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1 Introduction

Factor models are widely used to capture the co-movement of a large number of time series and

to model covariance matrices. They provide useful dimensionality reduction in many applications

from climate modelling to finance. Perhaps the current state of the art for factor modelling is Fan,

Liao, and Micheva (2013), which allowed the idiosyncratic covariance matrix to be non-diagonal

but sparse, and used thresholding techniques (Cai and Liu, 2011) to impose sparsity and thereby

obtain a better estimator of the covariance matrix and its inverse in this big-data setting. The usual

approach ignores covariate information that can sometimes be informative. Connor, Hagmann and

Linton (2012) developed a semiparametric factor regression methodology that introduces covariate

information into the factor loading parameters. This model is well motivated in finance applications

where it can be understood as a properly formulated version of the popular Fama-French (1992)

approach to modelling returns with observable characteristics. The model also makes sense in

other contexts where covariate information is available. Their application was to monthly stock

returns, which is where the finance literature was focussed. Moreover, Fan, Liao and Wang (2016)

proposed a Projected-PCA approach which employs principal component analysis to the projected

data matrix onto a linear space spanned by covariates. It is worth noting that most existing

works in the literature of factor models require at least four moments to establish their theoretical

properties. See, for instance, Bai and Ng (2002), Bai and Li (2012), Lam and Yao (2012), Connor,

Hagmann and Linton (2012), Fan, Liao, and Micheva (2013), Fan, Liao and Wang (2016), Li et

al. (2017), among others. This may not be a binding restriction for monthly stock returns, but for

daily stock returns this is a bit strong.

Quantile methods are widely used in statistics. They have the advantage of being robust to

large observations. They can also provide more information about the conditional distribution

away from the centre, which is relevant in many applications. In this paper, we propose estimation

and inferential methodology for the quantile version of the Connor, Hagmann and Linton (2012)

model. Our contribution is summarized as follows.

First, we propose an estimation algorithm for this model. We use sieve techniques to obtain

preliminary estimators of the nonparametric beta functions, see Chen (2011) for a review, and use

these to estimate the factor return vector at each time period. We then update the loading func-

tions and factor returns sequentially. We compute the estimator in two steps for computational

reasons. We have J × T unknown factor return parameters as well as J × KN sieve parameters

to estimate, and simultaneous estimation of these parameters without penalization would be chal-
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lenging. Penalization of the factor returns here is not well motivated so we do not pursue this.

Instead we first estimate the unrestricted additive quantile regression function for each time period

and then impose the factor structure in a sequential fashion.

Second, we derive the limiting properties of our estimated factor returns and factor loading

functions under the assumption that the included factors all have non zero average values and

under weak conditions on cross-section and temporal dependence. A key consideration in the panel

modelling of stock returns is what position to take on the cross sectional dependence in the id-

iosyncratic part of stock returns. Early studies assumed iid in the cross section, but this turns

out to be not necessary. More recent work has allowed for cross sectional dependence in a variety

of ways. Connor, Hagmann and Linton (2012) imposed a known industry cluster/block structure

where the number of industries goes to infinity as do the number of members of the industry. Un-

der this structure one obtains a CLT and inference can be conducted by estimating only the intra

block covariances. Robinson and Thawornkaiwong (2012) considered a linear process structure

driven by independent shocks. Dong, Gao and Peng (2015) introduced a spatial mixing struc-

ture to accommodate both serial correlation and cross–sectional dependence for a general panel

data setting. Conley (1999) studied that under a lattice structure or some observable or estimable

distance function that determines the ordering, one can consistently estimate the asymptotic co-

variance matrix. However, this type of structure is hard to justify for stock returns, and in that

case their approach does not deliver consistent inference. Connor and Koraczyck (1993) considered

a different cross-sectional dependence structure, namely, they supposed that there was an ordering

of the cross sectional units such that weak dependence of the alpha mixing variety was held. They

do not assume knowledge of the ordering as this was not needed for their main results. We adopt

and generalize their structure. In fact, we allow for weak dependence simultaneously in the cross-

section and time series dependence. This structure affects the limiting distribution of the estimated

factor returns in a complicated fashion, and the usual Newey–West type of standard errors can’t

be adapted to account for the cross-sectional dependence here because the ordering is not assumed

to be known. To conduct inference we have to take account of the correlation structure. We use

the so-called fix-b asymptotics to achieve this, namely, we construct a test statistic based on an

inconsistent fixed-b estimator of the correlation structure, as in Kiefer and Vogelsang (2002), and

show that it has a pivotal limiting distribution that is a functional of a Gaussian process.

Third, our estimation procedure only requires that the time series average value of factor returns

be non zero. A number of authors have noted that in the presence of a weak factor, regression
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identification strategies can break down (Bryzgalova, 2015). In view of this we provide a test of

whether a given factor is present or not in each time period.

Fourth, we apply our procedure to CRSP daily data and show how the factor loading functions

vary nonlinearly with state. The median regression estimators are comparable to those of Connor,

Hagmann and Linton (2012) and can be used to test asset pricing theories under comparable quan-

tile restrictions, see for example, Bassett, Koenker and Kordas (2004), and to design investment

strategies. The lower quantile estimators could be used for risk management purposes. The ad-

vantage of the quantile method is its robustness to heavy tails in the response distribution, which

may be present in daily data. Indeed our theory does not require any moment conditions.

The organization of this paper is given as follows. Section 2 proposes the main model and then

discusses some identification issues. An estimation method based on B–splines is then proposed in

Section 3. Section 4 establishes an asymptotic theory for the proposed estimation method. Section

5 discusses a covariance estimation problem and then considers testing for the factors involved in

the main model. Section 6 gives an empirical application of the proposed model and estimation

theory to model the dependence of daily returns on a set of characteristic variables. Section 7

concludes the paper with some discussion. All the mathematical proofs of the main results are

given in an appendix and on-line supplemental materials.

2 The model and identification

We introduce some notations which will be used throughout the paper. For any positive numbers

an and bn, let an � bn denote limn→∞an/bn = c, for a positive constant c, and let an � bn denote

a−1n bn = o(1), and let an � bn denote anb
−1
n = o(1). For any vector a = (a1, . . . , an)ᵀ ∈ Rn, denote

||a|| =
(∑n

i=1 a
2
i

)1/2
. For any matrix Am×n, denote its L2 norm as ‖A‖ = maxζ∈Rn,ζ 6=0 ‖Aζ‖ ‖ζ‖−1.

We use (N,T )→∞ to denote that N and T pass to infinity jointly.

We consider the following model for the τ th conditional quantile function of the response yit for

the ith asset at time t given as

Qyit(τ |Xi) = fut,τ +
∑J

j=1
gj,τ (Xji)fjt,τ , (2.1)

for i = 1, . . . , N and t = 1, . . . , T , where yit is the excess return to security i at time t; fut,τ and fjt,τ

are factor returns, which are unobservable and treated as fixed-effects parameters to be estimated;

gj,τ (Xji) are the factor betas, which are unknown but smooth functions of Xji, where Xji are
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observable security characteristics, and Xji lies in a compact set Xji. Let Xi = (X1i, . . . , XJi)
ᵀ.

Model (2.1) can be written as

yit = fut,τ +
∑J

j=1
gj,τ (Xji)fjt,τ + εit, (2.2)

where the error terms εit are the asset-specific or idiosyncratic returns and they satisfy that the

conditional τ th quantile of εit given Xi is zero. Note that the factors fut,τ and fjt,τ and the factor

betas gj,τ (·) are τ specific, so is the error term εit. For notational simplicity, we suppress the τ

subscripts such that fut,τ = fut, fjt,τ = fjt and gj,τ (·) = gj . Let ft = (fut, f1t, . . . , fJt)
ᵀ. For model

identifiability, we assume that:

Assumption A0. E{gj(Xji)} = 0 and E{gj(Xji)}2 = 1 for all j = 1, . . . , J . Furthermore,

lim infT→∞

∣∣∣∑T
t=1 fjt/T

∣∣∣ > 0 for each j.

The case where τ = 1/2 corresponds to the conditional median, and is comparable to the

conditional mean model used in Connor, Hagmann and Linton (2012). The advantage of the

median over the mean is its robustness to heavy tails and outliers, which is especially important

with daily data. The case where τ = 0.01, say, might be of interest for the purposes of risk

management, since this corresponds to a standard Value-at-Risk threshold in which case (2.1) gives

the conditional Value-at-Risk given the characteristics and the factor returns at time t. To obtain

an ex-ante measure we should have to employ a forecasting model for the factor returns.

Suppose that the τ th conditional quantile function Qyit(τ |Xi = x) of the response yit at time t

given the covariate Xi = x is additive

Ht(τ |x) = hut,τ +
∑J

j=1
hjt,τ (xj), (2.3)

where hjt,τ (·) are unknown functions and are τ specific. Again for simplicity, we suppress the

τ subscripts by writing hut,τ = hut and hjt,τ (·) = hjt(·). Without loss of generality, we assume

E{hjtXji)} = 0 for t = 1, . . . , T (Horowitz and Lee, 2005). Under the factor structure (2.1), we

have for all j

E{ 1

T

T∑
t=1

hjt(Xji)}2 = E{gj(Xji)}2 × (
1

T

T∑
t=1

fjt)
2 = (

1

T

T∑
t=1

fjt)
2. (2.4)
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Provided
∑T

t=1 fjt 6= 0, we can identify gj(xj) by

gj(xj) =
1
T

∑T
t=1 hjt(xj)√

E{ 1T
∑T

t=1 hjt(Xji)}2
. (2.5)

We will use this as the basis for the proposal of the estimation method in Section 3 below.

3 Estimation

3.1 Factor returns and characteristic-beta functions

We propose an alternate optimization algorithm to estimate the factor returns and the characteristic-

beta functions. The algorithm makes use of the structure in (2.2) so that it circumvents the “curse

of dimensionality” (Bellman, 1961) while retaining flexibility of the nonparametric regression. The

right hand side of (2.1) is biconvex in unknown quantities, so it seems difficult to avoid such an

algorithmic approach.

To estimate gj(·), we approximate them by splines. We adopt the centered and standardized

B-spline basis functions of order m introduced in Xue and Yang (2006): Bj(xj) = {Bj,1(xj), . . . ,

Bj,KN
(xj)}ᵀ, satisfying var{Bjk(Xj)} � 1, where KN = LN + m, LN is the number of interior

knots satisfying LN → ∞ as N → ∞. We first approximate the unknown functions gj(xj) by B-

splines such that gj(xj) ≈ Bj(xj)ᵀλj , where λj = (λj,1, . . . , λj,KN
)ᵀ are spline coefficients. Denote

ft = {fut, (fjt, 1 ≤ j ≤ J)ᵀ}ᵀ. Let λ = (λᵀ
1, . . . ,λ

ᵀ
J)ᵀ and let ρτ (u) = u(τ − I(u < 0)) be the

quantile check function. The alternate optimization algorithm is described as follows:

1. Find the initial estimates ĝ
[0]
j (·).

2. For given ĝ
[i]
j (xj), we obtain for t = 1, . . . , T

f̂
[i+1]
t = arg min

ft∈RJ+1

∑N

i=1
ρτ

(
yit − fut −

∑J

j=1
ĝ
[i]
j (Xji)fjt

)
. (3.1)

3. For given f̂ [i+1], we obtain

λ̂
[i+1]

= arg min
λ∈RJKN

∑N

i=1

∑T

t=1
ρτ

(
yit − f̂ [i+1]

ut −
∑J

j=1
Bj(Xji)

ᵀλj f̂
[i+1]
jt

)
.
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Let ĝ
∗[i+1]
j (xj) = Bj(xj)

ᵀλ̂
[i+1]

j . The estimate for gj(xj) at the (i+ 1)th step is

ĝ
[i+1]
j (xj) =

ĝ
∗[i+1]
j (xj)√

N−1
∑N

i=1 ĝ
∗[i+1]
j (Xji)2

.

We repeat steps 2 and 3, and let the final estimates be f̂t = f̂
[i+1]
t and ĝj(xj) = ĝ

[i+1]
j (xj) if the

algorithm is stopped at the (i + 1)th step. We will show in Section 4 that for any finite number

i, the estimates f̂t = f̂
[i+1]
t and ĝj(xj) = ĝ

[i+1]
j (xj) have desirable asymptotic properties. In our

numerical analysis, we let the algorithm stop at the (i + 1)th step according to the two rules: (1)

||f̂ [i+1] − f̂ [i]|| + ||λ̂
[i+1]

− λ̂
[i]
|| < ε for a small positive value ε (we let ε = 10−3); (2) setting a

finite number i such as i = 0, 1 or 2. Our experience in numerical analysis suggests that if the

first stopping criterion is used, the algorithm stops after a finite number of iterations by using the

consistent initial values proposed in Section 3.2. The estimation is the problem of minimizing a

biconvex function such that the objective function is convex in one set of parameters for fixed the

other set of parameters. We refer to Gorski et al. (2007) for the convergence property of this

alternate optimization algorithm.

3.2 Initial estimators

The proposed iterative algorithm given in Section 3.1 starts from the initial estimates ĝ
[0]
j (·) which

are obtained by the following way. We first approximate the unknown functions hjt(xj) by B-

splines such that hjt(xj) ≈ Bj(xj)
ᵀθjt, where θjt = (θjt,1, . . . , θjt,KN

)ᵀ are spline coefficients. Let

θt = (θᵀ1t, . . . ,θ
ᵀ
Jt)

ᵀ. Then the estimators (h̃ut, θ̃
ᵀ
t )

ᵀ of (hut,θ
ᵀ
t )

ᵀ are obtained by minimizing

∑N

i=1
ρτ (yit − hut −

∑J

j=1
Bj(Xji)

ᵀθjt)

with respect to (hut,θ
ᵀ
t )

ᵀ ∈ RJKN+1. As a result, the estimator of hjt(xj) is h̃jt(xj) = Bj(xj)
ᵀθ̃jt.

We then obtain the initial estimators of gj(xj)

ĝ
[0]
j (xj) =

T−1
∑T

t=1 h̃jt(xj)√
N−1

∑N
i=1

(
1
T

∑T
t=1 h̃jt(Xji)

)2 . (3.2)
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4 Asymptotic theory of the estimators

We suppose that there is some relabelling of the cross-sectional units il1 , . . . , ilN , whose generic

index we denote by i∗, such that the cross sectional dependence decays with the distance |i∗ − j∗|.

This assumption has been made in Connor and Korajczyk (1993) and Lee and Robinson (2016).

Our estimation procedure does not need to know the ordering of the data. However, to develop

a robust inference procedure that accounts for heteroscedasticity and cross-sectional correlation

(HAC), we need to order the data across i. The ordering assumption can be relaxed by allowing

sN indices to be mis-assigned, where sN satisfies sN = o(N1/2). We refer to Remark 4 in Section 5

for a detailed discussion. As discussed in Lee and Robinson (2016), in some economic applications,

data may be ordered according to some explanatory variables. Such considerations are pursued in

our real data analysis with detailed discussions given in Section 7. For notational simplicity, we

denote the indices as {i, 1 ≤ i ≤ N} after the ordering.

Let g0j (·) for j = 1, . . . , J and f0t = (f0ut, f
0
1t, . . . , f

0
Jt)

ᵀ be the true factor betas and factor

returns in model (2.2). For model identifiability, assume E{g0j (Xji)} = 0 and E{g0j (Xji)}2 = 1.

Let N denote the collection of all positive integers. We use a φ-mixing coefficient to specify the

dependence structure. Let {Wit : 1 ≤ i ≤ N, 1 ≤ t ≤ T}, where Wit = (X
ᵀ

i , εit)
ᵀ

and εit =

yit − f0ut −
∑J

j=1 g
0
j (Xji)f

0
jt. For S1, S2 ⊂ [1, . . . , N ]× [1, . . . , T ], let

φ(S1, S2) ≡ sup{|P (A|B)− P (A)| : A ∈ σ(Wit, (i, t) ∈ S1), B ∈ σ(Wit, (i, t) ∈ S2)},

where σ (·) denotes a σ-field. Then the φ-mixing coefficient of {Wit} for any k ∈ N is defined as

φ(k) ≡ sup{φ(S1, S2) : d(S1, S2) ≥ k},

where

d(S1, S2) ≡ min{
√
|t− s|2 + |i− j|2 : (i, t) ∈ S1, (j, s) ∈ S2}.

Without loss of generality, we assume that Xji = [a, b]. Denote h0t (x) = {h0jt(xj), 1 ≤ j ≤ J}ᵀ,

where h0jt(·) are the true unknown functions in (2.3) and x = (x1, . . . , xJ)ᵀ. Let G0
i (Xi) =

{1, g01(X1i), . . . , g
0
J(XJi)}ᵀ. We make the following assumptions.

(C1) {Wit} is a random field of φ-mixing random variables. The φ-mixing coefficient of {Wit}

satisfies φ(k) ≤ K1e
−λ1k for K1, λ1 > 0.
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(C2) The conditional density pit (ε |xi ) of εit given xi satisfies the Lipschitz condition of order 1

and inf1≤i≤N,1≤t≤T pit (0 |xi ) > 0. For every 1 ≤ j ≤ J , the density function pXji(·) of Xji is

bounded away from 0 and satisfies the Lipschitz condition of order 1 on [a, b]. The density

function fXi(·) of Xi is absolutely continuous on [a, b]J .

(C3) The functions g0j and h0jt are r-times continuously differentiable on its support for some r > 2.

The spline order satisfies m ≥ r.

(C4) There exist some constants 0 < ch ≤ Ch <∞ such that ch ≤
(

1
T

∑T
t=1 f

0
jt

)2
≤ Ch for all j.

(C5) The eigenvalues of the (J + 1) × (J + 1) matrix N−1
∑N

i=1E(G0
i (Xi)G

0
i (Xi)

ᵀ) are bounded

away from zero.

(C6) Let Ω0
Nt be the covariance matrix of N−1/2

∑N
i=1G

0
i (Xi)(τ − I(εit < 0)). The eigenvalues of

Ω0
Nt are bounded away from zero and infinity.

We allow that {Wit} are weakly dependent across i and t, but need to satisfy the strong mixing

condition given in Condition (C1). Moreover, Condition (C1) implies that {Xi} is marginally

cross-sectional mixing. Similar assumptions are used in Gao, Lu and Tjøstheim (2006) for an

alpha–mixing condition in a spatial data setting, and Dong, Gao and Peng (2015) for introducing a

spatial mixing condition in a panel data setting. Conditions (C2) and (C3) are commonly used in

the nonparametric smoothing literature, see for example, Horowitz and Lee (2005), and Ma, Song

and Wang (2013). Conditions (C4) and (C5) are similar to Conditions A2, A5 and A7 of Connor,

Matthias and Linton (2012).

Define

Λ0
Nt = N−1

∑N

i=1
E{pit (0 |Xi )G

0
i (Xi)G

0
i (Xi)

ᵀ}.

and

Σ0
Nt = τ(1− τ)(Λ0

Nt)
−1Ω0

Nt(Λ
0
Nt)
−1. (4.1)

The theorem below presents the asymptotic distribution of the final estimator f̂t = f̂
[i+1]
t given in

Section 3.1, for a given finite number i ≥ 0. Define

φNT =
√
KN/(NT ) +K

3/2
N N−3/4

√
logNT +K−rN . (4.2)

Let dNT be a sequence satisfying

dNT = O(φNT ). (4.3)
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Theorem 1. Assume that Conditions (C1)-(C5) hold, and K4
NN

−1 = o(1), K−r+2
N (log T ) = o(1),

K−1N (logNT )(logN)4 = o(1) and φNT = o(1). Then, for a given t, there is a stochastically bounded

sequence δN,jt such that as (N,T )→∞,

√
N(Σ0

Nt)
−1/2(f̂t − f0t − dNT δN,t)

D→ N (0, IJ+1),

where δN,t = (δN,jt, 0 ≤ j ≤ J)ᵀ, dNT is given in (4.3), and IJ+1 is the (J + 1)× (J + 1) identity

matrix.

The next theorem establishes the rate of convergence of the final estimator ĝj(xj) = ĝ
[i+1]
j (xj)

given in Section 3.1, for a given finite number i ≥ 0.

Theorem 2. Suppose that the same conditions as given in Theorem 1 hold. Then, for each j, as

(N,T )→∞, [∫
{ĝj(xj)− g0j (xj)}2dxj

]1/2
= Op(φNT ) + op(N

−1/2), (4.4)

where φNT is given in (4.2).

Remark 1: Note that in the asymptotic distribution in Theorem 1, there is a bias term

dNT δN,t involved. In addition to the order requirements of KN , N and T given in Theorem 1, we

also need
√
NφNT = o(1) in order to let the asymptotic bias be negligible, and as a result we have

√
N(Σ0

Nt)
−1/2(f̂t − f0t )→ N (0, IJ+1), (4.5)

and
[∫
{ĝj(xj)− g0j (xj)}2dxj

]1/2
= op(N

−1/2). These conditions on the orders of KN , N and T

are equivalent to max(N1/(2r), (logNT )(logN)4)� KN � min(T,N1/6{log(NT )}−1/3), for r > 3.

This implies that N1/(2r) � KN � T .

5 Covariance estimation and hypothesis testing for the factors

In order to construct the confidence interval given in (4.5) we need to estimate Ω0
Nt and Λ0

Nt, since

they are unknown. For estimation of Λ0
Nt, if we use its sample analogue, the conditional density

pit (0 |Xi ) needs to be estimated. Instead of using this direct way, we use the Powell’s kernel

estimation idea in Powell (1991), and estimate Λ0
Nt by

Λ̂Nt = (Nh)−1
∑N

i=1
K

(
yit − f̂ut −

∑J
j=1 ĝj(Xji)f̂jt

h

)
Ĝi(Xi)Ĝi(Xi)

ᵀ, (4.6)
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where Ĝi(Xi) = {1, ĝ1(X1i), . . . , ĝJ(XJi)}ᵀ, while K(·) is the uniform kernel K(u) = 2−1I(|u| ≤ 1)

and h is a bandwidth.

First, we show that the estimator Λ̂Nt is a consistent estimator of Λ0
Nt given in the theorem

below.

Theorem 3. Suppose that the same conditions as given in Theorem 1 hold, and h→ 0, h−1φNT =

o(1), h−1N−1/2 = O(1), where φNT is given in (4.2). Then, as (N,T )→∞, for a given t, we have

||Λ̂Nt − Λ0
Nt|| = op(1).

Moreover, the exact form of Ω0
Nt defined in Condition (C6) is given by

Ω0
Nt = N−1E

[{∑N

i=1
G0
i (Xi)(τ − I(εit < 0))

}{∑N

i=1
G0
i (Xi)(τ − I(εit < 0))

}ᵀ]
=
τ(1− τ)

N

∑N

i=1
E{G0

i (Xi)G
0
i (Xi)

ᵀ}+N−1
∑N

i 6=j
E(vitv

ᵀ
jt),

where vit = G0
i (Xi)(τ − I(εit < 0)) for i = 1, . . . , N . To estimate Ω0

Nt, its sample analogue is not

consistent. Kernel-based robust estimators that account for HAC are developed (Conley, 1999),

and are shown to be consistent under a variety of sets of conditions. It requires to use a truncation

lag or “bandwidth”, which tends to infinity at a slower rate of N . As pointed out by Kiefer and

Vogelsang (2005), this is a convenient assumption mathematically to ensure consistency, but it is

unrealistic in finite sample studies. Adopting the idea in Kiefer and Vogelsang (2005), we let the

bandwidth M be proportional to the sample size N , i.e., M = bN for b ∈ (0, 1], and then we

derive the fixed-b asymptotics (Kiefer and Vogelsang; 2005) for the HAC estimator of Ω0
Nt under

the quantile setting. The HAC estimator is given as

Ω̂Nt,M =
τ(1− τ)

N

∑N

i=1
Ĝi(Xi)Ĝi(Xi)

ᵀ +N−1
∑N

i 6=j
K∗
(
i− j
M

)
v̂itv̂

ᵀ
jt, (4.7)

where v̂it = Ĝi(Xi)(τ − I(ε̂it < 0)) for i = 1, . . . , N , ε̂it = yit − f̂ut −
∑J

j=1 ĝj(Xji)f̂jt, K
∗(u) is

a symmetric kernel weighting function satisfying K∗(0) = 1, and |K∗(u)| ≤ 1, and M trims the

sample autocovariances and acts as a truncation lag. Consistency of Ω̂Nt,M needs that M →∞ and

M/N → 0. The following theorem provides the limiting distribution of Ω̂Nt,M=bN when M = bN

for b ∈ (0, 1].

Next, we will show asymptotic theory for the HAC covariance estimator under a sequence

where the smoothing parameter M equals to bN . Let Ω0
t = limN→∞Ω0

Nt, and Ω0
t can be written

as Ω0
t = ΥtΥ

ᵀ
t , where Υt is a lower triangular matrix obtained from the Cholesky decomposition of

Ω0
t .
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Theorem 4. Suppose that the same conditions as given in Theorem 1 hold, and φNTN
1/2 = o(1)

and K∗′′(u) exists for u ∈ [−1, 1] and is continuous. Let M = bN for b ∈ (0, 1]. Then as

(N,T )→∞, for a given t,

Ω̂Nt,M=bN
D→ Υt

∫ 1

0

∫ 1

0
− 1

b2
K∗′′

(
r − s
b

)
BJ+1(r)BJ+1(s)

ᵀdrdsΥᵀ
t ,

where BJ+1(r) = WJ+1(r)− rWJ+1(1) denotes a (J + 1)× 1 vector of standard Brownian bridges,

and WJ+1(r) denotes a (J + 1)-vector of independent standard Wiener processes where r ∈ [0, 1].

Remark 2: Theorem 4 provides the limiting distribution of Ω̂Nt,M=bN , although Ω̂Nt,M=bN is

an inconsistent estimator of Ω0
t . However, it can be used to construct asymptotically pivotal tests

involving f0t . Establishing the result in Theorem 4 requires ordering of the indices {i, 1 ≤ i ≤ N}.

This assumption can be relaxed by allowing sN indices to be mis-assigned, where sN satisfies sN =

o(N1/2). To see this, we let {π(i), 1 ≤ i ≤ N} denote a permutation of the indices {i, 1 ≤ i ≤ N},

and assume that π(i) 6= i for i ∈ S and π(i) = i for i ∈ Sc. Let the cardinality of S be sN satisfying

sN = o(N1/2). Then denote Ω̂∗Nt,M the HAC estimator of Ω0
Nt obtained from the data indexed by

{π(i), 1 ≤ i ≤ N}, where Ω̂∗Nt,M is defined in the same way as Ω̂∗Nt,M with i and j replaced by π(i)

and π(j). It is straightforward to show that ||Ω̂Nt,M − Ω̂∗Nt,M || = Op(s
2
N/N) = op(1). Therefore,

the result in Theorem 4 follows from the Slutsky’s theorem.

Consider testing the null hypothesis H0: Rf
0
t = r against the alternative hypothesis H1: Rf

0
t 6=

r, where R is a q × (J + 1) matrix with rank q and r is a q × 1 vector. We construct an F -type

statistic given as

FNt,b = N(Rf̂t − r)ᵀ{Rτ(1− τ)Λ̂−1NtΩ̂Nt,M=bN Λ̂−1NtR
ᵀ}−1(Rf̂t − r)/q.

When q = 1, we can construct a t-type statistic:

TNt,b =
N1/2(Rf̂t − r)√

Rτ(1− τ)Λ̂−1NtΩ̂Nt,M=bN Λ̂−1Nt}−1Rᵀ
. (4.8)

The limiting distributions of FNt,b and TNt,b under the null hypothesis are given in the following

theorem.

Theorem 5. Suppose that the same conditions as given in Theorem 1 hold, and h→ 0, h−1N−1/2 =

O(1), φNTN
1/2 = o(1) and K∗′′(u) exists for u ∈ [−1, 1] and is continuous. Let M = bN for

11



b ∈ (0, 1]. Then under the null hypothesis H0: Rf0t = r, as (N,T )→∞, for a given t,

FNt,b
D→ {τ(1− τ)}−1Wq(1)ᵀ

{∫ 1

0

∫ 1

0
− 1

b2
K∗′′

(
r − s
b

)
Bq(r)Bq(s)

ᵀdrds

}−1
Wq(1)/q.

If q = 1, then as (N,T )→∞, for a given t,

TNt,b
D→ W1(1)√

τ(1− τ)
√∫ 1

0

∫ 1
0 −

1
b2
K∗′′

(
r−s
b

)
B1(r)B1(s)drds

. (4.9)

Let Λ0
t = limN→∞ Λ0

Nt. The limiting distributions of FNt,b and TNt,b under the alternative

hypothesis H1: Rf
0
t = r + cN−1/2 are given in the following theorem.

Theorem 6. Let Υ∗t = (RΛ−1t Ω0
tΛ
−1
t Rᵀ)1/2. Suppose that the same conditions as given in Theorem

5 hold. Let M = bN for b ∈ (0, 1]. Then under the alternative hypothesis H1: Rf0t = r + cN−1/2,

as (N,T )→∞, for a given t,

FNt,b
D→ {τ(1− τ)}−1{Υ∗−1t c+Wq(1)}ᵀ×{∫ 1

0

∫ 1

0
− 1

b2
K∗′′

(
r − s
b

)
Bq(r)Bq(s)

ᵀdrds

}−1
{Υ∗−1t c+Wq(1)}/q.

If q = 1, then as (N,T )→∞, for a given t,

TNt,b
D→ Υ∗−1t c+W1(1)√

τ(1− τ)
√∫ 1

0

∫ 1
0 −

1
b2
K∗′′

(
r−s
b

)
B1(r)B1(s)drds

.

Remark 3: If K∗(x) is the Bartlett kernel, then

∫ 1

0

∫ 1

0
− 1

b2
K∗′′

(
r − s
b

)
Bq(r)Bq(s)

ᵀdrds

=
2

b

∫ 1

0
Bq(r)Bq(r)

ᵀdr − 1

b

∫ 1−b

0
{Bq(r + b)Bq(r)

ᵀ +Bq(r)Bq(r + b)ᵀ}dr.

These results allow one to test whether the factors are zero in a particular time period or not. Our

tests are robust to the form of the cross-sectional dependence in the idiosyncratic error.

6 Monte Carlo Simulations

In this section, we conduct simulation studies to assess the finite-sample performance of our pro-

posed method.
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6.1 Data Generating Processes

We generate the responses from the model:

yit = f0ut,τ +
∑2

j=1
g0j,τ (Xji)f

0
jt,τ + εit,

for i = 1, ..., N and t = 1, ..., T , where f0t,τ = (f0ut,τ , f
0
1t,τ , f

0
2t,τ )> and Xi = (X1i, X2i)

>. We

obtain {f0ut,τ , 1 ≤ t ≤ T} from the multivariate normal distribution with mean (1.5 + |0.5− τ |)1T ,

where 1T is the T -dimensional vector of ones, and covariance Σf = {σtt′} = 0.4|t−t
′|+2, and

obtain {f0jt,τ , 1 ≤ t ≤ T} from the same distribution, for j = 1, 2. We fix the values of f0t ,

t = 1, ..., T , for all simulation replications. We simulate X1i and X2i from U(−1, 1), respectively.

Let g01,τ (x1) = 0.5(2.5 + 0.5τ) cos(πx) and g02,τ (x2) = 0.5(2.5 + 0.5τ) sin(πx). We consider the

following setups for the error terms εit.

Case 1 (Cross sectional dependence): ε·t = {εit, 1 ≤ i ≤ N}> are generated independently from

the multivariate t-distribution with the covariance matrix Σ = {σii′} = 0.5|i−i
′| and 2 degrees of

freedom.

Case 2 (Heteroskedasticity): εit = σieit, where σi are generated independently from U(0.5, 1.5)

and eit are simulated independently from Laplace(0, 1) distribution.

Let N = 100, 200, 400 and T = 20, 40, 100, 200, 400. All results are based on 500 simulation

realizations.

6.2 Results

To evaluate the estimation accuracy of the proposed estimates, we first report the square root

of the mean squared error (RMSE) of the estimates f̂jt and ĝj(·), defined as {
∑J

j=1

∑T
t=1(f̂jt −

f0jt)
2/(JT )}1/2 and [

∑J
j=1

∑N
i=1{ĝj(Xji)−g0j (Xji)}2/(JN)]1/2, respectively, where f̂jt and ĝj(·) are

generic notations for estimators of fjt and gj(·). We present the RMSE values for three different

estimates obtained from the algorithm described in Section 3.1: (1) f̂t = f̂
[1]
t and ĝj = ĝ

[1]
j (the

algorithm is stopped at the 1st step ); (2) f̂t = f̂
[2]
t and ĝj = ĝ

[2]
j (the algorithm is stopped at

the 2nd step); (3) f̂t = f̂
[i]
t and ĝj = ĝ

[i]
j given that the algorithm converges at the ith step (meets

the stopping rule (1) given in Section 3.1).The RMSEs of these three estimates are denoted as

RMSE 1, RMSE 2 and RMSE c, respectively. We use B-splines of order m = 4 for estimating

the loading functions, and the number of interior knots for the B-splines are selected by the BIC

given in Section 7. We consider three quantiles τ = 0.3, 0.5 and 0.7. Tables 1-3 report the median
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value of the RMSEs for the estimates of the factors and their loading functions obtained from the

500 simulation replications at τ = 0.3, 0.5 and 0.7, respectively. We observe that the values of

RMSE 2 and RMSE c are almost identical for all cases. This indicates that the estimates at the

2nd step behave similarly to the estimates at convergence. In general, the RMSE 1 values are close

to the corresponding values of RMSE 2 and RMSE c. However, for the estimates of the factors,

the RMSE 1 values are obviously larger than the RMSE 2 and RMSE c values for some cases; see

the results for Case 1 in Tables 2 and 3. As a result, we recommend to use the estimates at the

ith step, where i is finite and i ≥ 2, or the estimates at convergence. Moreover, we see that the

RMSE values decrease as N increases. This corroborates the asymptotic results obtained in Section

4, and the estimates perform well for all the T values considered in our simulations.

Table 1: The median value of the RMSEs based on the 500 simulation replications at τ = 0.3.

factors factor loading functions

(N,T ) RMSE 1 RMSE 2 RMSE c RMSE 1 RMSE 2 RMSE c

Case 1

(100, 20) 0.311 0.313 0.313 0.124 0.124 0.124
(200, 20) 0.237 0.240 0.240 0.100 0.100 0.100
(400, 20) 0.174 0.176 0.176 0.082 0.082 0.082
(100, 40) 0.314 0.318 0.318 0.118 0.118 0.118
(200, 40) 0.240 0.243 0.243 0.097 0.097 0.097
(400, 40) 0.179 0.182 0.182 0.079 0.079 0.079
(100, 100) 0.322 0.325 0.325 0.114 0.114 0.114
(200, 100) 0.243 0.248 0.248 0.095 0.095 0.095
(400, 100) 0.184 0.186 0.186 0.078 0.078 0.078
(100, 200) 0.337 0.340 0.340 0.113 0.113 0.113
(200, 200) 0.249 0.253 0.253 0.095 0.095 0.095
(400, 200) 0.185 0.188 0.188 0.078 0.078 0.078
(100, 400) 0.354 0.358 0.358 0.113 0.113 0.113
(200, 400) 0.262 0.264 0.264 0.094 0.094 0.094
(400, 400) 0.190 0.192 0.192 0.078 0.078 0.078

Case 2

(100, 20) 0.120 0.122 0.122 0.105 0.105 0.105
(200, 20) 0.084 0.089 0.089 0.080 0.080 0.080
(400, 20) 0.067 0.070 0.070 0.055 0.055 0.055
(100, 40) 0.120 0.124 0.124 0.100 0.100 0.100
(200, 40) 0.088 0.092 0.092 0.079 0.079 0.079
(400, 40) 0.067 0.070 0.070 0.054 0.054 0.054
(100, 100) 0.125 0.129 0.129 0.098 0.098 0.098
(200, 100) 0.082 0.088 0.088 0.077 0.077 0.077
(400, 100) 0.065 0.069 0.069 0.053 0.053 0.053
(100, 200) 0.120 0.122 0.122 0.098 0.098 0.098
(200, 200) 0.085 0.090 0.090 0.077 0.077 0.077
(400, 200) 0.066 0.069 0.069 0.053 0.053 0.053
(100, 400) 0.122 0.128 0.128 0.097 0.097 0.097
(200, 400) 0.087 0.092 0.092 0.077 0.077 0.077
(400, 400) 0.065 0.068 0.068 0.053 0.053 0.053

Next, we let ft,τ = f0t,τ + cN−1/21J+1 for a given c, and simulate the responses from the model
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Table 2: The median value of the RMSEs based on the 500 simulation replications at τ = 0.5.

factors factor loading functions

(N,T ) RMSE 1 RMSE 2 RMSE c RMSE 1 RMSE 2 RMSE c

Case 1

(100, 20) 0.300 0.287 0.287 0.114 0.114 0.114
(200, 20) 0.204 0.200 0.200 0.093 0.093 0.093
(400, 20) 0.166 0.164 0.164 0.079 0.079 0.079
(100, 40) 0.302 0.292 0.292 0.113 0.113 0.113
(200, 40) 0.218 0.216 0.216 0.092 0.092 0.092
(400, 40) 0.171 0.170 0.170 0.078 0.078 0.078
(100, 100) 0.376 0.308 0.308 0.115 0.115 0.115
(200, 100) 0.271 0.230 0.230 0.094 0.094 0.094
(400, 100) 0.200 0.176 0.176 0.079 0.079 0.079
(100, 200) 0.380 0.316 0.316 0.114 0.114 0.114
(200, 200) 0.276 0.238 0.238 0.093 0.093 0.093
(400, 200) 0.210 0.184 0.184 0.078 0.078 0.078
(100, 400) 0.388 0.324 0.324 0.113 0.113 0.113
(200, 400) 0.290 0.250 0.250 0.093 0.093 0.093
(400, 400) 0.215 0.189 0.189 0.078 0.078 0.078

Case 2

(100, 20) 0.126 0.127 0.127 0.104 0.104 0.104
(200, 20) 0.086 0.091 0.091 0.080 0.080 0.080
(400, 20) 0.066 0.069 0.069 0.055 0.055 0.055
(100, 40) 0.122 0.125 0.125 0.100 0.100 0.100
(200, 40) 0.085 0.088 0.088 0.078 0.078 0.078
(400, 40) 0.063 0.068 0.068 0.053 0.053 0.053
(100, 100) 0.122 0.126 0.126 0.098 0.098 0.098
(200, 100) 0.085 0.090 0.090 0.077 0.077 0.077
(400, 100) 0.064 0.068 0.068 0.053 0.053 0.053
(100, 200) 0.120 0.123 0.123 0.098 0.098 0.098
(200, 200) 0.083 0.088 0.088 0.077 0.077 0.077
(400, 200) 0.064 0.067 0.067 0.053 0.053 0.053
(100, 400) 0.120 0.124 0.124 0.097 0.097 0.097
(200, 400) 0.083 0.088 0.088 0.077 0.077 0.077
(400, 400) 0.064 0.067 0.067 0.053 0.053 0.053
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Table 3: The median value of the RMSEs based on the 500 simulation replications at τ = 0.7.

factors factor loading functions

(N,T ) RMSE 1 RMSE 2 RMSE c RMSE 1 RMSE 2 RMSE c

Case 1

(100, 20) 0.311 0.285 0.285 0.106 0.106 0.106
(200, 20) 0.223 0.205 0.205 0.081 0.081 0.081
(400, 20) 0.155 0.144 0.144 0.051 0.051 0.051
(100, 40) 0.319 0.290 0.290 0.098 0.098 0.098
(200, 40) 0.239 0.215 0.215 0.078 0.078 0.078
(400, 40) 0.155 0.148 0.148 0.047 0.047 0.047
(100, 100) 0.344 0.300 0.299 0.096 0.096 0.096
(200, 100) 0.247 0.224 0.224 0.074 0.074 0.074
(400, 100) 0.161 0.150 0.150 0.046 0.046 0.046
(100, 200) 0.361 0.312 0.312 0.094 0.094 0.094
(200, 200) 0.249 0.227 0.227 0.074 0.074 0.074
(400, 200) 0.169 0.160 0.160 0.045 0.045 0.045
(100, 400) 0.371 0.326 0.326 0.094 0.094 0.094
(200, 400) 0.263 0.241 0.241 0.074 0.074 0.074
(400, 400) 0.175 0.169 0.169 0.045 0.045 0.045

Case 2

(100, 20) 0.120 0.122 0.122 0.105 0.105 0.105
(200, 20) 0.086 0.090 0.090 0.080 0.080 0.080
(400, 20) 0.064 0.068 0.068 0.055 0.055 0.055
(100, 40) 0.122 0.125 0.125 0.100 0.100 0.100
(200, 40) 0.085 0.090 0.090 0.078 0.078 0.078
(400, 40) 0.065 0.069 0.069 0.054 0.054 0.054
(100, 100) 0.120 0.122 0.122 0.098 0.098 0.098
(200, 100) 0.087 0.092 0.092 0.077 0.077 0.077
(400, 100) 0.065 0.069 0.069 0.053 0.053 0.053
(100, 200) 0.120 0.122 0.122 0.098 0.098 0.098
(200, 200) 0.086 0.091 0.091 0.077 0.077 0.077
(400, 200) 0.065 0.069 0.069 0.053 0.053 0.053
(100, 400) 0.125 0.129 0.129 0.097 0.097 0.097
(200, 400) 0.087 0.092 0.092 0.077 0.077 0.077
(400, 400) 0.065 0.069 0.069 0.053 0.053 0.053
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(2.2) using these factors and the same loading functions g0j,τ (·) given in Section 6.1. The error

terms εit are generated from the two cases described in Section 6.1. We consider the hypotheses:

H0: fjt,τ = f0jt,τ versus H1: fjt,τ 6= f0jt,τ for j = 1, 2, respectively. Based on the 500 simulation

realizations, we use the proposed t-type statistic TNt,b given in (4.8) to obtain the empirical power=∑500
s=1{I(TNt,b,s > T1−α/2) + I(TNt,b,s < Tα/2)}/500 at the significance level α = 0.05, where TNt,b,s

is the value of the sth replicate of TNt,b, and Tα/2 and T1−α/2 are the (α/2)th and (1 − α/2)th

quantiles of the null limiting distribution given in (4.9). The estimates of the factors and their

loading functions are obtained by using the algorithm with the stopping rule (1) given in Section

3.1. For calculation of Λ̂Nt and Ω̂Nt,M=bN in (4.8), we let h = κN−1/5 with κ = 0.5, 1, 1.5 and

b = 0.2, 0.4, 0.6, respectively. The results for these κ and b values are similar, so we choose to report

the results for κ = 0.5 and b = 0.6. Figure 1 displays the average value of the empirical powers

over all t’s versus the c values for N = 100, 200, 400, and T = 20 (black solid line) and T = 400

(red dashed line) at τ = 0.5. The plots of the empirical powers at τ = 0.3, 0.5 and 0.7 look similar,

so we only report the plots at τ = 0.5 for saving spaces. The c values range from 0 to 30. We see

that the Type I error rates (the powers at c = 0) are close to the nominal significance level 0.05

for all cases. Moreover, the empirical size of power increases rapidly to 1 as c increases, and the

proposed test has similar performance at T = 20 and T = 400.

7 Application

In a series of important papers, Fama and French (hereafter denoted FF), demonstrated that there

have been large return premia associated with size and value, which are observable characteristics

of stocks. They contended that these return premia can be ascribed to a rational asset pricing

paradigm in which the size and value characteristics proxy for assets’ sensitivities to pervasive

sources of risk in the economy. FF (1993) used a simple portfolio sorting approach to estimat-

ing their factor model. Connor, Hagmann, and Linton (2012) used kernel-based semiparametric

regression methodology to capture the same phenomenon.

In our data analysis, we use all securities from Center for Research in Security Prices (CRSP)

which have complete daily return records from 2005 to 2013, and have two-digit Standard Industrial

Classification code (from CRSP), market capitalization (from Compustat) and book value (from

Compustat) records. We use daily returns in excess of the risk-free return of 347 stocks. We

consider the same four characteristic variables as given in Connor, Hagmann and Linton (2012),

and Fan, Liao and Wang (2016), which are size, value, momentum and volatility. Connor, Hagmann
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Figure 1: The plots of the average value of the empirical powers over all t’s versus the c values for
T = 20 (black solid line) and T = 400 (red dashed line) at τ = 0.5.
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and Linton (2012) provided some detailed descriptions of these characteristics. They are calculated

using the same method as described in Fan, Liao and Wang (2016).

It is commonly accepted based on empirical evidence that financial asset returns are heavy-

tailed (Bradley and Taqqu, 2003). One attractive feature of the quantile factor model (2.1) is that

it offers a parsimonious way of characterizing the entire conditional distribution, and moreover it

can be more robust to heavy tails and outliers than mean factor models. To this end, we fit model

(2.1) for each year, so that there are T = 251 observations. By taking the same strategy as He

and Shi (1996), we select the number of interior knots LN by minimizing the Bayesian information

criterion (BIC) given as

BIC(LN ) = log{(NT )−1
∑N

i=1

∑T

t=1
ρτ (yit − f̂ut −

∑J

j=1
ĝj(Xji)f̂jt)}+

log(NT )

2NT
J(LN +m).

For comparison, we fit the quantile model given in Connor, Hagmann, and Linton (2012) through

mean regression, in which we use the B-splines to approximate the unknown loading functions. We

use the method given in Koenker and Machado (1999) to find the pseudo−R2 for each stock at

different quantiles. Then we obtain the average pseudo−R2 among the 347 stocks, which is 0.441,

0.422, 0.428 at quantiles τ = 0.2, 0.5, 0.8, respectively. The average R2 from the mean regression is

0.312. This indicates that a higher percentage of variability of asset returns may be explained by
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the quantile model compared to the mean factor model.

Next, we test significance of the factors using the proposed t-type statistic given in Theorem 5.

To use the asymptotic distribution given in Theorem 5 for statistical inference, we need to estimate

the covariance matrix. For the estimator Λ̂Nt given in (4.6), the optimal order for the bandwidth h

is in the order of N−1/5. We let h = κN−1/5 in our numerical analysis and take different values for κ.

For the estimator Ω̂Nt,M=bN given in (4.7), we use different values for b, and use the Bartlett kernel

as suggested in Kiefer and Vogelsang (2005). We let κ = 0.5, 1, 1.5 and b = 0.2, 0.4, 0.6, respectively,

for calculation of Λ̂Nt and Ω̂Nt,M=bN . For obtaining the robust estimator Ω̂Nt,M=bN , the data need

to be ordered across i. We consider two different orderings. First, we take the same strategy as

Lee and Robinson (2016) by ordering the data according to firm size, since firms of similar size

may be subject to similar shocks. Second, we use the information of the four explanatory variables

by ordering the data according to the first principal component of the covariate matrix. We then

test for the statistical significance of each factor at each time point based on the proposed t-type

statistic. For each factor, we find the percentage of the t-type statistics that are significant at a

95% confidence level across the 251 time periods. Based on the two different ordering strategies,

Tables 1 and 2, respectively, show the annualized standard deviations of the factor returns, the

percentage of significant t-type statistics for each factor, and the median p-value at τ = 0.5 for the

year of 2012. We obtain similar results for other years. We can see that the results are consistent

for different values of κ and b and for the two different orderings of the data. Moreover, all five

factors are statistically significant with the median p-value smaller than 0.05.

For comparison, we also conduct tests for significance of each factor via fitting the mean fac-

tor model and using the asymptotic distribution of the estimated factors given in Theorem 1 of

Connor, Hagmann, and Linton (2012). Table 6 shows the percentage of significant statistics for

each factor and the median p-value from fitting the quantile regression and the mean regression

(mean), respectively. We let κ = 1 and b = 0.2 for calculation of Λ̂Nt and Ω̂Nt,M=bN and order the

data according to the first principal component of the covariate matrix. We see that the quantile

regression identifies more significant factors across time than the mean regression does.

Lastly, we plot the four estimated loading functions and the 95% pointwise confidence intervals

at different quantiles τ = 0.2, 0.5 and 0.8 for the year of 2012. The plots of the estimated functions

have similar patterns from other years. The pointwise confidence intervals are obtained from a wild

bootstrap procedure (Mammen, 1993). Figure 2 shows the plots of the estimated loading functions

and the pointwise confidence intervals at quantile τ = 0.5. The solid black lines are the estimated
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Table 4: Factor return statistics at τ = 0.5 for the year of 2012 when the data are ordered according
to the firm size.

(κ, b) Intercept Size Value Momentum Volatility
Annualized volatility 0.024 0.023 0.025 0.025 0.029

(0.5, 0.2) % Periods significant 92.43 65.34 62.95 64.54 74.10
Overall p-value < 0.001 0.010 0.016 0.009 0.001
Annualized volatility 0.020 0.020 0.022 0.022 0.026

(0.5, 0.4) % Periods significant 91.63 58.17 57.20 58.17 66.93
Overall p-value < 0.001 0.020 0.019 0.020 0.010
Annualized volatility 0.018 0.019 0.019 0.020 0.023

(0.5, 0.6) % Periods significant 90.84 55.78 56.40 55.38 66.93
Overal p-value < 0.001 0.032 0.028 0.023 0.006
Annualized volatility 0.026 0.026 0.027 0.027 0.032

(1.0, 0.2) % Periods significant 92.03 62.95 63.60 62.15 71.31
Overall p-value < 0.001 0.014 0.019 0.011 0.002
Annualized volatility 0.022 0.023 0.023 0.024 0.028

(1.0, 0.4) % Periods significant 90.44 55.20 56.40 55.98 65.74
Overall p-value < 0.001 0.036 0.030 0.033 0.011
Annualized volatility 0.019 0.022 0.021 0.021 0.025

(1.0, 0.6) % Periods significant 89.24 56.20 55.40 58.80 62.95
Overall p-value < 0.001 0.032 0.032 0.026 0.016
Annualized volatility 0.027 0.028 0.029 0.029 0.034

(1.5, 0.2) % Periods significant 92.03 59.76 55.38 61.75 70.12
Overall p-value < 0.001 0.021 0.032 0.015 0.003
Annualized volatility 0.023 0.025 0.025 0.026 0.031

(1.5, 0.4) % Periods significant 90.44 56.57 55.94 55.94 63.75
Overall p-value < 0.001 0.030 0.030 0.036 0.014
Annualized volatility 0.020 0.019 0.022 0.022 0.026

(1.5, 0.6) % Periods significant 88.44 58.14 56.80 56.00 61.75
Overall p-value < 0.001 0.027 0.028 0.024 0.018
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Table 5: Factor return statistics at τ = 0.5 for the year of 2012 when the data are ordered according
to the first principal component of the covariate matrix.

(κ, b) Intercept Size Value Momentum Volatility
Annualized volatility 0.023 0.027 0.025 0.025 0.027

(0.5, 0.2) % Periods significant 94.02 62.15 62.55 67.73 75.30
Overall p-value < 0.001 0.023 0.018 0.011 < 0.001
Annualized volatility 0.019 0.024 0.022 0.021 0.023

(0.5, 0.4) % Periods significant 92.43 57.60 54.20 58.96 70.92
Overall p-value < 0.001 0.023 0.032 0.019 0.001
Annualized volatility 0.016 0.021 0.020 0.019 0.020

(0.5, 0.6) % Periods significant 92.83 55.60 56.40 61.60 71.31
Overal p-value < 0.001 0.028 0.028 0.018 0.004
Annualized volatility 0.025 0.032 0.027 0.027 0.030

(1.0, 0.2) % Periods significant 93.23 56.80 60.40 64.80 74.30
Overall p-value < 0.001 0.033 0.021 0.016 0.001
Annualized volatility 0.020 0.026 0.024 0.024 0.025

(1.0, 0.4) % Periods significant 92.03 54.80 56.20 59.60 71.20
Overall p-value < 0.001 0.030 0.030 0.019 0.002
Annualized volatility 0.016 0.024 0.022 0.022 0.022

(1.0, 0.6) % Periods significant 92.80 56.20 55.40 56.80 68.80
Overall p-value < 0.001 0.027 0.031 0.029 0.002
Annualized volatility 0.027 0.030 0.029 0.028 0.032

(1.5, 0.2) % Periods significant 92.03 56.00 54.40 68.00 74.00
Overall p-value < 0.001 0.033 0.032 0.013 0.002
Annualized volatility 0.021 0.028 0.026 0.026 0.026

(1.5, 0.4) % Periods significant 92.03 56.60 55.90 55.20 68.00
Overall p-value < 0.001 0.028 0.028 0.030 0.002
Annualized volatility 0.018 0.025 0.024 0.023 0.024

(1.5, 0.6) % Periods significant 92.03 58.10 54.80 56.00 67.60
Overall p-value < 0.001 0.027 0.030 0.029 0.003

Table 6: P-value statistics for testing significance of factors from quantile regression at τ = 0.2,
0.5, 0.8 and from mean regression (mean) for the year of 2012 when the data are ordered according
to the first principal component of the covariate matrix.

Intercept Size Value Momentum Volatility
τ = 0.2 % Periods significant 97.20 63.20 62.80 58.00 83.20

Overall p-value < 0.001 0.015 0.011 0.022 < 0.001
τ = 0.5 % Periods significant 93.23 56.80 60.40 64.80 74.30

Overall p-value < 0.001 0.033 0.021 0.016 0.001
τ = 0.8 % Periods significant 97.20 66.40 65.60 71.20 79.60

Overal p-value < 0.001 0.004 0.010 0.008 < 0.001
mean % Periods significant 0.840 0.152 0.312 0.264 0.456

Overall p-value < 0.001 0.314 0.314 0.173 0.071
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loading functions from the quantile regression, the dashed blue lines are the confidence intervals

and the dotted red lines are the estimated loading functions from the mean regression. For the size,

value and momentum characteristics, the estimated functions show a clear nonlinear pattern. This

indicates that the effects of these characteristics on the stock returns change with their values. For

instance, at τ = 0.5, both small and big sizes of firms tend to have a strong effect on stock returns.

However, the effect of size becomes insignificant when its value falls into certain range. For other

three characteristics, their effects are strong for most of their values. In Figures 3 and 4, we also

plot the estimated loading functions and the 95% confidence intervals at quantiles τ = 0.2 and 0.8,

respectively. We see that the four characteristics can have different effects on the stock returns at

different quantiles. For example, at τ = 0.2 and 0.8, the effect of size fluctuates around zero, and it

suddenly becomes strong after the value of size exceeds certain value. This patten is quite different

from what we observe for the size characteristic at τ = 0.5 shown in Figure 2. The results indicate

that the effect of small firm sizes on stock return becomes weaker from the middle to tails of its

distribution.

8 Conclusions and discussion

Our semiparametric quantile factor models are motivated by the classical factor models (Bai and

Ng, 2002) and the characteristic-based factor models (Connor et al., 2012), in which the factor

betas are time-invariant, i.e., there is no structural change in the factor betas over time. The four

characteristics considered in Connor et al. (2012) and Fan et al. (2016) are used as the time-

invariant baseline covariates in the loading functions, and they are calculated using the data right

before the data analyzing window. In practice, the firm characteristics can be varying over time.

It is of interest to consider an extended model which incorporates the time-varying characteristics.

This model can be given as Qyit(τ |Xit) = fut,τ +
∑J

j=1 gj,τ (Xjit)fjt,τ , where Xjit are observable

time-dependent characteristics. Further investigations are needed for developing the estimating

methods for this model and the associated statistical properties. We will consider this interesting

yet challenging problem as a future research topic to explore.

We have taken for granted that the J factors are present in the sense that

p lim
T→∞

1

T

∑T

t=1
f0jt 6= 0 (8.1)

for j = 1, . . . , J . For the factors in our application this is quite a standard assumption, but in some
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Figure 2: The plots of the estimated loading functions from quantile regression (solid black lines) at τ = 0.5,

the 95% pointwise confidence intervals (dashed blue lines) and the estimated loading functions from mean

regression (dotted red lines).
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Figure 3: The plots of the estimated loading functions from quantile regression (solid black lines) and the

95% pointwise confidence intervals (dashed blue lines) at τ = 0.2.
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Figure 4: The plots of the estimated loading functions from quantile regression (solid black lines) and the

95% pointwise confidence intervals (dashed blue lines) at τ = 0.8.
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cases one might wish to test this because if this condition fails, then the right hand side of (2.4)

is close to zero and this equation cannot identify g0j (xj). We outline below a test of the hypothesis

(8.1) based on the unstructured additive quantile regression model (2.3). A more limited objective

is to test whether for a given time period t, fjt = 0.

We are interested in testing the hypothesis that

H0Aj
: lim
T→∞

1

T

T∑
t=1

hjt(xj) = 0 for all xj , (8.2)

against the general alternative that limT→∞
1
T

∑T
t=1 hjt(xj) = µj(xj) with E{µj(Xji)

2} > 0. We

also may be interested in a joint test H0 = ∩j∈IJH0Aj
, where IJ is a set of integers, which is a

subset of {1, 2, . . . , J}. These are tests of the presence of a factor.

We let

τ̂ j,N,T =

∫ (
1
T

∑T
t=1 ĥjt(xj)

)2
dPj(xj)− aN,T

sN,T
,

where ĥjt(·) is an estimator of the additive component function hjt(·) from the quantile additive

model at time t, while aN,T and sN,T are constants to be determined. Under the null hypothesis

(8.2) we may show that

τ̂ j,n,T
D→ N (0, 1),

while under the alternative we have τ̂ j,n,T →∞ with probability approaching one. To ensure that

τ̂ j,n,T has an asymptotic distribution, we may need a two-step estimator for the additive functions

hjt(·) as given in Horowitz and Mammen (2011) or Ma and Yang (2011). This interesting and

challenging technical problem deserves further investigation, and it can be a good future research

topic.

9 Appendix

We first introduce some notations which will be used throughout the Appendix. Let λmax (A) and

λmin (A) denote the largest and smallest eigenvalues of a symmetric matrix A, respectively. For an

m×n real matrix A, we denote ‖A‖∞ = max1≤i≤m
∑n

j=1 |Aij |. For any vector a = (a1, . . . , an)ᵀ ∈

Rn, denote ||a||∞ = max1≤i≤n |ai|. We first study the asymptotic properties of the initial estimators

ĝ
[0]
j (xj) of g0j (xj). The following proposition gives the convergence rate of ĝ

[0]
j (xj) that will be used

in the proofs of Theorems 1 and 2.
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Proposition 1. Let Conditions (C1)-(C4) hold. If, in addition, K4
NN

−1 = o(1), K−r+2
N (log T ) =

o(1) and K−1N (logNT )(logN)4 = o(1), then for every 1 ≤ j ≤ J , as (N,T )→∞,

supxj∈[a,b] |ĝ
[0]
j (xj)− g0j (xj)| = Op(KN/

√
NT +K2

NN
−3/4√logNT +K−rN ) + op(N

−1/2),[∫
{ĝ[0]j (xj)− g0j (xj)}2dxj

]1/2
= Op(

√
KN/(NT ) +K

3/2
N N−3/4

√
logNT +K−rN ) + op(N

−1/2).

9.1 Proof of Proposition 1

According to the result on page 149 of de Boor (2001) and Lemma 2 in Xue and Yang (2006), for

h0jt satisfying the smoothness condition given in (C2), there exists θ0jt ∈ RKn such that h0jt(xj) =

h̃0jt(xj) + bjt(xj)

h̃0jt(xj) = Bj(xj)
ᵀθ0jt and sup

j,t
sup

xj∈[a,b]
|bjt(xj)| = O(K−rN ). (A.1)

Denote h̃0t (x) = {h̃0jt(xj), 1 ≤ j ≤ J}ᵀ, and

bt(x) =
∑J

j=1
h0jt(xj)−B(x)ᵀθ0t ,

where B(x) = {B1(x1)
ᵀ, . . . , BJ(xJ)ᵀ}ᵀ and θ0t = (θ0ᵀ1t , . . . ,θ

0ᵀ
Jt)

ᵀ. Then by (A.1), we have

supx∈[a,b]J |bt(x)| = O(K−rN ).

Then B(x)(h̃ut, θ̃
ᵀ
t )

ᵀ = (h̃ut, h̃t(x)ᵀ)ᵀ and B(x)(h0ut,θ
0ᵀ
t )ᵀ = (h0ut, h̃

0
t (x)ᵀ)ᵀ, where

B(x) = [diag{1, B1(x1)
ᵀ, . . . , BJ(xJ)ᵀ}](1+J)×(1+JKN ) , (A.2)

h̃t(x) = {h̃jt(xj), 1 ≤ j ≤ J}ᵀ, and h̃jt(·) are the estimators given in Section 3.2. We first give the

Bernstein inequality for a φ-mixing sequence, which is used through our proof.

Lemma 1. Let {ξi} be a sequence of centered real-valued random variables. Let Sn =
∑n

i=1 ξi.

Suppose the sequence has the φ-mixing coefficient satisfying φ(k) ≤ exp(−2ck) for some c > 0 and

supi≥1 |ξi| ≤M . Then there is a positive constant C1 depending only on c such that for all n ≥ 2

P (|Sn| ≥ ε) ≤ exp(− C1ε
2

v2n+M2 + εM(log n)2
),

where v2 = supi>0(var(ξi) + 2
∑

j>i |cov(ξi, ξj)|).
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Proof. The result of Lemma 1 is given in Theorem 2 on page 275 of Merlevède, Peligrad and Rio

(2009) when the sequence {ξi} has the α-mixing coefficient satisfying α(k) ≤ exp(−2ck) for some

c > 0. Thus, this result also holds for the sequence having the φ-mixing coefficient satisfying

φ(k) ≤ exp(−2ck), since α(k) ≤ φ(k) ≤ exp(−2ck).

Denote B(Xi) = {B1(X1i)
ᵀ, . . . , BJ(XJi)

ᵀ}ᵀ and Zi = [{1, B(Xi)
ᵀ}ᵀ](1+JKN )×1. Denote ϑt =

(hut,θ
ᵀ
t )

ᵀ and ϑ0
t = (h0ut,θ

0ᵀ
t )ᵀ. Define

GtN,i(ϑt) = [τ − I{εit ≤ Zᵀ
i (ϑt − ϑ0

t )− bt(Xi)}]Zi,

G∗tN,i(ϑt) = [τ − Fit[{Zᵀ
i (ϑt − ϑ0

t )− bt(Xi)}|Xi, ft]]Zi,

where Fit(ε|Xi) = P (εit ≤ ε|Xi), and G̃tN,i(ϑt) = GtN,i(ϑt)−G∗tN,i(ϑt). Let d(N) = (1 + JKN ).

Let ΨNt = N−1
∑N

i=1 pit (0 |Xi )ZiZ
ᵀ
i . By the same reasoning as the proofs for (ii) of Lemma

A.7 in Ma and Yang (2011), we have with probability approaching 1, as N → ∞, there exist

constants 0 < C1 ≤ C2 <∞ such that

C1 ≤ λmin(ΨNt) ≤ λmax(ΨNt) ≤ C2, (A.3)

uniformly in t = 1, ..., T .

Next lemma presents the Bahadur representation for ϑ̃t = (h̃ut, θ̃
ᵀ
t )

ᵀ using the results in Lemmas

A.1-A.3 given in the Supplemental Materials.

Lemma 2. Under Conditions (C1)-(C3), and K3
NN

−1 = o(1), K2
NN

−1(logNT )2(logN)8 = o(1)

and K−r+1
N (log T ) = o(1),

ϑ̃t − ϑ0
t = DNt,1 +DNt,2 +RNt, (A.4)

where

DNt,1 = Ψ−1Nt

[
N−1

∑N

i=1
Zi(τ − I(εit < 0))

]
, (A.5)

DNt,2 = Ψ−1Nt

[
N−1

∑N

i=1
Zi{pit (0 |Xi )

∑J

j=1
bjt(Xji)}

]
,

uniformly in t, and the remaining term RNt satisfies

sup
1≤t≤T

||RNt|| = Op(K
3/2
N N−1 +K

3/2
N N−3/4

√
logNT +K

1/2−2r
N +N−1/2K

−r/2+1/2
N

√
logKNT )

= Op(K
3/2
N N−3/4

√
logNT +K

1/2−2r
N ) + op(N

−1/2).
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Proof. By Lemma A.3 in the Supplemental Materials, we have

ϑ̃t − ϑ0
t = N−1Ψ−1Nt

∑N

i=1
pit (0 |Xi )Zibt(Xi)−N−1Ψ−1Nt

∑N

i=1
G∗tN,i(ϑ̃t) +R∗Nt.

Moreover,

Ψ−1NtG
∗
tN,i(ϑ̃t) = Ψ−1NtGtN,i(ϑ̃t)−Ψ−1NtG̃tN,i(ϑ

0
t )−Ψ−1Nt[G̃tN,i(ϑ̃t)− G̃tN,i(ϑ

0
t )].

Thus,

ϑ̃t − ϑ0
t = Ψ−1NtN

−1
∑N

i=1
G̃tN,i(ϑ

0
t ) + Ψ−1NtN

−1
∑N

i=1
pit (0 |Xi )Zibt(Xi) +R∗∗Nt, (A.6)

where

R∗∗Nt = −Ψ−1NtN
−1
∑N

i=1
GtN,i(ϑ̃t) + Ψ−1NtN

−1
∑N

i=1
[G̃tN,i(ϑ̃t)− G̃tN,i(ϑ0

t )] +R∗Nt. (A.7)

By Lemmas A.1 and A.2 in the Supplemental Materials and (A.3), we have

sup
1≤t≤T

||R∗∗Nt|| ≤ sup
1≤t≤T

||Ψ−1Nt|| sup
1≤t≤T

||N−1
∑N

i=1
GtN,i(ϑ̃t)||

+ sup
1≤t≤T

||Ψ−1Nt|| sup
1≤t≤T

||N−1
∑N

i=1
[G̃tN,i(ϑ̃t)− G̃tN,i(ϑ0

t )]||+ sup
1≤t≤T

||R∗Nt||

= Op(K
3/2
N N−1 + (K2

NN)−3/4
√

logNT +K
1/2−2r
N ).

Define GtN,i`(ϑ
0
t ) = {τ − I(εit ≤ 0)}Zi,` and GtN,i(ϑ

0
t ) = {GtN,i`(ϑ0

t ), 1 ≤ ` ≤ d(N)}. Then

E{G̃tN,i`(ϑ0
t )−GtN,i`(ϑ0

t )} = 0. Moreover,

E{G̃tN,i`(ϑ0
t )−GtN,i`(ϑ0

t )}2 ≤ E [I{εit ≤ −bt(Xi)} − I{εit ≤ 0}Zi,`]2 ≤ CK−rN

for some constant 0 < C <∞, and by Condition (C1), we have

E{G̃tN,i`(ϑ0
t )−GtN,i`(ϑ0

t )}{G̃tN,i′`(ϑ0
t )−GtN,i′`(ϑ0

t )}

≤ 2× 42{φ(|i′ − i|)}1/2[E{G̃tN,i`(ϑ0
t )−GtN,i`(ϑ0

t )}2E{G̃tN,i′`(ϑ0
t )−GtN,i′`(ϑ0

t )}2]1/2

≤ C ′K1e
−λ1|i′−i|/2K−rN .
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Hence, by the above results, we have

E[N−1
∑N

i=1
{G̃tN,i`(ϑ0

t )−GtN,i`(ϑ0
t )}]2

≤ N−1CK−rN +N−2
∑

i 6=i′
C ′K1e

−λ1|i′−i|K−rN

≤ CN−1K−rN + C ′K1N
−2N(1− e−λ1/2)−1K−rN ≤ C

′′N−1K−rN ,

for some constant 0 < C ′′ <∞. Thus

E||N−1
∑N

i=1
{G̃tN,i(ϑ0

t )−GtN,i(ϑ0
t )}||2 =

∑d(N)

`=1
E[N−1

∑N

i=1
{G̃tN,i`(ϑ0

t )−GtN,i`(ϑ0
t )}]2

≤ C ′′(1 + JKN )N−1K−rN .

Therefore, by the Bernstein’s inequality in Lemma 1 and the union bound of probability, following

the same procedure as the proof for Lemma A.1 given in the Supplemental Materials, we have

sup
1≤t≤T

||N−1
∑N

i=1
{G̃tN,i(ϑ0

t )−GtN,i(ϑ0
t )}|| = Op(N

−1/2K
−r/2+1/2
N

√
logKNT ). (A.8)

Therefore, by (A.6), (A.7) and (A.8), we have ϑ̃t − ϑ0
t = DNt,1 +DNt,2 +RNt, where

sup
1≤t≤T

||RNt|| = Op(K
3/2
N N−1 + (K2

NN)−3/4
√

logNT +K
1/2−2r
N +N−1/2K

−r/2+1/2
N

√
logKNT ).

Proof of Proposition 1. Let 1l be the (J + 1) × 1 vector with the lth element as “1” and other

elements as “0”. By (A.4) in Lemma 2, we have

h̃jt(xj)− h̃0jt(xj) = 1ᵀj+1B(x)(DNt,1 +DNt,2) + 1ᵀj+1B(x)RNt,

sup
1≤t≤T

{N−1
∑N

i=1
(1ᵀj+1B(Xi)RNt)

2}1/2 ≤ sup
1≤t≤T

||RNt||[λmax{N−1
∑N

i=1
Bj(Xji)Bj(Xji)

ᵀ}]1/2

= Op(K
3/2
N N−3/4

√
logNT +K

1/2−2r
N ) + op(N

−1/2),
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and

sup1≤t≤T supx∈[a,b]J |1
ᵀ
j+1B(x)RNt|

≤ supx∈[a,b]J ||B(x)ᵀ1j+1|| sup1≤t≤T ||RNt||

= O(K
1/2
N )Op(K

3/2
N N−1 +K

3/2
N N−3/4

√
logNT +K

1/2−2r
N +N−1/2K

−r/2+1/2
N

√
logKNT )

= Op(K
2
NN

−3/4√logNT +K1−2r
N ) + op(N

−1/2),

by the assumption that K4
NN

−1 = o(1), K−r+2
N (log T ) = o(1) and r > 2. Since h0jt(xj) = h̃0jt(xj) +

bjt(xj), then we have

h̃jt(xj)− h0jt(xj) = 1ᵀj+1B(x)(DNt,1 +DNt,2)− bjt(xj) + 1ᵀj+1B(x)RNt.

Also by (A.1), we have sup1≤t≤T supx∈[a,b]J
∣∣∣1ᵀj+1B(x)DNt,2

∣∣∣ = Op(K
−r
N ). Then h̃jt(xj) − h0jt(xj)

can be written as

h̃jt(xj)− h0jt(xj) = 1ᵀj+1B(x)DNt,1 + ηN,jt(xj), (A.9)

where the remaining term ηN,jt(xj) satisfies

sup
1≤t≤T

[N−1
∑N

i=1
{ηN,jt(Xji)}2]1/2 = Op(K

−r
N ) +Op(K

3/2
N N−3/4

√
logNT ) + op(N

−1/2), (A.10)

sup
1≤t≤T

{
∫
ηN,jt(xj)

2dxj}1/2 = Op(K
−r
N ) +Op(K

3/2
N N−3/4

√
logNT ) + op(N

−1/2),

sup
1≤t≤T

supxj∈[a,b] |ηN,jt(xj)| = Op(K
−r
N ) +Op(K

2
NN

−3/4√logNT ) + op(N
−1/2). (A.11)

Moreover, by Berntein’s inequality and following the same procedure as the proof for Lemma A.1,

we have sup1≤t≤T ||DNt,1|| = Op(
√
KN/N

√
logKNT ). Hence,

sup
1≤t≤T

sup
x∈[a,b]J

|1ᵀj+1B(x)DNt,1| = Op(
√

logKNTKN/
√
N),

sup
1≤t≤T

{N−1
∑N

i=1
(1ᵀj+1B(Xi)DNt,1)

2}1/2 = Op(
√

logKNT
√
KN/N). (A.12)

Therefore, by (A.9), (A.10), (A.11) and (A.12), we have

sup
1≤t≤T

N−1
∑N

i=1
{h̃jt(Xji)− h0jt(Xji)}2 = Op((logKNT )KN/N +N−2r),
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sup
1≤t≤T

supxj∈[a,b] |h̃jt(xj)− h
0
jt(xj)| = Op(

√
logKNTKNN

−1/2 +K−rN ). (A.13)

Moreover, by Conditions (C3) and (C4), we have with probability approaching 1, as N →∞,

ch ≤ N−1
∑N

i=1
(T−1

∑T

t=1
h0jt(Xji))

2 ≤ Ch , ch ≤ N−1
∑N

i=1
(T−1

∑T

t=1
h̃jt(Xji))

2 ≤ Ch.

(A.14)

Hence, this result together with (A.9) leads to that with probability approaching 1, as N →∞,

∣∣∣∣∣1/
√
N−1

∑N

i=1
(T−1

∑T

t=1
h̃jt(Xji))2 − 1/

√
N−1

∑N

i=1
(T−1

∑T

t=1
h0jt(Xji))2

∣∣∣∣∣
=

∣∣∣∣MNTN
−1
∑N

i=1
T−1

∑T

t=1
{h̃jt(Xji)− h0jt(Xji)}T−1

∑T

t=1
{h̃jt(Xji) + h0jt(Xji)}

∣∣∣∣
= |2MNTN

−1
∑N

i=1
T−1

∑T

t=1
{h̃jt(Xji)− h0jt(Xji)}{T−1

∑T

t=1
h0jt(Xji)}

+MNTN
−1
∑N

i=1
T−1

∑T

t=1
{h̃jt(Xji)− h0jt(Xji)}2|

≤
∣∣∣∣2MNTN

−1
∑N

i=1
T−1

∑T

t=1
[1ᵀj+1B(Xi)DNt,1{T−1

∑T

t=1
h0jt(Xji)}+ %it]

∣∣∣∣
+ 2MNTN

−1
∑N

i=1
T−1

∑T

t=1
{1ᵀj+1B(Xi)DNt,1}2 + ηN,jt(Xji)

+ 2MNTN
−1
∑N

i=1
T−1

∑T

t=1
{ηN,jt(Xji)}2 (A.15)

for MNT satisfying MNT ∈ (c′, C ′) for some constants 0 < c′ < C ′ <∞, where

%it = ηN,jt(Xji){T−1
∑T

t=1 h
0
jt(Xji)}. Moreover by (A.10), there exists a constant C∗ ∈ (0,∞) such

that

|N−1
∑N

i=1
T−1

∑T

t=1
%it| ≤ C∗ sup1≤t≤T N

−1
∑N

i=1
|ηN,jt(Xji)|

≤ C∗ sup1≤t≤T [N−1
∑N

i=1
{ηN,jt(Xji)}2]1/2

= Op(K
−r
N ) +Op(K

3/2
N N−3/4

√
logNT ) + op(N

−1/2), (A.16)

and

N−1
∑N

i=1
T−1

∑T

t=1
{ηN,jt(Xji)}2 = Op(K

−2r
N ) +Op(K

3
NN

−3/2 log(NT )) + op(N
−1). (A.17)

Define ψit = {ψit,`}
d(N)
`=1 = Ψ−1NtZi(τ−I(εit < 0)). Then E(ψit,`) = 0. Moreover, E||ψit||2 ≤ c1KN for
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some constant 0 < c1 <∞, and by Condition (C1), we have

|E(ψᵀ
itψjs)| ≤ 2{φ(

√
|i− j|2 + |t− s|2)}1/2

∑d(N)

`=1
{E(ψit,`)

2E(ψjs,`)
2}1/2

≤ {φ(
√
|i− j|2 + |t− s|2)}1/2(E||ψit||2 + E||ψjs||2)

≤ 2c1KN{φ(
√
|i− j|2 + |t− s|2)}1/2.

Hence by Condition (C1), we have

E||(NT )−1
∑T

t=1

∑N

i=1
ψit||2

= (NT )−2
∑

t,t′

∑
i,i′
E(ψᵀ

itψi′t′) ≤ 2c1KN (NT )−2
∑

t,t′

∑
i,i′
{φ(
√
|i− j|2 + |t− s|2)}1/2

≤ 2c1K1KN (NT )−2
∑

t,t′

∑
i,i′
e−λ1
√
|i−i′|2+|t−t′|2/2

≤ 2c1(NT )−2K1KN

∑
t,t′

∑
i,i′
e−(λ1/2)(|i−i

′|+|t−t′|)

≤ 2c1K1KN (NT )−2(NT )(
∑T

k=0
e−(λ1/2)k)(

∑N

k=0
e−(λ1/2)k)

≤ 2c1K1KN (NT )−2(NT ){1− e−(λ1/2)}−2 = 2c1K1KN{1− e−(λ1/2)}−2(NT )−1 = O{KN (NT )−1}.

Thus, by Markov’s inequality, as (N,T )→∞,

||(NT )−1
∑T

t=1

∑N

i=1
ψit|| = Op[{KN (NT )−1}1/2]. (A.18)

Moreover, by the definition of DNt,1 given in (A.5), we have DNt,1 =N−1
∑N

i=1ψit. Therefore, as

(N,T )→∞,

|N−1
∑N

i=1
T−1

∑T

t=1
1ᵀj+1B(Xi)DNt,1| = |N−1

∑N

i=1
1ᵀj+1B(Xi)(NT )−1

∑T

t=1

∑N

i=1
ψit|

≤ ||(NT )−1
∑T

t=1

∑N

i=1
ψit||[λmax{N−1

∑N

i=1
Bj(Xji)Bj(Xji)

ᵀ}]1/2 = Op[{KN (NT )−1}1/2].

By (A.12) and log(KNT )KNN
−1/2 = o(1), we have

N−1
∑N

i=1
T−1

∑T

t=1
{1ᵀj+1B(Xi)DNt,1}2 = {Op(

√
logKNT

√
KN/N)2} = op(N

−1/2).
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Therefore, the above results together with (A.15), (A.16) and (A.17) lead to

∣∣∣∣∣1/
√
N−1

∑N

i=1
(T−1

∑T

t=1
h̃jt(Xji))2 − 1/

√
N−1

∑N

i=1
(T−1

∑T

t=1
h0jt(Xji))2

∣∣∣∣∣
= Op[{KN (NT )−1}1/2] +Op(K

−r
N ) +Op(K

3/2
N N−3/4

√
logNT ) + op(N

−1/2).

Denote $NT =

√
N−1

∑N
i=1(T

−1∑T
t=1 h̃jt(Xji))2 and $0

NT =
√
N−1

∑N
i=1(T

−1∑T
t=1 h

0
jt(Xji))2.

Then

T−1
∑T

t=1
{h̃jt(xj)/$NT − h0jt(xj)/$0

NT }

= T−1
∑T

t=1
{h̃jt(xj)/$NT − h0jt(xj)/$NT }+ T−1

∑T

t=1
{h0jt(xj)/$NT − h0jt(xj)/$0

NT }

= T−1
∑T

t=1
{h̃jt(xj)− h0jt(xj)}/$NT + T−1

∑T

t=1
h0jt(xj){1/$NT − 1/$0

NT }.

By the above result and Condition (C3), we have

supxj∈[a,b] |T
−1
∑T

t=1
h0jt(xj){1/$NT − 1/$0

NT }|

= Op[{KN (NT )−1}1/2] +Op(K
−r
N ) +Op(K

3/2
N N−3/4

√
logNT ) + op(N

−1/2).

Moreover, (A.9) leads to

T−1
∑T

t=1
{h̃jt(xj)− h0jt(xj)}/$NT

= T−1
∑T

t=1
1ᵀj+1B(x)DNt,1/$NT + T−1

∑T

t=1
ηN,jt(xj)/$NT = ΦNTj,1(xj) + ΦNTj,2(xj).

By (A.11) and (A.14), as N →∞,

supxj∈[a,b] |ΦNTj,2(xj)| = Op(K
−r
N ) +Op(K

2
NN

−3/4√logNT ) + op(N
−1/2),{∫

ΦNTj,2(xj)
2dxj

}1/2

= Op(K
−r
N ) +Op(K

3/2
N N−3/4

√
logNT ) + op(N

−1/2).

By (A.14) and (A.18), as (N,T )→∞,

supxj∈[a,b] |ΦNTj,1(xj)| ≤ c−1h {||(NT )−1
∑T

t=1

∑N

i=1
ψit||2 supxj∈[a,b] ||Bj(xj)||

2}1/2

= Op{KN (NT )−1/2},{∫
ΦNTj,1(xj)

2dxj

}1/2

≤ c−1h C2{||(NT )−1
∑T

t=1

∑N

i=1
ψit||2}1/2 = Op{K1/2

N (NT )−1/2}.
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Hence, the results in Proposition 1 follow from the above results directly.

9.2 Proofs of Theorems 1 and 2

We first present the following several lemmas that will be used in the proofs of Theorems 1 and 2.

We define the infeasible estimator f∗t = {f∗ut, (f∗jt, 1 ≤ j ≤ J)ᵀ}ᵀ as the minimizer of

∑N

i=1
ρτ (yit − fut −

∑J

j=1
g0j (Xji)fjt). (A.19)

Lemma 3. Under Conditions (C1), (C2), (C4), (C5) and (C6), we have as N →∞,

√
N(Σ0

Nt)
−1/2(f∗t − f0t )→ N (0, IJ+1),

where Σ0
Nt is given in (4.1).

Proof. By Bahadur representation for the φ-mixing case (see Babu, 1989), we have

f∗t − f0t = Λ−1Nt{N
−1
∑N

i=1
G0
i (Xi)(τ − I(εit < 0))}+ υNt, (A.20)

and ||υNt|| = op(N
−1/2) for every t, where ΛNt = N−1

∑N
i=1 pit (0 |Xi )G

0
i (Xi)G

0
i (Xi)

ᵀ. By Con-

ditions (C2) and (C5), we have that the eigenvalues of Λ0
Nt are bounded away from zero and

infinity. By similar reasoning to the proof for Theorem 2 in Lee and Robinson (2016), we have∥∥Λ−1Nt
∥∥ = Op(1) and

∥∥ΛNt − Λ0
Nt

∥∥ = op(1). Thus, the asymptotic distribution in Lemma 3 can be

obtained directly by Condition (C6).

Recall that the estimator f̂
[1]
t given in (3.1) is defined in the same way as f∗t with g0j (Xji)

replaced by ĝ
[0]
j (Xji) in (A.19). Then we have the following result for f̂

[1]
t .

Lemma 4. Let Conditions (C1)-(C5) hold. If, in addition, K4
NN

−1 = o(1), K−r+2
N (log T ) = o(1),

K−1N (logNT )(logN)4 = o(1) and φNT = o(1), where φNT is given in (4.2), then for a given t there

is a stochastically bounded sequence δN,jt such that as (N,T )→∞,

√
N(f̂

[1]
t − f∗t − dNT δN,t) = op(1),

where δN,t = (δN,jt, 0 ≤ j ≤ J)ᵀ and dNT is given in (4.3).
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Proof. Denote g = {gj(·), 1 ≤ j ≤ J}. Define

LNt(ft, g) = N−1
∑N

i=1
ρτ (yit − fut −

∑J

j=1
gj(Xji)fjt)

−N−1
∑N

i=1
ρτ (yit − f0ut −

∑J

j=1
gj(Xji)f

0
jt),

so that f∗t and f̂
[1]
t are the minimizers of LNt(ft, g

0) and LNt(ft, ĝ
[0]), respectively, where ĝ[0] =

{ĝ[0]j (·), 1 ≤ j ≤ J} and g0 = {g0j (·), 1 ≤ j ≤ J}. According to the result on page 149 of de Boor

(2001), for g0j satisfying the smoothness condition given in (C2), there exists λ0
j ∈ RKn such that

g0j (xj) = g̃0j (xj) + rj(xj),

g̃0j (xj) = Bj(xj)
ᵀλ0

j and sup
j

supxj∈[a,b] |rj(xj)| = O(K−rN ).

By Proposition 1, there exists λj,NT ∈ RKN such that ĝ
[0]
j (xj) = Bj(xj)

ᵀλj,NT and ||λj,NT −λ0
j || =

Op(dNT )+op(N
−1/2). Let d′NT be a sequence satisfying d′NT = o(N−1/2) and let d∗NT = dNT +d′NT .

In the following, we will show that

f̃t − f0t − dNT δN,t = Λ−1Nt{N
−1
∑N

i=1
G0
i (Xi)(τ − I(εit < 0))}+ op(N

−1/2), (A.21)

uniformly in ||λj − λ0
j || ≤ C̃d∗NT for some constant 0 < C̃ < ∞, where f̃t is the minimizer of

LNt(ft, g) and gj(xj) = Bj(xj)
ᵀλj . Hence the result in Lemma 4 follows from (A.20) and (A.21).

We have ||f̃t − f∗t || = op(1), since

|LNt(ft, g)− LNt(ft, g0)|

≤ 2N−1
∑N

i=1
|
∑J

j=1
{gj(Xji)− g0j (Xji)}fjt|+ 2N−1

∑N

i=1
|
∑J

j=1
{gj(Xji)− g0j (Xji)}f0jt|

≤ CLC̃{dNT + o(N−1/2)} = o(1),

for some constant 0 < CL < ∞, where the first inequality follows from the fact that |ρτ (u − v) −

ρτ (u)| ≤ 2|v|. Thus ||f̃t−f0t || = op(1). Let X = (X1, . . . , XN )ᵀ andGi(Xi) = {1, g1(X1i), . . . , gJ(XJi)}ᵀ.

Let

ψτ (ε) = τ − I(ε < 0).
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For λj ∈ RKn satisfying ||λj − λ0
j || ≤ C̃d∗NT and ft in a neighborhood of f0t , write

LNt(ft, g) = E{LNt(ft, g)|X} − (ft − f0t )ᵀ{WNt,1 − E(WNt,1|X)}

+WNt,2(ft, g)− E(WNt,2(ft, g)|X), (A.22)

where gj(xj) = Bj(xj)
ᵀλj , and

WNt,1 = N−1
∑N

i=1
Gi(Xi)ψτ (yit − f0ᵀt Gi(Xi)), (A.23)

WNt,2(ft, g) = N−1
∑N

i=1
{ρτ (yit − fᵀt Gi(Xi))− ρτ (yit − f0ᵀt Gi(Xi)) (A.24)

+ (ft − f0t )ᵀGi(Xi)ψτ (yit − f0ᵀt Gi(Xi))}.

In Lemma A.4 in the Supplemental Materials, we show that as (N,T )→∞,

E{LNt(ft, g)|X} = −(ft − f0t )ᵀE(WNt,1|X)+
1

2
(ft − f0t )ᵀΛ0

Nt(ft − f0t ) + op(||ft − f0t ||2),

uniformly in ||λj−λ0
j || ≤ C̃d∗NT and ||ft−f0t || ≤ $N , where $N is any sequence of positive numbers

satisfying $N = o(1). Substituting this into (A.22), we have with probability approaching 1,

LNt(ft, g) = −(ft − f0t )ᵀWNt,1+
1

2
(ft − f0t )ᵀΛ0

Nt(ft − f0t )

+WNt,2(ft, g)− E(WNt,2(ft, g)|X)+o(||ft − f0t ||2).

In Lemma A.5 in the Supplemental Materials, we show that

WNt,2(ft, g)− E(WNt,2(ft, g)|X) =op(||ft − f0t ||2 +N−1),

uniformly in ||λj − λ0
j || ≤ C̃dNT and ||ft − f0t || ≤ $N . Thus, we have f̃t − f0t = (Λ0

Nt)
−1WNt,1 +

op(N
−1/2). Since ||(Λ0

Nt)
−1 − (ΛNt)

−1|| = op(1), we have

f̃t − f0t = Λ−1NtWNt,1 + op(N
−1/2). (A.25)

In Lemma A.6 in the Supplemental Materials, we show that for a given t there is a stochastically

bounded sequence δN,jt such that as (N,T )→∞,

WNt,1 = N−1
∑N

i=1
G0
i (Xi)ψτ (εit) + dNT δN,t + op(N

−1/2). (A.26)
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where δN,t = (δN,jt, 0 ≤ j ≤ J)ᵀ and gj(xj) = Bj(xj)
ᵀλj , uniformly in ||λj −λ0

j || ≤ C̃d∗NT . Hence,

result (A.21) follows from (A.25) and (A.26) directly. Then the proof is complete.

Let λ = (λᵀ
1, . . . ,λ

ᵀ
J)ᵀ. For given f̂ [1], we obtain

λ̂
[1]

= (λ
[1]ᵀ
1 , . . . ,λ

[1]ᵀ
J )ᵀ = arg min

λ
{(NT )−1

∑N

i=1

∑T

t=1
ρτ (yit − f̂ [1]ut −

∑J

j=1
Bj(Xji)

ᵀλj f̂
[1]
jt )}.

Let ĝ
∗[1]
j (xj) = Bj(xj)

ᵀλ̂
[1]

j . The estimator for gj(xj) at the 1st step is

ĝ
[1]
j (xj) = ĝ

∗[1]
j (xj)/

√
N−1

∑N

i=1
ĝ
∗[1]
j (Xji)2.

We define the infeasible estimator of λ as

λ∗ = (λ∗ᵀ1 , . . . ,λ
∗ᵀ
J )ᵀ = arg min

λ
{(NT )−1

∑N

i=1

∑T

t=1
ρτ (yit − f0ut −

∑J

j=1
Bj(Xji)

ᵀλjf
0
jt)}.

Let g∗j (xj) = Bj(xj)
ᵀλ∗j and g̃∗j (xj) = g∗j (xj)/

√
N−1

∑N
i=1 g

∗
j (Xji)2.

Lemma 5. Let Conditions (C1)–(C5) hold. If, in addition, K4
NN

−1 = o(1), K−r+2
N (log T ) = o(1),

K−1N (logNT )(logN)4 = o(1) and φNT = o(1), then for every 1 ≤ j ≤ J , as (N,T )→∞,

[∫
{g̃∗j (xj)− g0j (xj)}2dxj

]1/2
= Op(K

1/2
N (NT )−1/2 +K−rN ), (A.27)

and ∫
{ĝ[1]j (xj)(xj)− g̃∗j (xj)}2dxj = Op(d

2
NT ) + op(N

−1/2). (A.28)

Therefore, for every 1 ≤ j ≤ J ,

∫
{ĝ[1]j (xj)− g0j (xj)}2dxj = Op(d

2
NT ) + op(N

−1/2). (A.29)

Proof. Denote g̃0(x) = {g̃0j (xj), 1 ≤ j ≤ J}ᵀ and g∗(x) = {g∗j (xj), 1 ≤ j ≤ J}ᵀ. Let λ0 =

(λ0ᵀ
1 , . . . ,λ

0ᵀ
J )ᵀ. Let B∗(x) = [diag [B1(x1)

ᵀ, . . . , BJ(xJ)ᵀ]]J×JKN
. Then B∗(x)λ∗ = g∗(x) and

B∗(x)λ0 = g̃0(x). Let Q0
it = {Bj(Xji)

ᵀf0jt, 1 ≤ j ≤ J}ᵀ,

ΨNT = (NT )−1
∑N

i=1

∑T

t=1
pit (0 |Xi )Q

0
itQ

0ᵀ
it , (A.30)
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and r∗j,it = rj(Xji)f
0
jt. Moreover, define

UNT,1 = (NT )−1
∑N

i=1

∑T

t=1
Q0
it(τ − I(εit < 0)), (A.31)

UNT,2 = (NT )−1
∑N

i=1

∑T

t=1
Q0
itpit(0|Xi)

(∑J

j=1
r∗j,it

)
.

By the same procedure as the proof of Lemma 2, for K4
N (log(NT ))2(NT )−1 = o(1), we obtain the

Bahadur representation for λ∗ − λ0 as

λ∗ − λ0 = Ψ−1NT (UN,1 + UN,2) +R∗NT , (A.32)

and the remaining term R∗NT satisfies

||R∗NT || = Op(K
3/2
N (NT )−1 +K

3/2
N (NT )−3/4

√
log(NT ) +K

1/2−2r
N + (NT )−1/2K

−r/2+1/2
N )

= Op(K
3/2
N (NT )−3/4

√
log(NT ) +K

1/2−2r
N ) + op((NT )−1/2).

By (A.32) and following the same reasoning as the proof for (A.13), we have supxj∈[a,b] |g
∗
j (xj) −

g0j (xj)| = Op(KN (NT )−1/2 +K−rN ), [
∫
{g∗j (xj)− g0j (xj)}2dxj ]1/2 = Op(K

1/2
N (NT )−1/2 +K−rN ), and

[N−1
∑N

i=1{g∗j (Xji)− g0j (Xji)}2]1/2 = Op(K
1/2
N (NT )−1/2 +K−rN ). Therefore, we have

{
√
N−1

∑N

i=1
g∗j (Xji)2}−1 − {

√
N−1

∑N

i=1
g0j (Xji)2}−1 = Op(K

1/2
N (NT )−1/2 +K−rN ),

and thus

sup
xj∈[a,b]

|g̃∗j (xj)− g0j (xj)| = Op(KN (NT )−1/2 +K−rN ),

[

∫
{g̃∗j (xj)− g0j (xj)}2dxj ]1/2 = Op(K

1/2
N (NT )−1/2 +K−rN ).

Then the result (A.27) is proved. Define

L∗NT (f,λ) = (NT )−1
∑N

i=1

∑T

t=1
ρτ (yit − fut −

∑J

j=1
Bj(Xji)

ᵀλjfjt)

− (NT )−1
∑N

i=1

∑T

t=1
ρτ (yit − fut −

∑J

j=1
Bj(Xji)

ᵀλ0
jfjt).

Hence, λ̂
[1]

and λ∗ are the minimizers of L∗NT (f̂ [1],λ) and L∗NT (f0,λ), respectively. In Lemma A.7
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in the Supplemental Materials, we show that

||λ̂
[1]
− λ0 −Ψ−1NTUN,1|| = Op(dNT ) + op(N

−1/2). (A.33)

Hence, by (A.32), (A.33) and ||Ψ−1NTUN,2|| = O(K−rN ), we have

||λ̂
[1]
− λ∗|| = Op(dNT ) + op(N

−1/2). (A.34)

Then we have
∫
{ĝ∗[1]j (xj)−g∗j (xj)}2dxj = Op(d

2
NT )+op(N

−1) andN−1
∑N

i=1{ĝ
∗[1]
j (Xji)−g∗j (Xji)}2 =

Op(d
2
NT )+op(N

−1). Thus,

{
√
N−1

∑N

i=1
ĝ
∗[1]
j (Xji)2}−1 − {

√
N−1

∑N

i=1
g∗j (Xji)2}−1 = Op(dNT ) + op(N

−1/2).

Therefore, the result (A.28) follows from the above results directly.

Proofs of Theorems 1 and 2. Based on (A.29) in Lemma 5, the result in Lemma 4 holds for f̂
[2]
t

with a different bounded sequence. Then the result (A.29) in Lemma 5 holds for ĝ
[2]
j (xj). This

process can be continued for any finite number of iterations. By assuming that the algorithm in

Section 3.1 stops at the (i+ 1)th step for any finite number i, the results in Lemmas 4 and 5 hold

for f̂t = f̂
[i+1]
t and ĝj = ĝ

[i+1]
j (xj). Hence, Theorem 1 for f̂t follows from Lemmas 3 and 4, directly,

and Theorem 2 for ĝj is proved by using Lemma 5.

9.3 Proofs of Theorem 3

Proof. We prove the consistency of Λ̂Nt. Define

Λ̃Nt = (Nh)−1
∑N

i=1
K

(
yit − (f0ut +

∑J
j=1 g

0
j (Xji)f

0
jt)

h

)
G0
i (Xi)G

0
i (Xi)

ᵀ,

and

Λ̂Nt = (Nh)−1
∑N

i=1
K

(
yit − (f̂ut +

∑J
j=1 ĝj(Xji)f̂jt)

h

)
Ĝi(Xi)Ĝi(Xi)

ᵀ.

We will show ||Λ̂Nt − Λ̃Nt|| = op(1) and ||Λ̃Nt − Λ0
Nt|| = op(1), respectively. Let d̂it(Xi) = {f̂ut +∑J

j=1 ĝj(Xji)f̂jt} − {f0ut +
∑J

j=1 g
0
j (Xji)f

0
jt}. Then,

Λ̂Nt − Λ̃Nt = DNt,1 +DNt,2,
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where

DNt,1 = (2Nh)−1
∑N

i=1
{I(|εit| ≤ h)− I(|εit − d̂it(Xi)| ≤ h)}G0

i (Xi)G
0
i (Xi)

ᵀ,

DNt,2 = (2Nh)−1
∑N

i=1
I(|εit − d̂it(Xi)| ≤ h){Ĝi(Xi)Ĝi(Xi)

ᵀ −G0
i (Xi)G

0
i (Xi)

ᵀ}.

Since there exist some constants 0 < cf , c1 <∞ such that with probability approaching 1,

E{d̂it(Xi)}2 =

∫
d̂2it(x)fXi(x)dx ≤ cf

∫
d̂2it(x)dx ≤ c1φ2NT + o(N−1),

where φNT is given in (4.2), and the last inequality follows from the result in Theorem 2, then

there exists some constant 0 < c <∞ such that with probability approaching 1,

E||Λ̂Nt − Λ̃Nt|| ≤ c(2Nh)−1
∑N

i=1
E|d̂it(Xi)| × ||G0

i (Xi)G
0
i (Xi)

ᵀ||

≤ c(2Nh)−1
∑N

i=1
E{d̂it(Xi)}2E||G0

i (Xi)G
0
i (Xi)

ᵀ||2}1/2

≤ cc1/21 (2Nh)−1(
√
KN/(NT ) +K

3/2
N N−3/4

√
logN +K−rN )×∑N

i=1
{E||G0

i (Xi)G
0
i (Xi)

ᵀ||2}1/2.

By Condition (C3), we have supxj∈[a,b] |g
0
j (xj)| ≤ C ′ for all j, for any vector a ∈RJ+1 and ||a||2 = 1,

we have

aᵀG0
i (Xi)G

0
i (Xi)

ᵀa= {a0 +
∑J

j=1
g0j (Xji)aj}2 ≤ (J + 1){a20 + g0j (Xji)

2a2j}

≤ (J + 1){a20 + (C ′)2a2j} ≤ Ca

for some constant 0 < Ca <∞. Hence, ||G0
i (Xi)G

0
i (Xi)

ᵀ|| ≤ Ca, and thus we have

E||Λ̂Nt − Λ̃Nt|| ≤ cc1/21 (2Nh)−1(φNT + o(N−1/2))
∑N

i=1
Ca

= 2−1cc
1/2
1 Cah

−1(φNT + o(N−1/2)) = o(1)

by the assumption that h−1φNT = o(1) and h−1N−1/2 = O(1). Hence, we have ||DNt,1|| = op(1).

Moreover, for any vector a ∈RJ+1 and ||a||2 = 1, we have with probability approaching 1, there
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exists a constant 0 < C <∞ such that

|aᵀDNt,2a|≤(2Nh)−1
∑N

i=1
|{a0 +

∑J

j=1
ĝj(Xji)aj}2 − {a0 +

∑J

j=1
g0j (Xji)aj}2|

≤ C(2Nh)−1
∑N

i=1

∑J

j=1
|{ĝj(Xji)− g0j (Xji)}aj |

≤ C(2h)−1
∑J

j=1
{N−1

∑N

i=1
{ĝj(Xji)− g0j (Xji)}2a2j}1/2

= O(h−1){O(φNT ) + o(N−1/2)} = o(1).

Hence, we have ||DNt,2|| = op(1). Therefore, ||Λ̂Nt− Λ̃Nt|| ≤ ||DNt,1||+ ||DNt,2|| = op(1). Next, we

will show ||Λ̃Nt − Λ0
Nt|| = op(1). Since

|E
{

(2h)−1I(|εit| ≤ h)− pit (0 |Xi, ft ) |Xi

}
|

= |(2h)−1h{pit (h∗ |Xi ) + pit (−h∗∗ |Xi )} − pit (0 |Xi ) |

= |2−1[{pit (h∗ |Xi )− pit (0 |Xi )}+ {pit (−h∗∗ |Xi )− pit (0 |Xi )}]| ≤ c′h

for some constant 0 < c′ < ∞, where h∗ and h∗∗ are some values between 0 and h, and the last

inequality follows from Condition (C2), then by the above result and Condition (C5),

||E(Λ̃Nt − Λ0
Nt)|| = ||N−1

∑N

i=1
E[{(2h)−1I(|εit| ≤ h)− pit (0 |Xi )}G0

i (Xi)G
0
i (Xi)

ᵀ]||

≤ c′h||N−1
∑N

i=1
EQ0

i (Xi)G
0
i (Xi)

ᵀ|| = O(h) = o(1). (A.35)

Moreover, by Conditions (C1), we have E{I(|εit| ≤ h)} ≤ 2C∗h for some constant C∗ ∈ (0,∞),

and then for any vector a ∈ R(J+1) with ||a|| =1, by Conditions (C1), (C2) and (C3), we have

var(aᵀΛ̃Nta)

= (2Nh)−2var

(∑N

i=1
I(|εit| ≤ h){a0 +

∑J

j=1
g0j (Xji)aj}2

)
≤ (2Nh)−2

∑
i,i′

2{φ(|i− i′|)}1/2×(
E

[
I (|εit| ≤ h) {a0 +

∑J

j=1
g0j (Xji)aj}4

])1/2(
E

[
I(|εi′t′ | ≤ h){a0 +

∑J

j=1
g0j (Xji′)aj}4

])1/2

≤ (J + 1)2{a20 + C ′2a2j}(2Nh)−2(2C∗h)2
∑

i,i′
2{φ(|i− i′|)}1/2

≤ (J + 1)2{a20 + C ′2a2j}N−22C∗2K1

∑
i,i′
e−(λ1/2)(|i−i

′|)

≤ (J + 1)2{a20 + C ′2a2j}2C∗2K1N
−1{1− e−(λ1/2)} = O(N−1) = o(1). (A.36)
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By (A.35) and (A.36), we have ||Λ̃Nt − Λ0
Nt|| = op(1). Hence,

||Λ̂Nt − Λ0
Nt|| ≤ ||Λ̂Nt − Λ̃Nt||+ ||Λ̃Nt − Λ0

Nt|| = op(1). (A.37)

9.4 Proofs of Theorem 4

Proof. Let S[rN ]t =
∑[rN ]

i=1 G
0
i (Xi)(τ − I(εit < 0)), where [a] denotes the largest integer no greater

than a. LetM = bN . Define ΛNt(r) = N−1
∑[rN ]

i=1 pit (0 |Xi )G
0
i (Xi)G

0
i (Xi)

ᵀ, zNt(r) = N−1/2S[rN ]t,

and

DbN (r) = N2

(
K∗
(

[rN ] + 1

bN

)
−K∗

(
[rN ]

bN

))
−
(
K∗
(

[rN ]

bN

)
−K∗

(
[rN ]− 1

bN

))
.

Denote K∗ij = K∗( i−jbN ), and ŵNt = τ(1−τ)
N

∑N
i=1 Ĝi(Xi)Ĝi(Xi)

ᵀ −N−1
∑N

i=1 v̂itv̂
ᵀ
it. Then

Ω̂Nt,N = N−1
∑N

i=1

∑N

j=1
v̂itK

∗
ij v̂

ᵀ
jt + ŵNt

= N−1
∑N

i=1
(v̂it

∑N

j=1
K∗ij v̂

ᵀ
jt) + ŵNt.

Define Ŝnt =
∑n

i=1 v̂it. By the assumptions in Theorem 1, φNTN
1/2 = o(1) and by the results in

Lemmas 3-5, we have

f̂t − f0t = Λ−1Nt{N
−1
∑N

i=1
G0
i (Xi)(τ − I(εit < 0))}+ op(N

−1/2), (A.38)

sup
xj∈Xj

|ĝj(xj)− g0j (xj)| = Op(φNT ) + op(N
−1/2) = op(N

−1/2). (A.39)

Let r ∈ (0, 1]. Let S̃[rN ]t =
∑[rN ]

i=1 G
0
i (Xi)(τ − I(ε̂0it < 0)), where ε̂0it = yit−{f̂ut+

∑J
j=1 g

0
j (Xji)f̂jt}.

By Lemma A.6, we have

||N−1/2Ŝ[rN ]t −N−1/2S̃[rN ]t|| = op(1). (A.40)

For any given ft ∈ RJ+1, define S[rN ]t(ft) =
∑[rN ]

i=1 G
0
i (Xi)(τ − I(εit(ft) < 0)), where εit(ft) =

yit − {fut +
∑J

j=1 g
0
j (Xji)fjt}. Following similar arguments to the proof in Lemma A.8, we have

sup
||ft−f0t ||≤C(dNT+N−1/2)

||N−1/2[S[rN ]t(ft)− S[rN ]t(f
0
t )− E[{S[rN ]t(ft)− S[rN ]t(f

0
t )}|X]]|| = op(1).
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Moreover,

N−1/2E[{S[rN ]t(ft)− S[rN ]t(f
0
t )}|X]

=
∑[rN ]

i=1
G0
i (Xi)E[(I(εit(f

0
t ) < 0)− I(εit(ft) < 0))|Xi, ft], (A.41)

and thus by Taylor’s expansion, we have

||N−1/2E[{S[rN ]t(ft)− S[rN ]t(f
0
t )}|X]

−N−1/2
∑[rN ]

i=1
pit (0 |Xi, ft )G

0
i (Xi)G

0
i (Xi)

ᵀ(f0t − ft)|| = op(1). (A.42)

Hence, by (A.40), (A.41) and (A.42), we have

N−1/2Ŝ[rN ]t = N−1/2
∑[rN ]

i=1
G0
i (Xi)(τ − I(εit < 0))

−N−1/2
∑[rN ]

i=1
pit (0 |Xi )G

0
i (Xi)G

0
i (Xi)

ᵀ(f̂t − f0t ) + op(1).

This result, together with (A.38), implies

N−1/2Ŝ[rN ]t = zNt(r)− ΛNt(r){ΛNt(1)}−1zNt(1) + op(1). (A.43)

Thus, N−1/2ŜNt = op(1). By following the argument above again, we have ||N−1/2
∑N

j=1 v̂jtK
∗
jN −

N−1/2
∑N

j=1 vjtK
∗
jN || = Op(1). Also ||N−1/2

∑N
j=1 vjtK

∗
jN || = Op(1) by the weak law of large

numbers. Hence, ||N−1/2
∑N

j=1 v̂jtK
∗
jN || = Op(1). Therefore

N−1
∑N

j=1
v̂jtK

∗
jN Ŝ

ᵀ
N = Op(1)op(1) = op(1).

By (A.38) and (A.39), ŵNt = op(1). By this result and also applying the identity that
∑N

l=1 albl =

(
∑N−1

l=1 (al−al+1)
∑l

j=1 bj)+aN
∑N

l=1 bl to
∑N

j=1K
∗
ij v̂

ᵀ
j and then again to the sum over i, we obtain

Ω̂Nt,M=bN = N−1
∑N−1

i=1
N−1

∑N−1

j=1
N2((K∗ij −K∗i,j+1)− (K∗i+1,j −K∗i+1,j+1))N

−1/2ŜitN
−1/2Ŝᵀ

jt

+N−1
∑N

j=1
v̂jtK

∗
jN Ŝ

ᵀ
Nt + op(1),
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and thus

Ω̂Nt,M=bN =
∑N−1

i=1

∑N−1

j=1
((K∗ij −K∗i,j+1)− (K∗i+1,j −K∗i+1,j+1))

Ŝit√
N

Ŝᵀ
jt√
N

+ op(1). (A.44)

Moreover,

N2((K∗ij −K∗i,j+1)− (K∗i+1,j −K∗i+1,j+1)) = −DbN{(i− j)/N}. (A.45)

Also limN→∞DbN (r) = 1
b2
K∗′′( rb ), ||ΛNt(r)−rΛ

0
t || = op(1), where Λ0

t = limN→∞ Λ0
Nt and zNt(r)

D→

WJ+1(r)Υ
ᵀ
t . Thus,

(ΛNt(r),zNt(r)
ᵀ, DbN (r))

D→
(
rΛ0

t ,ΥtWJ+1(r)
ᵀ,

1

b2
K∗′′

(r
b

))
. (A.46)

Hence, by (A.43), (A.44), and (A.45), it follows that

Ω̂Nt,M=bN =

∫ 1

0

∫ 1

0
−DbN (r − s)[zNt(r)− ΛNt(r){ΛNt(1)}−1zNt(1)]

× [zNt(s)− ΛNt(s){ΛNt(1)}−1zNt(1)]ᵀdrds+ op(1). (A.47)

By the continuous mapping theorem,

Ω̂Nt,M=bN
D→ Υt

∫ 1

0

∫ 1

0
− 1

b2
K∗′′(

r − s
b

){WJ+1(r)− rWJ+1(1)}{WJ+1(s)− sWJ+1(1)}ᵀdrdsΥᵀ
t .

Then the proof is completed.

9.5 Proofs of Theorems 5 and 6

Proof. By (A.38), f̂t − f0t = N−1/2ΛNt(1)−1zNt(1) + op(N
−1/2). Then under H0, we have

N1/2(Rf̂t − r) = RΛNt(1)−1zNt(1) + op(1). (A.48)
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It directly follows from (A.37), (A.46), (A.47) and (A.48) that

FNt,b
D→ {RΛ0−1

t ΥtWJ+1(1)}ᵀ{Rτ(1− τ)Λ0−1
t

× (Υt

∫ 1

0

∫ 1

0
− 1

b2
K∗′′(

r − s
b

)BJ+1(r)BJ+1(s)
ᵀdrdsΥᵀ

t )Λ
0−1
t Rᵀ}−1

×RΛ0−1
t ΥtWJ+1(1)/q.

Since RΛ0−1
t ΥtWJ+1(1) is a q × 1 vector of normal random variables with mean zero and variance

RΛ0−1
t ΥtΥ

ᵀ
tΛ

0−1
t Rᵀ, RΛ0−1

t ΥtWJ+1(1) can be written as Υ∗tWq(1), where Υ∗tΥ
∗ᵀ
t = RΛ0−1

t ΥtΥ
ᵀ
tΛ

0−1
t Rᵀ.

Then replacing RΛ0−1
t ΥtWJ+1(1) by Υ∗tWq(1) and canceling Υ∗t in the above equation, we have

the result in Theorem 5. Moreover, under the alternative that H1: Rf
0
t = r + cN−1/2, we have

N1/2(Rf̂t − r) = N1/2(Rf0t − r) +RΛNt(1)−1zNt(1) + op(1)

= c+RΛNt(1)−1zNt(1) + op(1).

Thus by (A.46), we have

FNt,b
D→ {c+RΛ0−1

t ΥtWJ+1(1)}ᵀ{Rτ(1− τ)Λ0−1
t

× (Υt

∫ 1

0

∫ 1

0
− 1

b2
K∗′′(

r − s
b

)BJ+1(r)BJ+1(s)
ᵀdrdsΥᵀ

t )Λ
0−1
t Rᵀ}−1

× {c+RΛ0−1
t ΥtWJ+1(1)}/q.

Also c + RΛ0−1
t ΥtWJ+1(1) ≡ c + Υ∗tWq(1) = Υ∗t (Υ

∗−1
t c + Wq(1)). Then the result in Theorem 6

follows from the above results. The proof is completed.
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In this supplement, we present Lemmas A.1-A.3 which are used to prove Lemma 2 in Section

9.1. We also present Lemmas A.4-A.6 which are used in the proofs of Lemmas 3 and 4, and

Lemmas A.7-A.8 which are used in the proofs of Lemma 5 in Section 9.2.

Lemma A.1. Under Conditions (C1) and (C2), and K2
NN

−1(logNT )2(logN)8 = o(1) and K−1
N =

o(1), as N →∞,

sup
1≤t≤T

sup
||ϑt−ϑ0

t ||≤CK
1/2
N N−1/2

||N−1
∑N

i=1
G̃tN,i(ϑt)−N−1

∑N

i=1
G̃tN,i(ϑ

0
t )||

= Op(K
3/2
N N−3/4

√
logNT ).

Proof. Let BN = {ϑt : ||ϑt−ϑ0
t || ≤ CK

1/2
N N−1/2}. By taking the same strategy as given in Lemma

A.5 of Horowitz and Lee (2005), we cover the ball BN with cubes C = {C(ϑt,v)}, where C(ϑt,v) is a

cube containing (ϑt,v − ϑ0
t ) with sides of C{d(N)/N5}1/2 such that ϑt,v ∈ BN . Then the number

of the cubes covering the ball BN is V = (2N2)d(N). Moreover, we have ||(ϑt−ϑ0
t )− (ϑt,v−ϑ0

t )|| ≤
∗The research of Ma is supported in part by the U.S. NSF grant DMS 1712558.
†The research of Gao is supported in part by the Australian Research Council Discovery Grants Program for its

support under Grant numbers: DP150101012 & DP170104421.
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C{d(N)/N5/2} for any ϑt − ϑ0
t ∈ C(ϑt,v), where v = 1, . . . , V . First we can decompose

sup
ϑt∈BN

||N−1
∑N

i=1
G̃tN,i(ϑt)−N−1

∑N

i=1
G̃tN,i(ϑ

0
t )||

≤ max
1≤v≤V

sup
(ϑt−ϑ0

t )∈C(ϑt,v)

||N−1
∑N

i=1
G̃tN,i(ϑt)−N−1

∑N

i=1
G̃tN,i(ϑt,v)||

+ max
1≤v≤V

||N−1
∑N

i=1
G̃tN,i(ϑt,v)−N−1

∑N

i=1
G̃tN,i(ϑ

0
t )||

= ∆tN,1 + ∆tN,2 (A.1)

Let γN = C{d(N)/n5/2}. By the same argument as given in the proof of Lemma A.5 in Horowitz

and Lee (2005), we have

∆tN,1 ≤ max
1≤v≤V

|ΓtN,1v|+ max
1≤v≤V

|ΓtN,2v|, (A.2)

where

ΓtN,1v = N−1
∑N

i=1
||Zi||

[
Fit[Z

ᵀ
i (ϑt,v − ϑ0

t )− bt(Xi) + ||Zi||γN |Xi]

−Fit[Zᵀ
i (ϑt,v − ϑ0

t )− bt(Xi)− ||Zi||γN |Xi]
]
,

ΓtN,2v = N−1
∑N

i=1
ΓtN,2v,i = N−1

∑N

i=1
||Zi||

[
[I{εit ≤ Zᵀ

i (ϑt,v − ϑ0
t )− bt(Xi) + ||Zi||γN}

− Fit{Zᵀ
i (ϑt,v − ϑ0

t )− bt(Xi) + ||Zi||γN |Xi}]

−[I{εit ≤ Zᵀ
i (ϑt,v − ϑ0

t )− bt(Xi)} − Fit{Zᵀ
i (ϑt,v − ϑ0

t )− bt(Xi)|Xi}]
]
.

By Condition (C2), we have that there are some constants 0 < c′, c′′ <∞ such that

sup
1≤t≤T

max
1≤v≤V

|ΓtN,1v| ≤ c′γN max
1≤i≤N

||Zi||||Zi|| ≤ c′′{d(N)/N5/2}KN = O(K2
NN

−5/2). (A.3)

Next we will show the convergence rate for max1≤v≤V |ΓtN,2v|. It is easy to see that E(ΓtN,2v,i) = 0.

Also |ΓtN,2v,i| ≤ 4||Zi|| ≤ c1K
1/2
N for some constant 0 < c1 <∞. Moreover,

E
[
||Zi||I{εit ≤ Zᵀ

i (ϑt,v − ϑ0
t )− bt(Xi) + ||Zi||γN} − I{εit ≤ Zᵀ

i (ϑt,v − ϑ0
t )− bt(Xi)}

]2
� E{||Zi||2||Zi||γN} ≤ c∗2γNK

1/2
N ≤ c2K

3/2
N N−5/2,
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for some constants 0 < c∗2 < c2 < ∞. Hence E(ΓtN,2v,i)
2 ≤ c2K

3/2
N N−5/2. By Condition (C1), we

have for i 6= j,

|E(ΓtN,2v,iΓtN,2v,j)| ≤ 2φ(|j − i|)1/2{E(Γ2
tN,2v,i)E(Γ2

tN,2v,j)}1/2 ≤ 2c2φ(|j − i|)1/2K
3/2
N N−5/2.

Hence

E(ΓtN,2v,i)
2 + 2

∑
j>i
|E(ΓtN,2v,iΓtN,2v,j)|

≤ c2K
3/2
N N−5/2 + 4c2

∑N

k=1
K1e

−λ1k/2K
3/2
N N−5/2

≤ c2K
3/2
N N−5/2(1 + 4K1(1− e−λ1/2)−1) = c3K

3/2
N N−5/2,

where c3 = c2(1+4K1(1−e−λ1/2)−1). By Condition (C1), for each fixed t, the sequence {(Xi, εit), 1 ≤

i ≤ N} has the φ-mixing coefficient φ(k) ≤ K1e
−λ1k for K1, λ1 > 0. Thus, by the Bernstein’s in-

equality given in Lemma 1, we have for N sufficiently large,

P
(
|ΓtN,2v| ≥ aK3/2

N N−1(logNT )3
)

≤ exp(−
C1(aK

3/2
N (logNT )3)2

c3K
3/2
N N−5/2N + c2

1KN + aK
3/2
N (logNT )3c1K

1/2
N log(N)2

) ≤ (NT )−c4a
2KN

for some constant 0 < c4 <∞. By the union bound of probability, we have

P

(
sup

1≤t≤T
max

1≤v≤V
|ΓtN,2v| ≥ aK3/2

N N−1(logNT )3

)

≤ (2N2)d(N)T (NT )−c4a
2KN ≤ 2d(N)N2(1+JKN )−c4a2KNT 1−c4a2KN .

Hence, taking a large enough, one has

P

(
sup

1≤t≤T
max

1≤v≤V
|ΓtN,2v| ≥ aK3/2

N N−1(logN)3

)
≤ 2KNN−KNT−KN .

Then we have

sup
1≤t≤T

max
1≤v≤V

|ΓtN,2v| = Op{K3/2
N N−1(logNT )3}. (A.4)
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Next we will show the convergence rate for ∆tN,2. Let g̃tN,i,`(ϑt,v) be the `th element in G̃tN,i(ϑt,v)−

G̃tN,i(ϑ
0
t ) for ` = 1, . . . , d(N). It is easy to see that E{g̃tN,i,`(ϑt,v)} = 0. Also |g̃tN,i,`(ϑt,v)| ≤

4|Zi`| ≤ c1K
1/2
N for some constant 0 < c1 <∞. Moreover,

E
[
[I{εit ≤ Zᵀ

i (ϑt,v − ϑ0
t )− bt(Xi)} − I{εit ≤ −bt(Xi)}]Zi`

]2
≤ c′1||ϑt,v − ϑ0

t ||K
1/2
N ≤ c′1CK

1/2
N N−1/2K

1/2
N = c′1CKNN

−1/2

for some constant 0 < c′1 < ∞. Hence E(g̃tN,i,`(ϑt,v))
2 ≤ c′1CKNN

−1/2. By Condition (C1), we

have for i 6= j,

|E(g̃tN,i,`(ϑt,v)g̃tN,j,`(ϑt,v)| ≤ 4φ(|j − i|)1/2{E(Γ2
tN,2v,i)E(Γ2

tN,2v,j)}1/2.

Hence

E(g̃tN,i,`(ϑt,v))
2 + 2

∑
j>i
|E(g̃tN,i,`(ϑt,v)g̃tN,j,`(ϑt,v)|

≤ c′1CKNN
−1/2 + 4

∑N

k=1
K1e

−λ1k/2c′1CKNN
−1/2

≤ c′1CKNN
−1/2(1 + 4K1(1− e−λ1/2)−1) = c2KNN

−1/2,

where c2 = c′1C(1 + 4K1(1− e−λ1/2)−1). Thus, by the Bernstein’s inequality given in Lemma 1 and

K2
NN

−1(logNT )2(logN)8 = o(1), we have for N sufficiently large,

P

(
|N−1

∑N

i=1
g̃tN,i,`(ϑt,v)| ≥ aKNN

−3/4
√

logNT

)
≤ exp(− C1(aKNN

1/4
√

logNT )2

c2KNN−1/2N + c2
1KN + aKNN1/4(logNT )1/2c1K

1/2
N (logN)2

) ≤ (NT )−c3a
2KN

for some constant 0 < c3 <∞. By the union bound of probability, we have

P

(
sup

1≤t≤T
sup

1≤`≤d(N)
|N−1

∑N

i=1
g̃tN,i,`(ϑt,v)| ≥ aKNN

−3/4
√

logNT

)
≤ d(N)T (NT )−c3a

2KN .
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Hence,

P

(
sup

1≤t≤T
||N−1

∑N

i=1
G̃tN,i(ϑt,v)−N−1

∑N

i=1
G̃tN,i(ϑ

0
t )|| ≥ aK

3/2
N N−3/4

√
logNT

)

≤ d(N)T (NT )−c3a
2KN .

By the union bound of probability again, we have

P

(
sup

1≤t≤T
|∆tN,2| ≥ aK3/2

N N−3/4
√

logNT

)
≤ (2N2)d(N)d(N)T (NT )−c3a

2KN .

Hence, taking a large enough, one has

P

(
sup

1≤t≤T
|∆tN,2| ≥ aK3/2

N N−3/4
√

logNT

)
≤ 2KNKNN

−KNT−KN .

Then we have

sup
1≤t≤T

|∆tN,2| = Op{K3/2
N N−3/4

√
logNT}. (A.5)

Therefore, by (A.1), (A.2), (A.3), (A.4) and (A.5), we have

sup
1≤t≤T

sup
ϑt∈BN

||N−1
∑N

i=1
G̃tN,i(ϑt)−N−1

∑N

i=1
G̃tN,i(ϑ

0
t )||

= Op{K2
NN

−5/2 +K
3/2
N N−1(logNT )3 +K

3/2
N N−3/4

√
logNT}

= Op(K
3/2
N N−3/4

√
logNT ).

Lemma A.2. Under Conditions (C1) and (C2), as N → ∞, sup1≤t≤T ||N−1
∑N

i=1GtN,i(ϑ̃t)|| =

Op(K
3/2
N N−1).

Lemma A.3. Under Conditions (C2) and (C3), as N →∞,

Ψ−1
NtG

∗
tN,i(ϑt) = −(ϑt − ϑ0

t ) +N−1Ψ−1
Nt

∑N

i=1
pit (0 |Xi )Zibt(Xi) +R∗Nt,

A.5



where ||R∗Nt|| ≤ C∗{K
1/2
N ||ϑt − ϑ

0
t ||2 +K

1/2−2r
N } for some constant 0 < C∗ <∞, uniformly in t.

Proof. The proofs of Lemmas A.2 and A.3 follow the same procedure as in Lemmas A.4 and

A.7 of Horowitz and Lee (2005) by using the results (A.1) and (A.3) which hold uniformly in

t = 1, ..., T .

Lemma A.4. Under Conditions (C2) and (C3), as (N,T )→∞,

E{LNt(ft, g)|X} = −(ft − f0
t )ᵀE(WNt,1|X)+

1

2
(ft − f0

t )ᵀΛ0
Nt(ft − f0

t ) + op(||ft − f0
t ||2),

uniformly in ||λj − λ0
j || ≤ C̃d∗NT and ||ft − f0

t || ≤ $N , where WNt,1 is defined in A.26 and

gj(xj) = Bj(xj)
ᵀλj.

Proof. By using the identity of Knight (1998) that

ρτ (u− v)− ρτ (u) = −vψτ (u) +

∫ v

0
(I(u ≤ s)− I(u ≤ 0))ds,

we have

ρτ (yit − fᵀt Gi(Xi))− ρτ (yit − f0ᵀ
t Gi(Xi))

= −(ft − f0
t )ᵀGi(Xi)ψτ (yit − f0ᵀ

t Gi(Xi))

+

∫ (ft−f0t )ᵀGi(Xi)

0

(
I(yit − f0ᵀ

t Gi(Xi) ≤ s)− I(yit − f0ᵀ
t Gi(Xi) ≤ 0)

)
ds. (A.6)

By Lipschitz continuity of pit(ε|Xi, ft) given in Condition (C2) and boundedness of f0
jt in Condition

(C3), we have

Fit{f0ᵀ
t (Gi(Xi)−G0

i (Xi)) + s|Xi, ft} − Fit{f0ᵀ
t (Gi(Xi)−G0

i (Xi))|Xi}

= spit{f0ᵀ
t (Gi(Xi)−G0

i (Xi))|Xi}+ o(s),

A.6



where o(·) holds uniformly in ||λj − λ0
j || ≤ C̃d∗NT and ||ft − f0

t || ≤ $N . Then we have

E{LNt(ft, g)|X}

= −(ft − f0
t )ᵀE(WNt,1|X) +N−1

∑N

i=1

∫ (ft−f0t )ᵀGi(Xi)

0
[Fit{f0ᵀ

t (Gi(Xi)−G0
i (Xi)) + s|Xi}

− Fit{f0ᵀ
t (Gi(Xi)−G0

i (Xi))|Xi}]ds

= −(ft − f0
t )ᵀE(WNt,1|X) +N−1

∑N

i=1

∫ (ft−f0t )ᵀGi(Xi)

0
[spit{f0ᵀ

t (Gi(Xi)−G0
i (Xi))|Xi}]ds

+ o

[
(ft − f0

t )ᵀ{N−1
∑N

i=1
Gi(Xi)Gi(Xi)

ᵀ}(ft − f0
t )

]
= −(ft − f0

t )ᵀE(WNt,1|X) +
1

2
(ft − f0

t )ᵀ×[
N−1

∑N

i=1
pit{f0ᵀ

t (Gi(Xi)−G0
i (Xi))|Xi}Gi(Xi)Gi(Xi)

ᵀ
]

(ft − f0
t )

+ o

[
(ft − f0

t )ᵀ{N−1
∑N

i=1
Gi(Xi)Gi(Xi)

ᵀ}(ft − f0
t )

]
. (A.7)

Since supxj∈[a,b] |gj(xj) − g0
j (xj)| = o(1), then supx∈X |f

0ᵀ
t (Gi(x) − G0

i (x))| = o(1). By similar

reasoning to the proof for Theorem 2 in Lee and Robinson (2016), we have

N−1
∑N

i=1Gi(Xi)Gi(Xi)
ᵀ = N−1

∑N
i=1E{Gi(Xi)Gi(Xi)

ᵀ}+op(1). Hence, by these results, we have

the result in Lemma A.4.

Lemma A.5. Under Conditions (C2) and (C3), we have, as (N,T )→∞,

WNt,2(ft, g)− E(WNt,2(ft, g)|X) =op(||ft − f0
t ||2 +N−1)

uniformly in ||λj −λ0
j || ≤ C̃d∗NT and ||ft − f0

t || ≤ $N , where WNt,2(ft, g) is defined in (A.24) and

gj(xj) = Bj(xj)
ᵀλj.

Proof. By (A.6), we have

WNt,2i(ft, g) =

∫ (ft−f0t )ᵀGi(Xi)

0

(
I(yit − f0ᵀ

t Gi(Xi) ≤ s)− I(yit − f0ᵀ
t Gi(Xi) ≤ 0)

)
ds,

A.7



and thus

E(WNt,2i(ft, g)|Xi)=

∫ (ft−f0t )ᵀGi(Xi)

0
[Fit{f0ᵀ

t (Gi(Xi)−G0
i (Xi)) + s|Xi}

− Fit{f0ᵀ
t (Gi(Xi)−G0

i (Xi))|Xi}]ds.

By following the same reasoning as the proof for (A.7), we have

sup
Xi∈[a,b]J

|E(WNt,2i(ft, g)|Xi)−
1

2
(ft − f0

t )ᵀpit(0|Xi)Gi(Xi)Gi(Xi)
ᵀ(ft − f0

t )| = op(||ft − f0
t ||2).

Hence with probability approaching 1, as N →∞,

sup
Xi∈[a,b]J

|E(WNt,2i(ft, g)|Xi)| ≤ CW ||ft − f0
t ||2,

for some constant 0 < CW <∞. Moreover,

E{WNt,2i(ft, g)}2

= E[E[{
∫ (ft−f0t )ᵀGi(Xi)

0
(I(yit − f0ᵀ

t Gi(Xi) ≤ s)− I(yit − f0ᵀ
t Gi(Xi) ≤ 0))ds}2|Xi]]

≤ E[E[|I(yit − f0ᵀ
t Gi(Xi) ≤ (ft − f0

t )ᵀGi(Xi))− I(yit − f0ᵀ
t Gi(Xi) ≤ 0)|

× {(ft − f0
t )ᵀGi(Xi)}2|Xi]]

= E[E[|I(εit ≤ ftᵀGi(Xi)− f0ᵀ
t Gi(Xi)

0)− I(εit ≤ f0ᵀ
t (Gi(Xi)−Gi(Xi)

0)|

× {(ft − f0
t )ᵀGi(Xi)}2|Xi]]

≤ C ′′E|(ft − f0
t )ᵀGi(Xi)|3 ≤ C ′′′E||ft − f0

t ||3

A.8



for some constants 0 < C ′′ <∞ and 0 < C ′′′ <∞. Therefore, for N →∞,

E{WNt,2(ft, g)− E(WNt,2(ft, g)|X)}2

= N−2
∑N

i=1
E [WNt,2i(ft, g)− E(WNt,2i(ft, g)|Xi)]

2

≤ N−2
∑N

i=1
[2E{WNt,2i(ft, g)}2 + 2E[E(WNt,2i(ft, g)|Xi)]

2]

≤ N−1(2C ′′′E||ft − f0
t ||3 + 2C2

WE||ft − f0
t ||4) ≤ C ′′′′N−1E||ft − f0

t ||3,

for some constant 0 < C ′′′′ <∞. Following the same routine procedure as the proof in Lemma A.1

by applying the Bernstein’s inequality, we have

sup
||λj−λ0

j ||≤C̃d∗NT ,||ft−f
0
t ||≤$N

||ft − f0
t ||−3/2|WNt,2(ft, g)− E(WNt,2(ft, g)|X)| = Op(N

−1/2).

Hence, we have |WNt,2(ft, g)− E(WNt,2(ft, g)|X)| = Op(||ft − f0
t ||−3/2N−1/2), uniformly in ||λj −

λ0
j || ≤ C̃d∗NT and ||ft − f0

t || ≤ $N . Since

N−1/2||ft − f0
t ||3/2 ≤ N−1||ft − f0

t ||1/2 + ||ft − f0
t ||2||ft − f0

t ||1/2

≤ N−1$N + ||ft − f0
t ||2$N ,

then we have WNt,2(ft, g)−E(WNt,2(ft, g)|X) = op(||ft − f0
t ||2 +N−1), uniformly in ||λj − λ0

j || ≤

C̃d∗NT and ||ft − f0
t || ≤ $N .

Lemma A.6. Under Conditions (C1)-(C3), for a given t there is a stochastically bounded sequence

δN,jt such that as (N,T )→∞,

WNt,1 = N−1
∑N

i=1
G0
i (Xi)ψτ (εit) + dNT δN,t + op(N

−1/2),

uniformly in ||λj − λ0
j || ≤ C̃d∗NT , where WNt,1 is defined in (A.23), δN,t = (δN,jt, 0 ≤ j ≤ J)ᵀand

gj(xj) = Bj(xj)
ᵀλj.

Proof. Write

WNt,1 = WNt,11 +WNt,12 +WNt,13, (A.8)

A.9



where

WNt,11 = N−1
∑N

i=1
G0
i (Xi)ψτ (yit − f0ᵀ

t G0
i (Xi)),

WNt,12 = (WNtj,12, 0 ≤ j ≤ J)ᵀ = N−1
∑N

i=1
(Gi(Xi)−G0

i (Xi))ψτ (yit − f0ᵀ
t G0

i (Xi)),

WNt,13 = (WNtj,13, 0 ≤ j ≤ J)ᵀ

= N−1
∑N

i=1
Gi(Xi){ψτ (yit − f0ᵀ

t Gi(Xi))− ψτ (yit − f0ᵀ
t G0

i (Xi))}.

It is easy to see that E(WNtj,12) = 0. Also by the φ-mixing distribution condition given in Condition

(C1), we have var(WNtj,12) ≤ CW12N
−1d2

NT for some constant 0 < CW12 < ∞, then by following

the routine procedure as the proof in Lemma A.1, we have

sup||λj−λ0
j ||≤C̃d∗NT

|WNtj,12| = op(N
−1/2). (A.9)

Moreover,

E(WNtj,13|X)=N−1
∑N

i=1
gj(Xji)E{I(yit − f0ᵀ

t G0
i (Xi) ≤ 0)− I(yit − f0ᵀ

t Gi(Xi) ≤ 0)|Xi}

= N−1
∑N

i=1
gj(Xji)

∫ 0

f0ᵀt (Gi(Xi)−G0
i (Xi))

pit(s|Xi)ds

= N−1
∑N

i=1
gj(Xji)pit(0|Xi)f

0ᵀ
t (G0

i (Xi)−Gi(Xi)) +O(d2
NT ) + o(N−1).

Let

dNT δN,jt = N−1
∑N

i=1
gj(Xji)pit(0|Xi)f

0ᵀ
t (G0

i (Xi)−Gi(Xi)) +O(d2
NT ).

Since N−1
∑N

i=1{gj(Xji) − g0
j (Xji)}2 ≤ (C̃d∗NT )2, then as N → ∞, |dNT δN,jt| ≤ Cδd

∗
NT for some

constant 0 < Cδ <∞. Therefore,

E(WNtj,13|X) = dNT δN,jt + o(N−1/2). (A.10)

Also by the φ–mixing condition given in Condition (C1), we have E{WNtj,13 − E(WNtj,13|X)}2 ≤

C ′δN
−1dNT for some constant 0 < C ′δ <∞. Therefore, by following the procedure as the proof in

A.10



Lemma A.1, we have

sup||λj−λ0
j ||≤C̃d∗NT

|WNtj,13 − E(WNtj,13|X)| =op(N−1/2). (A.11)

Therefore, the result in Lemma A.6 is proved by (A.8), (A.9), (A.10) and (A.11).

Lemma A.7. Let Conditions (C1)-(C4) hold. If, in addition, K4
NN

−1 = o(1), K−r+2
N (log T ) =

o(1), K−1
N (logNT )(logN)4 = o(1) and dNT = o(1), then we have as (N,T )→∞,

||λ̂
[1]
− λ0 −Ψ−1

NTUN,1|| = Op(dNT ) + op(N
−1/2),

where UNT,1 is defined in (A.31) and ΨNT is defined in (A.30).

Proof. By Lemma 4 and (A.20), we have ||f̂ [0]
t − f0

t || ≤ Cf (dNT + N−1/2) for some constant

0 < Cf <∞. Let Qit = {Bj(Xji)
ᵀfjt, 1 ≤ j ≤ J}ᵀ. Let f = (fᵀ1 , . . . , f

ᵀ
T )ᵀ satisfy that ||ft − f0

t || ≤

Cf (dNT +N−1/2). Write

L∗NT (f,λ)

= E{L∗NT (f,λ)|X} − (λ− λ0)ᵀ{VNT,1(f)− E(VNT,1(f)|X)}

+ VNT,2(f,λ)− E(VNT,2(f,λ)|X), (A.12)

where

VNT,1(f) = (NT )−1
∑N

i=1

∑T

t=1
Qitψτ (yit − fut − λ0ᵀQit), (A.13)

VNT,2(f,λ) = (NT )−1
∑N

i=1

∑T

t=1
{ρτ (yit − fut − λᵀQit)− ρτ (yit − fut − λ0ᵀQit)

+ (λ− λ0)ᵀQitψτ (yit − fut − λ0ᵀQit)}.

By following the same reasoning as in the proofs of Lemmas A.4 and A.5, we have

E{L∗NT (f,λ)|X} = −(λ−λ0)ᵀE(VNT,1(f)|X)+
1

2
(λ−λ0)ᵀΨNT (λ−λ0) + op(||λ−λ0||2), (A.14)
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VNT,2(f,λ)− E(VNT,2(f,λ)|X) =op(||λ− λ0||2 + (NT )−1), (A.15)

uniformly in ||ft − f0
t || ≤ Cf (dNT + N−1/2) and ||λ − λ0|| ≤ ςNT , where ςNT is any sequence of

positive numbers satisfying ςNT = o(1).Thus, by (A.12), (A.14) and (A.15), we have

L∗NT (f,λ) = −(λ− λ0)ᵀVNT,1(f)+
1

2
(λ− λ0)ᵀΨNT (λ− λ0)+op(||λ− λ0||2 + (NT )−1),

uniformly in ||ft − f0
t || ≤ Cf (dNT +N−1/2) and ||λ− λ0|| ≤ ςNT . Therefore, we have

λ̂
[1]
− λ0 = Ψ−1

NTVNT,1(f̂ [0]) + op{(NT )−1/2}.

By following the same reasoning as the proof for (A.3), as (N,T )→∞ with probability approaching

1, we have ||Ψ−1
NT || ≤ C ′Ψ for some constant 0 < C ′Ψ < ∞. In Lemma A.8, we will show that

||VNT,1(f̂ [0]) − UNT,1|| = Op(dNT ) + op(N
−1/2). Therefore, the result in Lemma A.7 follows from

the above results, and thus the proof is completed.

Lemma A.8. Let Conditions (C1)-(C4) hold. If, in addition, K4
NN

−1 = o(1), K−r+2
N (log T ) =

o(1), K−1
N (logNT )(logN)4 = o(1) and dNT = o(1), then we have as (N,T )→∞,

||VNT,1(f̂ [0])− UNT,1|| = Op(dNT ) + op(N
−1/2),

where VNT,1 and UNT,1 are defined in (A.13) and (A.31), respectively.

Proof. Write

VNT,1(f) = VNT,11 + VNT,12(f) + VNT,13(f), (A.16)

where

VNT,11 = UNT,1 = (NT )−1
∑N

i=1

∑T

t=1
Q0
itψτ (εit),

VNT,12(f) = (NT )−1
∑N

i=1

∑T

t=1
(Qit −Q0

it)ψτ (εit)),

VNT,13(f) = (NT )−1
∑N

i=1

∑T

t=1
Qit{ψτ (yit − fut − λ0ᵀQit))− ψτ (εit)}.
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Since ||N−1
∑N

i=1B(Xi)ψτ (εit)|| = Op(N
−1/2), we have with probability approaching 1,

sup
||ft−f0t ||≤Cf (dNT +N−1/2)

||VNT,12|| ≤ T−1
∑T

t=1
||N−1

∑N

i=1
B(Xi)ψτ (εit)||

× sup
||ft−f0t ||≤Cf (dNT +N−1/2)

||ft − f0
t || = O{N−1/2(dNT +N−1/2)} = o(N−1/2 + dNT ). (A.17)

By following the same procedure as the proof for (A.36), we have for any vector a ∈ RKNJ with

||a|| =1,

var(aᵀVNT,13(f)a) =O{KN (dNT +N−1/2)(NT )−1},

uniformly in ||ft − f0
t || ≤ Cf (dNT + N−1/2). Then by the procedure as the proof in Lemma A.1,

we have

sup
||ft−f0t ||≤Cf (dNT +N−1/2)

||VNT,13(f)− E{VNT,13(f)}||=Op{K1/2
N (dNT +N−1/2)1/2(NT )−1/2}

= op(dNT ).

Hence,

||VNT,13(f̂ [0])− E{VNT,13(f̂ [0])}|| = op(dNT ). (A.18)

Let

κit(f) = f0
ut − fut +

∑J

j=1
(g̃0
j (Xji)(f

0
jt − fjt) + r∗j,it).

Then there exist constants 0 < C,C ′ <∞ such that

||E{VNT,13(f)|X}|| ≤ C||E[(NT )−1
∑N

i=1

∑T

t=1
Bi(Xi){I(εit ≤ 0)− I(εit ≤ κit(f))}|X]||

≤ C ′||(NT )−1
∑N

i=1

∑T

t=1
Bi(Xi)κit(f)pit(0|Xi, ft)|| (A.19)
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uniformly in ||ft − f0
t || ≤ Cf (dNT +N−1/2). Moreover, by (A.20) and Lemma 4, we have

∥∥∥∥(NT )−1
∑N

i=1

∑T

t=1
Bi(Xi)κit(f̂

[0])pit(0|Xi)

+(NT )−1
∑N

i=1

∑T

t=1
Bi(Xi)pit(0|Xi)g̃

0(Xi)
ᵀ[Λ−1

N {N
−1
∑N

i=1
G0
i (Xi)(τ − I(εit < 0))}]

∥∥∥∥
= O(dNT ) + op(N

−1/2). (A.20)

Since ||(NT )−1
∑T

t=1

∑N
i=1G

0
i (Xi)(τ − I(εit < 0))|| = Op{(NT )−1/2}, and

||(NT )−1
∑N

i=1

∑T

t=1
Bi(Xi)pit(0|Xi)|| = Op(1),

we have

∥∥∥∥(NT )−1
∑N

i=1

∑T

t=1
Bi(Xi)pit(0|Xi)g̃

0(Xi)
ᵀ[Λ−1

N {N
−1
∑N

i=1
G0
i (Xi)(τ − I(εit < 0))}]

∥∥∥∥
= Op{(NT )−1/2}.

Therefore, by (A.19) and (A.20), we have with probability approaching 1,

||E{VNT,13(f̂ [0])|X}|| = O(dNT ) + o(N−1/2). (A.21)

By (A.18) and (A.21), we have

||VNT,13(f̂ [0])|| = Op(dNT ) + op(N
−1/2). (A.22)

Therefore, the result in Lemma A.8 follows from (A.16), (A.17), and (A.22) directly.
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