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Abstract

This paper concerns linear models for grouped data with group-specific effects. We
construct a test for the null of no within-group correlation beyond that induced by
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on size and power under asymptotics where the number of groups grows but their
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1 Introduction

The standard linear model for stratified observations on many small independent groups is

yg,i = x′g,iβ + ug,i, g = 1, . . . , G, i = 1, . . . , N.

The errors for a given group g are likely to be correlated. A standard approach is to model

such dependence through the error-component model

ug,i = αg + εg,i,

where αg is a group-specific effect and the errors εg,i are assumed uncorrelated within

each group (see, e.g., Moulton 1986). This formulation restricts the pairwise within-group

correlation to be constant, a restriction that is seldomly tested. There are several formal

tests for the presence of a group effect (King and Evans 1986, Moulton and Randolph 1989,

Akritas and Arnold 2000, Akritas and Papadatos 2004). These tests all break down when

the εg,i are correlated within groups, however. Our goal here is to develop a test of the null

of no within-group correlation beyond that induced by the group-specific effect. Aside from

a specification test for the error-component specification, the test can also serve to evaluate

whether cluster-robust standard errors (Liang and Zeger 1986, Arellano 1987) should be

used for fixed-effect estimators of β.

For our purposes it is important to construct a test that has non-trivial power against

any alternative. As such, we aim for a Portmanteau test. Inoue and Solon (2006) proposed

such a test under the additional assumption that the covariates are strictly exogenous and

that the errors are homoskedastic.1 The approach proposed here allows for unspecified

forms of (conditional) heteroskedasticity and only requires the estimator of β used to be

asymptotically linear under the null. As such, it can be applied to models with exogenous,

predetermined, or endogenous regressors (provided, of course, that suitable instrumental

variables are available).

1Under these conditions several tests against specific alternatives—typically (first-order) autoregressive

errors—have also been proposed. Born and Breitung (2016) provide references, discussion, and several

refinements.
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The test statistic we construct uses (estimators of) all linearly-independent differences

between pairwise within-group covariances. Linear combinations of a subset of the moment

conditions underlying our test statistic yield the mn-statistics of Arellano and Bond (1991),

which can be used to test against non-zero nth-order autocorrelation in the first-differenced

errors ug,i−ug,i−1; see Yamagata (2008) for a joint test. Because first-differencing introduces

first-order autocorrelation also under the null such a test can only be constructed for n ≥ 2.

Furthermore, at least n + 2 observations per group are needed to construct a meaningfull

mn-statistic. Hence, a four-wave panel is needed to construct the m2-statistic. In contrast,

our test can be applied as soon as three observations per group are available. Observe that

an error-component model for two-wave data will always satisfy the null of no remaining

within-group correlation; see below.

In the next section we formally introduce our test and presents its asymptotic properties

as the number of groups, G, grows large but their size, N , is held fixed. We then present

the results from various simulation experiments to assess the size and power of the test

for realistic sample sizes. The test is found to be near size-correct and powerful against

common deviations from the null. In our simulations the power of our test is also uniformly

larger than the power of the mn-test. All proofs are collected in the appendix to the paper.

2 Testing for within-group correlation

We initially consider the error-component model

ug,i = αg + εg,i, g = 1, . . . , G, i = 1, . . . , N, (2.1)

where ug,i is directly observable. Later we will replace ug,i by a suitable estimator. In (2.1),

αg represents a group-specific unobserved effect while εg,i is a latent idiosyncratic error that

varies both across and within groups. The standard error-component formulation assumes

that all variables are independent and identically distributed, both across and within groups

(as in Arellano 2003, Chapter 3). We will maintain this assumption across groups but will
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only impose E(εg,i|αg) = 0 for each group.2 Our aim is to test the (multiple) null hypothesis

E(εg,i1εg,i2) = 0 for all i1 6= i2, (2.2)

which states that there is no within-group correlation beyond the correlation induced by

the group-specific effect.

The presence of αg implies that a test of (2.2) based on covariances of the levels of ug,i

will not be suitable. However, when iterating expectations using E(εg,i|αg) = 0 we see that

E(ug,i1(ug,i2 − ug,i3)) = E(εg,i1(εg,i2 − εg,i3)) = E(εg,i1εg,i2)− E(εg,i1εg,i3).

For any i1 6= i2 6= i3 this is the difference between two covariances. There are N(N − 1)/2

different covariances and, hence,

r :=
N(N − 1)

2
− 1 =

(N + 1)(N − 2)

2

unique such differences. These differences are all zero if and only if E(εg,i1εg,i2) = σ2

for all i1 6= i2 and some constant σ2. In this case, εg,i itself follows an error-component

model, say εg,i = ηg + εg,i with var(ηg) = σ2 and cov(εg,i1 , εg,i2) = 0 for i1 6= i2. This is

observationally equivalent to (2.1) under the null with the group-specific effect redefined

as αg + ηg. Consequently, we may set σ2 = 0 without loss of generality. It follows that

testing (2.2) is equivalent to jointly testing that all r differences are equal to zero. A

convenient way to re-write the null is as follows. Let ∆ be the first-differencing operator,

so ∆ug,i = ug,i − ug,i−1, and let ug,i := (ug,1, . . . , ug,i−2, ug,i+1)
′.3 Then testing (2.1) is

equivalent to testing

E(ug,i∆ug,i) = 0 for all 1 < i ≤ N. (2.3)

2Random sampling at the group level can be relaxed. It suffices to assume that the ug,i are independent

but not identically distributed across groups for our approach to go through—under suitable strengthening

of the assumptions required for a law of large numbers and central limit theorem to apply. We refrain from

such a sampling assumption here for ease of exposition.
3The null (2.2) is equivalent to the set of moment conditions E(ug,i1(ug,i2−ug,i3)) = 0, for i1 6= i2 6= i3

but only r of these are linearly independent. Our formulation in (2.3) is not the only way of selecting r

such moments but is notationaly convenient. Note that any other way would yield (numerically) the same

test statistic.
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This approach delivers testable moments as soon as more than two observations per group

are available.4

Observe that moments of the form

E(∆ug,i∆ug,i−n) = 0 for 1 < n ≤ i− 2,

are linear combinations of a subset of those in (2.3). These are nth-order autocovariances

of ∆εg,i. Arellano and Bond (1991) suggested testing for nth-order autocorrelation by

evaluating whether the corresponding sample moment can be considered large relative to

its standard error. The resulting test statistic is know as the mn-statistic. Yamagata

(2008) proposed to combine all available such mn-statistics into a single test procedure.

Notice that, as first-differencing introduces autocorrelation of order one, an mn-statistic

can only be used for n ≥ 2. Furthermore, m2-statistic requires N ≥ 4; more generally, the

mn-statistic is available if N ≥ n+ 2.

Moving on, to state our test statistic compactly it is useful to introduce the r×1 vector

vg := (v′g,2, . . . ,v
′
g,N)′, vg,i := ug,i∆ug,i.

The null (2.3) can then be written as the moment condition E(vg) = 0. The corresponding

sample moment is
∑G

g=1 vg and the sample variance is
∑G

g=1 vgv
′
g. Our test statistic is the

quadratic form

sG :=

(
G∑
g=1

vg

)′( G∑
g=1

vgv
′
g

)−1( G∑
g=1

vg

)
,

and its large-sample behavior, as the number of groups G grows, is summarized in Theorem

1 below.
4An alternative way to arrive at (2.3) is by noting that

E(ug,i1ug,i2) = E(α2
g) + E(εg,i1εg,i2).

Because the distribution of αg is left unrestricted this equation, in itself, is not of direct use. However, the

panel dimension allows to difference-out the second moment of the group-specific effect, yielding differences

of the form

E(ug,i1∆ug,i2) = E(εg,i1∆εg,i2),

which lead to (2.3).
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In the theorem we consider sequences of local alternatives where

E(εg,i1εg,i2) =
σi1,i2√
G

(2.4)

and σi1,i2 is non-zero for at least one pair of indices i1 6= i2. We write the resulting

Pitman drift in the moment condition as E(vg) = σ/
√
G where the vector σ collects

all the relevant differences of the form σi1,i2 − σi1,i2−1 according to our specification of vg

above. We let χ2(n;m) denote the non-central χ2-distribution with n degrees of freedom

and non-centrality parameter m.

Theorem 1. Suppose that E(α4
g) <∞, E(ε4g,i) <∞, and that V := E(vgv

′
g) has maximal

rank r.

(i) If the null (2.3) holds sG
d→ χ2(r, 0).

(ii) Under a sequence of local alternatives as in (2.4) sG
d→ χ2(r,σ′V −1σ).

The result implies that a test that has size α ∈ (0, 1) in large samples can be constructed

by comparing sG to the (1− α)th quantile of the χ2(r, 0) distribution, rejecting the null if

the statistic is larger than the quantile in question. Such a test is asymptotically unbiased,

consistent against any fixed alternative, and has non-trivial asymptotic power against any

Pitman sequence.

We now generalize (2.1) to

yg,i = x′g,iβ + ug,i, ug,i = αg + εg,i,

where yg,i and xg,i are an observable outcome and vector of covariates, respectively, and

ug,i is now the latent error term. Suppose that an estimator β̂ of the coefficient vector β

is available. Then we may use the residuals

ûg,i := yg,i − x′g,iβ̂

as estimators of the ug,i and construct a test statistic for our null based on these residuals.
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Compared to the error-component formulation the test statistic needs to be modified

slightly to take into account the sampling noise in β̂. To do so we impose the requirement

that β̂ is asymptotically linear under the null, i.e., that

√
G(β̂ − β) =

1√
G

G∑
g=1

ωg + op(1) (2.5)

for a random variable ωg that has zero mean and finite variance. This is a very mild

requirement as all common estimators satisfy this condition (of course, under suitable

regularity conditions). When the covariates are strictly exogenous, for example, an obvious

estimator of β would be within-group least squares. In that case, ωg,i = Q−1
∑N

i=1(x̃g,i ug,i)

for Q :=
∑N

i=1E(x̃g,ix̃
′
g,i) and x̃g,i := xg,i − xg, where xg denotes the within-group mean

of the covariates. This estimator is robust to within-group correlation and, hence, remains

asymptotically linear when our null is false. On the other hand, when the covariates are

merely pre-determined, instrumental-variable estimators of the form in Holtz-Eakin, Newey

and Rosen (1988), which are based on moment conditions of the form E(zg,i∆ug,i) = 0 for

zg,i := (x′g,i−2, . . . ,x
′
g,1)
′ (or a subvector thereof) will generally break down when the errors

are correlated.

If we let v̂g denote the plug-in estimator of vg using the residuals then, under the

regularity conditions stated in the theorem below, we have that

G∑
g=1

v̂g =
G∑
g=1

(vg −Ωωg) + op(
√
G),

where Ω := (Ω′2, . . . ,Ω
′
N)′ for Ωi := E(ug,i∆x

′
g,i) +E(X ′g,i∆ug,i) and we have introduced

the matrix Xg,i := (xg,1, . . . ,xg,i−2,xg,i+1). Our test statistic in the presence of covariates

can then be written as

ṡG :=

(
G∑
g=1

v̂g

)′( G∑
g=1

v̇gv̇
′
g

)−1( G∑
g=1

v̂g

)
,

for v̇g := v̂g − Ω̂ω̂g, where Ω̂ denotes the plug-in estimator of Ω and ω̂g is an estimator

of the influence function of β̂. The latter estimator depends on the problem at hand. For
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the within-group least-squares estimator, for example, we have ω̂g = Q̂
−1∑N

i=1(x̃g,iûg,i),

where Q̂ := G−1
∑G

g=1

∑N
i=1(x̃g,ix̃

′
g,i).

Theorem 2 summarizes the large-sample properties of the test based on ṡG. Note that,

when the estimator of β is not robust to violation of our null, its influence function under

the Pitman drift in (2.4) will have

E(ωg) =
bσ√
G

for some non-zero vector bσ. The exact form of bσ will depend both on the estimator used

and the alternative hypothesis under consideration. Some calculations and discussion are

provided in the next section. We let ‖·‖ denote both the Euclidean norm and the Frobenius

norm.

Theorem 2. Suppose that E(α4
g) <∞, E(ε4g,i) <∞, and E(‖xg,i‖4) <∞, that (2.5) holds

and that G−1
∑G

g=1‖ω̂g − ωg‖2 = op(1), and that V̇ := E((vg − Ωωg)(vg − Ωωg)′) has

maximal rank r.

(i) If the null (2.3) holds ṡG
d→ χ2(r, 0).

(ii) Under a sequence of local alternatives as in (2.4) ṡG
d→ χ2(r, σ̇′V̇

−1
σ̇) where we let

σ̇ := σ −Ωβ.

Theorem 2 differs from Theorem 1 only in the local-power result. Estimation noise in β̂

changes the weight matrix in the non-centrality parameter in a way that is independent

of the alternative under consideration. Local power will be further affected if β̂ suffers

from asymptotic bias under the alternative. The extent to which both channels matter

depends on how sensitive the moment in (2.3) are to changes in β. This is measured by

the Jacobian matrix Ω. Consequently, a sufficient condition for the estimation of β to

have no (asymptotic) impact on our test is that Ω is equal to the zero matrix. This would

happen, for example, when the covariates are strictly exogenous and αg and the xg,i are all

uncorrelated.

8



3 Simulations

We next present results from numerical experiments on the size and power of our test. We

consider a model without regressors, i.e., yg,i = αg+εg,i. We generate data by setting αg = 0

for all g and draw the errors from a multivariate normal distribution with mean zero and

covariance matrix Σ. We provide results for three configurations of this covariance matrix.

In the first configuration all observations have unit variance, the first two observations

have correlation ρ, and all other pairwise correlations are zero. In the second configuration

the errors follow a (stationary) first-order autoregressive process εg,i = ρ εg,i−1 + ηg,i for

independent standard-normal innovations ηg,i. In the third configuration the errors follow

a first-order moving-average process εg,i = ηg,i + θρηg,i−1, where the innovations are again

independent standard normal. Here, the parameter θρ can be parameterized in terms of the

(first-order) autocorrelation coefficient ρ.5 All configurations depend on a single correlation

parameter, ρ, and all yield an identity matrix as covariance matrix under the null, i.e., when

ρ = 0.

Figure 1 provides histograms of the sampling distribution of our test statistic under the

null for G ∈ {100, 250, 500} groups of size three (upper panels) and four (lower panels).

Each histogram is accompanied by its limit distribution. The figure reveals our asymptotic

approximation under the null to be quite accurate even for a relatively small number of

groups.

The upper panels in Figure 3 plot the power of our test against the three alternatives

discussed above (as a function of ρ) for G = 100 (solid line), G = 250 (dashed line),

and G = 500 (dashed-dotted line) groups of size three. This is the smallest number of

5For a given parameter θ the variance and first-order autocovariance of the moving-average process are

(1+θ2) and θ, respectively. The first-order autocorrelation of the process then is ρ := θ/(1+θ2). Provided

that ρ 6= 0, inversion gives

θ =
1±

√
1− ρ2

4

2ρ

which is well defined for all − 1
2 < ρ < 1

2 . If ρ = 0 then θ = 0 and vice versa. We generate our data using

the largest of the two roots. The results are invariant to this choice.
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Figure 1: Sampling distributions under the null
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within-group observations for which any test that allows for group-specific effects can hope

to have non-trivial power. Each panel also marks the significance level of the test of .05

(horizontal dotted line). The test does well in rejecting the null when it is false, with

rejection frequencies moving up quite rapidely as the parameter ρ moves away from zero.

The power functions are monotone increasing except in the autoregressive case. There, the

test has some difficulty against near unit-root alternatives. This is most noticeable when

G = 100.

The lower panels in Figure 3 illustrate power for G = 100 groups of size four. Here we

can compare our approach (black solid line) to the test of Yamagata (2008) (grey solid line).

The latter approach is a test of the single moment condition E[∆εg,4∆εg,2] = 0 and, hence,

co-incides with the m2-test developed by Arellano and Bond (1991). The m2-test has no

power against any alternative in our first configuration; its power curve is flat. This is not

surprising as the moment condition being tested continues to hold under all alternatives in

this configuration. The m2-test does have power against autoregressive and moving-average

alternatives. However, it is uniformly (in ρ) less powerful than our test in both cases and

the power curves are highly asymmetric around zero. It has great difficulty detecting

autoregressive correlation patterns when the autocorrelation coefficient is positive and also

struggles with moving-average errors when their (first-order) autocorrelation is negative.

Our test has high power against all these alternatives. Also note that, now, our test does

not suffer from power loss against near unit-root scenarios, even with data on only 100

groups.

To illustrate Theorem 2 we present some further simulation results for the dynamic

specification

yg,i = yg,i−1 β + ug,i,

where β is estimated by an instrumental-variable estimator that uses suitably-lagged levels

as instruments for the equation in first differences. Such estimators are given in Anderson

and Hsiao (1981), Holtz-Eakin, Newey and Rosen (1988), and Arellano and Bond (1991)
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Figure 2: Power functions
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and are based on sequential moment conditions of the form

E(yg,i−j∆ug,i) = 0, for all 1 < j ≤ i and 1 < i ≤ N. (3.6)

The validity of these moments comes from an assumption of no within-group correlation

beyond a certain lag. Hence, such estimators will be inconsistent under fixed alternatives

and asymptotically biased under Pitman sequences. To see this, consider (stationary)

autoregressive alternatives of the form

εg,i = ρ εg,i−1 + ηg,i

for ηg,i ∼ (0, σ2) white noise. Using backward substitution gives yg,i = αg

1−β +
∑∞

j=0 β
jεg,i−j

and so, for any j > 1,

E(yg,i−j∆ug,i) = −ρj−1 σ2

(1 + ρ)(1− ρβ)

follows from standard results on autoregressive processes. On the other hand, if we consider

moving-average alternatives like

εg,i = ηg,i + θρηg,i−1,

again for ηg,i ∼ (0, σ2) white noise, we have E(yg,i−2∆ug,i) = −θρ σ2 but E(yg,i−j∆ug,i) = 0

for all j > 2. As instrumental-variable estimators based on the moments in (3.6) are

linear, their asymptotic bias, bσ, is a linear transformation of the bias in said moments just

derived.

We applied our test to the autoregressive specification against the autoregressive and

moving-average alternatives. We generated the short time series with β = 1
2

and initialized

each processes by drawing from its steady-state distribution. Figure 3 contains the power

plots for each of the alternatives for samples on G = 100 groups of size four. To illustrate

the impact of the first-step estimator we present results for our test when β is estimated

by the Arellano and Bond (1991) estimator (dashed line) and by the Anderson and Hsiao

(1981) estimator (dashed-dotted line); see Arellano (2003, Chapter 6). The former uses

all lagged levels of the outcome variable that are valid under the null of no correlation.
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Figure 3: Power functions for the dynamic specification
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Power functions computed over 100,000 Monte Carlo replications. Each plot contains the power function

based on the Arellano-Bond estimator (dashed line), the Anderson-Hsiao estimator (dashed-dotted line),

and the oracle that knowns β (solid grey line). Horizontal dotted lines mark the significance level of the

test.

The latter estimator only uses the first such lag and, consequently, is inefficient relative to

the former. Each plot also contains the power of the (now infeasible) test that presumes

knowledge of β (solid grey line). These power curves co-incide with those in the lower

panels of Figure 2 and serve merely as a comparison.

The results show power loss relative to the oracle case. The difference in the power

curves for the two feasible test statistics further highlights the dependence of power on the

first-step estimator used. As discussed below Theorem 2, power is affected both by the

variance and the bias in the estimator. In our simulations, using either the Arellano and

Bond (1991) estimator or the Anderson and Hsiao (1981) estimator creates large power

differences primarily when the errors have positive autocorrelation. On the other hand, the

results also show that our test has non-trivial power even in cases where β is not identified.

Indeed, with autoregressive errors, none of the moment conditions in (3.6) are valid away

from the null.
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Appendix

Proof of Theorem 1 The proof is standard. Consider first the limit result under the

null. The moment conditions stated in the theorem imply that

1√
G

G∑
g=1

vg
d→ N(0,V ), and

1

G

G∑
g=1

vgv
′
g

p→ V .

Hence,

z :=

(
G∑
g=1

vgv
′
g

)−1/2 G∑
g=1

vg
d→ N(0, Ir),

where, here and later, Ir denotes the r × r identity matrix. Thus, z′z
d→ χ2(r, 0) follows.

Under the sequence of local alternatives

E(vg) =
σ√
G
,

the plug-in estimator of V is still consistent but we have an asymptotic-bias term, i.e, now

z :=

(
G∑
g=1

vgv
′
g

)−1/2 G∑
g=1

vg
d→ N(V −1/2σ, Ir),

and so z′z
d→ χ2(r,σ′V −1σ) follows.

Proof of Theorem 2 The main difference with the proof of Theorem 1 is accounting for

the estimation noise in β̂. Because

ûg,i = yg,i − x′g,iβ̂ = ug,i − x′g,i(β̂ − β),

‖β̂−β‖2 = Op(G
−1) by (2.5), and the covariates have finite second moments the expansion

v̂g,i = ûg,i∆ûg,i = vg,i −Ag,i (β̂ − β) +Op(G
−1)

holds with

Ag,i := ug,i∆x
′
g,i +X ′g,i∆ug,i.
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Further, our moment assumptions equally allow the application of a law of large numbers

to establish that
1

G

G∑
g=1

Ag,i
p→ Ωi, 1 < i ≤ N.

Put together with the influence-function representation of β̂ as stated in (2.5) this yields

1

G

G∑
g=1

v̂g =
1

G

G∑
g=1

(vg −Ωωg) + op(G
−1/2).

Under the null the summand has zero mean and variance V̇ . Therefore, by a central limit

theorem,

z :=

(
G∑
g=1

(vg −Ωωg)(vg −Ωωg)′
)−1/2 G∑

g=1

v̂g
d→ N(0, Ir),

and so equally z′z → χ2(r, 0). Now, it remains only to show that instead using the

estimator
1

G

G∑
g=1

(v̂g − Ω̂ω̂g)(v̂g − Ω̂ω̂g)′

in the denominator of the above expression does not affect the limit behavior of the statistic.

For this it suffices to show that Ω̂
p→ Ω and that

1

G

G∑
g=1

‖v̂g − vg‖2 = op(1);

recall that our regularity conditions already include that G−1
∑G

g=1‖ω̂g−ωg‖2 = op(1), i.e.,

the equivalent requirement for the influence function. To see consistency for the Jacobian

matrix observe that its ith submatrix is

1

G

G∑
g=1

(ûg,i∆x
′
g,i +X ′g,i∆ûg,i) =

1

G

G∑
g=1

Ag,i

− 1

G

G∑
g=1

(X ′g,i(β̂ − β)∆x′g,i) + (X ′g,i∆x
′
g,i(β̂ − β)).

From above, the first term on the right-hand side converges in probability to Ωi. The

second right-hand side term is Op(G
−1/2) by the existence of second-order moments on the

16



covariates and the asymptotic-linearity of β̂. Hence, Ω̂
p→ Ω follows. Next, we have that

1

G

G∑
g=1

‖v̂g − vg‖2 =
1

G

G∑
g=1

N∑
i=2

‖v̂g,i − vg,i‖2 =
1

G

G∑
g=1

N∑
i=2

‖Ag,i (β̂ − β)‖2 + op(1).

Because

1

G

G∑
g=1

N∑
i=2

‖Ag,i (β̂ − β)‖2 = (β̂ − β)′

(
1

G

G∑
g=1

N∑
i=2

(A′g,iAg,i)

)
(β̂ − β)

and ‖β̂−β‖2 = Op(G
−1) it remains only to verify that the weight matrix in this quadratic

form is Op(1). Using the definition of Ag,i, this matrix is equal to the sum of the four terms

1

G

G∑
g=1

N∑
i=2

(∆ug,iXg,iX
′
g,i∆ug,i),

1

G

G∑
g=1

N∑
i=2

(∆ug,iXg,iug,i∆x
′
g,i),

1

G

G∑
g=1

N∑
i=2

(∆xg,iu
′
g,iX

′
g,i∆ug,i),

1

G

G∑
g=1

N∑
i=2

(∆xg,iu
′
g,iug,i∆x

′
g,i),

and each of these terms is bounded in probability. To see this observe that for the first

term

E(‖∆ug,iXg,iX
′
g,i∆ug,i‖) = E(∆u2g,i‖Xg,iX

′
g,i‖) ≤

√
E(∆u4g,i)

√
E(‖X ′g,iXg,i‖2) <∞

because ug,i and xg,i have finite fourth-order moments and ‖X ′g,iXg,i‖2 =
∑

i

∑
j(x
′
g,ixg,j)

2.

A law of large numbers then ensures that the sample average is Op(1). For the fourth term

we similarly have that

E(‖∆xg,iu′g,iug,i∆x′g,i‖) ≤
√
E((u′g,iug,i)

2)
√
E(‖∆xg,i∆x′g,i‖2) <∞.

The second and third term are each others transpose and it suffices to establish the result

for the former. Let Si = {1, . . . , i− 2, i+ 1}. Then

E(‖∆ug,iXg,iug,i∆x
′
g,i‖) ≤

∑
j∈Si

E
(
|ug,j∆ui| ‖xg,j∆x′g,i‖

)
is bounded from above by∑

j∈Si

√
E(|ug,j∆ui|2)

√
E(‖xg,j∆x′g,i‖2) <∞,
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where the last equality again follows from our fourth-order moment assumptions. This

then yields Theorem 2(i).

Theorem 2(ii) follows in the same way as did Theorem 1(ii) once the asymptotic bias

in the estimator of β is accounted for. To do so observe that, under a sequence of local

alternatives where

E(vg) =
σ√
G

we still have an asymptotic-equivalence result of the form

1√
G

G∑
g=1

v̂g =
1√
G

G∑
g=1

(vg −Ωωg) + op(1).

Now, however, the summand on the right-hand side is no longer mean zero but, rather, has

expectation

E(vg −Ωωg) =
σ −Ωbσ√

G
=

σ̇√
G
.

Accounting for the bias yields
∑G

g=1 v̂g/
√
G

d→ N(σ̇, V̇ ). The remainder of the proof is

identical to that of Theorem 2(ii).
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