
 
 
 
 
 
 
 
 
 

Faculty of Economics 

CAMBRIDGE WORKING PAPERS IN ECONOMICS 
  CAMBRIDGE-INET WORKING PAPERS 

A Coupled Component GARCH Model for 
Intraday and Overnight Volatility 
 

Oliver  
Linton 
University of 
Cambridge

Jianbin  
Wu 
Nanjing  
University 

   

 

Abstract 
We propose a semi-parametric coupled component GARCH model for intraday and overnight volatility 
that allows the two return series to have different properties. We adopt a dynamic conditional score 
model with t-distributed innovations that captures the very heavy tails of overnight returns. We 
propose a several-step estimation procedure that captures the nonparametric slowly moving 
components by kernel estimation and the dynamic parameters by estimated maximum likelihood. We 
establish the consistency, asymptotic normality, and semiparametric efficiency of our semiparametric 
estimation procedures. We extend the modelling to the multivariate case where we allow time varying 
correlation between stocks. We apply our model to the study of Dow Jones industrial average 
component stocks, CRSP size-based portfolios, and size-based portfolios in four large international 
markets over the period 1993-2017. We show that the ratio of overnight to intraday volatility has 
actually increased in importance for Dow Jones stocks during the last two decades. This ratio has also 
increased for large stocks in the CRSP database, but decreased for small stocks in CRSP. Notably, the 
slope increases monotonically from the smallest-cap decile to the largest-cap decile. This pattern also 
exists in other international markets. The multivariate model shows that overnight and intraday 
correlations have both increased, but overnight correlations have increased more substantially during 
recent crises than intraday correlations. 
 

Reference Details 
1879  Cambridge Working Papers in Economics 
2018/25 Cambridge-INET Working Paper Series 
 
Published 14 September 2018 
 
Key Words DCS, GAS, GARCH, size-based portfolios, Testing 
JEL Codes C12 C13 
 
Websites www.econ.cam.ac.uk/cwpe 
  www.inet.econ.cam.ac.uk/working-papers  

http://www.econ.cam.ac.uk/cwpe
http://www.econ.cam.ac.uk/cwpe
https://www.inet.econ.cam.ac.uk/working-papers
https://www.inet.econ.cam.ac.uk/working-papers


A Coupled Component GARCH Model for Intraday and

Overnight Volatility∗

Oliver Linton†

University of Cambridge

Jianbin Wu‡

Nanjing University

September 14, 2018

Abstract

We propose a semi-parametric coupled component GARCH model for intraday and overnight

volatility that allows the two return series to have different properties. We adopt a dynamic

conditional score model with t-distributed innovations that captures the very heavy tails of

overnight returns. We propose a several-step estimation procedure that captures the non-

parametric slowly moving components by kernel estimation and the dynamic parameters by

estimated maximum likelihood. We establish the consistency, asymptotic normality, and semi-

parametric efficiency of our semiparametric estimation procedures. We extend the modelling

to the multivariate case where we allow time varying correlation between stocks. We apply our

model to the study of Dow Jones industrial average component stocks, CRSP size-based port-

folios, and size-based portfolios in four large international markets over the period 1993-2017.

We show that the ratio of overnight to intraday volatility has actually increased in importance

for Dow Jones stocks during the last two decades. This ratio has also increased for large stocks

in the CRSP database, but decreased for small stocks in CRSP. Notably, the slope increases

monotonically from the smallest-cap decile to the largest-cap decile. This pattern also exists in

other international markets. The multivariate model shows that overnight and intraday correla-

tions have both increased, but overnight correlations have increased more substantially during

recent crises than intraday correlations.
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1 Introduction

The balance between intraday and overnight returns is of considerable interest as it potentially sheds

light on many issues in finance: the efficient markets hypothesis, the calendar time versus trading

time models, the process by which information is impacted into stock prices, the relative merits

of auction versus continuous trading, the effect of high frequency trading on market quality, and

the globalization and connectedness of international markets. We propose a bivariate time series

model for intraday and overnight returns that respects their temporal ordering and permits the two

processes to have different marginal properties, and to feedback into each other, and allows for both

short run and long components. In particular, our volatility model for each return series has a long

run component that slowly evolves over time, and is treated nonparametrically, and a parametric

dynamic volatility component that allows for short run deviations from the long run process, where

those deviations depend on previous intraday and overnight shocks. We adopt a dynamic conditional

score (DCS) model, Harvey (2013) and Harvey and Luati (2014), that links the news impact curves

of the innovations to the shock distributions, which we assume to be t-distributions with unknown

degrees of freedom (which may differ between intraday and overnight). In practice, the overnight

return distribution is more heavy tailed than the intraday return, and in fact very heavily tailed.

Our model allows for a difference in the tail thickness of the conditional distributions. The short

run dynamic process allows for leverage effects and separates the overnight shock from the intraday

shock. We also introduce a multivariate model that allows for time varying correlations between

stocks and between overnight and intraday returns.

We apply our model to the study of 26 Dow Jones industrial average component stocks over

the period 1993-2017, a period that saw several substantial institutional changes. There are several

purposes for our application. First, many authors have argued that the introduction of computerized

trading and the increased prevalence of High Frequency Trading (HFT) strategies in the period

post 2005 has lead to an increase in volatility, see Boehmer, Fong, and Wu (2015) and Linton,

O’Hara, and Zigrand (2013). To address this, a direct comparison of volatility before and after

would be problematic here because of the Global Financial Crisis (GFC), which raised volatility

during the same period that HFT was becoming more prevalent. There are a number of studies

that have investigated this question with natural experiments methodology (Brogaard, 2011), but

the conclusions one can draw from such work are event specific. We model the volatility process

with a view to addressing this hypothesis in a more general way. One implication of this hypothesis

is that ceteris paribus the ratio of intraday to overnight volatility should have increased during

this period because trading is not taking place during the market close period. We would like to

evaluate whether this has occurred. One could just compare the daily return volatility from the

intraday segment with the daily return volatility from the overnight segment, as many studies such

as French and Roll (1986) have done. However, this would ignore both fast and slow variation

in volatility through business cycle and other causal factors. Also, overnight raw returns are very

heavy tailed and so sample (unconditional) variances are not very reliable. We use our dynamic two

component model, which allows for both fast and slow dynamic components to volatility, as is now

common practice (Engle and Lee, 1999; Engle and Rangel, 2008; Hafner and Linton, 2010; Rangel
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and Engle, 2012; and Han and Kristensen, 2015). Our model also allows dynamic feedback between

overnight and intraday volatility, which is of interest in itself. Our model generates heavy tails

in observed returns, but the parameter estimates we employ are robust to this phenomenon. Our

methodology therefore allows us to compare the long run components of volatility over this period

without over reliance on Gaussian-type theory. We show that for the Dow Jones stocks the long run

component of overnight volatility has actually increased in importance during this period relative to

the long run component of intraday volatility (although intraday volatility is still generally higher

than overnight volatility). We provide a formal test statistic that confirms quantitively the strength

of this effect; our test can be interpreted as carrying out a difference in difference analysis but in

ratio form, Imbens and Wooldridge (2007). This finding seems to be hard to reconcile with the view

that trading has increased volatility. We also document the short run dynamic processes. Notably,

we find, unlike Blanc, Chicheportiche, and Bouchaud (2014), that overnight returns significantly

affect future intraday volatility. We also find that overnight return shocks have t-distributions with

degrees of freedom roughly equal to three, which emphasizes the potential fragility of Gaussian-based

estimation routines that earlier work has been based on. We also estimate a multivariate model and

document that there has been an upward trend in the long run component of contemporary overnight

correlation between stocks as well as in the long run component of contemporary intraday correlation

between stocks. However, the trend development for the overnight correlations started later than for

intraday, and started happening only after 2005, whereas the intraday correlations appear to have

slowly increased more or less from the beginning of the period.

We also apply our model to size-sorted portfolios of CRSP stocks over the period 1993-2017. We

find that the ratio of overnight to intraday volatility has indeed increased for large stocks, but has

decreased for small stocks especially in the 1990s. Notably, the slope increases monotonically from

the smallest-cap to the largest-cap decile, and the ratio of overnight to intraday volatility is typically

high during recent crises. From the multivariate model, we find that small stocks had rather weak co-

movement with the market in the early 1990s. However the co-movement has increased considerably

during the recent period, although it still remains smaller than that of large stocks. In general, the

overnight correlation increases more substantially than the intraday correlation during recent crises.

We further apply our model to four large international markets (U.S., U.K., Germany and Japan).

The results are similar.

A second practical purpose for our model is to improve forecasts of intraday volatility or close to

close volatility. Our model allows us to condition on the open price to forecast intraday volatility or to

update the close to close volatility forecast and also to take into account the full dynamic consequences

of the overnight shock and previous ones. We compare forecast performance of our model with a

procedure based only on close to close returns and find in most cases superior performance.

We work only with the return series, although for some stocks intraday transaction and quote

records are available for the duration of our study, which would permit the computation of realized

volatility measures, which are for some the preferred measure of intraday volatility. This however

would pose some additional questions in terms of the joint modelling of discrete time returns and real-
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ized volatility, and puts an imbalance between the measurement of intraday and overnight volatility.1

Furthermore, it would be problematic to implement some of those techniques on the small CRSP

stocks in the early part of the sample period, so it is not a silver bullet. Instead we do make use of

alternative measures of market (SP500) volatility - the VIX (which includes overnight volatility) and

the Rogers and Satchell (1991) intraday volatility measure - to conduct a robustness check. We find

that these measures confirm the finding regarding the rise of overnight volatility relative to intraday

after 2004.

Related Literature. Overnight returns have recently attracted much attention in empirical

finance. Many find overnight and intraday returns behave entirely differently, and overnight returns

tend to outperform intraday returns. Specifically, Cooper, Cliff, and Gulen (2008) suggest that the

U.S. equity premium over the period 1993-2006 is solely due to overnight returns. Kelly and Clark

(2011) find the overnight returns are on average larger than the intraday returns. Berkman, Koch,

Tuttle, and Zhang (2012) find a significant positive mean overnight return and a significant negative

mean intraday return. They suggest stocks that have recently attracted the attention of retail

investors tend to have higher net retail buying at the open, leading to high overnight returns that

followed by intraday reversals. Aboody, Even-Tov, Lehavy, and Trueman (2018) suggest overnight

returns can serve as a measure of firm-specific investor sentiment, and find short-term persistence in

overnight returns. Polk, Lou, and Skouras (2018) link investor heterogeneity to the strong persistence

of the overnight and intraday returns. They find an overnight versus intraday tug of war in strategy

risk premium, and the risk premium is earned entirely overnight for the largest stocks. Besides

the difference in expected returns, overnight returns are found less volatile (French and Roll, 1986;

Lockwood and Linn, 1990; Aretz and Bartram, 2015), but more leptokurtic than intraday returns in

the U.S. market (Ng and Masulis, 1995; Blanc, Chicheportiche, and Bouchaud, 2014).

Tsiakas (2008) proposed a stochastic volatility model for daytime returns with feedback from night

to day and leverage effects built in. He assumed Gaussian innovations; he did not model the overnight

returns. In the literature on realized volatility, many authors have considered how to incorporate

overnight returns into daily variance modeling and forecasting, by scaling the intraday measure (e.g.,

Martens, 2002 and Fleming, Kirby, and Ostdiek, 2003), or by combining daytime realized volatility

and the squared overnight return with optimally chosen weight parameters (e.g., Hansen and Lunde,

2005). However, these authors also did not model the overnight returns either. Andersen, Bollerslev,

and Huang (2011) decomposed the total daily return variability into the continuous sample path

variance, the discontinuous intraday jumps, and the overnight variance. For this overnight variance,

they used an augmented GARCH-t type structure with the immediately preceding daytime realized

volatility as an additional explanatory variable. Blanc, Chicheportiche, and Bouchaud (2014) employ

a quadratic ARCH model with flexible dynamics for both intraday and overnight returns; they also

allow for feedback from overnight to intraday returns and leverage effects. They use a t distributed

shock to drive each process and to define an estimation algorithm. They impose a pooling assumption

on the model parameters across 280 S&P500 stocks that are continually in the index over 2000-2009,

1Our main findings involve averages of the daily volatility series and so the efficiency gain of realized volatility may

not be so large in this context.
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and assume stationarity over the period in question.

Our paper is closely related to the Generalized Autoregressive Score models or the Beta-t-

(E)GARCH model. Creal, Koopman, and Lucas (2013) introduced a general class of time series

models called Generalized Autoregressive Score models (GAS). Simultaneously, Harvey, Chakravarty

et al. (2008) developed a score driven model specifically for volatilities, called the Beta-t-(E)GARCH

model, built on exactly the same philosophy. Harvey (2013) settles on the dynamic conditional score

model terminology, and we follow that nomenclature. This paper is also related to the work of Engle

and Rangel (2008) and Hafner and Linton (2010) about incorporating long run volatilities.Engle and

Rangel (2008) introduced nonparametric slowly varying trends into GARCH models; Hafner and

Linton (2010) propose a multivariate extension and develop the distribution theory for inference.

2 The Model and its Properties

We let rDt denote intraday returns and rNt denote overnight returns on day t. We take the ordering

that night precedes day so that rDt = ln(PC
t /P

O
t ) and rNt = ln(PO

t /P
C
t−1), where PO

t denotes the

open price on day t and PC
t denotes the close price on day t. Daily close to close returns satisfy

rt = rDt + rNt . The timeline is illustrated below

· · · −→ PC
t−1

∣∣∣∣∣∣∣∣∣∣∣

Night t−→︸︷︷︸
rNt

PO
t

Day t−→︸︷︷︸
rDt︸ ︷︷ ︸

rt

PC
t

∣∣∣∣∣∣∣∣∣∣∣

Night t+1−→︸︷︷︸
rNt+1

PO
t+1 −→ · · ·

We do not distinguish between weekend, holiday weekends, and ordinary midweek over night periods,

although we comment on this issue in the concluding section below.

Our model allows intraday returns to depend on overnight returns with the same t, but overnight

returns just depend on lagged variables. We suppose that

(
1 δ

0 1

)(
rDt
rNt

)
=

(
µD

µN

)
+ Π

(
rDt−1
rNt−1

)
+

(
uDt
uNt

)
, (1)

where uDt and uNt are conditional mean zero shocks. Under the EMH, δ = 0 and Π = 0, but we allow

these coefficients to be nonzero to pick up what could be misspricing effects or short run effects such

as might arise from the market microstructure, Scholes and Williams (1977).

We suppose that the error process has conditional heteroskedasticity, with both long run and

short run effects. Specifically, we suppose that

ut =

(
uDt
uNt

)
=

(
exp(λDt ) exp(σD(t/T ))εDt
exp(λNt ) exp(σN(t/T ))εNt

)
, (2)

where: εDt and εNt are i.i.d. mean zero shocks from t distributions with vD and vN degrees of freedom,

respectively, while σD(·) and σN(·) are unknown but smooth functions that will represent the slowly
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varying (long-run) scale of the process, and T is the number of observations. Suppose that for

j = D,N :

σj (s) =
∑∞

i=1
θjiψ

j
i (s) , s ∈ [0, 1] (3)

for some orthonormal basis {ψji (s)}∞i=1 with
∫ 1

0
ψji (s) ds = 0 and

∫
ψji (s)ψjk (s) ds =

{
1 if i = k

0 if i 6= k.

We suppose σD(·) and σN(·) integrate to zero to achieve identification, which is a different approach

from Hafner and Linton (2010). In this case we do not have to restrict the parameters of the short

run dynamic processes for identification. In the following, j is always used to denote D,N without

further mentioning.

Regarding the short run dynamic part of (2), we adopt a dynamic conditional score approach,

Creal, Koopman, and Lucas (2011) and Harvey and Luati (2014). The conditional (scale) score

function associated with the t-distributed shocks is (1− x2(ν + 1)/(νσ2 + x2))/σ2, and so we take as

innovation processes

mj
t =

(1 + vj)(e
j
t)

2

vj exp(2λjt) + (ejt)
2
− 1, vj > 0 (4)

where ejt = exp(−σj(t/T ))ujt for j = D,N . Note that var(ejt |Ft−1) = exp(2λjt)var(εjt) = exp(2λjt)vj/(vj−
2) and mj

t is a bounded function of ejt with E(mj
t |Ft−1) = 0. We suppose that λDt and λNt are linear

combinations of past values of the shocks determined by mj
t , j = D,N :

λDt = ωD(1− βD) + βDλ
D
t−1 + γDm

D
t−1 + ρDm

N
t (5)

+ γ∗D(mD
t−1 + 1)sign(eDt−1) + ρ∗D(mN

t + 1)sign(eNt )

λNt = ωN(1− βN) + βNλ
N
t−1 + γNm

N
t−1 + ρNm

D
t−1 (6)

+ ρ∗N(mD
t−1 + 1)sign(eDt−1) + γ∗N(mN

t−1 + 1)sign(eNt−1).

This gives two dynamic processes for the short run scale of the overnight and intraday return. The

parameters ρD, ρ
∗
D capture the effect of overnight shocks on intraday volatility, while ρN , ρ

∗
N capture

the effects of intraday shocks on overnight volatility; we call ρD, ρ
∗
D, ρN , ρ

∗
N feedback parameters that

couple together the processes λDt , λ
N
t , whereas γD, γ

∗
D, γN , γ

∗
N are capturing the effect of shocks from

previous same type of period on same type of period volatility. We allow for leverage effects through

the parameters γ∗D, ρ
∗
D, ρ

∗
N , and γ∗N .

2 The parameters βD, βN measure the persistence of the volatility

processes. We set the intercepts this way so that ωD is the unconditional mean of λDt and ωN is the

unconditional mean of λNt ; we may consider exp(ωD − ωN) to measure the relative mean volatility

contribution of the daily process and the overnight process. Let

φ = (ωD, βD, γD, γ
∗
D, ρD, ρ

∗
D, vD, ωN , βN , γN , γ

∗
N , ρN , ρ

∗
N , vN)

ᵀ ∈ Φ ⊂ R14

be the finite dimensional parameters of interest. The two unknown functions σD(·) and σN(·) com-

plete the semiparametric model for the process {ut}.
2The shock variable mj

t can be expressed as mj
t = (vj + 1)bjt − 1, where bjt has a beta distribution, beta (1/2, vj/2).
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Harvey (2013) argues that the quadratic innovations that feature in GARCH models naturally fit

with the Gaussian distribution for the shock, but once one allows heavier tail distributions like the t-

distribution, it is anomalous to or not obvious why to focus on quadratic innovations, and indeed this

focus leads to a lack of robustness because large shocks are fed substantially into the volatility update.

He argues that it is more natural to link the shock to volatility to the distribution of the rescaled return

shock, which in the case of the t distribution has the advantage that large shocks are automatically

down weighted, and in such a way driven by the shape of the error distribution.3 The DCS model has

the incidental advantage that there are analytic expressions for moments, autocorrelation functions,

multi-step forecasts, and the mean squared forecast errors.

Before introducing our estimation procedure we comment on some properties of our model that are

useful in applications. In Supplementary Material we prove that if |βj| < 1, j = D,N, then ejt and λjt
are strongly stationary and β-mixing with exponential decay. We note that although the conditional

distribution of returns is symmetric about the mean, the unconditional distribution implied by our

model may be asymmetric because of the conditional mean process and the asymmetric news impact

curve that we allow for, He, Silvennoinen, and Teräsvirta (2008).

One use of our model is to improve risk management for day trading by updating volatility and

value at risk estimates based on the opening price. In particular, the dynamic intraday value at risk

conditional on overnight returns and past information is as follows

V aRD
t (α) = µDt + sDt tα(vD), (7)

µDt = E(rDt |Ft−1, rNt ) = µD − δrNt − Π11r
D
t−1 − Π12r

N
t−1

sDt = sd(rDt |Ft−1, rNt ) =

√
vD

vD − 2
exp(λDt ) exp(σD(t/T )),

where tα(v) is the α quantile of the t-distribution with degrees of freedom v. Here, Ft−1 is the

sigma field generated by {rDt−1, rNt−1, rDt−2, rNt−2, . . .} and Ft−1 ∪ {rNt } is the sigma field generated by

{rNt , rDt−1, rNt−1, rDt−2, rNt−2, . . .}. This process depends on all components of the model, the dynamic

mean, the dynamic variance, the trend variance, and the tail thickness of the shock distribution. To

obtain the value at risk given only past intraday returns say, requires some further arguments and

this is presented in Supplementary Material.

3 Estimation

Suppose that we know δ, µ,Π and hence ujt , j = D,N. In practice these can be replaced by root-T

consistent estimators, and we shall not detail the properties of the mean estimators in the sequel as

these are well known, and we shall drop them from the notation for convenience in the theoretical

analysis. We next describe how we estimate the unknown quantities φ and σj(.). For any α > 0, we

3This type of argument is similar to the argument in limited dependent variable models such as binary choice where

a linear function of covariates is connected to the observed outcome by a link function determined by the distributional

assumption.
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have for j = N,D,

E
(∣∣ujt

∣∣α
)

= E
(∣∣εjt

∣∣α
)
E
(
exp

(
αλjt
))

exp(ασj(t/T )) = cj(φ;α)× exp(ασj(t/T )),

where cj is a constant that depends in a complicated way on the parameter vector φ and on α.

Therefore, we can estimate σN(s), σD(s) as follows with kernel technology. Let K(u) be a kernel

with support [−1, 1] and h a bandwidth, and let Kh(.) = K(./h)/h. Then let

σ̃j(s) =
1

α
log

(
1

T

T∑

t=1

Kh(s− t/T )
∣∣ujt
∣∣α
)

(8)

for any s ∈ (0, 1). In fact, we employ a boundary modification for s ∈ [0, h]∪ [1−h, 1], whereby K is

replaced by a boundary kernel, which is a function of two arguments K(u, c), where the parameter c

controls the support of the kernel; thus left boundary kernel K(u, c) with c = s/h has support [−1, c]

and satisfies
∫ c
−1K(u, c)du = 1,

∫ c
−1 uK(u, c)du = 0, and

∫ c
−1 u

2K(u, c)du < ∞. Similarly for the

right boundary. The purpose of the boundary modification is to ensure that the bias property holds

throughout [0, 1], Härdle and Linton (1994). One may apply more sophisticated adjustments such

as Jones, Linton, and Nielsen (1995) that preserves positivity but reduces the bias in the boundary

region. For identification, we recenter σ̃j(t/T ) as

σ̃j(t/T ) = σ̃j(t/T )− 1

T

T∑

t=1

σ̃j(t/T ). (9)

Note that σ̃j(u) can be written as σ̃j(u) =
∑∞

i=1 θ̃
j
iψ

j
i (s) for some coefficients θ̃ji (that satisfy∑∞

i=1 |θ̃ji | < ∞) determined uniquely by the estimator σ̃j(u), that is, we can represent the kernel

estimator as a sieve estimator with a potentially infinite number of coefficients, see Supplementary

Material. We will use this representation for notational convenience, that is, we will represent σ̃j(.)

in terms of {θ̃ji }∞i=1 or just θ̃ for shorthand. In practice, the bandwidth may be chosen by some rule

of thumb method.

Let ẽNt = exp(−σ̃N(t/T ))uNt and ẽDt = exp(−σ̃D(t/T ))uDt , and let θ̃ denote {σ̃j(s), s ∈ [0, 1],

j = N,D}. Define the global log-likelihood function for φ (apart from an unnecessary constant and

conditional on the estimated values of θ)

lT (φ; θ̃) =
1

T

T∑

t=1

lt(φ; θ̃) =
1

T

T∑

t=1

(
lNt (φ; θ̃) + lDt (φ; θ̃)

)
,

ljt (φ; θ̃) = −λjt(φ; θ̃)− vj + 1

2
ln

(
1 +

(ẽjt)
2

vj exp(2λjt(φ; θ̃))

)
+ ln Γ

(
vj + 1

2

)
− 1

2
ln vj − ln Γ

(vj
2

)
,

(10)

where Γ is the gamma function and λjt(φ; θ̃) are defined in (5) and (6). For practical purposes, λj1|0
may be set equal to the unconditional mean, λj1|0 = ωj. We estimate φ by maximizing lT (φ; θ̃) with

respect to φ ∈ Φ. Let φ̃ denote these estimates.
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Given estimates of φ and the preliminary estimates of σD(·), σN(·), we calculate

η̃Nt = exp(−λ̃Nt )uNt ; η̃Dt = exp(−λ̃Dt )uDt ,

where λ̃jt = λjt(φ̃; θ̃). We then update the estimates of σD(·), σN(·) with the local likelihood function

in Severini and Wong (1992) given η̃jt and ṽj, i.e., we maximize the objective function

L̃jT (γ; λ̃j, s) = − 1

T

T∑

t=1

Kh(s− t/T )

[
γ +

ṽj + 1

2
ln

(
1 +

(η̃jt exp(−γ))2

ṽj

)]
(11)

with respect to γ ∈ R, for j = D,N separately, where λ̃j = (λ̃j1, . . . , λ̃
j
T )

ᵀ
. Here, we also use a

boundary kernel for s ∈ [0, h] ∪ [1 − h, 1]. In practice we use Newton-Raphson iterations making

use of the analytic derivatives of the objective functions, which are given in (11) in Supplementary

Material. Harvey (2013) gives some discussion about computational issues. To summarize, the

estimation algorithm is as follows.

Algorithm

Step 1. Estimate δ, µj,Π by least squares and σ̃j(u), u ∈ [0, 1], j = N,D from (8) and (9)

Step 2. Estimate φ by optimizing lT (φ; θ̃)with respect to φ ∈ Φ (by Newton-Raphson) to give φ̃.

Step 3. Given the initial estimates θ̃ and φ̃, we replace λjt with λ̃jt = λjt(φ̃; θ̃). Then let σ̂j (s)

optimize L̃jT (σj (s) ; λ̃, s) with respect to σj (s) . Rescale σ̂j(t/T ) = σ̂j(t/T )− 1
T

∑T
t=1 σ̂

j(t/T ) =∑∞
i=1 θ̂

j
iψ

j
i (s) . Update φ by optimizing lT (φ; θ̂)with respect to φ ∈ Φ to give φ̂.

Step 4. Repeat Steps 2-3 to update θ̂ and φ̂ until convergence. We define convergence in terms of

the distance measure

∆r =
∑

j=D,N

∫ [
σ̂j,[r](u)− σ̂j,[r−1](u)

]2
du+

(
φ̂[r] − φ̂[r−1]

)ᵀ (
φ̂[r] − φ̂[r−1]

)
,

that is, we stop when ∆r ≤ ε for some prespecified small ε.

4 Large Sample Properties of Estimators

In this section we give the asymptotic distribution theory of the estimators considered above. The

proofs of all results are given in Supplementary Material. Let hjt = λjt + σj(t/T ), and let:

At =

[
1 aDNt
0 1

]
, Bt−1 =

[(
βD + aDDt−1

)
0

aNDt−1
(
βN + aNNt−1

)
]
,

aDDt−1 = −2
(
γD + γ∗Dsign(uDt−1)

)
(vD + 1) bDt−1

(
1− bDt−1

)

aDNt = −2
(
ρD + ρ∗Dsign(uNt )

)
(vN + 1) bNt

(
1− bNt

)

aNNt−1 = −2
(
γN + γ∗Nsign(uNt−1)

)
(vN + 1) bNt−1

(
1− bNt−1

)

aNDt−1 = −2
(
ρN + ρ∗Nsign(uDt−1)

)
(vD + 1) bDt−1

(
1− bDt−1

)

9



bDt =
(eDt )2

vD exp(2λDt ) + (eDt )2
; bNt =

(eNt )2

vN exp(2λNt ) + (eNt )2
.

We use the maximum row sum matrix norm, ‖·‖∞ , defined by

‖A‖∞ = max
1≤i≤n

n∑

j=1

|aij| .

Assumptions A

1. ‖E (At ⊗ At)‖∞ < ∞, ‖EBtEAt‖∞ < 1, ‖E (Bt−1At−1 ⊗Bt−1At−1)‖∞ < ‖EBtEAt‖∞ ,and the

top-Lyapunov exponent of the sequence of AtBt−1 is strictly negative. The top Lyapunov expo-

nent is defined as Theorem 4.26 of Douc, Moulines, and Stoffer (2014).

2. 0 ≤ |βj| < 1.

3. hjt starts from the infinite past. The parameter φ0 is an interior point of Φ ⊂ R14, where Φ is

the parameter space of φ0.

4. The functions σj are twice continuously differentiable on [0, 1], j = D,N.

5. E|ujt |(2+δ)α <∞ for some δ > 0, j = D,N.

6. The function l(φ) = E(lT (φ; θ0)) is uniquely maximized at φ = φ0.

7. The kernel function K is bounded, symmetric about zero with compact support, that is K(s) = 0

for all |s| > C1 with some C1 <∞. Moreover, it is Lipschitz, that is |K(s)−K(s′)| ≤ L|s−s′|
for some L <∞ and all s, s′ ∈ R. Denote ||K||22 =

∫
K(s)2ds.

8. h (T )→ 0,as T →∞ such that T 1/2−δh→∞ for some small δ > 0.

Assumptions A3-A7 are used to derive the properties of σ̃j(s), in line with Vogt and Lin-

ton (2014) and Vogt (2012). But we only require that E|ujt |α(2+δ) < ∞, since we use σ̃j(s) =

log(T−1
∑T

t=1Kh(s − t/T )|ujt |α)/α. This is in line with the fact that the fourth-order moment of

overnight returns may not exist for some datasets. The mixing condition in Vogt and Linton (2014)

is replaced by Assumption A2, because of our tight model structure. Assumption A1 is required to

derive the stationarity of score functions, where ‖E (At ⊗ At)‖∞ <∞ can be verified easily, since bNt
in At follows a beta distribution.

Lemma 1 in Supplementary Material gives the uniform convergence rate of the initial estimator

σ̃j(s), which is close to T−2/5 when h = O(T−1/5). The proof mainly follows Theorem 3 in Vogt

and Linton (2014). We note that our initial estimator is robust to the specification of the short run

dynamic process in the sense that Lemma 1 continues to hold under the weak dependence assumptions

for whatever stationary mixing process is assumed for λjt .

We next present an important orthogonality condition that allows us to establish a simple theory

for the parametric component.
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Theorem 1 Suppose that Assumptions A1-A4 hold. Then, for each k and i, for k ∈ {1, . . . ,∞} and

i ∈ {1, . . . , 14} , we have

1

T

T∑

t=1

E

[
∂lt(φ0; θ0)

∂θk

∂lt(φ0; θ0)

∂φi

]
= o(T−1/2).

The proof of Theorem 1 is provided in Supplementary Material. Theorem 1 implies that the score

functions with respect to θ and φ are asymptotically orthogonal. The intuition behind this is that σj

is a function of a deterministic variable, t/T , while λjt is a stationary process independent of time t.

The cross product of their score functions can be somehow separated, see Linton (1993) for a similar

result. The asymptotic orthogonality implies that the particular asymptotic property of φ̃ and φ̂ in

Theorem 2 follows.

Define the asymptotic information matrix

I(φ0) = lim
T→∞

1

T

T∑

t=1

E

[
∂lt(φ0; θ0)

∂φ

∂lt(φ0; θ0)

∂φᵀ

]
.

Theorem 2 Suppose that Assumptions A1-A8 hold. Then

√
T
(
φ̃− φ0

)
=
√
T
(
φ̂− φ0

)
+ oP (1) =⇒ N

(
0, I(φ0)

−1) .

Theorem 3 Suppose that Assumptions A1-A8 hold. Then for s ∈ (0, 1)

√
Th

(
σ̂D(s)

σ̂N(s)
− σD0 (s)

σN0 (s)

)
=⇒ N

(
0, ||K||22

(
(vD+3)
2vD

0

0 (vN+3)
2vN

))
. (12)

Theorem 2 shows that φ̃ and φ̂ have the same asymptotic property and are efficient. The form

of the limiting variance in (12) is consistent with the known Fisher information for the estimation of

scale parameters of a t-distribution with known location and degrees of freedom (these quantities are

estimated at a faster rate), which makes this part of the procedure also efficient in the sense considered

in Tibshirani (1984). The proofs of Theorem 2 and 3 are provided in Supplementary Material. The

information matrix, I(φ0), can be computed explicitly. We can conduct inference with Theorem 2

and Theorem 3 using plug-in estimates of the unknown quantities. In the application we present

various Wald statistics for testing hypotheses about φ such as: the absence of leverage effects, the

absence of feedback effects, and the equality of intraday and overnight parameters.

Test of constancy of the ratio of long run components. We next provide a test of the

constancy of the ratio of long run overnight to intraday volatility. We consider the null hypothesis

to be

H0 : exp
(
σN0 (s)

)
= ρ exp

(
σD0 (s)

)
for some ρ ∈ R+, for all s ∈ (0, 1), (13)

versus the general alternative that the ratio exp
(
σN0 (s)

)
/ exp

(
σD0 (s)

)
is time varying. By Theorem

3 and the delta method, exp(σ̂D(s)) and exp(σ̂N(s)) converge jointly to a normal distribution, and

are asymptotically mutually independent. Therefore, consider the t-ratio

t̂(s) =

√
Th (ρ̂(s)− ρ̂)√

ω̂(s)
, (14)
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ρ̂(s) =
exp(σ̂N(s))

exp(σ̂D(s))
, ρ̂ =

∫ 1

0

exp(σ̂N(s))

exp(σ̂D(s))
ds

ω̂(s) = ρ̂2||K||22
(
v̂N + 3

2v̂N
+
v̂D + 3

2v̂D

)
.

Large values of |t̂(s)| are inconsistent with the null hypothesis. It follows from Theorem 3 that for

s ∈ (0, 1), t̂(s) =⇒ N(0, 1) under the null hypothesis. We may carry out the pointwise test statistic

or confidence interval based on this. We also consider an integrated version of this, specifically let

τ =

∫
t̂(s)2dWT (s)− aT

bT
, (15)

where WT (.) is some weighting function, for example Lebesgue measure on [0, 1], and aT , bT are

constants. This test statistic is similar to for example Fan and Li (1996). Under the null hypothesis,

E(t̂(s)2) ' 1 so we take aT = 1. Under the null hypothesis

var

(∫
t̂(s)2dWT (s)

)
= E

(∫ ∫
t̂(s)2t̂(r)2dWT (s)dWT (r)

)
− 1.

In the special case that WT is the measure that puts equal mass on the points s1, . . . , sM with

M = O(Th) so that t̂(sl) and t̂(sk) are asymptotically independent for l 6= k, we may take bT =√
2, because E(t̂(s)4) ' 3. Under the null hypothesis, τ =⇒ N(0, 1), while under the alternative

hypothesis τ → ∞ with probability one. This testing strategy is well suited to detect general

alternatives to the null hypothesis of constancy of the volatility ratio.

5 A Multivariate model

We next consider an extension to a multivariate model. We keep a similar structure to the univariate

model except that we allow the slowly moving component to be matrix valued.

We consider two approaches to modelling the conditional mean. Suppose that

rt =

(
rDt
rNt

)
; µ =

(
µD

µN

)
,

where rDt , r
D
t are n× 1 vectors containing all the intraday and overnight returns respectively, and let

Drt = µ+ Πrt−1 + ut,

where uDt and uNt are mean zero shocks, while

D =

(
In diag (∆)

0 In

)
; Π =

(
diag(Π11) diag(Π12)

diag(Π21) diag(Π22)

)
,

and ∆,Π11,Π12,Π21,and Π22 are n× 1 vectors. This dynamic model is similar to that considered in

the univariate section. In the application we also consider an alternative modelling approach when
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we have also market returns. In this case, we specify rjit using a microstructure-adjusted Market

Model

rDit = aDi + βDDi rDmt + βDNi rNmt + uDit (16)

rNit = aNi + βNNi rNmt + βNDi rDmt−1 + uNit , (17)

where rDmt and rNmt are the market intraday and overnight returns and rDit and rNit are the returns of

stock i. Including a lagged return in the market model to account for microstructure goes back to

Scholes and Williams (1977).

We now consider the specification of the variance equation for the errors ut. We suppose that

ut =

(
ΣD(t/T )

1
2 diag

(
exp(λDt )

)
0

0 ΣN(t/T )
1
2 diag

(
exp(λNt )

)
)(

εDt
εNt

)
,

where: εjit are i.i.d. shocks (mutually independent across i, j, and t, identically distributed over t)

from univariate t distributions with vij degrees of freedom, while λjt are n × 1 vectors. We assume

that ΣD(.) and ΣN(.) are smooth matrix functions but are otherwise unknown. They allow slowly

evolving correlation between stocks in the day or night, and for those correlations to vary by stock

and over time.

We can write the covariance matrices in terms of the correlation matrices and the variances as

follows

Σj(s) = diag
(
exp(σj(s))

)
Rj(s)diag

(
exp(σj(s))

)
, j = D,N, (18)

with diag (exp(σj(s))) being the volatility matrix and Rj(s) being the correlation matrix with unit

diagonal elements and off-diagonal elements Rj
il(s) with −1 ≤ Rj

il(s) ≤ 1. For identification, we still

assume
∫ 1

0
σji (s)ds = 0, for i ∈ {1, . . . , n} and j = D,N.

As with the univariate model, define ejt = diag(exp(λjt))ε
j
t ∈ Rn, and suppose that:

mj
it =

(1 + vij)(e
j
it)

2

vij exp(2λjit) + (ejit)
2
− 1,

λDit = ωiD(1− βiD) + βiDλ
D
it−1 + γiDm

D
it−1 + ρiDm

N
it

+ γ∗iD(mD
it−1 + 1)sign(uDit−1) + ρ∗iD(mN

it + 1)sign(uNit ),

λNit = ωiN(1− βiN) + βiNλ
N
it−1 + γiNm

N
it−1 + ρiNm

D
it−1

+ ρ∗iN(mD
it−1 + 1)sign(uDit−1) + γ∗iN(mN

it−1 + 1)sign(uNit−1).

For each i define the parameter vector φi = (ωiD, βiD, γiD, γ
∗
iD, ρiD, ρ

∗
iD, viD, ωiN , βiN , γiN , γ

∗
iN , ρiN , ρ

∗
iN , viN)

ᵀ ∈
Φ ⊂ R14, and let φ = (φ

ᵀ
1, . . . , φ

ᵀ
n)

ᵀ
denote all the dynamic parameters.

Define ιi the vector with the ith element 1 and all others 0, so that εjit = ιᵀi diag(exp(−λjt))Σj( t
T

)−1/2ujt .

The normalized global log-likelihood function is

lT (φ,Σ(·)) =
1

T

T∑

t=1

lNt (φ,Σ(·)) + lDt (φ,Σ(·))
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ljt (φ,Σ(·)) =
n∑

i=1

(
−

n∏

i=1

λjit −
vij + 1

2
ln

(
1 +

(ιᵀi diag
(
exp(−λjt − σj(t/T ))

) (
Σj
(
t
T

))−1/2
ujt)

2

vij

))

− 1

2
log det Σj

(
t

T

)
+

n∑

i=1

(
ln Γ

(
vij + 1

2

)
− 1

2
ln vij − ln Γ

(vij
2

))
.

We first define an initial estimator for Σj(t/T ) and then obtain an estimator of φ, and then we

update them. Suppose that we know ∆,Π and µ. To give an estimator of Σj(t/T ) that is robust to

heavy tails, we estimate the volatility parameter

σ̃ji (s) =
1

α
log

(
1

T

T∑

t=1

Kh(s− t/T )
∣∣ujit
∣∣α
)
, (19)

and then rescale σ̃j(t/T ) as

σ̃ji (t/T ) = σ̃ji (t/T )− 1

T

T∑

t=1

σ̃ji (t/T ). (20)

Supposing that the heavy tails issue is less severe in the estimation of correlation, which seems

reasonable, we estimate the correlation parameter by standard procedures

R̃j
ik(s) =

∑T
t=1Kh(s− t/T )ujiku

j
ik√∑T

t=1Kh(s− t
T

)ujitu
j
it

∑T
t=1Kh(s− t

T
)ujktu

j
kt

(21)

for s ∈ (0, 1), and boundary modification as previously detailed. Alternatively, we can use a robust

correlation estimator. Omitting the superscript j = D,N here, we may compute the pairwise Kendall

tau

τ̂k,l (s) =

T∑
i=1

T−1∑
j=i

Kh(s− i
T

)Kh(s− j
T

) (I {(ui,k − uj,k) (ui,l − uj,l) > 0} − I {(ui,k − uj,k) (ui,l − uj,l) < 0})
T∑
i=1

T−1∑
j=i

Kh(s− i
T

)Kh(s− j
T

) (I {(ui,k − uj,k) (ui,l − uj,l) > 0}+ I {(ui,k − uj,k) (ui,l − uj,l) < 0})
.

Then applying the relation between Kendall tau and the linear correlation coefficient for the elliptical

distribution suggested by Lindskog, Mcneil, and Schmock (2003) and Battey and Linton (2014), we

obtain the robust linear correlation estimator, ρ̂k,l (s) = sin(π
2
τ̂k,l (s)). In some cases, the matrix of

pairwise correlations must be adjusted to ensure that the resulting matrix is positive definite.

We have

Σ̃j(s) = diag
(
exp(σ̃j(s))

)
R̃j(s)diag

(
exp(σ̃j(s))

)
, j = D,N. (22)

Letting ẽjt = Σ̃j( t
T

)−1/2ujt , we obtain φ̃i by maximizing the univariate log-likelihood function of ẽjit
in (10) for each i = 1, . . . , n. To update the estimator for each Σj( t

T
), denote Θ = (Σj)−1/2. We

first obtain Θ̂ with the local likelihood function given λ̃jt and ṽj, i.e., maximize the local objective

function

LjT (Θ; λ̃, s) =
1

T

T∑

t=1

Kh(s− t/T )


log |Θ| −

n∑

i=1


 ṽij + 1

2
ln


1 +

(ιᵀi diag
(

exp(−λ̃jt)
)

Θujt)
2

ṽij







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with respect to vech(Θ), and let Σ̂j(t/T ) = Θ̂−2. The derivatives of the objective function are given

in (13) and (14) in Supplementary Material.

To summarize, the estimation algorithm is as follows.

Algorithm

Step 1. Estimate D, µ,Π (or the CAPM structure)by least squares, σ̃j(u), u ∈ [0, 1], j = N,D

from (19) and (20), and R̃j
ik from (21).

Step 2. Let ẽjt = Σ̃j( t
T

)−1/2ujt . We obtain φ̃i by maximizing the univariate log-likelihood function

of ẽjit in (10) for each i = 1, . . . , n.

Step 3. We replace λjt with λ̃jt = λjt(φ̃; θ̃). For each Σj(t/T ), denote Θj = (Σj)−1/2. Then obtain Θ̂

with the local likelihood function given λ̃jt and ṽj, with the Newton-Raphson iterations making

use of the derivatives of the objective functions.

Step 4. Repeat Steps 2-3 to update φ̂ and Σ̂j(t/T ) until convergence.

Our multivariate model can be considered as a diagonal DCS EGARCH model with a slowly

moving correlation matrix. Assuming diagonality on the short run component λjt enables us to

estimate the model easily and rapidly. In particular, the computation time of the initial estimator is

only of order n, with n being the number of assets considered; it is thus feasible even with quite large

n. The extension to models with non-diagonal short run components is possible, but only feasible

with small n. We do not provide the distribution theory here for space reasons but it follows by

similar arguments to given for the univariate case.

Blanc, Chicheportiche, and Bouchaud (2014) impose a pooling assumption in their modelling,

which translates here to the restriction that φi = φ1 for all i = 1, . . . , n. This improves efficiency

when the restriction is true. We can test the restriction by a standard Wald procedure or Likelihood

ratio statistic. In the application we find these pooling restrictions are strongly rejected by the data.

6 Empirical application

In this section, we apply our coupled-component GARCH model to empirical data. We first apply

the model to the Dow Jones stocks, and we report detailed estimates and examine the out-of-sample

forecast performance. Then, we investigate the overnight to intraday volatility and correlation in

the U.S. size-based portfolios. Finally, we extend our study to the four largest international stock

markets (U.S., U.K., Japan, and Germany).

6.1 Application to Dow Jones stocks

6.1.1 Data and preliminary analysis

We investigate 26 components of the Dow Jones industrial average index during the period of 4

January 1993 to 29 December 2017. The 26 stocks are AAPL, MSFT,, XOM, JNJ, INTC, WMT,
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CVX, UNH, CSCO, HD, PFE, BA, VZ, PG, KO, MRK, DIS, IBM, GE, MCD, MMM, NKE, UTX,

CAT, AXP, and TRV. 4 The data are obtained from Datastream, and the prices have been adjusted

for corporate actions. We define overnight returns as the log price change between the close of one

trading day and the opening of the next trading day. We do not incorporate weekend and holiday

effects into our model as they are not the focus of this paper. In addition, although the weekend

effect is documented by studies such as French (1980) and Rogalski (1984), and further supported

by Cho, Linton, and Whang (2007) with a stochastic dominance approach, many studies suggest

the disappearance of the weekend effect, including Mehdian and Perry (2001) and Steeley (2001).

In addition, Sullivan, Timmermann, and White (2001) claim that many calendar effects arise from

data-snooping.

Many studies, such as Cooper, Cliff, and Gulen (2008) and Berkman, Koch, Tuttle, and Zhang

(2012), find significantly higher overnight returns. Cooper, Cliff, and Gulen (2008) even suggest

that the U.S. equity premium during their research period is solely due to overnight returns. Figure

A.1 in Supplementary Material plots the cumulative returns for these 26 stocks. There is no clear

dominance of positive overnight returns from these Dow Jones stocks.

Berkman, Koch, Tuttle, and Zhang (2012) find significant positive mean overnight returns of +10

basis points (bp) per day, along with -7 bp for intraday returns from the 3000 largest U.S. stocks.

Following Berkman, Koch, Tuttle, and Zhang (2012), we first compute the cross-sectional mean

returns for each day, then compute the time-series mean and standard deviation of these values. The

mean intraday return is 2.05 bp with a standard error of 1.12 bp, while the mean overnight return

is 1.68 bp with a standard error of 0.71 bp. The difference between overnight and intraday means is

not statistically significant.

Table A.1 in Supplementary Material provides summary statistics for intraday and overnight

returns. Compared with intraday returns, overnight returns exhibit more negative skewness and

leptokurtosis. Specifically, 9 of these 26 stocks exhibit negative intraday skewness, while 25 of these

26 stocks have negative overnight skewness. The largest sample kurtosis for overnight returns is

935.78, which suggests the non-existence of the population kurtosis. We find that the per hour

variance of intraday returns is roughly 12 times the per hour variance of overnight returns, which is

somewhat less than the range of 13-100 times found by French and Roll (1986).5

4These stocks are constituents of the Dow Jones index according to the constituent list in May 2018. The V, GS,

and DWDP.K are excluded because they do not have prices available in 1993. The JPM is excluded because its open

price from 2 September 1993 to 4 January 1995 is missing in Datastream.
5Suppose that hourly stock returns satisfy

rht ∼ µh, σ2
h, κ3h, κ4h,

which is consistent with French and Roll (1986). Daily (based on a 6-hour trading day) and weekend (66 hours from

Friday close to Monday open) returns should then satisfy

rDt ∼ 6µh, 6σ
2
h,
κ3h√

6
,
κ4h
6

; rWt ∼ 66µh, 66σ2
h,

κ3h√
(66)

,
κ4h
66

.

In fact, overnight returns including weekend returns are very leptokurtic.
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6.1.2 Results of the univariate model

We estimate the univariate coupled-component GARCH model for each Dow Jones stocks. The

estimates and their robust standard errors in the mean equations are reported in Table A.2 in

Supplementary Material. We multiply returns by 100 to give more readable coefficients. Πij refers

to the element of the ith row jth column in the coefficient matrix Π. For the prediction of intraday

returns, 12 of the 28 26stocks have significant Π11 values that are all negative, and 7 of 28 stocks have

significant δ values which are all positive. This outcome suggests that both overnight and intraday

returns tend to have a negative effect on the subsequent intraday return. However, we do not find

clear patterns for predicting overnight returns. The constant terms, µD and µN , are positive for most

Dow Jones stocks.

Table A.3 in Supplementary Material gives the estimates of dynamic parameters. Parameters βD

and βN are significantly different from 1, and ρD, γD, ρN and γN are positive and significant. In

addition, we find significant leverage effects, with negative and significant ρ∗D, γ∗D, ρ∗N , and γ∗N , which

suggest higher volatility after negative returns.

We are also concerned about the difference between overnight and intraday parameters. Table

A.4 in Supplementary Material reports Wald tests with the null hypothesis that the intraday and

overnight parameters are equal within each stock. The parameter ωD, which determines the uncon-

ditional short-run scale, is significantly larger than ωN . The overnight degree-of-freedom parameter

is around 3, which is significantly smaller than the intraday counterpart at approximately 8. Both

are in line with the descriptive statistics in Table A.1 as well as previous studies suggesting that

overnight returns are more leptokurtic but less volatile. With other pairs of intraday and overnight

parameters, βj, γ, ρj, γ
∗
j , ρ
∗
j , the null hypothesis is seldom rejected. However, the joint null hypoth-

esis, (βD, γ, ρD, γ
∗
D, ρ

∗
D) = (βN , γ, ρN , γ

∗
N , ρ

∗
N), is rejected by many stocks. It is noteworthy that

the null hypothesis H0 : γN = ρD is not rejected by our data, which is inconsistent with Blanc,

Chicheportiche, and Bouchaud (2014). They suggest that past overnight returns weakly affect future

intraday volatilities, except for the very next one, but have a substantial impact on future overnight

volatilities. This inconsistency is probably because the dynamic conditional score model shrinks the

impact of extreme overnight observations. After this shrinkage, the effect of overnight innovations

on parameter estimation becomes closer to the intraday innovations.

Many papers have argued that the introduction of high-frequency trading in the period post 2005

has led to an increase in volatility. Figure A.2 in Supplementary Material plots the intraday and

overnight volatilities,
√

νj
νj−2 exp(2λjt + 2σj( t

T
)), for j = D,N . The five dashed vertical lines from left

to right indicate the dates: 10 March 2000 (dot-com bubble), 11 September 2001 (the September 11

attacks), 16 September 2008 (financial crisis), 6 May 2010 (flash crash), and 1 August 2011 (August

2011 stock markets fall). The intraday volatility (red lines) significantly dominates the overnight

volatility (black lines) in the first half of the study period, but this domination gradually disappears,

especially after the 2008 financial crisis. In addition, the intraday volatilities after 2005 are in general

smaller than those before 2005, except for the financial crisis period. This finding is contrary to the

typical argument that high-frequency trading increases volatilities. To further investigate this point,

we plot the ratios of overnight to intraday volatility in Figure 1. All stocks exhibit upward trends
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This figure shows the dynamic ratio of overnight to intraday volatility, based on the univariate coupled-

component model, with one subplot for each stock. The five dashed vertical lines from left to right

represent the dates: 10 March 2000 (dot-com bubble), 11 September 2001 (the September 11 attacks),

16 September 2008 (financial crisis), 6 May 2010 (flash crash), and 1 August 2011 (August 2011 stock

markets fall), respectively. Intraday and overnight volatiles are defined as
√

νj
νj−2exp(2λ

j
t + 2σj( tT )), for

j = D,N .

Figure 1: Ratios of overnight to intraday volatility: univariate model
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over the 25-year period considered here, and many of them experience peaks around August 2011,

corresponding to the August 2011 stock markets fall.

6.1.3 Constancy of the ratio of overnight to intraday volatility

The long-run intraday and overnight components, σD(t/T ) and σN(t/T ), and their 95% point-wise

confidence intervals are depicted in Figure A.3 in Supplementary Material. Most stocks arrive at their

first peaks around 10 March 2000, corresponding to the dot-com bubble event, while some arrive at

around September 2011, right after 9-11. The intraday components reach their second peaks during

the financial crisis in September 2008, while overnight components continue to rise until around

2011. Roughly speaking, the intraday components are larger than the overnight ones before the first

peaks, but smaller after the financial crisis of September 2008. However, it is imperative to remember

that the long-run components are constructed with rescaling
∫ 1

0
σ(s)ds = 0. In general, the intraday

volatility is still larger.

We test the constancy of the ratio of long run overnight to intraday volatility. Figure A.4 in

Supplementary Material displays the test statistics t̂(s) and the 95 % point-wise confidence intervals

for s ∈ [0, 1]. Consistent with the results above, the equal ratio null hypothesis is mostly rejected

before the first peaks (in 2000) and after the second peaks (in 2010).

Cumulatively, this evidence indicates that the overnight volatility has increased in importance

during the 25-year period considered here, relative to the intraday volatility for the Dow Jones stocks.

6.1.4 Volatility forecast comparison

We also compare our coupled-component GARCH model with its one-component version for the

open-to-close returns to assess the improvement in volatility forecast from using overnight returns.

We construct 10 rolling windows, each containing 5652 in-sample and 50 out-of-sample observations.

In each rolling window, the parameters in the short-run variances are estimated with the in-sample

data once and stay the same during the one-step out-of-sample forecast. In the one-step-ahead

forecast of the long-run covariance matrices, the single-side weight function is used. For instance, to

forecast the long-run covariance matrix of period τ (s = τ/T ), we set the two-sided weight function

Kh(s − t/T ) = 0, for t >= τ , and then rescale Kh(s − t/T ) to obtain a sum of 1. Table A.5

in Supplementary Material reports Giacomini and White (2006) model pair-wise comparison tests

with the out-of-sample quasi-Gaussian and student t log-likelihood loss functions. For most stocks,

the coupled-component GARCH model dominates the one-component model. Some dominances are

statistically significant. We omit the comparison for overnight variance forecast between the one-

component and the coupled-component model since it is not plausible to estimate a GARCH model

with overnight returns alone.

6.1.5 Diagnostic tests

Ljung-Box tests on the absolute and squared standardized residuals are used to verify whether the

coupled-component GARCH model is adequate to capture the heteroskedasticity, shown in Table A.6
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in Supplementary Material. With the absolute form, strong heteroskedasticity exists in both intraday

and overnight returns but disappears in the standardized residuals, implying that our model captures

the heteroskedasticity well. However, we are sometimes unable to detect the heteroskedasticity in

overnight returns with squared values. In general, the use of the absolute form is more robust when

the distribution is heavy tailed.

Figure A.5 in Supplementary Material displays the quantile-quantile (Q-Q) plots of the intraday

innovations, comparing these with the student t distribution with ν̂D degrees of freedom. The

points in the Q-Q plots approximately lie on a line, showing that the intraday innovations closely

approximate the t distribution. Figure A.6 in in Supplementary Material displays the Q-Q plots of

the overnight innovations. Many stocks have several outliers in the lower left corners. Our model

only partly captures the negative skewness and leptokurtosis of overnight innovations.

6.1.6 Results of the multivariate model

Figure A.7 in Supplementary Material presents the long-run correlations between intraday or overnight

returns. Each subplot presents the averaged correlations between that individual stock and the re-

maining stocks. The correlations exhibit an obvious upward trend during the sample period of

1998-2016. In the 1990s, the overnight correlations and intraday correlations are both around 0.2,

albeit with fluctuations. In the period 2000 to 2007, intraday correlations start to increase and

are larger than the overnight correlations. However, during the period 2008 to 2016, overnight cor-

relations increase substantially to around 0.7 in 2011 and remain higher than 0.5, while intraday

correlations peak in around 2008 but the correlations are seldom larger than 0.5. Both correlations

start to decrease in 2017.

Figure A.8 in Supplementary Material plots the eigenvalues of the dynamic covariance matrices, as

well as their the scaled eigenvalues (the eigenvalues divided by the sum of eigenvalues). The dynamic

of eigenvalues reinforces the previous remark that the stock markets experienced high intraday risk

in the 9-11 attacks in 2001 and in the 2008 financial crisis, while stock markets experienced high

overnight risk in around 2011. The largest eigenvalue represents a strong common component,

illustrating that a large proportion of the market financial risk can be explained by a single factor.

The largest eigenvalue increases substantially during our research period. The second and third

largest eigenvalues still account for a considerable proportion of risk in the volatile period from 2000

to 2002, but become rather insignificant in the volatile period from 2008 to 2011. The largest intraday

eigenvalue proportion reaches its peak in 2008, while the largest overnight eigenvalue proportion

remains consistently high until 2011. Remarkably, the largest eigenvalue explains nearly 50% of

intraday risk in the 2008 financial crisis and 70% of overnight risk in the August 2011 stock markets

fall. The overnight eigenvalue proportion is much higher than its intraday counterpart in the period

2008 to 2016. Generally speaking, the market risk in the crisis period from 2008 to 2011 can be

largely explained by a single-factor structure, in particular, the overnight risk. This is in line with

the finding of Li, Viktor, and George (2017) that stocks returns tend to obey an exact one-factor

structure at times of market-wide jump events.

One concern is that our initial correlation estimator is based on the Pearson product moment
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correlation. This Pearson estimator may perform poorly because of the heavy tails of overnight

innovations. Therefore, we also try the robust correlation estimator in the initial step, yet the results

remain unchanged, as shown in Figure A.9 in Supplementary Material. This figure plots the largest

scaled eigenvalue of the estimated covariance matrix to assess the difference between using robust (in

black) and non-robust (in red) correlation estimators in the initial step. We use dashed lines for the

initial estimators and solid lines for the updated estimators. Despite the large difference of initial

estimators, particularly for overnight returns, the updated estimators are roughly similar. Like the

eigenvalues, the updated covariances themselves are also robust to a different initial estimator.

6.2 Application to CRSP size-based portfolios

6.2.1 Data and preliminary analysis

In this section, we investigate 10 size-based portfolios with CRSP stocks from January 1993 to

December 2017. The prices are adjusted for stock splits and dividends with the cumulative factor

in CRSP. Stocks with a close price less than 1 dollar at the end of the previous year are excluded.

Stocks with a non-active trade status are excluded for that day, as well as stocks with overnight or

intraday returns larger than 50% in absolute value.6 CRSP sorts all stocks into 10 deciles based on

their market capitalization values and provides the portfolio assignments for each stock in each year.

We construct three versions of value-weighted intraday and overnight returns for these 10 size-based

deciles, according to the assignment of three market types: NYSE/AMEX/NASDAQ, NASDAQ,

and NYSE.

Table A.8 in Supplementary Material reports descriptive statistics for overnight and intraday re-

turns of the deciles constructed with NYSE/AMEX/NASDAQ stocks (Panel a). The standard errors

are estimated based on the standard deviations of the value-weighted returns across time. Overnight

returns tend to be larger than intraday returns for large and middle stocks, while overnight returns

tend to be smaller than intraday returns for small stocks. In particular, with the NYSE/AMEX/

NASDAQ stocks, the mean overnight returns are significantly positive in decile 5-10 and significantly

negative in decile 1-3. In contrast, the intraday returns are significantly negative in decile 3-7, while

significantly positive in decile 1. If only with the NYSE size-based portfolios, most overnight and

intraday returns are insignificant, except that the overnight returns are still significantly positive

in the large stocks (decile 8-9) and almost significantly positive in the largest decile. If only with

the NASDAQ size-based portfolios, most overnight and intraday returns are significant. Namely,

overnight returns are significantly positive in large stocks (decile 6-10) and significantly negative in

small stocks (decile 1-4), while intraday returns are significantly negative in large and middle stocks

(decile 4-10). Most median values are larger than the mean values, due to the negative skewness. The

median values of intraday returns are positive in all size-based portfolios, while the median values

of overnight returns are positive in middle-cap and large-cap portfolios but negative in small-cap

portfolios. We next compare large and small stocks. Small stocks have significantly higher intra-

6In CRSP, if the close price is not available on any given trading day, the number in the price field has a negative

sign to indicate that it is a bid/ask average and not an actual close price. We exclude these negative close prices.
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day returns than large stocks but significantly lower overnight returns than large stocks with the

NYSE/AMEX/NASDAQ portfolios and with the NASDAQ portfolios. This pattern is consistent

with Polk, Lou, and Skouras (2018) in that they suggest that the well-known small-stock effect is

entirely an intraday phenomenon.

Figure A.10 in Supplementary Material plots the sample autocorrelation function of intraday and

overnight returns for deciles with stocks on NYSE/AMEX/NASDAQ. Both intraday and overnight

returns exhibit large and significant positive autocorrelations in small-cap deciles. Notice that the

autocorrelations of overnight returns decay at a very slow rate, which suggests the existence of

long memory. This finding is in line with Aboody, Even-Tov, Lehavy, and Trueman (2018), who

document that overnight returns are persistent for periods extending several weeks and who argue

that short-term persistence is stronger for harder-to-value firms.

The overnight returns in large-cap deciles (deciles 5-10) show significant negative first-order auto-

correlations, with a magnitude around −0.1. For intraday deciles, only the largest-cap decile exhibits

significantly negative first-order autocorrelation, around −0.07. In addition to the autocorrelations,

Figure A.11 in Supplementary Material shows the cross correlations between overnight returns and

intraday returns. The correlation between rDt and rNt on the same day is around 0.1 and significant

in most cap deciles, but it is insignificant in the largest decile. The cross correlation between rDt−1
and rNt is significant for all cap deciles, with a magnitude that is even larger than the correlation

between rDt and rNt in some deciles. These findings indicate strong positive effects from intraday

(overnight) returns to the subsequent overnight (intraday) returns.

6.2.2 Overnight and intraday volatilities of CRSP size-based portfolios

We estimate the univariate coupled-component GARCH model with the intraday and overnight

returns in each size-based portfolio. Table A.9 in Supplementary Material reports the estimates and

their robust standard errors in the mean equations. Most portfolios exhibit negative and significant

δ, indicating that overnight returns have positive effects on the subsequent intraday returns. The

smallest decile has a positive but insignificant δ, and the largest decile has a positive and insignificant

δ. These positive effects seem inconsistent with the strong reversal effects reported by Berkman,

Koch, Tuttle, and Zhang (2012). But note that their reversal effects describe the cross-sectional

difference in returns, while our positive effects describe the time-series properties in returns.

Table A.10 in Supplementary Material reports the estimates of dynamic parameters for the size-

sorted portfolios of all NYSE, AMEX, and NASDAQ stocks. Parameters βD and βN are significantly

different from 1, and ρD, γD, ρN and γN are significantly positive. The leverage effects are also

significant, suggesting higher volatility after negative returns. The overnight degrees of freedom are

larger than 4 and less heavy tailed than that of individual Dow Jones stocks.

The main advantage of the coupled-component model, relative to the traditional one-component

version, is that it allows investigating both the overnight and intraday volatilities. Figure 2 dis-

plays the intraday and overnight volatilities for the size-sorted portfolios of all NYSE, AMEX, and

NASDAQ stocks,
√

νj
νj−2 exp(2λjt + 2σj( t

T
)), for j = D,N . The five dashed vertical lines from left

to right indicate the dates 10 March 2000 (dot-com bubble), 11 September 2001 (the September 11
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This figure shows the estimated intraday (in red) and overnight (in black) volatilities,√
νj
νj−2exp(2λ

j
t + 2σj( tT )), for size-sorted deciles of NYSE/AMEX/NASDAQ stocks. The five dashed

vertical lines from left to right indicate the dates: 10 March 2000 (dot-com bubble), 11 September 2001

(the September 11 attacks), 16 September 2008 (financial crisis), 6 May 2010 (flash crash), and 1 August

2011 (August 2011 stock markets fall), respectively.

Figure 2: Intraday and overnight volatilities: NYSE/AMEX/NASDAQ
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attacks), 16 September 2008 (financial crisis), 6 May 2010 (flash crash), and 1 August 2011 (August

2011 stock markets fall). The overnight volatilities (black lines) are typically high during the 2008

financial crisis period for all deciles. Since Asian and European markets are active during the U.S.

overnight, we may expect overnight volatilities are driven more by oversea shocks. We indeed find

overnight volatilities remain high throughout the period 2009 to 2012, the period with European

sovereign debt crisis. After that, overnight volatilities become smaller, but still higher than the pre-

crisis level. Figure 3 presents the ratio of overnight to intraday volatility of those deciles. The ratio

exhibits a downward trend in small-cap portfolios (in particular before 2000) and an upward trend

in large-cap portfolios. Notably, the trend changes monotonically from the smallest-cap portfolio to

the largest-cap portfolio. The ratios are typically high during the 2011 stock markets fall probably

due to the fear of the European sovereign debt crisis. This finding is consistent with the fact that,

during the 2011 crisis, many large shocks stemmed from European markets and occurred overnight

in the U.S. market.

Results remain unchanged when we consider NASDAQ stocks or NYSE stocks alone (Figure A.12

in Supplementary Material). However, the slopes are generally flatter for NYSE stocks. It is probably

because the small stocks in NYSE are in general much larger than the small stocks in NASDAQ.

With the same approach, we also conduct 10 beta-sorted portfolios and 10 standard deviation-

sorted portfolios. No large difference is observed in the overnight to intraday volatility ratio across

these portfolios (Figure A.13 in Supplementary Material). Nearly all beta-sorted and standard

deviation-sorted deciles exhibit increasing overnight to intraday volatility ratios, with their highest

values during the European sovereign debt crisis.

6.2.3 Explain the dynamics of the overnight to intraday volatility ratio

The empirical results show that the ratio of overnight to intraday volatility for large stocks has

increased during the last 25 years when accounting for both slowly changing and rapidly changing

components. This finding conflicts with what is often argued with regard to the change in market

structure and the predatory practices of certain traders. Portfolios of small stocks on the other hand

seem to exhibit a different trend. A number of possible explanations exist for this phenomenon,

and we focus on two aspects: the change in trading mechanisms and the variation in international

linkage.

First, the trading mechanism has evolved considerably from the early part of the sample. For

instance, in the early 1990s, the minimum tick size was largely 12.5 cents, and NASDAQ dealers were

found colluding implicitly to avoid odd-eighth quotes in order to maintain spreads of at least 25 cents

(Christie, Harris, and Schultz (1994)). In June 1997, the minimum tick sizes decreased to 6.25 cents

with the implementation of new SEC rules, and further became a penny after the decimalization in

2001, as a result, spreads for most stocks declined (Hasbrouck (2007)). We indeed observe that many

stocks (even stocks with low prices) often had have 25 cents jumps in their open prices in the 1990s.

For stocks with prices less than 5 dollars, 25 cents overnight jumps means larger than 5% overnight

returns, which may lead to substantial overnight volatilities. With a cross-tabulation analysis of the

stock price and stock size, we can easily find that small stocks tend to have low prices. This finding
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This figure plots the ratio of overnight to intraday volatility for portfolios formed on size. Decile 1 is the

portfolio with the smallest market capitalizations and decile 10 is the portfolio with the largest market

capitalizations. The intraday and overnight volatilities are
√

νj
νj−2exp(2λ

j
t + 2σj( tT )) for j = D,N ,

respectively. The five dashed vertical lines from left to right indicate the dates 10 March 2000 (dot-com

bubble), 11 September 2001 (the September 11 attacks), 16 September 2008 (financial crisis), 6 May

2010 (flash crash), and 1 August 2011 (August 2011 stock markets fall), respectively.

Figure 3: Ratio of overnight to intraday volatility of size-based portfolios: NYSE/AMEX/NASDAQ
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could explain the decrease of the overnight to intraday volatility ratio in small-cap portfolios during

the 1990s.7 In the following parts, we focus on the post-decimalization period, after February 2000,

when most stocks have fairly small spreads.

During 2004, NASDAQ launched opening cross and closing cross to give a single open and close

price. To investigate whether these crosses changed the dynamics of the overnight to intraday

volatility, we use NYSE as the control group, and we estimate the coupled-component GARCH

model for the value-weighted NASDAQ index and the value-weighted NYSE index. Figure A.15 in

Supplementary Material plots the overnight volatility, intraday volatility, and overnight to intraday

volatility ratio for both NASDAQ and NYSE. The dashed vertical line indicates the last trading day

in October 2004, when NASDAQ had introduced the opening and closing crosses. Both overnight

and intraday volatilities are rather small for both NASDAQ and NYSE in 2004, and the launch of

opening and closing crosses does not seem to change the overnight to intraday volatility ratio.

Next, we examine whether the variation in international linkage can explain the dynamics of the

overnight to intraday volatility ratio. Intuitively, stocks with stronger international linkage should

be more sensitive to news about international events that is released while the U.S. market is closed.

First, we use the ratio of foreign to domestic income as a proxy of international linkage. Companies

with a larger proportion of income from foreign countries are presumed to have more exposure to

global shocks. We collect the yearly data of pretax foreign income and pretax domestic income from

COMPU.S.TAT and link them with stock prices obtained from CRSP by index ’CRU.S.IP’. About

10 percent of NYSE, AMEX, and NASDAQ stocks obtain their income data. At the end of each

year, these stocks (excluding the stocks with share prices less than 1 dollar) are allocated to three

size groups (small, middle, and large), with the assignment provided in CRSP. Specifically, stocks

with size assignment 1, 2, or 3 are allocated to the small group; those with assignment 4, 5, 6, or 7

are allocated to the middle group; and those with assignment 8, 9, or 10 are allocated to the large

group. Independently, we sort NYSE, AMEX, and NASDAQ stocks by the ratio of pretax foreign

income to pretax domestic income (F/D income) and split them into three groups, using the 30th

and 70th percentiles as breakpoints. The intersections of these two sorts produce nine portfolios.

We then estimate the coupled-component GARCH model with the value-weighted returns of these

nine portfolios. Figure 4 shows that the overnight to intraday ratios remain nearly unchanged across

portfolios with different F/D income.

Second, we investigate the overnight to intraday volatility ratio across industries since some

industries are supposed to have higher international linkage. We use the Fama-French 12 industry

classification and form 12× 3 portfolios by size and industry. The coupled-component GARCH model

is then estimated for the value-weighted returns of these 36 portfolios. In general, the main variation

in overnight to intraday volatility ratio still comes from the size dimension (Figure 5). These results

are consistent with our findings in the previous section about Dow Jones stocks. Within the Dow

Jones there is some variation across firms in terms of the percentage revenue that is earned overseas,

from 85% in Intel to 0% in United Health Care, and yet both of these stocks experience a similar

7We construct portfolios on size and price, and we find low-price groups had a clearer downward overnight to

intraday volatility ratio during 1990s. After controlling the price, the variation across size becomes weaker.
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This figure plots the overnight to intraday volatility ratio for the nine portfolios formed according to size

and F/D income sorts, where F/D income is the ratio of pretax foreign to domestic income.

Figure 4: Overnight to intraday volatility ratio: size and F/D income

upward trend in the ratio of overnight to intraday volatility.

Third, we use the correlation of daily returns to measure the international linkage. Specifically,

for each stock, we compute the yearly sample correlation between its daily returns and the global

excluding U.S. daily returns. The global ex-U.S.. index is obtained from the Kenneth French data

library. We sort all stocks by their correlations in the previous year and split them into 10 groups.

Independently, we split stocks into three size groups. The intersections of the sorts on correlation

and size produce 30 portfolios. Figure 6 plots the overnight to intraday volatility ratio of these 30

portfolios. The overall slope of the overnight to intraday ratio changes noticeably with international

correlations. The volatility ratios increase considerably in the deciles with high international correla-

tions, indicating the financial integration in recent decades. In contrast, the ratios of portfolios with

smaller international correlations remain much more stable. We also find that high international

correlations stocks are likely in the large-cap portfolios, consistent with Eun, Huang, and Lai (2008).

This finding can explain the phenomenon of large stocks exhibiting an increasing ratio of overnight

to intraday volatility in recent decades.

In sum, the change in the minimal tick size, which results in the improvement of market liquidity,

explains the high overnight to intraday ratio in small stocks during the 1990s. The variation in inter-

national linkage, measured by the yearly correlation, also explains the size pattern in the overnight

and intraday volatility ratio. But the foreign to domestic income ratio and industry category can

not explain these size pattern.
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This figure plots the overnight to intraday volatility ratio for portfolios formed according to size and

industry. We use the Fama-French 12 industry classification.

Figure 5: Overnight to intraday volatility ratio: size and industry
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Some other factors may also explain this phenomenon. For instance, one argument is that the

introduction of the EMini contract and its overnight trade ability from 9 September 1997 has allowed

investors to hedge their overnight positions, which should reduce the riskiness of overnight positions.

The liquidity of this contract has slowly grown during our study period and so this may make a

contribution to the changing overnight volatility, except that it should reduce the overnight volatility.

In addition, changes in the market structure and technology for trading large firms shares have

led to improvements in market quality when the market is open; that is, the electronic trading

mechanism delivers less volatility and the market absorbs information faster than it used to. This

is partly consistent with the findings of Boehmer, Fong, and Wu (2015) that algorithmic trading

has ”systematically negative effects on the liquidity of small or low-priced stocks, and AT increases

volatility more in those stocks”. We leave these for further study.

This figure plots the overnight to intraday volatility ratio for portfolios formed according to size and

international correlations. For each stock, we compute its yearly sample correlation with the global

excluding U.S. returns based on daily data. We then sort all stocks by their correlations in the previous

year and split them into 10 groups.

Figure 6: Overnight to intraday volatility ratio: size and international correlation

6.2.4 Alternative volatility measures

For a robustness check of the observed rising trend of most portfolios, we investigate the ratio of VIX

to the Rogers and Satchell (1991) volatility (RS volatility). The idea is that the VIX measures one-

month-ahead volatility and total volatility including presumably intraday and overnight, whereas the

aggregated RS volatility only includes intraday volatility. Therefore, the ratio reflects the intraday
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to overnight variability to some extent, although it is quite noisy. The published open price of the

S&P500 index may not reflect all the accumulated overnight information (Lin, Engle, and Ito (1994)

and many others) since some component stocks may open a few minutes later. An alternative proxy

for the S&P500 open price is the special opening quote (SOQ), suggested by Ahoniemi and Lanne

(2013). This index is calculated using the opening values of each of the 500 component stocks, and it

is also used as the typical settlement price for S&P 500 index futures. The data of VIX and SOQ are

obtained from Datastream. Figure A.14 in Supplementary Material presents: (1) the RS volatility

on the daily S&P500 returns, Vrs,t; (2) one-month-ahead RS volatility,
√∑22

i=1 V
2
rs,t+1; (3) VIX; and

(4) the ratio of VIX to the one-month-ahead RS volatility. The ratio of VIX to the one-month-ahead

RS volatility decreases before 2004 and increases afterwards. This outcome is consistent with our

previous findings.

6.2.5 Overnight and intraday long-run correlations of size-based portfolios

We next investigate the correlations between size-based portfolios during overnight and intraday

periods with the multivariate model. Each subplot in Figure 7 presents the average value of the

long-run intraday (in red) and overnight (in black) correlations between that decile and the remaining

deciles. All correlations increase gradually. Compared with large stocks, small stocks still co-move

less with other stocks. Both overnight and intraday correlations increase during the period 2008-

2016, especially the overnight correlations, which become larger than the intraday correlations. This

outcome is in line with our findings from the Dow Jones stocks that overnight correlations tend to

increase more dramatically during crisis periods.

6.3 Application to four large international stock markets

Given the remarkable size pattern in the U.S. market, we extend our empirical study to international

markets. We choose the four largest international stock markets (U.S., U.K., Germany, and Japan),

still with the research period from 3 4 January 1993 to 29 December 2017. The U.S. stock market and

the Japanese stock market have almost opposite intraday and overnight periods, which enables us to

better investigate the role of overseas information in the overnight and intraday volatility dynamics.

We first construct five size-based portfolios for each market and then estimate the coupled-component

GARCH model for each portfolio, similar to the procedure in the last subsection with the U.S. market.

We are also concerned that our results are affected by how portfolio construction is done. For

instance, with the yearly portfolio re-construction, the number of stocks in the portfolios jumps at

the beginning of each year because some stocks in the portfolios die throughout the year, whereas

new stocks are added only at the beginning of the next year. The jumps in the stock numbers

would lead to jumps in portfolio volatilities. We are not able to maintain the continuity in returns

and in volatilities. In addition, the volatilities of portfolio returns are determined not only by the

volatilities of component stocks but also by their correlations. The increase in portfolio volatility

could be attributed to the increase in correlations. Hence, as an alternative approach, we estimate the

GARCH model for each individual stock instead of estimating the GARCH model for each portfolio.
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Each panel presents the average long-run intraday(overnight) correlations between that size decile and

the remaining size deciles, as implied by the multivariate coupled-component model.

Figure 7: Long-run correlations between size-based portfolios

The individual stocks we investigate are the constituents of well-known market indices. We choose

the S&P 500, S&P 400, and S&P 600 in the U.S. market; FTSE 100, FTSE 250, and FTSE small in

the U.K. market; DAX 30, MDAX 50, and SDAX 50 in the German market; and Topix 100, Topix

400, and Topix small in the Japanese market. These indices cover the large-cap, middle-cap, and

small-cap stocks in each market.

It is worth mentioning that using the opening and close prices of market indices directly is

inappropriate. As we stated before, the published open prices of the market indices may not reflect

all the accumulated overnight information because some component stocks may open a few minutes

later.

6.3.1 Results with size-based portfolios in international markets

In this part, we investigate the overnight and intraday volatility of size-based portfolios in the U.S.,

U.K., German, and Japanese stock markets. The data for the U.K., German, and Japanese markets

are obtained from Datastream, while the data for the U.S. market are still those from CRSP, as in

the last subsection. We exclude stocks with prices below one dollar in the U.S. market (below one

pound in the U.K. market, below one euro in the German market, and below 100 yen in the Japanese

market). 8 For the U.K. stocks, we only choose those traded in the London stock exchange. For

many German firms, there are two prices in Datastream, one for XETRA and the other for Deutsche

8For stocks that stop trading on an exchange, Datastream keeps the value from the last trading day and displays

it as the current one. This practice yields zero daily returns but repeated non-zero overnight and intraday returns.

We discard those repeated values.
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Boerse AG. These two prices often differed in the early 1990s. We choose the one from Xetra.

For each market, we sort stocks based on their market capitalizations and form five size-based

portfolios. The size breakpoints are independent for each market, a different approach than in some

research with unified global size breakpoints. Figure 8 plots the overnight to intraday ratios for the

size-based portfolios in the four stock markets. The largest-cap portfolio has an upward overnight

to intraday volatility ratio in all four of these markets, and the ratios are typically high after 2007,

with the largest peaks during 2011 in U.S., Japan, and Germany.

This figure plots the overnight to intraday volatility ratio of the five size-based portfolios in the four

international markets (U.K., Germany, Japan, and U.S.).

Figure 8: Overnight to intraday volatility ratio: size-based portfolios in four international markets

6.3.2 Results with the constituents of major international stock indices

For each of the four markets, we choose the well-known large-cap, middle-cap, and small-cap indices.

We further divide the constituents of each index into two subgroups, large and small, according

to their recent market capitalizations, with the exception of the German market indices (DAX 30,

MDAX 50, and SDAX 50), which contain a relatively small number of stocks.9 The group assignments

9Our constituents are based on the lists in May 2018, as well as the market values.
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remain unchanged during the whole research period. The data for these constituents are obtained

from Datastream. All opening and close prices have been adjusted for capital actions by Datastream.

In the U.S. stock market, we investigate the S&P 500, S&P 400, and S&P 600, which are indexes

of the large-cap, middle-cap, and small-cap stocks, respectively. These three indices cover 1500

stocks. We exclude stocks with less than 1000 trading days and also exclude the stocks that ever

have overnight to intraday volatility ratios larger than 5 or an estimated overnight degree of freedom,

νN , less than 2. footnoteOur model requires the degree of freedom, νN and νD, larger than 2. It holds

for most stocks, but it is sometimes violated, especially for small stocks with wild overnight returns.

In total, there are 478, 355, and 525 stocks left in the S&P 500, S&P 400, and S&P 600, respectively.

Figure 9 presents the average volatility ratios for each subgroup of these three indices. We plot

the ratios of the S&P 400 and S&P 600 stocks from August 1993 because most of those stocks had

zero overnight returns before then. A remarkable size pattern remains in the overnight to intraday

volatility. Specifically, the overnight to intraday ratios decrease substantially in the 1990s for all

subgroups in the U.S. market, especially the S&P 400 and S&P 600 groups, with the ratio decreasing

from slightly less than 1 to around 0.6. The magnitude of the decrease is smaller for large-cap stocks,

and we hardly observe the decrease in the S&P-big stocks. After 2015, all these ratios in the U.S.

market start to increase, especially the large-cap and middle-cap stocks. The overall slope of the

volatility ratios still changes monotonically from the small-cap subgroup (S&P 600-small) to the

big-cap group (S&P 500-big). Remarkably, all the U.S. groups peak during stock market crashes,

namely in the 2008 financial crisis, in the 2011 August stock markets fall, in the 2015 August black

Monday, and in the 2016 January global fall.

In the U.K. stock market, we use the FTSE 100, FTSE 250, and FTSE SMALL, covering around

620 stocks in total. After excluding the stocks with less than 1000 trading days and stocks with

overnight to intraday ratios larger than 5, there are 98, 175, and 176 stocks left in the FTSE 100,

FTSE 250, and FTSE SMALL, respectively. Similarly, the overnight to intraday volatility ratio still

shows an upward trend in the biggest-cap subgroup (FTSE 100-big) in the 1990s. The ratio is around

0.4 in 1993 but increases gradually to around 0.6 in 2000, and then starts to fluctuate around 0.6.

However, the ratio of the small-cap stocks (FTSE SMALL) does not show a decreasing trend during

the research period. The FEST SMALL has an evident low overnight to intraday volatility ratio

during 2004 and 2005, because many zeros overnight returns occur in this period.

In the German stock market, we investigate the DAX 30, MDAX 50, and SDAX 50, covering

around 130 stocks in total. After excluding the stocks with less than 1000 trading days and stocks

with overnight to intraday ratios larger than 5, there are 27, 31, and 32 stocks left in the DAX 30,

MDAX 50, and SDAX 50, respectively. Since each index has a relatively small number of stocks,

we do not further divide them into subgroups. The ratios before July 1997 are not presented in the

figure for MDAX and SDAX because most of their current constituents were not traded during that

period. Again, the average overnight to intraday volatility ratio of the DAX 30 increases from 0.4

in 1993 to 0.6 in 2000, very similar to that of the FTSE 100-big stocks. In contrast, the ratio of the

SDAX shows a dramatic downward trend during the 20-year period considered here, with a value

around 1.3 in 1998 to around 0.4 in 2017. The MDAX also has a dramatic decrease in the early
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This figure plots the overnight to intraday volatility ratio for the major international indices. The

components of each index are further divided into two subgroups according to their current market

value, except for the German indices. The three dashed vertical lines from left to right indicate the dates

16 September 2008 (financial crisis), 1 August 2011 (August 2011 stock markets fall), and 24 August

2015 (the 2015-2016 market fall), respectively.

Figure 9: Overnight to intraday volatility ratio: major market indices

years, from 1.2 in 1998 to around 0.5 in 2002, but it fluctuates around 0.5 afterward.

In the Japanese stock markets, we use the Topix 100, Topix 400, and Topix SMALL, covering

around 2000 stocks. After excluding stocks with less than 1000 trading days or with overnight to

intraday ratios larger than 5, there are 98, 373, and 1112 stocks left in the DAX 30, MDAX 50,

and SDAX 50, respectively. The overnight to intraday volatility ratio shows an upward trend in the

biggest-cap group (TOPIX 100-big) and a downward trend in the TOPIX SAMLL stocks. All ratios

reach their peaks in the 2008 financial crisis, and have their second largest peaks at the beginning of

2016.

We are also concerned that the dynamic of the overnight to intraday volatility ratios is subject

to new stocks bias. Specifically, some current constituents were not traded at the beginning of our

research period, and the averaged ratio of the overnight to intraday volatility may increase if newly

added stocks have higher ratios. Hence, we exclude the stocks that were not traded in 1993, but the

results remain nearly unchanged.

In general, the results based on individual stocks are in some extent similar to those from the

size-based portfolios, but the increase of the overnight to intraday volatility ratio for large stocks

is less evident. Specifically, the ratio has still increased substantially during the recent 25 years for

large stocks but has decreased for small stocks in the U.S. market. The Japanese market shows

similar patterns, although they are less evident. The ratio for the large stocks in the U.K. and
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German markets also increased in the 1990s, but not afterward. This result is possibly because

the U.S. market opens during the trading time of the U.K. and the Germany markets, so many

overnight announcements in the U.S. market are reflected in the intraday prices of the U.K. and

German markets. The less evident increase in individual stocks suggests that the increase of stock

correlations is also an important factor driving up the overnight to intraday ratio in the large-cap

portfolios, especially in U.K. and Germany.

We also find that the volatility ratio of most stocks reaches their peak during a stock market

crisis, for instance, in the 2008 financial crisis, the 2011 markets fall, and the 2015-2016 market fall.

Together with the previous finding that overnight correlations also increase more substantially than

intraday correlations during a crisis. These findings may explain the high overnight returns found in

recent empirical finance study.

7 Conclusion

We have introduced a new coupled component GARCH model for intraday and overnight volatility.

This model is able to capture the heavy tails of overnight returns. For each component, we further

specify a non-parametric long run smoothly evolving component with a parametric short term fluc-

tuation. The large sample properties of the estimators are provided. For the univariate model we

show that one can adaptively estimate the parameters of the dynamic process in the presence of the

unknown slowly varying trend.

The empirical results show that the ratio of overnight to intraday volatility for especially large

stocks has increased during the last 25 years when accounting for both slowly changing and rapidly

changing components. This is contrary to what is often argued with regard to the change in market

structure and the effects of high frequency trading. Portfolios of small stocks on the other hand

seem to exhibit a different trend. The main explanation for this phenomenon is perhaps the varia-

tion in international linkage. Stocks with higher international correlations show considerably higher

overnight to intraday volatility ratio, and likewise with larger market capitalization. The changes of

minimal tick size make a contribution to the downward trend of small stocks during 1990s.

We found various other results. First, we found in the multivariate model that (slowly moving)

correlations between assets have increased during our sample period. In addition, overnight corre-

lations increase more substantially than intraday correlations during recent crises. We also found

that the information in overnight returns is valuable for updating the forecast of the close to close

volatility.

In our modelling we have not separated midweek overnight components from weekend compo-

nents. We may extend the model to allow multiple different components reflecting weekend different

from intraweek overnight, but at the cost of estimating many more parameters. We are also consid-

ering how to extend the model to allow stocks traded in different time zones, Lin, Engle, and Ito

(1994).
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1 Proof of the large sample properties

1.1 Lemmas

Lemma 1 Suppose that Assumptions A1-A8 hold. Then,

sup
u∈[0,1]

∣∣σ̃j(u)− σj0(u)
∣∣ = Op

(
h2 +

√
log T

Th

)
.

∫ 1

0

(
σ̃j(u)− σj0(u)

)2
du = Op

(
h2 +

√
1

Th

)
.

Furthermore
∥∥∥θ̃ − θ

∥∥∥
2

= Op

(
h2 +

√
1
Th

)
.

Proof of Lemma 1 Denote Hj(s) = exp(σj(s)). We drop the superscript j in what follows and

have

|ut| = H(t/T ) |et| = E |et|H(t/T ) +H(t/T ) (|et| − E |et|)
|ut|
E |et|

= H(t/T ) +
H(t/T )

E |et|
(|et| − E |et|)

=: H(t/T ) + ξt,

where Eξt = 0. Suppose we know E |et| .This gives a non-parametric regression function, so we can

invoke the Nadaraya-Waston estimator

H̃(s)
∗

=

∑T
t=1Kh(s− t/T ) |ut|

E|et|∑T
t=1Kh(s− t/T )

.

From Lemma 2, {et} is a β mixing process with exponential decay, and ξt thereby is also a β

mixing process with exponential decay. Invoking Theorem 3 in Vogt and Linton (2014), Theorem
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4.1 in Vogt (2012) or Kristensen (2009) yields

sup
s∈[C1h,1−C1h]

∣∣∣H̃(s)
∗ −H0(s)

∣∣∣ = Op

(√
log T

Th
+ h2

)
.

Denote σ̃(s)
∗

= log H̃(s)
∗
. Taylor expansion at H0(s) gives

σ̃(s)
∗

= σ(s) +
(
H̃(s)

∗ −H(s)
) 1

H(s)
− 1

2

(
H̃(s)

∗ −H(s)
)2 1

¯H(s)2
,

where H̄(s) is between H̃(s)
∗

and H0(s). Therefore,

sup
s∈[C1h,1−C1h]

∣∣σ̃(s)
∗ − σ0(s)

∣∣ = Op

(
h2 +

√
log T

Th

)
.

For s ∈ [0, h] ∪ [1− h, 1], we use a boundary kernel to ensure the bias property holds through [0, 1].

Until now we have obtained the property for the un-rescaled estimator σ̃(s)
∗
. Next, we are going

to show the convergence rate of the rescaled estimator σ̃(s). Recall that

σ̃(s) = σ̃(s)− 1

T

T∑

t=1

σ̃(
t

T
),

and we can rewrite σ̃(s) as:

σ̃(s) = σ̃(s)
∗ − 1

T

T∑

t=1

σ̃(
t

T
)
∗
,

as E |et| in σ̃(s)
∗

has vanished due to the rescaling. Plugging this into sups∈[C1h,1−C1h] |σ̃(s)− σ0(s)|
gives

sup
s∈[0,1]

|σ̃(s)− σ0(s)|

= sup
s∈[0,1]

∣∣∣∣∣σ̃(s)
∗ − 1

T

T∑

t=1

σ̃(
t

T
)
∗ − σ0(s)

∣∣∣∣∣

= sup
s∈[0,1]

∣∣∣∣∣σ̃(s)
∗ − 1

T

T∑

t=1

σ̃(
t

T
)
∗ − σ0(s)− 1

T

T∑

t=1

σ0(
t

T
) +

1

T

T∑

t=1

σ0(
t

T
)

∣∣∣∣∣

≤ sup
s∈[0,1]

∣∣σ̃(s)
∗ − σ0(s)

∣∣+

∣∣∣∣∣
1

T

T∑

t=1

(
σ̃(
t

T
)
∗ − σ0(

t

T
)

)∣∣∣∣∣+

∣∣∣∣∣
1

T

T∑

t=1

σ0(
t

T
)

∣∣∣∣∣

= Op

(
h2 +

√
log T

Th

)
+Op

(
h2 +

√
log T

Th

)
+

∣∣∣∣∣
1

T

T∑

t=1

σ0(
t

T
)

∣∣∣∣∣

= Op

(
h2 +

√
log T

Th

)
+

∣∣∣∣∣
1

T

T∑

t=1

σ0(
t

T
)

∣∣∣∣∣ .

We only have to work out the second term
∣∣∣ 1
T

∑T
t=1 σ0( t

T
)
∣∣∣ . According to Theorem 1.3 in Tasaki

(2009),

lim
T→∞

T 2

(∫ 1

0

σ0(s)ds− 1

2T

T∑

t=1

σ0(
t

T
)− 1

2T

T−1∑

t=0

σ0(
t

T
)

)
= − 1

12
(σ′0(1)− σ′0(0)) .
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Since
∫ 1

0
σ0(s)ds = 0 and σ′0(1)− σ′0(0) is bounded by Assumption A4, it follows

∣∣∣∣∣
1

T

T∑

t=1

σ0(
t

T
)

∣∣∣∣∣ ≤
∣∣∣∣∣

1

2T

T∑

t=1

σ0(
t

T
) +

1

2T

T−1∑

t=0

σ0(
t

T
)

∣∣∣∣∣+

∣∣∣∣∣
1

2T

T∑

t=1

σ0(
t

T
)− 1

2T

T−1∑

t=0

σ0(
t

T
)

∣∣∣∣∣

= O(T−2) +
1

2T
|σ0(1)− σ0(0)|

= O(T−1).

Therefore, the uniform convergence rate is

sup
s∈[0,1]

|σ̃(s)− σ0(s)| = Op

(
h2 +

√
log T

Th

)
+O(T−1)

= Op

(
h2 +

√
log T

Th

)
.

The L2 rate follows by similar arguments.

Recall that σ(s) =
∑∞

j=1 θjψj(s) for the orthogonal basis ψj. By construction σ̃(s) is a member

of the same normed space as σ(s), in which case we can write σ̃(s) =
∑∞

j=1 θ̃jψj(s) for coefficients

θ̃j, j = 1, 2, . . . . that satisfy
∑∞

j=1 |θ̃j| <∞. In particular, let

Q(θ) =

∫ 1

0

(
σ̃(s)−

∫ 1

0

σ̃(u)du−
∞∑

k=1

θkψk(s)

)2

ds.

We have for k = 1, 2, . . .

∂Q

∂θk
(θ) =

∫ 1

0

(
σ̃(s)−

∫ 1

0

σ̃(u)du−
∞∑

k=1

θkψk(s)

)
ψk(s)ds

and so

θ̃k =

∫ 1

0

(
σ̃(s)−

∫ 1

0

σ̃(u)du

)
ψk(s)ds =

∫ 1

0

σ̃(s)ψk(s)ds,

since
∫ 1

0
ψk(s)ds = 0. We have Q(θ̃) = 0. The coefficients satisfy θ̃k − θk =

∫ 1

0
(σ̃(s)− σ(s))ψk(s)ds.

We have

∫
(σ̃(s)− σ(s))2 ds =

∫ ( ∞∑

j=1

(
θ̃j − θj

)
ψj(s)

)2

ds

=
∞∑

j=1

(
θ̃j − θj

)2
∫
ψ2
j (s)ds

=
∞∑

j=1

(
θ̃j − θj

)2

=
∥∥∥θ̃ − θ

∥∥∥
2

under the assumption that ψj are orthonormal. So given the L2 rate of convergence of σ̃ we have the

same convergence rate for the implied coefficients.
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Lemma 2 If |βj| < 1, j = D,N, then ejt and λjt are strictly stationary and β-mixing with exponential

decay.

Proof. For simplicity, we consider the model without leverage effects

λDt = ωD(1− βD) + βDλ
D
t−1 + γDm

D
t−1 + ρDm

N
t

λNt = ωN(1− βN) + βNλ
N
t−1 + γNm

N
t−1 + ρNm

D
t−1.

Let us write it as



λDt
λNt
mD
t

mN
t


 =




βD 0 γD 0

0 βN ρN βN

0 0 0 0

0 0 0 0







λDt−1

λNt−1

mD
t−1

mN
t−1


+




ρDm
N
t + ωD(1− βD)

ωN(1− βN)

mD
t

mN
t


 .

Since mN
t and mD

t are i.i.d random variables and follow a beta distribution, we can easily find an

integer s ≥ 1 to satisfy

E

∣∣∣∣∣∣∣∣∣

ρDm
N
t + ωD(1− βD)

ωN(1− βN)

mD
t

mN
t

∣∣∣∣∣∣∣∣∣

s

<∞

(Condition A2 in Carrasco and Chen (2002)). The largest eigenvalue of the matrix

∣∣∣∣∣∣∣∣∣

βD 0 γD 0

0 βN ρN βN

0 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣∣

is smaller than 1 by assumption. Define Xt =
(
λDt λNt mD

t mN
t

)ᵀ
. According to Proposition

2 in Carrasco and Chen (2002), the process Xt is Markov geometrically ergodic and E |Xt|s <
∞. Moreover, if Xt is initialized from the invariant distribution, it is then strictly stationary and

β-mixing with exponential decay. The process {ejt} is a generalized hidden Markov model and

stationary β-mixing with a decay rate at least as fast as that of {λjt} by Proposition 4 in Carrasco

and Chen (2002). The extension to the model with leverage effects is straightforward, by defining

Xt =
(
λDt λNt mD

t mN
t sign

(
eDt
)

sign
(
eNt
))ᵀ

.

Lemma 3 Suppose that Assumptions A1-A4 hold. Then,

∑

k

k

∥∥∥∥∥E
([

∂hDt
∂σD(t−k/T )

∂hNt
∂σD(t−k/T )

](
∂

∂βD
hDt

∂
∂βD

hNt

))∥∥∥∥∥
∞

<∞.

Proof. By (3) and (4), we have

E




∂hDt+1

∂σD(t+k/T )
∂hNt+1

∂σD(t+k/T )



(

∂
∂βD

hDt+1
∂

∂βD
hNt+1

)
= EAt+1

(
aDDt
aNDt

)(
λDt − ωD 0

)
ATt+1; k = 1

4



E




∂hDt+1

∂σD(t+k/T )
∂hNt+1

∂σD(t+k/T )



(

∂
∂βD

hDt+1
∂

∂βD
hNt+1

)
= E

(
1

0

)(
λDt − ωD 0

)
ATt+1 = 0; k = 0.

When k > 1, it holds

vec

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)(
∂

∂βD
hDt

∂
∂βD

hNt

)

= vecAt

(
k−1∏

i=1

Bt−iAt−i

)
Λt−k

(
λDt−1 − ωD 0

)
ATt

+ vecAt

(
k−1∏

i=1

Bt−iAt−i

)
Λt−k

(
λDt−2 − ωD 0

)
ATt−1B

T
t−1A

T
t

+ ...

+ vecAt

(
k−1∏

i=1

Bt−iAt−i

)
Λt−k

(
λDt−k+1 − ωD 0

)
ATt−k+2B

T
t−k+2...A

T
t−1B

T
t−1A

T
t

=
k−1∑

j=1

(At ⊗ At)
(
j−1∏

i=1

(Bt−i ⊗Bt−i) (At−i ⊗ At−i)
)

vec

((
k−1∏

i=j

Bt−iAt−i

)
Λt−k

(
λDt−j − ωD 0

))
.

Since (Bt−1 ⊗Bt−1) (At−1 ⊗ At−1) and BtAt are i.i.d, and EBtAt = EBtEAt, we obtain

Evec

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)(
∂

∂βD
hDt

∂
∂βD

hNt

)
(1)

=
k−1∑

j=1

E (At ⊗ At)E (Bt−i ⊗Bt−i) (At−i ⊗ At−i)j−1Evec

((
k−1∏

i=j

Bt−iAt−i

)
Λt−k

(
λDt−j − ωD 0

))
.

By (15), we can express λDt−1 as a function of
{(
mD
t−i,m

N
t−i+1

)
, i > 1

}
. Note that Bt, At,and Λt are

independent of
{(
mD
s ,m

N
s

)
, s 6= t

}
. Therefore, we have

E

((
k−1∏

i=j

Bt−iAt−i

)
Λt−k

(
λDt−j − ωD

)
)

= γDE

(
k−1∏

i=j

Bt−iAt−i

)
Λt−k

∑k

i=j+1
βi−1
D

(
mD
t−i +

(
mD
t−i + 1

)
sign(eDt−i)

)

+ ρDE

(
k−1∏

i=j

Bt−iAt−i

)
Λt−k

∑k

i=j+1
βi−1
D

(
mN
t−i+1 + (mN

t−i+1 + 1)sign(eNt−i+1)
)
,
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with the first term
∥∥∥∥∥E
(
k−1∏

i=j

Bt−iAt−i

)
Λt−k

∑k

i=j+1
βi−1
D

(
mD
t−i +

(
mD
t−i + 1

)
sign(eDt−i)

)
∥∥∥∥∥
∞

≤
(∑k−1

i=j+1
βi−1
D

)∥∥E
(
Bt

(
mD
t + (mD

t + 1)sign(eDt )
)
At
)∥∥
∞ ‖EBtEAt‖k−j−1

∞ ‖EΛt‖∞
+ βk−jD

∥∥EΛt−k
(
mD
t−k + (mD

t−k + 1)sign(eDt−k)
)∥∥
∞ ‖EBtEAt‖k−j∞

≤ βD
1− βD

∥∥E
(
Bt

(
mD
t + (mD

t + 1)sign(eDt )
)
At
)∥∥
∞ ‖EΛt‖∞ ‖EBtEAt‖k−j−1

∞

+ βk−jD

∥∥EΛt−k
(
mD
t−k + (mD

t−k + 1)sign(eDt−k)
)∥∥
∞ ‖EBtEAt‖k−j∞

and the second term
∥∥∥∥∥E
(
k−1∏

i=j

Bt−iAt−i

)
Λt−k

∑k

i=j+1
βi−1
D

(
mN
t−i+1 + (mN

t−i+1 + 1)sign(eNt−i+1)
)
∥∥∥∥∥
∞

≤ βD
1− βD

∥∥E
(
Bt

(
mN
t + (mN

t + 1)sign(eNt )
)
At
)∥∥
∞ ‖EΛt‖∞ ‖EBtEAt‖k−j−1

∞ .

According to the definition of ‖‖∞ ,
∥∥∥∥∥Evec

((
k−1∏

i=j

Bt−iAt−i

)
Λt−k

(
λDt−j − ωD 0

))∥∥∥∥∥
∞

≤
∥∥∥∥∥E
((

k−1∏

i=j

Bt−iAt−i

)
Λt−k

(
λDt−j − ωD 0

))∥∥∥∥∥
∞

Therefore,
∥∥∥∥∥Evec

((
k−1∏

i=j

Bt−iAt−i

)
Λt−k

(
λDt−j − ωD 0

))∥∥∥∥∥
∞

≤ cT ‖EBtEAt‖k−j−1 (2)

with

cT =
βD

1− βD
|γD|

∥∥E
(
Bt

(
mD
t + (mD

t + 1)sign(eDt )
)
At
)∥∥
∞ ‖EΛt‖∞

+ ‖EBtEAt‖∞
∥∥EΛt−k

(
mD
t−k + (mD

t−k + 1)sign(eDt−k)
)∥∥
∞

+
βD

1− βD
|ρD|

∥∥E
(
Bt

(
mN
t + (mN

t + 1)sign(eNt )
)
At
)∥∥
∞ ‖EΛt‖∞ .

Substituting (2) into (1) gives
∥∥∥∥∥Evec

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)(
∂

∂βD
hDt

∂
∂βD

hNt

)∥∥∥∥∥
∞

≤
k−1∑

j=1

‖E (At ⊗ At)‖∞ ‖E (Bt−i ⊗Bt−i) (At−i ⊗ At−i)‖j−1
∞ cT ‖EBtEAt‖k−j−1

∞

≤ cT ‖E (At ⊗ At)‖∞
k−1∑

j=1

‖E (Bt−i ⊗Bt−i) (At−i ⊗ At−i)‖j−1
∞ ‖EBtEAt‖k−j−1

∞

≤ cT ‖E (At ⊗ At)‖∞
‖EBtEAt‖k−2

∞

1− ‖E(Bt−i⊗Bt−i)(At−i⊗At−i)‖∞
‖EBtEAt‖∞

,
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provided that ‖EBtEAt‖∞ < 1 and ‖E (Bt−1At−1 ⊗Bt−1At−1)‖∞ < ‖EBtEAt‖∞ .It is then straight-

forward to show
∑

k

k

∥∥∥∥∥Evec

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)(
∂

∂βD
hDt

∂
∂βD

hNt

)∥∥∥∥∥
∞

<∞

and thereby
∑

k

k

∥∥∥∥∥E
(

∂hDt
∂σD(t−k/T )

∂hNt
∂σD(t−k/T )

)(
∂

∂βD
hDt

∂
∂βD

hNt

)∥∥∥∥∥
∞

<∞.

Lemma 4 The score functions of hjt with respect to βD, vD and σj(t/T ) are
(

∂
∂βD

hDt
∂

∂βD
hNt

)
= At

(
λDt−1 − ωD

0

)
+ AtBt−1

(
∂

∂βD
hDt−1

∂
∂βD

hNt−1

)
(3)

=
∞∑

j=1

At

j−1∏

i=1

Bt−iAt−i

(
λDt−j − ωD

0

)
.

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)
= AtBt−1




∂hDt−1

∂σD(t−k/T )
∂hNt−1

∂σD(t−k/T )


 (4)

= At

(
k−1∏

i=1

Bt−iAt−i

)
Λt−k, k > 1

(
∂hDt

∂σD(t/T )
∂hNt

∂σD(t/T )

)
=

(
1

0

)
; and

(
∂hDt

∂σD(t−1/T )
∂hNt

∂σD(t−1/T )

)
= At

(
aDDt−1

aNDt−1

)
,

with Λt =

(
aDDt
aNDt

)
.If the top-Lyapunov exponent of the sequence of AtBt−1 is strictly negative,

(
∂

∂βD
hDt

∂
∂βD

hNt

)
,

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)
and

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)(
∂hDt
∂βD

∂hNt
∂βD

)
are strictly stationary.

Proof. Since hjt = λjt + σj(t/T ), we can write hjt in a recursive formula as

hDt = σD(t/T )− βDσD(
t− 1

T
) + ωD(1− βD) + βDh

D
t−1 + γDm

D
t−1

+ ρDm
N
t + γ∗D(mD

t−1 + 1)sign(uDt−1) + ρ∗D(mN
t + 1)sign(uNt ) (5)

hNt = σN(t/T )− βNσN(
t− 1

T
) + ωN(1− βN) + βNh

N
t−1 + γNm

N
t−1

+ ρNm
D
t−1 + ρ∗N(mD

t−1 + 1)sign(uDt−1) + γ∗N(mN
t−1 + 1)sign(uNt−1). (6)

and mD
t and mN

t can be expressed as

mD
t =

(1 + vD)(uDt )2 exp(−2hDt )

vD + (uDt )2 exp(−2hDt )
− 1, vD > 0

mN
t =

(1 + vN)(uNt )2 exp(−2hNt )

vN + (uNt )2 exp(−2hNt )
− 1, vN > 0.
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Taking the first order derivative of equation (5) and (6) with respect to βD gives

∂hDt
∂βD

= −σD(
t− 1

T
)− ωD + hDt−1 + βD

∂

∂βD
hDt−1 +

∂

∂βD
γDm

D
t−1 +

∂

∂βD
ρDm

N
t

+
∂

∂βD
γ∗D(mD

t−1 + 1)sign(uDt−1) +
∂

∂βD
ρ∗D(mN

t + 1)sign(uNt ) (7)

∂hNt
∂βD

= βN
∂

∂βD
hNt−1 +

∂

∂βD
γNm

N
t−1 +

∂

∂βD
ρNm

D
t−1

+
∂

∂βD
ρ∗N(mD

t−1 + 1)sign(uDt−1) +
∂

∂βD
γ∗N(mN

t−1 + 1)sign(uNt−1) (8)

and the derivatives of mD
t−1 and mN

t−1 are

∂

∂βD
mD
t−1 =

∂mD
t−1

∂hDt−1

∂

∂βD
hDt−1 = −2 (vD + 1) bDt−1

(
1− bDt−1

) ∂

∂βD
hDt−1

∂

∂βD
mN
t−1 =

∂mN
t−1

∂hNt−1

∂

∂βD
hNt−1 = −2 (vN + 1) bNt−1

(
1− bNt−1

) ∂

∂βD
hNt−1.

Substituting them back into (7) and (8) gives

∂hDt
∂βD

= λDt−1 − ωD +
(
βD + aDDt−1

) ∂

∂φ
hDt−1 + aDNt

∂

∂φ
hNt

∂hNt
∂βD

= 0 +
(
βN + aNNt−1

) ∂

∂φ
hNt−1 + aNDt−1

∂

∂φ
hDt−1

with the matrix form
(

∂
∂βD

hDt
∂

∂βD
hNt

)
= At

(
λDt−1 − ωD

0

)
+ AtBt−1

(
∂

∂βD
hDt−1

∂
∂βD

hNt−1

)
.

Note that AtBt−1 and At

(
λDt−1 − ωD

0

)
are strictly stationary and ergodic, by Theorem 4.27 in Douc,

Moulines, and Stoffer (2014), when the top-Lyapunov exponent of the sequence of AtBt−1 is strictly

negative,

(
∂

∂βD
hDt

∂
∂βD

hNt

)
converges and is strictly stationary.

Likewise, taking the first order derivative of hjt with respect to σD
(
t−k
T

)
yields

∂hDt
∂σD((t− k) /T )

=
(
βD + aDDt−1

) ∂hDt−1

∂σD((t− k) /T )
+ aDNt

∂hNt
∂σD((t− k) /T )

, k > 1

∂hDt
∂σD(t/T )

= 1,
∂hDt

∂σD((t− 1) /T )
= aDDt−1 + aDNt aNDt−1

∂hNt
∂σD((t− k) /T )

=
(
βN + aNNt−1

) ∂hNt−1

∂σD((t− k) /T )
+ aNDt−1

∂hDt−1

∂σD((t− k) /T )
, k > 1

∂hNt
∂σD(t/T )

= 0,
∂hNt

∂σD((t− 1) /T )
= aNDt−1 ,
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and (4) follows. Similarly,

(
∂hDt

∂σD((t−k)/T )
∂hNt

∂σD((t−k)/T )

)
is strictly stationary across time t.

Finally, we can write



∂hDt
∂σD((t−k)/T )

∂hNt
∂σD((t−k)T )

∂hDt
∂βD
∂hNt
∂βD




=

(
AtBt−1 0

0 AtBt−1

)



∂hDt−1

∂σD((t−k)/T )
∂hNt−1

∂σD((t−k)/T )
∂hDt−1

∂βD
∂hNt−1

∂βD




+



At

(
λDt−1 − ωD

0

)

0


 .

Both




∂hDt
∂σD((t−k)/T )

∂hNt
∂σD((t−k)/T )

∂hDt
∂βD
∂hNt
∂βD




and

(
∂hDt

∂σD((t−k)/T )
∂hNt

∂σD((t−k)/T )

)(
∂hDt
∂βD

∂hNt
∂βD

)
are strictly stationary, since the top-Lyapunov

exponent of the sequence

(
AtBt−1 0

0 AtBt−1

)
, same as that of AtBt−1, is strictly negative by as-

sumption.

Lemma 5 Suppose that Assumptions A1-A4 hold. Then, we have

1

T

T∑

t=1

E

(
∂hDt
∂θ

)
= 0.

Proof. Similar to the proof of Theorem 1, we only need to show
∑T

t=1 k

∥∥∥∥∥E
(

∂hDt
∂σN ((t−k)/T )

∂hNt
∂σN ((t−k)T )

)∥∥∥∥∥
∞

<

∞ . Note that E

(
∂hDt

∂σN ((t−k)/T )
∂hNt

∂σN ((t−k)/T )

)
= EAtBt−1At−1Bt−2..At−k+2Bt−k+1At−k+1Λt−k = A (BA)k−1 Λ,

when k > 1. Obviously,
∑T

t=1 k

∥∥∥∥∥E
(

∂hDt
∂σN ((t−k)/T )

∂hNt
∂σN ((t−k)/T )

)∥∥∥∥∥
∞

<∞.

1.2 Proof of Main Results

1.2.1 Proof of Theorem 1

Let φi = βD and θk be an element in function σD(·) (for simplicity, the subscript k is omitted in

the following explanation). Recall that hjt = λjt + σj(t/T ), and the log-likelihood function, without

unnecessary constant, can be rewritten as a function of hjt

ljt = −hjt −
vj + 1

2
ln

(
1 +

(ujt)
2

vj exp(2hjt)

)
+ ln Γ

(
vj + 1

2

)
− 1

2
ln vj − ln Γ

(vj
2

)

with the score functions

∂lt
∂θ

=
∂lDt
∂hDt

∂hDt
∂θ

+
∂lNt
∂hDt

∂hDt
∂θ

= mD
t

∂hDt
∂θ

+mN
t

∂hDt
∂θ

∂lt
∂βD

=
∂lDt
∂hDt

∂hDt
∂βD

= mD
t

∂hDt
∂βD

+mN
t

∂hDt
∂βD

.

9



Recall that mj
t = (vj + 1)bjt − 1,with bjt independent and identically beta distributed, we have

E
(
mN
t m

D
t

)
= 0, E

(
mj
t

)2
is time invariant, and E[(mj

t)
2] <∞. Therefore, we can write

T∑

t=1

E

(
∂lt
∂θ

∂lt
∂βD

)
= E

(
mD
t

)2
T∑

t=1

E

(
∂hDt
∂θ

∂hDt
∂βD

)
+ E

(
mN
t

)2
T∑

t=1

E

(
∂hNt
∂θ

∂hNt
∂βD

)
.

To prove the Theorem, it then suffices to show that

∥∥∥∥∥
T∑

t=1

E

((
∂hDt
∂θ
∂hNt
∂θ

)(
∂hDt
∂βD

∂hNt
∂βD

))∥∥∥∥∥
∞

= O(1).

By expressing λjt as a function of φ and
{(
σj( t−i

T
), ujt−i

)
, i ≥ 0

}
, we can write

∂hjt
∂θ

as

(
∂hDt
∂θ
∂hNt
∂θ

)
=

T∑

k=0




∂hDt
∂σD( t−k

T
)

∂σD( t−k
T

)

∂θ

∂hNt
∂σD( t−k

T
)

∂σD( t−k
T

)

∂θ


 =

T∑

k=0




∂hDt
∂σD( t−k

T
)

∂hNt
∂σD( t−k

T
)


ψDi

(
t− k
T

)
,

when the limit exists. Thus we obtain,

1

T

T∑

t=1

E

((
∂hDt
∂θ
∂hNt
∂θ

)(
∂hDt
∂βD

∂hNt
∂βD

))

=
1

T

T∑

k=0

T∑

t=1

E






∂hDt
∂σD( t−k

T
)

∂hNt
∂σD( t−k

T
)



(
∂hDt
∂βD

∂hNt
∂βD

)

ψDi

(
t− k
T

)

=
1

T

T∑

k=0

E






∂hDt
∂σD( t−k

T
)

∂hNt
∂σD( t−k

T
)



(
∂hDt
∂βD

∂hNt
∂βD

)



T∑

t=1

ψDi

(
t− k
T

)
.

The second equality follows since E




∂hDt
∂σj( t−k

T
)

∂hNt
∂σj( t−k

T
)



(
∂hDt
∂βD

∂hNt
∂βD

)
is invariant across time t by Lemma 4.

Taylor expansion of
∑T

t=1 ψ
D
i

(
t−k
T

)
around

∑T
t=1 ψ

D
i

(
t
T

)
gives

1

T

∑

t

ψDi

(
t− k
T

)
=

1

T

∑

t

ψDi

(
t

T

)
− 1

T

k

T

∑

t

ψD
′

i

(
t

T

)
+O

(
k

T

)2

= O

(
1

T

)
+O

(
k

T

)
+O

(
k

T

)2

= O

(
k

T

)
.

Hence, it suffices to show

T∑

k=0

∥∥∥∥∥∥
kE






∂hDt
∂σD( t−k

T
)

∂hNt
∂σD( t−k

T
)



(
∂hDt
∂βD

∂hNt
∂βD

)


∥∥∥∥∥∥
∞

<∞,

which is obtained by Lemma 3.

10



The proof with respect to vD is similar, but the score function is slightly different. The score

functions of lDt and lNt with respect to vD are

∂lDt
∂vD

= −1

2
ln

(
1 +

(uDt )2

vD exp(2hDt )

)
+

∂

∂vD

(
ln Γ

(
vD + 1

2

)
− ln Γ

(vD
2

))
− 1

2vD

+
vD + 1

2
(

1 +
(uDt )2

vD exp(2hDt )

) (uDt )2

v2
D exp(2hDt )

(
1 + 2vD

∂hDt
∂vD

)
+
∂hDt
∂vD

(9)

∂lNt
∂vD

=
vN + 1

2
(

1 +
(uNt )2

vN exp(2hNt )

) (uNt )2

v2
N exp(2hNt )

(
1 + 2vN

∂hNt
∂vD

)
+
∂hNt
∂vD

.

Then we have

T∑

t=1

E

(
∂lDt
∂θ

∂lDt
∂vD

)

=
T∑

t=1

E

(
mD
t

∂hDt
∂θ

[
∂hDt
∂vD

− 1

2
ln

(
1 +

(uDt )2

vD exp(2hDt )

)])

+
T∑

t=1

E

(
mD
t

∂hDt
∂θ

∂ ln Γ
(
vD+1

2

)
− 1

2
ln vD − ln Γ

(
vD
2

)

∂vD

)

+
T∑

t=1

E


mD

t

∂hDt
∂θ


 vD + 1

2
(

1 +
(uDt )2

vD exp(2hDt )

) (uDt )2

v2
D exp(2hDt )

(
1 + 2vD

∂hDt
∂vD

)




=
1

2
E

(
mD
t

(
− ln

(
1 +

(εDt )2

vD

)
+

vD + 1

2vD + (εDt )2

(εDt )2

vD

))
1

T

T∑

t=1

E

(
∂hDt
∂θ

)

+ E

(
mD
t

(
1 +

(vD + 1) (εDt )2

2vD + (εDt )2

))
1

T

T∑

t=1

E

(
∂hDt
∂vD

∂hDt
∂θ

)
.

The first term vanishes by Lemma 5. Then we can use the same procedure above to obtain∑T
t=1E

(
∂hDt
∂vD

∂hDt
∂θ

)
= O(1), and to finish the proof for vD.

1.2.2 Proof of Theorem 2

By the triangle inequality,

sup
φ∈Φ

∣∣∣lT (φ; θ̃)− l(φ)
∣∣∣ ≤ sup

φ∈Φ

∣∣∣lT (φ; θ̃)− lT (φ; θ0)
∣∣∣+ sup

φ∈Φ
|lT (φ; θ0)− l(φ)| ,

where l(φ) = E(lT (φ; θ0)). By the identification condition l(φ) is uniquely maximized at φ = φ0 and

standard arguments (Harvey (2013)) show that the second term is op(1). The first term is also op(1)

by the uniform consistency of σ̃(s) in Lemma 1 and the smoothness of the objective function in

σ̃(t/T ) and equivalently θk.

We next turn to asymptotic normality. The general strategy is that we first show the estimators

obtained by maximizing lT (φ; θ̃) and lT (φ; θ0) have the same asymptotic distribution, provided ||θ̃−

11



θ0|| converges to 0. As a result, the asymptotic property of φ̃ follows as in the parametric model

with known σ(t/T ).

Following Severini and Wong (1992), the expansion of 1√
T

∑T
t=1

∂lt(φ0,θ̃)
∂φ

at θ0 gives

1√
T

T∑

t=1

∂lt(φ0; θ̃)

∂φ
=

1√
T

T∑

t=1

∂lt(φ0; θ0)

∂φ
+

1√
T

T∑

t=1

(∑

k

∂2lt(φ0; θ0)

∂φ∂θk
(θ̃k − θk,0)

)
+ op(1). (10)

According to Theorem 1, we have
∑T

t=1E(∂
2lt(φ;θ)
∂φi∂θk

) = O(1), for each k and i, where k ∈ {1, . . . ,∞}
and i ∈ {1, . . . , 14} . It follows that

T∑

t=1

∂2lt(φ0; θ0)

∂φi∂θk
= Op(

√
T ).

Given that the dimension of the sieve space grows slowly and θ̃ converges to θ, the second term in

(10) is of order op(1).

Therefore, the asymptotic property of φ̃ can be obtained with a similar procedure to Harvey

(2013). He gives the consistency and asymptotic normality of the estimator for the parametric beta-

t-egarch model. The basic idea is that the first three derivatives of lt with respect to φ (except vj)

are linear combinations of bht (1 − bt)
k, h, k = 0, 1, 2, . . ., with bt = (1+v)(et)2

v exp(2λt)+(et)2 . Since bt is beta

distributed, these first three derivatives are all bounded. It is then straightforward to show that the

score function satisfies a CLT, and its derivative converges to the information matrix by the ergodic

theorem.

Obviously, φ̂ has the same limiting distribution as φ̃, since
∑T

t=1
∂lt(φ0,θ̃)

∂φ
and

∑T
t=1

∂lt(φ0,θ)
∂φ

have

the same asymptotic property.

1.2.3 Proof of Theorem 3

Consider the local likelihood function given ηjt and vj, i.e., minimize the objective function

LjT (σj; s) =
1

T

T∑

t=1

Kh(s− t/T )

[
σj +

vj + 1

2
ln

(
1 +

(ηjt exp(−σj))2

vj

)]

with respect to ω, for j = D,N separately. The first order and second order derivatives are:

∂LjT (σj; s)

∂σj
=

1

T

T∑

t=1

Kh(s− t/T )
[
−(vj + 1)bjt(σ

j) + 1
]

∂2LjT (σj; s)

∂σj2
= 2(vj + 1)

1

T

T∑

t=1

Kh(s− t/T )
[
bjt(σ

j)
(
1− bjt(σj)

)]
, (11)

where

bjt(σ
j) =

(ηjt )2

vj

exp(2σj) +
(ηjt )2

vj

.

12



We have
√
Th
(
σ̂j(s)− σj0(s)

)
=

[
1

Th

∂2LjT (σj0; s)

∂σj2

]−1
1√
Th

∂LjT (σj0; s)

∂σj
+ op(1),

This is asymptotically normal with mean zero and variance (when the t distribution is correct)

var

[
1√
Th

∂LjT (σj0; s)

∂σj

]
= ||K||22E

[(
1− (vj + 1)bjt(σ

j
0(s))

)2
]
t/T=s

.

This follows because

E
[(

1− (vj + 1)bjt(σ
j
0(s))

)2
]

= f(t/T )

for some smooth function f, and recall ηjt = exp(σj(t/T ))εjt . It follows that

h2

Th

T∑

t=1

K2
h(s− t/T )f(t/T )→ ||K||22f(s),

Therefore,

√
Th
(
σ̂j(s)− σj0(s)

)
=⇒ N


0,

||K||22
E
[(

1− (vj + 1)bjt
)2
]
t/T=s




Further, since bjt is distributed as beta(1
2
,
vj
2

), with

E
[(

1− (vj + 1)bjt
)2
]
t/T=s

=
2vj

(vj + 3)
.

It thus follows that
√
Th
(
σ̂j(s)− σj0(s)

)
=⇒ N

(
0,

√
(vj + 3)

2vj
||K||22

)
.

when the t distribution is correct.

2 Derivatives in the multivariate model

We now give the first-order and second-order derivatives of the global log-likelihood function in the

multivariate model, given λt and v. Without subscripts j and ignoring some unnecessary parts, the

log-likelihood function is

lt = log |Θ| −
n∑

i=1

(
vi + 1

2
ln

(
1 +

(ιᵀi diag (exp(−λt)) Θut)
2

vi

))
.
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Then

dlt = d log |Θ| −
n∑

i=1

(vi + 1) (ιᵀi diag (exp(−λt)) Θut) exp(−λit)
vi + (ιᵀi diag (exp(−λt)) Θut)

2 trutι
ᵀ
i dΘ

= tr
(
Θ−1dΘ

)
− tr

(
n∑

i=1

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + exp(−2λit) (ιᵀiΘut)
2 utι

ᵀ
i dΘ

)

= tr

[(
Θ−1 −

n∑

i=1

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + exp(−2λit) (ιᵀiΘut)
2 utι

ᵀ
i

)
dΘ

]

=

[
vec

(
Θ−1 −

n∑

i=1

ιiu
ᵀ
t

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + exp(−2λit) (ιᵀiΘut)
2

)]ᵀ
dvecΘ

=

[
vec

(
Θ−1 −

n∑

i=1

ιiu
ᵀ
t

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + exp(−2λit) (ιᵀiΘut)
2

)]ᵀ
DndvechΘ, (12)

where Dn is the duplication matrix so that vecΘ = DnvechΘ. Therefore, the first order derivative of

the global log-likelihood function is

∂LT (Θ;λt, s)

∂vechΘ
= − 1

T
Dᵀ
nvec

n∑

i=1

(
ιi

T∑

t=1

(
Kh(s− t/T )uᵀt

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + exp(−2λit) (ιᵀiΘut)
2

))

+Dᵀ
nvec

(
Θ−1

)
. (13)

To compute the Hessian matrix, we evaluate the differential of the Jacobian matrix in (12)

dvecDᵀ
n

(
Θ−1 −

n∑

i=1

ιiu
ᵀ
t

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + (exp(−2λit)ι
ᵀ
iΘut)

2

)
Dn

= Dᵀ
ndvecΘ−1 −Dᵀ

nvec
n∑

i=1

(
d

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + exp(−2λit) (ιᵀiΘut)
2

)
ιiu

ᵀ
t

= Dᵀ
ndvecΘ−1 −Dᵀ

n

n∑

i=1

(
vi − exp(−2λit) (ιᵀiΘut)

2
)

(vi + 1) exp(−2λit)
(
vi + exp(−2λit) (ιᵀiΘut)

2
)2 vec (ιiι

ᵀ
i dΘutu

ᵀ
t )

= −Dᵀ
n

(
Θ−1 ⊗Θ−1

)
DndvechΘ

−Dᵀ
n

n∑

i=1

(
vi − exp(−2λit) (ιᵀiΘut)

2
)

(vi + 1) exp(−2λit)
(
vi + exp(−2λit) (ιᵀiΘut)

2
)2 (utu

ᵀ
t )⊗ (ιiι

ᵀ
i )DndvechΘ.

The Hessian matrix of the global log-likelihood function is thus

∂2LT (Θ;λt, s)

∂vechΘ∂ (vechΘ)ᵀ

= −Dᵀ
n




n∑

i=1




T∑

t=1

Kh(s− t/T )
(
vi − exp(−2λit) (ιᵀiΘut)

2
)

(vi + 1)

T
(
vi + exp(−2λit) (ιᵀiΘut)

2
)2

exp(2λit)
utu

ᵀ
t


⊗ (ιiι

ᵀ
i )


Dn

−Dᵀ
n

(
Θ−1 ⊗Θ−1

)
Dn (14)
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3 Variances of rNt and rDt conditional on past information

In this section, we first give the conditional and unconditional moments of λt. Based on that, we

can obtain the variance of rNt and rDt conditional on past information.

3.1 Conditional and unconditional moments of λt

The expectation of exp(2λDt ) given Ft−1 is

E
[
exp(2λDt )|Ft−1

]
= ΛtE

[
exp(2ρDm

N
t + 2ρ∗D(mN

t + 1)sign(eNt ))|Ft−1

]
,

with Λt = exp(2ωD(1 − βD) + 2βDλ
D
t−1 + 2γDm

D
t−1 + 2γ∗D(mD

t−1 + 1)sign(eDt−1). We can express

E
[
exp(2ρDm

N
t + 2ρ∗D(mN

t + 1)sign(eNt ))|Ft−1

]
as

1

2
exp(−2ρD)

{
E
[
exp((2ρD + 2ρ∗D)(vN + 1)bNt ) + exp((2ρD − 2ρ∗D)(vN + 1)bNt |Ft−1

]}
.

Since bNt follows a beta (1/2, vN/2) distribution,

E
[
exp((2ρD + 2ρ∗D)(vN + 1)bNt )

]
= 1F1(1/2, 1/2 + vN/2, (2ρD + 2ρ∗D)(vN + 1)),

with 1F1 the Kummer’s function, we have

E
[
exp(2λDt )|Ft−1

]
=

1

2
exp(−2ρD)Λt 1F1(1/2, 1/2 + vN/2, (2ρD + 2ρ∗D)(vN + 1))

+
1

2
exp(−2ρD)Λt 1F1(1/2, 1/2 + vN/2, (2ρD − 2ρ∗D)(vN + 1)).

For the unconditional moments, we first write the dynamic function of λjt as

λDt = βt−1
D λD1 + ωD(1− βD)

∑t−1

k=1
βk−1
D + γD

∑t−1

k=1
βk−1
D mD

t−k + ρD
∑t−1

k=1
βk−1
D mN

t−k+1

+ γ∗D
∑t−1

k=1
βk−1
D (mD

t−k + 1)sign(eDt−k) + ρ∗D
∑t−1

k=1
βk−1
D (mN

t−k+1 + 1)sign(eNt−k+1)

λNt = βt−1
N λN1 + ωN(1− βN)

∑t−1

k=1
βk−1
N + γN

∑t−1

k=1
mN
t−kβ

k−1
N + ρN

∑t−1

k=1
βk−1
N mD

t−k

+ ρ∗N
∑t−1

k=1
βk−1
N (mD

t−k + 1)sign(eDt−k) + γ∗N
∑t−1

k=1
βk−1
N (mN

t−k + 1)sign(eNt−k).

When λjt starts from infinite past,

λDt = ωD + γD
∑∞

k=1
βk−1
D mD

t−k + ρD
∑∞

k=1
βk−1
D mN

t−k+1 (15)

+ γ∗D
∑∞

k=1
βk−1
D (mD

t−k + 1)sign(eDt−k) + ρ∗D
∑∞

k=1
βk−1
D (mN

t−k+1 + 1)sign(eNt−k+1)

λNt = ωN + γN
∑∞

k=1
mN
t−kβ

k−1
N + ρN

∑∞

k=1
βk−1
N mD

t−k

+ ρ∗N
∑∞

k=1
βk−1
N (mD

t−k + 1)sign(eDt−k) + γ∗N
∑∞

k=1
βk−1
N (mN

t−k + 1)sign(eNt−k).
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Therefore, we obtain

E exp
(
2λNt

)

=
1

4
exp

(
2ωN −

2 (γN + ρN)

1− βN

)

[∏∞

k=0
1F1

(
1

2
,
vN + 1

2
, 2 (γN + γ∗N)

(
vN + 1

)
βkN

)
+
∏∞

k=0
1F1

(
1

2
,
vN + 1

2
, 2 (γN − γ∗N)

(
vN + 1

)
βkN

)]

[∏∞

k=0
1F1

(
1

2
,
vD + 1

2
, 2 (ρN + ρ∗N) (vD + 1)βkN

)
+
∏∞

k=0
1F1

(
1

2
,
vD + 1

2
, 2 (ρN − ρ∗N) (vD + 1)βkN

)]

E exp
(
2λDt

)

=
1

4
exp

(
2ωD −

2 (γD + ρD)

1− βD

)

[∏∞

k=0
1F1

(
1

2
,
vD + 1

2
, 2 (γD + γ∗D)

(
vD + 1

)
βkD

)
+
∏∞

k=0
1F1

(
1

2
,
vD + 1

2
, 2 (γD − γ∗D)

(
vD + 1

)
βkD

)]

[∏∞

k=0
1F1

(
1

2
,
vN + 1

2
, 2 (ρD + ρ∗D)

(
vN + 1

)
βkD

)
+
∏∞

k=0
1F1

(
1

2
,
vN + 1

2
, 2 (ρD − ρ∗D)

(
vN + 1

)
βkD

)]
.

3.2 Variances of rNt and rDt conditional on past information

The variances of rNt and rDt conditional on Ft−1 are

var(rNt |Ft−1) =
vN

vN − 2
exp(2λNt + 2σN(t/T ))

var(rDt |Ft−1) = δ2 vN
vN − 2

exp(2λNt + 2σN(t/T )) +
vD

vD − 2
exp(2σD(t/T ))E

[
exp(2λDt )|Ft−1

]

var
(
rDt + rNt |Ft−1

)
=
vN(1− δ)2

vN − 2
exp(2λNt + 2σN(t/T )) +

vD
vD − 2

exp(2σD(t/T ))E
[
exp(2λDt )|Ft−1

]
.

In last subsection we show that

E
[
exp(2λDt )|Ft−1

]
=

1

2
exp(−2ρD)Λt ×1 F1(1/2, 1/2 + vN/2, (2ρD + 2ρ∗D)(vN + 1)) (16)

+
1

2
exp(−2ρD)Λt ×1 F1(1/2, 1/2 + vN/2, (2ρD − 2ρ∗D)(vN + 1)),

and

1F1(α, β, c) = 1 +
∞∑

k=0

(
k−1∏

r=1

α + r

β + r

)
ck

k!
, α, β > 0.

From this we obtain an explicit formula for var(rDt |Ft−1) and var
(
rDt + rNt |Ft−1

)
, which can be used

for forecasting.
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4 Tables and figures

intraday overnight

mean std.dev. skew kurt mean std.dev. skew kurt

AAPL -0.0003 0.0234 0.4624 9.9250 0.0009 0.0173 -8.2036 318.6199

MSFT 0.0003 0.0162 0.1571 6.2404 0.0002 0.0106 -0.6479 33.7075

XOM 0.0004 0.0126 0.1274 12.0193 -0.0001 0.0069 -0.9669 15.2169

JNJ 0.0003 0.0114 0.1154 7.1950 0.0001 0.0069 -3.1942 87.6901

INTC 0.0000 0.0194 0.1992 8.0585 0.0004 0.0137 -2.7660 54.5180

WMT -0.0001 0.0142 0.1265 8.4767 0.0003 0.0082 -0.5287 16.8276

CVX 0.0001 0.0133 0.0781 11.2908 0.0002 0.0072 -0.9472 13.6858

UNH 0.0003 0.0192 -0.1528 15.9404 0.0004 0.0112 -3.0667 69.9750

CSCO -0.0001 0.0223 0.8577 25.9271 0.0007 0.0147 -3.8152 108.3076

HD 0.0001 0.0165 0.3053 7.5083 0.0004 0.0106 -3.9397 117.0914

PFE -0.0001 0.0146 0.0103 6.5375 0.0003 0.0095 -1.9437 44.6513

BA 0.0003 0.0153 -0.0112 6.7304 0.0001 0.0101 -2.5133 62.5035

VZ 0.0001 0.0138 0.4653 8.1210 0.0000 0.0077 -0.5386 16.4611

PG 0.0008 0.0119 -0.0339 9.9414 -0.0005 0.0083 -19.0614 935.7817

KO 0.0005 0.0119 0.0663 9.3238 -0.0003 0.0070 -0.6990 17.2768

MRK 0.0003 0.0143 -0.0408 8.3037 -0.0002 0.0095 -6.0575 173.5046

DIS 0.0003 0.0154 0.1754 7.7958 0.0000 0.0106 -1.2228 51.4031

IBM 0.0004 0.0144 0.0549 7.9465 -0.0000 0.0096 -0.6096 43.7477

GE -0.0002 0.0153 -0.0095 11.9089 0.0003 0.0099 0.1355 31.4138

MCD 0.0005 0.0132 0.1176 10.6598 -0.0001 0.0081 -0.9658 23.4707

MMM 0.0003 0.0123 -0.0108 7.6709 0.0001 0.0071 -0.4690 19.6496

NKE 0.0006 0.0170 0.1205 10.6060 -0.0001 0.0102 -2.0427 51.4836

UTX 0.0001 0.0140 -0.3085 10.2302 0.0004 0.0081 -1.7679 42.1281

CAT -0.0001 0.0168 0.0265 6.1293 0.0006 0.0108 -0.8354 19.9062

AXP 0.0003 0.0185 -0.0528 10.6319 0.0002 0.0104 -1.1468 31.7965

TRV 0.0002 0.0158 -0.1092 17.2694 0.0001 0.0086 -1.7539 66.5588

This table gives the summary statistics of the intraday and overnight returns for Dow Jones stocks.

Table A.1: Summary statistics of intraday and overnight returns for Dow Jones stocks
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δ µD µN Π11 Π12 Π21 Π22

AAPL 0.0485 -0.0354 0.0935 -0.0609 0.0775 -0.0053 0.0017

(0.0444) (0.0292) (0.0216) (0.0172) (0.0258) (0.0200) (0.0172)

MSFT -0.0188 0.0290 0.0250 -0.0594 0.0472 0.0059 -0.0216

(0.0317) (0.0201) (0.0131) (0.0184) (0.0260) (0.0109) (0.0151)

XOM -0.0410 0.0434 -0.0132 -0.0873 -0.0197 -0.0298 -0.0201

(0.0458) (0.0157) (0.0086) (0.0222) (0.0440) (0.0152) (0.0230)

JNJ 0.0764 0.0326 0.0046 -0.0315 -0.0059 0.0201 0.0290

(0.0319) (0.0142) (0.0086) (0.0186) (0.0332) (0.0124) (0.0194)

INTC 0.0334 0.0005 0.0426 -0.0582 0.0638 0.0074 -0.0478

(0.0276) (0.0241) (0.0169) (0.0182) (0.0309) (0.0123) (0.0193)

WMT 0.0647 -0.0069 0.0332 -0.0466 0.0289 -0.0000 0.0178

(0.0352) (0.0177) (0.0102) (0.0184) (0.0320) (0.0097) (0.0174)

CVX -0.0823 0.0142 0.0181 -0.0536 -0.0393 -0.0077 -0.0313

(0.0430) (0.0166) (0.0090) (0.0210) (0.0443) (0.0137) (0.0221)

UNH -0.0332 0.0257 0.0387 0.0245 -0.0399 0.0035 -0.0110

(0.0600) (0.0240) (0.0140) (0.0211) (0.0403) (0.0151) (0.0211)

CSCO 0.1418 -0.0102 0.0665 -0.0662 -0.0096 0.0232 -0.0149

(0.1021) (0.0278) (0.0182) (0.0210) (0.0309) (0.0109) (0.0178)

HD 0.0456 0.0103 0.0350 0.0231 -0.0503 0.0244 -0.0071

(0.0363) (0.0205) (0.0132) (0.0191) (0.0280) (0.0122) (0.0190)

PFE 0.1436 -0.0053 0.0318 0.0039 -0.0094 -0.0053 0.0326

(0.0286) (0.0182) (0.0118) (0.0169) (0.0278) (0.0115) (0.0192)

BA -0.0334 0.0292 0.0121 -0.0040 0.0305 -0.0096 0.0165

(0.0310) (0.0190) (0.0125) (0.0193) (0.0394) (0.0140) (0.0184)

VZ 0.0534 0.0120 0.0013 -0.0409 -0.0275 -0.0090 0.0004

(0.0425) (0.0171) (0.0096) (0.0197) (0.0368) (0.0116) (0.0184)

PG 0.0788 0.0867 -0.0474 -0.0627 0.0782 -0.0267 -0.0211

(0.0262) (0.0148) (0.0106) (0.0218) (0.0278) (0.0135) (0.0144)

KO 0.0549 0.0536 -0.0265 -0.0200 0.0466 -0.0171 0.0463

(0.0352) (0.0148) (0.0087) (0.0195) (0.0347) (0.0126) (0.0168)

MRK 0.0014 0.0310 -0.0162 -0.0010 -0.0090 0.0114 0.0018

(0.0284) (0.0177) (0.0118) (0.0197) (0.0258) (0.0116) (0.0187)

DIS 0.0344 0.0302 0.0024 -0.0350 -0.0003 -0.0117 -0.0107

(0.0291) (0.0191) (0.0132) (0.0197) (0.0367) (0.0131) (0.0218)

IBM -0.0115 0.0414 -0.0017 -0.0405 0.0466 0.0029 -0.0584

(0.0298) (0.0179) (0.0119) (0.0175) (0.0250) (0.0109) (0.0177)

GE 0.1175 -0.0200 0.0317 -0.0293 0.0243 0.0012 0.0221

(0.0489) (0.0190) (0.0124) (0.0281) (0.0419) (0.0171) (0.0281)

MCD 0.1784 0.0515 -0.0083 -0.0297 0.0307 -0.0184 0.0171

(0.0472) (0.0164) (0.0100) (0.0195) (0.0291) (0.0112) (0.0175)

MMM -0.0267 0.0275 0.0088 -0.0148 -0.0040 -0.0294 -0.0176

(0.0326) (0.0152) (0.0088) (0.0177) (0.0295) (0.0108) (0.0199)

NKE 0.0334 0.0551 -0.0069 0.0115 -0.0116 -0.0059 -0.0147

(0.0351) (0.0212) (0.0127) (0.0202) (0.0276) (0.0117) (0.0152)

UTX -0.0574 0.0079 0.0409 -0.0275 -0.0160 0.0011 -0.0316

(0.0711) (0.0174) (0.0101) (0.0200) (0.0313) (0.0104) (0.0164)

CAT 0.0238 -0.0058 0.0562 -0.0038 -0.0257 0.0170 -0.0121

(0.0351) (0.0208) (0.0133) (0.0175) (0.0249) (0.0114) (0.0174)

AXP -0.0642 0.0265 0.0176 -0.0573 0.0235 -0.0061 -0.0499

(0.0449) (0.0230) (0.0129) (0.0214) (0.0436) (0.0138) (0.0261)

TRV 0.1572 0.0242 0.0078 -0.0423 -0.0557 -0.0207 -0.0282

(0.0673) (0.0196) (0.0106) (0.0299) (0.0448) (0.0191) (0.0214)

average 0.0353 0.0211 0.0172 -0.0311 0.0067 -0.0033 -0.0082

pool est. 0.0404 0.0209 0.0170 -0.0321 0.0132 -0.0013 -0.0098

pool s.e. (0.0038) (0.0022) (0.0014) (0.0018) (0.0032) (0.0012) (0.0019)

This table gives the estimates of the mean equations in the univariate coupled component models, with

their asymptotic standard errors in parenthesis; ’pool est.’ and ’pool s.e.’ represent the MLE pool

estimates and their standard errors.

Table A.2: Estimates of the mean equations with Dow Jones stocks
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βD γD ρD γ∗D ρ∗D νD ωD

AAPL 0.8939 0.0466 0.0479 -0.0187 -0.0093 7.3824 0.5180

(0.0243) (0.0066) (0.0088) (0.0037) (0.0038) (0.6270) (0.0205)

MSFT 0.9311 0.0469 0.0620 -0.0120 -0.0080 9.1070 0.1991

(0.0118) (0.0052) (0.0072) (0.0032) (0.0035) (0.9149) (0.0251)

XOM 0.9582 0.0399 0.0309 -0.0114 -0.0180 10.4484 -0.0396

(0.0074) (0.0046) (0.0045) (0.0027) (0.0029) (1.1757) (0.0281)

JNJ 0.9408 0.0433 0.0468 -0.0216 -0.0114 7.6657 -0.1929

(0.0095) (0.0049) (0.0059) (0.0032) (0.0033) (0.6855) (0.0257)

INTC 0.9630 0.0254 0.0292 -0.0123 -0.0125 10.6042 0.3897

(0.0076) (0.0035) (0.0050) (0.0023) (0.0027) (1.2275) (0.0247)

WMT 0.9625 0.0294 0.0333 -0.0107 -0.0086 6.9672 -0.0052

(0.0101) (0.0045) (0.0060) (0.0027) (0.0028) (0.5684) (0.0266)

CVX 0.9660 0.0302 0.0280 -0.0181 -0.0158 12.1562 0.0465

(0.0061) (0.0038) (0.0042) (0.0023) (0.0027) (1.6333) (0.0276)

UNH 0.9590 0.0372 0.0353 -0.0216 -0.0121 6.3959 0.2983

(0.0081) (0.0046) (0.0059) (0.0031) (0.0030) (0.4884) (0.0275)

CSCO 0.9484 0.0328 0.0387 -0.0203 -0.0197 9.1977 0.3973

(0.0084) (0.0044) (0.0053) (0.0030) (0.0029) (0.8801) (0.0234)

HD 0.9603 0.0327 0.0346 -0.0235 -0.0167 7.4076 0.1840

(0.0068) (0.0041) (0.0053) (0.0029) (0.0029) (0.6287) (0.0267)

PFE 0.9558 0.0323 0.0411 -0.0163 -0.0042 8.5713 0.1039

(0.0092) (0.0045) (0.0060) (0.0028) (0.0028) (0.8350) (0.0261)

BA 0.9589 0.0336 0.0289 -0.0100 -0.0122 7.2430 0.1563

(0.0093) (0.0047) (0.0056) (0.0026) (0.0027) (0.6080) (0.0259)

VZ 0.9669 0.0281 0.0294 -0.0075 -0.0158 9.0911 0.0432

(0.0067) (0.0039) (0.0047) (0.0023) (0.0026) (0.9090) (0.0273)

PG 0.9504 0.0340 0.0381 -0.0169 -0.0142 7.5308 -0.1665

(0.0093) (0.0045) (0.0054) (0.0030) (0.0032) (0.6385) (0.0246)

KO 0.9688 0.0267 0.0265 -0.0149 -0.0161 7.6841 -0.1440

(0.0068) (0.0040) (0.0050) (0.0025) (0.0026) (0.7088) (0.0274)

MRK 0.9168 0.0469 0.0529 -0.0175 -0.0105 6.5537 0.0572

(0.0188) (0.0064) (0.0086) (0.0037) (0.0036) (0.4884) (0.0224)

DIS 0.9522 0.0348 0.0418 -0.0153 -0.0114 8.3087 0.1375

(0.0089) (0.0046) (0.0059) (0.0028) (0.0030) (0.7628) (0.0255)

IBM 0.9421 0.0402 0.0437 -0.0205 -0.0083 7.0256 0.0311

(0.0123) (0.0057) (0.0067) (0.0032) (0.0032) (0.5721) (0.0247)

GE 0.9552 0.0419 0.0452 -0.0201 -0.0177 8.7128 0.0551

(0.0070) (0.0047) (0.0055) (0.0028) (0.0029) (0.8412) (0.0294)

MCD 0.9119 0.0422 0.0560 -0.0143 -0.0098 6.9078 -0.0575

(0.0225) (0.0069) (0.0086) (0.0037) (0.0037) (0.5493) (0.0216)

MMM 0.9726 0.0216 0.0305 -0.0190 -0.0110 6.2805 -0.1271

(0.0051) (0.0035) (0.0044) (0.0024) (0.0026) (0.4491) (0.0270)

NKE 0.9683 0.0308 0.0319 -0.0154 -0.0082 6.2075 0.1867

(0.0072) (0.0046) (0.0057) (0.0027) (0.0025) (0.4620) (0.0291)

UTX 0.9603 0.0310 0.0349 -0.0211 -0.0159 7.5010 0.0104

(0.0072) (0.0046) (0.0051) (0.0027) (0.0028) (0.6710) (0.0264)

CAT 0.9747 0.0238 0.0284 -0.0162 -0.0111 7.0967 0.2441

(0.0051) (0.0040) (0.0046) (0.0021) (0.0022) (0.5959) (0.0294)

AXP 0.9735 0.0344 0.0322 -0.0161 -0.0137 8.2837 0.2124

(0.0047) (0.0040) (0.0043) (0.0024) (0.0026) (0.7934) (0.0347)

TRV 0.9618 0.0439 0.0421 -0.0144 -0.0109 6.8122 0.0290

(0.0074) (0.0051) (0.0059) (0.0029) (0.0029) (0.5562) (0.0317)

average 0.9528 0.0350 0.0381 -0.0164 -0.0124 7.9670 0.0987

pool est. 0.9844 0.0324 0.0349 -0.0065 -0.0026 6.8668 -1.0370

pool s.e. (0.0005) (0.0010) (0.0007) (0.0003) (0.0003) (0.1054) (0.0376)

Continued on the next page.

Table A.3: Estimates of the dynamic parameters in the univariate coupled component models with

Dow Jones stocks
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βN γN ρN γ∗N ρ∗N νN ωN

AAPL 0.9087 0.0674 0.0685 -0.0132 -0.0186 2.5831 -0.4023

(0.0143) (0.0087) (0.0069) (0.0046) (0.0044) (0.0913) (0.0259)

MSFT 0.9411 0.0621 0.0463 -0.0086 -0.0083 2.7236 -0.7218

(0.0103) (0.0080) (0.0054) (0.0039) (0.0036) (0.1001) (0.0294)

XOM 0.9720 0.0306 0.0306 -0.0148 -0.0126 4.6413 -0.8132

(0.0053) (0.0046) (0.0037) (0.0027) (0.0025) (0.2715) (0.0323)

JNJ 0.9633 0.0309 0.0330 -0.0152 -0.0240 3.6899 -0.9392

(0.0057) (0.0049) (0.0041) (0.0028) (0.0028) (0.1838) (0.0281)

INTC 0.9616 0.0377 0.0325 -0.0139 -0.0144 2.7884 -0.4623

(0.0101) (0.0074) (0.0053) (0.0035) (0.0029) (0.1051) (0.0292)

WMT 0.9684 0.0300 0.0303 -0.0105 -0.0125 3.0230 -0.8379

(0.0064) (0.0052) (0.0041) (0.0029) (0.0028) (0.1266) (0.0295)

CVX 0.9800 0.0228 0.0251 -0.0115 -0.0139 3.8001 -0.8119

(0.0037) (0.0041) (0.0030) (0.0024) (0.0022) (0.2027) (0.0342)

UNH 0.9488 0.0502 0.0492 -0.0108 -0.0219 2.1709 -0.8229

(0.0087) (0.0074) (0.0059) (0.0041) (0.0040) (0.0789) (0.0310)

CSCO 0.9580 0.0444 0.0394 -0.0155 -0.0206 3.1447 -0.4090

(0.0073) (0.0065) (0.0048) (0.0032) (0.0032) (0.1264) (0.0302)

HD 0.9605 0.0435 0.0359 -0.0204 -0.0230 2.9114 -0.6871

(0.0068) (0.0061) (0.0046) (0.0036) (0.0034) (0.1228) (0.0311)

PFE 0.9620 0.0451 0.0357 -0.0086 -0.0149 3.0342 -0.7291

(0.0073) (0.0061) (0.0046) (0.0031) (0.0031) (0.1295) (0.0321)

BA 0.9756 0.0234 0.0297 -0.0118 -0.0157 2.7995 -0.6943

(0.0054) (0.0054) (0.0041) (0.0026) (0.0024) (0.1152) (0.0320)

VZ 0.9681 0.0347 0.0310 -0.0213 -0.0114 3.1998 -0.8313

(0.0055) (0.0054) (0.0040) (0.0032) (0.0028) (0.1453) (0.0312)

PG 0.9514 0.0335 0.0324 -0.0210 -0.0221 3.1983 -1.0012

(0.0086) (0.0057) (0.0049) (0.0034) (0.0032) (0.1402) (0.0252)

KO 0.9739 0.0383 0.0230 -0.0212 -0.0190 3.3124 -0.9450

(0.0044) (0.0051) (0.0038) (0.0029) (0.0027) (0.1467) (0.0342)

MRK 0.9347 0.0452 0.0488 -0.0136 -0.0209 2.8925 -0.7636

(0.0141) (0.0073) (0.0071) (0.0039) (0.0038) (0.1203) (0.0259)

DIS 0.9521 0.0394 0.0482 -0.0185 -0.0231 3.0567 -0.6560

(0.0086) (0.0067) (0.0055) (0.0035) (0.0033) (0.1302) (0.0287)

IBM 0.9576 0.0463 0.0398 -0.0156 -0.0222 2.6542 -0.8477

(0.0069) (0.0064) (0.0049) (0.0034) (0.0031) (0.1004) (0.0309)

GE 0.9606 0.0488 0.0462 -0.0223 -0.0217 4.0438 -0.6823

(0.0060) (0.0057) (0.0047) (0.0031) (0.0031) (0.2042) (0.0345)

MCD 0.9431 0.0398 0.0393 -0.0159 -0.0212 3.0874 -0.8367

(0.0103) (0.0064) (0.0053) (0.0035) (0.0034) (0.1321) (0.0254)

MMM 0.9701 0.0378 0.0308 -0.0139 -0.0247 2.7494 -1.0112

(0.0059) (0.0057) (0.0049) (0.0033) (0.0032) (0.1160) (0.0334)

NKE 0.9545 0.0418 0.0448 -0.0175 -0.0186 2.1900 -0.9093

(0.0101) (0.0072) (0.0062) (0.0038) (0.0039) (0.0756) (0.0298)

UTX 0.9742 0.0314 0.0301 -0.0217 -0.0192 3.0986 -0.8425

(0.0041) (0.0048) (0.0040) (0.0029) (0.0027) (0.1389) (0.0340)

CAT 0.9715 0.0331 0.0396 -0.0115 -0.0202 2.7066 -0.6204

(0.0055) (0.0059) (0.0048) (0.0029) (0.0029) (0.1092) (0.0351)

AXP 0.9748 0.0392 0.0379 -0.0213 -0.0227 3.5189 -0.6356

(0.0041) (0.0055) (0.0040) (0.0031) (0.0028) (0.1703) (0.0401)

TRV 0.9725 0.0445 0.0375 -0.0135 -0.0186 2.7308 -0.9772

(0.0051) (0.0066) (0.0046) (0.0031) (0.0030) (0.1105) (0.0390)

average 0.9600 0.0401 0.0379 -0.0155 -0.0187 3.0673 -0.7650

pool est. 0.9819 0.0448 0.0306 -0.0087 -0.0119 2.9195 -1.6942

pool s.e. (0.0006) ( 0.0010) (0.0009) (0.0005) ( 0.0004) (0.0235) (0.0365)

This table presents the estimates of the dynamic parameters in the univariate coupled component models,

and their asymptotic standard errors in parenthesis; ’pool est.’ and ’pool s.e.’ represent the MLE pool

estimates and their standard errors.

Table A.3: Estimates of the dynamic parameters in the univariate coupled component models with

Dow Jones stocks (cont.)
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(βD, γD, ρD, γ
∗
D, ρ

∗
D)

βD = βN γD = γN ρD = ρN γ∗D = γ∗N ρ∗D = ρ∗N νD = νN ωD = ωN γN = ρD = (βN , γN , ρN , γ
∗
N , ρ

∗
N )

AAPL 0.4151 0.0377 0.0435 0.3566 0.1238 0.0000 0.0000 0.0204 0.0000

MSFT 0.2755 0.1077 0.0632 0.4994 0.9542 0.0000 0.0000 0.9905 0.1502

XOM 0.0086 0.1299 0.9602 0.3611 0.1673 0.0000 0.0000 0.9444 0.0569

JNJ 0.0015 0.0714 0.0445 0.1289 0.0036 0.0000 0.0000 0.0035 0.0013

INTC 0.8272 0.1144 0.6035 0.6919 0.6275 0.0000 0.0000 0.1661 0.2030

WMT 0.3816 0.9349 0.6629 0.9595 0.3274 0.0000 0.0000 0.5270 0.7146

CVX 0.0007 0.1598 0.5616 0.0378 0.5835 0.0000 0.0000 0.1917 0.0147

UNH 0.1352 0.1227 0.0734 0.0351 0.0541 0.0000 0.0000 0.0197 0.0098

CSCO 0.1193 0.1329 0.9078 0.2625 0.8379 0.0000 0.0000 0.3181 0.0077

HD 0.9682 0.1249 0.8408 0.4931 0.1554 0.0000 0.0000 0.1032 0.1870

PFE 0.3310 0.0806 0.4280 0.0572 0.0100 0.0000 0.0000 0.4842 0.0055

BA 0.0101 0.1194 0.8855 0.6147 0.3219 0.0000 0.0000 0.2627 0.0157

VZ 0.8093 0.2987 0.7780 0.0004 0.2581 0.0000 0.0000 0.2800 0.0046

PG 0.8966 0.9388 0.4021 0.3522 0.0850 0.0000 0.0000 0.4153 0.2592

KO 0.3146 0.0533 0.5554 0.0861 0.4268 0.0000 0.0000 0.0132 0.0071

MRK 0.1612 0.8459 0.6448 0.4568 0.0481 0.0000 0.0000 0.3101 0.1931

DIS 0.9901 0.5488 0.3388 0.4718 0.0097 0.0000 0.0000 0.6606 0.0056

IBM 0.0944 0.4629 0.6043 0.2844 0.0022 0.0000 0.0000 0.6905 0.0040

GE 0.2330 0.3307 0.8871 0.6107 0.3594 0.0000 0.0000 0.4652 0.0176

MCD 0.0733 0.7976 0.0614 0.7449 0.0236 0.0000 0.0000 0.0467 0.0283

MMM 0.5296 0.0133 0.9672 0.2115 0.0008 0.0000 0.0000 0.1225 0.0007

NKE 0.0387 0.1604 0.0719 0.6335 0.0222 0.0000 0.0000 0.0880 0.0759

UTX 0.0078 0.9547 0.4004 0.8796 0.3925 0.0000 0.0000 0.4476 0.0062

CAT 0.3085 0.1572 0.0438 0.1859 0.0106 0.0000 0.0000 0.2758 0.0023

AXP 0.6457 0.4545 0.2875 0.1735 0.0171 0.0000 0.0000 0.1199 0.0003

TRV 0.0358 0.9315 0.4881 0.8417 0.0730 0.0000 0.0000 0.6667 0.0173

This table presents the p-values of the Wald tests for several sets of null hypothesis: H0 : βD = βN ,

H0 : γD = γN , H0 : ρD = ρN , H0 : γ∗D = γ∗N , H0 : ρ∗D = ρ∗N , H0 : νD = νN , H0 : ωD = ωN ,

H0 : γN = ρD, and H0 : (βD, γD, ρD, γ
∗
D, ρ

∗
D) = (βN , γN , ρN , γ

∗
N , ρ

∗
N ).

Table A.4: Wald tests based on the univariate model with Dow Jones stocks
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student t log-likelihood quasi Gaussian log-likelihood

lcogarch lgarch GW stat. p-val. lcogarch lgarch GW stat. p-val.

AAPL 1.2657 1.2753 1.7634 0.1842 1.3065 1.3141 0.4312 0.5114

MSFT 1.1802 1.1861 0.7936 0.3730 1.1981 1.2087 1.1950 0.2743

XOM 1.0570 1.0625 0.4534 0.5007 1.0742 1.0852 1.1503 0.2835

JNJ 0.9272 0.9357 2.3027 0.1292 0.9506 0.9603 1.9578 0.1617

INTC 1.2798 1.2862 0.9449 0.3310 1.3008 1.3071 0.6065 0.4361

WMT 1.1544 1.1669 4.0642 0.0438 1.1931 1.2100 4.0114 0.0452

CVX 1.2181 1.2235 0.6455 0.4217 1.2346 1.2440 1.1811 0.2771

UNH 1.2165 1.2221 1.9359 0.1641 1.2370 1.2493 6.0665 0.0138

CSCO 1.1261 1.1399 2.3208 0.1277 1.1313 1.1481 2.2340 0.1350

HD 1.1719 1.1767 0.5672 0.4514 1.1959 1.2052 0.9658 0.3257

PFE 1.0962 1.1017 0.3038 0.5815 1.1377 1.1362 0.0091 0.9239

BA 1.3022 1.3165 8.4277 0.0037 1.3546 1.3723 6.2982 0.0121

VZ 1.2136 1.2101 0.2579 0.6116 1.2317 1.2231 0.7008 0.4025

PG 0.9218 0.9340 2.8485 0.0915 0.9513 0.9751 4.0699 0.0437

KO 0.9105 0.9222 3.5267 0.0604 0.9440 0.9650 5.2306 0.0222

MRK 1.1660 1.1728 1.6389 0.2005 1.1972 1.2112 2.6679 0.1024

DIS 1.0950 1.0977 0.1423 0.7060 1.1430 1.1348 0.2034 0.6520

IBM 1.1104 1.1241 4.8065 0.0284 1.1229 1.1414 5.5228 0.0188

GE 1.2193 1.2466 6.0812 0.0137 1.2767 1.3229 3.6455 0.0562

MCD 1.0193 1.0189 0.0020 0.9642 1.0659 1.0791 0.4837 0.4868

MMM 0.9235 0.9297 0.5145 0.4732 0.9563 0.9589 0.0261 0.8717

NKE 1.4594 1.4616 0.2770 0.5987 1.4681 1.4681 0.0000 0.9990

UTX 1.0734 1.0773 0.1882 0.6644 1.1276 1.1273 0.0003 0.9852

CAT 1.4229 1.4310 1.8841 0.1699 1.4499 1.4574 0.5936 0.4410

AXP 1.1714 1.1779 1.4314 0.2315 1.1903 1.2024 2.5820 0.1081

TRV 1.0654 1.0949 10.9938 0.0009 1.0947 1.1206 4.3900 0.0362

The table presents the GW test of the null that the one-component and the coupled component model have equal

expected loss, with minus the out-of-sample t log-likelihood or quasi Gaussian log-likelihood as the loss function.

lcogarch represents the average loss value of the coupled component model, and lgarch represents the average loss value

of the one component BETA-T-EGARCH model with open-close returns.

Table A.5: GW tests based on the univariate model for Dow Jones stocks
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|εd| |εn| |rd| |rn| ε2d ε2n r2
d r2

n

AAPL 0.8161 0.2252 0.0000 0.0000 0.1106 0.9982 0.0000 0.9346

MSFT 0.1657 0.5292 0.0000 0.0000 0.1868 0.9999 0.0000 0.0000

XOM 0.2944 0.4334 0.0000 0.0000 0.6872 0.8370 0.0000 0.0000

JNJ 0.1181 0.6729 0.0000 0.0000 0.1503 0.9677 0.0000 0.0186

INTC 0.3359 0.2107 0.0000 0.0000 0.6822 0.9965 0.0000 0.0002

WMT 0.3929 0.1679 0.0000 0.0000 0.9992 0.9768 0.0000 0.0000

CVX 0.3463 0.9379 0.0000 0.0000 0.6090 0.6604 0.0000 0.0000

UNH 0.0109 0.6807 0.0000 0.0000 0.4687 0.9980 0.0000 0.0000

CSCO 0.1087 0.7825 0.0000 0.0000 0.6531 1.0000 0.0000 0.9200

HD 0.0680 0.8480 0.0000 0.0000 0.1221 0.9993 0.0000 0.2121

PFE 0.4283 0.2030 0.0000 0.0000 0.1371 1.0000 0.0000 0.0034

BA 0.0170 0.5694 0.0000 0.0000 0.0844 0.9983 0.0000 0.0000

VZ 0.0154 0.1840 0.0000 0.0000 0.2066 0.0005 0.0000 0.0000

PG 0.4321 0.9061 0.0000 0.0000 0.5520 1.0000 0.0000 1.0000

KO 0.0429 0.1192 0.0000 0.0000 0.0580 0.8637 0.0000 0.0000

MRK 0.2432 0.8689 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000

DIS 0.8809 0.8123 0.0000 0.0000 0.8944 1.0000 0.0000 0.0000

IBM 0.9042 0.6381 0.0000 0.0000 0.7996 0.9997 0.0000 0.0000

GE 0.7434 0.2261 0.0000 0.0000 0.0001 0.9989 0.0000 0.0000

MCD 0.3076 0.6982 0.0000 0.0000 0.0179 0.8558 0.0000 0.0000

MMM 0.0993 0.1647 0.0000 0.0000 0.6664 0.9683 0.0000 0.0000

NKE 0.0137 0.3498 0.0000 0.0000 0.0307 0.9993 0.0000 0.9998

UTX 0.2131 0.4790 0.0000 0.0000 0.0008 1.0000 0.0000 0.0005

CAT 0.8231 0.0107 0.0000 0.0000 0.9362 0.9968 0.0000 0.0000

AXP 0.3672 0.0598 0.0000 0.0000 0.3445 0.9923 0.0000 0.0000

TRV 0.7044 0.2810 0.0000 0.0000 0.0094 1.0000 0.0000 0.0000

This table gives the p-values of the Ljung-Box Q-tests for absolute(squared) residuals and returns.

Table A.6: Diagnostic checking for GARCH effects in Dow Jones stocks
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βD γD ρD γ∗D ρ∗D νD ωD

AAPL 0.8209 0.0666 0.0723 -0.0225 0.0049 5.0414 0.4866

(0.0498) (0.0086) (0.0118) (0.0057) (0.0056) (0.3013) (0.0194)

MSFT 0.8550 0.0624 0.0794 0.0018 0.0041 7.4535 0.1480

(0.0265) (0.0069) (0.0093) (0.0041) (0.0045) (0.6494) (0.0209)

XOM 0.7401 0.0759 0.0766 0.0004 -0.0040 8.6252 -0.0985

(0.2115) (0.0228) (0.0256) (0.0034) (0.0037) (1.0690) (0.0231)

JNJ 0.6549 0.0742 0.0799 -0.0055 0.0176 6.3548 -0.2999

(0.0755) (0.0085) (0.0097) (0.0058) (0.0069) (0.4752) (0.0174)

INTC 0.8928 0.0356 0.0382 -0.0051 -0.0038 7.0961 0.3706

(0.0374) (0.0070) (0.0096) (0.0033) (0.0036) (0.5904) (0.0190)

WMT 0.7801 0.0545 0.0800 -0.0056 0.0061 6.7666 -0.0424

(0.0534) (0.0082) (0.0126) (0.0049) (0.0055) (0.5396) (0.0181)

CVX 0.9413 0.0382 0.0371 -0.0125 -0.0053 8.0180 0.0012

(0.0161) (0.0059) (0.0069) (0.0030) (0.0032) (0.7854) (0.0241)

UNH 0.8913 0.0500 0.0756 -0.0279 -0.0085 5.5086 0.2686

(0.0246) (0.0059) (0.0090) (0.0039) (0.0038) (0.3877) (0.0231)

CSCO 0.8615 0.0577 0.0644 -0.0209 -0.0139 6.6629 0.4197

(0.0338) (0.0081) (0.0107) (0.0044) (0.0041) (0.5053) (0.0201)

HD 0.7042 0.0792 0.0800 -0.0180 -0.0025 7.1077 0.1901

(0.0608) (0.0086) (0.0111) (0.0052) (0.0057) (0.6185) (0.0184)

PFE 0.8939 0.0418 0.0597 -0.0051 0.0068 6.8400 0.0690

(0.0380) (0.0079) (0.0136) (0.0040) (0.0043) (0.5364) (0.0208)

BA 0.6283 0.0652 0.0524 -0.0019 0.0205 7.4862 0.1528

(0.1236) (0.0079) (0.0097) (0.0059) (0.0068) (-0.6935) (0.0169)

VZ 0.8421 0.0451 0.0775 0.0011 -0.0067 7.0443 -0.0159

(0.0348) (0.0072) (0.0101) (0.0042) (0.0044) (0.5798) (0.0189)

PG 0.9030 0.0337 0.0728 -0.0134 -0.0089 6.6076 -0.2771

(0.0264) (0.0041) (0.0096) (0.0037) (0.0030) (0.4268) (0.0584)

KO 0.7442 0.0628 0.0798 -0.0127 0.0046 7.6692 -0.1914

(0.0583) (0.0086) (0.0107) (0.0048) (0.0058) (0.7301) (0.0184)

MRK 0.7085 0.0503 0.0800 -0.0115 -0.0027 6.4271 0.0341

(0.0600) (0.0072) (0.0103) (0.0053) (0.0055) (0.5181) (0.0176)

DIS 0.8399 0.0360 0.0799 -0.0053 0.0001 7.0943 0.1094

(0.0495) (0.0061) (0.0149) (0.0042) (0.0043) (0.5746) (0.0181)

IBM 0.8581 0.0539 0.0800 -0.0093 0.0031 5.6215 -0.0583

(0.0289) (0.0070) (0.0110) (0.0042) (0.0046) (0.3833) (0.0206)

GE 0.8943 0.0570 0.0799 -0.0132 0.0013 6.2792 -0.0056

(0.0242) (0.0080) (0.0107) (0.0040) (0.0043) (0.4449) (0.0229)

MCD 0.7019 0.0700 0.0800 -0.0119 0.0035 6.5152 -0.1040

(0.0512) (0.0090) (0.0107) (0.0058) (0.0056) (0.5211) (0.0181)

MMM 0.9557 0.0147 0.0456 -0.0134 -0.0015 5.2657 -0.3001

(0.0071) (0.0041) (0.0063) (0.0029) (0.0026) (0.2927) (0.0532)

NKE 0.7149 0.0569 0.0795 -0.0089 0.0041 5.5639 0.1775

(0.1116) (0.0087) (0.0184) (0.0056) (0.0057) (0.3727) (0.0173)

UTX 0.8262 0.0618 0.0763 -0.0062 -0.0067 6.6471 -0.0375

(0.0342) (0.0071) (0.0105) (0.0046) (0.0048) (0.5314) (0.0197)

CAT 0.9237 0.0337 0.0407 -0.0107 0.0019 6.3817 0.2577

(0.0251) (0.0060) (0.0113) (0.0033) (0.0036) (0.4747) (0.0200)

AXP 0.9766 0.0307 0.0291 -0.0101 -0.0084 7.4893 0.2164

(0.0066) (0.0031) (0.0031) (0.0021) (0.0022) (0.6929) (0.0408)

TRV 0.9098 0.0560 0.0688 -0.0095 0.0019 6.2834 0.0014

(0.0160) (0.0060) (0.0083) (0.0037) (0.0038) (0.4759) (0.0239)

Continued on the next page.

Table A.7: Estimates of the dynamic parameters in the multivariate coupled component model with

Dow Jones stocks
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βN γN ρN γ∗N ρ∗N νN ωN

AAPL 0.9186 0.0799 0.0779 -0.0024 -0.0029 2.1504 -0.5227

(0.0159) (0.0101) (0.0094) (0.0045) (0.0044) (0.0692) (0.0297)

MSFT 0.8875 0.0682 0.0523 0.0020 0.0049 2.3927 -0.9326

(0.0206) (0.0087) (0.0073) (0.0045) (0.0044) (0.0802) (0.0234)

XOM 0.8984 0.0484 0.0181 -0.0038 0.0001 3.7163 -0.9379

(0.0547) (0.0118) (0.0051) (0.0029) (0.0029) (0.1854) (0.0264)

JNJ 0.9537 0.0213 0.0257 0.0015 -0.0095 3.2702 -1.1164

(0.0197) (0.0089) (0.0092) (0.0030) (0.0029) (0.1490) (0.0229)

INTC 0.8111 0.0799 0.0670 0.0001 -0.0041 2.2523 -0.5951

(0.0325) (0.0109) (0.0090) (0.0060) (0.0054) (0.0750) (0.0214)

WMT 0.8222 0.0257 0.0476 0.0055 -0.0101 2.7032 -0.9731

(0.0574) (0.0083) (0.0085) (0.0057) (0.0051) (0.1009) (0.0180)

CVX 0.9684 0.0168 0.0244 -0.0016 -0.0055 3.1493 -0.9066

(0.0076) (0.0044) (0.0038) (0.0025) (0.0024) (0.1426) (0.0249)

UNH 0.8183 0.0766 0.0696 0.0149 -0.0225 2.0431 -0.9057

(0.0549) (0.0105) (0.0091) (0.0047) (0.0041) (0.0695) (0.0344)

CSCO 0.8905 0.0718 0.0619 0.0021 -0.0192 2.5697 -0.5082

(0.0235) (0.0101) (0.0083) (0.0048) (0.0048) (0.0905) (0.0242)

HD 0.8926 0.0242 0.0583 -0.0004 -0.0153 2.6526 -0.7484

(0.0226) (0.0061) (0.0099) (0.0040) (0.0044) (0.0991) (0.0202)

PFE 0.9301 0.0488 0.0422 0.0058 0.0003 2.7134 -0.8251

(0.0184) (0.0069) (0.0081) (0.0043) (0.0039) (0.1037) (0.0243)

BA 0.6984 0.0340 0.0725 0.0014 0.0002 2.4611 -0.7913

(0.1696) (0.0101) (0.0221) (0.0047) (0.0054) (0.0905) (0.0192)

VZ 0.9240 0.0447 0.0357 -0.0087 -0.0000 2.8176 -0.9588

(0.0145) (0.0075) (0.0057) (0.0036) (0.0037) (0.1086) (0.0231)

PG 0.9067 0.0401 0.0326 -0.0080 -0.0080 2.8072 -1.2496

(0.0340) (0.0054) (0.0048) (0.0034) (0.0039) (0.1301) (0.0487)

KO 0.8519 0.0435 0.0427 -0.0081 -0.0150 2.9273 -1.1082

(0.0361) (0.0082) (0.0082) (0.0047) (0.0050) (0.1176) (0.0194)

MRK 0.9149 0.0477 0.0234 0.0027 -0.0045 2.6650 -0.8864

(0.0456) (0.0196) (0.0074) (0.0042) (0.0040) (0.1046) (0.0232)

DIS 0.8194 0.0583 0.0784 -0.0089 -0.0003 2.6393 -0.7454

(0.0302) (0.0085) (0.0087) (0.0054) (0.0053) (0.0990) (0.0206)

IBM 0.8641 0.0635 0.0624 -0.0095 -0.0154 2.2896 -1.0126

(0.0247) (0.0092) (0.0080) (0.0052) (0.0048) (0.0750) (0.0225)

GE 0.9075 0.0599 0.0579 0.0063 -0.0174 3.1200 -0.8152

(0.0148) (0.0070) (0.0063) (0.0041) (0.0041) (0.1322) (0.0246)

MCD 0.6463 0.0318 0.0679 0.0077 -0.0216 2.8182 -0.9581

(0.1440) (0.0090) (0.0075) (0.0063) (0.0062) (0.1115) (0.0174)

MMM 0.9639 0.0275 0.0216 -0.0005 -0.0103 2.6088 -1.1856

(0.0076) (0.0053) (0.0056) (0.0028) (0.0030) (0.0983) (0.0465)

NKE 0.6992 0.0323 0.0754 -0.0100 -0.0105 2.1239 -1.0059

(0.0805) (0.0107) (0.0116) (0.0070) (0.0071) (0.0691) (0.0184)

UTX 0.9229 0.0386 0.0429 -0.0075 -0.0091 2.6970 -0.9454

(0.0189) (0.0076) (0.0072) (0.0040) (0.0040) (0.1047) (0.0231)

CAT 0.9313 0.0521 0.0505 0.0079 -0.0122 2.3309 -0.6774

(0.0152) (0.0087) (0.0072) (0.0045) (0.0041) (0.0825) (0.0254)

AXP 0.9814 0.0181 0.0280 -0.0104 -0.0138 3.0156 -0.7092

(0.0042) (0.0029) (0.0025) (0.0017) (0.0018) (0.1365) (0.0416)

TRV 0.9368 0.0631 0.0453 -0.0041 -0.0062 2.5516 -1.0782

(0.0117) (0.0080) (0.0061) (0.0039) (0.0039) (0.0924) (0.0285)

This table gives the estimates of the dynamic parameters in the multivariate coupled component model,

and their asymptotic standard errors in parenthesis.

Table A.7: Estimates of the dynamic parameters in the multivariate coupled component model with

Dow Jones stocks(cont.)
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Panel a: size-based portfolios of NYSE/AMEX/NASDAQ stocks

mean s.e. median

decile day(%) night(%) day(%) night(%) day(%) night(%) T stat. avg. no.

1-smallest 0.0235 -0.2145 0.0076 0.0068 0.0503 -0.1403 23.3770 356.2961

2 0.0048 -0.0934 0.0071 0.0050 0.0573 -0.0540 11.3449 513.3339

3 -0.0238 -0.0312 0.0081 0.0049 0.0458 -0.0110 0.7832 577.7025

4 -0.0345 0.0002 0.0100 0.0055 0.0400 0.0048 -3.0362 606.8326

5 -0.0393 0.0147 0.0121 0.0061 0.0344 0.0239 -3.9901 617.5727

6 -0.0401 0.0202 0.0130 0.0065 0.0334 0.0275 -4.1401 631.0932

7 -0.0359 0.0236 0.0136 0.0068 0.0411 0.0302 -3.9237 641.4180

8 -0.0240 0.0187 0.0138 0.0069 0.0427 0.0319 -2.7744 652.2880

9 -0.0191 0.0223 0.0132 0.0069 0.0599 0.0369 -2.7725 665.5434

10-largest -0.0078 0.0202 0.0122 0.0080 0.0308 0.0380 -1.9151 687.3414

Panel b: size-based portfolios of NYSE stocks

mean s.e. median

size day(%) night(%) day(%) night(%) day(%) night(%) T stat. avg. no.

1-smallest -0.0035 -0.0073 0.0078 0.0046 0.0379 -0.0007 0.4216 212.7596

2 -0.0157 0.0048 0.0094 0.0049 0.0289 0.0040 -1.9407 229.7850

3 -0.0088 0.0040 0.0106 0.0054 0.0400 0.0070 -1.0732 232.3495

4 -0.0150 0.0100 0.0121 0.0060 0.0364 0.0077 -1.8538 232.4569

5 -0.0014 0.0088 0.0130 0.0063 0.0500 0.0085 -0.7002 234.6683

6 -0.0008 0.0095 0.0133 0.0066 0.0488 0.0140 -0.6909 233.0124

7 0.0002 0.0103 0.0126 0.0065 0.0530 0.0193 -0.7098 237.1872

8 0.0021 0.0135 0.0123 0.0066 0.0516 0.0289 -0.8183 237.0842

9 -0.0010 0.0192 0.0124 0.0071 0.0462 0.0312 -1.4140 240.4760

10-largest 0.0016 0.0121 0.0117 0.0079 0.0321 0.0299 -0.7499 241.3931

Panel c: size-based portfolios of NASDAQ stocks

mean s.e. median

decile day(%) night(%) day(%) night(%) day(%) night(%) T stat. avg. no.

1-smallest 0.0237 -0.3032 0.0095 0.0094 0.0466 -0.1860 24.4218 185.3430

2 0.0001 -0.1418 0.0081 0.0064 0.0442 -0.0877 13.7931 265.5334

3 -0.0050 -0.0789 0.0082 0.0055 0.0477 -0.0433 7.4848 296.0316

4 -0.0364 -0.0306 0.0092 0.0056 0.0330 -0.0059 -0.5414 318.8368

5 -0.0468 0.0040 0.0118 0.0063 0.0388 0.0168 -3.7825 329.8977

6 -0.0544 0.0243 0.0144 0.0071 0.0294 0.0322 -4.9052 334.0138

7 -0.0547 0.0249 0.0153 0.0076 0.0187 0.0386 -4.6738 341.5321

8 -0.0570 0.0360 0.0156 0.0077 0.0280 0.0520 -5.3511 340.0634

9 -0.0546 0.0345 0.0162 0.0081 0.0323 0.0475 -4.9159 351.3039

10-largest -0.0450 0.0529 0.0175 0.0104 0.0352 0.0762 -4.8000 367.1565

This table gives the summary statistics for the intraday and overnight returns of 10 size-based portfolios:

mean, median, standard error of the mean, T statistics, and the average number of stocks. The T

statistics are used to test the null hypothesis that the mean value of overnight returns equals the mean

value of intraday returns.

Table A.8: Descriptive statistics for intraday and overnight returns with the size-sorted portfolios
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Panel A: size-based portfolios of NYSE/AMEX/NASDAQ stocks

decile δ µD µN Π11 Π12 Π21 Π22

1-smallest 0.0108 0.0079 -0.1462 0.2909 -0.0403 0.0008 0.3194

(0.0223) (0.0079) (0.0067) (0.0189) (0.0186) (0.0166) (0.0193)

2 -0.0740 -0.0009 -0.0757 0.2880 -0.0457 0.0484 0.1929

(0.0341) (0.0070) (0.0051) (0.0214) (0.0296) (0.0168) (0.0267)

3 -0.0697 -0.0202 -0.0270 0.2453 -0.0699 0.0595 0.0901

(0.0446) (0.0078) (0.0047) (0.0241) (0.0395) (0.0154) (0.0315)

4 -0.1068 -0.0303 0.0014 0.1220 -0.0304 0.0341 0.0017

(0.0473) (0.0097) (0.0054) (0.0258) (0.0503) (0.0159) (0.0329)

5 -0.1111 -0.0381 0.0167 0.0280 -0.0065 0.0267 -0.0653

(0.0573) (0.0119) (0.0060) (0.0304) (0.0596) (0.0160) (0.0307)

6 -0.0996 -0.0395 0.0224 0.0099 -0.0110 0.0177 -0.0723

(0.0575) (0.0130) (0.0065) (0.0289) (0.0601) (0.0153) (0.0300)

7 -0.0833 -0.0351 0.0265 0.0181 -0.0063 0.0224 -0.0905

(0.0543) (0.0136) (0.0068) (0.0263) (0.0565) (0.0141) (0.0289)

8 -0.0965 -0.0236 0.0213 0.0161 0.0009 0.0253 -0.1034

(0.0572) (0.0138) (0.0068) (0.0273) (0.0573) (0.0144) (0.0294)

9 -0.0994 -0.0180 0.0258 0.0451 -0.0087 0.0415 -0.1216

(0.0566) (0.0132) (0.0069) (0.0265) (0.0546) (0.0142) (0.0289)

10-largest -0.0212 -0.0085 0.0227 -0.0644 0.0159 0.0511 -0.1034

(0.0455) (0.0123) (0.0080) (0.0254) (0.0451) (0.0180) (0.0300)

Panel b: size-based portfolios of NYSE stocks

decile δ µD µN Π11 Π12 Π21 Π22

1-smallest -0.2438 -0.0033 -0.0075 0.1786 -0.0444 0.0882 -0.0560

(0.0885) (0.0076) (0.0045) (0.0316) (0.0909) (0.0290) (0.0529)

2 -0.1716 -0.0148 0.0063 0.0611 -0.0008 0.0703 -0.0828

(0.0834) (0.0093) (0.0048) (0.0370) (0.0917) (0.0266) (0.0545)

3 -0.1313 -0.0088 0.0048 0.0108 0.0109 0.0548 -0.0858

(0.0804) (0.0106) (0.0053) (0.0355) (0.0869) (0.0248) (0.0529)

4 -0.1096 -0.0151 0.0114 0.0145 0.0189 0.0312 -0.0963

(0.0704) (0.0121) (0.0059) (0.0322) (0.0742) (0.0196) (0.0421)

5 -0.0804 -0.0014 0.0097 0.0043 0.0066 0.0293 -0.1097

(0.0705) (0.0131) (0.0063) (0.0330) (0.0738) (0.0179) (0.0390)

6 -0.0991 -0.0011 0.0105 0.0079 0.0313 0.0215 -0.1076

(0.0669) (0.0133) (0.0066) (0.0324) (0.0704) (0.0175) (0.0353)

7 -0.1285 0.0000 0.0115 0.0249 0.0209 0.0275 -0.1146

(0.0626) (0.0127) (0.0064) (0.0296) (0.0637) (0.0159) (0.0328)

8 -0.1307 0.0019 0.0150 0.0275 0.0079 0.0328 -0.1180

(0.0636) (0.0124) (0.0066) (0.0300) (0.0610) (0.0168) (0.0328)

9 -0.0899 -0.0007 0.0213 0.0117 -0.0148 0.0393 -0.1044

(0.0593) (0.0125) (0.0071) (0.0278) (0.0576) (0.0176) (0.0355)

10-largest -0.0284 0.0016 0.0132 -0.0716 0.0099 0.0479 -0.0901

(0.0464) (0.0117) (0.0078) (0.0263) (0.0468) (0.0206) (0.0322)

Panel c: size-based portfolios of NASDAQ stocks

decile δ µD µN Π11 Π12 Π21 Π22

1-smallest 0.1363 0.0101 -0.2104 0.2371 -0.0268 -0.0405 0.3029

(0.0182) (0.0101) (0.0093) (0.0167) (0.0162) (0.0169) (0.0171)

2 0.0298 -0.0037 -0.1089 0.2701 -0.0266 -0.0029 0.2315

(0.0252) (0.0080) (0.0063) (0.0194) (0.0213) (0.0150) (0.0194)

3 0.0169 -0.0061 -0.0663 0.2841 -0.0303 0.0262 0.1572

(0.0327) (0.0080) (0.0054) (0.0220) (0.0296) (0.0148) (0.0261)

4 0.0207 -0.0294 -0.0258 0.2432 -0.0571 0.0384 0.1115

(0.0393) (0.0087) (0.0054) (0.0232) (0.0351) (0.0144) (0.0272)

5 -0.0421 -0.0412 0.0045 0.1158 -0.0428 0.0122 0.0130

(0.0431) (0.0115) (0.0063) (0.0255) (0.0450) (0.0139) (0.0261)

6 -0.0456 -0.0528 0.0257 0.0197 -0.0236 0.0054 -0.0470

(0.0494) (0.0142) (0.0071) (0.0283) (0.0501) (0.0133) (0.0239)

7 -0.0453 -0.0539 0.0265 0.0033 -0.0244 0.0010 -0.0574

(0.0504) (0.0152) (0.0076) (0.0262) (0.0498) (0.0125) (0.0231)

8 -0.0508 -0.0549 0.0393 0.0239 -0.0226 0.0093 -0.0752

(0.0467) (0.0156) (0.0077) (0.0237) (0.0471) (0.0117) (0.0231)

9 0.0281 -0.0505 0.0390 0.0467 -0.0438 0.0245 -0.0896

(0.0557) (0.0161) (0.0081) (0.0237) (0.0471) (0.0121) (0.0226)

10-largest 0.0523 -0.0498 0.0610 -0.0444 0.0513 0.0500 -0.1114

(0.0416) (0.0175) (0.0105) (0.0251) (0.0385) (0.0129) (0.0236)

Estimates of mean equation parameters for 10 size-based portfolios, with standard errors in parentheses.

The mean equation is specified as

(
1 δ

0 1

)(
rDt
rNt

)
=

(
µD

µN

)
+

(
Π11 Π12

Π21 Π22

)(
rDt−1

rNt−1

)
+

(
uDt
uNt

)
.

Table A.9: Estimates of the mean equations with the size-sorted portfolios
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size 1-small size 2 size 3 size 4 size 5 size 6 size 7 size 8 size 9 size 10-large

βD 0.9180 0.8998 0.9096 0.9305 0.9265 0.9323 0.9449 0.9460 0.9523 0.9584

(0.0128) (0.0122) (0.0103) (0.0086) (0.0088) (0.0084) (0.0065) (0.0062) (0.0054) (0.0047)

γD 0.0396 0.0483 0.0558 0.0472 0.0493 0.0419 0.0388 0.0378 0.0336 0.0261

(0.0049) (0.0049) (0.0051) (0.0047) (0.0046) (0.0041) (0.0038) (0.0039) (0.0038) (0.0034)

ρD 0.0241 0.0460 0.0454 0.0429 0.0391 0.0350 0.0288 0.0307 0.0317 0.0344

(0.0042) (0.0051) (0.0052) (0.0048) (0.0050) (0.0048) (0.0044) (0.0045) (0.0043) (0.0041)

γ∗D -0.0158 -0.0225 -0.0252 -0.0238 -0.0251 -0.0255 -0.0259 -0.0271 -0.0299 -0.0344

(0.0026) (0.0030) (0.0031) (0.0028) (0.0029) (0.0029) (0.0026) (0.0026) (0.0026) (0.0028)

ρ∗D -0.0173 -0.0231 -0.0209 -0.0185 -0.0203 -0.0209 -0.0215 -0.0258 -0.0274 -0.0279

(0.0029) (0.0032) (0.0029) (0.0026) (0.0028) (0.0027) (0.0026) (0.0028) (0.0028) (0.0029)

νD 13.7745 11.4980 10.2268 9.2325 10.5935 12.8001 12.8073 12.6206 11.3425 9.0860

(1.9787) (1.3791) (1.0784) (0.8894) (1.1528) (1.6057) (1.5659) (1.4768) (1.2167) (0.8980)

ωD -0.7088 -0.8519 -0.7678 -0.6147 -0.4630 -0.3592 -0.3110 -0.3126 -0.3897 -0.4744

(0.0205) (0.0208) (0.0223) (0.0236) (0.0231) (0.0222) (0.0233) (0.0233) (0.0238) (0.0242)

βN 0.9404 0.9221 0.9318 0.9403 0.9353 0.9451 0.9476 0.9448 0.9519 0.9603

(0.0067) (0.0083) (0.0069) (0.0065) (0.0070) (0.0062) (0.0061) (0.0063) (0.0055) (0.0046)

γN 0.0324 0.0478 0.0474 0.0531 0.0529 0.0427 0.0410 0.0419 0.0425 0.0349

(0.0037) (0.0045) (0.0045) (0.0049) (0.0055) (0.0051) (0.0052) (0.0055) (0.0053) (0.0046)

ρN 0.0367 0.0438 0.0417 0.0453 0.0464 0.0443 0.0423 0.0480 0.0439 0.0324

(0.0041) (0.0046) (0.0045) (0.0048) (0.0047) (0.0045) (0.0044) (0.0047) (0.0045) (0.0039)

γ∗N -0.0230 -0.0313 -0.0274 -0.0254 -0.0264 -0.0245 -0.0262 -0.0296 -0.0291 -0.0350

(0.0025) (0.0032) (0.0028) (0.0027) (0.0030) (0.0028) (0.0029) (0.0033) (0.0031) (0.0032)

ρ∗N -0.0140 -0.0166 -0.0224 -0.0228 -0.0244 -0.0254 -0.0292 -0.0284 -0.0309 -0.0328

(0.0022) (0.0027) (0.0027) (0.0027) (0.0029) (0.0028) (0.0029) (0.0030) (0.0031) (0.0029)

νN 12.2527 8.1456 6.8208 5.5303 5.0590 4.8222 4.5947 4.2923 4.3768 5.1477

(1.4976) (0.6646) (0.4786) (0.3448) (0.2903) (0.2725) (0.2512) (0.2270) (0.2277) (0.3029)

ωN -0.8920 -1.2634 -1.3574 -1.3540 -1.3175 -1.2754 -1.2702 -1.3012 -1.3293 -1.0885

(0.0231) (0.0230) (0.0240) (0.0274) (0.0264) (0.0267) (0.0268) (0.0271) (0.0286) (0.0275)

Estimates of the dynamic parameters for size-based portfolios with standard errors in parentheses with

the univariate model.

Table A.10: Estimates of the dynamic parameters in the univariate model with the size-sorted

portfolios
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size 1-small size 2 size 3 size 4 size 5 size 6 size 7 size 8 size 9 size 10-large

βD 0.9215 0.9022 0.9114 0.9316 0.9270 0.9328 0.9455 0.9469 0.9537 0.9609

(0.0122) (0.0119) (0.0101) (0.0085) (0.0087) (0.0084) (0.0064) (0.0061) (0.0052) (0.0044)

γD 0.0394 0.0483 0.0557 0.0471 0.0493 0.0419 0.0388 0.0377 0.0336 0.0258

(0.0049) (0.0049) (0.0051) (0.0047) (0.0046) (0.0041) (0.0038) (0.0039) (0.0038) (0.0034)

ρD 0.0240 0.0461 0.0455 0.0430 0.0391 0.0350 0.0288 0.0307 0.0318 0.0341

(0.0042) (0.0051) (0.0052) (0.0048) (0.0050) (0.0048) (0.0044) (0.0045) (0.0043) (0.0040)

γ∗D -0.0154 -0.0221 -0.0252 -0.0239 -0.0252 -0.0256 -0.0259 -0.0271 -0.0299 -0.0343

(0.0026) (0.0030) (0.0031) (0.0028) (0.0029) (0.0029) (0.0026) (0.0026) (0.0025) (0.0027)

ρ∗D -0.0182 -0.0235 -0.0206 -0.0182 -0.0201 -0.0207 -0.0214 -0.0257 -0.0272 -0.0278

(0.0030) (0.0032) (0.0029) (0.0026) (0.0028) (0.0027) (0.0026) (0.0028) (0.0028) (0.0029)

νD 13.7437 11.5287 10.2093 9.2259 10.5870 12.7914 12.7853 12.6009 11.3025 9.0657

(1.9742) (1.3868) (1.0744) (0.8878) (1.1508) (1.6034) (1.5602) (1.4722) (1.2080) (0.8907)

ωD -0.7076 -0.8518 -0.7684 -0.6149 -0.4631 -0.3594 -0.3115 -0.3132 -0.3913 -0.4784

(0.0208) (0.0210) (0.0225) (0.0238) (0.0232) (0.0222) (0.0234) (0.0235) (0.0242) (0.0248)

βN 0.9436 0.9239 0.9334 0.9413 0.9360 0.9456 0.9485 0.9459 0.9536 0.9626

(0.0063) (0.0080) (0.0067) (0.0064) (0.0070) (0.0061) (0.0059) (0.0062) (0.0054) (0.0043)

γN 0.0333 0.0483 0.0476 0.0533 0.0530 0.0428 0.0410 0.0420 0.0426 0.0347

(0.0037) (0.0045) (0.0045) (0.0049) (0.0055) (0.0051) (0.0052) (0.0055) (0.0053) (0.0046)

ρN 0.0362 0.0439 0.0419 0.0453 0.0464 0.0443 0.0423 0.0479 0.0438 0.0320

(0.0040) (0.0045) (0.0045) (0.0047) (0.0047) (0.0045) (0.0044) (0.0047) (0.0044) (0.0038)

γ∗N -0.0249 -0.0332 -0.0280 -0.0255 -0.0263 -0.0245 -0.0261 -0.0295 -0.0288 -0.0347

(0.0026) (0.0033) (0.0028) (0.0027) (0.0030) (0.0028) (0.0029) (0.0033) (0.0031) (0.0031)

ρ∗N -0.0126 -0.0148 -0.0215 -0.0226 -0.0243 -0.0254 -0.0292 -0.0283 -0.0309 -0.0331

(0.0022) (0.0027) (0.0027) (0.0027) (0.0029) (0.0028) (0.0029) (0.0030) (0.0031) (0.0029)

νN 11.9461 8.0501 6.7869 5.5198 5.0562 4.8200 4.5925 4.2899 4.3730 5.1354

(1.4158) (0.6481) (0.4737) (0.3433) (0.2900) (0.2723) (0.2510) (0.2268) (0.2275) (0.3018)

ωN -0.8904 -1.2640 -1.3589 -1.3549 -1.3178 -1.2759 -1.2709 -1.3019 -1.3309 -1.0932

(0.0238) (0.0233) (0.0243) (0.0277) (0.0265) (0.0269) (0.0270) (0.0274) (0.0292) (0.0284)

Estimates of the dynamic parameters for size portfolios with standard errors in parentheses with the

multivariate model.

Table A.11: Estimates of the dynamic parameters in the multivariate model with the size-sorted

portfolios
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This figure shows the cumulative intraday (in red) and cumulative overnight (in black) returns with one

subplot for each stock.

Figure A.1: Cumulative intraday and overnight returns of Dow Jones stocks
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This figure shows the estimated intraday (in red) and overnight (in black) volatilities,√
νj
νj−2exp(2λ

j
t + 2σj( tT )), based on the univariate coupled component model, with one subplot for each

stock. The five dashed vertical lines from left to right represent the dates: 10 March 2000 (dot-com

bubble), 17 September 2001 (the September 11 attacks), 16 September 2008 (financial crisis), 6 May

2010 (flash crash) and 1 August 2011 (August 2011 stock markets fall), respectively.

Figure A.2: Intraday and overnight volatilities of Dow Jones stocks
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This figure shows the estimated intraday (in red) and overnight (in black) long run components,σD(t/T )

and σN (t/T ), based on the univariate coupled component model, with one subplot for each stock. The

five dashed vertical lines from left to right represent the dates: 10 March 2000(dot-com bubble), 17

September 2011(after the September 11 attacks), 16 September 2008(financial crisis), 6 May 2010 (flash

crash) and 1 August 2011 (August 2011 stock markets fall), respectively.

Figure A.3: Long run component σj( t
T

) in the univariate model with Dow Jones stocks
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The red lines represent the statistics of the ratio tests, with the null hypothesis H0 : exp
(
σN0 (t/T )

)
=

ρ exp
(
σD0 (t/T )

)
. The black lines indicate the 95% confidence intervals of the statistics under the null.

The five dashed vertical lines from left to right represent the dates: 10 March 2000(dot-com bubble), 17

September 2001 (after the September 11 attacks), 16 September 2008(financial crisis), 6 May 2010 (flash

crash) and 1 August 2011 (August 2011 stock markets fall), respectively.

Figure A.4: Statistics of ratio tests in the univariate model with Dow Jones stocks

33



This figure displays Q-Q plots of the quantiles of the intraday innovations (X axis), versus the theoretical

quantiles of the student t distribution with the ν̂D degrees of freedom (Y axis), with one panel for each

stock.

Figure A.5: QQ plot of the intraday innovations in the univariate model with Dow Jones stocks
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This figure displays Q-Q plots of the quantiles of the overnight innovations (X axis), versus the theoretical

quantiles of the student t distribution with the ν̂D degrees of freedom (Y axis), with one panel for each

stock.

Figure A.6: QQ plot of the overnight innovations in the univariate model with Dow Jones stocks
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Each panel presents the average long run intraday(overnight) correlations between that individual stock

and the remaining stocks, as implied by the multivariate coupled component model.

Figure A.7: Long run correlations between Dow Jones stocks
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The figure plots the eigenvalues and the scaled eigenvalues (the eigenvalue divided by the sum of all

eigenvalues) of the covariance matrix.

Figure A.8: Eigenvalues of correlation matrices for Dow Jones stocks
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The figure plots the largest scaled eigenvalue (the eigenvalue divided by the sum of all eigenvalues) of

the estimated intraday and overnight covariance matrix. Red (black) lines are used to indicate the use

of the non-robust (robust) correlation matrix in the initial step. Solid (dashed) lines are further used to

indicate the updated (initial) estimators,

Figure A.9: Comparison of robust and non-robust initial correlation estimator for Dow Jones stocks
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(a) intraday

(b) overnight

This figure plots the autocorrelations of intraday (overnight) returns for the size-based portfolios on

NYSE/AMEX/NASDAQ stocks in Panel a (Panel b).

Figure A.10: Autocorrelations of intraday and overnight returns for the size-based portfolios:

NYSE/AMEX/NASDAQ
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Cross correlations between overnight and intraday returns, rNt and rDt+Lag, for the size-based portfolios

in NYSE/AMEX/NASDAQ

Figure A.11: Cross correlations between overnight and intraday returns for the size-based portfolios:

NYSE/AMEX/NASDAQ
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(a) NYSE

(b) NASDAQ

Panel a (Panel b) plots the ratio of overnight to intraday volatility for size-based portfolios for NYSE

(NASDAQ) stocks: decile 1 with the smallest market capitalizations and decile 10 with the largest

market capitalizations. Intraday and overnight volatilities are defined as
√

νj
νj−2exp(2λ

j
t + 2σj( tT )), for

j = D,N , respectively.

Figure A.12: Ratio of overnight to intraday volatility for the size-based portfolios: NYSE and NAS-

DAQ

41



(a) beta based deciles

(b) standard deviation based deciles

Panel a plots the ratio of overnight to intraday volatility for portfolios formed on beta. Decile 1 has

the largest beta, around 1.53 on average, while decile 10 has the smallest beta, around 0.25 on average.

Panel b plots the ratio for standard deviation sorted deciles. Decile 1 has the largest standard deviation,

around 0.06 on average, and decile 10 has the smallest standard deviation, around 0.009 on average.

Intraday and overnight volatilities are defined as
√

νj
νj−2exp(2λ

j
t + 2σj( tT )), for j = D,N , respectively.

Figure A.13: Ratio of overnight to intraday volatility for portfolios formed on beta or standard

deviation: NYSE/AMEX/ NASDAQ
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The figure shows the Rogers and Satschell(RS) volatility, the one-month ahead monthly RS volatility,

VIX, and the ratio of VIX to the one-month ahead monthly RS volatility.

Figure A.14: RS, VIX and their ratio
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This figure plots the overnight volatility, intraday volatility and the overnight to intraday volatility ratio

for value-weighted NASDAQ index and value-weighted NYSE index. The dashed vertical line indicates

the last trading day in October 2004, when NASDAQ had introduced the opening and closing crosses.

Figure A.15: Overnight and intraday volatilities: NASDAQ and NYSE
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