M, Th. 9.4.1]. We assume a  × 1 matrix  ∼ (0Ω ⊗ 1) with
Ω = Σ + 0 for Σ  0 and 0Σ−1 = . Without loss of generality we can set Σ = . The

matrix 1 =  0 has eigenvalues Λ = diag(). Using the dictionary

M:    Σ 

JO:   1 Ω Λ
,

[M, Th. 9.4.1] gives the joint density of Λ as

(Λ|Ω) = 1 |Ω|−12|Λ|(1−−1)2(Λ) 00(−121ΛΩ−1)

where

(Λ) =
Y


( − )

Since 00( ) = etr(), the likelihood ratio

(;Λ) =
(Λ|Ω)
(Λ|) = |Ω|

−12 etr(121Λ) 00(−121ΛΩ−1)
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8 I. M. JOHNSTONE AND A. ONATSKI

We have |Ω| = | + |, and Ω−1 =  − (1 + )−10, and referring to (14), we obtain

00(−121ΛΩ−1) = etr(−121Λ) 00(121Λ (1 + )−10)

and arrive at

(;Λ) = |1 + |−12 00(121(1 + )−10Λ)

SigD. [J, eq. (65), citing Constantine (unpublished)], [M, Th. 8.2.8]. Now assume independent

matrices

 ∼ (0Ω⊗ 1) and  ∼ (0Σ⊗ 2)

with dimensions  × 1 and  × 2, and Ω = Σ + 0 for Σ  0 unknown and 0Σ−1 = .

Without loss of generality (wlog) we can again set Σ = . The sample covariance matrices are

given by

 =  01 and  =   02

Using now the dictionary

M: 1 2  1 2 Σ1 Σ2 ∆

JO: 1 2  1 2 Ω  Ω
,

[M, Th. 8.2.8] gives the joint density of the eigenvalues  = diag(1     ) of

(15) det(1 − 2) = 0

as

( |Ω) = 12 |Ω|−12| |(1−−1)2( ) 10(12;−Ω−1  )
where  = 1+2. It is helpful to transform the hypergeometric function using [M, Lemma 8.2.10],

due to Khatri (1967), which says here that

10[−Ω−1  ] = | +  |−2 10[ −Ω−1  ( +  )−1]

Note that, as for PCA, −Ω−1 = (1+)−10. The (generalized) eigenvalues Λ = diag(1     )
of (JO3) are seen to be related to those of (15) via the transformation Λ = (21) ( +  )−1.
In forming the likelihood ratio, terms not depending on  cancel, including the Jacobian of this

transformation. Hence we arrive at

(;Λ) =
(Λ|Ω)
(Λ|) =

( |Ω)
( |) = |1 + |−12 10[(12)(1 + )−10Λ]

REG0. [J, eq. (68)], [M, Exer. 10.9]. After reduction to canonical form, we assume that

we observe an 1 ×  matrix 1 ∼ ( 1 ⊗ Σ) The unnormalized sample covariance matrix
1 =  011 has a non-central Wishart distribution with non-centrality matrix Ω = Σ−1 0 .

Without loss of generality we can set Σ = . Using the dictionary

M:   

JO: 1  1
,
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[M, Exer. 10.9] gives the joint density of the eigenvalues  = diag() of 1 as

( |Ω) = 1 etr(−12Ω) etr(−12 )| |(1−−1)2( ) 01(121; 14Ω )

The low rank assumption (JO4) posits  =
√
1
√
0 with 0 = 0Σ−1 = , so that with

Σ = , we have Ω = Ω = 1
0. Note that E =  + 0, which explains the normalization

chosen for  .

The eigenvalues Λ of  are related to the eigenvalues  of 1 by Λ =1 and so

(;Λ) =
(Λ|Ω)
(Λ|Ω0) =

( |Ω)
( |Ω0) = etr{−

1
21} 01[1410 1Λ]

= etr{−121} 01[14210Λ]

where we used (13).

REG. [J, eq. (73), citing Constantine (1963)], [M, Th. 10.4.2]. We are in the situation of

REG0, but with Σ unknown and estimated by an independent Wishart matrix 2 ∼ (2Σ).
[M, Th. 10.4.2] gives the joint density of the eigenvalues  of equation (15). Using the dictionary

M:     −  Σ Ω

JO: 1 2  1 2  Ω
,

this may be written as

( |Ω) = 12 etr(−12Ω)( ) 11(12 121; 12Ω  ( +  )−1)

where ( ) = | |(1−−1)2| +  |−(1+2)2( ) does not depend on .

As for SigD, we make the transformation Λ = (21) ( + )−1 to the generalized eigenvalues
of (JO3). So, as in previous cases,

(;Λ) =
(Λ|Ω)
(Λ|Ω0) =

( |Ω)
( |Ω0) = etr{−

1
21} 11[1210 (12)Λ]

= etr{−121} 11[12(212)0Λ]

CCA. [J, eq. (76), citing Constantine (1963)], [M, Th. 11.3.2].We recall some of the steps from

[M, Th. 11.2.6], borrowing some text from Johnstone and Nadler (2015). The canonical correlation

problem is invariant under change of basis for each of the two sets of variables, e.g. [M, Th. 11.2.2].

We may therefore assume that the matrix Σ takes the canonical form

Σ =

Ã
 ̃

̃ 0 1

!
 ̃ = [ 0]  = diag(1      0     0)

where ̃ is ×1 and the matrix  is of size × with r non-zero population canonical correlations

1 . Furthermore, in this new basis, we decompose the sample covariance matrix as follows,

(16)  =

Ã
 0  0
 0  0

!

where the columns of the ×  matrix  contain the first  variables of the  ≡ 1 + 2 samples,

now assumed to have mean 0, represented in the transformed basis. Similarly, the columns of
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10 I. M. JOHNSTONE AND A. ONATSKI

 × 1 matrix  contain the remaining 1 variables. For future use, we note that the matrix

 0 ∼1( 1).
The squared canonical correlations {2 } are the eigenvalues of −1 −1 . According to [M,

Th. 11.3.2], the joint density of 2 = diag(21     
2
) is given by

(2| 2) = 12 | −  2|2(2) 21(12 12; 121; 2 2)

where (2) = |2|(1−−1)2|−2|(2−−1)2(2) does not depend on  2. Below, we abbreviate
the hypergeometric function as 21[

2 2] since the parameters (12
1
2;

1
21) don’t change.

If we set  =  ( 0 )−1 0 the canonical correlations 2 can be rewritten as the roots of

det(2 0 −  0) = 0 Now set 1 =  0 and 2 =  0( −  ): the previous
equation becomes

(17) det(1 − 2(1 + 2)) = 0

We now recall a standard partitioned Wishart argument. Conditional on  , matrix  is Gaussian

with independent rows, and mean and covariance matrices

( ) =  Σ−1 Σ =  ̃ 0

Σ· = Σ −ΣΣ−1 Σ =  −  2

Conditional on  , and using Cochran’s theorem, the matrices

1 ∼(Σ·Φ( )) and 2 ∼(2Σ·)

are independent, where the noncentrality matrix

Φ( ) = Σ−1·( )
0( )

The generalized eigenvalues  of (JO3) are related to the canonical correlations 
2
 , the general-

ized eigenvalues of (17), by  = (21)
2
 . Thus we obtain the interpretation of the roots of (JO3)

in terms of a pair of matrices 1 and 2 which are conditionally independently Wishart given

(part of the data)  . Further, as for the previous cases, we can write the likelihood ratio as

(Λ| 2)
(Λ|0) =

(2| 2)
(2|0) = | −  2|2 21[ 2 2]

= | −  2|2 21[(12) 2Λ]

Now in our rank  setting,  2 =
P
1 

2
 

0
 with 2 = 1(1 + 1 + 2). From the previous

display we obtain, after setting  = [ 0×(−)]0,

(Λ) =
(Λ| 2)
(Λ|0) = | + 1|−2 21[21(22 + 21( + ))−10Λ]

4. Contour integral representation.
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SUPPLEMENTARY MATERIAL 11

4.1. Derivations for Table JO4. In this subsection, we obtain decomposition (JO12)

A ≡ Γ (+ 1) () √
Ψ

11

= exp {− (2) c} c

where  = 2 − 1 and c and c remain bounded as n  → ∞ for SMD, PCA, SigD, RED0,

REG, and CCA. The values of c and c for the different cases are given in Table JO4.

Structure of the prefactor A. Let us rewrite

(18) A = ()
Γ(+ 1)

(2)
√


∙
2

Ψ11

¸


as a product of terms A = 
−(2)(1 + (1)) where   depend only on (1 2 ) p, and

q, see (24) below. The idea is to show the dependence on p, q. Referring to Table JO2, we have
 = 2 and  = 12 whenever they are present, and so

(19)  =

∙
Γ(2− )

Γ(2)

¸p ∙ Γ(12)

Γ(12− )

¸q


Table JO2 also shows that

(20) () = ()−12
2

Ψ11
=



1

1

()

(22)
p

(12)q

where () and () depend on the particular case in James’ classification. This dependence is
shown in Table 1 below.

Table 1
Terms () () in the prefactor pAq, formula (24).

Case pq () ()

SMD∗ 00 
22 

PCA 00 1 +  (1 + )
SigD 10 1 +  (1 + )

REG0 01  
REG 11  

CCA 21 (1 + 1)
1 ()

(∗) replace 1 by , () = 1 +
2
1
(1 + )

Combine like terms in (19) and (20) to get

(21)
(22)

p

(12)q
 =

µ
2



¶p Θp(2 2)
Θq(12 2)



where we define

(22) Θ() =
−1Γ( − + 1)

Γ()
∼ 

µ
1− 



¶−+12
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12 I. M. JOHNSTONE AND A. ONATSKI

[This is verified at the end of this section.] Finally, define

(23) () =
Γ()

−1√2 ∼ − 

Combining (18), (20)—(22), we obtain the desired form

(24) A = pAq = (2)()−12()−
µ


1

¶ µ2


¶p Θp(2 2)
Θq(12 2)



Each factor in this product is easily cast in the form 
−(2)(1+ (1)), with the resulting values

of  and  shown in Table 2. When needed, we factorize  = ̌̃ to show the leading term ̌
and the term ̃ = 1 + (1), with the specific dependence of the (1) term (which comes from the

error bound in Stirling’s formula) shown in the final column of Table 2.

Table 2

Form of each term in (24), when expressed as 
−(2) , with  = ̌̃. Here  denotes a term that is (−1).

 ̌ ̃

(2) 1 1 1 + 

()−12 −11 log() 1 1

()− log() () 1

(1)
 − log 1 11 1³

2


´
log
³
1 +

2
1

´
1 +

2
1

1

Θ(2 2) −1− 2

12
log

2

1 + 2



(1 + 2)12
1 +  + −

Θ−1(12 2) 1 +
1− 1
1

log(1− 1) (1− 1)
−12 1 + 1 + 1−

Table 3
Table JO4. Values of  and ̌ = (1 + (1)) for the different cases. The terms (1) do not depend on  and

converge to zero as n → ∞. In the table, () = 1 + (1 + )21 and 
2 = 1 + 2 − 12.

Case  ̌ = (1 + (1))

SMD 1 + 22 + log  

PCA 1 +
1− 1
1

log(1 + ) + log


1
(1 + )−1−11

SigD PCAc + 10 ̌PCA ̌10

REG0 1 +
 + 1
1

+ log


1
+
1− 1
1

log(1− 1) −11 (1− 1)
−12

REG REG0c + 10 ̌REG0 ̌10

CCA REGc + 21 ̌REG ̌10()

10 = −1− 2

12
log

2

1 + 2
+ log

1 + 2
1

̌10 = −11 (1 + 2)
12

21 = −1− 

1
− 2

12
log

2

1()
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Verification of Table JO4. We write c = ̌c(1 + (1)) and 10 = ̌10(1 + (1)) when we seek
to be explicit about the leading term. The (1) term differs from row to row, but depends only on

 1 2 (and not ). The explicit dependence can be constructed from the rows of Table 2, from

which it is seen in fact always to be (−1), where  = min( 1 − ).
The lines for SMD, PCA and REG0 in Table JO4 — reproduced here as Table 3 below — are

immediately verified from Table 2. Next, we consider ratios in which the p index decreases by one
from numerator to denominator. We then have from (24)

ASigD
APCA =

1A0
0A0 =

AREG
AREG0 =

1A1
0A1 =

µ
2



¶
Θ(2 2) = 10

−(2)10 

Referring to Table 2, we recover the terms 10 and 10 and hence the lines for SigD and REG in

Table JO4. For future reference, it is useful to decompose

10 = 1 + 0

1 = −1− 2

12
log 2 0 =

2

12
log(1 + 2) + log

1 + 2

1
(25)

Using (24) we have, in an obvious notation,

ACCA
AREG =

2A1
1A1 =

Ã




!−12Ã




!−
·
µ
2



¶
Θ(2 2) = R · A

REG

AREG0 

= 21
−(2)21 

and referring to Table 2, R = −1() exp{−(2)20} , where

20 =
1


log




+ log




=

1 + 2

12
log

1()

1 + 2
− 

1
− log ()(26)

= 2 − 0

and

(27) 2 = − 

1
+

2

12
log 1()

This establishes the CCA line of Table JO4 after we note that

(28) 21 = 20 + 10 = 2 − 0 + 1 + 0 = 2 + 1

Verification of (22). Use Stirling’s formula (23) twice:

Γ() ∼
√
2 −1−  and

Γ( − + 1) = ( −)Γ( −)

∼
q
2( −)( −)−−+

to arrive at
−1Γ( − + 1)

Γ()
∼
µ
 −



¶12 ( −)−




and hence formula (22).
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14 I. M. JOHNSTONE AND A. ONATSKI

4.2. Proof of Lemma JO2 (approximation to 01). By equation 9.6.47 in Abramowitz and Ste-

gun (1964), we have

(29) 0 = Γ (+ 1)
³
20

´−2


³
2

12
0

´


where the principal branches of the fractional powers are taken, and  (·) is the modified Bessel
function of the first kind. Using equation 9.7.7 in Abramowitz and Stegun (1964), we obtain

(30) 

³
2

12
0

´
=


2
0

(1 + 40)
14√2

(20−1−ln 0) (1 + (1)) 

where (1) → 0 as  → ∞ uniformly with respect to 0 ∈ Ω0 for any   0 Using (30) in (29),
and invoking Stirling’s approximation

Γ (+ 1) = −
√
2 (1 + (1)) 

we obtain

0 = (1 + 40)
−14 −(−20+2+ln 0) (1 + (1)) 

Since 1− 0 = −00 we obtain −20 + 2 + ln 0 = 0 (0) and thus,

0 = (1 + 40)
−14 −0(0) (1 + (1)) 

4.3. Proof of Lemma JO3 (approximation to 11, 21). First, let us change variable of integra-

tion in

 =


2i

Z (1+)

0
exp {− ()} () d

from  to  =   We obtain

(31)  =


−


2i

Z (+)

0
exp {− ()} () d

where

(32) () =

(
− −  ln  + (− 1) ln ( − ) for  = 1
− ln ( (1− )) + (− 1) ln ( − ) for  = 2

and

 () =

(
( − )

−1 for  = 1

( − )
−1 (1− )−1 for  = 2



Note that, for  = 2, the contour in (31) does not encircle 1.
To obtain point-wise asymptotic approximation to (31), the method of the steepest descent

(ascent) is very convenient. However, establishing the uniformity of the approximation requires the

knowledge of details of the structure of the steepest descent paths. For example, this knowledge

becomes essential when some of the steepest descent paths contain two saddle points. Unfortunately,

for our problem, the steepest descent paths are relatively complicated. Therefore, we will consider

very simple paths that are steep (but not the steepest) in a neighborhood of a saddle point. This

strategy allows us to rigorously establish the uniformity for relatively large sets of parameters 

and  . A downside of this approach is that we need to explicitly characterize the behavior of  ()
on the simple paths, which requires some relatively lengthy but elementary calculus.
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SUPPLEMENTARY MATERIAL 15

We shall prove Lemma JO3 separately for  = 1 (REG) and for  = 2 (CCA). Therefore, we
shall omit subscripts  from the notation below.

Proof of Lemma JO3 for REG.

Saddle points, REG. The saddle points satisfy

d

d
 () = −1− 


+

− 1
 − 

= −
2 + (1− ) − 

 ( − )
= 0

There are two solutions to this equation

(33) ± = 1
2

½
 + 2− 1±

q
( + 2− 1)2 − 4 (− 1)

¾
− 

where we choose the principal branch of the square root (cut along (−∞ 0]) when Re  ≥ −2+1
and the other branch when Re   −2+1. The following lemma collects facts about the behavior
of + for various ( ). Suppose that   1 (which is certainly true if 0    min {1 2}). Let
 = arg  Here and in what follows the principal branch of arg (cut along (−∞ 0]) is considered,
unless stated otherwise.

Lemma 2. (i) If Im   0, then 0  arg (+ − )  ; if Im   0 then   arg (+ − )  0.
For real   0 + is real and +  

(ii) For  ∈ C\ (−∞ 0]  function Re () is strictly increasing as  moves away from + (in any

direction) along the circle with center  and radius |+ − | until it reaches a point  on the circle.

If Im   0, then − ≤ arg ( − ) ≤  − . If Im   0 then  +  ≤ arg ( − ) ≤ . If   0
then  = 2 − +.

Proof: (i) For Im   0 and the branch of the square root chosen as described above, we have

Im
q
( + 2− 1)2 − 4(− 1)  Im ( + 2− 1) = Im 

Since

2 Im (+ − ) = − Im  + Im
q
( + 2− 1)2 − 4(− 1)

we have Im (+ − )  0 Therefore,

(34) if Im   0 then 0  arg (+ − )  

Similarly, we can show that if Im   0 then −  arg (+ − )  0
Now let  = |+ − |. Then, for  =  + i we have

Re () = (− 1) ln −Re  −  cos

−
2
ln
³
2 + ||2 + 2 || cos (− )

´


and therefore

(35)
d

d
Re () =  {sin+  () sin (− )} 

where

(36)  () =
 ||

2 + ||2 + 2 || cos (− )
 0
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16 I. M. JOHNSTONE AND A. ONATSKI

unless cos (− ) = −1 and  = ||, in which case  =  + i = 0 and d
d Re () → −∞ as

 ↓  −  and d
d Re ()→ +∞ as  ↑  + .

For Im   0, (35) implies that

d

d
Re ()  0 for  ∈ [ ] , and(37)

d

d
Re ()  0 for  ∈ [ −  0] .(38)

But, since + is a saddle point of  (),

d

d
Re () = 0 for  = arg (+ − ) 

Therefore, inequalities (34) and (37) guarantee that arg (+ − ) ∈ (0 )  Similarly, we can show
that Im   0 implies that arg (+ − ) ∈ ( 0). The part of (i) that deals with real   0 holds by
inspection.

(ii) Consider the case Im   0. Let us show that there are no zeros of d
d Re () on (0 )

other than arg (+ − ). First, suppose that  (2)  1, where  (·) is as defined in (36). Then,
since  () is a decreasing function of  ∈ (0 )  equation (35) implies that all zeros of d

d Re ()

on  ∈ (0 ) must belong to (0 2)  Furthermore, at any zero  of d
d Re () we must have

 ()  1.
Indeed, let  = 2 + . Then,

sin+ () sin(− ) = sin(2 + )− () sin(2− )

On the other hand,

sin(2 + )− sin(2− ) = 2 sin  cos(2)

which is positive for 0    2 and negative for 0    −2. Therefore, sin+() sin(−)
(and d

d Re ()) is positive for  ∈ (2 ), and it may equal zero for some  ∈ (0 2) only if
 ()  1.
If there are more than one zero for  ∈ (0 2), then by the mean-value theorem there must

exist 1 ∈ (0 2) such that, at  = 1,
d2

d2 Re () ≤ 0 and d
d Re () ≥ 0. The latter inequality

and the fact that d
d Re ()  0 at  = 0 implies that some zeros of

d
d Re () must be less than

or equal to 1 and hence,  (1)  1
To summarize, if there are more than one zero of d

d Re () on (0 2)  we must have

(39) 
n
cos1 +  (1) cos (1 − ) + 0 (1) sin (1 − )

o
≤ 0

for some 1 ∈ (0 2) with  (1)  1. Since

0 (1) sin (1 − )  0and (1− (1)) cos1  0

we must have

cos1 + cos (1 − )  0

Therefore,

(40) 2 cos (1 − 2) cos (2)  0

which is impossible for 1 ∈ (0 ) and 0    .
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SUPPLEMENTARY MATERIAL 17

Now, suppose that  (2)  1. Then, all zeros of d
d Re () on  ∈ (0 ) belong to (2 ).

If there are more than one zero, there must exist 1 ∈ (2 ) such that d2

d2 Re () ≤ 0 at  = 1
with  (1)  1 That is, (39) holds. Since

0 (1) sin (1 − )  0 cos (1 − )  0 and  (1)  1

we still must have (40), which is impossible.

Finally, if  (2) = 1 then, since  () is decreasing, (35) implies that there is only one zero
of d

d Re () on  ∈ (0 )  which is  = 2. To summarize, we have shown that

+ ≡ arg (+ − )

is the only zero of d
d Re () on (0 ). Similar arguments show that there exists only one zero,

say −, of d
d Re () on (−  − ). (If || =  so that Re () is singular at  =  −  with

d
d Re ()→ −∞ as  ↓ −  and d

d Re ()→ +∞ as  ↑  +  we formally define d
d Re ()

at  =  −  as zero).

We will set

 =  +  exp {i−} 
The uniqueness of the zeros of d

d Re () on (0 ) and on (−  − )  and inequalities (37,38)
imply (ii) for the situation where Im   0 The analysis for the cases with Im   0 is similar to
the above, and we omit it.

It remains to note that for real  such that   0, we have

d

d
Re () =  {1 +  ()} sin

which implies the validity of (ii) for   0. ¤

Contours of steep descent, REG. We shall choose the contour of integration in (31) so that it

passes through +, and Re () increases as  moves away from + along the contour, at least in a

neighborhood of +. Such contours are called contours of steep descent (of −Re ()). The contour
consists of a circle with center  and radius  = |+ − | (which, in what follows, we refer to as the
circle) and two overlapping straight segments of opposite orientations.

We consider four situations. The first and the second ones correspond to Re   0 and to   ||
and  ≥ ||, respectively. The third and the fourth ones correspond to Re  ≤ 0 and to   || and
 ≥ ||, respectively. In situations 1, 3, and 4, the two straight segments of opposite orientation
connect zero and the point  where the circle is intersected by a half-line that starts at  and passes

through zero. In situation 2, the point  is the intersection point of the circle and a half-line that

starts at − and passes through zero. Figure 1 illustrates the choice of the contour. The points 
on the circles are as defined in Lemma 2.

Let us show that in situation 2, that is when Re   0 and   ||  the circle intersects the
straight segment [− 0), as shown in Figure 1. Indeed, by definition of ± we have

(41) − (− − ) = (+ − ) +  + 1

Since, by Lemma 2 (i), Im (+ − ) has the same sign as Im  and Re (+ − ) ≥ 0 and since
Re ( + 1)  0 and Im ( + 1) = Im  we have

|Re {− (− − )}|  |Re (+ − )| and |Im {− (− − )}| ≥ |Im (+ − )| 
which implies that the circle must intersect the straight segment [− 0).
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Fig 1. Contours of steep descent,  = 1.

We shall split the contour, which we shall call K, in three parts. In situations 1, 3, and 4, the
splitting is

(42) K = K[0] +K[+] +K[0]
This decomposition assumes that Im  ≥ 0. If the sign of Im  changes to the negative, so that

 7−→ ̄, then K is transformed to its complex conjugate, and the orientation of such a complex

conjugate must be changed to the opposite one. The decomposition then becomes

(43) K = K[0] +K[+] +K[0]
In situation 2, when Im  ≥ 0 the splitting is (43) because arg ( − ) ≥ arg (− ). (We will
verify the latter inequality shortly.) In what follows, we consider only the case Im  ≥ 0. The
complex conjugate case is analyzed similarly, and we omit details of such an analysis.

As follows from the proof of Lemma 2, Re () is strictly increasing as  is going along K[+]
away from +. In other words, K[+] is a contour of steep descent. Below, we shall use Lemma
JO9 to analyze

I
[+]

=

Z
K[+]

−() () d

We shall then show that I[0] and I[0], which are defined similarly to I[+] are asymp-
totically dominated by I[+]. However, before we embark on this agenda, let us show that

arg ( − ) ≥ arg (− ) as was claimed above.
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As follows from Lemma 2, to see that the latter inequality holds, it is sufficient to verify that
d
d Re () is positive at  = . For such a verification, we will refer to Figure 2.

Fig 2. An illustration to the argument that d
d
Re () is positive at  = .

First, note that +− = − and (+− )(−− ) = (1− ), where by assumption,   1. The
first of these equalities implies that arg − = − + arg  − arg +  − so that point  on Figure

2 rightly belongs to [ ] (the line passing through  0 is a horizontal line). The second of the
equalities implies that the angle ∠0 ≡ 1 equals arg(+ − ). Furthermore, we have

d

d
Re () = {sin+ |+||−|| |2 sin(− )}

For  = , we have  = arg(− ) and  − −  equals ∠0 ≡ 2. This implies

(44)
d

d
Re () = {− sin( − 2) +

|+||−|
||2 sin 2}

For  = +, the derivative is zero, and hence

(45) 0 = sin 1 +
|−|
|+| sin(1 − )

Now, by the law of sines applied to the triangle 0, we have

(46)
sin 2
|| =

sin( − 2)

|| 

Similarly, for the triangle 0, we have

(47)
sin 1
|| =

sin( − 1)

|| 
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20 I. M. JOHNSTONE AND A. ONATSKI

Combining (46) with (44), we obtain

(48)
d

d
Re () =  sin 2

½ |+||−|
||2 − ||

||
¾


Combining (47) with (45), we obtain

(49) || = |+|||
|−|

Using (49) in (48), we get

d

d
Re () =  sin 2

|+|
|−|

(
|−|2
||2 −

||
||

)
 0¤

Saddle point approximation for I[+] REG.We shall now derive a saddle point approxima-
tion to the integral I[+] which is uniform with respect ( ) ∈ Ω where

(50) Ω =
n
( ) ∈ R×C :  ≤ − 1 ≤ −1 dist

¡
R−

¢ ≥  and || ≤ −1
o


 is an arbitrary fixed number that satisfies inequalities 0    1, R− = (−∞ 0) and, for any
 ⊆ C and  ⊆ C,

dist () = inf
∈∈

|− | 

Let us show that assumptions A0-A5 of Lemma JO9 hold. For this, we shall need the following

lemma.

Lemma 3. The quantities |+ − | and |+| are bounded away from zero and infinity, uniformly

with respect to ( ) ∈ Ω

Proof: Note that |+ − | and |+| are continuous functions of ( ) ∈ Ω On the other hand,
the definitions (33, 50) of + and Ω together with Lemma 2 imply that |+ − | 6= 0 and |+| 6= 0
for any ( ) ∈ Ω The lemma follows from these observations and the compactness of Ω¤
Lemma 3 implies that the length of K[+] is bounded uniformly with respect to ( ) ∈ Ω.

Further,

sup
∈K

[+]

| − +| ≥ |− +| and sup
∈K

[+]

| − +| ≥ | − +|

with |− +| and | − +| being continuous functions of ( ) ∈ Ω which are not equal to zero
for any ( ) ∈ Ω Therefore, |− +| and | − +| are bounded away from zero, uniformly with

respect to ( ) ∈ Ω and assumption A0 holds.
Assumptions A1, A2, A3 and A5 follow from Lemma 3. Finally, let 1 and 2 be the points

of intersection of K with a circle with center at + and a sufficiently small fixed radius 1. The

validity of Assumption A4 follows from the fact that Re ( ()−  (+))   = 1 2 are positive
continuous functions of ( ) ∈ Ω (the positivity being a consequence of Lemma 2 (ii)) and
Im ( ()−  (+))   = 1 2 are continuous functions of ( ) ∈ Ω.
Since assumptions A0-A5 hold, we have by Lemma JO9

I[+] = 2−0

∙√


0

12
+

 (1)

32

¸
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where  (1) is uniform with respect to ( ) ∈ Ω,

(51) 0 = −+ −  ln + + (− 1) ln (+ − )

and

(52) 0 =
(+ − )−1q

22+ − 2 (− 1)  (+ − )2

with the branch of the square root chosen as described in Lemma JO9.

Precisely, let

 = 2 + arg (+ − ) 

where the principal branch of arg (·) is taken, and let

(53)  = arg
³
22+ − 2 (− 1)  (+ − )2

´


where the branch of arg (·) is chosen so that | + 2| ≤ 2 Then

(54) 0 =
−i2 (+ − )−1r¯̄̄

22+ − 2 (− 1)  (+ − )2
¯̄̄ 

Analysis of I[0] and I[0] REG. Let us show that I[+] asymptotically dominates I[0]
and I[0] uniformly with respect to ( ) ∈ Ω1, where

Ω1 = Ω ∩ {( ) ∈ R×C : Re  ≥ −2+ 1} 

It is sufficient to prove that there exists a positive constant  such that, for  on K[0] and K[0]
we have Re () ≥ Re0 +  uniformly with respect to ( ) ∈ Ω1 For concreteness, we again
assume that Im  ≥ 0. The complex conjugate case is very similar, and we omit its analysis.
Note that, by Lemma 2 (ii), for any  ∈ K[] Re () ≥ Re ()  Hence, it is sufficient to

prove that Re () ≥ Re0 +  for  from K[0]. Moreover, for situations 1, 2 and 4, shown on
Figure 1, it is sufficient to establish the fact that Re () ≥ Re0 +  Indeed, let  ∈ K[0] and
let  = | |  For situations 1 and 4, using the definition of () we have, respectively,

d

d
Re () = − cos − − (− 1)  (||− )  0

and
d

d
Re () = − cos ( − )− + (− 1)  (||+ )  0

where  = arg . Therefore,

(55) Re () = inf
∈K[0]

Re () 

For situation 2, we have

Re () = − cos (arg −)−  ln+
− 1
2

ln
³
2 + ||2 − 2 || cos 

´
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22 I. M. JOHNSTONE AND A. ONATSKI

where  = 2 + arg − −  and thus,

d2

d2
Re () = 2 + (− 1) −

2 − ||2 cos (2) + 2 || cos ³
2 + ||2 − 2 || cos 

´2
≥  | |2 − (− 1)  | − |2 

On the other hand, using the fact that +− = − and Lemma 2 (i), it is straightforward to verify
that   2 and therefore, | |2  | − |2 for any  ∈ K[0] Hence, d2

d2 Re ()  0. But the first
derivative of Re () with respect to  must become positive for →∞, negative for → 0, and
zero for  = |−|  where  is any point on the ray connecting 0 with −. Hence, d

d Re () must
be negative for  ∈ K[0] and (55) again holds.
For situation 3, let  ∈ K[0] There are two possibilities. First, there exists 1 on the circle,

such that Re  = Re 1 and |Im 1| ≤ |Im |. In such a case, Re () ≥ Re (1). Furthermore, by
Lemma 2 (ii), Re (1)  Re ()  where  =  + |+ − |. Hence,

(56) Re ()  Re () 

Second, Re   Re  + |+ − |. Assuming that ( ) ∈ Ω1 the latter inequality implies that
Re  ≥ −. Indeed, for ( ) ∈ Ω1, the definition (33) of + implies that Re + ≥ − Therefore,

Re   Re  + |+ − | ≥ Re + ≥ −

Let  = | |  then
d

d
Re () = − cos − − (− 1)  (||− ) 

and
1

cos

d

d
Re () = −1− 

Re 
− − 1
Re  −Re  

But

−1− 

Re 
≥ 0 and − − 1

Re  −Re   0

Therefore d
d Re ()  0 and (56) holds. Note that in the analysis of situation 3 we used the

assumption ( ) ∈ Ω1 and in particular that Re  ≥ −2 + 1. If the latter inequality is not
satisfied, the minimum of Re () on K can be achieved at some point on K[0]. This fact will be
used later, in our proof of Theorem JO10.

It remains to show that, for some positive 

(57) Re () ≥ Re0 + 

uniformly with respect to ( ) ∈ Ω1 and

(58) Re () ≥ Re0 + 

uniformly with respect to ( ) ∈ Ω̃1 where

Ω̃1 = Ω1 ∩ { ≥ 1Re  ≤ 0} 

Inequality (58) follows from the fact that function Re ()− Re0 is continuous and positive for
( ) ∈ Ω̃1 and from the compactness of Ω̃1
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We cannot use a similar argument to establish inequality (57) because Re () − Re0 is not
a continuous function of ( ) ∈ Ω1, as we may have  =  = 0 and Re () = +∞ for some

( ) ∈ Ω1. However, we can bound Re ()−Re0 from below by the minimum of two positive

continuous functions Re (1)−Re0 and Re (2)−Re0 where 1 and 2 are the points of the

intersection of the circle with center  and radius |+ − | and a circle with center + and a fixed
radius, which is smaller than |− +|, uniformly with respect to ( ) ∈ Ω1. Therefore, there
exists   0 such that (57) holds uniformly with respect to ( ) ∈ Ω1
Asymptotics in terms of  and , REG. The above analysis implies the following asymptotic

representation

1 =


−

2i
2−0

⎡⎢⎢⎣√ −i2 (+ − )−1

12

r¯̄̄
22+ − 2 (− 1)  (+ − )2

¯̄̄ +  (1)

32

⎤⎥⎥⎦ 
where  (1) is uniform with respect to ( ) ∈ Ω1 We would like to express this formula in terms
of 1 1 (·)  and 1 (·). As follows from the definition of 1 (see equation (JO27)) and the fact that
+ = 1, ¯̄̄

22+ − 2 (− 1)  (+ − )2
¯̄̄
=
¯̄̄
2001 (1) 

2
¯̄̄


Furthermore,

1 (1) = 0 − ln 
and by (JO28)

(+ − )−1 = 1 (1) 
−1

Therefore, we have

1 = 
−1(1)

⎡⎣−i2−i arg
i

1 (1)q
|2001 (1)|

+
 (1)

32

⎤⎦ 
On the other hand, by definition (53),

 = arg
¡
001 (1)

¢− 2 arg  = 1 −  − 2 arg 

where 1 is as defined in equation (JO30). Hence,

1 = 
−1(1)−i12

⎡⎣ 1 (1)q
|2001 (1)|

+
 (1)

32

⎤⎦
= 1 (1) 

−i12 ¯̄2001 (1)
¯̄−12

exp {−1 (1)} (1 + (1)) 

Proof of Lemma JO3 for CCA.

Saddle points, CCA. From equation (32) with  = 2, we see that the saddle points satisfy

d

d
 () = −


− 

1− 
+

− 1
 − 

=
2 (− 1) +  − 

 ( − 1) ( − )
= 0
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There are two solutions to this equation

(59) ± =
−1±p1 + 4 (− 1) 

2 (− 1) 

where we choose the principal branch of the square root cut along (−∞ 0].
The following lemma collects facts about the behavior of + for various ( ). As usual, we

assume that   1 In addition, we assume that  ∈ (−∞ ∗) ∪ [1∞), where

∗ = − 1

4 (− 1) 

Note that set (−∞ ∗) ∪ [1∞) does not intersect with Ω2 for any   0.

Lemma 4. (i) |+ − |  |1− |  and + = 0 if and only if  = 0

(ii) If Im   0 and Re +  12 then 0  Im +  Im  If Im   0 and Re +  12 then
Im +  Im  Similarly, if Im   0 and Re +  12 then 0  Im +  Im  If Im   0 and
Re +  12 then Im +  Im 

(iii) For  ∈ (−∞ ∗) ∪ [1∞)  function Re () is strictly increasing as  moves away from +
(in any direction) along the circle with center  and radius |+ − | until it reaches a point  on

the circle.

Proof: (i) Let

(60) −−1∗ ( − ∗) = 2 exp {i2}
with  ∈ (−2 2). Then

(61) + =
−1 +  exp {i}
2 (− 1)

and a direct calculation (we perform it using Maple’s symbolic algebra software) shows that

−2∗
³
|+ − |2 − |1− |2

´
= −4 (+  cos  − 1)

³
(2− 1)2 + 2 − 2 (2− 1) cos 

´


Since  ∈ (−2 2) and   1, the latter expression is less than zero. Further, equation (61)
implies that + = 0 if and only if  = 0 and  = 1 The latter two equalities are equivalent to  = 0.
(ii) From (61), we see that Re +  12 if and only if

(62)  cos   

On the other hand,

(63) −−1∗ Im (+ − ) = 2 sin  (−  cos ) 

Combining (62) and (63), we obtain (ii).

(iii) Recall that

 () = − ln 

1− 
+ (− 1) ln ( − ) 

Therefore, on the circle with center  and radius |+ − |, Re () equals − ln | (1− )| plus a
constant. Further, for   0 such that  6= 1 the set of  that satisfy equality | (1− )| =  is
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Fig 3. Isolines of the function | (1− )| 

a circle with center 2
¡
2 − 1¢ and radius  ¯̄2 − 1¯̄  For  = 1 | (1− )| =  along the line

Re  = 12 Figure 3 shows the iso-lines of | (1− )|. For   1 the isolines are encircling 0 for
  1 they are encircling 1.
Since + is a critical point of Re (), the circle with center  and radius |+ − | must have a

common tangent with one of the isolines at  = + Therefore, Re () must be strictly monotone
as  moves away from + along the circle with center  and radius |+ − | until it reaches a point
 on the circle. Part (ii) of the lemma implies that Re () is strictly increasing. ¤

Contours of steep descent, CCA. We shall choose the contour of integration in (31), which we

shall call K, so that it passes through +, and Re () increases as  moves away from + along the

contour, at least in a neighborhood of +. The contour consists of a circle with center  and radius

 = |+ − |, which, in what follows, we refer to as 1, and two overlapping circular segments of
opposite orientations, which we will refer to as 2.

We consider four situations. The first and the second ones correspond to   || and to Re   0
and Re  ≥ 0, respectively. The third and the fourth ones correspond to  ≥ || and to Re   0
and Re  ≥ 0, respectively. Using (61), we obtain

−2∗ |+ − |2 − −2∗ ||2 = 4
³
2 − 2 cos  + 1

´
(−  cos  − 1) 

Therefore, situations 3 or 4 are realized whenever

(64)  cos  ≤ − 1
In particular, the corresponding + must be such that Re +  12 (compare to (62)).
For situation 1 and 2, 2 consists of a segment of the circle that passes through 0 1 and  The

segment starts at the closest to 0 intersection of the latter circle with 1 and ends at 0. It does
not pass through 1 or . For situation 3 and 4, 2 consists of the segment of the circle with center
at 1 and radius 1 that connects 0 with the point  of the intersection of this circle with 1 and

lies inside 1 Out of the two intersection points we choose the one with the imaginary part of the

opposite sign to that of Im . Figures 4, 5, 6, and 7 illustrate the choice of K for situations 1, 2, 3,
and 4, respectively.
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Fig 4. Choice of contour K in situation 1. The contour is represented by the dark black circle and the circle segment

ending at 0. The dashed lines are iso-lines of function | ( − 1)| 
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Fig 5. Choice of contour K in situation 2. The contour is represented by the dark black circle and the circle segment

ending at 0. The dashed lines are iso-lines of function | ( − 1)| 

We split the contour in three parts

(65) K = K[0] +K[+] +K[0]
or

(66) K = K[0] +K[+] +K[0]
depending on whether moving counter-clockwise along 1 from  to  reaches + or not. In the rest

of this note, we shall refer to (65) for concreteness. Our arguments do not depend on the specific

form of the splitting.

As follows from Lemma 4, Re () is strictly increasing as  is going along K[+] away from
+. In other words, K[+] is a contour of steep descent. Below, we shall use Lemma JO9 to
analyze

I
[+]

=

Z
K[+]

−() () d
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Fig 6. Choice of contour K in situation 3. The contour is represented by the dark black circle and the circle segment

ending at 0. The dashed lines are iso-lines of function | ( − 1)| 
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Fig 7. Choice of contour K in situation 4. The contour is represented by the dark black circle and the circle segment

ending at 0. The dashed lines are iso-lines of function | ( − 1)| 

We shall then show that I[0] and I[0], which are defined similarly to I[+] are asymptoti-
cally dominated by I[+].
Saddle point approximation for I[+] CCA. We now derive a saddle point approximation

to the integral I[+] which is uniform with respect ( ) ∈ Ω2 where

(67) Ω2 =
n
( ) :  ≤ − 1 ≤ −1 dist (R\ [0 1]) ≥  and || ≤ −1

o


and  is an arbitrary fixed number that satisfies inequalities 0    1. Let us verify assumptions
A0-A5 of Lemma JO9. For this verification, we need the following lemma.

Lemma 5. The quantities |+ − | and |+| are bounded away from zero and infinity, uniformly

with respect to ( ) ∈ Ω2

Proof: The lemma follows from Lemma 4 (i,ii), the fact that + 6=  for ( ) ∈ Ω2, and the
compactness of Ω2. ¤
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Lemma 5 implies that the length of I[+] is bounded uniformly with respect to ( ) ∈ Ω2.
Further,

sup
∈K

[+]

| − +| ≥ |− +| and sup
∈K

[+]

| − +| ≥ | − +| 

where |− +| and | − +| are continuous functions of ( ) ∈ Ω2 which are not equal to zero
for any ( ) ∈ Ω2 Therefore, |− +| and | − +| are bounded away from zero, uniformly with

respect to ( ) ∈ Ω2 and assumption A0 holds.
Assumptions A1, A2, A3 and A5 follow from Lemma 5. Finally, let 1 and 2 be the points

of intersection of K with a circle with center at + and a sufficiently small fixed radius 1. The

validity of Assumption A4 follows from the fact that Re ( ()−  (+))   = 1 2 are positive
continuous functions of ( ) ∈ Ω2 (the positivity being a consequence of Lemma 4 (iii)) and
Im ( ()−  (+))   = 1 2 are continuous functions of ( ) ∈ Ω2.
Since assumptions A0-A5 hold, by Lemma JO9, we have

I[+] = 2−0

∙√


0

12
+

 (1)

32

¸


where  (1) is uniform with respect to ( ) ∈ Ω2,

(68) 0 = − ln +

1− +
+ (− 1) ln (+ − )

and

(69) 0 =
(+ − )−1 (1− +)

−1r
2 (1− 2+) 

³
(1− +)

2 2+

´
− 2 (− 1)  (+ − )2

with the branch of the square root chosen as described in Lemma JO9.

Precisely, let

 = 2 + arg (+ − ) 

where the principal branch of arg (·) is taken, and let

 = arg
³
2 (1− 2+) 

³
(1− +)

2 2+

´
− 2 (− 1)  (+ − )2

´


where the branch of arg (·) is chosen so that

| + 2| ≤ 2

Then

(70) 0 =
−i2 (+ − )−1 (1− +)

−1r¯̄̄
2 (1− 2+) 

³
(1− +)

2 2+

´
− 2 (− 1)  (+ − )2

¯̄̄ 

Analysis of I[0] and I[0] CCA. Let us show that I[+] asymptotically dominates I[0]
and I[0] uniformly with respect to ( ) ∈ Ω2. It is sufficient to prove that there exists a
positive constant  such that, for  on I[0] or on I[0] we have Re () ≥ Re0+ uniformly

with respect to ( ) ∈ Ω2
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Note that, by Lemma 4 (iii), for any  ∈ K[] Re () ≥ Re ()  Hence, it is sufficient to
prove that Re () ≥ Re0+ for  from K[0]. Moreover, it is sufficient to establish the fact that

(71) Re () ≥ Re0 + 

uniformly with respect to ( ) ∈ Ω2 It is because for any  ∈ K[0] Re () ≥ Re () 
Indeed, for situations 1 and 2 this property of Re () follows from the fact that | (1− )|

is strictly decreasing and | − | is strictly increasing as  moves along K[0] away from  For

situation 3, we have

Re ()−Re () = − log | ||| + (− 1) log
| − |
|− |

 − log | |
| − | +  log

||
|− | 

where the latter inequality holds because | − |  |− |  The iso-lines of function | |  | − |
are similar to those shown on Figure 3 with the concentration points 0 and  instead of 0 and 1.
As  moves along K[0] away from  the isolines are crossed so that | |  | − | is decreasing.
Therefore,

(72) Re ()−Re () ≥ 0

For situation 4, the analysis is more involved. We have the following lemma.

Lemma 6. Inequality (72) holds for situation 4.

Proof: The analysis is similar to that of situation 3. However, in contrast to situation 3, we

cannot immediately claim that as  moves along K[0] away from  the isolines of the function

| |  | − | are crossed so that the function is decreasing. For this claim to be valid, we must verify

that

(73) ||  |− |  1

so that  and 0 lie on the same side of the iso-line | |  | − | = 1.
Let  be the point on 1 where ||  |− | = 1 such that Im ( − ) has the same sign as Im .

To establish (73), it is sufficient to show that  lies inside the circle with center at 1 and radius 1
(circumference of which contains K[0]). That is, it is sufficient to show that |1− |2  1
For concreteness, let us focus on the case Im   0 Then, we have

 = 2− i where  =
r³

2 − |2|2
´
 ||2

and  is the radius of 1 A straightforward algebra shows that

|1− |2 = 2 + 1−Re  − 2 Im 

Furthermore, since 2 ≥ ||2  we have  
√
32  1 Therefore, the inequality |1− |2  1 would

follow from the inequality 2 ≤ ||  Re  + Im  . Let us now show that in situation 4, 2 ≤ ||.
Let  =  exp {i}  where  and  are as in (60). Situation 4 imposes the following constraints on

: 1) Re  ≥ 0 2) Re  ≤ −1 3) (Re )2−(Im )2 ≥ 1. The first one is equivalent to  ∈ [−2 2],
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which must be true by definition of . The second one is equivalent to (64), and the last one ensures

that Re  ≥ 0. We have
+ =

−1 + 

2 (− 1) and  =
−1 + 2

4 (− 1) 

Therefore,

2 ≡ |+ − |2 = | − 1|2 | − (2− 1)|2
162 (− 1)2

and

|| = | − 1| | + 1|
4 (− 1) 

For  that satisfies the above three constraints, we must have | + 1|  | − 1|. Therefore, to
establish inequality 2 ≤ ||  it is sufficient to show that

| − (2− 1)|2
4 (− 1) ≤ 1

The latter inequality is equivalent to

(Im )2 + 1 ≤ 2Re  (2− 1)− (Re )2
In view of the third constraint, it is sufficient to show that

2Re  (2− 1)− (Re )2 ≥ (Re )2
But the second constraint implies this inequality. The situation where Im  ≤ 0 is analyzed similarly.
¤
To summarize, in all the four situations we only need to show that (71) holds. Note thatRe ()−

Re0 is not a continuous function of ( ) ∈ Ω2 because we may have  =  = 0 and Re () =
+∞ for some ( ) ∈ Ω2. However, we can bound Re ()−Re0 from below by the minimum of
two positive continuous functions Re (1)−Re0 and Re (2)−Re0 where 1 and 2 are points
of the intersection of the circle with center  and radius |+ − | and a circle with center + and
a fixed radius, which is smaller than |− +|, uniformly with respect to ( ) ∈ Ω2. Therefore,
there exists   0 such that (71) holds uniformly with respect to ( ) ∈ Ω2
Asymptotics in terms of  and , CCA.

The above analysis implies the following asymptotic representation

2 =


−

2i
2−0

⎡⎢⎢⎣
√
−i2 (+ − )−1 (1− +)

−1

12

r¯̄̄
2 (1− 2+) 

³
(1− +)

2 2+

´
− 2 (− 1)  (+ − )2

¯̄̄ +  (1)

32

⎤⎥⎥⎦ 
where  (1) is uniform with respect to ( ) ∈ Ω2 We would like to express this formula in terms
of 2 2 (·)  and 2 (·)  Since¯̄̄

2 (1− 2+) 
³
(1− +)

2 2+

´
− 2 (− 1)  (+ − )2

¯̄̄
=
¯̄̄
2002 (2) 

2
¯̄̄


2 (2) = 0 − ln 
and

(+ − )−1 (1− +)
−1 = 2 (2) 

−1
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we have

2 = 
−2(2)

⎡⎣−i2−i arg
i

2 (2)q
|2002 (2)|

+
 (1)

32

⎤⎦ 
On the other hand, by definition,

 = arg
¡
002 (2)

¢− 2 arg  = 2 −  − 2 arg 

where 2 is as defined in equation (JO30). Therefore,

2 = 
−2(2)−i22

⎡⎣ 2 (2)q
|2002 (2)|

+
 (1)

32

⎤⎦
= 2 (2) 

−i22 ¯̄2002 (2)
¯̄−12

exp {−2 (2)} (1 + (1)) 

4.4. Proof of Confluences. The confluences (JO35) are established by showing convergence of

each of the components in (JO11). For the c and e components, this follows from inspection of

Tables JO4 and JO3 respectively, while for 
SigD
h (), this follows from (JO17). For REGh () and

CCAh (), one uses the definitions of  and  and calculation, though one can also appeal to the

confluences

11 (; ; )→ 01 (; )

21 (1 2; ; 
2)→ 01 (; 12)

as → 0, and observe in (JO21) that with  ∼ 1((1− 1)2) and as 2 → 0, we have

(+ 1)1 → 20

(+ 1)22 → 20

For the confluences (JO36), there is some crosstalk between the components. We write c[] to
show the dependence on  explicitly. Writing  =

√
1, it is direct to verify that

PCAc [
√
1] = SMDc [] + 

√
1 − 2 − log√1 +(

√
1)

REG0c [
√
1] = SMDc [] + 

√
1 − 22− log√1 +(

√
1)

From (JO14) and the MP entry in Table JO3, and writing  = 1 +
√
1, we have

PCAe (1 +
√
1) = REG0e (1 +

√
1) = SMDe () + log

√
1 + (1)

For the h term, we write h(; ) to show the dependence on  explicitly. From (JO17), one

quickly has

PCAh (1 +
√
1;

√
1) = SMDh (; )− 

√
1 + 2 +(

√
1)

For REG0h , we have 0(0) = log 0 − 2(0 − 1) and that 0 = 1+ 0 − 20 +(30) for small 0. This
leads to h(; ) = (1− 1)

−1
1 [−0 + 1

2
2
0 +(30)] and thence by elementary evaluation to

REG0h (1 +
√
1;

√
1) = SMDh (; )− 

√
1 + 22 +(

√
1)

Combining terms from the preceding displays yields the confluences (JO36).
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4.5. Proof of Lemma JO4 (saddle points 0). q = 0 cases: (SMD, PCA, SigD).
First, note that

(74)  0() =  0e() +  0h() = −c() +  0h()

where c() is the appropriate Stieltjes transform. We proceed, then, by solving for  in the

equation  0h() = c().

SMD. We have  0h() = −, so substituting c(0) = − into the quadratic equation

(75) 2 + + 1 = 0

satisfied by  = SC
c (), we get

0() = −
2 + 1


=

2 + 1


=  + 1

Obviously, for any  ∈
³
0 ̄SMD

´
≡ (0 1)  0() is larger than SMD+ = SMD+ ≡ 2

PCA. Now  0h() = −[1(1 + )], so we substitute c(0) = −[1(1 + )] into the quadratic
equation

(76) 1
2 + ( + 1 − 1)+ 1 = 0

satisfied by  = MP
c (). This is a linear equation for  whose solution is

0() = ( + 1)( + 1)

Note that the minimum of 0() over   0 equals 
PCA
+ ≡ ¡1 +√1¢2 and is achieved at

 = ̄c ≡ √1

Therefore, since MP
c () is well defined for   PCA+ , MP

c (0) must be well defined for any
 ∈ ¡0 ̄c¢.
SigD. The Stieltjes transform  = W

c () of the Wachter distribution, as normalized here,
satisfies the quadratic equation

(77) 1(1 − 2)
2 + [1(1− 2) − (1− 1)(1 − 2)]+ 2 = 0

while

(78)  0h() =


1− 
  =

2

1(1 + )
  = − 2

12


To solve () =  0h(), insert  = (1−) into (77) to obtain an apparently quadratic equation.
However the coefficient of 2 vanishes, so that as with SMD and PCA, 0 is the solution of a linear

equation  +  = 0, where in this case

 = 1()(1 + )

 = −1(1 + )
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so that

(79) 0() =
(1 + )(1 + )

()


It also follows that

0 =
2(1 + )

1()
 1− 0 =

2

1()

 0hSigD(0) = (0) = − ()

1(1 + )
(80)

Recall that () = 1 + (1 + )21 Therefore, (79) implies that that the minimum of 0() over
  0 equals


SigD
+ ≡ 1

µ
 + 1

 + 2

¶2
and is achieved at

 = ̄c ≡ 2 + 

1− 2


Therefore, W
c () is well defined for   

SigD
+ , as n  → ∞ and W

c (0) must be well defined
for any  ∈ ¡0 ̄c¢.
q = 1 cases: (REG0, REG, CCA).
We find the critical points 0() for the q = 1 cases by showing that they are the same as for the

corresponding q = 0 cases. This is cast as a verification rather than a derivation as we still lack a
good explanation for this curious fact.

We have seen, based on (74), that

 0hPCA(0) = MP
c (0)  0hSigD(0) = W

c (0)

for 0 = PCA0 and 
SigD
0 respectively. We now show that

 0hREG0(0) =  0hPCA(0)  0hREG(0) =  0hCCA(0) =  0hSigD(0)

for 0 = PCA0 and 
SigD
0 respectively. In combination with (74), this verifies that PCA0 and 

SigD
0

are critical points for the q = 1 cases as well.
The functions defined in (JO23) and (JO27) will sometimes be written in the form ( ) to

show the dependence on  explicitly. We have

h() =
1− 1

1
[(  ) +  ]

where  = (n ) and  = () satisfies

(81)



( ) = 0

a quadratic equation for  with coefficients depending on  and . We therefore have, dropping

the subscript  temporarily,

(82)  0h() =
1− 1

1

d

d
(() )

d

d
=
1− 1

1




(() )

d

d
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From definitions (JO23) and (JO27), again with  = (), and  = 2[2(1− 1)],

(83)



(  ) =

⎧⎪⎪⎨⎪⎪⎩
−10
−1
−2(1− 22)

We now turn to the specifics of the three cases.

REG0. We show that  = PCA0 = ( + 1)( + 1) solves

 0hREG0() = (0) = − 

1( + 1)


From (82) and (83),

 0hREG0() = −


1(1− 1)

1

0()


so that we should solve 0(0()) = ( + 1)(1 − 1) for . Since 0 satisfies a quadratic equation,
the equation for  becomes

0() = 20 − 0 =
( + 1)( + 1)

(1− 1)2


which implies that REG00 = −1(1− 1)
20 = ( + 1)( + 1) = PCA0 ().

REG. This time we solve for  in

 0hREG() =  0hSigD(0) = −
()

1(1 + )


where the second equality uses (80). From (82) and (83) we have  0hREG() = −21()21, and so

(84) 1() =
1()

2(1 + )
 1()− 1 = 1

2(1 + )


The quadratic equation for 1 is 1
2
1 + (1− 1)1 −  = 0, so that

(85) 1 =
− 1

1(1 − 1) =
2( + 1)( + 1)

(1− 1)1()

which implies that REG0 = 1(1− 1)1(2) = 
SigD
0 ().

CCA. Treat this as a modification of REG. Thus

2() =  log(1− 2) + 1+ 1() and

02() = −
2

1− 2
+ 1 + 01()(86)

We verify that at  = 
SigD
0 ,

(87) 2 =
1()

2(1 + )
= 1(1(0))

satisfies 02(2) = 0 for 2 = 2(0). Indeed, writing () = 1(), we have

(88) 2 =
22(1 + )(1 + )

2()
 22 =

2(1 + )

()
 1− 22 =

2

()
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and


1− 22
=

()

(1− 1)2
=

1

2


so that from (86), 02(2) = 01(1) = 0. But now we can see that, at  = 0,

 0hCCA(0) = −
1− 1

1



1− 22
· 2 · d2

d

= −1− 1

1

1

2
· 1 · d2

d
= −1− 1

1
· 1 · d1

d
=  0hREG(0)

so that 0 also satisfies 
0
CCA(0) = 0.

4.6. Verification of Remark JO5: that (0) = 0. Recall that (0) = c + e(0) + h(0). The
term c is given in Table 3. The next term,

e (0) =

Z +

−
ln (0 − ) dc () 

takes on three different values: one for SMD, another for PCA and REG0 and the third one for

SigD, REG, and CCA.

Lemma 7. For SigD, REG, and CCA, for any  ∈ ¡0 ̄¢ and for sufficiently large n  we have
(89) e (0) = 2 ln 1 − ln  − 1− 1

1
ln (1 + )− 1 + 2

12
ln (1 + 2) +

2

12
ln [1 ()] 

Proof: We follow the usual strategy of reduction to a contour integral. First make the change of

variables  = −  cos In order to arrange that  = − and + at  = 0 and  respectively, we

set

(90)  =
+ + −
2

=
1
¡
2 + 21

¢
(1 + 2)

2   =
+ − −
2

=
221

(1 + 2)
2 

We obtain

e (0) =
1 + 2

41

Z 2

0

2 sin2  ln (0 − +  cos)

(−  cos) (1 − 2+ 2 cos)
d

after extending the integral from [0 ] to [0 2] using the symmetry of the integrand about  = .

Now introduce  = i Since cos =
¡
 + −1

¢
2 we have from (90) the factorizations

1 (−  cos) =


2
( − 1)

³
 − 1

−1´ 
1 − 2+ 2 cos =



2
( + 2)

³
 + 2

−1´ 
0 − +  cos = ()

³
−1

´
with

 () =
1

1 + 2

µq
1 ()  + 

q
 [1 ()]

¶


Our integral becomes

e (0) =
− (1 + 2) 

2

4i

Z
C

¡
 − −1

¢2
ln
¡
()

¡
−1

¢¢
( − 1) ( − 1−1) ( + 2) ( + 2−1)

d
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The integral has form  =

I
ln
¡
()

¡
−1

¢¢
 () −1d with () = 

¡
−1

¢
. Hence, expanding

the logarithm yields two identical terms, so that

e (0) =
− (1 + 2)

2i

Z
C

¡
2 − 1¢2 ln ()

( − 1) ( − 1) ( + 2) ( + 2)

d




For  ∈ ¡0 ̄¢ and sufficiently large n  we have  ∈ ¡0 ̄¢ with ̄ = (2 + )  (1− 2)  On the
other hand, for  ∈ ¡0 ̄¢  the function ln  () is analytic inside the circle || = 1 and so the
whole integrand is analytic inside the circle except for simple poles at  = 0 1 and −2 The
residues at these poles are respectively

1 + 2

12
ln

1
p
1

1 + 2
−1− 1

1
ln

1 (1 + )√
1

 and − 1− 2

2
ln

1√
1

and their sum, after collecting terms, yields formula (89). ¤

Corollary 8. For PCA and REG0 for any  ∈
¡
0 ̄

¢
and for sufficiently large n  we have

(91) e (0) = ln 1 − ln  − 1− 1

1
ln (1 + ) + 1

Proof: The corollary is obtained from Lemma 7 by taking the limit as 2 → 0. ¤

Corollary 9. For SMD, for any  ∈ ¡0 ̄¢ and for sufficiently large n  we have
(92) e (0) = − ln  + 22

Proof: We remarked earlier that SMD is a limit of PCA and REG0 as 1 → 0 after the transfor-
mations  7→√1 and  7→√1 + 1 In particular,

SMD0 = lim
1→0 7→√1

(PCA0 − 1)√1 and  SC () = lim
1→0

MPc (
√
1+ 1) 

These equations imply that

SMDe

³
SMD0

´
= lim

1→0 7→√1

h
PCAe

³
PCA0

´
− ln√1

i


Using this relationship together with Corollary 8 yields e (0) = − ln  + 22 for SMD. ¤
Observe from Lemma 7 and Corollary 8 that

SigDe = PCAe + log 1 − 1 + 2

12
log(1 + 2) +

2

12
log[1()]− 1

= PCAe + 20 and

REGe = REG0e + 20

where 20 is defined at (26). Combining Table 3 for c with this display and Corollaries 8 and 9 for

e(0), we can summarize the results for c + e(0) by case in Table 4 below. For the SigD and

REG lines we use (28), namely 21 = 10 + 20, while for CCA we recall that 
REG
e = CCAe .
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Case  = c + e(0)

SMD 1 + 2

PCA 1 + 1

SigD PCA + 21

REG0 2(1 + 1) +
1− 1
1

log
1− 1
1 + 

REG REG0 + 21

CCA REG + 21
Table 4

Explicit form of c + e(0) for the different cases.

We turn to the evaluation of h(0): in each case it will turn out to equal − = −c − e(0) as
shown in Table 4. Again we start with the q = 0 cases, in which h() is an elementary function.

SMD. We immediately have h(0) = −0 = −2 − 1.
PCA. Now h(0) = −0[1(1 + )] = −1− 1.

SigD. This time, referring to the definition of 21 in Table 3,


SigD
h (0) =

2

12
log

∙
1− 2

1

1 + 

()

¸
=

2

12
log

"
2

1()

#
= −21 − PCA

REG0. Since 0 =
1
2(1 +

√
1 + 40) satisfies 

2
0 − 0 − 0 = 0, we have

0(0) = log 0 − 0 − 00 + 1 = log 0 − 200
Since 0(0) = (1 + )(1 + )(1− 1)

2, we find after algebra that

(93)
p
1 + 40 =

1 + 1 + 2

1− 1


so that

0 =
1 + 

1− 1


0

0
=

1 + 

1− 1


and

h(0) =
1− 1

1
0(0) =

1− 1

1
log

1 + 

1− 1
− 2(1 + )

1
= −REG0 

REG. Combining the definitions of h and 1(1) we have

REGh () =
1− 1

1

½
−11 +  log



1
+ (− 1) log

µ
1 − 1
− 1

¶¾


Combining (84) and (85) gives

(94) 11 =
1 + 

1− 1




1
=

2

1− 1

1 + 

()


1 − 1
− 1 =

1− 1

1 + 
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so that

REGh (0) = −1 + 

1
+

2

12
log

2

()
+
1− 1

1
log

1 + 

1− 1

We can now compare REG with REG0 just as SigD was compared with PCA: thus

REGh (0)− REG0h (0) =
2

12
log

2

1()
+

1 + 

1
= −21

and so

(95) REGh (0) = −REG0 − 21 = −REG

CCA. Combining the definitions of h and 2(2) we have

CCAh () =
1− 1

1

½
 log(1− 22) +  log



2
+ (− 1) log

µ
2 − 1
− 1

¶¾


In particular, recalling that 2 = 1,

CCAh (0)− REGh (0) =
1− 1

1
[ log(1− 22) + 11]

=
2

12
log

2

()
+

1 + 

1
= −21

after substitution from (88) and (94). In combination with (95), we get

CCAh (0) = −REG − 21 = −CCA

4.7. Proof of Lemma JO8 (contours of steep descent). For SMD, PCA, and SigD, | − | is
obviously strictly increasing for any  ∈ R and as  moves away from 0 along K1. Therefore,

Re e() ≡
Z
ln | − |dc ()

is strictly increasing. On the other hand, the definition (JO17) of h() implies that Re h () is
non-decreasing. Hence Re  () is strictly increasing.
For REG0 and CCA, | − | is strictly increasing for any  ≥ 0 as  moves away from 0 along

K1 because the center of the circumference that includes K1 is a negative real number. Therefore,
Re e() is strictly increasing. To show that Re h () is strictly increasing too, it is sufficient to
prove that Re () is strictly increasing for  = 0 2.

Proof of the monotonicity of Re () for  = 0 2. Let us show that Re () is strictly
increasing for  = 0 2 as  moves away from 0 along K1 Recall that for  ∈ K1 we have

 = 1 + |0 − 1| exp {i}   ∈ [0 2] 

Let

(96)  =

(
|0 − 1|  (1− 1)

2 for  = 0
|0 − 1| 22

£
21 ()

¤
for  = 2
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For REG0, using

(97)  =

(
 (1− 1)

2 for  = 0
22

£
21 ()

¤
for  = 2



and the definition of 0 and 0, we obtain

Re0 (0) =
1
2 ln

³
1 + 4

12
0 cos (2) + 40

´
− 2120 cos (2) + 1− ln 2

Since the derivative of the above expression with respect to  ∈ [0 2) is positive, Re0 (0) does
strictly increase as  moves away from 0 along K1.
For CCA, using the identity

1− 22 =


− 1
2 − 1
2

we obtain

(98) Re2 (2) = −2 ln |2|+ (2− 1) ln |2 − 1|+  ln


− 1
Further, we have

2 = − 1

4 (− 1) +2 exp {i}

and

(99) 2 =
2

(2 exp {i2}+ 1) 

where 2 =
p
42 (− 1). Taking the derivative of Re2 (2) with respect to  we obtain

d

d
Re2 (2) =

−2 sin 2
2 |2 exp {i2}+ 1|2

+
2 sin 2

2
¯̄̄
1− 2

2−1 exp {i2}
¯̄̄2 

For  ∈ [0 2]  the above derivative is positive if

|2 exp {i2}+ 1| 
¯̄̄̄
1− 2

2− 1 exp {i2}
¯̄̄̄


The latter inequality does hold because 2 (2− 1)  2 Hence,
d
d Re2 (2)  0 for  ∈ [0 2] 

¤

It remains to prove Lemma JO8 for REG. In the REG case,  moves away from 0 along K1
when  moves away from 0 along C1. Using the definition of  (JO27), the formula (JO33) for
h(), and the expression (JO42) for 1, we obtain

Re h () =
1− 1

21
(−Re  + ln | + 1|+  ln | + |+  ln) 

On the other hand, | + | remains constant on C1 whereas both −Re  and | + 1| increase as 
moves away from 0 along C1 To see that | + 1| indeed increases recall that the center − of the
circumference that represents C1 is to the left of the point −1. Hence, Re h () is strictly increasing.
To show that Re e () is strictly increasing too it is sufficient to verify that

| − | ≡
¯̄̄̄
1 (1− 1)

2

 ( + 1)

 + 
− 

¯̄̄̄
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is strictly increasing for any  from the support of c Since | + | remains constant, it is sufficient
to show that

 ( ) ≡ | ( + 1)−  ( + )|2

increases as  moves away from 0 along C1 for any  = 2 [1 (1− 1)] 
Parameterize  ∈ C1 as −+ i  ∈ [0 2]  Then elementary calculations yield

 ( ) = 4 + (2− 1 + )2 2 − 23 (2− 1 + ) cos

+ 2 (− 1)2 + 2
³
2 cos 2− (2− 1 + )  cos

´
 (− 1)

so that

(100)
d ( )

d cos
= 2

n
− (2− 1 + )

h
2 +  (− 1)

i
+ 4 (− 1) cos

o


We would like to prove that the derivative d ( ) d cos is negative. As is seen from (100), the

derivative is decreasing in  and increasing in cos. Since  ≥ 0 and cos ≤ 1, it is sufficient to
show that d ( 0) d cos is negative for cos = 1 We have

d ( 0)

d cos

¯̄̄̄
cos=1

= −2 (2− 1)
(µ

− 2 (− 1)
2− 1

¶2
+  (− 1)−

µ
2 (− 1)
2− 1

¶2)


This is negative because the expression in the figure brackets is positive. The positivity follows from

the observation that

 (− 1) (2− 1)2 − 42 (− 1)2 =  (− 1)  0

To summarize, both Re e () and Re h () are strictly increasing as  moves away from 0 along

C1 Hence, the image of C1 K1 is a contour of steep descent of −Re () in -plane. ¤

5. Laplace approximation.

5.1. Proof of Lemma JO9 (extends Olver’s asy. expansion). We closely follow Olver’s (1997, pp.

121-125) derivation of an approximation to a similar integral, augmenting Olver’s proof by explicit

uniform bounds on the approximation errors. First, focus on the integral

+ =

Z
[0]K

−()()d

Let us introduce new variables  and  by the equations

(101) 2 =  =  ()− 0

where the branch of  is determined by lim {arg } = arg2 + 2 as  → 0 along (0 )K, and by
continuity elsewhere. Here  = limarg( − 0) as  → 0 along (0 )K.
Consider  as a function of  A proof of the following auxiliary lemma is given in the next

subsection of this note.

Lemma 10. Let  () and  () denote, respectively, the open and closed balls in C with
center at  and radius  Suppose that assumptions A0-A4 hold. Then, there exist 1 2  0 with
2  1, which do not depend on  and , such that, for sufficiently large 
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(i) () is holomorphic in  (0 1)  Furthermore, for any 1 2 from  (0 1), we have

| (2)−  (1)| ≥ 1
2

¯̄̄

12
2

¯̄̄
|2 − 1|.

(ii) () maps  (0 1) on an open set  that contains 0 The inverse function () is holomor-
phic in  .

(iii) For any 1 ∈ [0 ]K such that |1 − 0| = 2,  (0 2 | (1)|) is contained in 

Let 1 be a point of [0 ]K satisfying Lemma 10 (iii). Then the portion [0 1]K of K can be

deformed, without changing the value of the integral

+ =

Z
[01]K

−()()d

to make its () map a straight line. Since () may be random, the latter statement is only true
under qualification: “with probability arbitrarily close to one (w.p.a.c.1) for sufficiently large ”

Transformation to the variable  gives

(102) + = −0
Z
[0 ]

−()d

where

(103)  =  (1)− 0 () = ()0()

and the path for the integral on the right-hand side of (102) is also a straight line.

For || ≤  with || 6= 0, () has a convergent expansion of the form

(104) () =
∞X
=0


(−1)2

w.p.a.c.1 for sufficiently large  Indeed, it is sufficient to show that expansion

(105) () ≡ ()0() =
∞X
=0




converges for  ∈ , w.p.a.c.1 for sufficiently large . But by Lemma 10, () and 0() viewed
as functions of , are holomorphic in  , w.p.a.c.1 for sufficiently large . Furthermore, since

0()
d

d
() = 2

0() is not equal to zero for  ∈ 
³
0 212

´
\ {0}, and, since 2 6= 0, 0() has a simple zero at

 = 0. Therefore, the desired convergence holds, w.p.a.c.1 for sufficiently large 
The coefficients  in (104) can be computed from the coefficients  and  defined by equation

(JO44). The formulae for 0 1 and 2 are given, for example, on p. 86 of Olver (1997). We use

the formula for 0 in the statement of Lemma JO9.

Define (),  = 0 1 2  by the relations (0) =  and

(106) () =
−1X
=0


(−1)2 + (−1)2 () for  6= 0
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Then the integral on the right-hand side of (102) can be rearranged in the form

(107)

Z
[0 ]

−()d =
−1X
=0

Γ

µ
+ 1

2

¶


(+1)2
− 1 ( ) + 2 ( ) 

where

1 ( ) =
−1X
=0

Γ

µ
+ 1

2
 

¶


(+1)2
(108)

2 ( ) =

Z
[0 ]

−(−1)2 () d(109)

and Γ ( ) =
R∞
 −−1d is the incomplete Gamma function. Keep in mind that   and 

depend on  and 

Note that arg  is a continuous function of  and as mentioned above, lim |arg | = |arg2 + 2|
as  → 0 along (0 )K  On the other hand, Lemma JO9 requires that |arg2 + 2| ≤ 2
Therefore, lim |arg | ≤ 2 as  → 0 along (0 )K  But since K is a path of steep descent

(of −Re()), Re () must be positive for  ∈ (0 ]K. Hence, by continuity, |arg |  2 for
 ∈ (0 ]K. In particular, |arg  | = |arg ( (1)− 0)|  2. Therefore, each incomplete Gamma
function in (108) takes its principal value.

Consider () as a function of  Since 0 () = 2()0() we have

(110) () =  () (20())

By Lemma 10 (i),

(111)
¯̄
0()

¯̄
 1

2

¯̄̄

12
2

¯̄̄
for  ∈  (0 1)  Equation (110), inequality (111), and Assumptions A2, A5 imply that

(112) sup
∈

|()| = sup
∈(01)

¯̄
()(20())

¯̄
= P(1)

as →∞, where P(1) is uniform in  ∈ Ω
Further, by Assumption A4, there exist positive constants 1 and 2 (that may depend on 2 ≡

|1 − 0|) such that for all  ∈ Ω and sufficiently large  Re   1 and |Im  |  2. Since | | ≥
|Re  |  1 

³
0 |1|12

´
is contained in  , where () is analytic. Using Cauchy’s estimates for

the derivatives of an analytic function (see Theorem 10.26 in Rudin (1987)), (105) and (112), we

get

(113) || ≤ |1|−2 sup
∈(0|1|12)

|| = P(1)

Next, Olver (1997, ch. 4, pp.109-110) shows that Γ ( ) = 
³
−−1

´
as ||→∞ uniformly

in the sector |arg ()| ≤ 2−  for an arbitrary positive  Let us take  = (+ 1)2 and  = 

Since Re   1 and |Im  |  2, we have

||  1→∞
and

|arg ()| = |arctan(Im Re )|  arctan(21)  2
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uniformly in  ∈ Ω for sufficiently large  Therefore,

(114) Γ

µ
+ 1

2
 

¶
= 

³
− ()

−1
2

´
= 

µ
−

1
21

¶
for any integer , uniformly in  ∈ Ω Equality (114), the definition (108) of 1 ( ), and inequality
(113) imply that

(115) 1 ( ) = P

³
−

1
2
1
´


where P is uniform in  ∈ Ω
Now consider  () as a function of  Since, by definition,

 () =  () −
−1X
=0




it can be interpreted as a remainder in the Taylor expansion of  () As explained above, such

an expansion is valid in  , which includes the ball 
³
0 2 | |12

´
by Lemma 10 (iii). By a general

formula for remainders in Taylor expansions, for any  ∈ 
³
0 | |12

´
,

(116)
¯̄̄
 ()

¯̄̄
≤ ||



!
max

∈(0| |12)

¯̄̄̄
¯ dd

( ())

¯̄̄̄
¯ 

Further, for any  ∈ 
³
0 | |12

´
, a ball with radius |1|12 centered in  is contained in the

ball 
³
0 2 | |12

´
⊂  . Therefore, using (112) and Cauchy’s estimates for the derivatives of an

analytic function (see Theorem 10.26 in Rudin (1987)), we get

(117) max
∈(0| |12)

¯̄̄̄
¯ dd

( ())

¯̄̄̄
¯ ≤ ! |1|−2 sup

∈
| ()| = P(1)

Combining (116) and (117), we have

sup
∈(0 ]

| ()| = P(1)

This equality together with (113) and the fact that, by definition,  (0) =  imply that

(118) max
∈[0 ]

| ()| = P(1)

where P(1) is uniform in  ∈ Ω
For 2 ( ), the substitution of variable  =  in the integral (109) yields

2 ( ) = −(+1)2
Z 

0
−

−1
2 

+1
2  () d

Therefore, ¯̄̄
2 ( ) 

(+1)2
¯̄̄
 max

∈[0 ]
| ()|

Z 

0
−Re 

−1
2 | | +12 d(119)

 max
∈[0 ]

| ()|
Z ∞
0


−Re 

| | 
−1
2 d
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Since Re   1 and |Im  |  2, we have

Re 

| | ≥
Re 

|Re  |+ |Im  | 
1

1 + 2

for all  ∈ Ω and sufficiently large  Therefore, the integral in (119) is bounded uniformly in  ∈ Ω
Using (118), we conclude that

(120) 2 ( ) = P

³
−(+1)2

´


Combining (102), (107), (115), and (120), we obtain

(121) + = −0
Ã
−1X
=0

Γ

µ
+ 1

2

¶


(+1)2
+

P (1)

(+1)2

!


where P (1) is uniform in  ∈ Ω
Let us now consider the contribution of [1 ]K to the contour integral

+ =

Z
[0]K

−()()d

Since K is a contour of steep descent,
inf

∈[1]K
Re ( ()− 0) ≥ Re   1

Therefore, by assumptions A5 and A0, we have¯̄̄
+ − +

¯̄̄
≤ −0−1

Z
[1]K

|()d|(122)

≤ −0−1 |K|P (1) = −0−1P (1) 

where P (1) is uniform in  ∈ Ω.
Combining (121) and (122), we obtain

(123) + = −0
Ã
−1X
=0

Γ

µ
+ 1

2

¶


(+1)2
+

P (1)

(+1)2

!


Finally, note that

 = + − −

where

− =
Z
[0]K

−()()d

where [0 ]K is a contour that coincides with [ 0]K but has the opposite orientation. The integral
− can be analyzed similarly to +. As explained in Olver (1997, pp.121—122),  with odd  in

the asymptotic expansion for − coincides with the corresponding  in the asymptotic expansion
for − However,  with even  in the two expansions differ by the sign. Therefore, coefficients 
with odd  cancel out, but those with even  double in the difference of the two expansions. Setting

 = 2, we have

 = 2
−0

Ã
−1X
=0

Γ

µ
+

1

2

¶
2

+12
+

P (1)

+12

!
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which establishes the lemma. ¤

Proof of Lemma 10.

First, we show that there exists 1 such that () is holomorphic in  (0 1) and that
d
d (0) =


12
2 . Let ()() denote the -th order derivative of () Consider a Taylor expansion of ()() at

0

()() =
X

=0

1

!
(+) (0) ( − 0)

 ++1

In general, for any  ∈  (0 ), the remainder +1 satisfies

(124) |+1| ≤ | − 0|+1
( + 1)!

max
|−0|≤

¯̄̄
(++1) ()

¯̄̄


By assumptions A1—A3, there exist constants 1 2 and 4 such that

(125)
¯̄̄
(3) ()

¯̄̄
≤ 4

2

¯̄̄
(2) (0)

¯̄̄
for any  ∈  (0 1)  Let 1 = min

n
1

2
24

o
 Then, combining (125) with (124) and recalling

that 1
!

()(0) =  , we obtain for  ∈  (0 1),

(126) |03| ≤ | − 0|2
6

|2|  and |12| ≤ | − 0|
2

|2| 

Further, since

02 = 2 ( − 0)
2 +03

the first of the inequalities in (126) implies that, for  ∈  (0 1),

(127)
5

6
|2| | − 0|2 ≤ |02| ≤ 7

6
|2| | − 0|2 

Next, since 1 = 0, inequalities (127) imply that

(128) |()− 0| = |02| ≥ 5
6
|2| | − 0|2

for any  ∈  (0 1)  Since 2 6= 0, inequality (128) implies that ()− 0 does not have zeros in

 (0 1) except a zero of the second order at  = 0 Therefore,s
()− 0

( − 0)
2 =

 ()

 − 0

is holomorphic inside  (0 1), and converges to 
12
2 as  → 0 This implies that  () is holo-

morphic in  (0 1) and
d
d (0) = 

12
2 .

Now let us show that, for any  ∈  (0 1),

(129)

¯̄̄̄
d

d
 ()− d

d
 (0)

¯̄̄̄
≤ 1

2

¯̄̄̄
d

d
 (0)

¯̄̄̄


Indeed, since

d

d
 () =

(1) ()

2 ()
= 1

2 ( ()− 0)
−12 (1) ()
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and d
d (0) = 

12
2 6= 0,

(130)
d
d ()
d
d (0)

=

Ã
1 +

03

2 ( − 0)
2

!−12 µ
1 +

12

22 ( − 0)

¶


Note that for any 1 and 2 such that |2|  1,

(131)

¯̄̄̄
1 + 1√
1 + 2

− 1
¯̄̄̄
≤ |1|+ |2|

1− |2| 

where the principal branch of the square root is used. This follows from the facts that, for |2|  1,¯̄√
1 + 2

¯̄ ≥ 1 − |2| and ¯̄1 + 1 −
√
1 + 2

¯̄ ≤ |1| + |2|  Both of these inequalities follow from¯̄
1−√1 + 2

¯̄ ≤ |2|, which can be established by denoting
√
1 + 2 as  so that the inequality

becomes |1− | ≤ ¯̄
2 − 1¯̄ and using the fact that 1 ≤ |+ 1| (because Re ≥ 0 when |2|  1).

Setting

1 =
12

22 ( − 0)
and 2 =

03

2 ( − 0)
2

and using (126) and (130), we obtain ¯̄̄̄
¯ d
d ()
d
d (0)

− 1
¯̄̄̄
¯ ≤ 1

2 

Hence, (129) holds.

Finally, let 1 and 2 be any two points in  (0 1), and let () = (1− ) 1 + 2, where

 ∈ [0 1]  We haveZ 1

0

µ
d

d
 (())− d

d
 (0)

¶
d =

 (2)−  (1)

2 − 1
− d

d
 (0) 

Therefore, using (129), we obtain¯̄̄̄
 (2)−  (1)

2 − 1
− d

d
 (0)

¯̄̄̄
≤ 1

2

¯̄̄̄
d

d
 (0)

¯̄̄̄


This inequality and the fact that d
d (0) = 

12
2 imply part (i) of the lemma.

Part (ii) of the lemma is a simple consequence of part (i). Indeed, by the open mapping theorem,

 is an open set. Next, by (i), () is one-to-one mapping of  (0 1) on  and has a non-zero

derivative in  (0 1)  Further, let  () be defined on  by  ( ()) =  Fix ̃ ∈  Then

 (̃) = ̃ for a unique ̃ in  (0 1)  If  ∈ and  () = , we have

 ()−  (̃)

 − ̃
=

 − ̃

 ()−  (̃)


By (i),  → ̃ as  → ̃, and the latter equality implies d
d (̃) =

1
d
d
(̃)

 Therefore, () ≡  ()

is an analytic inverse of () on  .

Finally, part (iii) of the lemma can be established as follows. Note that by part (i),¯̄̄

³
0 + 1


´
−  (0)

¯̄̄
≥ 1

2

¯̄̄̄
d

d
 (0)

¯̄̄̄
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for any  ∈ [0 2]  Therefore, for any 1 such that |1 −  (0)| ≤ 1
4

¯̄̄
d
d (0)

¯̄̄
, we have

min
∈[02]

¯̄̄
1 − 

³
0 + 1


´¯̄̄
≥ 1

4

¯̄̄̄
d

d
 (0)

¯̄̄̄


By a corollary to the maximum modulus theorem (see Rudin (1987), p. 212), the latter in-

equality implies that the function  () − 1 has a zero in (0 1) Thus, region  includes

(0 14

¯̄̄
d
d (0)

¯̄̄
). On the other hand,

(132) | (1)| ≤ 22
¯̄̄̄
d

d
 (0)

¯̄̄̄


Indeed, consider the identity

2 (1) = 1 (1 − 0) +02

Since 1 = 0, (127) imply

(133) | (1)|2 ≤ 7
6
|2| |1 − 0|2 

But, by definition,

(134) |1 − 0| = 2

Since d
d (0) = 

12
2  (133) and (134) imply (132). Setting 2 = 116 we obtain that  includes

(0 2 | (1)|)

5.2. Evaluation of d2(0)d
2. Note that−d2e (0) d2 = dc (0) d Therefore d

2e (0) d
2

can be directly evaluated using explicit expressions for the Stieltjes transforms of the semicircle,

Marchenko-Pastur and Wachter distributions. Further, using the definition of h() we directly
evaluate d2h (0) d

2 Combining the expressions for the second derivatives of e and h we

obtain values of the second derivative of  reported in Table JO6.

Evaluation of dc (0) d. For each of the three cases, it is a little easier to evaluate

(135) () =
0(0)
2(0)

= − d
d

µ
1



¶¯̄̄̄
=0



In each case  = −1 satisfies a quadratic equation in  = (). Differentiation with respect to 
yields an equation for 0 which we write in the form

(136) ( +∆)0 = 

SMD. From (75),  = −1 satisfies 1−  + 2 = 0, and so, differentiating w.r.t. ,

(2 − )0 = 

At  = 0 =  + 1, with (0) = −, we get  = 0 = 1 and ∆ = 0 − 0 = −, and

() = 0(0) =


 +∆
=

1

1− 2


PCA. From (76),  = −1 satisfies 1 − ( + 1 − 1) + 2 = 0, and so, differentiating,

(2 −  − 1 + 1)
0 =  − 1
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At 0 = (1+)(1+) and 0 = 1(1+), we have  = 0−1 = 1 and ∆ = 0−0+1 = −,
so that

() = 0(0) =


 +∆
=

1

1 − 2


SigD. From (77),  = −1 satisfies

1(1 − 2)− [21 − 1 + (1 + 2 − 212)] + 22 = 0

and so 0 satisfies (136) with

 = 21 − 212( − )− (1 + 2) ∆ = −1 + (1 + 2)( − )

At 0 = (1+)(1+)() and 0 = 1(1+)(), we find 0−0 = (1+)(), and eventually

 = − 1

()
[() + 2] ∆ =

1

()
2

with () = 1 + 2(1 + )2 − 2, and hence

() = 0(0) =
() + 2

()


The results are summarized for later reference in Table 5.

(0) () 0(0)

SMD − 1

1− 2
2

1− 2

PCA, REG0 − 

1(1 + )

1
1 − 2

2

1(1 + )2(1 − 2)

SigD, REG, CCA − ()

1(1 + )

() + 2

()

22()

21(1 + )2
() + 2

()
Table 5

Summary of Stieltjes transform quantities. () is defined at (135), () = 1 + 2(1 + )2 − 2.

Computation of d2h (0) d
2. Since  00() =  00e () +  00h () and  00e () = −0(), we have

− 00(0) = 0(0)−  00h (0)

We will see that in each case there is a factorization

0(0) = 2(0)()

 00h (0) = 2(0)()

Note that the functions () () are distinct from the constants   in (78). Thus

− 00(0) = 2(0)[()− ()]

and the entries of Table JO6 are

(137) 2 =
2

− 00(0) =
2

2(0)

1

()− ()
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()
2

2(0)

1

()− ()

SMD 0 1 1− 2

PCA 0 21(1 + )2
0
1

SigD −12
2

21(1 + )2

2
2

21
2

REG0
1
0

21(1 + )2
00

1(1 + )2

REG
1
1

21(1 + )2

2
1

1(1 + )22

CCA
1 − 2(1 + )

2

21(1 + )2

2
2

(1 + 2)(1 + )2
Table 6

Remaining quantities needed for Table JO6: as shown at (137), the entries there are obtained by multiplying the last

two columns of this table. In the last three cases, some algebra is required to verify that ()− () factorizes as
shown in the last column. Here 0 = 1 − 2, 0 = 1 + 1 + 2, 1 = 1 +  + (1 + ) and
2 = 2(1 + ) + (1− 1). As 2 → 0, we have → 0 → 1 2 → 1 and 12 → 0.

Evaluation of (). For SMD and PCA, h() is linear in  so () = 0.
For SigD, from (78) and (80), we find that

 00h (0) =
1



µ


1− 0

¶2
= −12

2
2(0)

For the q = 1 cases, we have from (82) that

(138)  00h () =
1− 1

1

d

d
()

µ
d

d

¶2


where () = () = ()(  ) is given by (83).
REG0. Recall that 0 =

1
2(1 +

√
1 + 40) = (1 + )(1− 1), so that from (93)

̇0 =
d

d
0 = (1 + 40)

−12 =
1− 1

1 + 1 + 2


We have both
d

d
0() =

d

d

µ
− 1

0()

¶
=

̇0

20
 and

d

d
=



(1− 1)2


and so

 00h (0) =
2

1(1 + 1 + 2)(1 + )2
= 2(0)

1

1 + 1 + 2


REG. We have 1(1) = −1(1) and recall that 1 satisfies a quadratic equation 1
2 + (1 −

1)−  = 0, so that ̇1 = d1d solves

[211 + 1− 1]̇1 = 1(1− 1)

Using (84), we can evaluate

1(1− 1) = − 21()

22(1 + )2
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and setting

1() = 1 +  + (1 + )()

we also have from (94) and (85)

211 + 1− 1 =
11()

(1− 1)()


We then find from (138), the previous displays and d1d = 2[1(1− 1)] that

 00h (0) =
22()

(1 + )2
1

11()
= 2(0)

1

1()


CCA. Recall that 2(2) satisfies 2(− 1)2 + −  = 0, and hence ̇2 = d2()d is given by

̇2 =
−(− 1)22

1 + 22(− 1)2 

Since 2(2) = −2(1− 22), we have

d

d
2() =

−
(1− 22)2

(22 + ̇2)

We have  = 22(1− 1) and − 1 = 12(1− 1), and so from (88),

(− 1)22 = 1 + 

(1− 1)()

and if we define

2() = (1− 1)() + 2(1 + )

we arrive at

22 + ̇ =
22
2

∙
2 − ()

2()

¸


Some algebra shows that

1[22()− ()] = 2[2(1 + )− 1]

From (138) and the preceding displays,

 00h (0) = −
1− 1

1

∙
2

1− 22

d2
d

¸2 2

12

2(1 + )− 1

2()


Now from (87) and (88),

2

1− 22

d

d
=

()

(1 + )(1− 1)
= − 1

1− 1
(0)

and so finally

 00h (0) = 2(0)
1 − 2(1 + )

2()
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5.3. Proof of Theorem JO10. First, let us show that

(139) 1 (;Λ) =
(0)q

−d2(0)d2
+P

³
−1

´


where P (1) is uniform with respect to  ∈ ¡
0 ̄ − 

¤
 Changing the variable of integration in

(JO45) from  to  =  we obtain

(140) 1 (;Λ) =
√


1

2i

Z
K̃
−()()d

where

() =  () 2, () = ()

and K̃ is the image of K1 ∪ K̄1 under the transformation  7→  The set of possible values of  is

Ω ≡ ¡0 ̄ − 
¤
.

Using Table JO6 and the definitions of K1 0 () and () it is straightforward to verify that
the assumptions A0-A4 of Lemma JO9 hold for the integral in (140) for all the six cases that we

consider. The validity of A5 follows from Lemma 11 given below and from the definitions of  ().
Let

(141) ∆() = 

Z
ln ( − ) d

³
̂ ()− c ()

´


so that ∆() = −2 ln e()

Lemma 11. Suppose that the null hypothesis holds, that is 0 = 0. Then there exists a positive
constant 1 such that for a subset Θ of C that consists of all points whose Euclidean distance from
K̃ is no larger than 1 we have

sup
∈Θ

|∆ ()| = P(1)

as n → ∞, where P(1) is uniform with respect to  ∈ Ω ≡ ¡0 ̄ − 
¤


Proof: Let us rewrite (141) in the following equivalent form

∆() = 

Z
ln (1− ) d

³
̂ ()− c ()

´


Statistic ∆() is a special form of a linear spectral statistic

∆() = 

Z
 () d

³
̂ ()− c ()

´
studied by Bai and Yao (2005), Bai and Silverstein (2004), and Zheng (2012) for the cases of the

Semi-circle, Marchenko-Pastur, and Wachter limiting distributions, respectively. These papers note

that

∆() = − 

2i

Z
P
 () (̂ ()−c ()) d

where

̂ () =

Z
1

− 
d̂ () c () =

Z
1

− 
dc ()

are the Stieltjes transforms of ̂ and c and P is a positively oriented contour in an open neighbor-
hood of the supports of ̂ and c where  () is analytic, that encloses these supports. Theorem
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2.1 and equation (2.3) of Bai and Yao (2005) for SMD case, and Lemma 1.1 of Bai and Silverstein

(2004) for the rest of the cases, imply that if the distance from P to the supports of ̂ and c stays
away from zero with probability approaching one as n → ∞, thenZ

P
| (̂ ()−c ()) d| = P (1) 

(Throughout these notes, notation
R
P |()d| should be interpreted as

R 
 |(P())P 0()|d, where

P is parameterized as a continuously differentiable complex function on [ ] ⊆ R1. For piecewise
continuously differential pathes, [ ] should be split into a finite number of sub-intervals where P
is continuously differentiable.) Therefore, for any   0 there exists   0 such that

(142) Pr

Ã
|∆()| ≤  sup

∈P
| ()|

!
 1− 

for all n and  where constant  does not depend on . Now, consider a family of functions  ()

{ () = ln (1− ) :  ∈ Θ and  ∈ Ω} 

By the definitions of Θ and Ω there exists an open neighborhood N of the supports of ̂ and c
and a constant 1, such that, with probability arbitrarily close to one, for sufficiently large n and
  () are analytic in N for all  ∈ Θ and  ∈ Ω and

sup
∈Ω

sup
∈Θ

sup
∈N

| ()| ≤ 1

Since ∆() = ∆(), we obtain from (142) that for any   0 there exists 2  0 such that for
sufficiently large n and 

Pr

Ã
sup
∈Ω

sup
∈Θ

|∆()| ≤ 2

!
 1− 

In other words, sup∈Θ |∆()| = P(1) uniformly over  ∈ Ω. ¤
Applying Lemma JO9 to the integral in (140) and using the fact that (0) = 0 we obtain (139).

It remains to show that 2 (;Λ) is asymptotically dominated by 1 (;Λ)  where

2 (;Λ) =  (;Λ)− 1 (;Λ) 

For SMD, PCA, and SigD we have

|2 (;Λ)| =
¯̄̄̄
¯̄√2i

Z
K2∪K̄2

−(2)(c+h())ch()
Y

=1

( − )
−12 d

¯̄̄̄
¯̄

≤
r



−(2)cc (20)−2

Z
K2

¯̄̄
−(2)h()h()d

¯̄̄
≤
r



−(2)cc (20)−2

Z 0

−∞
−(2)h()h()d

Explicitly evaluating the latter integral and using the exact form of c, available from Table JO4,

we obtain

|2 (;Λ)| ≤ 2√


−(2)c (20)−2 −(2)h(0) (1 + (1)) 
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where (1) does not depend on ,  = 1 for SMD and PCA, and  =
√
1 + 2 for SigD.

Therefore,

|2 (;Λ)| ≤ 2√


−(2)(0) exp {−(2) (ln(20)− e (0))} (1 + (1))

=
2√

exp

½
−
2

Z
ln

µ
20

0 − 

¶
dc()

¾
(1 + (1)) 

where we used the fact that  (0) = 0. But ln (20 (0 − )) is positive and bounded away from
zero uniformly over  ∈ ¡0 ̄ − 

¤
with probability arbitrarily close to one, for sufficiently large n .

Hence, there exists a positive constant  such that

|2 (;Λ)| ≤ 2√


− (1 + (1))

with probability arbitrarily close to one for sufficiently large n . Combining this inequality with
(139), we establish Theorem JO10 for SMD, PCA, and SigD.

For REG0, we shall need the following lemma.

Lemma 12. For sufficiently large n and , we have

(143) |01 (− ;Ψ11) |  4
√
 |exp {−0(0)}|

for any  and any   0.

Proof: We use the identity (see formula 9.6.3 in Abramowitz and Stegun (1964))

 () = −i2 (i) for −   arg  ≤ 2

where  (·) is the Bessel function. The identity and (JO22) imply that

(144) 01 (− ;Ψ11) = Γ (+ 1)
³
20

´−2
−i2

³
i2

12
0

´


On the other hand, for any  and any positive ,

(145) | ()| ≤
½
1 +

¯̄̄̄
sin



¯̄̄̄¾ ¯̄̄̄¯̄̄
⎧⎨⎩ exp

np
1− 2

o
1 +

p
1− 2

⎫⎬⎭

¯̄̄̄
¯̄̄ 

(see Watson (1944), p. 270). The latter inequality, equation (144), and the Stirling formula for

Γ (+ 1) imply that (143) holds for sufficiently large , for any  and   0. The constant 4 on
the right hand side of (143) is not the smallest possible one, but it is sufficient for our purposes. ¤
Using inequality (143), we obtain for REG0

(146) |2 (;Λ)| ≤ 4−(2)cc√
Z
K2

¯̄̄̄
¯̄exp {−0(0)}

Y
=1

( − )
−12 d

¯̄̄̄
¯̄ 

It is straightforward to verify that Re0(0) is strictly increasing as  is moving along K2 towards
−∞. Therefore, for any  ∈ K2

Re0 (0())  Re0(0(̄))
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where ̄ = 1+i (0 − 1) is the point of K2 where K2 meets K1 The latter inequality together with
(146) yields

|2 (;Λ)| ≤ 4−(2)Re (̄)c |e (̄)|√
Z
K2

Y
=1

¯̄̄̄
¯ ̄ − 

 − 

¯̄̄̄
¯
12

|d| 

Since, for some constant 1, Re  (̄)   (0) + 1 = 1 and since, by Lemma 11, 4e (̄) = P (1)
uniformly over  ∈ ¡0 ̄ − 

¤
 we obtain

(147) |2 (;Λ)| ≤ −(2)1c
√


Z
K2

Y
=1

¯̄̄̄
¯ ̄ − 

 − 

¯̄̄̄
¯
12

|d|P (1) 

Note that for any  ∈ K2 and any  = 1   |(̄ − )  ( − )| ≤ 1 and | −  |  ||  Further,
since 0  |̄| and with probability arbitrary close to one, for sufficiently large n and  1  0 we

have |̄ −  |  |̄ − 0|  2 |̄|  Thus, for  ≥ 4 we have
Z
K2

Y
=1

¯̄̄̄
¯ ̄ − 

 − 

¯̄̄̄
¯
12

|d| ≤
Z
K2
4 |̄|−2 |d| = |̄|(1)

Combining this with (147) and noting that c |̄| =  (1) uniformly over  ∈ ¡0 ̄ − 
¤
 we obtain

(148) |2 (;Λ)| ≤ √−(2)1P (1) 

where P (1) is uniform with respect to  ∈ ¡0 ̄ − 
¤
. Theorem JO10 for REG0 follows from the

latter equality and (139).

For REG and CCA, the Theorem follows from (139) and inequalities

(149) |2 (;Λ)| ≤ −2P (1) 

where 2 is a positive constant. We obtain (149) by combining the method used to derive (148)

with upper bounds on 11 and 21 which we establish using the integral representations (JO25).

¤

A proof of the domination of 2 (;Λ) by 1 (;Λ) (via establishing (149)). By definition, we

have

(150) 2 (;Λ) =
√
 exp

½
−
2
(c + e(0))

¾
ce(0)

2i

Z
K2∪K̄2



Y
=1

Ã
0 − 

 − 

!12
d

with  = 1 for REG and  = 2 for CCA. The idea of the proof is to use the integral representations
(31), that is

 =


−


2i

Z (+)

0
exp {− ()} () d

to find simple upper bounds for | | corresponding to  ∈ K2 ∪ K̄2. Note that since  (̄) =  ()
it is sufficient to establish the bounds for  ∈ K2. These upper bounds will then be used to estimate
the integral in (150) from above, and eventually to establish the domination of 2 (;Λ) by 1 (;Λ).

REG.
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Lemma 13. Let + ∈ C2 and  be the corresponding point of K2 Then Re h()  h(0) + 

where   0 does not depend on + ∈ C2 and does not depend on .

Proof: Parametrize points + ∈ C2 as

(151) + = −− + |0 + | exp {i2} 

 ≥ 0. As  goes from 0 to ∞ the corresponding  tracks contour K2 from the point  where K2
and K1 meet, to −∞. Recall that

(152) −
2
h() = − (1(1) + ) = − (1 (+) + ln 1 + ) 

where  =  ln− (− 1) ln (− 1)  Using the definition (32) of 1 and the identity

(153) 1 =
+ (+ + 1)

+ + 


we obtain


2
Re h() = −Re + + ln |+ + 1|−  ln |+ + |+  ln

Taking the derivative of both sides of the latter equality with respect to  we obtain



2

d

d
Re h() = 1 +

+ − 1
|+ + 1|2

− 

|+ + |2 

For  ≥ 0 we have

|+ + | ≡ |−+ |0 + | exp {i2}|   and

|+ + | ≡ |−+ |0 + | exp {i2}|  

Therefore,  |+ + |2  1 and d
d Re h()  0. This implies that

Re h()  Re h()

On the other hand, as shown in subsection 4.7 (pp 38-40 of these notes), Re h() strictly increases
as  moves along K1 from 0 to . Hence, there exists   0 that does not depend on + ∈ C2, such
that

Re h()  Re h(0) +  = h(0) + 

From the definitions of C1 (the image of which under  7→  transformation is K1) and of h() it
is easy to see that  can be chosen so that it does not depend on  as well. ¤

Lemma 14. There exist positive constants  and 1 that do not depend on  such that, for any

+ ∈ C2

(154) |1| ≤ 1
√
 |1| exp

½
−
2
(h(0) + )

¾


Proof: Let + ∈ C2 and  be the corresponding point of K2 Choose the contour in the integral
representation (31) of 1 as in subsection 4.3 (that contains a proof of Lemma JO3) of this note.

We shall call such a contour K∗. As explained in subsection 4.3, the minimum of Re1 () over
 ∈ K∗ is achieved either at + or, in some cases corresponding to situation 3, at ∗ that belongs to
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[0 ] and is such that Re ∗ ≤ − (see a discussion around equation (56), which shows that points
∗ ∈ [0 ] with Re ∗  − cannot correspond to the minimum of Re1 () over  ∈ K∗).
If the minimum of Re1 () over  ∈ K∗ is achieved at + then using (31), (152), and the

Stirling’s approximation

(155)  =

p
 (1− 1)


exp { (− 1) ln (− 1)− ln} (1 + (1)) 

we obtain, for some ̃  0 that does not depend on + and on 

(156) |1| ≤ ̃
√
 exp

½
−
2
Re h()

¾Z
K∗
|1 () d | 

Recall that 1 () = ( − 1)
−1  By definition of K∗

(157) sup
∈K∗

|1 ()| ≤ max
n
|+ − 1|−1  |1|−1

o
and |K∗| ≤ |1|+ 2 |+ − 1| 

Identity (153) implies that |+ − 1| = (− 1) |+ (+ + )| is bounded away from zero uniformly

with respect to + ∈ C2 Therefore, (156) and (157) imply that there exists 1  0 that does not
depend on + and on  such that

|1| ≤ 1
√
 |1| exp

½
−
2
Re h()

¾


Combining this with Lemma 13, we obtain (154).

If the minimum of Re1 () over  ∈ K∗ is achieved at ∗ then we must be in situation 3 so that
|∗ − 1|  |+ − 1| and

Re1 (
∗) = −Re ∗ −  ln |∗|+ (− 1) ln |∗ − 1|

 −Re ∗ −  ln |∗|+ (− 1) ln |+ − 1| 
Let  be any point on the ray starting at 0 and passing through 1 let arg 1 =  (note that

  2 so that cos  0), and let  = | |  Then
−Re ∗ −  ln |∗| ≥ −max

≥0 { cos +  ln} = −  ln (− cos) 

Therefore,

Re1 (
∗)  −  ln (− cos) + (− 1) ln |+ − 1| 

This inequality implies

Re1 (
∗) + ln |1|  −  ln (− cos) + (− 1) ln |+ − 1|+ ln |1| 

Using (153) and the fact that + ∈ C2, we obtain

Re1 (
∗) + ln |1|  −  ln (− cos) +  ln

¯̄̄̄
+

+ + 

¯̄̄̄
+ ln |+ + 1|+ (− 1) ln (− 1)

 −  ln (− cos) + ln |̄+ + 1|+ (− 1) ln (− 1) (158)

where ̄+ = −+ |0 + | exp {i2} is the point where C2 and C1 meet. On the other hand,
cos ≤ cos arg ̄+ = − |̄+|
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and thus

−  ln (− cos)  −  ln |̄+| = +  ln (|̄+ + |  |̄+|)−  ln |̄+ + |
 +  ln

³
1
√
2
´
−  ln |̄+ + |  − ln |̄+ + | 

Using this inequality and (158), we obtain

Re1 (
∗) + ln |1|  − ln |̄+ + |+ ln |̄+ + 1|+ (− 1) ln (− 1) 

Since | + | stays constant for  ∈ C1 whereas | + 1| is strictly decreasing as  moves along C1
from 0 to ̄+ there exists 2  0 which is independent of + and  such that

Re1 (
∗) + ln |1|  − ln (0 + ) + ln (0 + 1) + (− 1) ln (− 1) + 2

 −0 −  ln (0 + ) + ln (0 + 1) + (− 1) ln (− 1) + 2

= Re1 (0) + ln |10|+ 2

where 10 is the value of 1 that corresponds to 0. Therefore, by (152), we have

− (Re1 (∗) + ln |1|)  −
µ



2
h(0) + 2 − 

¶


Using this inequality together with (31) and (155), we obtain that, for some ̃  0 that does not
depend on + and 

|1| ≤ ̃
√
 exp

½
−
2

µ
h(0) +

2


2

¶¾Z
K∗
|1 () d | 

Analysing the integral
R
K∗ |1 () d | as above, we conclude that there exist 1  0 that do not

depend on + and  such that (154) holds. ¤
Using Lemma 14 and equation (150), we obtain the following bound on |2 (;Λ)|

(159) |2 (;Λ)| ≤ 1 exp

½
−
2


¾
|ce(0)|

Z
K2

¯̄̄̄
¯̄1 Y

=1

Ã
0 − 

 − 

!12
d

¯̄̄̄
¯̄ 

On the other hand, for any  from the support of c we have

(160)

¯̄̄̄
¯0 − 

 − 

¯̄̄̄
¯ 

¯̄̄̄
0



¯̄̄̄
=

¯̄̄̄
10

1

¯̄̄̄
=

¯̄̄̄
0 (0 + 1) (+ + )

(0 + ) + (+ + 1)

¯̄̄̄
and

(161) d =
1 (1− 1)

2
d1 =

1 (1− 1)

2

Ã
1−  (− 1)

(+ + )2

!
d+

Note that, for any + ∈ C2 ¯̄̄̄
¯  (− 1)(+ + )2

¯̄̄̄
¯   (− 1)

(0 + )2


A direct calculation based on the definitions

0 = 1
2

½
10 − 1 +

q
(10 − 1)2 + 410

¾


10 =
02

1 (1− 1)
  =

1 + 2 − 12

2 (1− 1)
 and

0 =
(1 + ) ( + 1)

 (1 + (1 + ) 21)
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yields

0 =
 + 1

1− 1
, 10 =

2 ( + 1) ( + 1)

(1 + 2 + 2) (1− 1)
 and

 (− 1)
(0 + )2

= 1
1 + 2 − 12

(1 + 2 + 2)
2 

The latter two equalities together with (161) imply that there exists a constant 2  0 that does
not depend on  ∈ ¡0 ̄ − 

¤
such that (for sufficiently large n  as n → ∞)

|10d|  2


|d+| 

Using this and (160) in (159), we obtain

|2 (;Λ)| ≤ 12 exp

½
−
2


¾ ¯̄̄̄
c


e(0)

¯̄̄̄ Z
C2

¯̄̄̄
0 (0 + 1) (+ + )

(0 + ) + (+ + 1)

¯̄̄̄2−1
|d+| 

Note that for any + ∈ C2 we have |+ + 1|  |+ + |  On the other hand, 0 + 1  0 + 

Therefore, ¯̄̄̄
(0 + 1) (+ + )

(0 + ) (+ + 1)

¯̄̄̄
 1

and

|2 (;Λ)| ≤ 12 exp

½
−
2


¾ ¯̄̄̄
c


e(0)

¯̄̄̄ Z
C2

¯̄̄̄
0

+

¯̄̄̄2−1
|d+| 

Using parameterization (151), we obtain

|2 (;Λ)| ≤ 12 exp

½
−
2


¾ ¯̄̄̄
c


e(0)

¯̄̄̄ Z ∞
0

¯̄̄̄
0

+ − i |0 + |
¯̄̄̄2−1

d

≤ 123 exp

½
−
2


¾ ¯̄̄̄
c


e(0)

¯̄̄̄
for some 3  0 that does not depend on  Finally, note that c = (1) and e(0) = P(1), so
that the above display implies equation (149). Since

1 (;Λ) =
(0)q

−d2(0)d2
+P

³
−1

´


we see that 2 (;Λ) is asymptotically dominated by 1 (;Λ).

CCA. Let  be an arbitrarily large positive constant. Split the contour K2 into K21 and K22
where

K21 = { :  ∈ K2Re   −} 
Note that the approximation

2 = 2 (2) 
−i22 ¯̄2002 (2)

¯̄−12
exp {−2 (2)} (1 + (1))

derived in Lemma JO3 remains valid for  ∈ K21 Therefore, the representation

 (;Λ) =
√


1

2i

Z
K
exp

½
−
2
()

¾
()d
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is valid for  ∈ K21∪K1 Hence, if we show that K21∪K1 is a contour of steep descent for −Re ()
then

21 (;Λ) + 1 (;Λ)

must be asymptotically equivalent to 1 (;Λ), where

21 (;Λ) =
√


1

2i

Z
K21∪K̄21

exp

½
−
2
()

¾
()d

and thus, 21 (;Λ) must be asymptotically dominated by 1 (;Λ) 
Obviously, −Re e() is decreasing as  moves along K21 so that Re  becomes more and more

negative. Let us consider the behavior of

(162) −Re h() = 1− 1

1
(−2 (2)−  ln+ (− 1) ln (− 1)) 

Recall (98), that states

Re2 (2) = −2 ln |2|+ (2− 1) ln |2 − 1|+  ln


− 1 

Parametrize  ∈ K21 as

 = 1 −  |0 − 1|+ |0 − 1| i  ∈ [0 (+ 1)  |0 − 1|]

where

1 = −1 (1− 1)
2  ()

42


For the corresponding 2 = 22
£
21 ()

¤
we have

2 = 0 − 1 +1i  ∈ [0 (+ 1)  |0 − 1|] 

where

0 = − 1

4 (− 1) and 1 = |0 − 1| 22
21 ()



From the definition of 2 we obtain

2 =
2

1 +
p
1 + 4 (− 1) (0 − 1 +1i)



which implies that

(163) 2 =
2

1 + 
√−+ i 

where

 =
q
4 (− 1)1

Lemma 15. Let (163) hold. Then d
d (−Re2 (2))  0 for  ≥ 0.
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Proof: Since

Re
√−+ i =

s√
2 + 1− 

2
and Im

√−+ i =
s√

2 + 1 + 

2


we obtain

d

d
(−Re2 (2)) = − 1

2
√
2 + 1

2− Re
√−+ i¯̄̄

1 + 
√−+ i

¯̄̄2
− 2− 1
2
√
2 + 1

2+ (2− 1) Re√−+ i¯̄̄
2− 1− 

√−+ i
¯̄̄2 

For  ≥ 0 this is no larger than

−Re
√−+ i

2
√
2 + 1

⎛⎜⎝ −1¯̄̄
1 + 

√−+ i
¯̄̄2 + (2− 1)2¯̄̄

2− 1− 
√−+ i

¯̄̄2
⎞⎟⎠ 

which is negative because ¯̄̄
1 + 

√−+ i
¯̄̄


¯̄̄̄
1− 

2− 1
√−+ i

¯̄̄̄
¤

Lemma 15 and identity (162) imply that −Re e() is decreasing as  moves along K21 Hence
K21 ∪ K1 is indeed a contour of steep descent for −Re () and therefore 21 (;Λ) is asymp-
totically dominated by 1 (;Λ)  It remains to be shown that 22 (;Λ) = 2 (;Λ) − 1 (;Λ) is
asymptotically dominated by 1 (;Λ) 
For any  ∈ K22 and the corresponding 2 = 22

£
21 ()

¤
, consider the integral representation

(164) 2 =


2i

Z (1+)

0
exp {−2 ()}2 () d

where

2 () = − ln () + (− 1) ln (− 1) +  ln (1− 2)

2 () = (− 1)−1 (1− 2)
−1 

For a fixed contour K∗ in (164), it is clearly possible to make Re2 () arbitrarily large and |2 ()|
arbitrarily close to zero, uniformly with respect to  ∈ K∗ by choosing  sufficiently large (so that

|2| is sufficiently large). Therefore, by choosing  sufficiently large, we shall have inequality

|2| ≤ ̃
√
 exp

½
−
2
(Re h(0) + )

¾
for some ̃   0 (that do not depend on ) and any  ∈ K22 Using this upper bound in (150), we
obtain

22 (;Λ) ≤ 1 exp

½
−
2


¾
|ce(0)|

Z
K22

¯̄̄̄
¯̄ Y
=1

Ã
0 − 

 − 

!12
d

¯̄̄̄
¯̄

for some 1  0 that does not depend on .
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Clearly for any  ∈ K22 and any  from the support of c we have¯̄̄̄
¯0 − 

 − 

¯̄̄̄
¯ ≤

¯̄̄̄
0



¯̄̄̄
=

¯̄̄̄
20

2

¯̄̄̄


where 20 is the value of 2 that correspond to  = 0 Therefore, we have for some 2  0 that
does not depend on 

22 (;Λ) ≤ 2 exp

½
−
2


¾ ¯̄̄̄
c


e(0)

¯̄̄̄ Z
K22

¯̄̄̄
¯
¯̄̄̄
20

2

¯̄̄̄2
d2

¯̄̄̄
¯ 

and thus, for some 3  0 that does not depend on 

22 (;Λ) ≤ 3 exp

½
−
2


¾ ¯̄̄̄
c


e(0)

¯̄̄̄


Finally, note that c = (1) and e(0) = P(1), so that the above display implies (149) with
22 replacing 2. Since

1 (;Λ) =
(0)p−d2(0)d2 +P

³
−1

´


we see that 22 (;Λ) is asymptotically dominated by 1 (;Λ).

6. Asymptotics of LR.

6.1. Derivations for Theorem JO11 (limiting LR). We record details to verify that

(0)p− 00(0) = exp
n
−12∆() +

1
2 log[1− 2()]

o
(1 + (1))

where, perhaps surprisingly, our six cases reduce to the three values for () given in Theorem
JO11. Recall the decomposition  = ceh and note from the definitions (JO15) that e(0) =
exp{−12∆()}. Consequently, from the definition of 2 in Table JO6, the left side of the previous

display may be written as

−1ch
p
2 exp{−12∆()}

so our task is to verify that

(165)  = −1ch
p
2 = (1− 2())

12(1 + (1))

To this end, Table 7 collects values for −1̌c, h, and
√
2 from Table JO4, Section JO4.1 and

Table JO6 respectively. Cases SMD and PCA require no further comment. For the remaining cases,

we add remarks on the evaluation of h(0) and then the product (165).
SigD. First observe that since 0 = (1 + )(1 + )(),

h(0) =

µ
1− 20

1(1 + )

¶−1
=

1()

2


and we get the claimed expression for  ,

(166)  2 =
(1 + 2)

21
2

= 1− 22

21
2
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−1̌ 
√
2

SMD 1 1
√
1− 2

PCA
1

1(1 + )
1 1(1 + )

p
01

SigD

√
1 + 2

21(1 + )

1()

2
(1 + )

√


2()

REG0
1

1
√
1− 1

√
1− 1√
0

1
p
001

REG

√
1 + 2

21
√
1− 1

p
1(1− 1)()


√
1

√
11

2()

CCA
2(1 + 2)

31
√
1− 1()

1
√
1− 1

32()

2
√
2

1
√
2√

1 + 232()
Table 7

Components of the product  = −1ch
√
2. The CCA entry for h is shown for completeness — it is derived, post
facto, from the calculations above.

after using the identity

(167) (1 + 2) = 21
2 − 22

REG0. From (JO34) and (93), we have

h(0) ∼ (1 + 40)−14 ∼
√
1− 1

p
0

REG. We use (JO34) to evaluate h(0). Using (84) to evaluate 1(0), we have

001(1) =


21
− − 1
(1 − 1)2 =

22(1 + )2

2(1− 1)

"
2

2()
− 1

1

#

= −
2
2(1 + )2

21(1− 1)

1()

2()
(168)

using the identity

2()− 1
2 = 121()

Since 1−1  0 and 001(1)  0, we can take 1 = 0. Together with 1(1) = (1−1)−1 = 2(1+)1,
we obtain from (JO34) and (84)

h(0) ∼
r
1

2
|001(1)|−121(1) =

p
1(1− 1)()


p
1()

The product  then reduces to the first expression in (166).

CCA. We show that CCA = REG(1 + (1)). From Table 7 and (JO28), we have

−1cC
−1cR

=

√
1 + 2

1()


s
2

2
=

s
1()

1 + 2

2

1


2(2)

1(1)
=

1

1− 22
=

1()

2
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Multiplying these ratios and referring to (JO34), we obtain

(169)



∼
¯̄̄̄
001(1)
002(2)

¯̄̄̄12 ∙
1

2
2()

1()

¸12
22

We now compare 002(2) to 001(1), recalling that 2 = 1. First, from (86),

002() = −
22

(1− 22)2
+ 001()

In particular, 002(2)  0 and, as with 1, also 2 = 0. From (88), we evaluate

− 22
(1− 22)2

= −
3
2(1 + )2

21(1− 1)

(1 + )2

22


so that from (168),

002(2)
001(2)

= 1 +
2(1 + )2

21()
=

1()2()

21()


where the second identity follows after some algebra. The latter display and (169) show that CCA =
REG(1 + (1)).

6.2. Proof of Theorem JO12 (Gaussian process limit). Some general considerations

Almost sure continuity of ln (;Λ). Let   0 be a fixed small number. First, let us show that
ln (;Λ) are continuous functions of  ∈ [0 ̄ − ] for each of the six cases under study. Recall
equation (JO6)

(170) () (;Λ) =  () pq ( ;ΨΛ) 

where Ψ is a -dimensional matrix diag {Ψ11 0  0}  and the values of Ψ11  ()  p q  and 

are as given in Table 8. Consider the series representation

pq ( ;ΨΛ) =
∞X
=0

1

!

X
`

(1)  (p)
(1)  (q)

 (Ψ) (Λ)

 ()

=
∞X
=0

1

!

(1)  (p)
(1)  (q)

Ψ
11 (Λ)

 ()


where the second equality follows from the fact that  (Ψ) = 0 unless partition  `  is trivial,

that is  =  in which case  (Ψ) = Ψ

11 (see definition 7.2.1 iii in Muirhead (1982)). James (1968)

shows that the coefficients of zonal polynomials are positive. Therefore, for non-negative Ψ11 and
   = 1   we have

0 ≤ Ψ

11 (Λ)

 ()
≤ (Ψ111) 

This implies that pq ( ;ΨΛ) is an analytic function of  ∈ [0 ̄−] and pq ( ;ΨΛ) ≥ 1 (the
first term in the expansion of pq ( ;ΨΛ) is 1) when p ≤ q, that is for SMD, PCA, REG0, and
REG cases. For SigD and CCA, pq ( ;ΨΛ) is an analytic function of  in the domain

Ψ111  1
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Case pq  ()   Ψ11

SMD 00 exp
¡−24¢ _ _ 2

PCA 00 (1 + )−12 _ _ 1(2 (1 + ))

SigD 10 (1 + )−12 2 _ 1 (2 (1 + ))

REG0 01 exp (−12) _ 12 214

REG 11 exp (−12) 2 12 21 (22)

CCA 21 (1 + 1)
−2 (2 2) 12 21

¡
22 + 21 (1 + )

¢
Table 8

Parameters of the JO’s explicit expression (JO6) for the likelihood ratios. Here  ≡ 1 + 2.

But for SigD and CCA  are solutions to

det

µ
 − 

µ
 +

1

2


¶¶
= 0

and hence, with probability 1, 1 ≤ 21 because  and  are positive definite. Therefore, for

SigD we have

Ψ111 =
1

2 (1 + )
1 ≤ 

1 + 
 1

for any  ∈ [0 ̄ − ] and for CCA we have

Ψ111 =
21

22 + 21 (1 + )
1 ≤ 1

2 + 1(1 + )
 1

for any  ∈ [0 ̄−] Thus, pq ( ;ΨΛ) is an analytic function of  ∈ [0 ̄−] and pq ( ;ΨΛ) ≥
1 for all six cases that we consider. Using (170) we conclude that ln (;Λ) are continuous functions
of  ∈ [0 ̄ − ] with probability one. In particular (see Bosq (2000) p. 22) ln (;Λ) can be
interpreted as random element of the space [01−] of continuous functions on [0 1− ] equipped
with the supremum norm.

Reduction to a linear spectral statistic. By Theorem JO11 we have

(171) ln (;Λ) = −12∆() +
1

2
ln
³
1− [ ()]2

´
+ P(1)

where

 () =

⎧⎪⎨⎪⎩
 for SMD


√
1 for PCA and REG0

 (1 ()) for SigD, REG, and CCA

and

(172) ∆() = 

Z
ln (0 − ) d

³
̂ ()− c ()

´
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with

(173) 0 =

⎧⎪⎨⎪⎩
 + 1 for SMD

(1 + ) ( + 1)  for PCA and REG0
(1 + ) ( + 1)  [ ()] for SigD, REG, and CCA

and c equals the semicircle distribution for SMD, the Marchenko-Pastur distribution for PCA

and REG0 and the scaled Wachter distribution for SigD, REG, and CCA. As explained in JO, the

statistic ∆() should be interpreted as zero whenever 0 ≤ 1.

Since both ln (;Λ) and ∆() are random element of [01−] P(1) is also a random element

of [01−] and kP(1)k P→ 0. Therefore by the standard argument, see for example Theorem 3.1 of

Billingsley (1999), p. 27, the weak limits of ln (;Λ) and of −12∆()+
1
2 ln

³
1− [ ()]2

´
coincide.

Note that 12 ln
³
1− [ ()]2

´
is converging in the space [01−] to

 () =

⎧⎪⎨⎪⎩
 for SMD


√
1 for PCA and REG0

 (1 + 2 + 2) for SigD, REG, and CCA



Therefore, we only need to establish the weak convergence of ∆() There are two facts to be
established. First, the tightness of ∆() and second, the convergence of its finite dimensional
distributions.

Tightness of ∆(). There are three cases to consider: c is the semicircle, the Marchenko-Pastur,

and the Wachter distribution. Whether the Marchenko-Pastur c corresponds to PCA or REG0
cases is of no importance because we consider the tightness under the null hypothesis so that ̂ is

the same for PCA and REG0 Similarly, the differences between SigD, REG and CCA cases are of

no importance here.

Tightness, Semi-circle c. The tightness of ∆() in this case is a direct consequence of Theorem
1.1 of Bai and Yao (2005).

Tightness, Marchenko-Pastur c. Following Bai and Silverstein (2004), let us represent the linear

spectral statistic ∆() in the following form

∆() = − 1

2i

I
R
ln (0 − )  [̂()− c()] d

where R is contour that does not intersect the supports of ̂ and c and does not encircle 0 Here

̂() =

Z
(− )−1 d̂ () and c () =

Z
(− )−1 dc () 

With asymptotically negligible probability the above requirements for R are impossible to satisfy.

We will therefore condition our arguments on the high probability event that ensures the existence

of required R.
Precisely, recall that the supports of  and c are given by

[− +] =
h
(1−√1)2  (1 +√1)2

i
and

[− +] =
h
(1−√1)2  (1 +√1)2

i
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respectively, and the threshold ̄ equals
√
1. Furthermore, c → γ. Using these facts and the

definition of 0, it is straightforward to verify that there exists   0 that depends on  such that

min
∈[0̄−]

(0 − + − )  0

for all sufficiently large 1 2  along the sequence n  → ∞. Further, note that 1 → + and


→ − when n → ∞.
Consider the event

(174)  = {max {1 +} ≤ + + 2  0 − 2 min { −} ≥ − − 2} 
The discussion above implies that

(175) lim
→∞Pr {} = 1

LetR be the rectangular contour with the vertices at (+ + )±i and (− − )±i for an arbitrary
fixed positive  Conditional on the event  R does not intersect the supports of ̂ and c and

does not encircle 0 as required. Since Pr {} → ∞ it is sufficient to establish the tightness of

∆() conditional on . Therefore, in what follows we shall assume that  holds.

Let C be the part of R that lies in the upper half complex plane. Then

∆() = − 1

Im

Z
C
ln (0 − )  [̂()− c()] d

Since the mapping

() 7→ () = − 1

Im

Z
C
ln (0 − ) ()d

is a continuous mapping from the space C of the complex-valued continuous functions on C (with
the supremum norm) to the space [01−] the tightness of ∆() would follow from that of

() ≡  [̂()− c()] 

As in Bai and Silverstein (2004) p. 561, choose sequence {} such that  → 0 as n  → ∞
and

 ≥ −

for some  ∈ (0 1). Further, let
C = {+ i :  ∈ [− −  + + ]} 
C =

n
(− − ) + i :  ∈

h
−1 

io


C =
n
(+ + ) + i :  ∈

h
−1 

io


and let C = C ∪ C ∪ C. Define the process ̂ () on C as follows

̂ () =

⎧⎪⎨⎪⎩
() for  ∈ C
(+ +  + i−1) for  = + +  + i  ∈ £0 −1¤
(− −  + i−1) for  = − −  + i  ∈ £0 −1¤ 

Note that

̂ () =  [̂()− c()] + P(1)
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where P(1) is uniform over  ∈ C. Indeed, for any  ∈ C we have

̂ () =  [̂()− c()] 

whereas by the definition of ̂() and (174)

sup
∈[0−1]


¯̄̄
̂(± ±  + i)− ̂(± ±  + i−1)

¯̄̄
≤ 

−1
(2)2

→ 0

and similarly

sup
∈[0−1]


¯̄̄
c(± ±  + i)− c(± ±  + i−1)

¯̄̄
1 {} ≤ 

−1
(2)2

→ 0

Therefore, it is sufficient to prove the tightness of ̂ (·) as a sequence of random elements of C .
Lemma 1.1 of Bai and Silverstein (2004) establishes this result along with the weak convergence of

̂ (·) to a Gaussian process.
Tightness, Wachter c. We shall base our arguments on the results established in Zheng (2012). He

establishes a CLT for linear spectral statistics of multivariate  and  matrices via representing

those statistics in the form of a contour integral that involves a process related to  () (see the
previous section). The CLT follows from his proving the convergence of the process to a Gaussian

process.

In contrast to JO, whose attention is focused on the eigenvalues of 
³
 + 1

2

´−1

, Zheng’s

(2012) primary focus is on the eigenvalues of −1 Let ̂ and ̂ be the empirical distributions

of the eigenvalues of 
³
 + 1

2

´−1

and −1 respectively. If  is an eigenvalue of −1 then

 (1 + 21)
−1 is an eigenvalue of 

³
 + 1

2

´−1

, and thus

̂ () = ̂

µ


1 + 21

¶


A similar equality holds for the corresponding limiting distributions c and c. Therefore,

∆() ≡ 

Z
ln (0 − ) d

³
̂ ()− c ()

´
= 

Z
ln

µ
0 − 

1 + 21

¶
d
³
̂()−c ()

´


Denote the Stieltjes transform of ̂ as ̂() and that of c as c() Then, similarly to the
Marchenko-Pastur case, we have

∆() = − 1

2i

I
R
ln

µ
0 − 

1 + 21

¶
 [̂()−c()] d

where R is contour that does not intersect the supports of ̂ and c and does not encircle

0 (1− 201)  As above, the existence of such a contour requires conditioning on a large prob-
ability event, which we shall assume.

Zheng (2012) pp. 467—470 sketches a proof of the weak convergence of  [̂()−c()]  Such a
weak convergence implies the tightness, which in its turn implies the tightness of ∆()
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For the reader’s convenience, we provide here a brief description of the main steps in Zheng’s

proof. The proof is based on the decomposition

 [̂()−c()] = 
h
̂()−()

c ()
i
+ 

h
()
c ()−c()

i


where
()
c () is the Stieltjes transform of 

()
c  the limiting spectral distribution (as n →c ∞) of

−1 where the empirical spectral distribution of symmetric positive definite matrix  converges

to that of  as n  →c ∞. First, Zheng establishes the weak convergence of 
h
̂()−

()
c ()

i
conditional on {  = 1 2} by appealing to Lemma 1.1 of Bai and Silverstein (2004). Since the
limiting process does not depend on {  = 1 2}  the unconditional convergence also follows.
Next, Zheng represents 

h

()
c ()−c()

i
as a product of a continuous function of  that con-

verges in R and the term  [̂ (−c())−2 (−c())]  where ̂ is the Stieltjes transform

of the empirical spectral distribution of  2 is that of the corresponding limiting distribution

as n →c ∞ and c is defined via the Stieltjes transform c of c by

c() = −
1− 1


+ 1c () 

Then, she points out that −c() converges to −() which is defined analogously with c
replaced by γ. Function −() transforms R to a contour encircling the support of the limiting

spectral distribution of  Zheng appeals to Lemma 1.1 of Bai and Silverstein (2004) to establish

the weak convergence of  [̂ ()−2 ()] as a random continuous function on such a contour.

Zheng’s proof omits some details, probably for the sake of saving the space. For example, she does

not mention that to be able to view 
h
̂()−

()
c ()

i
and 

h

()
c ()−c()

i
as continuous

random functions on R, a conditioning on some event of increasing probability in needed. Having
a detailed proof would be useful, but requires a separate research effort.

Finite dimensional convergence. The convergence of the finite dimensional distributions to

Gaussian distributions follow from Theorem 1.1 of Bai and Yao (2005) for the semicircle c, from

Theorem 1.1 of Bai and Silverstein (2004) for the Marchenko-Pastur c and from Theorem 4.1

of Zheng (2012) for the Wachter c. We now use the results in the above mentioned papers to

compute the means and covariance matrices of the asymptotic finite-dimensional distributions of

∆().

Finite dimensional asymptotics, Semi-circle c. Recall that 0 =  + 1 we obtain

∆ () = 

Z
ln
³
2 −  + 1

´
d
³
̂ ()− c ()

´


Theorem 1.1 Bai and Yao (2005) implies that the random vector (∆ (1)  ∆ ()) with  ∈£
0 ̄ − 

¤
converges in distribution to a Gaussian vector (D (1)  D ()) with

(176) ED () = 1

4

h
ln
h
(1− )

2
i
+ ln

h
(1 + )

2
ii
− 1

20 ()

and

(177)  (D () D ()) = 2
∞X
=1

 ()  () 

where

 () =
1

2

Z 

−
ln
³
1 + 2 − 2 cos

´
cos () d
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Lemma 16. For any , such that ||  1, and any integer   0 we have  () = − and
0 () = 0.

Proof: Changing the variable of integration from  to  = i we obtain

 () =
1

2i

I
ln
h
(1− )

³
1− −1

´i
−1d

where the contour integral is taken over the counter-clockwise oriented unit circle. Representing

the logarithm of a product as the sum of logarithms, we obtain

 () =
1

2i

I
ln (1− ) −1d +

1

2

I
ln
h
1− −1

i
−1d

Since, for ||  1 ln (1− ) is analytic in the unit circle and equal to zero at  = 0 we have

1

2i

I
ln (1− ) −1d = 0

for any integer  ≥ 0. Hence,

 () =
1

2i

I
ln
h
1− −1

i
−1d

Changing the variable of integration from  to  = −1, and noting that d = −d, we get

 () =
1

2i

I
ln [1− ] −−1d

On the other hand, for || ≤ 1, we have the following power series expansion

ln [1− ] = −
∞X
=1




 

Thus, by Cauchy’s residue theorem,  () = − for   0 and 0 () = 0. ¤
Lemma 16 together with (176) and (177) yield

ED () = 1
2 ln

³
1− 2

´
and

 (D () D ()) = −2 ln (1− ) 

Finite dimensional asymptotics, Marchenko-Pastur c. For PCA and REG0 the finite dimensional

distributions of ∆ () are derived in Lemma 12 of Onatski et al (2013). They show that the random
vector (∆ (1)  ∆ ()) with  ∈

£
0 ̄ − 

¤
converges in distribution to a Gaussian vector

(D (1)  D ()) with
ED () = 1

2 ln
³
1− 2 1

´
and

 (D () D ()) = −2 ln (1− 1) 
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Finite dimensional asymptotics, Wachter c. Let

̂ () = ̂

µ


1 + 21

¶
and c () = c

µ


1 + 21

¶


Then

(178) ∆ () = 

Z
ln

µ
0 − 

1 + 21

¶
d
³
̂ ()−c ()

´


Recall that

0 =
(1 + ) ( + 1)

 (1 + (1 + ) 21)


Let

(179) 0 =
(1 + ) ( + 1)

 (1 + (1 + ) 21)


Since 0 → 0 and c →  as n  → ∞ the asymptotic distribution of the random vector

(∆ (1)  ∆ ()) must be the same as that of (∆ (1)  ∆ ())  where

(180) ∆ () = 

Z
ln

µ
0 − 

1 + 21

¶
d
³
̂ ()−c ()

´


This can be formally shown by considering the representation

∆ ()−∆ () = − 1

2i

I
R
ln

"
0 − 

1+21

0 − 
1+21

#
 [̂()−c()] d

(see subsection “Tightness, Wachter c”) and using the convergence of  [̂()−c()] established
by Zheng (2012) to demonstrate that

(181) ∆ ()−∆ () = P(1)

Theorem 3.1 of Zheng (2012) implies that the random vector (∆ (1)  ∆ ()) with  ∈£
0 ̄ − 

¤
converges in distribution to a Gaussian vector (D (1)  D ()). Let us find the asymp-

totic mean and covariances.

Equations (179), (180) and some elementary algebra yield

(182) ∆ () = ∆
(1)
 ()−∆(2) () 

where

∆(1) () = 

Z
ln

µ
 + 1 +

µ
2 − 

1 + 

¶


¶
d
³
̂ ()−c ()

´


and

∆(2) () = 

Z
ln (12 + ) d

³
̂ ()−c ()

´


Note that both ∆
(1)
 () and ∆

(2)
 () have form

 = 

Z
ln (+ ) d

³
̂ ()−c ()

´
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For   0 0  0 Zheng (2012), Example 4.1 proves that ( 00) converge to a Gaussian vector
(00) with

(183) E =
1
2 log

¡
2 − 2

¢
2

(− 2)
2

and

(184)  (00) = 2 log
0

0 − 0


where     0 satisfy

(185) 2 + 2 = + 
1 + 2

(1− 2)
2 and  =



(1− 2)
2

and 0  0  0 satisfy

(186) 02 + 02 = 0 + 0
1 + 2

(1− 2)
2 and 00 =

0
(1− 2)

2 

A direct inspection reveals that Zheng’s proof of (183) and (184) remains valid for any real   0
and 0 such that log (+ ) and log (0 + 0) are analytic in an open domain containing the support
of  as long as there exist real  and  satisfying (185) and real 0 and 0 satisfying (186) such
that ||  || and |0|  |0|  Such   0 and 0 do exist for  = ∆

(1)
 () and 00 = ∆

(2)
 ().

Indeed, the values of  and  for  = ∆
(1)
 () are

 =  + 1 and  = 2 − 

1 + 


The corresponding  and  that satisfy (185) are

(187)  =
√

 + 1 (1− 2)
and  =

2 −  (1− 2)√
 + 1 (1− 2)



Since 2   || is clearly larger than || for positive  For non-positive  ||  || if and only if

 (1− 2)− 2  

But this inequality folds for any  ∈ £0 ̄ − 
¤
because ̄ = (2 + )  (1− 2) (see Table JO3).

Further, the values of 0 and 0 for 00 = ∆
(2)
 () are

0 = 12 and 0 = 1

The corresponding 0 and 0 that satisfy (186) are

(188) 0 =


(1− 2)
√
2
and 0 =

√
2

1− 2


Since 2   we have 0  0  0
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Using (182), (183), (187), and (188), we find that

ED () = 1
2 log

¡
2 − 2

¢
(0− 2

0)2

(− 2)
2 (02 − 02)

= 1
2 log

Ã
1− 22

(1 + 2 (1 + ))2

!

and

 (D () D ()) = 2 log
2

2 − (2 −  (1− 2)) (2 −  (1− 2))

−2 log 2

2 − (2 −  (1− 2)) 2

−2 log 2

2 − (2 −  (1− 2)) 2

+2 log
2

2 − 22

= −2 log
Ã
1− 2

(1 + 2 (1 + )) (1 + 2 (1 + ))

!


7. Concluding remarks.

7.1. Power of the LR test under multi-spike alternatives. Consider the likelihood ratio test that

rejects the null hypothesis of no spikes when the supremum of ln (;Λ) over  ∈ £0 ̄ − 
¤
is above

an asymptotic critical value. In this section, we study the power of such a test in the situation where

the rank-one assumption on the alternative is wrong and there are multiple spikes, the highest of

which is at least as high as the spike under our rank-one setting.

Intuitively, the power should increase under such a multi-spike alternative because it is “further

away” from the null than the one-spike alternative. Below, we confirm this intuition for SMD and

PCA cases.

First let us show that, in any of James’ cases, the corresponding likelihood ratio test has a

monotone acceptance region. That is, the null is accepted if and only if  (1  )  const for
a function  which is non-decreasing in each argument. Recall that the likelihood ratio has the

following form

(189)  (;Λ) = () pq ( ;ΨΛ) 

where Ψ = diag {Ψ11 0  0}  Λ = diag {1  }  and the values of Ψ11 ()   p, and q for the
different cases are given in Table JO2. As explained in Section 6.2, we have the following expansion

 (;Λ) = ()
∞X
=0

1

!

(1)  (p)
(1)  (q)

Ψ
11 (Λ)

 ()


where  are zonal polynomials. James (1968) shows that zonal polynomials have positive coeffi-

cients. Therefore,  (Λ) and  (;Λ) are nondecreasing in each  for any fixed  ∈ £0 ̄ − 
¤
 As

a consequence, the supremum of ln (;Λ) over  ∈ £0 ̄ − 
¤
is a non-decreasing function in each

 

Next, recall that SMD refers to the problem of testing 0 : Φ = 0 against 1 : Φ = 11
0
1

using the eigenvalues    = 1   of matrix  = Φ + 
√
 where  is a noise matrix from
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the Gaussian Orthogonal Ensemble. Now suppose that the actual situation corresponds to the

alternative

mult : Φ =
X

=1


0
 

where 1 ≥  ≥   0 and 1   is a set of orthonormal nuisance vectors. Since Φ under mult

is no smaller than under 1 the -th largest eigenvalue of  under mult is no smaller than under

1 But as shown above, the likelihood ratio test has a monotone acceptance region. Hence, its

power to reject 0 in favour of mult is at least as high as its power to reject 0 in favour of 1

Similarly, recall that PCA refers to the problem of testing 0 : Ω =  against 1 : Ω =
 + 11

0
1 using the eigenvalues of  

01 where  = Ω12 and  is a × 1 matrix with i.i.d.

standard normal entries. Suppose that the actual situation corresponds to the alternative

mult : Ω =  +
X

=1


0
 

Note that the non-zero eigenvalues of   01 coincide with those of 0Ω1 Since Ω under mult

is no smaller than under 1 the -th largest eigenvalue of 
0Ω1 under mult is no smaller than

under 1 Therefore, using the monotonicity of the acceptance region of the test, we conclude that

the power corresponding to mult is no smaller than that corresponding to 1

Unfortunately, for the remaining cases, the above logic does not go through. For example, for

SigD, we test 0 : Ω =  against 1 : Ω = +11
0
1 using eigenvalues of ( 02)−1 (  01) 

where  = Ω12 is as above, and  is a ×2 matrix with i.i.d. standard normal entries indepen-

dent from  . It is conceivable that

0Ω12
¡
 02

¢−1
Ω121

as opposed to 0Ω1 (cf. the PCA case above), has some of its eigenvalues under mult smaller

than the corresponding eigenvalues under 1 Of course, on average over the distribution of  the

situation will be exactly the same as in the PCA case. Therefore, although we cannot prove the

increase in power, it remains intuitively plausible.

Perlman and Olkin (1980) study the unbiasedness and power monotonicity of tests with monotone

acceptance regions in cases that correspond to our REG0 REG, and CCA. Although they prove the

unbiasedness of such tests, the power monotonicity remains a “strong conjecture” (see p. 1329 of

their paper). Their Proposition 2.6 (ii) formulates conditions on the likelihood ratio (corresponding

to general alternatives) that guarantee the power monotonicity. However, as shown in Richards

(2004), these conditions do not hold for likelihoods of form (189), in general. Of course, this does

not mean that Perlman and Olkin’s conjecture is wrong, it just cannot be established directly via

Proposition 2.6.
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