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Abstract

The paper analyzes the dynamics of demand for three options when

agents differ in their preferences for conformity. Each agent seeks to

imitate others who are more individualistic and to distinguish her-

self from others who are more conformist, relative to herself. In each

period, every agent chooses her utility-maximizing option given each

agent’s demand in the previous period. It is shown that for a large

class of initial demand distributions, demand dynamics resemble fash-

ion cycles: Total demand for each option over time is wave-like, and,

when positively demanded, an option trickles through the entire pop-

ulation, from individualistic towards conformist agents.

Keywords: fashion cycle, demand cycle, conformity, individuality,

dynamics, distribution of demand

JEL Codes: C73, D11, D91, E21, E32, E71, Z13
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1 Introduction

Many choice categories exhibit trends and fashions which come and go. Old

fashions are replaced by new ones in an everlasting repetition. Once a new

fashion enters the market, initial demand for it is low. Then demand grows

until it reaches a peak, and finally declines until the fashion entirely dis-

appears. These demand dynamics are the life cycle of a fashion. When

one fashion disappears, the life cycle of the next fashion takes off (Kotler,

1997, p. 533). In this sense, we can speak of continuous fashion cycles.

Clothing, food and nutrition, sports, neighborhoods, holiday destinations,

topics in academia are only some categories among many which feature fash-

ion cycles. This paper proposes a model to explain fashion cycles through

heterogeneous conformity and individuality preferences of consumers.

Anecdotal evidence for heterogeneous preferences for individuality and

conformity is manifold. Statements like “you cannot wear these glasses any-

more, everybody is wearing them now” or “I do not like this band anymore,

they have become so popular that they even charge for their concerts” ex-

press the wish to distinguish oneself from the majority. On the other hand,

mottos like “do as your neighbors do” or “all my friends have x, so I also

want x” express the wish to conform. Intuitively, this distinctive behavior of

some parts of the population together with the imitative behavior of other

parts of the population leads to an ever-going change in fashions.

Heterogeneous conformity and counterconformity preferences have been

confirmed by sociological and psychological research. In an early seminal ex-

periment Asch (1951) found different tendencies among subjects to conform

to the majority. Some subjects conformed to the majority in order not to

differ, others “withdrew” from the majority because of the desire of “being

an individual”. Snyder and Fromkin (1980) introduced the uniqueness the-

ory according to which an individual’s need for uniqueness determines how

similar or dissimilar she wants to be to others. Lynn and Harris (1997),

Ariely and Levav (2000) and Timmor and Katz-Navon (2008) have provided

empirical evidence that an individual’s distinctive behavior in various envi-

ronments is driven by her need for uniqueness. Berger and Heath (2008)
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adduce an individual’s desire to distinguish herself from disliked others as a

further argument for counter-conformity.

Traditionally, fashion cycles have been a topic of sociological research. Ve-

blen (1912), Simmel (1957) and Bourdieu (1984, 1993) proposed the trickle-

down theory as an explanation of fashion cycles. According to the trickle-

down theory, fashion goods serve upper classes to distinguish themselves from

lower classes who in turn emulate the upper classes. Thus fashions move from

the upper classes down to the lower classes. In criticism of the trickle-down

theory, Blumer (1969), Sproles (1981), McCracken (1988), King (1965), Field

(1970), Vejlgaard (2008) separate fashion leadership from the upper class and

argue that fashion innovators and leaders can come from any class, also lower

classes and subcultures. They do not see the primary purpose of fashion in

class distinction. Groups in the fashion diffusion process are roughly di-

vided into “innovators, leaders, followers, and participants” (Blumer, 1969)

whereby fashions trickle from innovators, over leaders and followers to partic-

ipants. The underlying, not explicitly stated driving forces of these fashion

cycle theories are heterogeneous conformity and counter-conformity prefer-

ences. Park (1998), Cholachatpinyo et al. (2002) and Workman and Kidd

(2000) explicitly link the fashion process to heterogeneous (counter-) confor-

mity preferences. They provide empirical evidence that fashion innovators

are driven by a need to distinguish themselves and to be unique, whereas fol-

lowers have stronger preferences for being similar to others and to conform.

This paper presents a formal economic model of fashion cycles which is

in line with the above sociological theories. The model explains the typical

fashion life cycle which is the bell-shaped demand for the fashion item over

time, and the “trickling” process of the fashion item from innovators over

leaders and followers to participants through heterogeneous (counter-) con-

formity preferences. Specifically, we propose a discrete time model in which

the population is infinitely heterogeneous with respect to conformity prefer-

ences. Each agent’s conformity preference is defined by her location in the

unit interval. In each period, every agent decides which one of three option

to consume on the basis of the previous period distribution of demand across

the population. We show that for a large class of initial distributions the
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dynamics of demand converge to an infinitely repeated unique sequence of

demand distributions spanning eight time periods. Given these dynamics,

the demand for each option over time is given by consecutive, bell-shaped

life cycles. Having completed one life cycle, an option stays out of the mar-

ket for one time period, and then enters into another life cycle. Within each

life cycle, the option trickles deterministically through society. The model

replicates fashion cycles and predicts the revival of fashions given a limited

set of choice options.

Another driver for fashion cycles, different from heterogeneous conformity

preferences, has been explored by Pesendorfer (1995). He shows that when

consumption choice is a signaling device for an unobserved “quality” of the

consumer, then dynamic demand for different designs which are subsequently

developed and sold by a monopolist resembles fashion cycles. In his model,

a new design serves as a signaling device for “high” types because of a high

initial price which prevents “low” types from buying the design. Over time,

the monopolist decreases the price such that more “low” types buy the design,

and the value as signal for high types is lost. At this point, the monopolist

introduces a new design at a high price which serves as a new signaling

device, and so on. This model cannot explain fashion cycles in categories in

which options have the same (or no) price, for example, given first names

(Yoganarasimhan, 2017). Moreover, it does not account for the fact that

trends are often started by individuals with a low willingness to pay or with

a low budget at low prices (Field, 1970; Sproles, 1981; Vejlgaard, 2008). For

example, certain clothing and music styles were initiated in the youth and

street culture, or lower income classes. Heterogeneous conformity preferences

can explain both fashion cycles in the demand for goods with no price, as

well as fashions being started by individuals with a low willingness to pay.

The following works have started to investigate heterogeneous confor-

mity preferences as a driver for fashion cycles with formal models. Karni

and Schmeidler (1990) consider a discrete time model with two social classes

α and β. In each time period, 1
3

of each class has to choose between three

different consumption options whereby α members want to imitate other α

members and distinguish themselves from β members, and β members want
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to conform to both α and other β members. Consumers are forward looking

over their lifetime which is 9 periods. They show that the demand over time

for each color resembles consecutive life cycles. Matsuyama (1991) analyzes

a random matching game with non-conformists and conformists. Individuals

choose between two consumption options before they are matched. Con-

formists gain a high payoff if their match chose the same option, and non-

conformists gain a high payoff from miscoordination. If intergroup matching

is sufficiently likely and inertia exist in the society, then the demand for the

two options resembles fashion cycles with non-conformists acting as fashion

leader and conformists as followers. Corneo and Jeanne (1999) again distin-

guish between two groups – “natives” and “tourists” – who decide whether

to go to location 1 or 2. Tourists like to go where natives go, but natives do

not want to go where tourists go. Location 2 is only known to some agents

and information about it spreads via a random matching process between

agents. If location 2 is better known among natives initially, then fashion

cycles arise in which the natives act as fashion leader and the tourists as

followers. Berger et al. (2011) introduce a model in which an agent chooses

from a number of goods while being concerned about her social image. This

induces individuals to choose what others who she likes consume, and not to

choose what disliked others consume. The authors provide some qualitative

results and intuition how their model might give rise to fashion cycles, but

they are missing a rigorous analysis of the dynamics of demand. Granovetter

and Soong (1983) model heterogeneous (counter-) conformity preferences by

introducing individual-specific lower and upper thresholds on the fraction of

population above and below which an individual participates in a movement.

If the lower threshold has not been reached, too few people participate in the

movement for the individual to join, whereas if the threshold has been sur-

passed, too many people participate for the individual to join. The authors

find that for certain distributions of lower and upper thresholds across the

population, participation rates oscillate between different levels.

This paper proposes a new simple model with an infinitely heterogeneous

population regarding its conformity preferences in a three-good economy.

This allows us to produce demand dynamics which show the properties of
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fashion cycles as described by traditional fashion theories. Demand for each

option follows consecutive bell-shaped life cycles over time, one fashion sub-

stitutes another, and fashions trickle in a deterministic way through society.

Section 2 outlines the model and section 3 presents the analysis and re-

sults.

2 Model

A unit mass population is continuously and uniformly distributed on the

[0,1]-interval. Every agent is indexed by i ∈ [0, 1] with i being equal to her

location on the [0,1]-interval. An agent’s location is fixed and exogeneously

given.

We propose two interpretations of the [0,1]-interval in line with our hy-

pothesis and the sociological fashion theories. First, the [0,1]-interval can be

interpreted as a scale of social status with i = 0 being the highest status

(maybe richest) agent and i = 1 being the lowest status (maybe poorest)

agent; second, it can be interpreted as a scale of conformity preference with

i = 0 being the most individualistic agent and i = 1 being the most conform-

ing agent.

As to agents’ preferences, we assume that every agent i wants to be similar

to all other agents j < i and wants to distinguish herself from all other agents

j > i. In the context of our two interpretations this means that every agent

wants to emulate agents of higher status and distinguish herself from agents

of lower status or that every agent wants to emulate more individualistic

agents and distinguish herself from more conforming agents. The preferences

will be formalized in the utility function given below.

We assume that the set of all available consumption options S consists

of three styles, S = {A,B,C}. These three styles could be three differently

colored sweatshirts, three cars from different brands, or three different neigh-

borhoods in one city. We assume an equal price for all styles. This allows

us to focus on the effects of heterogeneous conformity preferences. Without

loss of generality we set the price equal to zero.

The economy evolves in discrete time. Agents are assumed to be myopic.
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In each time period t, each agent chooses to consume a style s ∈ S which

maximizes her utility given the distribution of demand in the previous pe-

riod t − 1. The distribution of demand in the previous period is common

knowledge.

In line with the conformity preferences described above, we assume that

agent i’s utility in period t from style s is given by

uit(s) = M j<i
t−1(s)−M i<j

t−1(s)

where M j<i
t−1(s) is the t − 1 market share of s (mass of agents who consume

s) among all agents j < i and M i<j
t−1(s) is the t− 1 market share of s among

all agents j > i. By Mt−1(s) we denote the total market share of s in t− 1.

We introduce a tie-breaking rule for the case that uit(r) = uit(s) with

r 6= s and r, s ∈ S. If uit(A) = uit(B), then i strictly prefers B over A; if

uit(B) = uit(C), then i strictly prefers C over B; and if uit(A) = uit(C), then i

strictly prefers C over A. For the results, it is important that all agents agree

upon which one of two styles is strictly preferred in case of utility equality.

To gain intuition for agents’ preferences consider the following example.

Suppose that in t − 1 all agents i ∈ [0, 0.3) consume A, all i ∈ [0.3, 0.5)

consume B, and all i ∈ [0.5, 1] consume C. Figure 1 shows agent i’s utility

in t for each style given the distribution in t− 1 for all i ∈ [0, 1].

Figure 1: uit(s) for all s and i, if in t−1 all i ∈ [0, 0.3) consume A, all i ∈ [0.3, 0.5)
consume B, and all i ∈ [0.5, 1] consume C.
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The utility from style s in t is strictly increasing with a slope of 2 over

the interval of agents who consumed s in t−1, everywhere else it is constant.

From the figure it is obvious that the consumption choices in t are such that

all i ∈ [0, .05] choose B, all i ∈ (.05, .9) choose A, and all i ∈ [.9, 1] choose C.

3 Dynamics of Demand

In this section, we characterize the dynamics of demand which arise in this

model. This means that we exactly characterize for each period t which parts

of the population consume which style, or in other words the distribution of

demand across the population.

A distribution of demand in period t is defined by a boundary vector

bt, which describes a partition of the population (unit interval) in period t,

and a style vector st, which describes which styles the different parts of the

population, as partitioned by bt, consume in period t. This will become clear

in definition 1. For tractability, we restrict initial distributions of demand in

t = 0 to be of one of the types as defined in definition 1.1

Definition 1. Distribution types in time period t.

(i) 1-style-distribution where bt = (0, 1) and st = (x) with x ∈ S:

Every agent i ∈ [0, 1] consumes the same style x in t.

Figure 2: 1-style-distribution.

(ii) 2-styles-distribution where bt = (0, b1t , 1) with 0 < b1t < 1 and st = (x, y)

with x 6= y and x, y ∈ S:

Every agent i ∈ [0, b1t ) consumes style x, every agent i ∈ (b1t , 1] con-

sumes style y, and agent i = b1t consumes x or y in t.

1The results hold for all initial distributions after which the demand dynamics result
into any of the distribution types as defined in definition 1 for some t ≥ 1.
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Figure 3: 2-styles-distribution.

(iii) 3-styles-distribution where bt = (0, b1t , b
2
t , 1) with 0 < b1t < b2t < 1 and

st = (x, y, z) with x 6= y 6= z 6= x and x, y, z ∈ S:

Every agent i ∈ [0, b1t ) consumes style x, every agent i ∈ (b1t , b
2
t ) con-

sumes y, and every agent i ∈ (b2t , 1] consumes z. Agent i = b1t consumes

x or y, and agent i = b2t consumes y or z.

Figure 4: 3-styles-distribution.

In the following, it is shown that the dynamics of demand converge to

the same unique sequence of distributions for any of the possible initial dis-

tributions. Denote by Σt the set of all styles s for which Mt(s) = 0. Thus

these are the styles which do not receive any demand in t. Let max be the

function which picks the style with the highest position in the alphabet from

some set of styles, with C having the highest position (3) in S.

Lemma 3.1. If the distribution in t is a 1-style distribution, then the distri-

bution in t+ 1 is a 2-styles-distribution.

Proof. Given a 1-style-distribution in t with bt = (0, 1), st = (x) and Σt =

{y, z}, in t + 1 every i ∈ [0, 1
2
) chooses max {y, z} in order to differentiate

herself from more conformist agents as uit+1(s) = 0 > uit+1(x) for all s ∈ Σt.

For i = 1
2
, uit+1(s) = 0 = uit+1(x) for all s ∈ Σt and thus i = 1

2
chooses

max {max {y, z} , x}. The more conformist agents are still satisfied with their

choice in t because everybody was consuming x in t. For all i ∈ (1
2
, 1],

uit+1(s) = 0 < uit+1(x) for all s ∈ Σt such that every i ∈ (1
2
, 1] consumes x in

t+ 1. Figure 5 exemplifies the distributions in t and t+ 1.
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Figure 5: Proof for Lemma 3.1.

For the next lemma, we introduce an equivalence notion for distributions.

Observe that some distribution d in t in which i = 0 consumes x and all i > 0

consume y is not a 1-style-distribution. It is however mass equivalent to the

1-style-distribution with bt = (0, 1) and st = (y) as i = 0 has mass zero. This

means that the consumption decision of all i in t+1 is the same regardless of

whether the distribution in t is d or the 1-style-distribution with bt = (0, 1)

and st = (y). We will say that two distributions of consumption d and d′ are

mass equivalent if the differences between them are mass zero.

Lemma 3.2. If the distribution in t is a 3-styles-distribution, then the dis-

tribution in t+k for some k ≥ 1 is mass equivalent to a 2-styles-distribution.

Proof. In this proof, we first derive the distribution of consumption in t+ 1

for any 3-styles-distribution in t. Let bt = (0, b1t , b
2
t , 1) and st = (x, y, z) with

x 6= y 6= z 6= x and x, y, z ∈ S.

The analysis is split into cases each of which represents a different ordering

of the population masses in the consumption intervals in t. For convenience,

the length of the most left consumption interval in t will be denoted by 1t,

the length of the central consumption interval by 2t, and the length of the

most right consumption interval by 3t. Hence, 1t := b1t , 2t := b2t − b1t , and

3t := 1− b2t .
We describe the case of 1t = 2t = 3t here in detail to provide intuition

for how the t + 1 distribution arises. All other cases are relegated to the

appendix. If 1t = 2t = 3t, then bt = (0, 1
3
, 2
3
, 1). In t + 1, every style s ∈ S

yields u0t+1(s) = −1
3

to agent 0 and thus i = 0 chooses maxS. All i ∈ (0, 2
3
)

imitate the period t choice of the most individualist agents and choose x.

All i ∈ [2
3
, 1) get the same positive utility from x and y and thus choose
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max {x, y}. Agent 1 obtains u1t+1(s) = 1
3

for any s ∈ S and thus chooses

maxS.

Figure 6 depicts the distribution in t and the distribution in t+ 1. Mass

zero events – in this case, the choices of agent 0 and agent 1 – are not shown

in this or any other figure in this paper.

Figure 6: Proof of Lemma 3.2, case 1t = 2t = 3t.

The t+ 1 distribution is mass equivalent to the 1-style-distribution with

bt+1 = (0, 1) and st+1 = (x), if x = max {x, y}, or to the 2-styles-distribution

with bt+1 = (0, 2
3
, 1) and st+1 = (x, y), if y = max {x, y}.

We summarize the results up to here, including those derived in the ap-

pendix, in figure 7. The figure provides an overview of the distributions in

t+1 resulting from any 3-styles-distribution in t. The notation “1 < 2 < 3→
1 = 2 > 3” means that a 3-styles-distribution with property 1t < 2t < 3t in

period t results into a (distribution mass equivalent to a) 3-styles-distribution

with property 1t+1 = 2t+1 > 3t+1 in period t + 1, and analogously for all

other cases. With figure 7 it is easy to verify that any 3-styles-distribution

in t results into a distribution mass equivalent to a 2-styles-distribution in

t+ k for some k ∈ [1, 3].
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Figure 7: Proof of Lemma 3.2, summary.

Thus, eventually any 1-style- and 3-styles-distribution results into (a dis-

tribution mass equivalent to) a 2-styles-distribution. Next, we show that the

dynamics following any 2-styles-distribution converge to a unique sequence

of distributions of consumption.

Lemma 3.3. The dynamics following any 2-styles-distribution converge to

a unique cycle C of distributions. This unique cycle is equal to the infinite

repetition of the sequence of distributions from t to t + 8, given in Figure

8, where x 6= y 6= z 6= x and x, y, z ∈ S. Thus, in C the distribution of

consumption in any period t is equal to the distribution of consumption in

period t+ 9.
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Figure 8: The sequence of distributions from t to t + 8 is infinitely repeated in
cycle C.
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Proof. We show that the dynamics of the distribution of consumption follow-

ing any 2-styles-distribution in t with bt = (0, b1t , 1), st = (x, y) and Σt = {z}
where x 6= y 6= z 6= x and x, y, z ∈ S converge to C. For the proof, we

divide all 2-styles-distributions in t into eight different cases depending on

their value of b1t and derive the resulting dynamics for each case. The case

of 0 < b1t ≤ 1
3

will be discussed in detail here, whereas all other cases are

relegated to the appendix.

If 0 < b1t ≤ 1
3
, then the distribution in t+ 1 is a 3-styles-distribution with

bt+1 =
(
0, 1

2
b1t ,

1
2

(2b1t + 1) , 1
)

and st+1 = (z, x, y). Thus, 2t+1 > 3t+1 ≥ 1t+1.

In t+ 2, the distribution is mass equivalent to the 2-styles-distribution with

b1t+2 = 1
2

(
2b1t+1 + b2t+1

)
and st+2 = (z, x). These dynamics are shown in figure

9.

Figure 9: Proof of Lemma 3.3, case 0 < b1t ≤ 1
3 .

For the remainder of this proof it is useful to further divide this case into

four sub-cases and to provide the possible values of consumption interval

boundaries for each sub-case.

(1a) If 0 < b1t ≤ 1
12

, then b1t+1 ∈ (0, 1
24

], b2t+1 ∈ (1
2
, 7
12

], and b1t+2 ∈ (1
4
, 1
3
].

(1b) If 1
12
< b1t <

1
4
, then b1t+1 ∈ ( 1

24
, 1
8
), b2t+1 ∈ ( 7

12
, 3
4
), and b1t+2 ∈ (1

3
, 1
2
).
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(1c) If b1t = 1
4
, then b1t+1 = 1

8
, b2t+1 = 3

4
, and b1t+2 = 1

2
.

(1d) If 1
4
< b1t ≤ 1

3
, then b1t+1 ∈ (1

8
, 1
6
], b2t+1 ∈ (3

4
, 5
6
] and b1t+2 ∈ (1

2
, 7
12

].

The cases of 1
3
< b1t <

1
2

and 1
2
≤ b1t ≤ 1 (the latter one split into three

sub-cases) are relegated to the appendix.

The analysis up to here reveals that any 2-styles-distribution in t is fol-

lowed by a 2-styles-distribution again in t + 3 or earlier. We summarize the

results from the analysis, including the ones in the appendix, in figure 10.

The notation “0 < b1 ≤ 1
12
→ 1

4
< b1 ≤ 1

3
” means that a 2-styles-distribution

in t with 0 < b1t ≤ 1
12

is followed by a 2-styles-distribution in t + k with
1
4
< b1t+k ≤ 1

3
for some k ∈ [1, 3], and analogously for all other cases.

Figure 10: Proof of Lemma 3.3, summary of all cases.

Thus, it remains to show that the two sequences of distributions implied

by I. and II. where

I. implies

a 2-styles-distribution in t with b1t = 1
4
,

a 2-styles-distribution in t+ 2 with b1t+2 = 1
2
,

a 2-styles-distribution in t+ 3 with b1t+3 = 1
4
,

and so on, and

II. implies

a 2-styles-distribution in t with b1t ∈ (1
4
, 1
3
],

a 2-styles-distribution in t+ 2 with b1t+2 ∈ (1
2
, 2
3
],
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a 2-styles-distribution in t+ 3 with b1t+3 ∈ (1
4
, 1
3
],

and so on,

both converge to C.

First, observe that the sequence of distributions implied by I. is equal to

C.

Second, we show that the sequence of distributions implied by II. con-

verges to C. Assume w.l.o.g. that the distribution in t is a 2-styles-distribution

with b1t ∈ (1
4
, 1
3
]. Hence, in t+1 the distribution is a 3-styles-distribution with

b1t+1 = 1
2
b1t ∈ (1

8
, 1
6
] and b2t+1 = 1

2
(2b1t + 1) ∈ (3

4
, 5
6
]. In t + 2 the distribution

is mass equivalent to a 2-styles-distribution with b1t+2 = 1
2

(
2b1t+1 + b2t+1

)
=

b1t + 1
4
∈ (1

2
, 7
12

]. The distribution in t + 3 is a 2-styles-distribution with

b1t+3 = 1
2
b1t+2 = 1

2
b1t + 1

8
∈ (1

4
, b1t ) because 1

4
< b1t . Since b1t+3 < b1t , then

also b1t+4 < b1t+1 and b2t+4 < b2t+1, and b1t+5 < b1t+2. Thus, limk→∞ b
1
t+3k = 1

4
,

limk→∞, b
1
t+3k+1 = 1

8
, limk→∞ b

2
t+3k+1 = 3

4
and limk→∞ b

1
t+3k+2 = 1

2
and in the

limit the sequence of distributions implied by II. converges to C.

With the previous lemmata, we establish our main result.

Proposition 3.4. The dynamics of the distribution of consumption converge

to C for any initial 1-style-, 2-styles- or 3-styles-distribution.

Proof. By the previous lemmata, any 1-style- and 3-styles-distribution in t is

followed by a 2-styles-distribution in t+ k for some k ≥ 1 and the dynamics

of the distribution of consumption after any 2-styles-distribution converge to

C.

Within cycle C, the dynamics of overall demand possess the properties

ascribed to fashion cycles. First, the demand for each style follows recurring

life cycles, second, there is an ever-going change in fashions because the life

cycles of different options peak at different points in time, and, third, within

one life cycle of a style, the style “trickles” deterministically through society

from individualist/higher status individuals to conformist/lower status indi-

viduals. This is synthesized in the following two corollaries and explained in

the next paragraphs.
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Corollary 3.5. In cycle C, the demand for every style follows a unique se-

quence of market shares M , which resembles two consecutive life cycles, in in-

finite repetition. The sequence of market shares is given by M = (0, 1
4
, 5
8
, 1
2
, 0, 1

8
, 1
2
, 3
4
, 1
4
).

In cycle C, each style faces a demand of zero in some period t and in t+1

it enters the market with a demand of 1
4

of the population. In t+ 2, demand

for this style grows to 5
8

and the style is at the peak of its life cycle. In t+ 3,

demand for the style declines to 1
2

before the style is abandoned by every

consumer and is not consumed for one period in t + 4. Having been out of

the market for one period, the style sees a revival in t + 5 and enters into

another life cycle experiencing a positive demand for exactly four consecutive

time periods. Demand starts out at 1
8

in t + 5, increases to 1
2

in t + 6 and

further to 3
4

in t+ 7. In t+ 8 demand for the style drops to 1
4

before it leaves

the market again in t+ 9 for one period. Then, the process starts over again;

period t + 9 is equal to period t in the life cycle process. The reappearance

of a product in the market after a period of zero demand in our model is due

to the limited set of consumption options. Revivals of fashions and brands

can be commonly observed in reality. Ray Ban glasses, platform shoes and

flares are examples for this.

Corollary 3.5 is consistent with research on product life cycles (for a

discussion see Rink and Swan, 1979) which divides the evolution of demand

for a product into four stages: the initial phase of introduction with low

demand, the growth phase with rising demand, the maturity phase where

demand has reached its peak, and finally a phase of decline where demand

decreases until the product is out of the market.

The life cycles of different styles peak at different points in time. This

reproduces an ever-going change in fashions where one fashion is substituted

by another. Figure 11, which plots the demand for each style in cycle C

over 9 periods, exemplifies this feature. Given C, there exists period t where

styles x and y with x 6= y 6= z 6= x each receive 1
2

of total demand.
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Figure 11: Dynamic demand for each style in cycle C. The overall pattern of
dynamic demand exhibits continuous fashion cycles.

Corollary 3.6. Within one life cycle, a style trickles from the “left” to the

“right” of the population. In the first life cycle in M , the style is initially

consumed by all i ≤ 1
4
, subsequently by all i ∈ [1

8
, 3
4
], and final demand comes

from all i ≥ 1
2
. In the second life cycle in M , the style is initially consumed

by all i ≤ 1
8
, subsequently by all i ≤ 1

2
, then by all i ≥ 1

4
, and final demand

comes from all i ≥ 3
4
.

Within one life cycle, each consumption option trickles deterministically

through society from the left to the right of the unit interval. Initial demand

for a product comes from consumers “at the left” of society, then the product

moves over “centre” consumers to consumers “at the right” of society, when

the “left” of society has abandoned the product already. Finally the product

trickles out of the market. This is in line with the different “trickling” theories

for fashion which were reviewed in the introduction.

4 Conclusion

This paper proposes a model to explain fashion cycles through heterogeneous

conformity preferences only. The overall demand dynamics for three options
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which result from the model resemble fashion cycles which are in line with

traditional sociological fashion theories. The demand for each style over time

follows consecutive life cycles in each of which demand for the style takes a

bell-shaped pattern and the style trickles in a deterministic way through

society. Moreover, an ever-going change of fashions arises because the life

cycles for different styles peak at different times.

This followed from the result that the demand dynamics converge to a

unique cycle C of demand distributions after any 1-style-, 2- and 3-styles-

distribution. In cycle C, demand over time exhibits the above discussed

fashion cycle properties.

We hold a strong conjecture that the demand dynamics possess the same

fashion cycle properties if the number of consumption options is general-

ized to n. To prove that the results are robust to increasing the number of

consumption options would be an interesting extension. Another promising

direction for future research would be to include firms into the model as

strategic actors which can set prices and decide about when to introduce a

new style.
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Appendix

Remainder of the Proof for Lemma 3.2.

1. If 1t > 2t = 3t, then the t + 1 distribution is a 2-styles-distribution

with b1t+1 = 1
2

(b1t −Mt (max {y, z})) and st+1 = (max {y, z} , x).

2. If 1t < 2t = 3t, then the t + 1 distribution is mass equivalent to a

2-styles-distribution with b1t+1 = 1
2

(2b1t + b2t ) and st+1 = (x, y).

3. If 1t = 2t > 3t, then the t + 1 distribution is a 2-styles-distribution

with b1t+1 = 1
2

(b1t − 3t) and st+1 = (z, x) in case x = max {x, y}. In

case y = max {x, y}, the t + 1 distribution is a 3-styles-distribution

with bt+1 = (0, 1
2

(b1t − 3t) , b
2
t , 1) and st+1 = (z, x, y). Given a 3-styles-

distribution in t + 1, the relation between population masses in con-

sumption intervals is 1t+1 < 2t+1 > 3t+1.
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4. If 1t = 2t < 3t, then the t+1 distribution is a 2-styles-distribution with

b1t+1 = 1
2

(b2t + 1t + 1), and st+1 = (x, z) in case x = max {x, y}. In case

y = max {x, y}, the t + 1 distribution is mass equivalent to a 3-styles-

distribution with bt+1 = (0, b2t ,
1
2

(b2t + 2t + 1) , 1) and s1t+1 = (x, y, z).

Given a 3-styles-distribution in t+ 1, 2t+1 > 3t+1.

5. If 1t > 2t > 3t, then the t + 1 distribution is a 2-styles-distribution

with b1t+1 = 1
2

(b1t − 3t) and st+1 = (z, x).
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6. If 1t > 3t > 2t, then the t + 1 distribution is a 2-styles-distribution

with b1t+1 = 1
2

(b1t − 2t) and st+1 = (y, x).

7. If 1t = 3t > 2t, then the t + 1 distribution is mass equivalent to a

2-styles-distribution with b1t+1 = 1
2

(b1t − 2t) and st+1 = (y, x).

8. If 3t > 1t > 2t, then the t + 1 distribution is a 3-styles-distribution

with b1t+1 = 1
2

(b1t − 2t) and b2t+1 = 1
2

(b2t + 1t + 1), and st+1 = (y, x, z).

The relation between population masses is 1t+1 < 2t+1 > 3t+1.
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9. If 2t > 1t > 3t, then the t+1 distribution is a 3-styles-distribution with

b1t+1 = 1
2

(b1t − 3t) and b2t+1 = 1
2

(2b1t + b2t ), and st+1 = (z, x, y). The

relation between population masses is 1t+1 < 2t+1 > 3t+1. Observe

that 1t+1 < 1t and 3t+1 > 3t because b1t+1 < b1t and b2t+1 < b2t . Hence,

eventually every 3-styles-distribution with 2t > 1t > 3t results into a

3-styles-distribution with 2t+1 > 3t+1 ≥ 1t+1.

10. If 2t > 1t = 3t, then the t + 1 distribution is mass equivalent to a

2-styles-distribution with b1t+1 = 1
2

(2b1t + b2t ), and st+1 = (x, y).

11. If 2t > 3t > 1t, then the t + 1 distribution is a 2-styles-distribution

with b1t+1 = 1
2

(2b1t + b2t ), and st+1 = (x, y).
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12. If 1t < 2t < 3t, then the t + 1 distribution is a 3-styles-distribution

with b1t+1 = 1
2

(2b1t + b2t ) and b2t+1 = 1
2

(b2t + 2t + 1), and st+1 = (x, y, z).

Thus, 2t+1 > 3t+1.

Remainder of the Proof for Lemma 3.3.

1. If 1
3
< b1t <

1
2
,

then the distribution in t + 1 is a 3-styles-distribution with b1t+1 =
1
2
b1t ∈ (1

6
, 1
4
) and b2t+1 = 1

2
(2b1t + 1) ∈ (5

6
, 1). Thus, 2t+1 > 1t+1 > 3t+1.

Moreover, st+1 = (z, x, y).

In t+2 the distribution is a 3-styles-distribution with b1t+2 = 1
2

(
b1t+1 − 3t+1

)
∈

(0, 1
8
) and b2t+2 = 1

2

(
2b1t+1 + b2t+1

)
∈ ( 7

12
, 3
4
). Thus, 2t+2 > 3t+2 > 1t+2.

Moreover, st+2 = (y, z, x).

In t+3 a 2-styles-distribution is reached again with b1t+3 = 1
2

(
2b1t+2 + b2t+2

)
∈

( 7
24
, 1
2
).
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Thus, a 2-styles-distribution in t with 1
3
< b1t <

1
2

results into a 2-

styles-distribution with either 1
3
< b1t+3 <

1
2

again or 1
4
< b1t+3 ≤ 1

3

in the short run; in the long run, however, it results into a 2-styles-

distribution with 1
4
< b1t+3 ≤ 1

3
with certainty because b1t+3 < b1t for the

2-styles-distribution in t + 3 following from any 2-styles-distribution

with 1
3
< b1t <

1
2

in t.

2. If 1
2
≤ b1t < 1,

then the distribution in t+1 is mass equivalent to a 2-styles-distribution

with b1t+1 = 1
2
b1t . Moreover, st+1 = (z, x).
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Again, it is useful to further divide this case into sub-cases and provide

the possible values of the consumption interval boundary b1t+1 for each

sub-case.

(a) If b1t = 1
2
, then b1t+1 = 1

4
.

(b) If 1
2
< b1t ≤ 2

3
, then b1t+1 ∈ (1

4
, 1
3
].

(c) If 2
3
< b1t < 1, then b1t+1 ∈ (1

3
, 1
2
).
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