
 
 
 
 
 
 
 
 
 

Faculty of Economics 

CAMBRIDGE WORKING PAPERS IN ECONOMICS 
  CAMBRIDGE-INET WORKING PAPERS 

A New Semiparametric Estimation 
Approach for Large Dynamic Covariance 
Matrices with Multiple Conditioning 
Variables 
 

Jia  
Chen 
University of  
York

Degui  
Li 
University of  
York 

Oliver  
Linton 
University of 
Cambridge

 

 

Abstract 
This paper studies the estimation of large dynamic covariance matrices with multiple conditioning 
variables. We introduce an easy-to-implement semiparametric method to estimate each entry of the 
covariance matrix via model averaging marginal regression, and then apply a shrinkage technique to 
obtain the dynamic covariance matrix estimation. Under some regularity conditions, we derive the 
asymptotic properties for the proposed estimators including the uniform consistency with general 
convergence rates. We further consider extending our methodology to deal with the scenarios: (i) the 
number of conditioning variables is divergent as the sample size increases, and (ii) the large covariance 
matrix is conditionally sparse relative to contemporaneous market factors. We provide a simulation 
study that illustrates the finite-sample performance of the developed methodology. We also provide 
an application to financial portfolio choice from daily stock returns. 
 

Reference Details 
1876  Cambridge Working Papers in Economics 
2018/24 Cambridge-INET Working Paper Series 
 
Published 24 October 2018 
 
Key Words Dynamic covariance matrix, MAMAR, Semiparametric estimation, Sparsity, 

Uniform consistency 
JEL Codes C10, C13, C14, G11 
 
Websites www.econ.cam.ac.uk/cwpe 
  www.inet.econ.cam.ac.uk/working-papers  

http://www.econ.cam.ac.uk/cwpe
http://www.econ.cam.ac.uk/cwpe
https://www.inet.econ.cam.ac.uk/working-papers
https://www.inet.econ.cam.ac.uk/working-papers


A New Semiparametric Estimation Approach for
Large Dynamic Covariance Matrices with Multiple

Conditioning Variables∗

Jia Chen† Degui Li‡ Oliver Linton§

Version: October 24, 2018

Abstract

This paper studies the estimation of large dynamic covariance matrices with multiple condition-
ing variables. We introduce an easy-to-implement semiparametric method to estimate each entry
of the covariance matrix via model averaging marginal regression, and then apply a shrinkage
technique to obtain the dynamic covariance matrix estimation. Under some regularity conditions,
we derive the asymptotic properties for the proposed estimators including the uniform consistency
with general convergence rates. We further consider extending our methodology to deal with the
scenarios: (i) the number of conditioning variables is divergent as the sample size increases, and
(ii) the large covariance matrix is conditionally sparse relative to contemporaneous market factors.
We provide a simulation study that illustrates the finite-sample performance of the developed
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Keywords : Dynamic covariance matrix, MAMAR, Semiparametric estimation, Sparsity, Uniform
consistency.

∗The authors would like to thank the Guest Editor Professor Eric Ghysels and two anonymous referees for their
comments and suggestions, which substantially improve an earlier version of the paper.
†Department of Economics and Related Studies, University of York, York, YO10 5DD, UK. E-mail:

jia.chen@york.ac.uk
‡Department of Mathematics, University of York, York, YO10 5DD, UK. E-mail: degui.li@york.ac.uk.
§Faculty of Economics, University of Cambridge, Cambridge, CB3 9DD, UK. E-mail: obl20@cam.ac.uk.

1



1 Introduction

The classical theory of mean/variance portfolio choice is developed by Markowitz (1952), see
Merton (1969) and Fama (1970) for some other important developments. More recently this topic
has been at the centre of a lot of research, see Back (2010) and Brandt (2010) for some recent surveys.
In practice, it is not uncommon that the dynamic portfolio choice depends on many conditioning
(or forecasting) variables, reflecting the varying investment opportunities over the time. Generally
speaking, there are two ways to describe the dependence of portfolio choice on the conditioning
variables. One is to assume a parametric model that relates the returns of risky assets to the
conditioning variables and then solve for an investor’s portfolio choice using some traditional
econometric approaches to estimate the unknown parameters. However, the assumed parametric
models might be misspecified, which would lead to inconsistent estimation of the optimal portfolio
and invalid inference. One way to avoid the possible model misspecification issue is to use some
nonparametric methods such as the kernel estimation method to describe the dependence of the
portfolio choice on conditioning variables. The latter method is introduced by Brandt (1999) in
the case of a univariate conditioning variable. Aı̈t-Sahalia and Brandt (2001) further develop a
single-index strategy to handle multiple conditioning variables. This literature has worked with
the case where the number of assets is fixed and relatively small. However, another literature has
considered the case where there is no covariate but there are a large number of assets (c.f., Ledoit
and Wolf, 2003, 2004, 2017; Kan and Zhou, 2007; Fan, Fan and Lv, 2008; DeMiguel et al , 2009;
DeMiguel, Garlappi and Uppal, 2009; Pesaran and Zaffaroni, 2009; Frahm and Memmel, 2010; Tu
and Zhou, 2011).

As seen from the aforementioned literature, accurate covariance matrix estimation plays a
crucial role in portfolio choice problem. Suppose that the observations Xt = (Xt1, . . . ,XtN)

ᵀ ,
t = 1, . . . , T , are collected from an N-dimensional stationary process with covariance matrix
E
{
[Xt − E(Xt)] [Xt − E(Xt)]

ᵀ
}
= Σ, where the matrix Σ is invariant over time. There have been

extensive studies on estimating such a static covariance matrix. For instance, when the dimension
is fixed or significantly smaller than the sample size T , Σ can be consistently estimated by the
sample covariance matrix (c.f. Anderson, 2003):

Σ =
1
T

T∑
t=1

(Xt − X)(Xt − X)
ᵀ
, X =

1
T

T∑
t=1

Xt. (1.1)

However, the above conventional sample covariance matrix would fail when the dimension N is
large and exceeds the sample size T . In the latter case, the matrix Σ becomes singular. In order to
obtain a proper estimation of Σwhen N > T , some structural assumptions such as sparsity and
factor modelling are usually imposed in the literature, and then various regularisation techniques
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are used to produce consistent and reliable estimates (c.f., Wu and Pourahmadi, 2003; Bickel and
Levina, 2008a,b; Lam and Fan, 2009; Rothman, Levina and Zhu, 2009; Cai and Liu, 2011; Fan, Liao
and Mincheva, 2013).

The aforementioned literature on large covariance matrix estimation assumes that the underly-
ing covariance matrix is constant over time. Such an assumption is very restrictive and may be
violated in many practical applications such as in dynamic optimal portfolio allocation (Guo, Box
and Zhang, 2017). This motivates us to consider a dynamic large covariance matrix, whose entries
may evolve over time. In recent years, there have been increasing interests in estimating dynamic
covariance or correlation matrices and exploring their applications. For example, Engle (2002)
uses the parametric multivariate GARCH modelling method to estimate dynamic conditional
correlation; Guo, Box and Zhang (2017) combine semiparametric adaptive functional-coefficient
and GARCH modelling approaches to estimate dynamic covariance structure with the dimension
diverging at a polynomial rate of the sample size; Chen, Xu and Wu (2013) and Chen and Leng
(2016) use the kernel smoothing method to nonparametrically estimate each entry in the dynamic
covariance matrix and then apply the thresholding or generalised shrinkage technique when the
dimension N can be divergent at an exponential rate but the conditioning variable is univariate;
Engle, Ledoit and Wolf (2017) extends Engle (2002)’s dynamic conditional correlation models to
large dimensional case using a nonlinear shrinkage technique derived from the random matrix
theory.

Let Ut = (Ut1, . . . ,Utp)
ᵀ be a p-dimensional vector of conditioning variables which are station-

ary over time. We consider the conditional covariance matrix of Xt+1 given Ut:

Σ0(u) = E
(
Xt+1X

ᵀ

t+1|Ut = u
)
−
[
E(Xt+1|Ut = u)

][
E(Xt+1|Ut = u)

]ᵀ
,

where u = (u1, . . . ,up)
ᵀ is a vector of fixed constants. To simplify notation, we let

C0(u) = E
(
Xt+1X

ᵀ

t+1|Ut = u
)

and M0(u) = E(Xt+1|Ut = u),

and rewrite the conditional covariance matrix as

Σ0(u) = C0(u) −M0(u)M
ᵀ

0(u). (1.2)

In order to estimate Σ0(u), one only needs to estimate C0(u) and M0(u). A natural way to esti-
mate C0(u) and M0(u) is via nonparametric smoothing. However, although the nonparametric
estimation is robust to model misspecification, its finite-sample performance is often poor when
the dimension of conditioning variables Ut is moderately large (or even as small as three), owing
to the “curse of dimensionality”. Therefore, when Ut is a multivariate vector, a direct use of the
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nonparametric kernel approach as in Chen, Xu and Wu (2013) or Chen and Leng (2016) would be
inappropriate, and an alternative technique is needed. The conditioning variables may be chosen
as the lagged terms of some elements of Xt or some low-dimensional factor variables which can be
either observable or latent. In practice, many variables including momentum measures, seasonal
dummy variables, past earnings and transaction volume, have been used to predict the mean and
variance of stock returns.

Letting σ0
ij(u) and c0

ij(u) be the (i, j)-entry of the matrices Σ0(u) and C0(u), respectively, and
m0
i(u) be the i-th element of M0(u), it follows from (1.2) that

σ0
ij(u) = c

0
ij(u) −m

0
i(u)m

0
j(u), 1 6 i, j 6 N. (1.3)

Instead of estimating m0
i(u) and c0

ij(u) directly via nonparametric smoothing, we approximate
them using the Model Averaging MArginal Regression (MAMAR) (Li, Linton and Lu, 2015), i.e.,

m0
i(u) ≈ bi,0 +

p∑
k=1

bi,kE(Xt+1,i|Utk = uk) =: bi,0 +

p∑
k=1

bi,kmi,k(uk), 1 6 i 6 N, (1.4)

where bi,k are unknown parameters which may be regarded as “weights” for marginal mean
regression models; and similarly for c0

ij(u)

c0
ij(u) ≈ aij,0 +

p∑
k=1

aij,kE(Xt+1,iXt+1,j|Utk = uk) =: aij,0 +

p∑
k=1

aij,kcij,k(uk), 1 6 i, j 6 N, (1.5)

where aij,k are unknown weighting parameters. In (1.4) and (1.5), bothmi,k(uk) and cij,k(uk) are
univariate nonparametric functions and can be well estimated by commonly used nonparamet-
ric methods without incurring the curse of dimensionality. The MAMAR method provides an
alternative way to estimate nonparametric joint mean regression with multiple regressors. The
MAMAR approximation is introduced by Li, Linton and Lu (2015) in a semiparametric time series
setting, and is applied to semiparametric dynamic portfolio choice by Chen et al (2016) and further
generalised to the ultra-high dimensional time series setting by Chen et al (2018). A similar idea is
also used by Fan et al (2016) in high-dimensional classification.

The accuracy of the MAMAR approximation to the joint regression functions relies on the
choice of the weight parameters, i.e., bi,k and aij,k in (1.4) and (1.5), respectively. Section 2.1
below derives the theoretically optimal weights and consequently obtains a proxy, Σ

?

A(u), of
the true dynamic covariance matrix Σ0(u). A two-stage semiparametric method is proposed to
estimate each entry of Σ

?

A(u): in stage 1, the kernel smoothing method is used to estimate the
marginal regression functionsmi,k(uk) and cij,k(uk); in stage 2, the least squares method is used to
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estimate the optimal weights in the MAMAR approximation by replacing the marginal regression
functions with their estimates obtained from stage 1 and then treating them as “regressors” in
approximate linear models associated withm0

i(u) and c0
ij(u). Based on the above, an estimate of

the optimal MAMAR approximation of m0
i(u) and c0

ij(u) can be constructed via (1.4) and (1.5),
and subsequently the optimal MAMAR approximation of σ0

ij(u) can be estimated via (1.3). Finally,
a generalised shrinkage technique is applied to the obtained covariance matrix to produce a non-
degenerate estimate that has its small entries forced to be zero. Under some mild conditions and
the assumption that Σ

?

A(u) is approximately sparse, we derive the uniform consistency results for
estimators of Σ

?

A(u) and its inverse. These results also hold for the true covariance matrix Σ0(u)

as long as Σ
?

A(u) and Σ0(u) are sufficiently “close”. The sparsity result for the semiparametric
shrinkage estimator is established as well. In addition, we introduce two modification techniques
in semiparametric large covariance matrix estimation to guarantee that the estimated covariance
matrix is positive definite in finite samples.

Two interesting extensions of the developed semiparametric MAMAR covariance matrix esti-
mation are explored in the present paper. The first one is to consider the case where the number
of conditioning variables is divergent as either T or N increases. A penalised MAMAR method
is introduced to simultaneously estimate each entry in the large dynamic covariance matrix and
select significant conditioning variables. The second extension is to consider the more general
setting that the high-dimensional time series random vector Xt is driven by some latent common
factors and satisfy the approximate factor model structure. In this case, the approximate sparsity
assumption on the covariance structure of Xt is weakened to the so-called conditional sparsity.
The principal component method is applied to estimate the factors and factor loadings (up to an
appropriate rotation) as well as the idiosyncratic errors. The semiparametric MAMAR method
is used to estimate the dynamic covariance matrices for the low-dimensional estimated factor
vector and high-dimensional estimated error vector, which are then combined with the generalised
shrinkage technique to obtain the dynamic covariance matrix estimation of Xt.

The rest of the paper is organised as follows. Section 2 derives the optimal weights in the
MAMAR approximation (1.4) and (1.5), and introduces the semiparametric shrinkage method
to estimate the dynamic covariance matrix. Section 3 gives the limit theorems of the developed
estimators. Section 4 introduces two modification techniques to guarantee the positive definiteness
of the dynamic covariance matrix estimation, and discusses the choice of tuning parameter in
the generalised shrinkage method. Section 5 reports finite-sample simulation studies of our
methodology as well as an application to construct global minimum variance portfolios using
the data consisted of 500 daily returns on stocks listed on New York Stock Exchange. Section 6
discusses some possible extensions and Section 7 concludes the paper. The proofs of the main
results and some technical lemmas are given in the appendix. Throughout the paper, we use
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λmin(·) and λmax(·) to denote the minimum and maximum eigenvalues of a matrix; ‖ · ‖O to denote
the operator (or spectral) norm defined as ‖∆‖O = supx {‖∆x‖ : ‖x‖ = 1} for a q × q matrix
∆ = (δij)q×q, where ‖x‖ =

(∑q
i=1 x

2
i

)1/2 is the Euclidean norm; and ‖ · ‖F to denote the Frobenius

norm defined as‖∆‖F =
(∑q

i=1

∑q
j=1 δ

2
ij

)1/2
=
[
Tr(∆∆

ᵀ
)
]1/2

, where Tr(·) denotes the trace of a
matrix.

2 Estimation methodology

In this section we introduce an estimation method for the dynamic covariance matrix via the
MAMAR approximation. It combines a semiparametric least squares method and the generalised
shrinkage technique to produce reliable large covariance matrix estimation. We start with an
introduction of the MAMAR approximation in our context and then derive the theoretically
optimal weights in the approximation.

2.1 Optimal weights in the MAMAR approximation

For each k = 0, 1, . . . ,p, let Ak = (aij,k)N×N be a matrix consisting of the weights in (1.5) and
Ck(uk) = [cij,k(uk)]N×N be a matrix consisting of the conditional means of Xt+1,iXt+1,j (for given
Utk = uk) in (1.5). Then, the MAMAR approximation for C0(u) can be written in matrix form as

C0(u) ≈ A0 +A1 � C1(u1) + · · ·+Ap � Cp(up) =: CA(u), (2.1)

where� denotes the Hadamard product. Similarly, we have the following MAMAR approximation
for M0(u)

M0(u) ≈ B0 +B1 �M1(u1) + · · ·+Bp �Mp(up) =: MA(u), (2.2)

where for k = 0, 1, . . . ,p, Bk = (b1,k,b2,k, . . . ,bN,k)
ᵀ is a vector consisting of the weights in (1.4)

and Mk(uk) = [m1,k(uk),m2,k(uk), . . . ,mN,k(uk)]
ᵀ

is a vector consisting of the conditional means
of Xt+1,i (for given Utk = uk) in (1.4). Combining (2.1) and (2.2), we readily have the following
MAMAR approximation for Σ0(u)

Σ0(u) ≈

[
A0 +

p∑
k=1

Ak � Ck(uk)

]
−

[
B0 +

p∑
k=1

Bk �Mk(uk)

][
B0 +

p∑
k=1

Bk �Mk(uk)

]ᵀ

= CA(u) −MA(u)M
ᵀ

A(u) =: ΣA(u). (2.3)

The matrix ΣA(u) on the right hand side of (2.3) can be viewed as a semiparametric approxi-
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mation of Σ0(u), in which the weights aij,k and bi,k play an important role. These weights have
to be appropriately chosen in order to achieve optimal MAMAR approximation. We next derive
the theoretically optimal weights. For 1 6 i, j 6 N, we may choose the optimal weights a?

ij,k,
k = 0, 1, . . . ,p, so that they minimise

E

[
Xt+1,iXt+1,j − aij,0 −

p∑
k=1

aij,kE(Xt+1,iXt+1,j|Utk)

]2

.

Following standard calculations (c.f., Li, Linton and Lu, 2015), we have the following solution for
the theoretically optimal weights

(
a?
ij,1, . . . ,a?

ij,p

)ᵀ
=Ω−1

XX,ijVXX,ij, a?
ij,0 =

(
1 −

p∑
k=1

a?
ij,k

)
E(XtiXtj), (2.4)

whereΩXX,ij is a p× pmatrix with the (k, l)-entry being

ωij,kl = Cov [E(Xt+1,iXt+1,j|Utk), E(Xt+1,iXt+1,j|Utl)] = Cov [cij,k(Utk), cij,l(Utl)] ,

and VXX,ij is a p-dimensional column vector with the k-th element being

vij,k = Cov [E(Xt+1,iXt+1,j|Utk),Xt+1,iXt+1,j] = Cov [cij,k(Utk),Xt+1,iXt+1,j] = Var [cij,k(Utk)] .

We thus obtain the optimal weight matrix A
?

k from a?
ij,k, k = 0, 1, . . . ,p, and subsequently the

theoretically optimal MAMAR approximation to C0(u):

C
?

A(u) := A
?

0 +

p∑
k=1

A
?

k � Ck(uk). (2.5)

Similarly, we can also derive the optimal weights b?i,k in the MAMAR approximation (1.4) and
consequently obtain the optimal weight vector B

?

k from b?i,k, k = 0, 1, . . . ,p. The definitions of
b?i,k are analogous to a?

ij,k but with Xt+1,iXt+1,j and cij,k(Utk) replaced by Xt+1,i and mi,k(Utk),
respectively. The optimal MAMAR approximation to M0(u) is obtained via

M
?

A(u) := B
?

0 +

p∑
k=1

B
?

k �Mk(uk). (2.6)

Combining (2.3), (2.5) and (2.6), we obtain the optimal MAMAR approximation to Σ0(u):

Σ
?

A(u) := C
?

A(u) −M
?

A(u)
[
M

?

A(u)
]ᵀ

(2.7)
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The matrix Σ
?

A(u) serves as a proxy for Σ0(u). Throughout the paper, we assume that Σ
?

A(u) is
positive definite uniformly over u. Our aim is to consistently estimate Σ

?

A(u). This will be done by
a semiparametric shrinkage method.

2.2 Semiparametric shrinkage estimation

We next introduce a two-stage semiparametric method to estimatem0
i(u) and c0

ij(u), respectively.

STAGE 1. As both mi,k(uk) and cij,k(uk) are univariate functions, they can be well estimated by
the kernel method, i.e.,

m̂i,k(uk) =

[
T−1∑
t=1

K

(
Utk − uk
h1

)
Xt+1,i

]
/

[
T−1∑
t=1

K

(
Utk − uk
h1

)]
, 1 6 k 6 p, 1 6 i 6 N,

and

ĉij,k(uk) =

[
T−1∑
t=1

K

(
Utk − uk
h2

)
Xt+1,iXt+1,j

]
/

[
T−1∑
t=1

K

(
Utk − uk
h2

)]
, 1 6 k 6 p, 1 6 i, j 6 N,

where K(·) is a kernel function, h1 and h2 are two bandwidths. Other nonparametric estimation
methods such as the local polynomial method (Fan and Gijbels, 1996) and the sieve method (Chen,
2007) are equally applicable here.

STAGE 2. With the kernel estimates in stage 1, we have the following approximate linear regression
models:

Xt+1,i ≈ bi,0 +
p∑
k=1

bi,km̂i,k(Utk), 1 6 i 6 N, (2.8)

and

Xt+1,iXt+1,j ≈ aij,0 +
p∑
k=1

aij,kĉij,k(Utk), 1 6 i, j 6 N. (2.9)

Treating ĉij,k(Utk) as “regressors” in (2.9) and using the ordinary least squares, we may obtain an
estimate of the optimal weights defined in (2.4):

(âij,1, . . . , âij,p)
ᵀ

= Ω̂
−1
XX,ijV̂XX,ij (2.10)

and

âij,0 =
1

T − 1

T−1∑
t=1

Xt+1,iXt+1,j −

p∑
k=1

âij,k

(
1

T − 1

T−1∑
t=1

ĉij,k(Utk)

)
, (2.11)
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where Ω̂XX,ij is a p× pmatrix with the (k, l)-entry being

ω̂ij,kl =
1

T − 1

T−1∑
t=1

ĉcij,k(Utk)ĉ
c
ij,l(Utl), ĉ

c
ij,k(Utk) = ĉij,k(Utk) −

1
T − 1

T−1∑
s=1

ĉij,k(Usk),

and V̂XX,ij is a p-dimensional column vector with the k-th element being

v̂ij,k =
1

T − 1

T−1∑
t=1

ĉcij,k(Utk)X
c
t+1,(i,j), X

c
t+1,(i,j) = Xt+1,iXt+1,j −

1
T − 1

T−1∑
s=1

Xs+1,iXs+1,j.

Analogously, treating m̂i,k(Utk) as “regressors” in (2.8) and then using the ordinary least squares,
we may obtain estimates of the optimal weights b?i,k, k = 0, 1, . . . ,p, defined in Section 2.1, and
denote them by b̂i,k, k = 0, 1, . . . ,p. The definitions of b̂i,k are similar to those of âij,k in (2.10) and
(2.11) but with Xt+1,iXt+1,j and ĉij,k(Utk) replaced by Xt+1,i and m̂i,k(Utk), respectively.

As a result, an estimate of σ?ij(u), the (i, j)-entry in Σ
?

A(u), can be obtained as

σ̂ij(u) = ĉij(u) − m̂i(u)m̂j(u), (2.12)

where

ĉij(u) = âij,0 +

p∑
k=1

âij,kĉij,k(uk), m̂i(u) = b̂i,0 +
p∑
k=1

b̂i,km̂i,k(uk).

A naive estimate, Σ̂(u), of Σ
?

A(u) uses σ̂ij(u) directly as its entries, i.e.,

Σ̂(u) = [σ̂ij(u)]N×N .

Unfortunately, this matrix gives a poor estimation of Σ0(u) when the dimension N is ultra large.
In this case, a commonly-used approach is to use a shrinkage method on Σ̂(u) so that very small
values of σ̂ij(u) are forced to zero. We follow the same approach and denote sρ(·) a shrinkage
function that satisfies the following three conditions: (i) |sρ(z)| 6 |z| for z ∈ R (the real line); (ii)
sρ(z) = 0 if |z| 6 ρ; (iii) |sρ(z) − z| 6 ρ, where ρ is a tuning parameter that controls the amount of
shrinkage. It is easy to show that some commonly-used shrinkage methods including the hard
thresholding, soft thresholding and SCAD satisfy the three conditions. To allow for different
amount of shrinkage for different values of u, we will use a variable tuning parameter, ρ(u) and
define

σ̃ij(u) = sρ(u) (σ̂ij(u)) , 1 6 i, j 6 N. (2.13)

Then let
Σ̃(u) = [σ̃ij(u)]N×N , (2.14)
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be the shrinkage estimator of Σ
?

A(u). The asymptotic properties of Σ̃(u) will be explored in Section
3 below. Since thus defined Σ̃(u) is not necessarily positive definite in finite samples, in Section
4.1 we will introduce two methods to modify Σ̃(u) to guarantee the positive definiteness of the
resulting covariance matrix estimates.

3 Large-sample theory

In this section we first state the regularity conditions required for establishing the limit theorems
of the large dynamic covariance matrix estimators developed in Section 2, and then present these
theorems in Section 3.2.

3.1 Technical assumptions

Some of the assumptions presented below may not be the weakest possible, but they are imposed
to facilitate proofs of our limit theorems and can be relaxed at the cost of more lengthy proofs.

ASSUMPTION 1. (i) The process {(Xt,Ut)}t>1 is stationary and α-mixing dependent with the
mixing coefficient decaying to zero at a geometric rate, i.e., αk ∼ cαγ

k with 0 < γ < 1 and cα
being a positive constant.

(ii) The variables Xti, 1 6 i 6 N, satisfy the following moment condition:

max
16i6N

E
[
exp{sX2

ti}
]
6 cX, 0 < s 6 s0, (3.1)

where cX and s0 are two positive constants.

(iii) The conditioning variables Ut have a compact support denoted by U =
∏p
k=1 Uk, where

Uk = [ak,bk] is the support of the k-th conditional variable Utk. The marginal density
functions of Utk, fk(·), 1 6 k 6 p, are continuous and uniformly bounded away from zero on
Uk, i.e., there exists a positive constant cf such that

min
16k6p

inf
ak6uk6bk

fk(uk) > cf > 0.

In addition, the marginal density functions fk(·), 1 6 k 6 p, have continuous derivatives up
to the second order.

ASSUMPTION 2. (i) The marginal regression functions cij,k(·) and mi,k(·) are continuous and
uniformly bounded over 1 6 i, j 6 N and 1 6 k 6 p. Furthermore, they have continuous
and uniformly bounded derivatives up to the second order.
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(ii) For 1 6 i, j 6 N, the p× pmatrixΩXX,ij defined in (2.4) is positive definite and satisfies

0 < cΩXX
6 min

16i,j6N
λmin(ΩXX,ij) 6 max

16i,j6N
λmax(ΩXX,ij) 6 cΩXX

<∞. (3.2)

The analogous condition also holds for the matrixΩX,i whose (k, l)-entry is defined as

ωi,kl = Cov [E(Xt+1,i|Utk), E(Xt+1,i|Utl)] = Cov [mi,k(Utk),mi,l(Utl)] .

ASSUMPTION 3. (i) The kernel function K(·) is symmetric and Lipschitz continuous and has a
compact support, say [−1, 1].

(ii) The bandwidths h1 and h2 satisfy h1 → 0 and h2 → 0, and there exists 0 < ι < 1/2 so that

T 1−ιh1

log3(N∨ T)
→∞,

T 1−2ιh2

log3(N∨ T)
→∞, (3.3)

where x∨ y denotes the maximum of x and y.

(iii) The dimension, N, of X satisfies (NT) exp{−sT ι} = o(1) for some 0 < s < s0, where ι was
defined in Assumption 3(ii) and s0 was defined in Assumption 1(ii).

ASSUMPTION 4. The variable tuning parameter can be written as ρ(u) =M0(u)τT ,N, whereM0(u)

is a positive function satisfying cM < infu∈UM0(u) 6 supu∈UM0(u) <∞with cM being a
sufficiently large positive constant, and

τT ,N =
√

log(N∨ T)/(Th1) +
√

log(N∨ T)/(Th2) + h
2
1 + h

2
2.

Most of the above assumptions are commonly used and can be found in some existing literature.
The stationarity and α-mixing dependence condition in Assumption 1(i) relaxes the restriction
of independent observations usually imposed in the literature on high-dimensional covariance
matrix estimation (c.f. Bickel and Levina, 2008a,b). For some classic vector time series processes
such as vector auto-regressive processes, it is easy to verify Assumption 1(i) under some mild
conditions. It is possible to allow the even more general setting of local stationarity, say Vogt
(2012), which includes deterministic local trends, but for simplicity we have chosen not to go
there. The moment condition (3.1) is similar to those in Bickel and Levina (2008a,b) and Chen
and Leng (2016), and can be replaced by the weaker condition of E(|Xti|κ) for κ > 2 sufficiently
large if the dimension N diverges at a polynomial rate of T . The restriction of the conditioning
variables Ut having a compact support in Assumption 1(iii) is imposed mainly in order to facilitate
the proofs of our asymptotic results and can be removed by using an appropriate truncation
technique on Ut (c.f., Remark 1 in Chen et al, 2018). The smoothness condition on the marginal
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regression functions in Assumption 2(i) is commonly used in kernel smoothing, and it is relevant
to the asymptotic bias of the kernel estimators (c.f., Wand and Jones, 1995). Assumption 2(ii) is
crucial to the unique existence of optimal weights in the MAMAR approximation of c0

ij(·) and
m0
i(·). Many commonly-used kernel functions, such as the uniform kernel and the Epanechnikov

kernel, satisfy the conditions in Assumption 3(i). The conditions in Assumptions 3(ii) and (iii)
indicate that the dimension N can be divergent at an exponential rate of T . For example, when h1

and h2 have the well-known optimal rate of T−1/5, we may show that N can be divergent at a rate
of exp{Tζ} with 0 < ζ < 1/10 while Assumptions 3(ii) and (iii) hold. Assumption 4 is critical to
ensure the validity of the shrinkage method, and Section 4.2 below will discuss how to select ρ(u)
in numerical studies.

3.2 Asymptotic properties

In order to derive some sensible asymptotic results for the dynamic covariance matrix estimators
defined in Section 2.2, we extend the sparsity assumption in Bickel and Levina (2008a), Rothman,
Levina and Zhu (2009) and Cai and Liu (2011) and assume that Σ

?

A(u) is approximately sparse
uniformly over u ∈ U. Specifically, this means that there exist cN and M? such that Σ

?

A(·) ∈
SA(q, cN,M?,U), where

SA(q, cN,M?,U) =

Σ(u),u ∈ U
∣∣ sup
u∈U

σii(u) 6M? <∞, sup
u∈U

N∑
j=1

|σij(u)|
q 6 cN ∀ 1 6 i 6 N

 (3.4)

with 0 6 q < 1. In particular, if q = 0, SA(q, cN,M?,U) becomes

SA(0, cN,M?,U) =

Σ(u),u ∈ U
∣∣ sup
u∈U

σii(u) 6M? <∞, sup
u∈U

N∑
j=1

I
(
|σij(u)| 6= 0

)
6 cN ∀ 1 6 i 6 N

 ,

and we have Σ
?

A(·) ∈ SA(0, cN,M?,U), the exact sparsity assumption, uniformly over u ∈ U. The
above assumption has been used by Chen and Leng (2016) for nonparametric estimation of large
covariance matrices and would facilitate the asymptotic analysis of the developed semiparametric
large covariance matrix estimation. However, the sparsity assumption may be violated in some
empirical applications such as the covariance structure of vast stock returns. Such an issue will be
addressed later in Section 6.2, where the semiparametric shrinkage method will be generalised to
estimate large dynamic covariance matrices in the more general setting of conditional sparsity.

Define Uh? =
∏p
k=1 Uk,h? with Uk,h? = [ak + h?,bk − h?] and h? = h1 ∨ h2. Without loss

of generality, we assume that, for each 1 6 k 6 p, all of the observations Utk, 1 6 t 6 T , are
located in the intervals [ak + h?,bk − h?] (otherwise a truncation technique can be applied when
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constructing the semiparametric estimators defined in Section 2.2). Theorem 1 below gives the
uniform consistency of the semiparametric shrinkage estimator of Σ

?

A(u) and its inverse over Uh?
.

The main reason for considering the uniform consistency only over the set Uh?
rather than the

whole support U of the conditioning variables is to avoid the boundary effect in kernel estimation
(c.f., Fan and Gijbels, 1996).

THEOREM 1. Suppose that Assumptions 1–4 are satisfied, p is fixed, and Σ
?

A(·) ∈ SA(q, cN,M?,U).

(i) For Σ̃(u), we have

sup
u∈Uh?

∥∥∥Σ̃(u) − Σ?

A(u)
∥∥∥
O
= OP

(
cN · τ1−q

T ,N

)
, 0 6 q < 1, (3.5)

where τT ,N was defined in Assumption 4 and ‖ · ‖O denotes the operator norm.

(ii) If, in addition, cNτ
1−q
T ,N = o(1) and there exists a positive constant cΣ such that

inf
u∈U

λmin
(
Σ

?

A(u)
)
> cΣ > 0, (3.6)

then we have

sup
u∈Uh?

∥∥∥∥Σ̃−1

(u) − Σ
∗−1

A (u)

∥∥∥∥
O

= OP

(
cN · τ1−q

T ,N

)
, 0 6 q < 1. (3.7)

The uniform convergence rate in the above theorem is quite general. Its dependence on the
sparsity structure of the matrix Σ

?

A(u) is shown through cN, which controls the sparsity level
in the covariance matrix and may be divergent to infinity. If we assume that h1 = h2 = h and
h2 = O

(√
log(N∨ T)/(Th)

)
, τT ,N can be simplified to

√
log(N∨ T)/(Th). Then we may find that

our uniform convergence rate is comparable to the rate derived by Bickel and Levina (2008a) and
Rothman, Levina and Zhu (2009) if we treat Th as the “effective” sample size in nonparametric
kernel-based estimation. In the special case of q = 0 and fixed N, log(N∨ T) = log T and it would
be reasonable to assume that cN is fixed. Consequently, the rate in (3.5) and (3.7) reduces to

OP(τT ,N) = OP

(√
log T/(Th1) +

√
log T/(Th2) + h

2
1 + h

2
2

)
,

the same as the uniform convergence rate for nonparametric kernel-based estimators (c.f., Bosq,
1998).

If we assume that the true dynamic covariance matrix Σ0(·) belongs to SA(q, cN,M?,U), and
Σ

?

A(u) is sufficiently close to Σ0(u) in the sense that there exists bT ,N with bT ,N → 0 such that
supu∈U

∥∥Σ?

A(u) − Σ0(u)
∥∥
O
= O(bT ,N) and max16i,j6N supu∈U

∣∣σ?ij(u) − σ0
ij(u)

∣∣ = O(τT ,N), by The-
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orem 1 and its proof in Appendix A, we may show that

sup
u∈Uh?

∥∥∥Σ̃(u) − Σ0(u)
∥∥∥
O
6 sup
u∈Uh?

∥∥∥Σ̃(u) − Σ?

A(u)
∥∥∥
O
+ sup
u∈Uh?

∥∥Σ?

A(u) − Σ0(u)
∥∥
O

= OP

(
cN · τ1−q

T ,N

)
+O (bT ,N) = OP

(
cN · τ1−q

T ,N + bT ,N

)
. (3.8)

Therefore, if the rate bT ,N is dominated by cN · τ1−q
T ,N , the uniform convergence rate in (3.5) still

applies when Σ
?

A(u) is replaced by Σ0(u), the true dynamic covariance matrix. This shows that
the accuracy of the proposed semiparametric MAMAR approximation and general shrinkage
technique relies on the closeness of Σ

?

A(u) to Σ0(u). In fact, if the MAMAR approximation in
the covariance structure is poor, Σ

?

A(u) might not satisfy the sparsity structure even when the
true dynamic covariance matrix Σ0(u) is sparse, leading to poor numerical performance in finite
samples.

The following theorem shows the sparsity property of the semiparametric shrinkage estimator
defined in Section 2.2.

THEOREM 2. Suppose that Assumptions 1–4 are satisfied and p is fixed. For any u ∈ Uh? and
1 6 i, j 6 N, if σ?ij(u) = 0, we must have σ̃ij(u) = 0 with probability approaching one.

4 Modified covariance matrix estimation and variable tuning pa-
rameter selection

In this section we first modify the semiparametric shrinkage estimation developed in Section 2.2 to
ensure the positive definiteness of the estimated dynamic covariance matrix in finite samples, and
then discuss the choice of the variable tuning parameter ρ(u).

4.1 Modified dynamic covariance matrix estimation

In practical application, the estimated covariance matrix Σ̃(u) constructed in Section 2.2 is not
necessarily uniformly positive definite on U. To fix this problem, we next introduce two simple
modification techniques for our semiparametric shrinkage estimation method.

TYPE I MODIFICATION. Let λ̃1(u) > λ̃2(u) > · · · > λ̃N(u) be the eigenvalues of Σ̃(u) arranged in
a non-increasing order and m1,T > 0 be a tuning parameter which tends to zero as the sample
size T goes to infinity. When the smallest eigenvalue λ̃N(u) is negative, the matrix Σ̃(u) is clearly
not positive definite. In this case, one way to modify Σ̃(u) is to follow Chen and Leng (2016) and
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construct
Σ̃C(u) = Σ̃(u) +

[
m1,T − λ̃N(u)

]
· IN×N, (4.1)

where IN×N is theN×N identity matrix. This modification guarantees that the smallest eigenvalue
of Σ̃C(u) is uniformly larger than zero, indicating that Σ̃C(u) is uniformly positive definite. In
addition, Σ̃C(u) can retain the approximate sparsity structure of Σ

?

A(u) as described in (3.4). Hence,
we can use Σ̃C(u) as an alternative estimate of Σ

?

A(u) when λ̃N(u) is negative. Consequently,
define the following modified version of Σ̃(u):

Σ̃1,M(u) = Σ̃(u) · I
(
λ̃N(u) > 0

)
+ Σ̃C(u) · I

(
λ̃N(u) 6 0

)
= Σ̃(u) +

[
m1,T − λ̃N(u)

]
IN×N · I

(
λ̃N(u) 6 0

)
, (4.2)

where I(·) is an indicator function. Note that when λ̃N(u) 6 0, by Weyl’s inequality and Theorem
1, we have∣∣∣̃λN(u)∣∣∣ 6 ∣∣∣̃λN(u) − λmin(Σ

?

A(u))
∣∣∣ 6 sup

u∈Uh?

∥∥∥Σ̃(u) − Σ?

A(u)
∥∥∥
O
= OP

(
cN · τ1−q

T ,N

)
, (4.3)

where λmin(Σ
?

A(u)) represents the minimum eigenvalue of Σ
?

A(u). Hence,

sup
u∈Uh?

∥∥∥Σ̃1,M(u) − Σ
?

A(u)
∥∥∥
O
6 sup
u∈Uh?

∥∥∥Σ̃(u) − Σ?

A(u)
∥∥∥
O
+OP

(
cN · τ1−q

T ,N +m1,T

)
. (4.4)

By choosing m1,T = O(cdτ
1−q
n,d ) and using Theorem 1, we obtain the same uniform convergence

rate for Σ̃1,M(u) as that for Σ̃(u) in Theorem 1. Glad, Hjort and Ushakov (2003) consider a similar
modification for density estimators that are not bona fide densities; and they show that the
modification improves the performance of the density estimators as measured by the integrated
mean squared error.

TYPE II MODIFICATION. The modification technique defined in (4.1) and (4.2) modifies all the
eigenvalues of Σ̃(u). The modification made on eigenvalues, which are significantly larger than
zero, however, may be unnecessary and, if done, would affect the finite-sample performance of the
resulting covariance matrix estimate. Hence, we next introduce a different modification technique.
Again let λ̃1(u) > λ̃2(u) > · · · > λ̃N(u) be the eigenvalues of Σ̃(u), and let φ̃k(u) be the normalised
eigenvector corresponding to the eigenvalue λ̃k(u). Let m2,T > 0 be a tuning parameter which
tends to zero as the sample size T goes to infinity, and define N1 := N1(m2,T ) = max{1 6 k 6 N :
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λ̃k(u) > m2,T }. By standard eigen-decomposition, we have

Σ̃(u) =

N∑
k=1

λ̃k(u)φ̃k(u)φ̃
ᵀ

k(u) =

N1∑
k=1

λ̃k(u)φ̃k(u)φ̃
ᵀ

k(u) +

N∑
k=N1+1

λ̃k(u)φ̃k(u)φ̃
ᵀ

k(u). (4.5)

A natural way to achieve positive definiteness is to replace the nonpositive eigenvalues, λ̃k(u),
k = N1 + 1, · · · ,N, by appropriate positive values in the eigen-decomposition (4.5). Define

λ̃k,M(u) = m2,T · I
(
λ̃k(u) 6 m2,T

)
, k = N1 + 1, · · · ,N. (4.6)

Another modified version of Σ̃(u) is defined as

Σ̃2,M(u) =

N1∑
k=1

λ̃k(u)φ̃k(u)φ̃
ᵀ

k(u) +

N∑
k=N1+1

λ̃k,M(u)φ̃k(u)φ̃
ᵀ

k(u). (4.7)

With Theorem 1 in Section 3, we can also derive the uniform consistency for this modified semi-
parametric shrinkage estimator. Note that when λ̃k(u) 6 0, the convergence result in (4.3) also
holds with λ̃N(u) replaced by λ̃k(u). This indicates that

sup
u∈Uh?

∥∥∥Σ̃(u) − Σ̃2,M(u)
∥∥∥
O
= OP

(
cN · τ1−q

T ,N +m2,T

)
.

This, together with Theorem 1, leads to

sup
u∈Uh?

∥∥∥Σ̃2,M(u) − Σ
?

A(u)
∥∥∥
O
6 sup
u∈Uh?

∥∥∥Σ̃(u) − Σ?

A(u)
∥∥∥
O
+ sup
u∈Uh?

∥∥∥Σ̃(u) − Σ̃2,M(u)
∥∥∥
O

= OP

(
cN · τ1−q

T ,N +m2,T

)
. (4.8)

By choosing m2,T = O
(
cNτ

1−q
T ,N

)
, we obtain the same uniform convergence rate for Σ̃2,M(u) as

that for Σ̃(u) in Theorem 1. With Σ̃2,M(u), only the non-positive eigenvalues of Σ̃(u) are modified.
However, a disadvantage of this modification is that it may affect the sparsity structure of the
estimated covariance matrix.

4.2 Choice of the variable tuning parameter

For any shrinkage method for covariance matrix estimation, it is essential to choose an appropriate
tuning parameter. Since the variables (Xt,Ut) are allowed to be serially correlated over time, the
tuning parameter selection criteria proposed in Bickel and Levina (2008b) or Chen and Leng (2016)
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for independent data may no longer work well in our setting. We hence modify their method as
follows.

STEP 1: For given u ∈ U, use a rolling window of size bT/2c + K and split data within each
window into two sub-samples of sizes T1 =

⌊
T
2

(
1 − 1

log(T/2)

)⌋
and T2 = bT/2c− T1 by leaving

out K observations in-between them, where T is the overall sample size and b·c denotes the
floor function.

STEP 2: Obtain Σ̃ρ(u),1,k(u) (the semiparametric shrinkage estimate of the dynamic covariance
matrix) from the first sub-sample of the k-th rolling window, and Σ̂2,k(u) (the naive estimate
without the generalised shrinkage applied) from the second sub-sample of the k-th rolling
window, k = 1, . . . ,MwithM = bT/(2K)c.

STEP 3: Choose the tuning parameter ρ(u) so that it minimises the sum of squared Frobenius
norm:

M∑
k=1

∥∥∥Σ̃ρ(u),1,k(u) − Σ̂2,k(u)
∥∥∥2

F
. (4.9)

The purpose for leaving out K observations in between the two subsamples in each rolling
window is to make these two subsamples have negligible correlation. The number of observations
left out, i.e. K, can depend on the strength of serial correlation in Xt. The stronger the serial
correlation, the larger the value of K can be. In the simulation studies in Section 5, we leave out
10 observations for a medium serial correlation of 0.5. The results show that the above selection
method has reasonably good numerical performance. It remains unclear whether such a choice
of variable tuning parameter is asymptotically optimal. This question will be left in our future
research.

5 Numerical studies

In this section, we first provide three simulated examples to examine the small-sample perfor-
mance of the proposed semiparametric covariance matrix estimation methods and then apply the
methods to construct global minimum variance portfolios from 500 stocks listed on New York
Stock Exchange. Throughout this section, we use the value 0.01 for the two parametersm1,T and
m2,T in the two modification methods detailed in Section 4.1. In the nonparametric estimation
of mi,k(uk) and cij,k(uk) in Section 2.2, we use the probability density function of the standard
normal distribution as the kernel function and the rule-of-thumb bandwidths as the smoothing
parameters.
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5.1 Simulation studies

In this section, we conduct some Monte-Carlo experiments to examine the finite-sample perfor-
mance of the proposed methods for estimating large dynamic covariance matrix. In order to
provide a full performance study, we consider three different sparsity patterns of the underly-
ing covariance matrix, i.e., the dynamic banded structure, the dynamic AR(1) structure, and the
varying-sparsity structure. These are the multivariate conditioning variables extension of the
covariance models considered in Examples 1-3 of Chen and Leng (2016). To measure estimation
accuracy, we consider the Frobenius losses, i.e., ‖Σ0(u) − Σ̆(u)‖F, for an estimate Σ̆(u) at a point
u. We compare the accuracy of our semiparametric shrinkage estimation, defined in (2.14), with
that of the generalised thresholding of the sample covariance matrix, which treats the covariance
matrix as static. The estimator defined in (2.14) sometimes produces covariance matrices that are
not positive definite, in which case the modification in either (4.2) or (4.7) can be applied. Hence,
we also report the accuracy of the modified dynamic covariance matrix estimates. Four commonly
used shrinkage methods – the hard thresholding, soft thresholding, adaptive LASSO (A. LASSO)
and Smoothly Clipped Absolute Deviation (SCAD) – are considered in the simulation. Throughout
this section, the dimension of Xt,N, takes one of the values of 100, 300, and 500, and the dimension
of the conditioning vector Ut is set to be p = 3. The sample size is fixed at T = 300.

SIMULATED EXAMPLE 5.1. (Dynamic banded covariance matrix) The conditioning variables
Ut = (Ut1,Ut2,Ut3)

ᵀ are drawn from a VAR(1) process:

Ut = 0.5Ut−1 + vt, t = 1, . . . , T , (5.1)

with U0 = 0, where vt are i.i.d. three-dimensional random vectors following the N(0, I3×3)

distribution. For each t = 1, . . . , T , the N-dimensional vector Xt is generated from the multivariate
Gaussian distribution N(0, Σ0(Ut)), where

Σ0(Ut) =
{
σ0
ij(Ut)

}
d×d with σ0

ij(Ut) = 0.25× σij
( 3∑
k=1

Ut,k
)

(5.2)

and
σij(v) = exp(v/4) {I(i = j) + [φ(v) + 0.1]I(|i− j| = 1) + φ(v)I(|i− j| = 2)}

for any v ∈ R, in which φ(v) is the probability density function of the standard normal distribution.
Note that such a conditional covariance function σ0

ij(u) is non-additive in the elements of u. This
enables us to evaluate the performance of the MAMAR method for approximating entries of a
conditional covariance matrix that are non-additive and nonlinear.

The dynamic covariance matrix is estimated at the grid points: [−0.5, 0, 0.5]3 for U (in total
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Table 5.1: Average Frobenius losses (standard error) for Example 5.1

Method N = 100 N = 300 N = 500

Static

Hard 1.5300(0.2647) 3.1024(0.1531) 4.2396(0.3117)
Soft 1.7453(0.0294) 3.4345(0.0662) 4.4264(0.0891)
A. LASSO 1.6316(0.0409) 3.2965(0.0364) 4.2716(0.0459)
SCAD 1.7658(0.0320) 3.4050(0.0313) 4.4140(0.0385)

Dynamic

Hard 1.7501(0.0555) 3.2473(0.0687) 4.2552(0.0779)
Soft 1.5731(0.0403) 3.0388(0.0953) 4.0583(0.0959)
A. LASSO 1.6149(0.0451) 3.0412(0.1054) 4.0708(0.1016)
SCAD 1.6143(0.0484) 3.0325(0.0855) 4.0425(0.1090)
Hard 1.7534(0.0544) 3.2669(0.0626) 4.2604(0.0768)

Modified Soft 1.5739(0.0406) 3.0686(0.1193) 4.0564(0.0975)
Dynamic 1 A. LASSO 1.6150(0.0451) 3.0593(0.1028) 4.0713(0.1031)

SCAD 1.6151(0.0481) 3.0628(0.1352) 4.0457(0.1105)
Hard 1.7498(0.0556) 3.2460(0.0701) 4.2550(0.0780)

Modified Soft 1.5728(0.0403) 3.0373(0.0964) 4.0581(0.0959)
Dynamic 2 A. LASSO 1.6149(0.0451) 3.0404(0.1058) 4.0707(0.1015)

SCAD 1.6142(0.0485) 3.0315(0.0857) 4.0424(0.1090)

there are 27 grid points). The average Frobenius losses over 30 replications and their standard
errors (in parentheses) are summarised in Table 5.1. In this tables, “Static” refers to the estimation
by treating the underlying covariance matrix as static, “Dynamic” refers to the estimation by
our semiparametric shrinkage method detailed in Section 2, “Modified Dynamic 1” refers to
the modified dynamic covariance matrix estimation defined in (4.2), and “Modified Dynamic 2”
refers to the modified estimation defined in (4.7). In addition, “Hard”, “Soft”, “A. LASSO” and
“SCAD” in the tables represent thresholding by the methods of hard thresholding, soft thresholding,
adaptive LASSO and the smoothly clipped absolute deviation, respectively.

The results in Table 5.1 reveal that our semiparametric dynamic covariance matrix estimation via
the proposed MAMAR approximation and its modified versions outperform the static covariance
matrix estimation in all the three cases for N and in all thresholding methods except the hard
thresholding. The two modified dynamic covariance matrix estimators have similar performance
to their non-modified version. In addition, as the second modified estimator only modifies the
non-positive eigenvalues, it produces a bit more accurate estimation than the first modified one.

SIMULATED EXAMPLE 5.2. (Dynamic non-sparse covariance matrix) The specifications of the data
generating process are the same as those in Example 5.1, except that the dynamic covariance matrix
Σ0(Ut) is non-sparse. Specifically, the function σij(·) in (5.2) is assumed to follow the covariance
pattern of an AR(1) process:

σij(v) = exp(v/4) [φ(v)]|i−j|
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Table 5.2: Average Frobenius losses (standard error) for Example 5.2

Method N = 100 N = 300 N = 500

Static

Hard 1.3980(0.0313) 2.4738(0.0799) 3.1337(0.0574)
Soft 1.3126(0.0173) 2.3007(0.0329) 2.9927(0.1022)
A. LASSO 1.3096(0.0507) 2.3694(0.0666) 3.0549(0.0800)
SCAD 1.3460(0.0402) 2.4039(0.0827) 3.0587(0.0859)

Dynamic

Hard 1.2970(0.0159) 2.2666(0.0207) 2.9149(0.0318)
Soft 1.2610(0.0308) 2.2911(0.0340) 3.0054(0.0566)
A. LASSO 1.2515(0.0240) 2.2262(0.0247) 2.8799(0.0367)
SCAD 1.2604(0.0288) 2.2567(0.0381) 2.9203(0.0663)
Hard 1.2977(0.0161) 2.2666(0.0208) 2.9165(0.0336)

Modified Soft 1.2612(0.0312) 2.2922(0.0431) 3.0040(0.0505)
Dynamic 1 A. LASSO 1.2518(0.0243) 2.2278(0.0277) 2.8770(0.0321)

SCAD 1.2627(0.0321) 2.2590(0.0469) 2.9245(0.0696)
Hard 1.2969(0.0158) 2.2662(0.0203) 2.9146(0.0314)

Modified Soft 1.2608(0.0304) 2.2906(0.0337) 3.0052(0.0563)
Dynamic 2 A. LASSO 1.2513(0.0237) 2.2259(0.0244) 2.8798(0.0366)

SCAD 1.2601(0.0284) 2.2564(0.0377) 2.9201(0.0661)

for any v ∈ R. The dynamic covariance matrix is again estimated at the grid points [−0.5, 0, 0.5]3,
and the average Frobenius losses are summarised in Table 5.2. The proposed semiparametric
method and its modified versions outperform the sample covariance matrix estimation in almost
all the thresholding methods considered. The outperformance is more notable when the cross-
sectional dimension N is 300 or 500. This shows that our methods can estimate the non-sparse
dynamic covariance matrices with satisfactory accuracy.

SIMULATED EXAMPLE 5.3. (Dynamic covariance matrix with varying sparsity) Data on Ut and
Xt are generated in the same way as in Example 5.1 except that the dynamic covariance matrix
Σ0(Ut) has varying sparsity patterns. Specifically, Σ0(Ut) =

{
σ0
ij(Ut)

}
d×d, where

σ0
ij(Ut) = 0.4σij(Ut1) + 0.3σij(Ut2) + 0.3σij(Ut3)

and

σij(v) = exp(v/2)
{
I(i = j) + 0.5 exp

[
−

(v− 0.25)2

0.752 − (v− 0.25)2

]
I(−0.49 6 v 6 0.99)I(|i− j| = 1)

+0.4 exp
[
−

(v− 0.65)2

0.352 − (v− 0.65)2 I(0.31 6 v 6 0.99)I(|i− j| = 2)
]}

for any v ∈ R. The dynamic covariance matrix is again estimated at the grid points: [−0.5, 0, 0.5]3,
where the corresponding covariance matrix has different sparsity structures. For example, at point
(−0.5,−0.5,−0.5), the considered covariance matrix is diagonal; at point (0, 0, 0), only entries on
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Table 5.3: Average Frobenius losses (standard error) for Example 5.3

Method N = 100 N = 300 N = 500

Static

Hard 5.9166(0.1800) 10.3160(0.2429) 13.2730(0.3309)
Soft 5.2686(0.1919) 9.5356(0.1319) 12.3910(0.0886)
A. LASSO 5.6566(0.1795) 9.9110(0.1905) 12.7320(0.2467)
SCAD 5.8351(0.2540) 10.233(0.2380) 13.1670(0.3211)

Dynamic

Hard 5.5689(0.0592) 9.7132(0.1979) 12.5050(0.1156)
Soft 5.3613(0.0985) 9.7916(0.1920) 12.7590(0.1960)
A. LASSO 5.3986(0.0609) 9.5077(0.0942) 12.2770(0.0816)
SCAD 5.4613(0.0729) 9.6936(0.1306) 12.5380(0.1332)
Hard 5.5790(0.0986) 9.8320(0.1915) 12.5650(0.2671)

Modified Soft 5.3571(0.0877) 9.7923(0.2602) 12.7440(0.1911)
Dynamic 1 A. LASSO 5.3983(0.0600) 9.5130(0.1098) 12.2820(0.0946)

SCAD 5.4673(0.0933) 9.7292(0.2665) 12.5670(0.2061)
Hard 5.5680(0.0571) 9.7086(0.1757) 12.5040(0.1141)

Modified Soft 5.3600(0.0947) 9.7887(0.1846) 12.7580(0.1946)
Dynamic 2 A. LASSO 5.3984(0.0603) 9.5067(0.0915) 12.2760(0.0809)

SCAD 5.4604(0.0709) 9.6917(0.1254) 12.5370(0.1325)

the main diagonal and those that are one row above or below the main diagonal are nonzero;
at point (0.5, 0.5, 0.5), entries on the main diagonal and those that are one or two rows above or
below the main diagonal are nonzero. The average Frobenius losses are presented in Table 5.3,
which shows that our semiparametric dynamic covariance matrix estimation and its modified
versions outperform the static covariance matrix estimation in all the three cases forN and in all
thresholding methods except the soft thresholding.

5.2 An empirical example

In this section, we consider an application to construction of global minimum variance portfolios.
The data used are downloaded from Datastream and consist of daily returns (in %) on stocks
listed on New York Stock Exchange over the period 11/12/2008 – 10/04/2018. We select 500
stocks which have largest capitalisation (measured at the end of the period) among those stocks
that have complete trading history over this period. Also used, as the conditioning variables,
are the one-day-before returns (i.e., over the period 10/12/2009 – 09/04/2018) on the Fama-
French three factors, which are downloaded from Keneth French’s data library website http:
//mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. The
out-of-sample period is 11/12/2009 –10/04/2018.

Let Xt+1 be the vector of returns for day t+ 1, Ut be the vector of returns on Fama-French three
factors for day t, and Σt(u) = Cov(Xt+1|Ut = u) be the covariance matrix of stock returns for day
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Table 5.4: Out-of-sample performance of covariance matrix estimation

Method Equal-weighted Static Dynamic Modified Dynamic 1 Modified Dynamic 2
AVR(%) 11.1636 -1235.2540 -304.8696 6.6024 9.5256
STD(%) 16.5111 3965.4730 7678.0740 55.5814 11.5106
IR 0.6763 -0.3111 -0.0397 0.1191 0.8286

t+ 1 conditioning on the information on the three factors on day t. The global minimum variance
portfolio for day t+ 1 given Ut = u is obtained by solving

arg min
w
w

ᵀ
Σt(u)w subject to w

ᵀ
1 = 1,

where 1 is an N-dimensional column vector with each element being one, and N = 500. The
analytical solution to the above problem can be written as

w?
t =

Σ
−1

t (u)1

1ᵀ
Σ

−1

t (u)1
.

Note that we allow short selling, i.e., elements of w?
t can be negative, and we assume there is no

transaction cost. The minimum variance portfolio is updated daily, i.e., for each trading day in the
out-of-sample period, the 500× 500 covariance matrix Σt(u) is estimated at the end of the previous
trading day using data from most recent 250 trading days (which is roughly one year’s data) and
the minimum variance portfolio is constructed and held until the end of the current trading day.

After obtaining all the out-of-sample global minimum variance portfolio returns, we compute
their annualised average return (AVR), annualised standard deviation (STD) and the annualised
information ratio (IR), which is defined as the ratio of AVR to STD. The AVR, STD and IR will be
used as measures of performance of portfolios constructed using the following covariance matrix
estimates: Static (sample covariance matrix with SCAD thresholding), Dynamic (the proposed
semiparametric method with SCAD thresholding), Modified Dynamic 1 (the Dynamic estimation
with type I modification), and Modified Dynamic 2 (the Dynamic estimation with type II modifica-
tion). As a benchmark, we also consider the equally-weighted portfolio (each stock has a weight of
1/500). The results are summarised in Table 5.4.

As discussed in Engle, Ledoit and Wolf (2017), in the context of constructing global minimum
variance portfolios, the primary measure that should be used to evaluate the performance of
covariance matrix estimation methods is the STD. High AVR and IR are desirable but should be
of secondary importance. In this respect, the dynamic covariance matrix estimation with type
II modification outperforms the rest of the methods considered. We also note that the returns
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on minimum variance portfolios constructed using covariance matrix estimates from the Static
and Dynamic methods have large (in magnitude) average returns and standard deviations. This
is likely to be caused by some covariance matrix estimates from these two methods being non-
positive definite (as they are not corrected for non-positive definiteness as the last two methods
in Table 5.4). Another possible cause of the large standard deviations of the returns from the
Static and Dynamic methods is that the computation of the inverse of large (500× 500) covariance
matrices is unstable, which subsequently might also affected the performance of the two Modified
Dynamic approaches. With the equally weighted portfolio, there is not such a computational issue
and its performance is more stable.

6 Extensions

In this section, we consider extending our methodology to deal with the following two scenarios:
(i) the number of conditioning variables is divergent as the sample size increases, and (ii) the
large covariance matrix is conditionally sparse with Xt driven by some latent common factors and
satisfying the approximate factor model structure.

6.1 Extension 1: the dimension of Ut is large

In the previous sections, we limit attention to the case where the number of conditioning variables
is a fixed positive integer. However, it is often not uncommon to have a very large number of
candidate conditioning variables in practice. In this latter case, a direct application of the MAMAR
approximation and the semiparametric method proposed in Section 2.2 may result in poor and
unstable matrix estimation results. Motivated by a recent paper by Chen et al (2018) on high-
dimensional MAMAR method, we can circumvent this problem by assuming that the number
of conditioning variables which make “significant” contribution to estimating joint regression
functions, m0

i(u) and c0
ij(u), in (1.4) and (1.5) is relatively small, i.e., for each i and j, when p

is divergent, the number of nonzero weights bi,k and aij,k, 1 6 k 6 p, is relatively small. This
makes equations (1.4) and (1.5) fall into the classic sparsity framework commonly used in high-
dimensional variable or feature selection literature. To remove the insignificant conditioning
variables, we combine the penalisation and MAMAR techniques when estimating m0

i(u) and
c0
ij(u). Specifically, for each 1 6 i 6 N, to estimate

(
b?i,1, . . . ,b?i,p

)ᵀ
, we define the penalised

objective function:

Qi(bi,1, . . . ,bi,p) =
T−1∑
t=1

[
Xct+1,i −

p∑
k=1

bi,km̂
c
i,k(Utk)

]2

+ T

p∑
k=1

pλ1(|bi,k|), (6.1)
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where Xct+1,i = Xt+1,i−
1
T−1

∑T−1
s=1 Xs+1,i, m̂ci,k(Utk) = m̂i,k(Utk)−

1
T−1

∑T−1
s=1 m̂i,k(Usk), and pλ1(·) is

a penalty function with a tuning parameter λ1. The solution to the minimisation of Qi(bi,1, . . . ,bi,p)
is the penalised estimator of the optimal weights and is denoted by (bi,1, . . . ,bi,p)

ᵀ . The subsequent
intercept estimate, denoted by bi,0, can be calculated similarly to âij,0 in (2.11). For each 1 6 i, j 6 N,
to estimate

(
a?
ij,1, . . . ,a?

ij,p

)ᵀ
, we define the penalised objective function:

Qij(aij,1, . . . ,aij,p) =
T−1∑
t=1

[
Xct+1,(i,j) −

p∑
k=1

aij,kĉ
c
ij,k(Utk)

]2

+ T

p∑
k=1

pλ2(|aij,k|), (6.2)

where Xct+1,(i,j) = Xt+1,iXt+1,j−
1
T−1

∑T−1
s=1 Xs+1,iXs+1,j, ĉcij,k(Utk) = ĉij,k(Utk)−

1
T−1

∑T−1
s=1 ĉij,k(Usk),

and pλ2(·) is a penalty function with a tuning parameter λ2. The solution to the minimisation of
Qij(aij,1, . . . ,aij,p) is denoted by (aij,1, . . . ,aij,p)

ᵀ

, and the intercept estimate, aij,0, can be obtained
accordingly by replacing âij,k with aij,k, k = 1, . . . ,p, on the right hand side of the equation for
âij,0 in (2.11). By Theorem 2(ii) in Chen et al (2018), under the sparsity assumption and some
technical conditions, the zero optimal weights can be estimated exactly as zeros with probability
approaching one. After obtaining bi,k and aij,k, 0 6 k 6 p, we can calculate the penalised estimates
of the optimal MAMAR approximation to c0

ij(u) andm0
i(u) as

cij(u) = aij,0 +

p∑
k=1

aij,kĉij,k(uk), mi(u) = bi,0 +
p∑
k=1

bi,km̂i,k(uk),

and subsequently the penalised estimate of σ0
ij(u) as

σij(u) = cij(u) −mi(u)mj(u). (6.3)

Finally, we apply the shrinkage technique detailed in Section 2.2 to σij(u) to obtain the dynamic
covariance matrix estimators. Their asymptotic property and numerical performance will be
explored in a separate project.

6.2 Extension 2: conditionally sparse covariance matrix estimation

In many practical applications, the approximate sparsity assumption on the dynamic covariance
matrix may be too restrictive. For example, if there is very little ex ante predictability in stock
returns, a zero in the conditional covariance matrix would imply a zero in the same location of the
unconditional covariance matrix. To address this issue, we allow for common contemporaneous
market factors that drive the covariance matrix of stock returns, and then impose sparseness on
the residual covariance matrix. To address this problem fully, we need to substantially generalise
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the methods developed in Section 2.2. Suppose that the high-dimensional Xt is generated via the
approximate factor model

Xt = ΛFt + εt, t = 1, . . . , T , (6.4)

where Λ is anN× rmatrix of factor loadings, Ft is an r-dimensional vector of latent factors, and εt
is an N-dimensional vector of idiosyncratic errors. For simplicity, we assume that r, the number of
factors, is pre-specified in the following discussion. In practice, this number is usually unknown
but can be determined by an information criterion (Bai and Ng, 2002) or a simple ratio method
(Lam and Yao, 2012). As in the literature (c.f., Bai and Ng, 2002; Stock and Watson, 2002), we
only consider the setting of large factor models with both N and T divergent to infinity, making
it feasible to consistently estimate the latent factors and factor loadings (up to an appropriate
rotation).

Throughout this section, we assume that the factor loading matrix Λ is non-random, and Ft and
εt are orthogonal given the past conditioning variables Us, s 6 t− 1. Without loss of generality,
the conditional means of Ft and εt are assumed to be zeros. Therefore, the dynamic covariance
matrix of Xt can be written as

C0(u) = E
(
Xt+1X

ᵀ

t+1|Ut = u
)

= ΛE
(
Ft+1F

ᵀ

t+1|Ut = u
)
Λ

ᵀ
+ E

(
εt+1ε

ᵀ

t+1|Ut = u
)

=: ΛCF(u)Λ
ᵀ
+ Cε(u). (6.5)

It is easy to find that the dynamic covariance matrix for the factors Ft, CF(u), is of size r×r, whereas
that for the errors εt, Cε(u), is of much larger size N×N. For each entry of CF(u) and Cε(u), we
may approximate it via the MAMAR method with the optimal weights chosen as in Section 2.1,
and then obtain the corresponding proxies: C?

F,A(u) and C
?

ε,A(u), respectively.

As neither Ft nor εt are observable, we need to estimate them first before using the two-stage
semiparametric method introduced in Section 2.2. Let XT = (X1, . . . ,XT )

ᵀ

be a T × N matrix of
observations. We next use the principal component method to estimate the latent components in
the factor model (6.4). With an eigenanalysis on the T × T matrix

(
XTX

ᵀ

T

)
/(NT), we obtain a T × r

matrix
F̂T :=

(
F̂1, . . . , F̂T

)ᵀ

consisting of the r eigenvectors (multiplied by
√
T ) corresponding to the r largest eigenvalues, and

estimate the factor loading matrix Λ by Λ̂T which is defined by

Λ̂T = X
ᵀ

T F̂T/T .
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Note that F̂t and Λ̂T constructed above are the consistent estimators of the rotated latent factors
HFt and factor loading matrix ΛH−1, respectively, rather than the factors and factor loading matrix
themselves, where H is an r× r rotation matrix. The idiosyncratic errors εt can be approximated
by ε̂t, which is defined by

ε̂t = Xt − Λ̂T F̂t, t = 1, . . . , T .

With F̂t and ε̂t obtained above, we use the two-stage semiparametric estimation procedure in
Section 2.2 to construct

ĈF̂(u) =
[
ĉF̂ij(u)

]
r×r

and Ĉε̂(u) =
[
ĉε̂ij(u)

]
N×N ,

where ĉF̂ij(u) and ĉε̂ij(u) are defined similarly to ĉij(u) in (2.12). As the size of the estimated matrix
Ĉε̂(u) is large, we further apply the generalised shrinkage technique and consequently obtain

C̃ε̂(u) =
[
c̃ε̂ij(u)

]
N×N with c̃ε̂ij(u) = sρ(u)

(
ĉε̂ij(u)

)
.

Then we use
C̃(u) := Λ̂T ĈF̂(u)Λ̂

ᵀ

T + C̃ε̂(u) (6.6)

to estimate
C

?

A(u) := ΛC
?

F,A(u)Λ
ᵀ
+ C

?

ε,A(u),

the MAMAR approximation of C0(u).

We finally sketch the asymptotic properties of the above estimators before concluding this
section. Let ĈF(u) and C̃ε(u) be the infeasible covariance matrix estimates using the latent factors
Ft and unobserved errors εt, respectively. Following the proofs of Proposition 1 and Theorem 1 in
Appendix A, we can prove that ĈF(u) and C̃ε(u) converge to C

?

F,A(u) and C
?

ε,A(u) uniformly over u
measured by the matrix operator norm as in (3.5). Meanwhile, following the proofs of Propositions
3.1 and 3.2 in Li, Li and Fryzlewicz (2018), we may show that replacing HFt and εt by F̂t and ε̂t
in the covariance matrix estimation has negligible effect in the asymptotic analysis. Combining
the above arguments, we readily have that ĈF̂(u) and C̃ε̂(u) uniformly converge to HC?

F,A(u)H
ᵀ

and C
?

ε,A(u), respectively. However, as the proxy covariance matrix CA(u) has spiked eigenvalues,
Theorem 1 cannot be directly extended to C̃(u) defined in (6.6) (c.f., Fan, Liao and Mincheva, 2013).
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7 Conclusion

In this paper we estimate the large dynamic covariance matrices for high-dimensional time series
data where the conditioning random variables are multivariate. Through the semiparametric
MAMAR approximation to each entry in the underlying dynamic covariance matrix, we success-
fully circumvent the curse of dimensionality problem in multivariate nonparametric estimation.
The subsequent two-stage semiparametric estimation method, combined with the generalised
shrinkage technique commonly used in high-dimensional data analysis, produces the dynamic
covariance matrix estimation varying with the conditioning variables over time. Under some
mild conditions such as the approximate sparsity assumption, the developed covariance matrix
estimation is proved to be uniformly consistent with convergence rates comparable to those ob-
tained in the literature. In addition, two easy-to-implement techniques are introduced to modify
the semiparametric dynamic covariance matrix estimation to ensure that the estimated covari-
ance matrix is positive definite. A new selection criterion to determine the optimal local tuning
parameter is provided to implement the proposed semiparametric large covariance matrix esti-
mation for high-dimensional weakly dependent time series data. Furthermore, two interesting
extensions of our methodology are explored to deal with the two scenarios which are of empirical
relevance. Simulation studies conducted in Section 5 show that the proposed approaches have
reliable finite-sample performance.

A Proofs of the main limit theorems

In this appendix, we provide the detailed proofs of the main asymptotic theorems. We start with
some technical lemmas whose proofs will be given in Appendix B.

LEMMA 1. Suppose that Assumptions 1, 2(i) and 3 in Section 3.1 are satisfied. Then we have

max
16i6N

max
16k6p

sup
ak+h?6uk6bk−h?

|m̂i,k(uk) −mi,k(uk)| = OP

(√
log(N∨ T)/(Th1) + h

2
1

)
, (A.1)

and

max
16i,j6N

max
16k6p

sup
ak+h?6uk6bk−h?

|ĉij,k(uk) − cij,k(uk)| = OP

(√
log(N∨ T)/(Th2) + h

2
2

)
, (A.2)

where h? = h1 ∨ h2.
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LEMMA 2. Suppose that Assumptions 1–3 in Section 3.1 are satisfied. Then we have

max
16i,j6N

p∑
k=0

∣∣âij,k − a?
ij,k

∣∣ = OP (√log(N∨ T)/T +
√

log(N∨ T)/(Th2) + h
2
2

)
, (A.3)

and

max
16i6N

p∑
k=0

∣∣∣b̂i,k − b?i,k∣∣∣ = OP (√log(N∨ T)/T +
√

log(N∨ T)/(Th1) + h
2
1

)
. (A.4)

The following proposition gives an uniform consistency (with convergence rates) for the
nonparametric conditional covariance function estimation via the MAMAR approximation.

PROPOSITION 1. Suppose that Assumptions 1–3 in Section 3.1 are satisfied. Then we have

max
16i,j6N

sup
u∈U

∣∣σ̂ij(u) − σ?ij(u)∣∣ = OP(τT ,N), (A.5)

where τT ,N was defined in Assumption 4, and σ?ij(u) = c?ij(u) −m
?
i (u)m

?
j (u), c

?
ij(u) is the (i, j)-

entry of C?

A(u) and m?
i (u) is the i-th element of M?

A(u), C
?

A(u) and M
?

A(u) were defined in Section
2.1.

PROOF OF PROPOSITION 1. By (A.2) and (A.3), we have

ĉij(u) − c
?
ij(u) =

[
âij,0 +

p∑
k=1

âij,kĉij,k(uk)

]
−

[
a?
ij,0 +

p∑
k=1

a?
ij,kcij,k(uk)

]

=
(
âij,0 − a

?
ij,0

)
+

p∑
k=1

(
âij,k − a

?
ij,k

)
cij,k(uk) +

p∑
k=1

a?
ij,k [ĉij,k(uk) − cij,k(uk)] +

p∑
k=1

(
âij,k − a

?
ij,k

)
[ĉij,k(uk) − cij,k(uk)]

= OP

(√
log(N∨ T)/(Th2) + h

2
2

)
(A.6)

uniformly for 1 6 i, j 6 N and u ∈ Uh?
. On the other hand, note that

m̂i(u)m̂j(u) −m
?
i (u)m

?
j (u) = [m̂i(u) −m

?
i (u)]m

?
j (u) +m

?
i (u)

[
m̂j(u) −m

?
j (u)

]
+

[m̂i(u) −m
?
i (u)]

[
m̂j(u) −m

?
j (u)

]
(A.7)
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with

m̂i(u) −m
?
i (u) =

(
b̂i,0 − b

?
i,0

)
+

p∑
k=1

(
b̂i,k − b

?
ij,k

)
mi,k(uk) +

p∑
k=1

b?i,k [m̂i,k(uk) −mi,k(uk)] +

p∑
k=1

(
b̂i,k − b

?
i,k

)
[m̂i,k(uk) −mi,k(uk)]

= OP

(√
log(N∨ T)/(Th1) + h

2
1

)
(A.8)

uniformly for 1 6 i 6 N and u ∈ Uh?
, where (A.1) and (A.4) have been used.

Therefore, by (A.6)–(A.8), we have

max
16i,j6N

sup
u∈Uh?

∣∣σ̂ij(u) − σ?ij(u)∣∣
= max

16i,j6N
sup
u∈Uh?

∣∣ĉij(u) − c?ij(u)∣∣+ max
16i,j6N

sup
u∈Uh?

∣∣m̂i(u)m̂j(u) −m?
i (u)m

?
j (u)

∣∣
= OP

(√
log(N∨ T)/(Th1) +

√
log(N∨ T)/(Th2) + h

2
1 + h

2
2

)
, (A.9)

completing the proof of Proposition 1. �
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PROOF OF THEOREM 1. From the definition of Σ̃(u) and σ̃ij(u), we have

sup
u∈Uh?

∥∥∥Σ̃(u) − Σ?

A(u)
∥∥∥
O
6 sup
u∈U

max
16i6N

N∑
j=1

∣∣σ̃ij(u) − σ?ij(u)∣∣
= sup
u∈Uh?

max
16i6N

N∑
j=1

∣∣sρ(u) (σ̂ij(u)) I (|σ̂ij(u)| > ρ(u)) − σ?ij(u)∣∣
= sup
u∈Uh?

max
16i6N

N∑
j=1

∣∣sρ(u) (σ̂ij(u)) I (|σ̂ij(u)| > ρ(u))−
σ?ij(u)I (|σ̂ij(u)| > ρ(u)) − σ

?
ij(u)I (|σ̂ij(u)| 6 ρ(u))

∣∣
6 sup
u∈Uh?

max
16i6N

N∑
j=1

∣∣sρ(u) (σ̂ij(u)) − σ̂ij(u)∣∣ I (|σ̂ij(u)| > ρ(u))+
sup
u∈Uh?

max
16i6N

N∑
j=1

∣∣σ̂ij(u) − σ?ij(u)∣∣ I (|σ̂ij(u)| > ρ(u))+
sup
u∈Uh?

max
16i6N

N∑
j=1

∣∣σ?ij(u)∣∣ I (|σ̂ij(u)| 6 ρ(u))
=: I1 + I2 + I3. (A.10)

From Proposition 1, we define an event

E =

{
max

16i,j6N
sup
u∈Uh?

∣∣σ̂ij(u) − σ?ij(u)∣∣ 6M1τT ,N

}
,

where M1 is a positive constant such that P (E) > 1 − ε with ε > 0 being arbitrarily small. By
property (iii) of the shrinkage function and Proposition 1, we readily have

I1 6 sup
u∈Uh?

ρ(u)

[
max

16i6N

N∑
j=1

I (|σ̂ij(u)| > ρ(u))

]
(A.11)

and

I2 6M1τT ,N sup
u∈Uh?

max
16i6N

N∑
j=1

I (|σ̂ij(u)| > ρ(u)) (A.12)

conditional on the event E. Note that on E,

|σ̂ij(u)| 6 |σ?ij(u)|+ |σ̂ij(u) − σ
?
ij(u)| 6 |σ?ij(u)|+M1τT ,N.
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Recall that ρ(u) =M0(u)τT ,N in Assumption 4 and chooseM0(u) such that infu∈UM0(u) = 2M1.
Then, it is easy to see the event {|σ̂ij(u)| > ρ(u)} indicates that {|σ?ij(u)| > M1τT ,N} holds. As
Σ

?

A(·) ∈ S(q, cN,M?,U) defined in (3.4), we may show that

I1 + I2 6 τT ,N

[
sup
u∈U

M0(u) +M1

] [
sup
u∈Uh?

max
16i6N

N∑
j=1

I (|σ̂ij(u)| > M1τT ,N)

]

6 τT ,N

[
sup
u∈U

M0(u) +M1

] [
sup
u∈U

max
16i6N

N∑
j=1

∣∣σ?ij(u)∣∣q
Mq

1 τ
q
T ,N

]
= O

(
cN · τ1−q

T ,N

)
(A.13)

on the event E.

On the other hand, by the triangle inequality, we have for any u ∈ Uh?
,

|σ̂ij(u)| > |σ?ij(u)|− |σ̂ij(u) − σ
?
ij(u)| > |σ?ij(u)|−M1τT ,N

on the event E. Hence, we readily show that {|σ̂ij(u)| 6 ρ(u)} indicates{
|σ?ij(u)| 6

(
sup
u∈U

M0(u) +M1

)
τT ,N

}
.

Then, for I3, by Assumption 4 and the definition of S(q, cN,M?,U), we have

I3 6 sup
u∈Uh?

max
16i6N

N∑
j=1

∣∣σ?ij(u)∣∣ I(|σ?ij(u)| 6 (sup
u∈U

M0(u) +M1)τT ,N

)

6 (sup
u∈U

M0(u) +M1)
1−qτ1−q

T ,N sup
u∈U

max
16i6N

N∑
j=1

∣∣σ?ij(u)∣∣q
= OP

(
cN · τ1−q

T ,N

)
. (A.14)

The proof of (3.5) in Theorem 1(i) can be completed by (A.10), (A.13) and (A.14).

Note that

sup
u∈Uh?

∥∥∥∥Σ̃−1

(u) − Σ
?−1

A (u)

∥∥∥∥
O

= sup
u∈Uh?

∥∥∥∥Σ̃−1

(u)Σ
?

A(u)Σ
?−1

A (u) − Σ̃
−1

(u)Σ̃(u)Σ
?−1

A (u)

∥∥∥∥
O

6 sup
u∈Uh?

∥∥∥∥Σ̃−1

(u)

∥∥∥∥
O

sup
u∈Uh?

∥∥∥Σ̃(u) − Σ?

A(u)
∥∥∥
O

sup
u∈Uh?

∥∥∥Σ?−1

A (u)
∥∥∥
O

.

It is easy to prove (3.7) in Theorem 1(ii) from (3.6) and Theorem 1(i). �
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PROOF OF THEOREM 2. By the definition of sρ(u)(·), it is easy to show that
{
σ̃ij(u) = sρ(u)(σ̂ij(u)) 6= 0

}
is equivalent to {|σ̂ij(u)| > ρ(u)} for anyu ∈ Uh?

and 1 6 i, j 6 N. Hence,
{
σ̃ij(u) 6= 0 and σ?ij(u) = 0

}
indicates that ∣∣σ̂ij(u) − σ?ij(u)∣∣ > ρ(u). (A.15)

Note that ρ(u) =M0(u)τT ,N with infu∈UM0(u) > cM > 0. From (A.15) and Proposition 1 above,
taking cM > 0 sufficiently large, we have

P
(
σ̃ij(u) 6= 0 and σ?ij(u) = 0 for u ∈ Uh? and 1 6 i, j 6 N

)
6 P

(
max

16i,j6N
sup
u∈Uh?

∣∣σ̂ij(u) − σ?ij(u)∣∣ > cMτT ,N

)
→ 0,

completing the proof of Theorem 2. �

B Proofs of the technical lemmas

We next give the detailed proofs of the lemmas used in Appendix A to prove the main results.

PROOF OF LEMMA 1. We next only give a detailed proof of (A.2) as the proof of (A.1) is similar. By
the definitions of ĉij,k(uk) and cij,k(uk), we have

ĉij,k(uk) − cij,k(uk) =

{
T−1∑
t=1

K

(
Utk − uk
h2

)
[Xt+1,iXt+1,j − cij,k(uk)]

}
/

{
T−1∑
t=1

K

(
Utk − uk
h2

)}

=

{
T−1∑
t=1

K

(
Utk − uk
h2

)
ξt+1,ij,k

}
/

{
T−1∑
t=1

K

(
Utk − uk
h2

)}
+{

T−1∑
t=1

K

(
Utk − uk
h2

)
[cij,k(Utk) − cij,k(uk)]

}
/

{
T−1∑
t=1

K

(
Utk − uk
h2

)}
=: I

(1)
ij,k(uk) + I

(2)
ij,k(uk), (B.1)

where ξt+1,ij,k = Xt+1,iXt+1,j − cij,k(Utk).

To simplify the notation, we let νT ,N =
√

log(N∨ T)/(Th2). First consider I(1)
ij,k(uk) and prove

that

max
16i,j6N

max
16k6p

sup
ak+h?6uk6bk−h?

∣∣∣∣∣ 1
Th2

T−1∑
t=1

K

(
Utk − uk
h2

)
ξt+1,ij,k

∣∣∣∣∣ = OP (νT ,N) , (B.2)
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and

max
16k6p

sup
ak+h?6uk6bk−h?

∣∣∣∣∣ 1
Th2

T−1∑
t=1

K

(
Utk − uk
h2

)
− fk(uk)

∣∣∣∣∣ = OP
(
h2

2 +
√

log T/(Th2)

)
. (B.3)

In fact, by (B.2) and (B.3) and noting that fk(·) is positive and uniformly bounded away from zero
in Assumption 1(iii), we readily have

max
16i,j6N

max
16k6p

sup
ak+h?6uk6bk−h?

∣∣∣I(1)
ij,k(uk)

∣∣∣ = OP (νT ,N) . (B.4)

We next only prove (B.2) as (B.3) can be proved in a similar (and simpler) way. Define

ξ∗t+1,ij,k = ξt+1,ij,kI (|ξt+1,ij,k| 6 T
ι) , ξ�t+1,ij,k = ξt+1,ij,k − ξ

∗
t+1,ij,k, (B.5)

where ιwas defined in Assumption 3(ii). Observe that

1
Th2

T−1∑
t=1

K

(
Utk − uk
h2

)
ξt+1,ij,k =

1
Th2

T−1∑
t=1

K

(
Utk − uk
h2

)
ξ∗t+1,ij,k +

1
Th2

T−1∑
t=1

K

(
Utk − uk
h2

)
ξ�t+1,ij,k

=
1
Th2

T−1∑
t=1

K

(
Utk − uk
h2

)[
ξ∗t+1,ij,k − E(ξ∗t+1,ij,k)

]
+

1
Th2

T−1∑
t=1

K

(
Utk − uk
h2

)[
ξ�t+1,ij,k − E(ξ�t+1,ij,k)

]
(B.6)

as E(ξt+1,ij,k) = E(ξ∗t+1,ij,k) + E(ξ�t+1,ij,k) = 0.

By the moment condition (3.1) in Assumption 1(ii), we have

E
(∣∣ξ�t+1,ij,k

∣∣) = E [|ξt+1,ij,k|I (|ξt+1,ij,k| > T
ι)] = O

(
T−ιM2

)
, (B.7)

whereM2 can be arbitrarily large. Then, by (B.7), Assumptions 1(ii), 2(i) and 3(iii), we have that for

33



any M̄ > 0,

P

(
max

16i,j6N
max

16k6p
sup

ak+h?6uk6bk−h?

∣∣∣∣∣ 1
Th2

T−1∑
t=1

K

(
Utk − uk
h2

)[
ξ�t+1,ij,k − E(ξ�t+1,ij,k)

]∣∣∣∣∣ > M̄νT ,N

)

6 P

(
max

16i,j6N
max

16k6p
sup

ak+h?6uk6bk−h?

∣∣∣∣∣ 1
Th2

T−1∑
t=1

K

(
Utk − uk
h2

)
ξ�t+1,ij,k

∣∣∣∣∣ > 1
2
M̄νT ,N

)

6 P
(

max
16i,j6N

max
16k6p

max
16t6T−1

∣∣ξ�t+1,ij,k

∣∣ > 0
)
6 P

(
max

16i,j6N
max

16k6p
max

16t6T−1
|ξt+1,ij,k| > T

ι

)
6 P

(
max

16i,j6N
max

16t6T−1
|Xt+1,iXt+1,j| > T

ι − c̄

)
6 P

(
max

16i,j6N
max

16t6T−1

(
X2
t+1,i + X

2
t+1,j

)
> 2(T ι − c̄)

)
6 2P

(
max

16i6N
max

16t6T−1
X2
t+1,i > T

ι − c̄

)
6 2

N∑
i=1

T−1∑
t=1

P
(
X2
t+1,i > T

ι − c̄
)

= OP

(
NT exp{−sT ι} max

16i6N
E
[
exp
{
sX2
ti

}])
= o(1) (B.8)

for 0 < s < s0, where c̄ = max16i,j6Nmax16k6p supak6uk6bk |cij,k(uk)| is bounded by Assumption
2(i).

We next consider covering the set Uk by some disjoint intervals Uk,l, l = 1, . . . ,q, with the
center uk,l and length h2

2T
−ινT ,N. It is easy to find that q is of order T ιh−2

2 ν
−1
T ,N. Note that

max
16i,j6N

max
16k6p

sup
ak+h?6uk6bk−h?

∣∣∣∣∣ 1
Th2

T−1∑
t=1

K

(
Utk − uk
h2

)[
ξ∗t+1,ij,k − E(ξ∗t+1,ij,k)

]∣∣∣∣∣
6 max

16i,j6N
max

16k6p
max

16l6q

∣∣∣∣∣ 1
Th2

T−1∑
t=1

K

(
Utk − uk,l

h2

)[
ξ∗t+1,ij,k − E(ξ∗t+1,ij,k)

]∣∣∣∣∣+
max

16i,j6N
max

16k6p
sup
uk∈Uk,l

∣∣∣∣∣ 1
Th2

T−1∑
t=1

[
K

(
Utk − uk
h2

)
− K

(
Utk − uk,l

h2

)] [
ξ∗t+1,ij,k − E(ξ∗t+1,ij,k)

]∣∣∣∣∣
6 max

16i,j6N
max

16k6p
max

16l6q

∣∣∣∣∣ 1
Th2

T−1∑
t=1

K

(
Utk − uk,l

h2

)[
ξ∗t+1,ij,k − E(ξ∗t+1,ij,k)

]∣∣∣∣∣+
max

16k6p
sup
uk∈Uk,l

2T ι

Th2

T−1∑
t=1

∣∣∣∣K(Utk − ukh2

)
− K

(
Utk − uk,l

h2

)∣∣∣∣
6 max

16i,j6N
max

16k6p
max

16l6q

∣∣∣∣∣ 1
Th2

T−1∑
t=1

K

(
Utk − uk,l

h2

)[
ξ∗t+1,ij,k − E(ξ∗t+1,ij,k)

]∣∣∣∣∣+OP (νT ,N) ,

where Assumption 3(i) and the definition of ξ∗t+1,ij,k in (B.5) are used.

By the exponential inequality for the α-mixing dependent sequence such as Theorem 1.3 in
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Bosq (1998), we may show that

P

(
max

16i,j6N
max

16k6p
sup

ak+h?6uk6bk−h?

∣∣∣∣∣ 1
Th2

T−1∑
t=1

K

(
Utk − uk
h2

)[
ξ∗t+1,ij,k − E(ξ∗t+1,ij,k)

]∣∣∣∣∣ > M̄νT ,N

)

6
N∑
i=1

N∑
j=1

p∑
k=1

q∑
l=1

P

(∣∣∣∣∣ 1
Th2

T−1∑
t=1

K

(
Utk − uk,l

h2

)[
ξ∗t+1,ij,k − E(ξ∗t+1,ij,k)

]∣∣∣∣∣ > M̄νT ,N

)
= O

(
N2pq exp {−M∗ log(N∨ T)}

)
+O

(
N2pq

[
T 3+6ι log(N∨ T)/h3

2

]1/4
γM� log(N∨T)

)
= oP(1),

where M∗ and M� are two positive constants which could be sufficiently large (by choosing M̄
large enough), and 0 < γ < 1 was defined in Assumption 1(i). Therefore, we have

P

(
max

16i,j6N
max

16k6p
sup

ak+h?6uk6bk−h?

∣∣∣∣∣ 1
Th2

T−1∑
t=1

K

(
Utk − uk
h2

)[
ξ∗t+1,ij,k − E(ξ∗t+1,ij,k)

]∣∣∣∣∣ > M̄νT ,N

)
= o(1)

(B.9)
when M̄ is sufficiently large. By (B.8) and (B.9), we can complete the proof of (B.2).

Similarly, we can also show that

max
16i,j6N

max
16k6p

sup
ak+h?6uk6bk−h?

∣∣∣∣∣ 1
Th2

T−1∑
t=1

{
K

(
Utk − uk
h2

)
cij,k(Utk) − E

[
K

(
Utk − uk
h2

)
cij,k(Utk)

]}∣∣∣∣∣
= OP (νT ,N) , (B.10)

and by Taylor’s expansion for cij,k(·) and fk(·)

max
16i,j6N

max
16k6p

sup
ak+h?6uk6bk−h?

∣∣∣∣ 1
h2

E
[
K

(
Utk − uk
h2

)
cij,k(Utk)

]
− cij,k(uk)fk(uk)

∣∣∣∣ = OP (h2
2

)
.

(B.11)
By (B.3), (B.10) and (B.11), we have

max
16i,j6N

max
16k6p

sup
ak+h?6uk6bk−h?

∣∣∣I(2)
ij,k(uk)

∣∣∣ = OP (νT ,N + h2
2

)
. (B.12)

Then the proof of (A.2) is completed in view of (B.1), (B.4) and (B.12). �

PROOF OF LEMMA 2. From the definition of (âij,1, . . . , âij,p)
ᵀ

in (2.10), we have

(âij,1, . . . , âij,p)
ᵀ

= Ω̂
−1
ij V̂ij =

[
Ω̃ij +

(
Ω̂ij − Ω̃ij

)]−1 [
Ṽij +

(
V̂ij − Ṽij

)]
, (B.13)
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where Ω̂ij := Ω̂XX,ij, V̂ij := V̂XX,ij, Ω̃ij is a p× pmatrix with the (k, l)-entry being

ω̃ij,kl =
1

T − 1

T−1∑
t=1

ccij,k(Utk)c
c
ij,l(Utl), c

c
ij,k(Utk) = cij,k(Utk) − E [cij,k(Utk)] ,

and Ṽij is a p-dimensional column vector with the k-th element being

ṽij,k =
1

T − 1

T−1∑
t=1

ccij,k(Utk)X
∗
t+1,(i,j), X

∗
t+1,(i,j) = Xt+1,iXt+1,j − E [Xt+1,iXt+1,j] .

Following the proof of (B.2) above, we may show that

max
16i,j6N

max
16k6p

∣∣∣∣∣ 1
T − 1

T−1∑
t=1

cij,k(Utk) − E [cij,k(Utk)]

∣∣∣∣∣ = OP
(√

log(N∨ T)/T

)
(B.14)

and

max
16i,j6N

max
16k6p

∣∣∣∣∣ 1
T − 1

T−1∑
t=1

Xt+1,iXt+1,j − E [Xt+1,iXt+1,j]

∣∣∣∣∣ = OP
(√

log(N∨ T)/T

)
. (B.15)

By (B.14), (B.15) and Lemma 1, we readily have

max
16i,j6N

∥∥∥Ω̂ij − Ω̃ij∥∥∥
F
= OP

(√
log(N∨ T)/T +

√
log(N∨ T)/(Th2) + h

2
2

)
(B.16)

and

max
16i,j6N

∥∥∥V̂ij − Ṽij∥∥∥ = OP

(√
log(N∨ T)/T +

√
log(N∨ T)/(Th2) + h

2
2

)
. (B.17)

By (B.13), (B.16) and (B.17), we have

(âij,1, . . . , âij,p)
ᵀ

= Ω̃
−1
ij Ṽij +OP

(√
log(N∨ T)/T +

√
log(N∨ T)/(Th2) + h

2
2

)
. (B.18)

Again, following the proof of (B.2), we can easily show that

max
16i,j6N

∥∥∥Ω̃ij −Ωij∥∥∥
F
= OP

(√
log(N∨ T)/T

)
(B.19)

and

max
16i,j6N

∥∥∥Ṽij −Vij∥∥∥ = OP

(√
log(N∨ T)/T

)
, (B.20)
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which together with (B.18), indicates that

max
16i,j6N

p∑
k=1

∣∣âij,k − a?
ij,k

∣∣ = OP (√log(N∨ T)/T +
√

log(N∨ T)/(Th2) + h
2
2

)
. (B.21)

We finally consider âij,0. Note that uniformly for 1 6 i, j 6 N,

âij,0 =
1

T − 1

T−1∑
t=1

Xt+1,iXt+1,j −

p∑
k=1

âij,k

[
1

T − 1

T−1∑
t=1

ĉij,k(Utk)

]

=
1

T − 1

T−1∑
t=1

Xt+1,iXt+1,j −

p∑
k=1

âij,k

[
1

T − 1

T−1∑
t=1

cij,k(Utk) +OP

(√
log(N∨ T)/(Th2) + h

2
2

)]

= E (XtiXtj) +OP

(√
log(N∨ T)/T

)
−

p∑
k=1

âij,k

[
E (XtiXtj) +OP

(√
log(N∨ T)/(Th2) + h

2
2

)]

=

(
1 −

p∑
k=1

âij,k

)
E (XtiXtj) +OP

(√
log(N∨ T)/T +

√
log(N∨ T)/(Th2) + h

2
2

)

=

(
1 −

p∑
k=1

a?
ij,k

)
E (XtiXtj) +OP

(√
log(N∨ T)/T +

√
log(N∨ T)/(Th2) + h

2
2

)
= a?

ij,0 +OP

(√
log(N∨ T)/T +

√
log(N∨ T)/(Th2) + h

2
2

)
, (B.22)

where (B.14), (B.15) and (B.21) have been used.

From (B.21) and (B.22), we can complete the proof of (B.3). The proof of (B.4) is similar, so
details are omitted here. The proof of Lemma 2 has been completed. �
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