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Abstract

This paper studies the information processing behavior of a deci-
sion maker (DM) who can only process a subset of all the information
he receives: before taking an action, the DM receives sequentially a
number of signals and decides whether to process or ignore each of
them as it is received. The model generates an information processing
behavior consistent with that documented in the psychological litera-
ture: first, the DM chooses to process signals that are strong; second,
his processing strategy exhibits confirmation bias if he has a strong
prior belief; third, he tends to process signals that suggest favorable
outcomes (wishful thinking). As an application I analyze how the In-
ternet and the induced change in information availability affects the
processing behavior of the DM. I show that providing more/better
information to the DM could strengthen his confirming bias.
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1 Introduction

There is abundant evidence that people selectively process information in
a systematically biased way. For instance, investors avoid looking at their
financial portfolios when the market is down; individuals tend to ignore in-
formation that challenges their existing beliefs; people tends to attend to in-
formation that support desired outcomes but ignore contradictory evidences
(see Golman et al. (2017) for a review of the literature of information avoid-
ance). These behaviors of selective information avoidance lead to biased
decision making and could significantly worsen our well-being as we miss out
useful information.

As bad as information avoidance sounds, we are not able to process all
available information, especially in this information era. Unavoidably, every-
day we have to make many decisions on whether to process or ignore pieces of
information. Processing a piece of information allows us to understand bet-
ter its content and update our beliefs but consumes cognitive resources like
time and attention which are limited. This limitation imposes a constraint
on our processing capacity3, which gives rise to the possibility of information
avoidance: it could be optimal for individuals to ignore a piece of information
in order to save their cognitive resources for another piece of information.

It is increasingly important nowadays to study individuals’ selective pro-
cessing behavior as information overload becomes a prominent issue. There
is no doubt that the advance in technology provides us with more informa-
tion on different issues. However, the amount of available information clearly
exceeds our processing capacity and we have to strategically use our scarce
cognitive resources. Indeed, there is evidence that the Internet are associ-
ated with biased processing behavior (Flaxman et al. (2016)). In order to
understand the impacts of the Internet, information policies, or in general
changes in informational environment, it is important to understand how
people process information when they have limited processing ability, and
how their processing behavior changes with the policies.

To answer these questions, this paper proposes a simple model of sequen-
tial information processing. Consider a decision maker (DM) who wants to
match his action to an unknown state of the world, e.g., vote for a candi-
date if he/she is the best option, invest in a project if it is profitable, etc.
Before taking the action, the DM receives sequentially T imperfect signals
about the state of the world. However, he is endowed with limited cogni-
tive resources such that he can only “process” T̄ (< T ) signals. In each

3For instance, during an election, there are millions of articles on the Internet that could
guide our voting decision. However, we are endowed with limited time and attention such
that we could only read a very small subset of all the available articles.
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period t = 1, · · · , T , the DM observes some preliminary (imperfect) informa-
tion about the realization of a signal, e.g., the title of an article, and decides
whether to “process” it. If he processes, he learns perfectly its realization
and update his belief; otherwise, he “ignores” the signal without updating
his belief. In other words, in each period, he decides whether to update his
belief with the signal based on his (imperfect) knowledge about its realiza-
tion4. Once he has consumed all his cognitive resources or has received all T
pieces of information, he takes an action.

The model resembles a game of sequential search of information with a
constraint on processing capacity. Given the capacity constraint, there is an
inter-temporal trade off between spending the unit of capacity on the cur-
rent signal or some future signal. In particular, there is a loss of processing
as DM could save the unit of capacity for some future signal; while there
is a gain of processing as otherwise the DM will not take into account the
current signal in decision making and may take suboptimal action. The loss
and gain of processing varies with the realization of the current signal, which
drives selective processing decisions. I show that in the equilibrium, the DM
selectively ignores some of the signals he receives. Moreover, the equilib-
rium processing strategy is “asymmetric”, i.e., the processing decisions are
in general different for belief-confirming and belief-challenging signals.

In the continuation game where the capacity is equal to 1, i.e., T̄ = 1, the
game becomes a simple stopping time problem. The equilibrium processing
strategy of the DM exhibits behavioral phenomena that are well-documented
in the empirical and experimental literature. First, it exhibits a preference
for strong signals (Itti and Baldi (2006)), i.e., the DM tends to process strong
signals and ignore weak signals. Second, the optimal processing strategy of
confident individuals exhibits confirmation bias (Kahan et al. (2012)), i.e.,
if the DM a priori strongly believes that one state is more probable than the
other, he tends to process information which confirms his existing belief and
ignores belief-challenging information. Third, the optimal processing strat-
egy exhibits wishful thinking (Krizan and Windschitl (2007)), i.e., if one
state is much more desirable than the other as it is associated with a much
higher maximum payoff, the DM tends to process information which sup-
ports the more desirable state. The results suggest that these “biases” could
be understood as optimal strategies, driven by the limitation in processing
ability.

Lastly, I analyze how changes in information structures, for example in-

4This is in particular different from models of information acquisition and rational
inattention, where the DM decides whether to incur a fix cost to acquire a piece of in-
formation before knowing its realization. By definition, the DM’s acquisition decisions
cannot be different for belief-confirming and belief-challenging information.
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duced by the Internet or information policies, affect the processing behavior
of individuals. I show that providing more or in average better information
to the decision maker could strengthen his confirmation bias, i.e., he has
more incentive to process belief-confirming information and ignore belief-
challenging information. Even if two individuals are exposed to the same
sequence of signals, they have more incentive to “cherry pick” the infor-
mation that confirms their existing belief which could lead to polarization.
Moreover, media has more incentive to selectively publish biased news sto-
ries as the demand increases. These results explain a number of empirical
phenomena documented in the literature of ideological polarization.

The rest of the paper is organized as follows. In the next section, I
present a review of the related literature. Section 3 shows a simple version of
the model to illustrate the assumption of bounded rationality and intuitions
of the results. In section 4, I present the model setting. Section 5 shows
the results where T̄ > 1 while section 6 turns to the continuation game
where T̄ = 1. Section 7 presents a variation of the model while section 8
shows two simple applications. Lastly, I conclude.

2 Related Literature

This paper is related to a wide range of literature, spanning economics, po-
litical science and psychology. First of all, the core assumption of this paper,
i.e., the DM has to use his limited cognitive resources in order to update
his belief, is built on psychological theories and evidence. More specifically,
it could arise from different channels as suggested by the literature, includ-
ing the effort required to understand the information and to memorize the
information5.

On one hand, cognitive psychological theories proposed by Langdon and
Coltheart (2000), Coltheart et al. (2011) and Connors and Halligan (2015)
suggest that beliefs are formed as explanations to information. It requires
efforts to understand the information in order to integrate it with the indi-
vidual’s existing system of beliefs. On the other hand, there is evidence from
psychological studies showing that memory of information plays a big role in
belief formation. One example is the seminal study of availability heuristic

5Memorizing a piece of information involves an encoding process, which can be
strengthen by different factors, including time (Goldstein et al. (2011)), attention (Shallice
et al. (1994), Craik, Govoni, et al. (1996), Benjamin and Bjork (2000) and Uncapher and
Rugg (2005)), and how “deep” the individual processes the information (Craik and Lock-
hart (1972), Craik and Tulving (1975), Wagner et al. (1998) and Brewer et al. (1998)).
Strengthening the encoding process increases the probability of recalling the information,
but consumes scarce cognitive resources.
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by Tversky and Kahneman (1973). They find that individuals evaluate the
probability of an event by how much and how easily supportive evidence can
be retrieved from memory. Memory-based belief formation is also modeled
in the theoretical economics literature to explain different behavioral phe-
nomena, e.g., Bénabou and Tirole (2002) and Baliga and Ely (2011). Both
mechanisms, i.e., to understand information or to memorize information,
imply that individuals have to spend cognitive resources to “process” the
information in order to update their belief.

The idea of limited cognitive ability has been introduced in the fast-
growing literature of rational inattention, e.g., Sims (2003), Matejka and
McKay (2014) and many others. They study a static6 problem of informa-
tion acquisition where the cost is proportional to the reduction in Shannon
entropy. Different from this paper, under the setup of information acqui-
sition, they cannot account for the phenomena that individuals selectively
update their beliefs based on the realization of the signals, and that different
individuals with different prior beliefs may update differently when they re-
ceive the same signals. Moreover, as they model directly individuals’ choices
of the distribution of their posterior beliefs, there is limited, if not no, role
of information structure on individuals’ beliefs. As a result, the literature
of rational inattention cannot shed light on how changes in informational
environment affects the belief formation of individuals.

In terms of results, this paper contributes to the literature of information
avoidance (see Golman et al. (2017) for an extensive review of the literature).
For instance, Eil and Rao (2011) show that individuals update less when they
receive negative information about their appearance or intelligence than when
they receive positive information. Karlsson et al. (2009) and Sicherman et
al. (2016) find that investors avoid checking their financial portfolios when
the market is down. The papers mentioned above, alongside with many
others, document different systematic biases in the processing behavior of
individuals, including the well-known confirmation bias.

There are many economic theories that explain the confirmation bias
in processing behavior. For instance, Akerlof and Dickens (1982), Kőszegi
(2003) and Brunnermeier and Parker (2005) show that anticipatory utility or
belief-dependent utility leads to the confirmation bias; Carrillo and Mariotti
(2000) and Bénabou and Tirole (2002) show that confirmation bias can be
used as a remedy for time inconsistent preferences; Crémer (1995) and Aghion

6The literature of rational inattention gets around the mechanism of belief formation
and assume the cost of reduction in uncertainty is proportional to the reduction in entropy.
As a result, receiving several weak supportive evidence is equivalent to receiving one strong
supportive evidence, which overlooks the dynamics of information processing and belief
formation. In contrast, this paper focus on the dynamics of information processing.
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and Tirole (1997) explain it with interpersonal strategic concerns; and the
list goes on.

In contrast, this paper belongs to a relatively small, but growing, set of
literature which suggests limitation in cognitive ability explains a number
of behavioral “biases”. Compte and Postlewaite (2012) and Wilson (2014)
assume that the belief of the DM is constrained to a finite set of discrete mem-
ory states. Both papers show that the belief of the DM is non-responsive to
weak information, while the latter also shows that the DM tends to update
his belief with belief-confirming signals but not with belief-challenging sig-
nals. Jehiel and Steiner (2018) assume that the decision maker chooses which
action he takes based on only one signal and can decide whether to redraw
that signal. They provide a micro-foundation for theoretical models that
individuals place linear attention weights on information. In contrast, this
paper derives a wider range of results, which explain how biased process-
ing behavior changes with individual characteristics and the informational
environment.

Lastly, the results in this paper shed light on different issues in the infor-
mation era. It includes political polarization, which receives lots of attention
in recent years (See Prior (2013) for a review.). On one hand, Gentzkow
and Shapiro (2011) and Flaxman et al. (2016) show that online media ex-
pose individuals to belief-challenging information. On the other hand, there
is evidence that the political ideology among US citizens is getting polar-
ized (Bartels (2000), Flaxman et al. (2016)), especially among those who
are more politically engaged and partisan (Baldassarri and Gelman (2008),
Abramowitz and Saunders (2008), Hetherington (2009).). This paper shows
that the limitation in processing ability, or information overload, could ex-
plain the wide range of phenomena documented in the literature.

3 An illustrative example

Consider a voter who must decide to vote for either a left wing or a right
wing candidate. Only one of the candidates is “good”. Voting for the “good”
candidate yields one util while voting for the “bad” candidate yields zero util.

Before he receives any information, the voter believes that there is a 70%
probability that the left wing candidate is the good candidate. Before he must
vote, he knows that he will receive two tweets from two journalists whom he
trusts. Each tweet provides a signal about the quality of the candidates.
More precisely, the tweets could be left leaning, right leaning or neutral.
When the left wing candidate is the good candidate, the tweets are more
likely to be left leaning than to be neutral, and are more likely to be neutral
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than to be right leaning. Similarly, when the right wing candidate is the
good candidate, the tweets are more likely to be right leaning than to be
neutral, and more likely to be neutral than to be left leaning. (Conditional
on the identity of the good candidate, the tweets are independent of each
other.) The information structure is represented on table 1.

the tweet

left leaning neutral right leaning

left wing candidate is good 0.5 0.3 0.2

right wing candidate is good 0.2 0.3 0.5

Table 1: The probabilities of the tweets depending on the identity of the
good candidate.

Now, the voter knows that he can “process” and use only one tweet for
his voting decision. After he sees the first tweet, he knows whether it is left
leaning, neutral or right leaning, but has to read the attached long article and
understand its argument if he wants to update his belief and use the tweet
for his voting decision. “Processing” the tweet takes time, so if the voter
processes the first tweet, he will not be able to process the second tweet
and will choose whom he votes for based on the first tweet. On the other
hand, if he ignores the first tweet, he processes the second tweet and decides
which candidate he will vote for based on it. To summarize, the voter faces a
capacity constraint on belief updating and trade-off between processing the
first or the second tweet.

Beliefs and Voting decisions For simplicity, I assume the voter updates
his belief with the first or the second tweet in the same way, using the fol-
lowing Bayesian formula:

Belief given the processed

tweet is

{
left leaning

neutral

right leaning

}
=

Pr

 a tweet is

{
left leaning

neutral

right leaning

}
and the left wing candidate is good


Pr

(
a tweet is

{
left leaning

neutral

right leaning

})

It implies that the voter updates his belief with the processed tweet as if
he has only received that tweet. If the voter has ignored the first tweet, he
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does not infer information about whether it is left leaning, right leaning or
neutral, and updates his belief as if he has only received the second tweet.
Section 7 relaxes this assumption and shows that the results do not change
qualitatively7. Given this assumption, the voter’s belief given the tweet he
had processed8 is presented on table 2.

the tweet he had processed

left learning neutral right leaning

the voter’s belief that
the left wing candidate is good

35/41

≈ 85%

7/10

= 70%

14/29

≈ 48%

voting decision left wing left wing right wing

Table 2: The voter’s belief given the tweet he has processed.

Given the posterior beliefs, the voter will vote for the right wing candidate
if he processes a right leaning tweet; in all other cases, in which he processes
a neutral or left leaning tweet, he will vote for the left wing candidate.

Processing Decision Now I analyze the voter’s information processing
decision. First consider the case where the first tweet is left leaning. If the
DM processes the tweet, he will not be able to process the second tweet and
will vote for the left wing candidate. The expected utility of processing the
left leaning tweet is therefore equal to the conditional probability that the
left wing candidate is good given the fact that the tweet is left leaning:

Pr

(
left wing
candidate
is good

∣∣∣∣∣ first tweet
is left

leaning

)
=

35

41
.

On the other hand, if the voter ignores the left leaning tweet, his voting
decision will depend on the second tweet, which is summarized in table 2.
The expected utility of ignoring the left leaning tweet is therefore equal to a

7In this illustrative example, the result holds as long as the voting decision of the voter
given the tweet he had processed follows table 2, regardless of whether he has processed
the first or the second tweet.

8Given a left leaning tweet, the voter’s belief equals 0.7×0.5
0.7×0.5+0.3×0.2 = 35

41 ; given a neutral

tweet, his belief equals 0.7×0.3
0.7×0.3+0.3×0.3 = 7

10 ; given a right leaning tweet, his belief equals
0.7×0.2

0.7×0.2+0.3×0.5 = 14
29 .
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weighted average of the expected utility of his voting decisions given different
realizations of the second tweet:

Pr

(
second
tweet is

left leaning

)
× Pr

(
left wing
candidate
is good

∣∣∣∣∣ first tweet
is left

leaning
&

second
tweet is

left leaning

)

+Pr

(
second
tweet is
neutral

)
× Pr

(
left wing
candidate
is good

∣∣∣∣∣ first tweet
is left

leaning
&

second
tweet is
neutral

)

+Pr

(
second
tweet is

right leaning

)
× Pr

(
right wing
candidate
is good

∣∣∣∣∣ first tweet
is left

leaning
&

second
tweet is

right leaning

)

Note that when the voter’s first period self evaluates the voting decisions
of his second period self, he takes into account his knowledge of the first
tweet; while his second period self will take into account only the second
tweet. Therefore, there is an inconsistency between his first and second
period self in the way they evaluate the two candidates and voting decisions.

With some simple algebra, the expected utility of ignoring the first leaning
tweet is equal to 31/41, which is smaller than the expected utility of processing.
The voter processes the left leaning tweet. With similar computations, the
expected utilities of processing and ignoring a neutral tweet are equal to 7/10

and 71/100 respectively; while the expected utilities of processing and ignoring
a right leaning tweet are equal to 15/29 and 187/290 respectively. Therefore, the
voter ignores the first tweet if it is neutral or right leaning. To summarize, the
voter processes the first tweet if and only if it is left leaning, i.e., it confirms
his belief.

The processing decisions of the voter exhibit a confirmation bias, which is
well documented in the literature of information avoidance. Most of the the-
ories in the literature explain the bias by belief-dependent utility, exogenous
biases or interpersonal interaction. In contrast, the voter in this example is
rational, Bayesian and cares only about maximizing the probability of vot-
ing for the good candidate. In this example, this confirmation “bias” is an
optimal strategy solely driven by the limitation in processing ability.

Intuition When the voter makes his processing decisions, he trades off
between the loss and gain of processing the tweet. On one hand, there is a
loss of processing because there is an opportunity cost of forgoing the second
tweet; on the other hand, there is a gain of processing because otherwise the
voter will not take into account the first tweet and may make suboptimal
voting decisions.
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The loss and gain of processing the tweet varies with its realizations,
which induce selective processing decision. When the voter receives a left
leaning first tweet, he becomes more confident about the voting for the left
wing candidate, which reduces the importance of the second tweet. In fact,
in this special example, the second tweet becomes useless as it is not strong
enough to alter the optimal voting decision. Even if the second tweet is right
leaning, the optimal decision is still to vote the left wing candidate. On the
other hand, there is a gain of processing as otherwise the voter will become
under-confident about the left wing candidate and will switch sub-optimally
to voting for the right wing if the second tweet is right leaning.

When the voter receives a neutral tweet, the loss and gain are different.
In particular, there is no gain of processing as the voter still have the correct
belief after ignoring the tweet. On the other hand, the second tweet is in
average informative and processing it will (in average) improve the voting
decisions of the voter.

Lastly, when the voter receives a right leaning tweet, the voter believes
that the right wing candidate is marginally better. He is not confident about
which action is optimal. In this case, the second tweet becomes more impor-
tant and the loss of processing is big, and it outweighs the gain of processing.

In general, there is an asymmetry in the processing behavior regarding
belief confirming and belief challenging information, because of the differ-
ences in loss and gain as illustrated above. However, the asymmetry does
not always lead to confirmation bias. As will be shown in section 6, in the
continuation game of the general model where T̄ = 1, there is a confirmation
bias when the voter is a priori confident about the state, but not necessarily
when the prior belief is not strong enough.

4 Model Setting

Primitives The decision maker faces a binary choice problem with two
actions, a ∈ {l, r}. For example, l and r could represent voting for the left
wing and right wing candidate respectively. There are two possible states of
the world, ω ∈ {L,R}. The DM wants to match his action to the state, i.e.,
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his utility function u(a | ω)9 follows

u(l | L) = uL > 0;

u(r | R) = uR > 0;

u(l | R) = u(r | L) = 0.

The DM’s prior belief is (pL, pR), with pL + pR = 1 and pL, pR > 0. Without
loss of generality, I assume uL pL ≥ uR pR. Action l is a priori optimal.

Before the DM takes the action, he looks for information about the state
of the world, for example on Google, Facebook or traditional media. The
available information, for instance articles on the Google news page, is rep-
resented by a finite10 sequence of signals, denoted (st)

T
t=1. A signal st is

drawn from a set St with the p.d.f. in states L and R, denoted ftL and ftR
respectively. I assume

ftω(st) > 0 for all st ∈ St and both ω = L,R

which implies that no signal perfectly reveals the state. I allow for the pos-
sibility that the p.d.f. ftL, ftR vary with t, i.e., different signals along the
sequence may be drawn from different information structures. For example,
articles on different positions of the Google news page could have different
qualities, as they are ranked based on their features by an algorithm.

By the Bayesian formula, the information conveyed by a signal st is sum-
marized by its likelihood ratio ftL(st)

ftR(st)
. Therefore without loss of generality,

I normalize signals as their likelihood ratios. For t = 1, · · ·T , I assume that
St is the set of strictly positive real numbers R++ and

st =
ftL(st)

ftR(st)
for all st ∈ R++.

For technical convenience, the c.d.f. FtL and FtR are assumed to be continuous
but the results hold for more general distributions11. A signal st > 1 supports

9The model is identical up to the following transformation in the utility function:

u(l | L) = uL +A; u(l | R) = B;

u(r | L) = A; u(r | R) = uR +B,

for any constants A,B ∈ R. What matters are the difference between the utilities of the
two actions, fixing the state. The model can thus be applied to a setting where action l is
risky, i.e., it gives positive payoff uL in state L and negative payoff −uR in state R, while
action r is safe and gives 0 payoff in both states.

10The results in this paper hold for arbitrarily big T .
11For examples, the results hold for discrete distributions, and for distributions with

mass points.
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state L and confirms the DM’s prior belief that action l is optimal; while a
signal st < 1 supports state R and is belief-challenging12. Therefore, I define
the set of belief-confirming information and belief-challenging information,
denoted S+ and S− respectively, as follows:

S+ = (1,∞);

S− = (0, 1).

A signal st = 1 is pure noise which provides no information about the state
of the world.

Strength of Signals The strength of a signal st, denoted by STR(st), is
defined as follows:

STR(st) = max
{
st, s

−1
t

}
∈ [1,∞) .

The larger st, the more likely that the signal is drawn in state L instead
of state R, and the more convincingly it supports state L; similarly, the
larger s−1

t , the more convincingly it supports state R. Analogously, the
strength of a set of signals E ⊂ (0,∞) is defined as:

STR(st ∈ E) = max

{∫
E
ftL(st)dst∫

E
ftR(st)dst

,

∫
E
ftR(st)dst∫

E
ftL(st)dst

}
.

If the DM does not know the realization of st but only that st ∈ E, the
larger

∫
E
ftL(st)dst compared to

∫
E
ftR(st)dst, the more probable that the

true state is L.

Preliminary Information of Signals Upon receiving a signal st and
before the DM decides whether to process or ignore it, he observes some
preliminary information about its realization. For example, in the context
of Google news page, the preliminary information are the titles of articles,
graphics, sources, dates of publication and previews13. These information
allows the DM to get a grasp on the content of the article with negligible
time and attention, and then to decide whether to carefully read the article
based on his perliminary understanding of its content.

12Note that the definition of belief-confirming and belief-challenging information cor-
responds to whether the information supports the a priori optimal action. Therefore, it
depends not only on the belief of the DM, but also on the utility matrix. In particular, the
set of belief-confirming and belief-challenging information may differ for two individuals
who have same the beliefs but different utility functions.

13In general, the preliminary information could be interpreted as a brief understanding
of the content of the article that consume negligible amount of cognitive resources.
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Formally, the preliminary information is represented by a signal of the
signal st, which is denoted by s̃t. I assume that s̃t is drawn from a set E and
with a p.d.f. h(· | st) : (0,∞) → 4E . For example, the DM could observe
whether the signal supports state L or state R but not its strength. In that
case, E = {−,±,+} with s̃t = + if st > 1, ± if st = 1, − if st < 1.

I denote by g(· | s̃t) the conditional probability distribution of st given
the preliminary information s̃t. In the rest of the paper, without loss of
generality, I often use g instead of s̃t to denote the preliminary information, as
it summarizes the knowledge of the DM about the realization of st. Note that
in the illustrative example, g is degenerate, i.e., the DM observes perfectly
the realization of st before taking the processing decision.

Processing Constraint and Timeline The DM is subject to a capac-
ity constraint, in which he can only “process” up to T̄ signals. If the DM
processes a signal, he learns perfectly14 the realization of st and updates his
belief: he reads the articles, understands better the content and incroporates
the information into his belief. Otherwise, he ignores the signal without
updating his belief.

This mechanism of “processing” implies that the DM updates his belief
only with the processed signals. Mathematically, let the set of processed
signals at the beginning of period t as Mt, which is also referred as the DM’s
memory15. By construction, M1 = ∅. If the DM processes st, Mt+1 = Mt ∪
{st}; otherwise, Mt+1 = Mt. With some abuse of notations, I write t′ ∈Mt

for some t′ < t if and only if the DM has processed the signal in period
t′, while t′ /∈ Mt is defined analogously. The belief of the DM at period t,
denoted (ptL(Mt), p

t
R(Mt)), is a function of his memory Mt and his prior,

which will be defined formally later in the section.
The timeline of the game is shown in figure 1. In period t = 1, · · · , T , the

DM observe the preliminary information s̃t and decides whether to process
or ignore the signal. Once the DM has exhausted his processing capacity,
the game jumps to period T + 1 and he takes one of the two actions. For
simplicity, I assume that he cannot return to a piece of information he has
ignored16.

Apart from being subject to the processing constraint, the DM is rational

14This effect is absent in the illustrative example, where g is degenerate.
15This corresponds to one of the interpretation of processing, which is to memorize the

information in order to update the one’s belief.
16This assumption rules out the possibility that the DM keeps in mind the preliminary

information of several pieces of news at the same time and decides which one(s) to process.
It emphasizes the limitation of the DM’s cognitive ability and the fact that the capacity
of our working memory is small.
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Period t

Start with
memory Mt

|Mt| < T
Observe s̃t

Process

Ignore

Mt+1 = Mt ∪ st

Mt+1 = Mt

Period t+ 1

Jump to period T + 1,
take action l or r.

|Mt| ≥ T

Figure 1: Timeline of the game at any period t ≤ T .

and able to evaluate the expected utility of processing and ignoring a signal,
using his memory Mt and the preliminary information g. The processing
strategy of the DM at period t is denoted by σt(g,Mt) ∈ {P, I}, where P
represents the decision to process the signal and I represents the decision
to ignore it. The processing strategy from period 1 to period T is denoted
by σ = (σt)

T
t=1. I assume that if the DM is indifferent between processing

or ignoring a signal, he processes it when the signal is belief-confirming and
ignores it otherwise.

Posterior Belief and Equilibrium Concept I consider an “aware” and
an “unaware” case on how the DM forms belief with his memory. The two
cases correspond to two different levels of cognitive sophistication of the DM
and are defined as follows. More specifically, the “unaware” case corresponds
to the simplifying assumption made in the illustrative example, while the
“aware” case relaxes the assumption.

Unaware DM In the unaware case, when the DM forms his belief, he
does not infer information from the fact that he had chosen to ignore some
previous signals. As a result, he updates his belief as if he has only received
signals in his memory. Formally, the posterior belief of the unaware DM at
period t satisfies:

ptL(Mt) =
pL
∏

t′∈Mt
ft′L(st′)

pL
∏

t′∈Mt
ft′L(st′) + pR

∏
t′∈Mt

ft′R(st′)

=

(
1 +

pR
pL
∏

t′∈Mt
st′

)−1

;

ptR(Mt) = 1− PrL(Mt).

(1)

This “unawareness” in belief formation has been documented in the litera-
ture, as shown in an experimental study conducted by Enke and Zimmermann
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(forthcoming). They show that a significant amount of their subjects are not
aware of, and do not take into account the correlation between different pieces
of information when they form beliefs. Analogously, the “unaware” DM is
not aware of, and does not take into account his previous processing decisions
when he forms belief. This assumption is also equivalent to the equilibrium
concept introduced by Jehiel (2005) and Eyster and Rabin (2005), in which
they argue that individuals may not take into account how other people’s
action depend on their own information17.

The game is a multi-selfs dynamic game. With the “unawareness” as-
sumption, the DM acts as if there is no incomplete information18. The
solution concept used is subgame perfect Nash equilibrium. At each pe-
riod t = 1, · · · , T , he anticipates how his processing decision affects the
decisions of all his future selfs, using his belief of the state ptL(Mt) and the
preliminary information g of the signal st. On the other hand, in period T+1,
the DM takes actions l if pT+1

L (MT+1) > 1/2 and r if pT+1
L (MT+1) < 1/2. In

case of indifference, I assume that the DM takes action l.
In most parts (except section 7) of the main text, I study the DM’s

processing behavior in only the unaware case. However, to help the reader to
understand the differences between the two cases, I now briefly introduce the
definition of the aware case (the formal definition is presented in section 7).
The results in the two cases are similar.

Aware DM In the aware case, the DM is more sophisticated. When he
updates his belief with his memory, he rationally infers information about the
signals in periods {t′ | t′ /∈ Mt} from the fact that he had chosen to ignore
them. The game is a multi-selfs dynamic game with incomplete information
and the corresponding solution concept is perfect Bayesian Nash equilibrium.

When the DM updates his belief with Mt, he does not know his processing
strategy in periods t′ < t, but forms a conjecture denoted by (σ̃t′)

t−1
t′=1. In

equilibrium, for all t = 1, · · · , T + 1, the conjecture (σ̃t′)
t−1
t′=1 of the DM’s

period t self has to be consistent with the equilibrium processing strategies
of his previous selfs. On the other hand, when the DM decides whether to
process or ignore a signal, he is fully aware of the fact that his future self
will make rational inference. He evaluates the expected utility of processing
and ignoring a signal and takes the optimal processing decision, using his

17In the current setting, when the unaware DM forms his belief, he does not take into
account the fact that his previous selfs’ processing decisions depend on their knowledge of
the realization of the signals. As a result, he forms his belief as if the processing decisions
of his previous selfs did not correlate with the signals’ realizations.

18The DM acts as if he had only received the signals in his memory. In other words, it
is as if he “mistakenly thinks” that he is in a singleton information set.
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knowledge of the state and the corresponding signal realization.

4.1 Discussion

Before I present the analysis, I discuss the assumptions of the model. The
two core building blocks of the model are the DM’s inability to process all
available signals and his ability to make optimal processing decisions based
on his understanding of the signals realizations. While the first models the
limitation in cognitive ability, the second imposes a high cognitive demand
on the DM as he has to evaluate the probability of the states and antici-
pate how processing or ignoring the signals affects the decisions of his future
selfs. Thus, this paper tries to take a minimal departure from the liter-
ature (the first building block) while keeping the rational benchmark (the
second building block) to highlight how the capacity constraint can drive
selective/biased processing behavior. In the following, I provide several jus-
tification/interpretations of the setting.

1. Short-term-long-term-memory conversion
The first interpretation of the model is a memory-based belief formation
mechanism19. The DM forms belief only with his (long-term) memory of
information. Upon receiving a piece of information, it first enters as a short-
term memory. The DM then evaluates (consciously or unconsciously) the
benefits and costs of processing, and decides whether or not to consume his
cognitive resources to convert it into long-term memory.

2. Title (or a brief look) and the main text of articles
The second interpretation is related to the way individuals process news
articles. The DM first reads the title of the article and roughly gets an
impression of its main message. He then decides whether or not to read
the main text based on this rough impression, which allows him to update
his belief accordingly. If he chooses not to read the main text, his rough
impression of the article has negligible, if not no, effect on his belief.

3. Optimal selective processing
Taking a step back, there is abundant evidence that individuals update differ-
ently with belief-confirming and belief-challenging information. This model
studies the characteristics of the optimal selective processing strategies given
the DM’s limited processing ability, and analyzes how it resembles different
empirical phenomena and how it changes with the informational environ-
ment.

4. Delegation on information acquisition
Although the aim of this paper is to analyze individuals behavior, the model

19See section 2 for related literature.
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could be interpreted as a game between a decision maker and a delegate who
acquires and presents information. Imagine a delegate who shares the same
preference as the decision maker. The delegate engages in a sequential search
of information and has to decide which pieces of information he present to the
decision maker, who will take an action based on the presented information.
The model depicts the situation where there is a capacity constraint on how
many signals the delegate could present to the decision maker, which could
be imposed by cost/time concerns or organization protocols.

5 Processing strategy when T̄ > 1

In this section, I characterize the processing strategy of the DM in period t,
given preliminary information g. I first analyze the case where g is degener-
ate, i.e., the preliminary information perfectly reveals the signal realization,
and then proceed to discuss the differences with non-degenerate g. A degen-
erate distribution g is simply denoted by st. For simplicity of notations, I use
(ptL, p

t
R) to denote the belief of the DM at the beginning of period t, where I

assume ptLuL ≥ ptRuR without loss of generality.
To evaluate the expected utility of processing and ignoring a signal st,

the DM has to anticipate how his processing decision will affect the action
chosen by his future self. To simplify expressions, denote by Prt+1

Mt+1
(a | ω)

the probability that the DM takes action a in state ω, evaluated at the
beginning of period t+1 given his memory Mt+1. The DM’s expected utility
of processing st, denoted by UP (st,Mt) is equal to the probability of matching
his action with the state, weighted by the payoff uL, uR:

UP (st,Mt) = uL
ptLst

ptLst + ptR
Prt+1

Mt∪{st}(l | L)

+ uR
ptR

ptLst + ptR
Prt+1

Mt∪{st}(r | R). (2)

In the first term,
ptLst

ptLst+p
t
R

is the conditional probability of state L given the

signal st while Prt+1
Mt∪{st}(l | L) is the probability that his future self succesfully

matches his action with state L given that Mt+1 = Mt ∪ {st}. Similarly, his
expected utility after ignoring the signal, denoted by UI(st,Mt), follows:

UI(st,Mt) = uL
ptLst

ptLst + ptR
Prt+1

Mt
(l | L) + uR

ptR
ptR + ptLst

Prt+1
Mt

(r | R). (3)

By comparing equation (2) and (3), we could see that the processing
decision affects the utility as it induces a different distribution on the action
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chosen by his future self. Denote by 4t
st,Mt

(a | ω) the change in probability
of choosing action a in state ω after processing st, i.e.,

4t
st,Mt

(a | ω) = Prt+1
Mt∪{st}(a | ω)− Prt+1

Mt
(a | ω),

we have UP (st,Mt) ≥ UI(st,Mt) if and only if:

uL
ptLst

ptLst + ptR
4t
st,Mt

(l | L) ≥ −uR
ptR

ptR + ptLst
4t
st,Mt

(r | R)

⇐⇒ uLp
t
Lst4t

st,Mt
(l | L) ≥ −uRptR4t

st,Mt
(r | R). (4)

Equation (4) shows how the DM’s processing decision depends on the change
in the quality of decision making in the two states. For instance, if both
4t
st,Mt

(l | L) and 4t
st,Mt

(r | R) are positive, processing the signal improves
the quality of decision making in both states, i.e., there is a higher probability
that the DM chooses the optimal action in both states. Unsurprisingly, by
equation (4), the DM processes the signal. The opposite holds true when
both 4t

st,Mt
(l | L) and 4t

st,Mt
(r | R) are negative20. The trade-off kicks

in when the two functions have opposite signs, i.e., processing the signal
improves the quality of decision making in one state but worsens it in another
state. The following lemma characterizes the DM’s processing strategy given
4t
st,Mt

(l | L) and 4t
st,Mt

(r | R) are of opposite signs.

Lemma 1. Assume 4t
st,Mt

(l | L) and 4t
st,Mt

(r | R) are of opposite signs with
neither equal to 0, and suppose the DM is not indifferent between processing
and ignoring. At period t, the DM’s processing strategy is as follows:

1. if 4t
st,Mt

(l | L) > 0, the DM chooses to process it if and only if

st >
uR p

t
R

uL ptL
×
4t
st,Mt

(r | R)

4t
st,Mt

(r | L)
; (5)

2. if 4t
st,Mt

(r | R) > 0, the DM chooses to process it if and only if

s−1
t >

uL p
t
L

uR ptR
×
4t
st,Mt

(l | L)

4t
st,Mt

(l | R)
. (6)

20Note that with limited attention, processing a signal does not necessarily increase
the probability of choosing the optimal action in either state. It is because processing
lowers the number of signals the DM can process in the future. Take an extreme example
where st = 1, processing the signal does not help the DM to know better about the state
of the world, but consumes one unit of processing capacity that could be used on an
informative future signal.
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To understand the lemma, let us focus on case 1 where 4t
st,Mt

(l | L) > 0.
Note that the numerator of the term on the right-hand-side of equation (5)
measures the loss in utility in state R while the denominator measures the
gain in utility in state L, with both weighted by the prior beliefs. Thus the
R.H.S. measures the loss-to-gain ratio of processing the signal st, adjusted
with the prior belief. If st is big enough, the signal strongly suggests that
state L is true and thus the probability of incuring the loss is small, which
gives the DM incentive to process. Similar intuition applies for case 2 where
4t
st,Mt

(r | R) > 0.
Using lemma 1 and to shed light on the role of the capacity constraint,

the following proposition compares the equilibrium processing strategies of
the DM without and with limited cognitive ability, i.e, where T̄ ≥ T and
T̄ < T .

Proposition 1. If T̄ ≥ T , the DM processes almost all signals he receives in
equilibrium, i.e., for all t and Mt, σt(st,Mt) = P for almost21 all st ∈ (0,∞),
while that is not true if T̄ < T .

Without limited cognitive ability, there is no trade off between current
and future signals. Thus, it is always optimal to process all available signals,
as otherwise the DM will have “incorrect” belief about the state and may
take an suboptimal action. When T̄ < T , the trade off between current
and future signals kicks in. Processing a signal does not only change the
belief of the DM, but consume one unit of processing capacity which could
be used for some future signals. Suppose to the contrary of proposition 1,
the DM processes all signals he receives. At period t, the decision to process
or ignore st is equivalent to the decision on whether to take action based
on (st, · · · st+T̄−1) or on (st+1, · · · st+T̄ ), i.e., the DM trades off between st
and st+T̄ . When st is very uninformative (close to 1), the gain of processing
is small. It is optimal for the DM to save his processing capacity for st+T̄ ,
which is in average much more informative than st ≈ 1.

Apart from strategically ignoring signals, the DM’s processing strategy is
“asymmetric”. The two inequalities (5) and (6), which characterize the pro-
cessing decisions regarding to signals that increase the probability of choosing
action l and r respectively, are generically different. This asymmetry drives
differences between the processing behavior regarding information support-
ing or against the a prior optimal action. As will be explored in more details
in next section, this asymmetry in processing strategy explains a number of
“biases” documented in the literature, including confirmation bias for confi-
dent individuals.

21The DM is indifferent between processing and ignoring st = 1, which has mass equal
to 0.
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Non-degenerate g Now I turn to the case where g is non-degenerate, i.e.,
the preliminary information g does not perfectly reveal the realization of the
signal st. In this case, processing the signal has two effects: it allows the DM
to learn the realization of st and update his belief. The expected utilities of
processing and ignoring a signal with preliminary information g are:

UP (g,Mt) =

∫
UP (st,Mt)g(st | s̃t) dst;

UI(g,Mt) =

∫
UI(st,Mt)g(st | s̃t) dst,

which gives the following result.

Corollary 1. Suppose when g is degenerate, the DM’s processing strategy at
period t is to process st if and only if its realization is in some set S̄ , i.e.,
σt(st,Mt) = P if and only if st ∈ S̄ .

Now suppose the DM observes that st ∼ g for some non-degenerate g.
He processes the signal if there is a high enough probability that the signal
realization is in the set S̄ , i.e, σt(g,Mt) = P if

∫
s∈S̄

g(s | s̃t) ds is big
enough.

Importantly, corollary 1 implies that one could focus on the case where g
is degenerate, without losing much qualitative insights. For instance, if the
DM processes belief-confirming signals but ignores belief-challenging signals,
he also processes a signal if he observes that the signal is likely to be belief-
confirming. In the rest of the paper (unless when specified), I analyze only
the case where g is degenerate.

6 Continuation Game where T̄ = 1

In this section, to show more detailed behavioral implications, I present the
analysis of the continuation game where T̄ = 1, i.e., the DM can only pro-
cess one signal. Furthermore, I will only look into the case where T = 2,
i.e., there are only two available signals. In appendix B, I show that it is
without loss of generality22 to do so when T̄ = 1. By relabeling the current
period as period 1, the processing decision boils down to whether the DM
processes s1 or ignores s1 in order to save his cognitive resources for s2. Us-
ing23 lemma 1, the equilibrium processing strategy of the DM is characterized
in the following proposition.

22Loosely speaking, I show that the equilibrium processing strategy of the DM in any
period t < T is equivalent to the equilibrium processing strategy of the DM in period 1 in
a game where T = 2 with some information structure f̃2L, f̃2R.

23When T̄ = 1, 41
s1,M1

(l | L) and 41
s1,M1

(r | R) are always of opposite signs.
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Proposition 2. In period 1, the DM processes a signal s1 if and only if it is
strong enough, i.e.,

• he ignores pure noise s1 = 1;

• he processes a belief-confirming signal s1 > 1 if and only if

STR (s1) = s1 ≥ Φ+; (7)

• he processes a belief-challenging signal s1 < 1 if and only if

STR (s1) = s−1
1 > Φ−, (8)

where Φ+ and Φ− are defined as follows:

Φ+ =
uR pR
uL pL

× STR

(
s2 ∈

(
0,
uR pR
uL pL

))
;

Φ− =
uL pL
uR pR

× STR

(
s2 ∈

[uR pR
uL pL

,∞
))

>
uL pR
uR pR

.

(9)

The equilibrium processing strategy of the DM is a threshold-strategy,
i.e., he processes the signal if and only if the signal strength is larger than
some threshold as illustrated in figure 2. As shown by equation (9), the two
thresholds are generically different, i.e., the processing strategy is asymmetric
as pointed out in the previous section.

Moreover, the loss-to-gain ratio of processing s1 is captured by the strength
of a set of “contradictory” future signal s2, which corresponds to the real-
izations that induce a different action compared to s1 (see table 3). For
example, consider s1 > 1. The bigger F2R(uRpR

uLpL
) is, the higher the proba-

bility the DM will receive contradictory future signal in state R and switch
(optimally) to action r; the smaller F2L(uRpR

uLpL
) is, the less likely the DM will

receive contradictory future signal in state L and switch (sub-optimally) to
action r. Therefore, the stronger the contradictory signals are, the bigger
the loss-to-gain ratio of processing s1 (or forgoing s2) is. Loosely speaking,
when an individual decides whether not to read a piece of left-wing news, he
is concerned about losing time and/or attention for a right-leaning article as
it provides contradictory information. Thus, the stronger the contradictory
future is compared to the current signal signal, the more incentive the DM
has to ignore the current signal and save his cognitive resources for the future
signal. This feature has important implications on the comparative analysis,
which will be discussed later in this section.
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0 ∞
s1

1

uRpR
uLpL

(Φ−)−1 Φ+

Process Process

Figure 2: The DM processes s1 if its realization is inside the shaded region.

Final action

s1 s2 process s1 ignore s1

> 1
≥ uR pR

uL pL
l l

< uR pR
uL pL

l r

< uR pR
uL pL

≥ uR pR
uL pL

r l

< uR pR
uL pL

r r

Table 3: The table shows the final action given (s1, s2) and the processing
decision. The colored boxes highlight the configurations of s2 that induce dif-
ferent actions compared to s1, which corresponds to the subset of realizations
of s2 shown in equation (9).

6.1 Behavioral Phenomena

The equilibrium processing strategy has behavioral implications which ex-
plain some of the “biased” processing behaviors documented in the behav-
ioral economics and psychological literature. The first implication is that
there is a preference for strong signals, i.e., the DM processes only strong
enough signals in equilibrium. This implies that individuals react more to
striking or convincing information but ignore coarse or ambiguous informa-
tion. Analogously, in an experiment which studies visual attention, Itti and
Baldi (2006) shows that individuals selectively allocate visual attention to
details that induce a large difference between prior and posterior belief.

Another implication relates to the confirmation bias, which is defined as
follows:

Definition 1 (Confirmation Bias). The equilibrium processing strategy
exhibits confirmation bias if Φ− > Φ+. That is, the DM processes a larger
set of belief-confirming information than belief-challenging information.

When Φ− > Φ+, the DM processes a belief-confirming signal s but ignores
an equally strong belief-challenging signal s−1 for all s ∈ [Φ+,Φ−]. On the
other hand, there does not exists any s ∈ (1,∞) such that the DM ignores a
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belief-confirming signal s but processes an equally strong belief-challenging
signal s−1.

The following proposition presents two behavioral implications of the
equilibrium processing strategy.

Proposition 3. The equilibrium processing strategy of the DM explains the
following behavioral phenomena:

1. (preference for strong signals)
The DM processes a signal if and only if it is strong enough, as shown
in equation (7) and (8).

2. (confirmation bias for confident individuals)
If the DM is a priori confident enough that state L is true, his processing
strategy exhibits confirmation bias, i.e., Φ− > Φ+ if pL is big enough.

The intuition of proposition 3 can be understood as a trade-off between
current and future information. On one hand, processing the current signal
induces a loss as the DM forgoes informative future signal; on the other
hand, it induces a gain as otherwise he will not take the current signal into
account when he takes action l or r. First, the stronger (more informative)
the current signal is, the more important it is to take it into account in the
decision making problem so the gain is bigger. Moreover, a stronger current
signal implies a more extreme posterior and the future information becomes
less important. Both drives the preference for strong signals.

Second, when the DM is a priori confident enough that state L is true,
even if he receives a weak belief-confirming signal, he becomes almost sure
that action l is the optimal action. Future information becomes less impor-
tant as there is a small probability of receiving a very strong contradictory
signal s2 <

uRpR
uLpLs1

. The gain of processing s1, to prevent himself from switch-

ing sub-optimally when s2 ∈ [ uRpR
uLpLs1

, uRpR
uLpL

), dominates the loss when pL is
big enough. In contrast, even when the DM has processed a strong belief-
challenging signal, he is not sure about the optimality of action r. Therefore,
the future information becomes important, which induces the DM to ignore
the current signal and save the capacity for the future signal. This asymme-
try24 in the incentive to look for future information drives the confirmation
bias.

The result of confirmation bias also holds when g is non-degenerate. To
illustrate that, consider two pieces of preliminary information, g+ and g−,

24Note that the gain of processing always dominates the loss when the DM are almost
sure about which action is optimal, i.e., when uLpLs1

uRpR
→ 0 or uLpLs1

uRpR
→∞; the reverse is

always true when the DM is indecisive about the two action, i.e., when uLpLs1
uRpR

≈ 1.
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where

g+(s) = 0 for all s ≤ 1;

g−(s) = 0 for all s ≥ 1.

That is, the DM observes that the signal s1 is belief-confirming if s1 ∼ g+

and is belief-challenging if s1 ∼ g−. Moreover, in both cases, he is not sure
about the signal strength.

Corollary 2. Suppose a priori the DM believes strongly that state L is true,
i.e., pL is big enough. In period 1, he processes the signal if he observes
that s1 ∼ g+ but ignores the signal if he observes that s1 ∼ g−.

Both proposition 3 and corollary 2 explain the phenomenon of informa-
tion avoidance, in particular the avoidance of belief-challenging information
(Kahan et al. (2012)). Although this behavior of information avoidance looks
like a systematic bias against belief-challenging information, the results afore-
mentioned suggest that when one takes into account the limitation in cogni-
tive ability, “confirmation bias” actually arises as an optimal strategy under
a setting with rational and Bayesian individuals. This is in particular differ-
ent from the literature which explains the processing behavior with belief-
dependent utility, exogenous biases such as time-inconsistent preference or
interpersonal interaction25. Moreover, the results also help us to understand
how the “confirmation bias” differs across different subjects in experiments.

It is interesting to note the limitation in processing ability drives not only
a confirmation bias, but also a “bias” in action. More specifically, if the DM is
a priori confident enough, he chooses action l with a higher probability in the
current setting, than in a setting where there is no limitation in processing
ability.

Corollary 3 (Bias in action). Suppose the DM a priori believes strongly
that state L is true, i.e., pL is big enough. He chooses action l with a higher
probability when he can only process one of the two signals s1 and s2, than
when he can process both.

Now I present another behavioral implication, which relates to wishful
thinking. It refers to individuals’ tendency to form optimistic belief about
some desirable outcomes. In the psychological theory proposed by Krizan
and Windschitl (2007), one of the mechanisms driving wishful thinking is
that individuals tend to process and encode information that suggests some
desirable outcomes. In the current setting, uL and uR measures the how

25See section 2 for the references.
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desirable the two states are. When uL is larger than uR, state L is more
desirable than state R as it is associated with a higher achievable payoff. By
analogy to confirmation bias, wishful thinking is defined as follows:

Definition 2 (Wishful Thinking). Suppose state L is more desirable than
state R, i.e., uL ≥ uR. The equilibrium processing strategy of the DM exhibits
wishful thinking if Φ− > Φ+. That is, he processes a larger set of information
that supports state L, compared to that supports state R.

It is clear from equation (7) and (8) that an increase in uL/uR has the
same effect as an increase in pL/pR. Therefore, the second point of proposi-
tion 3 implies the following result.

Corollary 4 (Wishful thinking). When state L is much more desirable
than state R, the equilibrium processing strategy of the DM exhibits wishful
thinking, i.e., Φ− > Φ+ when uL/uR is big enough26.

6.2 Comparative Analysis

I now analyze how a change in the information structures (f2L, f2R), which
could be induced by the Internet or information policies, affects the infor-
mation processing behavior of the DM. In particular, I study whether the
change strengthens the confirmation bias. Consider two environments A and
B, which are associated with two different equilibrium processing strategies
characterized by two sets of thresholds (Φ+

i ,Φ
−
i ), i = A,B. The confirmation

biases under the two environments are compared as follows:

Definition 3 (Comparison of confirmation bias). The confirmation bias
is stronger under environment A than under environment B if Φ+

A ≤ Φ+
B

and Φ−A ≥ Φ−B, where at least one of the two inequalities is strict. That is,
under environment A, the DM processes only a subset of belief-challenging
information that he would process under environment B; while the reverse is
true for belief-confirming information.

In the sequel, I analyze two specific types of change in the information
structure, in order to illustrate how the Internet could strengthen the con-
firmation bias of the DM. The first type of change captures the idea that
the Internet facilitates a better access to information, thanks to the decrease

26Note that the model also explains a reverse phenomenon of wishful thinking, namely
that individuals tend to form pessimistic belief about some undesirable outcomes when the
associated loss increases (Dunning and Balcetis (2013)). The formal result is presented as
corollary 9 in the appendix.
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in information transmission cost and the advance of search technology. For-
mally, I assume that under environment j, where j = A,B, the signal s2 is
drawn from the following distribution27:

s2 =

{
1 with probability 1− λj;
s otherwise, where s ∼ (f2L, f2R).

The bigger λj is, the better the access to information is. When λA > λB,
there is a higher probability to receive informative signals s2 6= 1 under
environment A than that under environment B.

Proposition 4. If environment A facilitates a better access to information
compared to environment B, then the confirmation bias is stronger under
environment A than under environment B, i.e., if λA > λB, we have Φ+

A =
Φ−B and Φ−A > Φ+

B.

Before I present the intuition, let me first present the analysis on the
second type of change. It corresponds to the idea that the Internet lowers
the barrier to information production. As a result, it facilitates the develop-
ment of new media, and therefore provides individuals with more information
sources. The quality of the new information sources could be different from
the old ones. Intuitively, the skewness of the information structure of the
new sources have a great impact on the processing strategy of the DM. For
instance, if the new information sources produce strong belief-challenging in-
formation but weak belief-confirming information, the DM has more incentive
to process the former and ignore the latter. To avoid assuming whether the
new information sources are biased towards one state or the other, I analyze
the case where the information structure of the new sources are in aggregate
symmetric.

Formally, I assume that under environment B, the signal s2 is drawn from
the following distribution:

s2 =

{
1 with probability 1− λ
sB otherwise, where sB ∼ (fB2L, f

B
2R),

(10)

while under environment A, the signal s2 is drawn from the following distri-
bution:

s2 =


1 with probability 1− λ− δ
sB with probability λ, where sB ∼ (fB2L, f

B
2R);

sA with probability δ, where sA ∼ (fA2L, f
A
2R).

(11)

27Note that unlike in previous sections, the c.d.f.s of s2 defined here are not continuous.
Nonetheless, the results in previous sections still hold.
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for some symmetric distribution (fA2L, f
A
2R), i.e., fA2L(s) = fA2R(s−1). Put dif-

ferently, environment A transfers some mass δ of pure noise to the new infor-
mation sources, which is characterized by a symmetric distribution (fA2L, f

A
2R).

Proposition 5. Consider two environments, A and B, defined in equa-
tion (11) and (10). The confirmation bias is stronger under environment A
compared to environment B if and only if the strong belief-challenging in-
formation drawn from the new sources is weaker than the same information
drawn from the old information sources, i.e.,

STR

(
sA ∈

(
−∞, uR pR

uL pL

))
≤ STR

(
sB ∈

(
−∞, uR pR

uL pL

))
.

Note that both types of change are defined in a way such that the infor-
mation structure under environment A is in average more informative28 than
that under environment B. When the future information becomes more infor-
mative, intuition suggests that the DM should have more incentive to ignore
the current information and process the future information. However, in this
model, the processing decision depends not on the average informativeness
of all realizations of s2, but only on the set of contradictory realizations of s2.
For instance, when the DM decides whether to process an left leaning article,
he does not worry about losing attention for another left leaning article but
worry about losing attention for a right leaning article. While environment A
increases the average strength of s2 compared to environment B, it does not
necessarily increase the average strength of the strong belief-challenging in-
formation s2 <

uR pR
uL pL

. As a result, providing in average “better” information
to the DM could strength his confirmation bias.

The Internet undoubtedly facilitates better access to information and
lowers the cost of information production. As the Internet lowers the entry
cost of information production, the new information sources are in general
of lower quality. Proposition 4 and 5 contribute theoretical explanations
and insights to the literature of political polarization, as it suggests that the
Internet promotes biased processing behaviors or so called “cherry-picking”
on information, in the presence of information overload.

7 Aware DM

In this section, I show how the results in previous sections hold in the “aware”
case. Throughout the section, I assume that the preliminary information

28The average strength of signal s2 in environment A is bigger than that in environ-
ment B, i.e., EA(STR(s2)) > EB(STR(s2)).
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perfectly reveals the realization of the signal i.e., I focus on the case where
g is degenerate.

First, let me formally define the “aware” case. When the DM forms his
belief with his memory Mt, he rationally infers information about the signals
in periods {t′ | t′ /∈ Mt} from the fact that he had chosen to ignore them.
More specifically, he forms a conjecture σ̃t′ about his processing strategies in
those periods t′ and his posterior is given by the following Bayesian formulas:

ptL(Mt, (σ̃t′)
t−1
t′=1) =

(
1 +

pR
pL
∏

t′∈Mt
st′
∏

t′ /∈Mt
Rt′(σ̃t′)

)−1

;

ptR(Mt, (σ̃t′)
t−1
t′=1) = 1− PrL(Mt, (σ̃t′)

t−1
t′=1),

where Rt′(σ̃t′) is the ratio of the conjecture probability of ignoring a period t′

signal in state L over state R:

Rt′(σ̃t′) =

∫
(1σ̃t′ (st′ ,Mt′ )=I

)ft′L(st′) dst′∫
(1σ̃t′ (st′ ,Mt′ )=I

)ft′R(st′) dst′
.

On the other hand, when he decides whether to process or ignore a signal,
he knows that if he ignores it, his future selfs will rationally infer information
about the signal. The game is a multi-self dynamic game with incomplete
information. The solution concept used is therefore perfect Bayesian Nash
equilibrium, which requires the optimality of the processing strategies as well
as the consistency of the DM’s conjecture, i.e, σ̃t′ has to coincide with the
equilibrium processing strategy for all t′ = 1, · · · , T .

First, I analyze the case where T̄ > 1. As in section 5, I analyze the pro-
cessing strategy at period t, taking PrtMt

(a | ω) and 4t
st,Mt

(a | ω) as given.
Note that two functions do not specify how the DM forms his posterior
belief, and therefore encompass both the aware and unaware case. There-
fore, lemma 1 holds and the processing strategy of the DM is “asymmetric”.
Moreover, as the definitions of “awareness” and “unawareness” make no dif-
ferences when the DM processes all signals, proposition 1 also holds, i.e., the
DM processes almost all signals in equilibrium when T̄ ≥ T which is not true
when T̄ < T .

Now I turn to the case where T̄ = 1. As in the unaware case, it is without
loss of generality to further simply the model to T = 2. The equivalent
result is presented in appendix B. Different from the unaware case, there
is no guarantee that there exists a unique equilibrium in the aware case.
The following proposition proves the existence of a perfect Bayesian Nash
equilibrium.

Proposition 6. There exists a perfect Bayesian Nash equilibrium in the
aware case.
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The proof of the proposition is shown in the appendix. It follows clas-
sical fixed point arguments. Note that there may exist multiple equilibria
because of the self-fulfilling nature of the incomplete information game. If
the future selfs of the DM conjecture that his period t self ignores only belief-
challenging information, his period t self will have more incentive to ignore
belief-challenging information as he knows that his future selfs will rationally
infer information from it. On the other hand, he also has more incentive to
process belief-confirming information because otherwise, his future selfs will
mistakenly conjecture that he has received a belief-challenging information
in period t.

In the following, I show that the behavioral implications presented in
section 6 hold qualitatively for all equilibria in the aware case. First, I char-
acterize the equilibrium processing strategy, as in proposition 2.

Proposition 7. The equilibrium processing strategy of the aware DM is as
follows:

• he processes a belief confirming signal s1 > 1 if and only if

STR(s1) = s1 ≥ Φ+;

• he processes a pure noise or a weak belief-challenging signal s1 ∈ [uRpR
uLpL

, 1]
if and only if

s1 > Φ+;

• he processes a strong belief-challenging signal s1 <
uRpR
uLpL

if and only if

STR(s1) = s−1
1 > Φ−,

where Φ+ and Φ− are the fixed point of the following system of equa-
tions:

Φ+ =
uR pR
uL pL

STR

s2 ∈

(
0,

uR pR

uL pL
F1L(Φ+)− F1L(1/Φ−)

F1R(Φ+)− F1R(1/Φ−)

)

Φ− =
uL pL
uR pR

STR

s2 ∈

[
uR pR

uL pL
F1L(Φ+)− F1L(1/Φ−)

F1R(Φ+)− F1R(1/Φ−)

,∞

)
(12)

The proof is very similar to that of proposition 2 and is therefore skipped.
The result is illustrate in figure 3. Note that different from the unaware
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−∞ ∞
s1

1Φ− Φ+

Process Process

(a) Φ+ < 1.

−∞ ∞
s1

1Φ− Φ+

Process Process

(b) Φ+ ≥ 1

Figure 3: Equilibrium Information Processing Strategy: the DM processes s1

if and only if its realization falls on the shaded area.

case, the DM may process weak belief-challenging information (when Φ+ <
1). This difference is again driven by the self-fulfilling nature of the game:
suppose the DM’s period 2 self conjectures that his period 1 self ignores
strong belief-challenging signals but processes weak belief-challenging signals.
In the view of his period 1 self, he knows that if he ignores the weak belief-
challenging signals, his period 2 self will mistakenly infer that s1 strongly
supports state R. It gives the DM’s period 1 self incentive to process weak
belief-challenging signals and take action l, as otherwise he will be under-
confident about state L and switch to action r too easily in period 2.

Despite the slight difference, the behavior implications hold qualitatively.
First, the DM processes strong enough signals, but may ignore weak signals,
i.e., it resembles a preference for strong signals (although it is weaker than
the version in the unaware case). Moreover, by equation (12), the limits
of Φ+ and Φ− when uLpL/uRpR → +∞ are the same as in the unaware
case29. Hence, when uLpL/uRpR is large enough, Φ− > Φ+. The results are
summarized in the following proposition.

Proposition 8. The equilibrium processing strategy of the DM explains the
following behavioral phenomena:

1. (Preference for strong signals)
The DM processes a signal s1 if it is strong enough.

2. (Confirmation bias for confident individuals)

29That is, as shown in the proof of proposition 3,

lim
uLpL/uRpR→+∞

Φ+ = 1

lim
uLpL/uRpR→+∞

Φ− = +∞
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If the DM a priori believes strongly that state L is true, his processing
strategy exhibits confirmation bias, i.e., Φ− > Φ+ if pL is large enough.

3. (Wishful thinking if one state is much more desirable than
the others)
If state L is much more desirable than state R, the DM’s processing
strategy exhibits confirmation bias, i.e., Φ− > Φ+ if uL/uR is large
enough.

Note that the results hold in all equilibria in the aware case, i.e., all
equilibrium processing strategies of the DM have (qualitatively) the same
behavioral implications as in the unaware case.

Lastly, because there is an issue of multiple equilibria, the result of the
comparative analysis would not be as clean as in the unaware case. However,
the insights still hold true. As shown in equation (12), the thresholds which
characterize the equilibrium processing strategy depend only on a subset of
all realizations of s2. As in the unaware case, providing in average more infor-
mative signal to the DM does not necessarily increases the average strength
of a subset of all realizations of s2. Therefore, it could strengthen the confir-
mation bias of the DM.

8 Applications

In this section, I provide two simple examples, which relates to polariza-
tion and media competition in the presence of information overload. For
simplicity, I only look at the case where uL = uR = 1, T = 2 and T̄ = 1.
Moreover, as in the illustrative example, I assume s1 and s2 follow a symmet-
ric information structure with three possible realizations, denoted as 1/q, 1, q
where q > 1. The information structure is represented in the following table:

ftω(1/q) ftω(1) ftω(q)

ω = L λ(1 + q)−1 1− λ λq(1 + q)−1

ω = R λq(1 + q)−1 1− λ λ(1 + q)−1

Table 4: The distribution of st, t = 1, 2, given the state of the world.

An increase in λ represents a better access to valuable information while q
represents the strength/quality of the informative signals. In the illustrative
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example, λ = 0.3 and q = 2.5. Throughout the section, I focus on the
unaware case and assume g is degenerate.

8.1 Polarization

Many empirical studies have documented the phenomenon of political polar-
ization or stronger partisanship in the US in recent years. Bartels (1998) and
Bartels (2000) show that party identification has become a better predictor
of vote decisions and document a decline in volatility of election outcomes.
Moreover, the polarization is stronger among citizens who are more politically
engaged and partisan. (See Evans (2003), Baldassarri and Gelman (2008),
Abramowitz and Saunders (2008) and Hetherington (2009)). In contrast,
Gentzkow and Shapiro (2011) and Flaxman et al. (2016) show that online
media exposes individuals to belief-challenging information, although some-
what counter-intuitively, Flaxman et al. (2016) also find that online media
are associated to an increase in ideological distance between individuals.

In the following, I show how the model of limited cognitive ability pre-
sented in this paper sheds light on the wide range of phenomena docu-
mented in the literature of political polarization. Alice and Bob have op-
posite prior beliefs about the state of the world with obvious notations
paL = pbR = p > 1/2. I assume that the informative signals are strong enough,
i.e., q > p

1−p , which rules out the trivial case where the two individuals al-
ways take their a priori optimal action. Without loss of generality, I assume
that L is the true state.

I analyze three indicators of polarization:

1. the probability that both individuals take the same action, which is
denoted as Pconcensus. It is used to asses the intuition where more/better
information results in a higher probability of achieving consensus;

2. the probability that the individual takes his/her a priori optimal ac-
tion, which is denoted as P j

default, j = A,B. It measures how well the
a priori optimal action, or analogously party identification, predicts
voting decision, which is studied in the empirical literature of political
science;

3. the change in the distance between the beliefs of the two individuals
after receiving information. It corresponds to belief polarization and is
widely analyzed in the theoretical economics literature30.

30For example, see Baldassarri and Gelman (2008), Acemoglu et al. (2007).

32



λ

q

1

Process q;
ignore q−1.

Process q;
process q−1.

Figure 4: Alice’s processing strategy in period 1 as a function of λ and q,
fixing paL = p = 0.7.

Using proposition 2, the processing strategy of the two individuals are
characterized as follows:

Corollary 5. In period 1, both Alice and Bob process s1 if it is belief-
confirming and ignore it if it is pure noise. There exists some thresholds q−, λ−

and p− such that they process belief-challenging signal if and only if

• their prior is weak enough, i.e., p < p−, or;

• the informative signals are strong enough, i.e., q > q− , or;

• the access to information is poor enough, i.e., λ < λ−.

The proof is shown in the appendix and the result is illustrated in figure 4.
The first two points correspond to the result of “preference for strong sig-
nals” and “confirmation bias for confident individuals”, while the third point
corresponds to proposition 4 that better access to information strengthens
confirmation bias. The following proposition, illustrated in figure 5, presents
how a change in the access to information λ affects the first two indicators
of polarization, Pconsensus and P j

default.

Proposition 9. The probability that Alice and Bob take the same action,
Pconsensus, is non-monotonic in λ, i.e., it is increasing in the range [0, λ−)
and [λ−, 1], but exhibits a downward jump at λ = λ−.

Similarly, the probability that Alice/Bob takes her/his a priori optimal ac-
tion, P a

default or P b
default, is also non-monotonic in λ, i.e., both are decreasing

in λ in the range [0, λ−), but exhibit a upward jump at λ = λ−.
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Pconsensus

λλ−

(a) Pconsensus with p = 0.7 and Φ = 0.7.

Pdefault

λλ−

paL = 0.7

pbL = 0.3

(b) Pdefault with Φ = 0.7

Figure 5: The effect of λ on the first two indicators of polarization.

When there is better access to information, fixing the processing strategies
of the two individuals, the probability that they takes the optimal action l
increases. However, as shown in proposition 4 and corollary 5, a better
access to information promotes biased processing behavior, i.e., when λ is
big enough, the two individuals ignore belief-challenging information. As a
result, it could reduce the probability of achieving consensus and increase the
probability that the individuals take their a priori optimal action, despite the
availability of more valuable public information. The limitation in processing
ability hinders the benefits of information technology because individuals
strategically allocate their cognitive resources in the presence of information
overload.

Moreover, as individuals with different prior beliefs adopt different pro-
cessing strategies, their beliefs can be polarized even if they receive the same
sequence of information.

Corollary 6. When λ ≥ λ−, q ≤ q− or p ≥ p−, the distance between the
beliefs of Alice and Bob increases after receiving information, if the signals
in the two periods support different states. More specifically, if s1 > 1 > s2

or s2 > 1 > s1, Alice becomes more confident that state L is true while Bob
becomes more confident that state R is true.

Moreover, the probability that s1 > 1 > s2 or s2 > 1 > s1 increases in λ
and decreases in q.

Proof. Without loss of generality, I analyze the case where s1 = q and s2 =
1/q. When λ ≥ λ−, q ≤ q− or p ≥ p−, Alice and Bob process belief-confirming
information but ignore belief-challenging information in period 1. Therefore,
Alice processes s1 while Bob ignores s1 and processes s2. Their beliefs in
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period 3 are:

PraL(M a
3 ) = PraL(q) =

(
1 +

1− p
pq

)−1

> paL ;

PrbL(M b
3 ) = PrbL(q−1) =

(
1 +

p

(1− p)q−1

)−1

< pbL.

On the other hand, the probability that s1 > 1 > s2 or s2 > 1 > s1 equals

2λ2q(1 + q)−2,

which increases in λ and decreases in q.

Corollary 6 shows that even when the same sequence of information is
available for both individuals, the difference in their prior beliefs induces
different processing strategies and could polarize their beliefs. Moreover,
it happens only when there are sufficiently good access to information, or
when the prior beliefs of the two individuals are strong enough. In other
words, when the two individuals are partisan enough, a better access to
information gives rise to the possibility of polarization even under a setting
with public information. This result sheds light on the empirical evidence
that polarization is much stronger among individuals who are more partisan.

On the other hand, belief polarization happens when the information
available in the two periods are contradictory, i.e., s1 > 1 > s2 or s2 > 1 >
s1. Its probability increases when there is better access to information and
when the quality of information decreases. Arguably, the Internet contributes
to both. While it provides us with enormous amount of information, it
also facilitates the spread of rumors, fake news and low-quality information.
It is much easier to find contradictory information on the Internet, which
gives more incentive for individuals to selectively attend to belief-confirming
information and increases the probability of belief polarization.

8.2 Media Competition

In this second application, I study media strategy in the information era. In
order to introduce the role of the media, I present a variation of the main
model.

Formally, there is a continuum of media, indexed by i ∈ I . In pe-
riod t = 1, 2, each media i collects a signal sit about the state of the world
and publishes a piece of news mit. The signal sit collected by different me-
dia are independent and follow the distribution defined in the beginning of
the section, i.e., table 4. I assume that the media cannot post fake news
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and therefore either publishes the signal it receives or publishes nothing, i.e.,
mit ∈ {∅, sit}. To simplify the analysis, I assume that there are three types
of non-strategic (biased) media, {TL, TR, TN}, which publish according to the
following fixed rules:

• media {i | i ∈ TL} is biased towards state L: it publishes sit if it
supports state L (sit = q), but publishes ∅ if it receives sit ∈ {1/q, 1};

• media {i | i ∈ TR} has an opposite bias: it publishes a signal if it
supports state R (sit = 1/q) but publishes ∅ if it receives si ∈ {1, q};

• media {i | i ∈ TN} has no bias and publishes any informative signal it
receives, i.e., mit = si if and only if si 6= 1.

I assume that each media belongs to one and only one of the three types, and
the type of each media is a public information. The time line of the game is
as follows:
Period 1 The DM chooses which media he visits and processes the piece
of news mi1 posted by the media.
Period 2 If the media visited by the DM in period 1 published nothing,
he chooses again a media outlet to visit. Otherwise, he visits no media as
processing the information in period 1 takes time.
Period 3 The DM forms his belief with his memory of information and
takes an action l or r.

Note that this variation differs from the main model only in terms of
interpretation. Here the DM control his “diet” of information by choosing
which (biased or unbiased) media to visit, instead of choosing whether to
process or ignore the signals he receives. For example, if the DM visits
media i ∈ TL in period 1, it is as if he chooses to process the period 1 signal
if and only if it supports state L. By corollary 5, the DM visits the biased
media in period 1 if his prior belief is strong enough.

Corollary 7. Suppose the DM has prior belief (pL, 1− pL) where pL ≥ 1/2.
In period 1, there exists a threshold p− ∈ (1/2, 1) such that if pL ≥ p−, he
visits a media i where i ∈ TL; if pL ∈ (1/2, p−), he visits a media i where
i ∈ TN .

If the media visited by the DM in period 1 published nothing, he visits a
media i where i ∈ TN in period 2.

Now I turn to analyze the viewership of the three types of media. In the
society, individuals’ prior belief pL are distributed according to g(p) where
g(p) > 0 for all p ∈ (0, 1). Its c.d.f. is denoted by G. Define the viewership
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of media {i | i ∈ Tj} as the mass of individuals which visit media {i | i ∈ Tj}
across the two periods. Denote it by Vj for j = L,R,N . By corollary 7,

VL = 1−G(p−);

VR = G(1− p−);

VN = 2− VL − VR − λ.

That is, biased media attracts views from individuals with strong beliefs,
while unbiased media serves the others.

Corollary 8. When there are better access to information (λ increases),
the viewership of the biased media increases while the viewership of unbiased
media decreases, i.e., VL and VR increase with λ while VN decreases in λ.

On the other hand, when the quality of information increases (q in-
creases), the viewership of the biased media decreases while the viewership
of unbiased media increases, i.e. VL and VR decrease with q while VN in-
creases in q.

Proof. The result follows from corollary 5.

As shown in previous sections, a better access to information or an de-
crease in quality of information strengthens the confirmation bias of individ-
uals, which in turn increases the viewership of the biased media. The increase
in viewership increases the profitability of biased media and thus incentivize
media to adopt a biased strategy. This result sheds light on the emergence
of partisan media in recent years as the Internet promotes biased processing
behavior.

9 Conclusion

In conclusion, this paper investigates the information processing behavior of
a decision maker who can process only a subset of all available signals. I show
that this limitation in processing ability drives a number of well-documented
behavioral “biases”, including preference of strong signals, confirmation bias
for confident individuals and wishful thinking.

These “biases” has been attracting lots of attention in the behavioral
economics literature, in which many have analyzed how these “biases” affects
different market outcomes by introducing exogenous “biases” in traditional
economics models. In contrast, instead of taking the “biases” as they are,
this paper aims to improve our understanding by analyzing their cause. In
particular, I show that these “biases” are features of optimal strategies if we
take into account our limited cognitive ability as a human being.
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This approach allows us to analyze the “biases” as an outcome of an
optimization problem. It brings two advantages. First, not only that it
explains the existence of the “biases”, but using standard techniques of com-
parative statistics, it also explains the heterogeneity of the “biases” among
individuals with different personal characteristics or abilities, and how they
change in different situations faced by the individuals. Second, it allows us
to study how regulatory policies could play a role in changing these “biases”
and associated market outcomes.

Thus, looking forward and building from the insights of this paper, there
are two different ways to further develop the literature. First, in policy anal-
ysis with behavioral settings, modeling the “biases” as optimal strategies
allows us to take into account the indirect effects of policy interventions on
behaviors of individuals. It contributes to a more complete analysis than if
we take the “biases” as they are. For example (loosely speaking), if providing
more information to consumers strengthens their confirming bias, it might
back fire as it could weaken competition and increase prices. Second, more
experimental or empirical work has to be done to understand how “biases”
are formed and vary across different individuals or settings. It will give us a
better understanding on whether the “biases” do indeed relate to the limita-
tion in ability. And as an (early) answer to that question, in an experimental
study conducted by myself and co-authors, Goette et al. (2018), we find ev-
idences that a larger cognitive load strengthens confirmation bias in belief
formation.
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A Optimality of the processing strategy

Before I present the omitted proofs in the main text, I now discuss the op-
timality of the equilibrium processing strategy. In the main text, the DM
decides whether to process or ignore the signal given the preliminary infor-
mation about its realization. Therefore, the equilibrium processing strat-
egy σt(g,Mt) is optimal all any preliminary information g. Moreover, as it
maximizes the DM’s expected utility for all possible preliminary informa-
tion in each period, it also maximizes his expected ex-ante utility in every
period t, which gives the following result.

Proposition A.1. The processing strategy characterized by lemma 1 maxi-
mizes the expected utility of the DM’s period t self.

In the main text, I show that the optimal processing strategy explains
some well-documented behavioral phenomena in the presence of limitation
in processing ability. The optimality is achieved as the DM evaluates the
expected utility of processing and ignoring a signal given his knowledge of
the signal realization. In contrast, proposition A.1 suggests that the results
also hold if we consider strategies that maximize the DM’s expected utility
at the beginning of each period. This result is also useful for the proof for
the equivalence result, as shown in the next section.

B Equivalence Results

In this section, I present two equivalence results which allow me to simplify
the model with T > 2 and T̄ = 1 to a model with T = 2 and T̄ = 1. The
idea is to show that the equilibrium processing strategy at any period t < T
in a model with T > 2 is equivalent to the equilibrium processing strategy
at period 1 in the simplified model with T = 2. I first present the result in
the unaware case.

B.1 Unaware Case

Proposition B.1. There exists some p.d.f. (f̃2L, f̃2R) such that the following
two equilibrium strategies are equivalent:

1. the equilibrium processing strategy of the DM with belief (ptL, p
t
R) at

period t < T , under a setting with T > 2, T̄ = 1 and information
structure {(ft′L, ft′R)}Tt′=t+1;
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2. the equilibrium processing strategy of the DM with prior belief (pL, pR) =
(ptL, p

t
R) at period 1, under a setting with T = 2, T̄ = 1 and information

structure (f̃2L, f̃2R).

Proof. I prove the proposition under the assumption the preliminary infor-
mation perfectly reveals the signal realization. The proof is similar in the
general setting where g could be degenerate31. Note that with T̄ = 1, the
memory of the DM is always ∅ before processing a signal. Thus, I simply
use σt(st) to denote the processing strategy of the DM at period t. First
consider the first point where T > 2 and without loss of generality assume

uL p
t
L ≥ uR p

t
R. By lemma 1, the decision maker processes signal st ≥

uR p
t
R

uL p
t
L

if and only if

st ≥
uR p

t
R

uL p
t
L

4tst,Mt
(r | R)

4tst,Mt
(r | L)

=
uR p

t
R

uL p
t
L

∑T
k=t+1

[
1k>t+1

∏k−1
h=t+1

∫∞
0 (1σh(s′)=I)fhR(s′)ds′ + 1k=t+1

] ∫ uR ptR
uL pt

L
0 1σk(s)=P fkR(s) ds

∑T
k=t+1

[
1k>t+1

∏k−1
h=t+1

∫∞
0 (1σh(s′)=I)fhL(s′)ds′ + 1k=t+1

] ∫ uR pt
R

uL pt
L

0 1σk(s)=P fkL(s) ds

.

(B.1)

On the other hand, he processes signal st <
uR p

t
R

uL p
t
L

if and only if

s−1
t >

uL p
t
L

uR p
t
R

4tst,Mt
(l | L)

4tst,Mt
(l | R)

=
uL p

t
L

uR p
t
R

1−
∑T
k=t+1

[
1k>t+1

∏k−1
h=t+1

∫∞
0 (1σ∗

h
(s′)=I)fhL(s′)ds′ + 1k=t+1

] ∫ uR ptR
uL pt

L
0 1σ∗

k
(s)=P fkL(s) ds

1−
∑T
k=t+1

[
1k>t+1

∏k−1
h=t+1

∫∞
0 (1σ∗

h
(s′)=I)fhR(s′)ds′ + 1k=t+1

] ∫ uR pt
R

uL pt
L

0 1σ∗
k
(s)=P fkR(s) ds

.

(B.2)

Now consider point 2 where T = 2 with information structure (f̃2L, f̃2R)
and prior belief pL = ptL. By lemma 1, the decision maker processes sig-
nal s1 ≥ uR pR

uL pL
if

st ≥
uR pR
uL pL

F̃2R

(
uR pR
uL pL

)
F̃2L

(
uR pR
uL pL

) , (B.3)

31The proof is identical if I replace 1σh(s)=P by
∫
1σh(s)=P g(s) dg and 1σh(s)=I by∫

1σh(s)=Ig(s) dg.
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and he processes signal s1 <
uR pR
uL pL

if and only if

s−1
t >

uL pL
uR pR

1− F̃2L

(
uR pR
uL pL

)
1− F̃2R

(
uR pR
uL pL

) . (B.4)

By comparing equation (B.1) to equation (B.3), and equation (B.2) to equa-
tion (B.4), the equilibrium processing strategy in the two cases are equivalent
if and only if

F̃2L

(
uR pR
uL pL

)
=

T∑
k=t+1

[
1k>t+1

k−1∏
h=t+1

∫ ∞
0

(1σ∗
h
(s′)=I)fhLds

′ + 1k=t+1

]∫ uR ptR
uL pt

L

0

1σ∗
k
(s)=P fkL(s)ds;

F̃2R

(
uR pR
uL pL

)
=

T∑
k=t+1

[
1k>t+1

k−1∏
h=t+1

∫ ∞
0

(1σ∗
h
(s′)=I)fhRds

′ + 1k=t+1

]∫ uR ptR
uL pt

L

0

1σ∗
k
(s)=P fkR(s)ds.

(B.5)

To prove that there exists p.d.f. f̃2L and f̃2R that generates the c.d.f.s eval-
uated at (uR pR

uL pL
) with values defined in equation (B.5), it remains to prove

that

F̃2R

(
uR pR
uL pL

)
F̃2L

(
uR pR
uL pL

) >
uL pL
uR pR

.

Note that by definition, equation (B.5) implies that

F̃2R

(
uR pR
uL pL

)
F̃2L

(
uR pR
uL pL

) =
Prt+1

Mt+1
(r | R)

Prt+1
Mt+1

(r | L)
.

On the other hand, by proposition A.1, the expected utility of the DM at the
beginning of period t+ 1 is weakly greater than that if he chooses to process
all st:

uL pL(1− Prt+1
Mt+1

(r | L)) + uR pRPrt+1
Mt+1

(r | R)

≥uL pL
(

1− F(t+1)L

(uRpR
uLpL

))
+ uR pRF(t+1)R

(uRpR
uLpL

)
>uL pL,
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where the last inequality is implied by the fact receiving one signal always
improves expected utility, in comparison to receiving no signal. Rearranging
gives:

uR pRPrt+1
Mt+1

(r | R) > uL pLPrt+1
Mt+1

(r | L);

Prt+1
Mt+1

(r | R)

Prt+1
Mt+1

(r | L)
>
uL pL
uR pR

.

The results follow.

B.2 Aware Case

Proposition B.2. There exists some p.d.f. (f̃1L, f̃1R), (f̃2L, f̃2R) such that
the following two sets of equilibrium strategies are equivalent:

1. the set of equilibrium processing strategies of the DM with belief (ptL, p
t
R)

at period t < T , under a setting with T > 2, T̄ = 1 and information
structure {(ft′L, ft′R)}Tt′=t (assuming that it exists);

2. the set of equilibrium processing strategies of the DM with prior be-
lief (pL, pR) = (ptL, p

t
R) at period 1, under a setting with T = 2, T̄ = 1

and information structure (f̃1L, f̃1R),(f̃2L, f̃2R).

Proof. First consider point 1 where T > 2 and without loss of generality
assume uL p

t
L ≥ uR p

t
R. For simplicity and with a bit of abuse in notations,

define R∗t′ =
∏t′−1

t=1 Rt(σ̃t), which is the conjectured ratio of ignoring all the
previous signals in state L over than in state R. Note that at the beginning
of period t′ > t, the expected utility of action l over that of action r equals
uL p

t
LR∗

t′
uR p

t
R

. By lemma 1, the decision maker processes signal st ≥
uR p

t
R

uL p
t
L

if and

only if

st ≥
uR p

t
R

uL p
t
L

4tst,Mt
(r | R)

4tst,Mt
(r | L)

=
uR p

t
R

uL p
t
L

∑T
k=t+1

[
1k>t+1

∏k−1
h=t+1

∫∞
0 (1σh(s′)=I)fhR(s′)ds′ + 1k=t+1

] ∫ uR ptR
uL pt

L
R∗

k
0 1σk(s)=P fkR(s) ds

∑T
k=t+1

[
1k>t+1

∏k−1
h=t+1

∫∞
0 (1σh(s′)=I)fhL(s′)ds′ + 1k=t+1

] ∫ uR pt
R

uL pt
L

R∗
k

0 1σk(s)=P fkL(s) ds

.

(B.6)
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On the other hand, he processes signal st <
uR p

t
R

uL p
t
L

if and only if

s−1
t >

uL p
t
L

uR p
t
R

4tst,Mt
(l | L)

4tst,Mt
(l | R)

=
uL p

t
L

uR p
t
R

1−
∑T
k=t+1

[
1k>t+1

∏k−1
h=t+1

∫∞
0 (1σh(s′)=I)fhL(s′)ds′ + 1k=t+1

] ∫ uR ptR
uL pt

L
R∗

k
0 1σk(s)=P fkL(s) ds

1−
∑T
k=t+1

[
1k>t+1

∏k−1
h=t+1

∫∞
0 (1σh(s′)=I)fhR(s′)ds′ + 1k=t+1

] ∫ uR pt
R

uL pt
L

R∗
k

0 1σk(s)=P fkR(s) ds

.

(B.7)

The equilibrium strategy is given by the equation (B.6) and (B.7). Now

define s̃ = s
R∗k

R∗t+1
, note that

∑T
k=t+1

[∏k−1
h=t+1

∫∞
0

(1σh(s′)=I)fhR(s′)ds′
] ∫ uRptR

uLpt
L

R∗
k

0 1σk(s)=P fkR(s)ds

∑T
k=t+1

[∏k−1
h=t+1

∫∞
0

(1σh(s′)=I)fhL(s′)ds′
] ∫ uRpt

R
uLpt

L
R∗

k
0 1σk(s)=P fkL(s)ds

=

∑T
k=t+1

[∏k−1
h=t+1

∫∞
0

(1σh(s′)=I)fhR(s′)ds′
] ∫ uRptR

uLpt
L

R∗
t+1

0 1σk(s̃/R∗k)=P
fkR(s̃/R∗k)ds̃

∑T
k=t+1

[∏k−1
h=t+1

∫∞
0

(1σh(s′)=I)fhL(s′)ds′
] ∫ uRpt

R
uLpt

L
R∗

t+1

0 1σk(s̃/R∗k)=P
fkL(s̃/R∗k)ds̃

=

∫ uR ptR
uL pt

L
R∗

t+1

0

∑T
k=t+1

[∏k−1
h=t+1

∫∞
0

(1σh(s′)=I)fhR(s′)ds′
]
1σk(s̃/R∗k)=P

fkR(s̃/R∗k)ds̃

∫ uR pt
R

uL pt
L

R∗
t+1

0

∑T
k=t+1

[∏k−1
h=t+1

∫∞
0

(1σh(s′)=I)fhL(s′)ds′
]
1σk(s̃/R∗k)=P

fkL(s̃/R∗k)ds̃

.

Now I define (f̃2L, f̃2R) as follows and verify whether it is a probability distri-
bution function and whether there exists (f̃1L, f̃1R) such that the equilibrium
processing strategy of the DM in period t = 1 where T = 2 is equivalent to
that characterized in equation (B.6) and (B.7):

f̃2L(s̃) =
T∑

k=t+1

[
k−1∏
h=t+1

∫ ∞
0

(1σh(s′)=I)fhL(s′)ds′

]
1σk(s̃/R∗k)=PfkL(s̃/R∗k);

f̃2R(s̃) =
T∑

k=t+1

[
k−1∏
h=t+1

∫ ∞
0

(1σh(s′)=I)fhR(s′)ds′

]
1σk(s̃/R∗k)=PfkR(s̃/R∗k).

First, it is clear that
∫
f̃2L(s̃)ds̃ =

∫
f̃2R(s̃)ds̃ = 1 as the DM always processes
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one signal in equilibrium. On the other hand,

f̃2L(s̃)

f̃2R(s̃)
=

∑T
k=t+1

[∏k−1
h=t+1

∫∞
0

(1σh(s′)=I)fhL(s′)ds′
]
1σk(s̃/R∗k)=PfkL(s̃/R∗k)∑T

k=t+1

[∏k−1
h=t+1

∫∞
0

(1σh(s′)=I)fhR(s′)ds′
]
1σk(s̃/R∗k)=PfkR(s̃/R∗k)

=

∑T
k=t+1 R∗k

[∏k−1
h=t+1

∫∞
0

(1σh(s′)=I)fhR(s′)ds′
]
1σk(s̃/R∗k)=PfkL(s̃/R∗k)∑T

k=t+1

[∏k−1
h=t+1

∫∞
0

(1σh(s′)=I)fhR(s′)ds′
]
1σk(s̃/R∗k)=PfkR(s̃/R∗k)

=

∑T
k=t+1 s̃

[∏k−1
h=t+1

∫∞
0

(1σh(s′)=I)fhR(s′)ds′
]
1σk(s̃/R∗k)=PfkR(s̃/R∗k)∑T

k=t+1

[∏k−1
h=t+1

∫∞
0

(1σh(s′)=I)fhR(s′)ds′
]
1σk(s̃/R∗k)=PfkR(s̃/R∗k)

= s̃.

Denote (F̃2L, F̃2R) as the c.d.f. associated with (f̃2L, f̃2R). In point 2 where
T = 2, there exists (f̃1L, f̃1R) such that the DM processes signal s1 ≥ uR pR

uL pL
if and only if

s1 ≥
uR pR
uL pL

F̃2R

(
uR pR
uL pLR∗1

)
F̃2L

(
uR pR
uL pLR∗1

) ,
and processes signal st <

uR pR
uL pL

if and only if

s−1
1 ≥

uL pL
uR pR

1− F̃2L

(
uR pR
uL pLR∗1

)
1− F̃2R

(
uR pR
uL pLR∗1

) .
where (F̃1L, F̃1R) satisfy

R∗1 =

F̃1L

(
uR pR
uL pL

F̃2R

(
uR pR

uL pLR∗1

)
F̃2L

(
uR pR

uL pLR∗1

)
)
− F̃1L

(
uL pL
uR pR

1−F̃2L

(
uR pR

uL pLR∗1

)
1−F̃2R

(
uR pR

uL pLR∗1

)
)

F̃1R

(
uR pR
uL pL

F̃2R

(
uR pR

uL pLR∗1

)
F̃2L

(
uR pR

uL pLR∗1

)
)
− F̃1R

(
uL pL
uR pR

1−F̃2L

(
uR pR

uL pLR∗1

)
1−F̃2R

(
uR pR

uL pLR∗1

)
) .

The result follows.
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C Omitted Results and Proofs

C.1 Proof of Lemma 1

Proof. The lemma is implied by inequality (4) combined with

4t
st,Mt

(r | L) = −4st,Mt(l | L);

4t
st,Mt

(l | R) = −4st,Mt(r | R).

C.2 Proof of Proposition 1

Proof. I first consider the case where T̄ ≥ T , and prove that the best response
processing strategy is to process st for all st 6= 1 given that all his future selfs
process all st′ 6= 1 for t′ = t + 1, · · ·T . Denote the c.d.f. of st+1st+2 · · · sT in
state ω = L,R as F(t+1→T )ω, i.e.,

F(t+1→T )ω(s) =

∫ ∞
0

· · ·
∫ ∞
0

FTω

(
s

st+1 · · · sT−1

)( T−1∏
t′=t+1

ft′ω(st′)

)
dst+1 · · · dsT−1.

Notice that

f(t+1→T )L(s) =

∫ ∞
0

· · ·
∫ ∞
0

fTL

(
s

st+1 · · · sT−1

)( T−1∏
t′=t+1

ft′L(st′)

st′

)
dst+1 · · · dsT−1

= s

∫ ∞
0

· · ·
∫ ∞
0

fTR

(
s

st+1···sT−1

)
st+1 · · · sT−1

(
T−1∏
t′=t+1

ft′R(st′)

)
dst+1 · · · dsT−1

= sf(t+1→T )R(s).

Thus, I can treat the information conveyed by the future signals (st′)
T
t′=t+1

as one single signal with c.d.f. F(t+1→T )ω and p.d.f. f(t+1→T )ω defined above.
Now consider the case where st > 1, if the DM processes the signal, he

updates his belief and will choose action r if and only if st+1 · · · sT < uRpR
uLpLst

;
otherwise, he chooses action r if and only if st+1 · · · sT < uRpR

uLpL
. Thus,

4t
st,Mt

(l | L) = F(t+1→T )L(
uRpR
uLpL

)− F(t+1→T )L(
uRpR
uLpLst

) > 0

4t
st,Mt

(r | R) = F(t+1→T )R(
uRpR
uLpLst

)− F(t+1→T )R(
uRpR
uLpL

) < 0
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By lemma 1, the DM processes st > 1 as

uRpR
uLpL

×
F(t+1→T )R( uRpR

uLpLst
)− F(t+1→T )R(uRpR

uLpL
)

F(t+1→T )L( uRpR
uLpLst

)− F(t+1→T )L(uRpR
uLpL

)

=
uRpR
uLpL

× STR
(
st+1 · · · sT ∈ [

uRpR
uLpLst

,
uRpR
uLpL

]

)
<
uRpR
uLpL

× uLpLst
uRpR

= st.

Similarly, the DM processes st < 1 as,

uLpL
uRpR

×
4t
st,Mt

(l | L)

4t
st,Mt

(l | R)

=
uLpL
uRpR

×
F(t+1→T )L(uRpR

uLpL
)− F(t+1→T )L( uRpR

uLpLst
)

F(t+1→T )R(uRpR
uLpL

)− F(t+1→T )R( uRpR
uLpLst

)

<
uLpL
uRpR

× uRpR
uLpLst

= s−1
t .

I the case where T̄ < T , proposition 2 implies that in the continuation
game where T̄ = 1, the DM ignores signals in [1− ε, 1 + ε] with small enough
ε. The result follows.

C.3 Proof of Proposition 2

Proof. By lemma 1, the decision maker processes s1 ≥ uR pR
uL pL

if and only if

s1 ≥
uR pR
uL pL

F2R

(
uR pR
uL pL

)
F2L

(
uR pR
uL pL

) =
uR pR
uL pL

× STR

(
s2 ∈

(
0,
uR pR
uL pL

))
> 1. (C.1)

The last inequality follows from the fact that the strength of the set of signals
s2 ∈ (0, uR pR

uL pL
) is higher than the strength of s2 = uR pR

uL pL
, i.e.,

F2R

(
uR pR
uL pL

)
F2L

(
uR pR
uL pL

) >

f2R

(
uR pR
uL pL

)
f2L

(
uR pR
uL pL

) =
uL pL
uR pR

.

The last inequality of equation (C.1) also implies that the DM ignores all
weak belief-challenging signals s1 ∈ [uR pR

uL pL
, 1].
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On the other hand, the DM processes s1 <
uR pR
uL pL

if and only if

s−1
1 >

uL pL
uR pR

1− F2L

(
uR pR
uL pL

)
1− F2R

(
uR pR
uL pL

) =
uL pL
uR pR

×STR

(
s2 ∈

[uR pR
uL pL

,∞
))

>
uL pL
uR pR

.

(C.2)
The last inequality is implied by

F2R

(
uR pR
uL pL

)
> F2L

(
uR pR
uL pL

)
;

1− F2L

(
uR pR
uL pL

)
> 1− F2R

(
uR pR
uL pL

)
;

STR

(
s2 ∈

[uR pR
uL pL

,∞
))

> 1.

Combining inequalities (C.1) and (C.2) proves the results.

C.4 Proof of Proposition 3

Proof. Point 1 of the proposition is directly implied by the proposition 2.
For point 2, by proposition 2, Φ− > Φ+ if and only if:

u2
L p

2
L

u2
R p

2
R

×

(
1− F2L

(uR pR
uL pL

))
F2L

(uR pR
uL pL

)
(

1− F2R

(uR pR
uL pL

))
F2R

(uR pR
uL pL

) > 1.

First, note that

lim
uL pL/uR pR→∞

F2L

(
uR pR
uL pL

)
F2R

(
uR pR
uL pL

) = lim
uL pL/uR pR→∞

f2L

(
uR pR
uL pL

)
f2R

(
uR pR
uL pL

)
= lim

uL pL/uR pR→∞

uR pR
uL pL

51



which implies

lim
uL pL/uR pR→∞

uL pLF2L

(
uR pR
uL pL

)
uR pRF2R

(
uR pR
uL pL

) = 1 > 0;

lim
uL pL/uR pR→∞

u2
L p

2
L

u2
R p

2
R

×

(
1− F2L

(uR pR
uL pL

))
F2L

(uR pR
uL pL

)
(

1− F2R

(uR pR
uL pL

))
F2R

(uR pR
uL pL

) = +∞ > 0.

The result follows given the continuity of Φ− and Φ+ in pL.

C.5 Proof of Corollary 2

Proof. I prove the corollary at the limit where pL → 1. Follow from the proof
of proposition 3,

lim
uL pL/uR pR→∞

Φ+ = 1;

lim
uL pL/uR pR→∞

Φ− = +∞.

It is then obvious that as pL → 1, for all s > 1,

UP (s,M1) > UI(s,M1)

UP (s−1,M1) < UI(s
−1,M1).

The result then follows from corollary 1.

C.6 Proof of Corollary 3

Proof. I prove the corollary at the limit where pL → 1. Follow from the proof
of proposition 3,

lim
uL pL/uR pR→∞

Φ+ = 1;

lim
uL pL/uR pR→∞

Φ− = +∞.

Now suppose Φ+ → 1 and Φ− → +∞. The probability that the DM chooses
action r converges to

pLF1L(1)F2L

(
uR pR
uL pL

)
+ pRF1R(1)F2R

(
uR pR
uL pL

)
. (C.3)
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On the other hand, if the DM can process both signals, the probability that
he chooses action r equals

pL

∫ ∞
0

F2L

(
uR pR
uL pLs

)
f1L(s)ds+ pR

∫ ∞
0

F2R

(
uR pR
uL pLs

)
f1R(s)ds. (C.4)

Equation (C.3) is strictly smaller than equation (C.4) as for ω = L and R,∫ ∞
0

F2ω

(
uR pR
uL pLs

)
f1ω(s)ds >

∫ 1

0

F2ω

(
uR pR
uL pLs

)
f1ω(s)ds

>

∫ 1

0

F2ω

(
uR pR
uL pL

)
f1ω(s)ds

= F2ω

(
uR pR
uL pL

)
F1ω(1).

The result follows by the continuity of the probability of choosing action r
in Φ+ and Φ−.

C.7 Reverse Wishful Thinking

To illustrate reverse wishful thinking, I normalize the utility function as
follows:

u(r | L) = −uL < 0;

u(r | R) = uR > 0;

u(l | R) = u(l | L) = 0.

State L is the undesirable outcome which yields weakly negative utility while
state R yields weakly positive utility. By analogy to the definition of wishful
thinking, the processing strategy of the DM exhibits reverse wishful think-
ing when Φ+ < Φ+. That is, he processes a larger set of information that
supports the undesirable state, compare to that supports the desirable state.
The following result hold as the

Corollary 9 (Reverse Wishful thinking). When state L is very unde-
sirable, the equilibrium processing strategy of the DM exhibits reverse wishful
thinking, i.e., Φ− > Φ+ when | − uL/uR| is big enough.

53



C.8 Proof of Proposition 4

Proof. By proposition 2,

Φ+
A =

uR pR
uL pL

×
F2R

(
uR pR
uL pL

)
F2L

(
uR pR
uL pL

)
= Φ+

B

On the other hand,

Φ−A =
uL pL
uR pR

×
1− λA + λA

(
1− F2L

(uR pR
uL pL

))
1− λA + λA

(
1− F2R

(uR pR
uL pL

))

>
uL pL
uR pR

×
1− λB + λB

(
1− F2L

(uR pR
uL pL

))
1− λB + λB

(
1− F2R

(uR pR
uL pL

))
= Φ−B

(C.5)

where the second inequality of equation (C.5) follows from the fact that

1− F2L

(
uRpR
uLpL

)
> 1− F2R

(
uRpR
uLpL

)
.

C.9 Proof of Proposition 5

Proof. First, by proposition 2,

Φ−A =
uL pL
uR pR

1− λ− δ + λ

(
1− FB

2L

(uR pR
uL pL

))
+ δ

(
1− FA

2L

(uR pR
uL pL

))
1− λ− δ + λ

(
1− FB

2R

(uR pR
uL pL

))
+ δ

(
1− FA

2R

(uR pR
uL pL

))

>
uL pL
uR pR

1− λ+ λ

(
1− FB

2L

(uR pR
uL pL

))
1− λ+ λ

(
1− FB

2R

(uR pR
uL pL

))
= Φ−B

(C.6)
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where the second inequality of equation (C.6) follows from the fact that

1− FA
2L

(
uR pR
uL pL

)
> 1− FA

2R

(
uR pR
uL pL

)
.

Now I compare Φ+
A and Φ+

B. By proposition 2,

Φ+
A =

uR pR
uL pL

λFB
2R

(
uR pR
uL pL

)
+ δFA

2R

(
uR pR
uL pL

)
λFB

2L

(
uR pR
uL pL

)
+ δFA

2L

(
uR pR
uL pL

) ;

Φ+
B =

uR pR
uL pL

λFB
2R

(
uR pR
uL pL

)
λFB

2L

(
uR pR
uL pL

) .
Therefore, Φ+

A ≤ Φ+
B if and only if

FA
2R

(
uR pR
uL pL

)
FA

2L

(
uR pR
uL pL

) ≤ FB
2R

(
uR pR
uL pL

)
FB

2L

(
uR pR
uL pL

) .

C.10 Proof of Proposition 6

Proof. By proposition B.2, it is sufficient to prove that there exists a per-
fect Bayesian Nash equilibrium for T = 2. First note that the equilibrium
strategy is a threshold strategy, with thresholds (Φ+,Φ−). Denote R1 as

R1 =
F1L(Φ+)− F1L(1/Φ−)

F1R(Φ+)− F1R(1/Φ−)
.

As Φ+ ≥ uR pR
uL pL

and Φ− > uL pL
uR pR

, R1 ∈
(
F1L(1)
F1R(1)

, 1−F1L(1)
1−F1R(1)

)
. Given the optimality

of the processing strategy, the perfect Bayesian Nash equilibrium is a fixed
point of the following equation:

R1 =

F1L

uR pR
uL pL

F2R

(
uR pR

uL pLR1

)
F2L

(
uR pR

uL pLR1

)
− F1L

uR pR
uL pL

1− F2R

(
uR pR

uL pLR1

)
1− F2L

(
uR pR

uL pLR1

)


F1R

uR pR
uL pL

F2R

(
uR pR

uL pLR1

)
F2L

(
uR pR

uL pLR1

)
− F1R

uR pR
uL pL

1− F2R

(
uR pR

uL pLR1

)
1− F2L

(
uR pR

uL pLR1

)
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Denote the equation as R1 = ψ(R1). The mapping ψ is continuous mapping

from
[
F1L(1)
F1R(1)

, 1−F1L(1)
1−F1R(1)

]
to itself, which is a convex and compact set. By the

Brouwer’s fixed point theorem, there exists a fixed point of the equation

which belongs to the set
[
F1L(1)
F1R(1)

, 1−F1L(1)
1−F1R(1)

]
. As the two end points F1L(1)

F1R(1)
and

1−F1L(1)
1−F1R(1)

are not a fix point of the equation, there exists a fixed point R∗1 such
that

R∗1 ∈
(
F1L(1)

F1R(1)
,

1− F1L(1)

1− F1R(1)

)
;

R∗1 = ψ(R∗1).

C.11 Proof of Corollary 5

Proof. Without loss of generality, I analyze only the processing strategy of
Alice. First by corollary 2, Alice processes signal q because

q >
1− p
p
× q,

while she processes signal q−1 if and only if

q >
p

1− p
× 1− λ+ λq(1 + q)−1

1− λ+ λ(1 + q)−1
=

p

1− p
× 1− λ+ q

1 + q(1− λ)
.

Define F (p, q, λ) = q − p

1− p
× 1− λ+ q

1 + q(1− λ)
. Its first derivatives w.r.t. p

and λ are

∂F

∂p
= − 1

(1− p)2

1− λ+ q

1 + q(1− λ)
< 0;

∂F

∂λ
= − p

1− p
q2 − 1

(1 + q(1− λ))2
< 0.

Moreover,

F (0, q, λ) = q > 0 > lim
(p/1−p)→q

F (p, q, λ) = q
λ(1− q)

1 + q(1− λ)
;

F (p, q, 0) = q − p

1− p
> 0 > F (p, q, 1) = q(1− p

1− p
).
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Therefore, there exists p− and λ− such that F > 0 if and only if p < p− and
if and only if λ < λ−. It remains to prove point 2 of the corollary. First, F
is strictly convex in q

∂2F

∂q2
=

p

1− p
2λ(1− λ)(2− λ)

(1 + q(1− λ))3
> 0,

and the two roots of F (q) = 0 are

−(1− p

1− p
)±

√
(1− p

1− p
)2 + 4(1− λ)2

p

1− p
2(1− λ)

. (C.7)

One of the two roots is negative, which contradicts the fact that q > 1.
Hence, there exists a q−, which is the positive root defined in equation (C.7),
such that F > 0 if and only if q > q−.

C.12 Proof of Proposition 9

Proof. When λ < λ−, Alice and Bob processes both belief-confirming and
belief-challenging information. They take the same action if and only if at
least one of s1 and s2 is informative.

Pconcensus = 1− (1− λ)2 = λ(2− λ). (C.8)

On the other hand, when λ ≥ λ−, they ignore belief-challenging signals in
period 1. Therefore, Alice and Bob take the same action if and only if the
signals in both periods support the same state, or if s1 is pure noise while s2

is not.
Pconcensus = λ2(q2(1 + q)−2 + (1 + q)−2) + λ(1− λ) (C.9)

Similarly, the probability that Alice/Bob takes her/his a priori optimal
action follows:

P a
default =

{
1− λ(1 + q)−1 − λ(1− λ)(1 + q)−1 if λ < λ−

1− λ2(1 + q)−2 − λ(1− λ)(1 + q)−1 if λ ≥ λ−

P b
default =

{
1− λq(1 + q)−1 − λ(1− λ)q(1 + q)−1 if λ < λ−

1− λ2q2(1 + q)−2 − λ(1− λ)q(1 + q)−1 if λ ≥ λ−

(C.10)

First, I prove the first part of the proposition. First, notice that equa-
tion (C.8) is increasing and convex in λ. On the other hand, the first and
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second derivative of equation (C.9) w.r.t. λ are given by:

∂Pconcensus

∂λ
= 1− 2λ(1− (q2(1 + q)−2 + (1 + q)2)) > 0

∂P 2
concensus

∂2λ
= −2(1− (q2(1 + q)−2 + (1 + q)2)) < 0

respectively. The two inequalities are implied by the fact that q > 1 and
λ ∈ [0, 1].32 Secondly, equation (C.9) is clearly smaller than equation (C.8)
for any given λ, which implies that there is a downward jump at λ = λ̃.

Now I move on to the proof for P j
default, j = a, b. First, part 1 is implied

by the fact that both functions

P a
default = 1− λ(1 + q)−1 − λ(1− λ)(1 + q)−1

P b
default = 1− λq(1 + q)−1 − λ(1− λ)q(1 + q)−1

decrease in λ as λ(2 − λ) increases in λ for λ ∈ [0, 1]. On the other hand,
from equation (C.10), it is obvious that there is a upward jump at λ = λ̃.

32First, [q2(1+ q)−2 +(1+ q)−2] ∈ (1/2, 1) as it is increasing in q. Therefore, 1− (q2(1+
q)−2 + (1 + q)−2) ∈ (0, 1/2). Combined with the fact that λ ∈ [0, 1], it implies the first
inequality.
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