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We focus our analysis on local polynomial estimation of nonparametric regressions with conditional

heteroskedasticity in a time series setting. We introduce a weighted local polynomial regression

smoother that takes account of the dynamic heteroskedasticity. We show that, although traditionally

it is adviced that one should not weight for heteroskedasticity in nonparametric regressions, in many
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1 Introduction

In this paper we consider the nonparametric regression model

yt = m(Xt) + ut, t = 1, . . . , T, (1)

where the function m(·) is assumed to be unknown but smooth, while ut is an error process that is mean
zero given the covariate Xt ∈ Rd (which may include lagged values of yt). The parameters of interest
include m(x) and partial derivatives of m at x. A popular estimator of m(x) is the local polynomial

regression estimator, which minimizes a localized least squares criterion, see, e.g. Fan and Gijbels (1996).

When the error term has some additional structure beyond the conditional moment restriction, it

may be possible to improve the estimation of m by taking that structure into account. We consider the

regression model (1) where the errors are heteroskedastic, i.e.,

ut = σtεt, (2)

where σ2t = var (ut|Ft−1), while εt and ε2t − 1 are stationary martingale difference sequences (m.d.s.) i.e.,

E(εt|Ft−1) = 0, and E(ε2t − 1|Ft−1) = 0. Here, Ft−1 is the information set that contains Xt and additional

information such as lags of (Xt, yt) or possibly other covariates. The specific content of Ft−1 may vary
over different models, and more detail will be given in our later discussion on specific models. We do not

assume that the error term is independent of the covariate. As will be more clear later in this paper, it is

the information in addition to Xt that brings effi ciency improvement. In the special case where Ft−1 only
contains information about Xt, the conditional variance can be written as

σt = σ(Xt), (3)

for some measurable function σ(·). In this case, it is not possible to improve the asymptotic effi ciency (in the
sense of Tibshirani (1984)) of the local linear least squares estimator of m, which has variance proportional

to σ2(x)
fX(x)

, where fX(x) is the covariate density. This is in contrast to the case of linear regression where the

Gauss-Markov theorem assures that GLS improves on OLS except in certain pathological cases, Amemiya

(1985, Chapter 6), Robinson (1987). This is because, locally to Xt = x the process yt is homoskedastic.

For this reason, the traditional advice in the literature is that one should not weight for heteroskedasticity

in nonparametric regressions, see, e.g., Jones (1993).

However, in many applications, (3) is not satisfied, and var(ut|Xt) 6= var (ut|Ft−1) = σ2t . The most

widely used class of models in economics and finance are the ARCH/GARCH models. In this case, σ2t is

characterized by a parametric model that does not satisfy (3). For example, suppose that σ2t follows a

GARCH(1,1) process described by unknown parameters θ = (ω, β, γ)
ᵀ
:

σ2t = ω + βσ2t−1 + γu2t−1. (4)
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Since Xt ∈ Ft−1, then E(ut|Xt) = 0 so that

E(yt|Ft−1) = E(yt|Xt) = m(Xt) and σ2t = var(yt|Ft−1). (5)

However, E(u2t |Xt) 6= σ2t . We argue in this paper that this type heteroskedasticity will allow effi ciency

improvements to be made by GLS weighting. In general, if there are variables in Ft−1 that affect the
volatility but have no influence on the conditional mean, then additional heteroskedasticity can be found

even after fixing the value of Xt, and effi ciency gain can be achieved by GLS weighting. In essence, we just

need some kind of exclusion restriction that the variables driving the variance are not all present in the

conditional mean. We show that one can improve effi ciency of the conditional mean estimation by taking

into account the volatility structure we have described above.

The analysis and proposed approach in this paper actually applies to a wide range of models. A

growingly popular approach to volatility modeling is to include additional information either from high

frequency data (e.g., Realized Volatility) or from option prices (e.g., the VIX). This case also fits into our

framework where we have expanded the definition of Ft−1 to include these variables but excluded them
from having an influence on the conditional mean. Another case of interest is where the variance is deter-

ministic, perhaps nonparametric, say σ2t = σ2(t/T ) for some smooth function σ2(·), Starica (2003) (which
is consistent with the widely used rolling window analysis). In this case, E(u2t |Xt) = E(u2t ) = σ2t , and the

covariate has no effect on the evolution of the variance.1 If Xt = t/T , but σ2t is a dynamic heteroskedastic

process, we also generally get effi ciency improvements. If Xt is a stochastic process independent of ut,

then it is also independent of σ2t , we in any case get effi ciency gains.

We examine the effect of weighting on nonparametric regressions in this paper. We point to cases where

an effi ciency gain can be achieved via weighting. and where they cannot. In particular, an effi ciency gain

can be achieved when the weighting is determined by the correctly specified error volatility structure. In

that case the "GLS weighted" least squares smoothing method is shown to have a smaller variance than

the variance of the unweighted estimator and yet the bias of the two estimators is the same. In practice,

we have to estimate the error variance. We show that this feasible estimator can achieve the same limiting

variance and improves the pointwise mean squared error relative to the unweighted estimator. We also

propose consistent confidence intervals based on our procedures, which will thereby be shorter than the

corresponding ones from the unweighted procedures.

In some applications the effi ciency gains may be important. For example, in nonparametrically pre-

dicting stock returns one finds that the conditional mean is not very well estimated, but in any case,

the memory is relatively short. By contrast, the conditional variance has a very strong nonlinear shape

with substantial dynamics or memory (see, e.g. Engle 1982, Engle and Rangel 2008). This suggests that

1In this case also, one can say that there are variables (time) that affect volatility but do not affect the covariate (except

in the special case where also Xt = t/T ).
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conditioning on the variables we include in the mean equation, the variance is still stochastic and may

vary substantially such that our GLS procedure will afford substantial effi ciency gains in the estimation

problem. This may permit shorter confidence intervals and more accurate hypothesis testing. Unfortu-

nately, this effi ciency improvement need not translate into improved forecasting, as is well known, Diebold

and Nason (1990).

Literature Review. There is an extensive literature on effi cient estimation of nonparametric models.
The simplest case is where the error term is independent of the covariate and is i.i.d. with known density

f . This case was considered in Tibshirani’s (1984 Phd Thesis) where he introduced the local likelihood

estimator that replaces the local least squares objective function. The local likelihood estimator has lower

large sample variance than the least-squares based local polynomial estimator (and indeed than any other

asymptotically normal estimator as follows by the classical Cramér-Rao inequality); under some conditions,

the bias of the local likelihood estimator is the same as the bias of the simple local polynomial estimator,

so that the local likelihood estimator has lower pointwise mean squared error (MSE). Linton and Xiao

(2007) showed that one could achieve the same performance asymptotically, even when f is unknown, by

a two step procedure based on estimation of the error density using kernel density techniques. Avramidis

(2016) extended this work to cover the estimation of a conditional variance function in the presence of an

unknown mean. Linton, Mammen, Nielsen, and Van Keilegom (2011) consider the case with filtered data,

i.e., under repeated left truncation and or right censoring, and established effi cient procedures. Wang

and Yao (2012) considered the single index model case where m(x) = g(β
ᵀ
x). Jin, Su, and Xiao (2015)

considered the case ut = σ(Xt)εt where εt are i.i.d. and independent of Xt with unknown density f. The

effi ciency gain here is coming from the shape of the error density that has to be estimated. Chen, Wang,

and Yao (2015) have considered adaptive estimation of variable coeffi cient models where essentially m(Xt)

is replaced by r(zt)Xt, where r is an unknown function of the observable quantity zt. Meanwhile, Yao

(2013) has proposed an EM algorithm for implementing the adaptive estimation method. A separate line

of work has considered the problem where ut is serially correlated, i.e., A(L)ut = εt, where εt is i.i.d. and

independent of Xt with mean zero, while A(L) =
∑∞

j=1 ajL
j is a lag polynomial. Xiao, Linton, Carroll,

and Mammen (2003) proposed a more effi cient estimator of m based on a prewhitening transformation

Yt−A(L)(Yt−m(Xt)) = m(Xt)+εt, where the right hand side is now a standard nonparametric regression

with whitened errors (and replacing the unknown quantities on the left hand side by preliminary estimates

ofm and the parameters of A(L)). The transform implicitly takes account of the autocorrelation structure.

They obtained an improvement in terms of variance over the usual kernel smoothers. Linton and Mammen

(2005) considered an extension of this model and proposed likelihood based procedures that extended this

and showed how one can obtain even higher effi ciency; see also Liu, Chen, and Yao (2010), Linton and

Wang (2016) and Geller and Neumann (2018). Su and Ullah (2006) constructed effi cient estimators in the

case where the errors are nonlinearly autodependent. In a panel setting, there are a number of papers that
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propose more effi cient estimators of nonparametric regression curves using weighting schemes, following

Wang (2003). Henderson, Carroll, and Li (2008) extend this work to allow for fixed effects as well, see

also Martins-Filho and Feng Yao (2009). To summarize, both parametric and nonparametric structures

can be used to improve effi ciency of the estimation of m(x).

The rest of this paper is organized as follows: A general discussion on weighted nonparametric regression

is given in Section 2. The proposed estimator and leading special cases are studied in Section 3. Section

4 discusses some further issues. Bandwidth selection is considered in Section 5. Some Monte Carlo

experiments are reported in Section 6. Section 7 concludes. A supplementary appendix contains some

preliminary technical results, details of proofs, an application to the variance ratio test, and some potential

extensions.

The basic result of our paper applies to different types of nonparametric estimators. We focus on the

local polynomial estimator due to its wide applicability and good properties on the boundary, see, e.g.,

Fan (1992), and Fan and Gijbels (1996) for discussion on the attractive properties of local polynomials

regression. For comparison purpose, we will briefly discuss the Nadaraya-Watson regression in Section 4

and further investigate the impact of weighting on biases. Without loss of generality and for simplicity of

derivation, we assume that d = 1 in this paper but our result can be easily extended to the general case

of multivariate Xt.

2 Weighted Nonparametric Regressions

In this section we consider a general weighted pth local polynomial regression based on an observed weight-

ing scheme {λt}. Suppose that we observe {(Yt, Xt, λt)}Tt=1 , where λt is a (so far unspecified) weighting
scheme, and consider the general weighted local polynomial regression based on {λt}.
Let β̂λ;p(x) = (β̂λ0(x), . . . , β̂λp(x))

ᵀ
minimize the weighted least squares objective function

QT (β;x,K, h, {λt}) =

T∑
t=1

λtK

(
x−Xt

h

)(
Yt −

∑
0≤j≤p

βj((Xt − x)/h)j

)2
(6)

with respect to β =(β0, . . . , βp)
ᵀ
. Then, with wt = λtK

(
x−Xt
h

)
and Xt = (1, (Xt − x)/h, . . . , ((Xt −

x)/h)p)
ᵀ
, we have

β̂λ;p(x) =

[
T∑
t=1

wtXtX
ᵀ
t

]−1 T∑
t=1

wtXtYt, (7)

provided the matrix
∑T

t=1wtXtX
ᵀ
t is of full rank.

The special case with λt = 1 corresponds to the standard local polynomial estimator, Fan and Gijbels

(1996). In particular, the local polynomial estimator of m(x) is given by the component β̂λ0(x) of the
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estimator β̂λ=1;p(x), and we denote this estimator by m̂LP (x). In the leading case when p = 1, this is the

local linear regression. Its asymptotic properties are well known.

We next present the asymptotic properties of the weighted estimator in the case where p is an odd

integer. We make the following regularity assumptions on the model, the weighting scheme, and the kernel

function and bandwidth.

Assumption A1: The data are generated by (1) and (2).
Assumption A2: E(εt|Ft−1) = 0, and E(ε2t − 1|Ft−1) = 0, where Ft−1 = σ(Xt−i, i ≥ 0; yt−j, j ≥ 1; λt).

Assumption A3: The density fX (·) of Xt is uniformly bounded and is bounded away from zero on its

support X , a compact subset of R. The joint densities of (Xt, Xt+`), (Xt, Xt+`, Xt+j), (Xt, Xt+`, Xt+j, Xt+s)

are continuous and bounded. The functions fX(·) and m(·) are (p+ 1) times partially differentiable. The

derivatives f (r)X (x) = drf (x) /dxr and m(r)(x) = drm (x) /dxr are bounded and uniformly continuous on

X , and there exists C1 <∞ such that

|f (r)X (u)− f (r)X (v)| ≤ C2||u− v||,

|m(r)(u)−m(r)(v)| ≤ C1||u− v||.

Assumption A4: The process {Wt} is stationary and absolutely regular, where Wt = (Xt, σt, λt). That

is,

%(τ) = sup
s
E

{
sup

A∈G∞s+τ
|P (A|Gs−∞)− P (A)|

}
→ 0, as τ →∞,

where Gts is the σ-field generated by {Wj : j = s, . . . , t}. In addition, there is a positive δ such that Wt has

finite 2+δ moments, and for some δ > δ′ > 0, %(τ) = O(τ−(2+δ
′)/δ′). The conditional density of {εt, σt,

λt}, fεt,σt,λt|Xt(ε, σ, λ|x) is uniformly bounded and has continuous partial derivatives.

Assumption A5: The kernel K has support [−1, 1] and is symmetric about zero. The functions Hj(u) =

ujK(u), for all j with 0 ≤ |j| ≤ 2p+1, are Lipschitz continuous, i.e., there exists a positive finite constant

C such that |Hj(u)−Hj(v)| ≤ C||u− v||.
Assumption A6: As T →∞, h→ 0 and Th→∞.
Most of these assumptions are standard in local polynomial nonparametric estimation, Fan and Gijbels

(1996). These conditions are useful in our technical development and, no doubt some of them could be

replaced by a range of similar assumptions. In Assumption A2 we allow for the case that λt is not a

measurable function of {Xt−i, i ≥ 0; yt−j, j ≥ 1}; in fact it suffi ces for consistency here that E(ut|Xt, λt) =

0. Assumption A3 facilitates the Taylor expansions of the regression function and density function to the

required order. Assumption A4 assumes that the data is weakly dependent so that a LLN and CLT applies.

Assumption A5 for the kernel function and Assumption A6 for the bandwidth expansion are also quite
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standard in nonparametric estimation. We introduce the following notations:

M(K) =

 µ0(K) · · · µp(K)
...

...

µp(K) · · · µ2p(K)

 , Γ(K) =

 ν0(K) · · · νp(K)
...

...

νp(K) · · · ν2p(K)

 ,
B(K) = [µp+1(K), · · ·, µ2p+1(K)]

ᵀ
, γ(K) = M−1(K)B(K) ; ω(K) = M(K)−1Γ(K)M(K)−1,

bp(x) =
m(p+1)(x)

(p+ 1)!
; δλ (x) =

E [λ2tσ
2
t |Xt = x]

[E (λt|Xt = x)]2
,

where µj(K) =
∫∞
−∞ u

jK(u)du and νj(K) =
∫∞
−∞ u

jK2(u)du. Let γj(K) = e
ᵀ
jγ(K) and ωjk(K) =

e>j ω(K)ek, where ej is the p+1 elementary vector with 1 in the jth position and 0 elsewhere. In the univari-

ate local linear case ω11(K) = ν0(K). Let β0(x) = (β00(x), . . . , β0p(x))
ᵀ
, where β0j(x) = (hj/j!)m(j) (x) .

Theorem 1. Suppose that Assumptions A1 - A6 hold. Then, as T →∞,
√
Th
(
β̂λ;p(x)− β0(x)−hp+1bp(x)γ(K)

)
=⇒ N

(
0,
δλ(x)

fX (x)
ω(K)

)
.

Furthermore, β̂λ;p(x) and β̂λ;p(x′) are asymptotically independent when x 6= x′.

Theorem 1 gives the asymptotic distribution of the local polynomial regression estimator of m(x)

and its derivatives for an arbitrary weighting sequence. From the result of Theorem 1 we can see that

weighting does not affect the asymptotic bias of the local polynomial regression. The leading bias term of

the weighted local polynomial regression is independent of the choice of weights {λt} , this is because the
influence of λt in the numerator and denominator cancel out. The argument is as follows. Notice that the

exact conditional bias of the local polynomial estimator is given by[
T∑
t=1

wtXtX
ᵀ
t

]−1 T∑
t=1

wtXt∆t(x),

where ∆t(x) = m(Xt)−
∑

0≤k≤p
1
k!
m(k)(x)(Xt−x)k. The numerator and the denominator are both affected

by the weighting process, in particular:

h−(p+1)
1

Th

T∑
t=1

wtXt∆t(x)
P−→ E {λt|Xt = x} fX (x) bp(x)B(K),

1

Th

T∑
t=1

wtXtX
ᵀ
t

P−→ fX(x)E (λt|Xt = x)M(K).

From the above results, we can see how the impact of weighting, which is reflected by the term E(λt|Xt = x),

is cancelled out.
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However, the weighting does change the limiting variance except in some special cases; the effect of

weighting on the nonparametric regression is captured by the factor δλ(x) as indicated by Theorem 1. We

next consider some different scenarios with regard to the form of λt and σ2t and their effect on δλ(x).

If we choose a weight that is a smooth function of the regressor, i.e. λt = λ(Xt), then E(λt|Xt = x) =

λ(x), and E[λ2tσ
2
t |Xt = x] = λ(x)2E[σ2t |Xt = x], so that

δλ (x) =
E [λ2tσ

2
t |Xt = x]

[E (λt|Xt = x)]2
= E

[
σ2t |Xt = x

]
.

In this case, the weighted local polynomial estimator has the same limiting variance as the unweighted

local polynomial regression estimator. This is because, in the shrinking neighborhood of x, the weights

are asymptotically the same, the weighted local polynomial estimator is asymptotically equivalent to the

equally weighted local polynomial estimator. In fact, no matter what is the form of σ2t , any weights λ(Xt)

in the form of a smooth function of Xt, would give you the same limiting variance. Combining this result

with those on bias, we can see that the weighted local polynomial regression using weights λ(Xt) has the

same mean-squared error (and limiting distribution) as the ordinary local polynomial estimation.

Suppose that σ2t = σ(Xt)
2. Then, the "optimal" weights λt = 1/σ(Xt)

2 deliver the same results as

the ordinary nonparametric regression. This is because the assumption σ2t = σ2(Xt) implies that the

nonparametric regression model is locally-homoskedastic. In this case, unweighted kernel estimators are

asymptotically effi cient (in the Tibshirani (1984) sense) under normality. In fact, incorrectly weighted

regressions are worse than the ordinary nonparametric regressions in this case. To see this, notice that

E[λ2t |Xt = x]− [E (λt|Xt = x)]2 =var(λt|Xt = x) ≥ 0. Therefore,

δλ (x) =
E [λ2tσ

2
t |Xt = x]

[E (λt|Xt = x)]2
=
σ(x)2E [λ2t |Xt = x]

[E (λt|Xt = x)]2
≥ σ(x)2.

The equality holds only when var(λt |Xt = x) = 0, which holds when λt = λ(Xt) or λt = constant. Thus,

the ordinary local polynomial estimator is asymptotically the best you can get. For this reason, it is

generally advised in the literature that nonparametric regressions should not be weighted, see, e.g. Jones

(1993).

Suppose that σ2t 6= σ2(Xt). Then, if we choose λt = σ−2t , we have

δλ (x)|λt=σ−2t =
E
[
σ−2t |Xt = x

][
E
(
σ−2t |Xt = x

)]2 =
1

E
(
σ−2t |Xt = x

) ≤ E (σ2t |Xt = x
)
.

This shows the effi ciency gain that can be achieved by local GLS regression. In fact, by the Cauchy-Schwarz

inequality, for any weights λt,

δλ (x) =
E [λ2tσ

2
t |Xt = x]

[E (λt|Xt = x)]2
≥ 1

E
(
σ−2t |Xt = x

) ,
7



and the equality holds only when λt = cσ−2t for some constant c, indicating that λt = σ−2t is the optimal

weight. We investigate this case further in the next Section. In fact, in this case, using the wrong weighting

(λt 6= σ−2t ) is not necessarily worse than the unweighted estimator: as in linear regression, Amemiya (1983),

weighting may also improve effi ciency. Our standard errors below are consistent whether or not λt 6= σ−2t .

We close with a discussion of standard errors. There are a number of choices for standard errors in

nonparametric regression, see Chu, Jacho-Chavez, and Linton (2017), and we just define here the most

straightforward and general approach, which is valid provided only E(ut|Xt, λt) = 0. In fact, it will also

be asymptotically valid in some cases we discuss below where this condition is only valid asymptotically.

Note that conditional on {Xt, λt}Tt=1 the estimator β̂λ;p(x) is linear in Y and so its conditional variance is

obtainable in closed form, Fan and Gijbels (1996, 4.9).

Let ût(x) = Yt − X
ᵀ
t β̂λ;p(x) and

V̂ (x) =

[
T∑
t=1

wtXtX
ᵀ
t

]−1 T∑
t=1

w2tXtX
ᵀ
t ût(x)2

[
T∑
t=1

wtXtX
ᵀ
t

]−1
. (8)

Then, similarly to Fan and Gijbels (1996, 4.11), we can show that(
e
ᵀ
j V̂ (x)ej

)−1 (
β̂λj(x)− β0j(x)−hp+1bp(x)γj(K)

)
=⇒ N (0, 1) (9)

under the conditions A1-A6, i.e., whether or not λt = σ−2t . From this we can obtain confidence intervals for

β0j(x) (assuming undersmoothing). More sophisticated pointwise and uniform confidence intervals can be

constructed by using bias correction/bootstrap, see for example, Hall (1992ab) and Calonico, Cattaneo,

and Farrell (2014), and we expect similar improvements to carry over to these cases due to the more

effi cient estimation.

3 The Local GLS Estimator

The previous section provides a general discussion on weighted nonparametric regressions. We now spe-

cialize the discussion to the case where the weighting λt = σ−2t , where σ2t = E(u2t |Ft−1) is the conditional
variance of the error process. We first give a general result for this estimator. Then in two subsections we

consider particular models for the error variance, one parametric, and one nonparametric, which allow us

to estimate consistently the optimal weighting and thereby to achieve asymptotically the same effi ciency.

Define m̂(x) = β̂λ0(x) from (7) with λt = σ−2t . We call this the local GLS estimator. In this case,

the objective function (6) can be given the interpretation of a local likelihood, under Gaussianity, see

Tibshirani (1984), and so the estimation method can be given an optimality justification along the lines

he gave.
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We slightly modify Assumption A4 to accommodate the special case where λt = σ−2t .

Assumption A4′: Let W1t = {Xt, σt}, {W1t} is a stationary absolutely regular process. That is,

%(τ) = sup
s
E

{
sup

A∈G∞s+τ
|P (A|Gs−∞)− P (A)|

}
→ 0, as τ →∞,

where Gts is the σ-field generated by {W1j : j = s, . . . , t}. In addition, there is a positive δ such that
E(|W1t|2+δ) < ∞, and for some δ′ with δ > δ′ > 0, %(τ) = O(τ−(2+δ

′)/δ′). The conditional density of

{εt, σt}, fεt,σt|Xt(ε, σ|x) is uniformly bounded and has continuous partial derivatives.

Corollary 1. Suppose that Assumptions A1 - A3, A4’, A5 and A6 hold. Then, as T →∞,

√
Th
[
m̂(x)−m(x)− h(p+1)b(x)

]
=⇒ N

(
0,

ω11(K)

fX(x)E
[
σ−2t |Xt = x

]) .
Corollary 1 indicates that the asymptotic variance of the infeasible weighted local estimator m̂(x) is

proportional to 1/E
[
σ−2t |Xt = x

]
, which is less than E[σ2t |Xt = x] , unless precisely (3) holds. We next

discuss some concrete special cases.

Example. Suppose that {Xt} and {ut} are independent processes (included in this case is the situation
where Xt = t/T and ut is a stochastic process; also included is the case where σ2t is the stochastic volatility

class of processes without leverage effects, e.g., Shephard (1996) that is independent of the process X). In

this case, E
[
σ−2t |Xt = x

]
=E
[
σ−2t
]
and E [σ2t |Xt = x] = E [σ2t ] , and for any nontrivial stochastic process

E
[
σ2t
]
>

1

E
[
σ−2t
]

by the Cauchy-Schwarz inequality.

Example. Suppose that Xt = yt−j so that the processes {Xt} and {ut} are not independent . In that
case, E [σ2t |Xt = x] and E

[
σ−2t |Xt = x

]
are not constant, but we may also have an effi ciency gain because

these quantities are not exact reciprocals of each other unless σ2t only depends on yt−j.

In practice, σ2t may be unknown in which case m̂(x) is infeasible. However, the infeasible procedure

defines an effi ciency standard against which we should measure our feasible estimator. We next consider

the case where estimated weights are allowed for.

Let σ̂2t be a consistent estimator of σ
2
t ; we will consider several examples below depending on model

structure. Then define the feasible weighted local polynomial estimator m̃(x) as β̂λ0(x) from (7) with

λt = σ̂−2t . Letting ŵt = K ((x−Xt) /h) /σ̂2t , then the proposed estimator has the representation (provided

the denominator matrix has full rank)

β̃(x) =

[
T∑
t=1

ŵtXtX
ᵀ
t

]−1 T∑
t=1

ŵtXtYt, (10)
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and m̃(x) = β̃0(x) = e>1 β̃(x). We call this the local FGLS estimator.

We add the following high level Assumption A7 to take into account the preliminary estimation of

weights.

Assumption A7: Let wt = K ((x−Xt) /h) /σ2t . Then :

(a)
∥∥∥(Th)−1

∑T
t=1 (ŵt − wt)XtX

ᵀ
t

∥∥∥ = op (1);

(b)
∥∥∥(Th)−1/2

∑T
t=1 (ŵt − wt)Xt∆t(x)

∥∥∥ = op (1);

(c)
∥∥∥(Th)−1/2

∑T
t=1 (ŵt − wt)Xtut

∥∥∥ = op (1).

The result for the proposed estimator is summarized in Theorem 2 below.

Theorem 2. Suppose that Assumptions A1-A3, A4’, A5-A7 hold. Then, as T →∞,

√
Th
[
m̃(x)−m(x)− h(p+1)bp(x)

]
=⇒ N

(
0,

ω11(K)

fX(x)E
[
σ−2t |Xt = x

]) .
Theorem 2 shows that the proposed estimator is asymptotically equivalent to the infeasible weighted

local estimator m̂(x) and thus is more effi cient than the conventional local polynomial estimator. The

relative effi ciency of m̃(x) is given by

E
[
σ2t |Xt = x

]
× E

[
σ−2t |Xt = x

]
, (11)

which varies with x. If the process σ2t were independent of the covariate, then the relative effi ciency is

E[σ2t ]×E
[
σ−2t
]
.

The effi ciency gains above can deliver smaller nonparametric confidence intervals for the regression

function. One can construct confidence intervals using (8) with ŵt replacing wt and under the conditions

of Theorem 2 these will have correct asymptotic coverage. One may also use the GLS structure to define

alternative confidence intervals based on explicitly estimating fX(x) and E
[
σ−2t |Xt = x

]
, see Chu, Jacho-

Chavez and Linton (2017), although this will not improve the confidence interval to first order.

In the next two subsections we consider two different models for the heteroskedasticity and show how

one can construct the local FGLS estimator in each case and how one can establish the equivalence of the

FGLS estimator with the GLS estimator.

3.1 The Case with GARCH Model

We consider in more detail the special case where errors terms satisfy a GARCH(1,1) process. In particular,

without loss of generality, we assume that the model is given by (1), (2), and (4). Given model (4), and

10



under Assumption A1′ below,

σ2t =
ω

1− β + γ
∞∑
j=1

βj−1u2t−j.

The proposed estimation procedure for the GARCH case is as follows:

1. First, we construct a preliminary local polynomial estimator m̆(x) using bandwidth h1 by minimizing

QT (β;x,K, h1, {1}) from (6) with respect to β

2. Then estimate σ2t using ût = yt − m̆(Xt), denote the estimated variance by

σ̂2t =
ω̂

1− β̂
+ γ̂

min{t−1,τ}∑
j=1

β̂j−1û2t−j,

where θ̂ = (ω̂, β̂, γ̂)
ᵀ
are preliminary root-T consistent estimators of θ = (ω, β, γ)

ᵀ
, and τ = τ(T ) =

ln(T ) is a truncation parameter. For example, θ̂ could be the Gaussian QMLE constructed from

the residuals, Bollerslev (1986).

3. The feasible weighted local polynomial estimator m̃(x) is constructed by minimizingQT (β;x,K, h, {σ̂2t })
from (6) with respect to β, where h is the bandwidth in the final estimation.

For simplicity, we use the same kernel function in both the preliminary estimation and the final esti-

mation. In the presence of a general GARCH(p,q) model, see, e.g. Francq and Zakoian (2004, 2010) for

more details on QMLE estimation.

Notice that although σ2t is characterized by a parametric model, estimation of σ
2
t uses ût = yt −

m̆(Xt), which is based on a preliminary nonparametric regression estimator m̆(Xt) of the conditional

mean function. Consequently, the estimation of σ2t depends on the bandwidth h1.

We modify Assumptions A1, A6 and A7 to accommodate the GARCH case. We assume that the

GARCH process is stationary, and we undersmooth in the preliminary estimation.

Assumption A1′: The data is given by (1), (2) and (4), where ω > 0, β ≥ 0, γ ≥ 0, β + γ < 1.

Assumption A6′: As T → ∞, h → 0, h1 → 0 and h1/h → 0. Th1h
1+p → ∞, Th21h−1 → ∞,√

Thhp+11 → 0. τ = c log T for some constant c > 0.

Assumption A7′: θ̂ is a root-T estimator of θ = (ω, β, γ)
ᵀ
.

Under Assumption A1′, the GARCH parameters θ can be estimated at rate root-T . Assumption A6′ for

the bandwidth expansion are standard in nonparametric estimation. Assumption A7′ implies Assumption

A7 under this GARCH setting.

The result for the GARCH case is summarized in Theorem 3 below.
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Theorem 3. Suppose that Assumptions A1’,A2, A3, A4’, A5, A6’,A7’hold. Then, as T →∞,
√
Th
[
m̃(x)−m(x)− h(p+1)b(x)γ1(K)

]
=⇒ N

(
0,

ω11(K)

fX(x)E
[
σ−2t |Xt = x

]) .
Theorem 3 shows that, in the presence of the GARCH effect, the proposed estimator is asymptotically

equivalent to the infeasible weighted local estimator m̂(x) and thus is more effi cient than the conventional

local polynomial estimator. We note that in this case the condition E(ut|Xt, λt) = 0 fails, but in large

samples λt = σ̂2t ' σ2t ∈ Ft−1 and since we have assumed that E(ut|Ft−1) = 0 the consistency and

asymptotic normality follows. Indeed the standard errors constructed from (8) are consistent in this case.

Remark: For the preliminary estimator θ̂, several methods exist for estimating parameters in GARCH
models with unknown innovation distributions. The QMLE is arguably the most frequently used estimator

in practice. The asymptotic properties of the QMLE have been studied in the literature under regularity

conditions similar to ours. When the innovation distribution is heavy tailed, Peng and Yao (2003) propose a

least absolute deviations estimator (LADE) as an alternative which is robust with respect to the heavy tails

of the innovation distribution. In fact, the LADE is asymptotically normal with the standard convergence

rate under weaker assumptions.

Remark: The above analysis and results can be easily extended to the case of general parametric
volatility when σ2t = var(yt|Ft−1) = σ2t (θ), where θ is the vector of unknown parameters. For example,

the well-known location-scale type model where σ2t equals to a parametric function of covariate Zt, say

σ2t = ρ0 + ρ1Z
2
t .

3.2 Nonparametric Deterministic Volatility

Although our analysis in this paper focuses on nonparametric regressions with stationary stochastic con-

ditional heteroskedasticity, the approach can also be applied to the nonstationary case. In this subsection,

we illustrate such extensions for nonparametric regressions with locally varying unconditional volatilities,

or long run components. Suppose that σ2t = σ2(t/T ) with σ2(·) a smooth unknown function, that is,

ut = σtεt, σt = σ(t/T ), (12)

where εt and ε2t − 1 are stationary martingale difference sequences. In this case, the process ut is not

stationary, although it is locally stationary, Dahlhaus (1997). We assume that Assumptions A4 hold with

Wt = Xt being a stationary absolutely regular process.

For this model, under regularity conditions, the asymptotic distribution of the conventional local-

polynomial regression estimator is given by

√
Th
[
m̂LP (x)−m(x)− hp+1bp(x)γ1(K)

]
=⇒ N

(
0,

∫ 1
0
σ(r)2dr

fX(x)
ω11(K)

)
. (13)
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In this section, we proposed a weighted local-polynomial regression estimator along the lines of the previous

sections and show that the proposed weighted local-polynomial regression estimator has the same bias but

a smaller variance.

A feasible weighted local-polynomial regression estimator m̃(x) requires estimates of σ2t , which can be

estimated nonparametrically. We consider the following estimation procedure:

1. First, we construct a preliminary local polynomial estimator m̆(·) using bandwidth h1 by minimizing
QT (β;x,K, h1, {1}) from (6) with respect to β

2. Then estimate σ(t/T )2 by nonparametric smoothing on ût = yt − m̆(Xt),

σ̂(r)2 =

∑T
t6=Tr,t=1G ((r − t/T ) /hσ) û2t∑T
t6=Tr,t=1G ((r − t/T ) /hσ)

,

where G is a kernel function and hσ is a bandwidth for the estimation of volatility.

3. The feasible weighted local polynomial estimator m̃(x) is constructed by minimizingQT (β;x,K, h, {σ̂2t })
from (6) with respect to β, where h is the bandwidth in the final estimation.

In step 2, we use the leave-one-out estimator here to obtain a martingale difference sequence structure

that simplifies the proof, see, e.g. Xu and Phillips (2008). We also suppose the following:

Assumption A1′′: The data is given by (1), (2) and σt = σ(t/T ), where the function σ(·) is continuous
and 0 < cL ≤ infu∈[0,1] σ(u) ≤ supu∈[0,1] σ(u) ≤ cU <∞, such that

∫ 1
0
σ(r)2dr and

∫ 1
0
σ(r)−2dr exist.

Assumption A4′′: {Xt} is a stationary absolutely regular process. That is,

%(τ) = sup
s
E

{
sup

A∈G∞s+τ
|P (A|Gs−∞)− P (A)|

}
→ 0, as τ →∞,

where Gts is the σ-field generated by {Xj : j = s, . . . , t}. In addition, there is a positive δ such that

E(|Xt|2+δ) < ∞, and for some δ′ with δ > δ′ > 0, %(τ) = O(τ−(2+δ
′)/δ′). The conditional density of εt,

fεt|Xt(ε|x) is uniformly bounded and has continuous partial derivatives.

Assumption A5′: The kernels K (·) and G( ·) have support [−1, 1] and are symmetric about zero.

Assumption A6′′: As T →∞, h→ 0, h1 → 0, hσ → 0 and h1/h→ 0, h2p1 h
−1
σ → 0, T−1h−11 h−1σ log(T )→

0, Th1h1+p →∞, Th21h−1 →∞,
√
Thhp+11 → 0, Thσh1/2 →∞, Th2σ →∞.

We obtain the following result.
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Theorem 4. Suppose that Assumptions A1”, A2, A3, A4”, A5’, A6”hold. Then, as T →∞

√
Th
[
m̃(x)−m(x)− hp+1bp(x)γ1(K)

]
=⇒ N

(
0,

ω11(K)

fX(x)
∫ 1
0
σ(r)−2dr

)
.

Theorem 4 shows that, in nonparametric regressions with locally varying volatilities, the weighted local

estimator m̃(x) is more effi cient than the conventional local polynomial estimator. The relative effi ciency

(ratio of variances) of m̃(x) to m̆(x) is

veff =

∫ 1

0

σ(r)2dr ×
∫ 1

0

σ(r)−2dr ≥ 1, (14)

where the inequality follows by the Cauchy Schwarz inequality (1 = σ × σ−1) - this is just the ratio of
the arithmetic mean to the harmonic mean of σ(r)2. The magnitude of the effi ciency gain increases with

the variability of σ(r)2 and is unbounded. The feasible weighted local-polynomial regression estimator

m̃(x) is asymptotically equivalent (same asymptotic variance) to the infeasible weighted local-polynomial

regression estimator m̂(x). Muller and Stadtmuller (1987) consider the case where Xt = t/T and confirm

the equivalence of the unweighted and weighted kernel regression smoothers. We note that in this case the

condition E(ut|Xt, λt) = 0 fails, but in large samples λt = σ̂−2t ' σ−2t is deterministic and the consistency

and asymptotic normality follows. Indeed the standard errors constructed from (8) are valid in this case.

Remark. Following Vogt (2013) one may also allow the covariate to be locally stationary, i.e., to have
a time varying density, which changes the variance formula a little.

4 A Discussion on the Bias of Weighted Kernel Regressions

The idea of weighted regression and the previous analysis may be extended to many other nonparamet-

ric methods and models. The local polynomial estimator is widely used due to its attractive properties.

For this reason, we focus our analysis on the local polynomial regression. Similar analysis on weighted

regression can be applied to other nonparametric methods, say, the well-known Nadaraya-Watson regres-

sion. In general, under the assumption E(u2t |Ft−1) 6=E(u2t |Xt), GLS regression reduces the variances of

nonparametric regressions. However, the weighting effect on biases are different among different types

nonparametric regressions. For comparison purposes and to further illustrate the effect of weighting, we

briefly discuss weighted Nadaraya-Watson regression in this section. We show that although weighting

has similar effects on variance, it has a different impact on biases for different nonparametric regression

estimators. In particular, the weighted local polynomial regression with odd order does not change the

bias, but the weighted Nadaraya-Watson kernel regression estimator (even order polynomial) does change

the bias.
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Consider the weighted Nadaraya-Watson regression that minimizes the following criterion:

T∑
t=1

λtK

(
x−Xt

h

)
(Yt − β)2 , (15)

where λt are weights associated to the t-th observation in the local polynomial regression. Let wt =

λtK ((x−Xt) /h). To compare the kernel estimator with p-th order local polynomial regression, we

consider (p+1)-th order kernel in the Nadaraya-Watson regression, thus
∫
K(u)urdu = 0 for r = 1, . . . , p,

and
∫
K(u)up+1du = 1. The weighted Nadaraya-Watson estimator is given by

m̂(x) =

∑T
t=1 λtKh(Xt − x)yt∑T
t=1 λtKh(Xt − x)

. (16)

Again, suppose that the model is given by (1) and (2), it can be verified that the variance of the

limiting distribution is given by (δλ(x)/fX (x))ν0(K). The impact of weighting on the limiting variance of

the Nadaraya-Watson regression is the same as that of the local polynomial regression. In particular, any

weights λ in the form of a smooth function of Xt would give the same limiting variance. If σ2t 6= σ(Xt)
2,

GLS regressions will reduce the limiting variance. In particular, the limiting variance of GLS regression is

determined by ν0(K)/fX(x)E
(
σ−2t |Xt = x

)
, which is smaller than the limiting variance of the unweighted

NW kernel estimator ν0(K)E(σ2t |Xt = x) /fX(x), as long as E(u2t |Ft−1) 6=E(u2t |Xt).

To analyze the bias term, let the joint density of (λt, Xt) be g(v, x), notice that K is (p + 1)-th order

kernel, it can be verified that

m(r)(Xt)
1

Th

T∑
t=1

λtKh(Xt −Xt)u
r ≈ hp+1−rm(r)(Xt)

1

(p+ 1− r)!

∫
vg(p+1−r)x (v, x)dvµp+1(K)

where g(p+1−r)x (v, x) = ∂p+1−rg(v,x)
∂xp+1−r . The leading bias of the weighted Nadaraya-Watson estimator is given

by

hp+1
µp+1(K)

fX(x)E (λt|Xt = x)

[
p+1∑
r=1

1

r!(p+ 1− r)!

(
m(r)(x)

∫
vg(p+1−r)x (v, x)dv

)]
.

Although weighting does not change the bias in the local polynomial regression, it does change the bias

term in the Nadaraya-Watson regression. Bias reduction is possible by appropriately chosen weights. In

the special case where λt = λ(Xt) and the kernel is second order, i.e., p+ 1 = 2, the leading bias is

1

2
h2µ2(K)

[
2m(1)(Xt)

(λf)′(x)

(λf) (x)
+m(2)(x)

]
, (17)

where we denote λ(x)f(x) by (λf)(x), which is the result given by Jones (1993).
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5 Bandwidth Selection

The proposed weighted nonparametric estimator involves the use of bandwidth parameter h, and the

preliminary estimation of weights also involve a bandwidth h1 in the unweighted local regressions. In

practice, a data-driven smoothing parameter selection is highly appreciated. Although in principle the

bandwidth could be selected by minimizing the second order effects in MSE of the nonparametric estimator,

the second order term is quite complicated and messy, and it is practically diffi cult to select an optimal

bandwidth along this direction. Cross-validation has been widely used in selecting tuning parameters in

econometrics and statistics, see, e.g. Hall and Racine (2015). In this section, we propose the following

cross-validation type procedure for selecting smoothing parameters.

1. First, we construct a preliminary local polynomial estimator m̆(·) using bandwidth h1 by minimizing
QT (β;x,K, h1, {1}) from (6) with respect to β

2. Then estimate σ2s using ûs = ys − m̆(Xs), denote the estimated variance by σ̂2s .

3. For each t, we estimate m(Xt) using observations {(Ys, Xs) , |s− t| > κ}, for some large κ. More
specifically, we construct the leave-k-out (k = 2κ+ 1) weighted local polynomial estimator m̃−t(Xt)

by minimizing:

T−1
∑

s:|s−t|>κ

K ((Xs −Xt) /h)

σ̂2s

(
Ys −

∑
0≤j≤p

βj

(
Xt −Xs

h

)j)2
,

where h is the bandwidth in final estimation.

4. Calculate

CV (h, h1) =
T∑
t=1

(Yt − m̃−t(Xt))
2

We may choose (h, h1) to minimize CV (h, h1).

Remark: (1). This is a cross-validation type estimator. Since the data is weakly dependent over time,
we construct the final estimator of m(Xt) based on observations separated away from time t. Under weak

dependence, the t-th observation is almost independent with the dataset based on which we estimate it.

However, σ̂2t is constructed based on the whole sample for two reasons: since σ
2
t is captured by a parametric

model and the parameters are estimated based on the whole sample, we expect that the impact of the t-th

observation on the parameter estimation is relatively small due to weak dependence; on the other hand,

the dependence structure is maintained when estimating the volatility parameters. (2). The proposed

cross-validation type estimator can be easily extended to the case when the volatility is nonparametrically

estimated. For the case of nonparametric deterministic volatility discussed in Section 3.2, the second step
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of estimating σ2s in the above procedure will then be replaced by the nonparametric volatility estimator,

which is dependent on hσ, as a result, the criterion in step 4 will now become CV (h, h1, hσ).

For convenience in practice, we also propose a simple rule of thumb method following Fan and Gijbels

(1996, p111). Specifically, to estimate bias terms we use a global polynomial curve

m(x) = α0 + α1x+ . . .+ αp+1x
p+1, (18)

which is estimated by least squares, yielding estimates α̂j, j = 0, . . . , p+ 1. We propose the following rule

of thumb bandwidth estimator

hROT = C0,p(K)

(max1≤t≤T Xt −min1≤t≤T Xt)(
α̂p+1
p+1!

)2
× 1

T

∑T
t=1 σ̂

−2
t


1/(2p+3)

T−1/(2p+3), (19)

where C0,p(K) is taken from Fan and Gijbels (1996, Table 3.2). This bandwidth approximates the mini-

mizer of the asymptotic integrated mean square error of the odd order local polynomial regression function

estimator under specific conditions, which include the specification (18) as well as the mean independence

of σ−2t from Xt. When these conditions are violated hROT still converges to zero at the right rate but may

not be optimal.

6 Simulation Study

We conducted a Monte Carlo simulation to evaluate the finite sample performance of the proposed estima-

tion procedure. In particular, we compare the finite sample performance between the proposed estimator

m̃(x) and the conventional unweighted nonparametric estimator m̆(·). We also report the performance of
the infeasible weighted local polynomial estimator m̂(·) based on known σ2t to illustrate the potential of
effi ciency gain. Thus, the three estimators we consider are:

1. The conventional unweighted local polynomial estimator m̆(·) based on minimizingQT (β;x,K, h1, {1})
from (6) with respect to β.

2. The proposed weighted local polynomial estimator m̃(·) based on minimizing QT (β;x,K, h1, {σ̂2t })
from (6) with respect to β, where σ̂2t is calculated based on estimated ARCH/GARCH parameters.

3. The infeasible weighted local polynomial estimator m̂(·) based on minimizing QT (β;x,K, h1, {σ2t })
from (6) with respect to β.

The data were generated from the model Yt = m(Xt) + σtεt, where εt are i.i.d. standard normal

distributions. Several specifications of m(x) were investigated in generating the data and qualitatively

similar results were obtained. Thus we report the results for the case m(x) = x2 at x = 0.
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6.1 ARCH

Our first model is the ARCH(1) model

σ2t = ω + γu2t−1,

with ω = 1. We consider a range of ARCH parameter values: γ = 0.5, 0.7, 0.9. The ARCH parameters

are estimated based on OLS regression: û2t = ω+ γû2t−1 + η̌t, where ût is the conventional local polynomial

regression residual ût = yt − m̆(Xt), and thus σ2t can be estimated by σ̂
2
t = ω̂ + γ̂û2t−1.

For the regressor Xt, we consider three cases: Case (I) Xt are i.i.d. standard normal; {Xt}Tt=1 and
{εt}Tt=1 are independent. Case (II) Xt are i.i.d. U[0,1]; {Xt}Tt=1 and {εt}

T
t=1 are independent. Case (III)

Xt = Yt−1. We report the results of the case T = 100. The results with T = 500 are qualitatively similar.

The number of replications is 2000 in each case. We investigated both local linear estimation and the

third order (p = 3) local polynomial estimation with kernel K(u) = 0.75(1− u2)1(|u| ≤ 1), again, similar

results were obtained and thus we only report the results of the case p = 3. Different bandwidth values

were considered for the case p = 3. In particular, we consider bandwidth choices h = d0 × sXT−1/9 and
h1 = d1×sXT−1/6, where sX is the sample standard deviation of X, for 5 different sets of values of (d0, d1):

(3, 2), (5.5, 3.5), (8, 5), (15, 10), (25, 16). We also examine the performance of the estimator based on the

ROT bandwidth (denoted by m̃ROT in the tables) and the cross-validation based estimator (denoted by

m̃cv in the tables) proposed in Section 5. For the estimator based on the ROT bandwidth, we simply used

h1 = 10× sXT−1/6 in the first stage preliminary estimation.
We compared the biases, variances, and mean squared errors of these estimators given different choices

of innovation processes and bandwidth values. Tables 1, 2, 3 reports results for cases (I), (II), (III).

The effi ciency gain from weighted regression is quite significant. In addition, it is apparent that as the

conditional heteroskedasticity increases (as γ increases from 0.5 to 0.9), the effi ciency gain from weighted

nonparametric regression also increases. Third, the effi ciency gain in the case with independent regressors

is generally larger than that of the autoregressions.
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Table 1 (Case I: Xt = i.i.d. N(0,1))

h γ = 0.5 γ = 0.7 γ = 0.9

Bias Var MSE Bias Var MSE Bias Var MSE

1 m̆ 0.0001 0.0421 0.0421 -0.0015 0.0708 0.0708 0.0103 0.1802 0.1803

m̂ 0.0018 0.0327 0.0327 0.0003 0.0394 0.0394 0.0002 0.0447 0.0447

m̃ 0.0009 0.0344 0.0344 -0.0005 0.0450 0.0450 0.0107 0.0766 0.0767

2 m̆ -0.0025 0.0335 0.0335 -0.0030 0.0550 0.0550 -0.0018 0.1221 0.1221

m̂ -0.0035 0.0259 0.0259 -0.0010 0.0308 0.0308 -0.0046 0.0329 0.0329

m̃ -0.0041 0.0272 0.0272 -0.0034 0.0353 0.0353 -0.0028 0.0909 0.0909

3 m̆ -0.0043 0.0355 0.0355 -0.0062 0.0679 0.0679 -0.0007 0.1213 0.1213

m̂ -0.0023 0.0261 0.0261 -0.0055 0.0292 0.0293 -0.0003 0.0328 0.0328

m̃ -0.0023 0.0286 0.0286 -0.0043 0.0440 0.0440 0.0192 0.0890 0.0894

4 m̆ 0.0013 0.0311 0.0311 0.0050 0.0511 0.0511 0.0146 0.1079 0.1081

m̂ -0.0019 0.0239 0.0239 0.0007 0.0274 0.0274 0.0110 0.0308 0.0310

m̃ -0.0027 0.0283 0.0283 0.0009 0.0321 0.0321 0.0136 0.0516 0.0518

5 m̆ -0.0047 0.0329 0.0329 0.0071 0.0557 0.0557 0.0140 0.1437 0.1439

m̂ -0.0026 0.0250 0.0250 -0.0003 0.0267 0.0267 0.0033 0.0315 0.0315

m̃ -0.0025 0.0270 0.0270 0.0055 0.0458 0.0459 0.0060 0.0462 0.0462

6 m̃ROT -0.0108 0.0221 0.0223 0.0109 0.0317 0.0318 -0.0116 0.0422 0.0423

7 m̃cv -0.0153 0.0205 0.0207 0.0117 0.0289 0.0290 -0.0101 0.0401 0.0402
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Table 2 (Case II: Xt = i.i.d. U[0,1])

h γ = 0.5 γ = 0.7 γ = 0.9

Bias Var MSE Bias Var MSE Bias Var MSE

1 m̆ -0.0381 0.8241 0.8256 0.0027 1.3371 1.3371 0.0204 2.7215 2.7219

m̂ -0.0327 0.6700 0.6711 0.0031 0.7752 0.7752 -0.0098 0.8281 0.8282

m̃ -0.0338 0.6932 0.6943 0.0005 0.8998 0.8998 0.0028 1.2184 1.2184

2 m̆ -0.0106 0.4061 0.4062 0.0078 0.6196 0.6197 0.0121 1.4287 1.4289

m̂ -0.0177 0.3142 0.3145 0.0159 0.3531 0.3533 0.0192 0.4029 0.4033

m̃ -0.0141 0.3322 0.3324 0.0160 0.3895 0.3898 0.0122 0.5589 0.5590

3 m̆ -0.0032 0.3802 0.3802 -0.0062 0.5617 0.5617 0.0002 1.0959 1.0959

m̂ -0.0111 0.2622 0.2624 -0.0063 0.2888 0.2888 0.0064 0.3556 0.3556

m̃ -0.0130 0.2938 0.2940 -0.0107 0.3282 0.3284 0.0118 0.5264 0.5266

4 m̆ -0.0145 0.3429 0.3431 0.0012 0.6861 0.6861 -0.0078 1.0942 1.0942

m̂ -0.0085 0.2495 0.2496 0.0015 0.3201 0.3201 -0.0091 0.3693 0.3694

m̃ -0.0105 0.2638 0.2639 -0.0019 0.3748 0.3748 -0.0059 0.4924 0.4924

5 m̆ -0.0085 0.3458 0.3459 -0.0194 0.5715 0.5718 -0.0278 1.2512 1.2520

m̂ -0.0078 0.2723 0.2724 -0.0045 0.3083 0.3083 0.0053 0.3445 0.3446

m̃ -0.0046 0.3120 0.3120 -0.0028 0.3874 0.3874 -0.0070 0.5302 0.5303

6 m̃ROT -0.0753 0.2792 0.2848 0.0433 0.3441 0.3460 -0.0326 0.5179 0.5189

7 m̃cv -0.0128 0.2426 0.2427 0.0285 0.3167 0.3175 -0.0060 0.4014 0.4014
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Table 3 (Case III: Xt = Yt−1)

h γ = 0.5 γ = 0.7 γ = 0.9

Bias Var MSE Bias Var MSE Bias Var MSE

1 m̆ 0.0076 2.2742 2.2743 -0.0316 1.3927 1.3937 -0.0222 2.2900 2.2905

m̂ -0.0020 2.2605 2.2605 -0.0227 1.0982 1.0987 -0.0180 2.2896 2.2900

m̃ 0.0030 2.1859 2.1859 -0.0392 1.2358 1.2374 -0.0443 2.2112 2.2132

2 m̆ 0.0029 0.8111 0.8111 0.0236 1.0902 1.0907 -0.0147 1.3587 1.3590

m̂ -0.0042 0.6403 0.6404 0.0044 0.6797 0.6798 -0.0132 0.5275 0.5276

m̃ -0.0001 0.7448 0.7448 0.0144 0.9944 0.9946 -0.0186 0.9854 0.9858

3 m̆ -0.0156 0.6050 0.6053 -0.0107 0.7629 0.7630 0.0159 1.3672 1.3675

m̂ -0.0044 0.4796 0.4797 0.0038 0.5601 0.5601 -0.0089 0.4358 0.4359

m̃ -0.0054 0.5729 0.5729 -0.0009 0.7510 0.7510 -0.0028 1.0082 1.0082

4 m̆ 0.0113 0.6568 0.6569 -0.0091 0.8096 0.8097 -0.0057 1.3241 1.3242

m̂ 0.0055 0.5193 0.5193 -0.0061 0.4770 0.4771 0.0109 0.5879 0.5880

m̃ 0.0103 0.6284 0.6285 -0.0059 0.6604 0.6605 0.0038 1.0216 1.0216

5 m̆ -0.0073 0.6495 0.6495 0.0002 0.6982 0.6982 0.0253 1.5548 1.5555

m̂ -0.0112 0.5258 0.5259 0.0014 0.4649 0.4649 0.0065 0.6399 0.6399

m̃ -0.0090 0.6260 0.6260 0.0032 0.5950 0.5950 0.0394 1.3590 1.3606

6 m̃ROT 0.0284 0.5140 0.5148 0.0230 0.9529 0.9534 0.2184 0.9304 0.9781

7 m̃cv -0.0019 0.3838 0.3839 0.0291 0.3927 0.3936 -0.0083 0.5996 0.5997

6.2 GARCH

We next consider the GARCH model. We consider the same regression function, i.e. the data were

generated from the model Yt = m(Xt) + σtεt, with m(x) = x2. Now σt follows an GARCH(1,1) process

σ2t = ω + βσ2t−1 + γu2t−1

with ω = 1. We consider a range of GARCH parameter values given as follows

β 0.1 0.3 0.5 0.7 0.3 0.5 0.1 0.3 0.5 0.9 0.05

γ 0.8 0.6 0.4 0.2 0.5 0.3 0.6 0.4 0.2 0.05 0.9

We have investigated the sampling properties for similar designs on X. Qualitatively very similar

results to the ARCH model are obtained. For this reason, we report the results for the case where {εt}Tt=1
are i.i.d. N(0,1), and {Xt}Tt=1 are i.i.d. U[0,1] random variables that are independent with {εs}

T
s=1. Again,

T = 100, and the number of replications is 2000 in each case.
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Since there are more parameters in the GARCH case, and results are similar to the ARCH case, for

simplicity, we only report the biases and mean squared errors of the local polynomial estimators with

p = 3 and x = 0. We consider the same bandwidth choices 1 - 5, as well as the ROT and cross-validation

bandwidth as in the previous case. The results are contained in Table 4. In particular, we find that: Given

each γ, as β increases, the relative effi ciency gain increases. Similarly, given each β, as γ increases, the

relative effi ciency gain increases.

Table 4a

h (β, γ) = (0.1, 0.8) (β, γ) = (0.3, 0.6) (β, γ) = (0.5, 0.4) (β, γ) = (0.7, 0.2)

Bias MSE Bias MSE Bias MSE Bias MSE

1 m̆ 0.0385 1.4338 0.0003 1.6126 0.0329 1.8480 0.0326 1.7066

m̂ 0.0135 0.4775 0.0101 0.7220 0.0160 1.0654 0.0237 1.4932

m̃ 0.0195 0.5816 0.0064 0.8363 0.0176 1.2015 0.0313 1.5684

2 m̆ -0.0057 1.5221 0.0507 1.4295 0.0150 1.5971 0.0072 1.7455

m̂ 0.0109 0.4340 0.0311 0.6825 0.0268 0.9586 0.0110 1.4731

m̃ -0.0033 0.5508 0.0361 0.8192 0.0073 1.1020 0.0056 1.5527

3 m̆ -0.0125 1.5600 0.0245 1.7434 0.0033 1.7712 -0.0168 1.7405

m̂ -0.0023 0.4424 0.0304 0.6869 -0.0118 1.0316 -0.0091 1.4144

m̃ -0.0013 0.5324 0.0276 0.7789 -0.0156 1.1829 -0.0249 1.5416

4 m̆ 0.0279 1.5065 0.0103 1.6511 -0.0106 1.7384 -0.0180 1.6859

m̂ 0.0110 0.4743 0.0261 0.6901 -0.0414 1.0157 -0.0203 1.5276

m̃ 0.0193 0.5548 0.0315 0.7658 -0.0343 1.1487 -0.0163 1.5599

5 m̆ 0.0115 1.7135 -0.0022 1.7232 -0.0251 1.6672 0.0489 1.8362

m̂ -0.0047 0.4540 -0.0129 0.6624 -0.0001 1.0662 0.0601 1.5518

m̃ -0.0096 0.5750 -0.0185 0.7865 -0.0143 1.1997 0.0559 1.6254

6 m̃ROT 0.0145 0.4772 -0.0164 0.7216 0.0169 1.2048 0.1402 1.2641

7 m̃cv -0.0152 0.4161 0.0030 0.6798 -0.1266 1.0034 0.1337 1.2252
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Table 4b (Continued)

h (β, γ) = (0.5, 0.3) (β, γ) = (0.1, 0.6) (β, γ) = (0.3, 0.4) (β, γ) = (0.5, 0.2)

Bias MSE Bias MSE Bias MSE Bias MSE

1 m̆ -0.0269 0.9331 -0.0030 0.6135 0.0109 0.6110 -0.0154 0.6353

m̂ -0.0221 0.7452 -0.0063 0.3685 -0.0047 0.4632 -0.0152 0.5919

m̃ -0.0223 0.7924 -0.0037 0.4014 -0.0009 0.4925 -0.0148 0.6057

2 m̆ -0.0037 0.9313 -0.0186 0.6028 -0.0164 0.5611 -0.0151 0.5959

m̂ 0.0023 0.7549 -0.0202 0.3608 -0.0305 0.4278 -0.0153 0.5566

m̃ 0.0053 0.8082 -0.0214 0.3925 -0.0269 0.4473 -0.0204 0.5701

3 m̆ -0.0336 0.8765 0.0146 0.6235 -0.0112 0.6082 0.0340 0.5991

m̂ -0.0233 0.7011 0.0103 0.3456 -0.0214 0.4696 0.0275 0.5568

m̃ -0.0227 0.7448 0.0029 0.3769 -0.0132 0.4893 0.0348 0.5714

4 m̆ -0.0145 0.8483 0.0098 0.5578 -0.0161 0.5707 0.0454 0.5986

m̂ -0.0042 0.7075 0.0195 0.3415 -0.0105 0.4405 0.0458 0.5390

m̃ -0.0092 0.7374 0.0128 0.3669 -0.0110 0.4623 0.0469 0.5619

5 m̆ -0.0171 0.9010 -0.0039 0.5655 0.0043 0.5607 -0.0090 0.5937

m̂ -0.0208 0.7364 -0.0005 0.3501 0.0196 0.4324 -0.0013 0.5469

m̃ -0.0275 0.7777 0.0003 0.3769 0.0176 0.4549 -0.0016 0.5568

6 m̃ROT -0.0113 0.6964 0.0382 0.3674 0.0371 0.4795 0.0013 0.5332

7 m̃cv -0.0027 0.6957 -0.0532 0.3589 -0.0276 0.4394 -0.0001 0.5057
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Table 4c (Continued)

h (β, γ) = (0.3, 0.5) (β, γ) = (0.05, 0.9) (β, γ) = (0.9, 0.05)

Bias MSE Bias MSE Bias MSE

1 m̆ -0.0289 1.2714 0.0075 2.2866 -0.0815 3.2651

m̂ -0.0178 0.5508 -0.0300 0.3856 -0.0644 3.2037

m̃ -0.0194 0.6025 -0.0263 0.5018 -0.0795 3.2220

2 m̆ -0.0512 0.8763 -0.0396 1.4264 -0.0495 3.6965

m̂ -0.0217 0.5442 0.0463 0.4416 -0.0996 3.6524

m̃ -0.0207 0.6002 0.0722 0.7835 -0.0819 3.6634

3 m̆ 0.0031 0.8514 -0.1526 1.6438 -0.0637 4.1541

m̂ 0.0076 0.5296 -0.0178 0.4140 -0.0401 4.0120

m̃ 0.0041 0.5655 0.0066 0.6197 -0.0376 4.0504

4 m̆ 0.0519 0.8754 -0.0016 1.3620 -0.1599 3.3553

m̂ 0.0384 0.5477 0.0328 0.4094 -0.1581 3.2812

m̃ 0.0328 0.6046 0.0318 0.4833 -0.1357 3.3467

5 m̆ -0.0376 0.8586 -0.0359 1.9688 0.0301 3.6197

m̂ -0.0169 0.5437 -0.0310 0.4007 0.0104 3.5215

m̃ -0.0197 0.5870 -0.0013 0.4575 0.0078 3.6016

6 m̃ROT 0.0265 0.5785 -0.0084 0.4687 0.1985 3.3681

7 m̃cv -0.0039 0.5586 -0.0121 0.3998 -0.1595 3.2911

6.3 Locally varying volatility

We finally look at the locally varying volatility model. We consider the same regression function, i.e. the

data were generated from the model Yt = m(Xt) + σtεt, with m(x) = x2. Now σt follows a locally varying

volatility process:

σ2t = ω + γ sin(tπ/T )2

with ω = 0.1, and we consider different values for γ = 1, 2, 5. The choices of the regressor Xt are similar to

the previous cases, i.e., we again consider the same three cases where (i) Xt are i.i.d. standard normal and

independent with εt; (ii) Xt are i.i.d. U[0,1] and independent with εt; and (iii) Xt = Yt−1. We investigated

the third order (p = 3) local polynomial estimation with kernel K(u) = 0.75(1 − u2)1(|u| ≤ 1), again,

similar results were obtained in local linear estimation and we only report the results of the case p = 3.

We use the same kernel function in estimating the volatility σ (·) as the one used in estimating the mean
function. In addition to h = d0 × sXT−1/9 and h1 = d1 × sXT−1/6, that we used before for the second
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stage and first stage nonparametric estimation of the mean, we simply use hσ = sXT
−1/6. The same 5

different sets of values of (d0, d1) were considered. We also examine the performance of the ROT and

cross-validation based estimator (again, denoted by m̃cv in the tables) proposed in Section 5.

The number of replications is the same as before. We report the results of the case T = 100.

The Monte Carlo results that we obtained are very similar to the previous cases. For this reason, we

only report the result for the case when Xt are generated by i.i.d. U[0,1]. In particular, Table 5 reports

results for the biases, variances, and mean squared errors of these estimators given different choices of

bandwidth values. Results of Table 5 show the potential of effi ciency gain from weighted nonparametric

regression in the locally varying volatility models.

Table 5 Locally Varying Volatility Model

h γ = 1 γ = 2 γ = 5

Bias Var MSE Bias Var MSE Bias Var MSE

1 m̆ 0.0149 0.2483 0.2486 -0.0768 0.6294 0.6353 -0.0693 1.1792 1.1840

m̂ 0.0154 0.1473 0.1475 -0.0545 0.3412 0.3442 -0.0415 0.5314 0.5331

m̃ 0.0156 0.1787 0.1789 -0.0577 0.4608 0.4642 -0.0839 0.8203 0.8274

2 m̆ -0.0198 0.1211 0.1215 0.0020 0.2411 0.2411 -0.0083 0.5346 0.5346

m̂ -0.0201 0.0712 0.0716 0.0195 0.1333 0.1337 -0.0363 0.2283 0.2296

m̃ -0.0165 0.0904 0.0907 0.0156 0.1669 0.1671 -0.0173 0.3322 0.3325

3 m̆ -0.0124 0.1217 0.1219 -0.0005 0.2123 0.2123 -0.0111 0.5075 0.5076

m̂ -0.0140 0.0806 0.0808 0.0027 0.0958 0.0958 -0.0076 0.1587 0.1587

m̃ -0.0142 0.0913 0.0915 0.0014 0.1470 0.1470 -0.0051 0.3128 0.3128

4 m̆ -0.0052 0.1093 0.1093 -0.0324 0.1768 0.1778 0.0416 0.4227 0.4245

m̂ -0.0021 0.0619 0.0620 0.0069 0.0930 0.0930 -0.0183 0.1581 0.1584

m̃ -0.0021 0.0802 0.0802 -0.0012 0.1176 0.1176 0.0148 0.2700 0.2703

5 m̆ 0.0092 0.1026 0.1027 0.0314 0.1780 0.1790 -0.0098 0.4810 0.4810

m̂ -0.0162 0.0617 0.0619 0.0049 0.0923 0.0923 -0.0265 0.1781 0.1788

m̃ -0.0050 0.0782 0.0782 0.0261 0.1212 0.1219 -0.0039 0.3051 0.3051

6 m̃ROT -0.0333 0.0876 0.0887 -0.0391 0.1178 0.1194 -0.0526 0.2783 0.2811

7 m̃cv -0.0214 0.0699 0.0703 -0.0009 0.1177 0.1177 0.0085 0.2700 0.2701

6.4 Additional Discussion: The Effect of Weighting Near IGARCH

The Monte Carlo simulation above indicates that the weighted nonparametric regression generally brings

effi ciency gain for models with a GARCH error process. In particular, the effi ciency gain from weighted
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regression is quite significant when γ is large.

The focus of this paper is on stationary time series. Although not the focus of this paper, an interesting

case is the IGARCH model, i.e., σ2t obeys (4) with β+γ = 1. Then provided ω > 0 and E[ln (β + γε2t )] < 0,

the process σ2t is strictly stationary and ergodic, Nelson (1990, Theorem 2), while Nelson (1990, Theorem

3) implies that E(σ2t ) = ∞, and E(u2t ) = ∞ (but E(|ut|1+α) < ∞ for some α ∈ (0, 1)). In this case,

the Nadaraya-Watson smoother may be consistent but its asymptotic variance is infinite, i.e., the rate of

convergence is slower than
√
Th. However, the weighted smoother can be asymptotically normal at the

usual rates, since under strong stationarity we may have for example E(σ−2t ) <∞.
In the case of IGARCH, under appropriate regularity assumptions, in particular, if

E[ln
(
β + γε2t−1

)
] < 0, and E

[(
β + γε2t

)
ln
(
β + γε2t

)]
<∞

and we assume that ω > 0, then there exists a stationary solution to the GARCH model, and the

stationary solution is regularly varying and strong mixing with geometric rate. In this case, E (σ2t ) =∞.
the unweighted local least-squares estimator will converge at a slower rate. However, the weighted smoother

can be asymptotically normal at the usual rates, since under strong stationarity we may have E(σ−2t ) <∞.
In addition, a root-n consistent estimator of the IGARCH parameter can be obtained via the QMLE (see,

e.g. Lumsdaine 1996), and can be used in constructing the weighted nonparametric estimator. Thus,

effi ciency gain of weighted nonparametric regression may be extended to the IGARCH case.

We provide a preliminary monte carlo investigation below on the relative effi ciency between the un-

weighted nonparametric regression and the weighted nonparametric regression for the GARCH model

when the summation of parameters are close to unity. We consider the same GARCH model as in the

previous section, i.e. the data were generated from the model Yt = m(Xt) + σtεt, with m(x) = x2, and

σ2t = ω + βσ2t−1 + γu2t−1

with ω = 1. We consider some GARCH parameter values that (β + γ) are near unity. Again, εt are i.i.d.

N(0,1), and Xt are i.i.d. U[0,1] random variables that are independent with {εt}Tt=1. T = 100.

Table 6 below reports the biases and mean squared errors of the local polynomial estimators with

p = 3 and x = 0. We consider the same bandwidth choices 1 - 5, as well as the ROT and cross-validation

bandwidth as in the previous section.
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Table 6

h (β, γ) : (0.05, 0.95) (0.05, 0.94) (0.5, 0.5) (0.94, 0.05) (0.95, 0.05)

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

1 m̆ -0.0582 2.7579 -0.1313 1.9291 -0.1765 6.2080 -0.0260 7.6961 -0.2222 9.7180

m̂ 0.0006 0.4925 -0.0829 0.4897 0.0255 1.6471 0.0136 6.0870 -0.1141 6.8226

m̃ -0.0157 0.6585 -0.0985 0.6095 0.0231 2.0672 0.0099 6.5904 -0.1635 7.6730

2 m̆ 0.0233 1.7763 -0.0170 2.2681 -0.0459 4.8465 -0.2219 7.9403 -0.0503 9.5961

m̂ -0.0101 0.4720 -0.0055 0.4172 0.0568 1.4943 -0.1590 6.2429 0.0032 6.0484

m̃ -0.0031 0.5727 0.0209 0.5001 0.0586 2.0535 -0.1983 6.8638 -0.0393 6.6404

3 m̆ 0.1142 6.8679 0.0257 2.8847 -0.0363 4.8474 -0.1087 7.3660 -0.1352 10.1685

m̂ -0.0650 0.4678 0.0184 0.4853 0.0153 1.6351 0.0078 5.4626 0.0255 6.5706

m̃ -0.0347 0.6831 0.0224 0.5838 0.0075 1.9647 0.0157 5.9843 0.0359 7.1606

4 m̆ 0.0006 1.6362 -0.0370 1.7776 -0.4752 14.3330 -0.0487 6.9447 -0.2477 10.7011

m̂ -0.0188 0.4217 0.0305 0.3899 -0.1528 1.6073 -0.0066 5.0597 -0.1492 7.3720

m̃ -0.0176 0.5554 0.0072 0.5165 -0.2036 2.3974 -0.0392 5.7262 -0.1860 8.3218

5 m̆ -0.2755 8.3777 0.1285 2.4898 -0.1210 5.0230 -0.1928 6.5399 0.0006 10.1353

m̂ -0.0288 0.3953 0.0274 0.4726 0.0311 1.5307 -0.1194 5.1529 0.0344 6.9045

m̃ -0.0551 0.5066 0.0147 0.5834 -0.0181 1.8940 -0.1366 5.8575 0.0723 7.7006

6 m̃ROT -0.0541 0.5193 0.0045 0.5169 -0.0143 1.9056 -0.0388 5.7157 0.0509 6.9218

7 m̃cv -0.0421 0.4575 0.0131 0.4675 -0.0077 1.6259 0.0001 5.1482 -0.0449 6.6402

These Monte Carlo results indicate that, effi ciency gain of the weighted nonparametric regression over

unweighted nonparametric regression can also be obtained in the near IGARCH and IGARCH case.

7 Conclusions

We have shown that the effi ciency of local linear regression estimators can be improved by weighting factors

that take account of the heteroskedasticity where that heteroskedasticity is partly driven by factors different

from those that influence the mean. In some applications this may deliver substantial effi ciency gains in

estimation. In this paper, we focus our analysis on stationary models. We expect that the method can be

extended to nonstationary volatility models such as IGARCH. Monte Carlo evidence indicates effi ciency

gains from the weighted nonparametric regressions in this case. However, the asymptotic analysis requires

different techniques. The analysis in our paper can also be extended to nonparametric quantile regression

with heteroskedastic errors. We wish to explore these extensions in future research.
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8 A Sketch of Proofs

We provide a sketch of proofs for our theorems in the paper. A more detailed proof can be found in the

supplementary technical appendix.

8.1 Some preliminary results

Let MT,h(x) be a (p+ 1)× (p+ 1) matrix with the (j, k) element defined as:

MT,h,j,k =
1

Th

T∑
i=1

(
x−Xi

h

)j+k
K

(
x−Xi

h

)
, j, k = 0, 1, . . . , p,

and ΨT (x) be a (p+ 1)× 1 vector with the j-th element:

ΨT,h,j =
1

Th

T∑
i=1

(
x−Xi

h

)j
K

(
x−Xi

h

)
Yi, j = 0, 1, . . . , p,

then, the local polynomial estimator m̆(x) can be written as m̆(x) = β̆0(x) = e>1M
−1
T,h1

ΨT,h1 .

To analyze the bias and variance effects of m̆(x), we define the stochastic term UT,h1(x) and the bias

term BT,h1(x) as (p+ 1)× 1 vectors with the j-th elements:

UT,h,j =
1

Th

T∑
i=1

(
x−Xi

h

)j
K

(
x−Xi

h

)
ui, j = 0, 1, . . . , p,

BT,h,j =
1

Th

T∑
i=1

(
x−Xi

h

)j
K

(
x−Xi

h

)
∆i(x), j = 0, 1, . . . , p,

where ∆i(x) = m(Xi)−
∑

0≤k≤p
1
k!
m(k)(x)(Xi − x)k. Then,√

Th1
[
m̆(x)−m(x)− e>1M−1

T,h1
(x)BT,h1(x)

]
= e>1M

−1
T,h1

(x)
√
Th1UT,h1(x).

8.2 Proof of Theorem 1

The weighted local linear regression minimizes the following criterion:

Qn (x; β) = T−1
T∑
t=1

wt
(
Yt − β

ᵀXt
)2

and

√
Th

β̂λ − β−[ T∑
t=1

wtXtX
ᵀ
t

]−1 T∑
t=1

wtXt∆t(x)

 =

[
1

Th

T∑
t=1

wtXtX
ᵀ
t

]−1 [
1√
Th

T∑
t=1

wtXtut

]
.
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Notice that, under Assumption A3, and by a Taylor expansion of m(Xt) around x, it can be verified

that the leading bias term is given by

1

Th

T∑
t=1

wtXt∆t(x) ≈ hp+1
m(p+1)(x)fX(x)E (λt|Xt = x)

(p+ 1)!
B(K).

Second, under Assumption A4 and A5,

1

Th

T∑
t=1

wtXtX
ᵀ
t → fX(x)E (λt|Xt = x)M(K),

thus
1

hp+1

[
T∑
t=1

wtXtX
ᵀ
t

]−1 T∑
t=1

wtXt∆t(x)→ m(p+1)(x)

(p+ 1)!
M(K)−1B(K).

Finally, we look at the effect of weighting on variance. Notice that {εt} is a m.d.s., and Eε2t = 1, under

Assumptions A2 - A4, by central limiting theorem for m.d.s. and application of the Cramer-Wold device,

we have
1√
Th

T∑
t=1

wtXtut =⇒ N
(
0, fX (x)E

[
λ2tσ

2
t |Xt = x

]
Γ(K)

)
.

Thus,

√
Th

(
β̂λ − β−hp+1

m(p+1)(x)

(p+ 1)!
M(K)−1B(K)

)
=⇒ N

(
0,
E [λ2tu

2
t |Xt = x]

[E (λt|Xt = x)]2
1

fX (x)
M(K)−1Γ(K)M(K)−1

)
.

8.3 Proof of Corollary 1

The results can be obtained from Theorem 1 by taking λt = σ−2t and calculate the corresponding expec-

tations.

8.4 Proof of Theorem 2

Notice that
√
Th [m̃(x)−m(x)] =

√
Th [m̂(x)−m(x)] +

√
Th [m̃(x)− m̂(x)], by result of Theorem 1, we

only need to show: √
Th [m̃(x)− m̂(x)] = op(1).

By definition, m̃(x) is obtained by minimizing

Q̃T (x; β) = T−1
T∑
t=1

ŵt
(
Yt − β

ᵀXt
)2
,
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and

β̃ = β +

[
T∑
t=1

ŵtXtX
ᵀ
t

]−1 T∑
t=1

ŵtXt∆t(x)+

[
T∑
t=1

ŵtXtX
ᵀ
t

]−1 T∑
t=1

ŵtXtut.

In addition, notice that

β̂ = β +

[
T∑
t=1

wtXtX
ᵀ
t

]−1 T∑
t=1

wtXt∆t(x)+

[
T∑
t=1

wtXtX
ᵀ
t

]−1 T∑
t=1

wtXtut,

Thus,

√
Th
(
β̃ − β̂

)
=

[
1

Th

T∑
t=1

ŵtXtX
ᵀ
t

]−1
1√
Th

T∑
t=1

ŵtXtYt −
[

1

Th

T∑
t=1

wtXtX
ᵀ
t

]−1 T∑
t=1

1√
Th

wtXtYt

=

[
1

Th

T∑
t=1

ŵtXtX
ᵀ
t

]−1
1√
Th

T∑
t=1

ŵtXt∆t(x)−
[

1

Th

T∑
t=1

wtXtX
ᵀ
t

]−1
1√
Th

T∑
t=1

wtXt∆t(x)

+

[
1

Th

T∑
t=1

ŵtXtX
ᵀ
t

]−1
1√
Th

T∑
t=1

ŵtXtut −
[

1

Th

T∑
t=1

wtXtX
ᵀ
t

]−1
1√
Th

T∑
t=1

wtXtut

We need to analyze the following terms:

T∑
t=1

ŵtXtX
ᵀ
t ,

T∑
t=1

ŵtXt∆t(x),
1√
Th

T∑
t=1

ŵtXtut.

Denote

Â =
1

Th

T∑
t=1

ŵtXtX
ᵀ
t , and A =

1

Th

T∑
t=1

wtXtX
ᵀ
t ,

B̂ =
1√
Th

T∑
t=1

ŵtXt∆t(x), and B =
1√
Th

T∑
t=1

wtXt∆t(x),

Ĉ =
1√
Th

T∑
t=1

ŵtXtut, and C =
1√
Th

T∑
t=1

wtXtut,

then, notice that

Â−1 = A−1 − A−1
(
Â− A

)
A−1 + A−1

(
Â− A

)
A−1

(
Â− A

)
Â−1,
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we have

√
Th
(
β̃ − β̂

)
= Â−1B̂ − A−1B+Â−1Ĉ − A−1C

=
[
A−1 − A−1

(
Â− A

)
A−1 + A−1

(
Â− A

)
A−1

(
Â− A

)
Â−1

] (
B + B̂ −B

)
− A−1B

+
[
A−1 − A−1

(
Â− A

)
A−1 + A−1

(
Â− A

)
A−1

(
Â− A

)
Â−1

] (
C + Ĉ − C

)
− A−1C

= A−1
(
B̂ −B

)
− A−1

(
Â− A

)
A−1B + A−1

(
Â− A

)
A−1

(
Â− A

)
Â−1B − A−1

(
Â− A

)
A−1

(
B̂ −B

)
+ A−1

(
Â− A

)
A−1

(
Â− A

)
Â−1

(
B̂ −B

)
+ A−1

(
Ĉ − C

)
− A−1

(
Â− A

)
A−1C + A−1

(
Â− A

)
A−1

(
Â− A

)
Â−1C − A−1

(
Â− A

)
A−1

(
Ĉ − C

)
+ A−1

(
Â− A

)
A−1

(
Â− A

)
Â−1

(
Ĉ − C

)
which is op(1) by (1) Assumption A7 and the fact that A = 1

Th

∑T
t=1wtXtX

ᵀ
t → fX(x)E(λt|Xt = x)M(K)

which is positive definite.

Thus
√
Th
(
β̂ − β̃

)
= op(1). Consequently,

√
Th
[
m̃(x)−m(x)− h(p+1)b(x)

]
=⇒ N

(
0,

ω11(K)

fX(x)E
[
σ−2t |Xt = x

]) .
8.5 Proof of Theorem 3

Notice that the conditional variance follows a GARCH(1,1) process, then under Assumption A1’,

σ2t = ω + βσ2t−1 + γu2t−1 =
ω

1− β + γ
∞∑
j=1

βj−1u2t−j.

Let θ̂ = (ω̂, β̂, γ̂)
ᵀ
be a preliminary root-T consistent estimator of θ = (ω, β, γ), and ût = yt − m̆(Xt), we

estimate σ2t by

σ̂2t =
ω̂

1− β̂
+ γ̂

min{t−1,τ}∑
j=1

β̂j−1û2t−j.
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Thus, for t > τ ,

σ̂2t − σ2t

=
ω̂

1− β̂
− ω

1− β + (γ̂ − γ)

τ∑
j=1

β̂j−1û2t−j

+ γ

τ∑
j=1

β̂j−1
(
û2t−j − u2t−j

)
+ γ

τ∑
j=1

(
β̂j−1 − βj−1

)
u2t−j − γ

∞∑
j=τ+1

βj−1u2t−j.

We use the proof of Theorems 2 to the GARCH case. In particular, we verify that under the assumptions

of Theorem 3, Assumptions 7(a), 7(b) and 7(c) (that were used in the proof of Theorem 2) still hold in

the GARCH case. Let

RT1 =
1

Th

T∑
t=1

(ŵt − wt)XtX
ᵀ
t , RT2 =

1√
Th

T∑
t=1

(ŵt − wt)Xtut, RT3 =
1√
Th

T∑
t=1

(ŵt − wt)Xt∆t(x)

we show each of these terms are op(1).

For

RT1 =
1

Th

T∑
t=1

(ŵt − wt)XtXᵀt

= − 1

Th

T∑
t=1

K ((x−Xt) /h)

σ4t
(σ̂2t − σ2t )XtX

ᵀ
t +

1

Th

T∑
t=1

K ((x−Xt) /h)

σ4t σ̂
2
t

(σ̂2t − σ2t )2XtX
ᵀ
t ,

and under Assumption A1’we have

− 1

Th

T∑
t=1

K ((x−Xt) /h)

σ4t
(σ̂2t − σ2t )XtX

ᵀ
t

= −
(

ω̂

1− β̂
− ω

1− β

)
1

Th

T∑
t=1

K ((x−Xt) /h)

σ4t
XtXᵀt

− 1

Th

T∑
t=τ+1

K ((x−Xt) /h)

σ4t

(
γ̂

τ∑
j=1

β̂j−1û2t−j − γ
∞∑
j=1

βj−1u2t−j

)
XtXᵀt

+ op(1)

It’s easy to verify that, under Assumption A7’, the first term in the above expression is Op(T
−1/2) =
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op(1), and the second term can be decomposed into

(γ̂ − γ)
1

Th

T∑
t=τ+1

K ((x−Xt) /h)

σ4t

(
τ∑
j=1

β̂j−1û2t−j

)
XtXᵀt

+
1

Th

T∑
t=τ+1

K ((x−Xt) /h)

σ4t

(
γ

τ∑
j=1

β̂j−1
(
û2t−j − u2t−j

))
XtXᵀt

+
1

Th

T∑
t=τ+1

K ((x−Xt) /h)

σ4t

(
γ

τ∑
j=1

(
β̂j−1 − βj−1

)
u2t−j

)
XtXᵀt

− 1

Th

T∑
t=τ+1

K ((x−Xt) /h)

σ4t

(
γ

∞∑
j=τ+1

βj−1u2t−j

)
XtXᵀt .

Again, under Assumptions A1’, A6’, and A7’, the first and the third term above are op(1), and the

second term can be written as

1

Th

T∑
t=τ+1

K ((x−Xt) /h)

σ4t

(
γ

τ∑
j=1

β̂j−1
(
û2t−j − u2t−j

))
XtXᵀt

=
1

Th

T∑
t=τ+1

K ((x−Xt) /h)

σ4t

(
2γ

τ∑
j=1

β̂j−1ut−j (ût−j − ut−j)
)
XtXᵀt

+
1

Th

T∑
t=τ+1

K ((x−Xt) /h)

σ4t

(
γ

τ∑
j=1

β̂j−1 (ût−j − ut−j)2
)
XtXᵀt .

We first consider

1

Th

T∑
t=τ+1

K ((x−Xt) /h)

σ4t
ut−j (ût−j − ut−j)XtXᵀt

=
1

Th

T∑
t=τ+1

K ((x−Xt) /h)

σ4t
ut−je

>
1M

−1
T,h1

(Xt−j)BT,h1(Xt−j)XtXᵀt

+
1

Th

T∑
t=τ+1

K ((x−Xt) /h)

σ4t
ut−je

>
1M

−1
T,h1

(Xt−j)UT,h1(Xt−j)XtXᵀt

By a direct calculation of the first and second moments, we can verify that the first (bias) term is of

order hp+11 , which is op(1). The second term is asymptotically equivalent to

1

Th

T∑
t=τ+1

K ((x−Xt) /h)

σ4t fX(Xt−j)
e>1M(K)−1UT,h1(Xt−j)XtXᵀt σt−jεt−j.
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For convenience, denote the (i, j)-th element of M−1 by µi,j(K), then the above term can be written as

1

Th

p+1∑
l=1

T∑
t=τ+1

K ((x−Xt) /h)

σ4t fX(Xt−j)
µ1,l(K)UT,h1,l−1(Xt−j)XtXᵀt σt−jεt−j.

For l = 1, . . . , p+ 1,

1

Th

T∑
t=τ+1

K ((x−Xt) /h)

σ4t fX(Xt−j)
µ1,l(K)UT,h1,l−1(Xt−j)XtXᵀt σt−jεt−j

=
1

T 2h1h

T∑
t=τ+1

T∑
s=1

K ((x−Xt) /h)

σ4t fX(Xt−j)
µ1,l(K)

(
Xt−j −Xs

h1

)l−1
K

(
Xt−j −Xs

h1

)
XtXᵀt σsεsσt−jεt−j,

and we consider three cases (1) t− j = s; (2) t− j > s; (3) t− j < s. In particular, when t− j = s, only

when l = 1 this term is non-zero, by a calculation of moments, it can be verified that its first moment is

of order O
(
T−1h−11

)
, and the second moment is O

(
T−2h−21

)
. Thus this term is op(1) under the bandwidth

assumption. For the other cases, using the inequality of Yoshihara (1976), we can verify that the term is

of order O(T−3/2h−11 h−1/2 + T−3/2h1/2) = O(T−3/2h−11 h−1/2). Thus we can verify that

1

Th

T∑
t=τ+1

K ((x−Xt) /h)

σ4t fX(Xt−j)
e>1M(K)−1UT,h1(Xt−j)XtXᵀt σt−jεt−j = Op

(
T−1h−11 + T−1h

−1/2
1 h−1/2

)
= op (1) .

Notice that τ = O(log T ), by similar methods, one can verify

1

Th

T∑
t=τ+1

K ((x−Xt) /h)

σ4t

(
γ

τ∑
j=1

β̂j−1 (ût−j − ut−j)2
)
XtXᵀt = op(1),

Thus,
1

Th

T∑
t=τ+1

K ((x−Xt) /h)

σ4t

(
γ

τ∑
j=1

β̂j−1
(
û2t−j − u2t−j

))
XtXᵀt = op (1) .

Next, consider

1

Th

T∑
t=τ+1

K ((x−Xt) /h)

σ4t

(
γ

∞∑
j=τ+1

βj−1u2t−j

)
XtXᵀt .

Notice that |β| < 1, direct calculations show that

E

∥∥∥∥∥ 1

Th

T∑
t=τ+1

K ((x−Xt) /h)

σ4t

(
γ

∞∑
j=τ+1

βj−1u2t−j

)
XtXᵀt

∥∥∥∥∥ = O (|β|τ ) ,

which is o(1) since τ = c lnT →∞.
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By similar analysis we can show that

1

Th

T∑
t=1

K ((x−Xt) /h)

σ4t σ̂
2
t

(σ̂2t − σ2t )2XtX
ᵀ
t = op(1).

Combining the above results, we have RT1 = op(1).

The analysis of RT2 and RT3 is parallel to the analysis of RT1.

8.6 Proof of Theorem 4

Again, notice that
√
Th
[
m̃(x)−m(x)− hp+1b(x)

]
=
√
Th
[
m̂(x)−m(x)− hp+1b(x)

]
+
√
Th [m̃(x)− m̂(x)] ,

we show that, under our assumptions,

√
Th
[
m̂(x)−m(x)− hp+1b(x)

]
=⇒ N

(
0,

1

fX(x)
∫ 1
0
σ(r)−2dr

ω2

)
. (20)

and √
Th [m̃(x)− m̂(x)] = op(1). (21)

For result (20) for β̂, notice that

√
Th

β̂ − β−[ T∑
t=1

wtXtX
ᵀ
t

]−1 T∑
t=1

wtXt∆t(x)


=

[
1

Th

T∑
t=1

wtXtX
ᵀ
t

]−1 [
1√
Th

T∑
t=1

wtXtut

]
.

It can be verified that
1

Th

T∑
t=1

wtXtX
ᵀ
t →

∫ 1

0

σ(r)−2drfX(x)M(K),

and, by Taylor expansion,

1

Th

T∑
t=1

wtXt∆t(x) ≈ hp+1
m(p+1)(x)fX(x)

∫ 1
0
σ(r)−2dr

(p+ 1)!
B(K),

thus,

1

hp+1

[
T∑
t=1

wtXtX
ᵀ
t

]−1 T∑
t=1

wtXt∆t(x)→ m(p+1)(x)

(p+ 1)!
M(K)−1B(K),
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For the stochastic component, notice that:

1√
Th

T∑
t=1

wtXtut =
1√
Th

T∑
t=1

XtK
(
x−Xt

h

)
σ−1t εt,

First,

1

Th

T∑
i=1

[
K ((x−Xi) /h)

σ2i

]2(
x−Xi

h

)j+l
u2i → fX(x)

[∫ 1

0

σ(r)−2dr

] ∫
K (u)2 uj+ldu.

in addition, for every fixed (p+ 1)-vector λ

1

Th

T∑
i=1

λᵀXtXᵀt λ
[
K ((x−Xi) /h)

σ2i

]2
u2i → fX(x)

∫ 1

0

σ(r)−2drλᵀΓ(K)λ

notice that
{
λᵀXtK

(
x−Xt
h

)
σtεt,Ft

}
is a martingale difference sequence,

1√
Th

T∑
t=1

λᵀXt
K ((x−Xi) /h)

σ2i
ut =⇒ N

(
0, fX(x)

∫ 1

0

σ(r)−2drλᵀΓ(K)λ

)
.

Thus, by the Cramér—Wold device, we have

1√
Th

T∑
t=1

wtXtut → N

(
0, fX(x)

∫ 1

0

σ(r)−2drΓ(K)

)
.

Thus, together with the analysis with the bias effect, we obtain

√
Th

(
β̂ − β−hp+1m

(p+1)(x)

(p+ 1)!
M(K)−1B(K)

)
=⇒ N

(
0,

1

fX(x) ·
∫ 1
0
σ(r)−2dr

M(K)−1Γ(K)M(K)−1

)
,

and
√
Th
[
m̂(x)−m(x)− hp+1b(x)

]
=⇒ N

(
0,

1

fX(x)
∫ 1
0
σ(r)−2dr

ω2

)
.

Next we prove (21). Notice that

ŵt =
K ((x−Xt) /h)

σ̂2t
,

following a similar argument as the previous Theorems, we only need to show the following results hold

for the locally varying volatility model:

RT1 =
1√
Th

T∑
t=1

(ŵt − wt)XtYt = op(1),

RT2 =

(
1√
Th

T∑
t=1

(ŵt − wt)XtX
ᵀ
t

)
= op(1).
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Notice that RT1 = RT11 +RT12, where

RT11 =
1√
Th

T∑
t=1

(ŵt − wt)Xtm(Xt), RT12 =
1√
Th

T∑
t=1

(ŵt − wt)Xtut.

We first consider RT12. Let

Wts =
G (((s− t) /T ) /hσ)∑T
i=1G (((i− t) /T ) /hσ)

then RT12 = RT12A +RT12B +RT12C , where

RT12A =
1√
Th

T∑
t=1

K((Xt − x0) /h)

[
1

σ̂2t
− 1

σ̃2t

]
Xtut,

RT12B =
1√
Th

T∑
t=1

K((Xt − x0) /h)

[
1

σ̃2t
− 1

σ2t

]
Xtut,

RT12C =
1√
Th

T∑
t=1

K((Xt − x0) /h)

[
1

σ2t
− 1

σ2t

]
Xtut.

and

σ̂2t =
T∑
s=1

Wtsû
2
s, σ̃

2
t =

T∑
s=1

Wtsu
2
s, σ

2
t =

T∑
s=1

Wtsσ
2
s .

We can show each of these terms are op(1). For RT12A, notice that, under Assumption A1”, we have

0 < cL ≤ min
t
σ2t ≤ min

t
σ̃2t + max

t

∣∣σ̃2t − σ2t ∣∣ = min
t
σ̃2t + op(1)

and

0 < cL ≤ min
t
σ̃2t ≤ min

t
σ̂2t + max

t

∣∣σ̃2t − σ̂2t ∣∣ = min
t
σ̂2t + op(1)

In addition,
∑T

t=1 (σ̃2t − σ̂2t )
2 is bounded by

C1

T∑
t=1

(
T∑
s=1

Wts (ûs − us)us

)2
+ C2

T∑
t=1

(
T∑
s=1

Wts (ûs − us)2
)2

,

where C1 and C2 are constants. It can be verified that

T∑
s=1

W 2
tsu

2
s ≤ max |Wts|

T∑
s=1

Wtsu
2
s = O

(
1

Thσ

)
.
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Denote C to be a generic constant term, then

T∑
t=1

(
T∑
s=1

Wts (ûs − us)us

)2

≤ C

T∑
t=1

((
max
t
|ûs − us|

)2
·

T∑
s=1

W 2
tsu

2
s

)
= Op

(
h2q1 h

−1
σ + T−1h−11 h−1σ log(T )

)
= op (1) .

The other term can be analyzed similarly. Thus,
∑T

t=1 (σ̃2t − σ̂2t )
2

= op (1).

For any j = 0, 1, . . . , p,∣∣∣∣∣ 1√
Th

T∑
t=1

[
σ̃2t − σ̂2t
σ̂2t σ̃

2
t

]
K((Xt − x0) /h)

(
Xt − x
h

)j
ut

∣∣∣∣∣
≤
[

1

(mint σ̂2t ) (mint σ̃2t )

][ T∑
t=1

(
σ̃2t − σ̂2t

)2]1/2 [ 1

Th

T∑
t=1

K((Xt − x0) /h)2
(
Xt − x
h

)2j
u2t

]1/2
→ 0

thus, RT12A → 0.

The second term RT12B,

RT12B =
1√
Th

T∑
t=1

K((Xt − x0) /h)
[
σ2t − σ̃2t

]
σ−4t Xtut

+
1√
Th

T∑
t=1

K((Xt − x0) /h)
[
σ2t − σ̃2t

]2
σ̃−2t σ−4t Xtut

It can be verified that both of these two terms are op(1).

For RT12C ,

RT12C = − 1√
Th

T∑
t=1

K((Xt − x0) /h)

[
σ2t − σ2t
σ2tσ

2
t

]
Xtut,

notice that σ2t and σ
2
t are deterministic functions of t, for j = 0, .., p, K((Xt − x0) /h)

[
σ2t−σ2t
σ2tσ

2
t

] (
Xt−x
h

)j
ut

are martingales, and

E

∣∣∣∣∣ C√
Th

T∑
t=1

K((Xt − x0) /h)
[
σ2t − σ2t

](Xt − x
h

)j
ut

∣∣∣∣∣
2

= O
(
h2σ
)
→ 0,

thus RT12C → 0. Consequently, RT12 = RT12A +RT12B +RT12C → 0.

The proofs for RT11 and RT2 are similar.
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