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This paper reports an experiment on costly information purchase and link formation for

information gathering. A ‘star’ network with two information configurations is predicted –

a pure influencer outcome in which the hub purchases information while all others free ride

and a pure connector outcome in which the hub purchases no information and the peripheral

players purchase information. The latter exists only for large groups and the former exists

regardless of group size. We test these predictions on a new experimental platform with

asynchronous activity in continuous time. Our experiments provide strong support for the

predictions with evidence on the role of group size and payoff information. In large groups,

the pure influencer outcome with excessive information purchase is prevalent when subjects

only see their own payoffs, whereas the pure connector outcome becomes common when

subjects see everyone’s payoffs.
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1 Introduction

Large scale social networks are a defining feature of contemporary economy and society.

Empirical research suggests that such networks exhibit a law of the few : the distribution

of links is very unequal.1 Given the social and economic implications of this inequality, it

is important to understand the principles underlying the formation of these networks.

The economic approach to network formation takes the view that networks are created

by individuals who compare the costs and benefits of linking. Beginning with the early work

of Bala and Goyal (2000) and Jackson and Wolinsky (1996), this idea has been explored in

a number of papers on network formation. A high level take away from this literature is

that linking activity leads to unequal networks consistent with the ‘law of the few’.2 This

result has been the subject of extended experimental investigation: the high level take

away from this research is that subjects do not create networks that are in line with the

theory (see e.g., Falk and Kosfeld (2012),Goeree, Riedl, and Ule (2009) and van Leeuwen,

Offerman, and Schram (2019)). These experimental findings raise a question mark about

the validity of an economic approach to understanding network formation.

A common feature of existing experiments is that the number of subjects is small (typ-

ically ranging between 4 and 8). Moreover, practically all the experiments require subjects

to make simultaneous choices in discrete time. In a real world setting, groups are very

large and individuals typically choose effort and linking at different points in time. The

individual decision problem is complicated because the attractiveness of links depends on

the efforts of individuals and also on the efforts by the neighbours of these individuals.

As group size grows, these informational requirements become more demanding. So it is

unclear if we can extend the findings from the small group experiments to more realistic

settings. The work of Berninghaus, Ehrhart, and Ott (2006), Friedman and Oprea (2012)

and Goyal, Rosenkranz, Weitzel, and Buskens (2017) suggests that continuous time ex-

periments offer subjects more opportunities for choice and for learning and that they may

offer better prospects for convergence to equilibrium than discrete time experiments. Our

paper builds on this insight. We develop a new platform for network experiments in which

individual choice is asynchronous and takes place in continuous time and also allows for

1See Barabási (2016) and Newman (2018).
2See e.g., Hojman and Szeidl (2008); Goyal (2022) and Bramoulle, Galeotti, and Rogers (2016) provide

a survey of the large networks literature.
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large groups of up to 100 subjects.3

This paper presents an experiment on a model taken from Galeotti and Goyal (2010)

who study the following setting: Individuals personally acquire information and gather

information through social contacts. Personal acquisition of information is costly and

maintaining personal contacts also takes time and resources. Individuals therefore compare

the relative costs of different sources of information. The theory predicts that for small

groups there is a unique equilibrium with a pure influencer: the network is a star, the central

node purchases information while all others connect to him and purchase no information.

For large groups, there exist two equilibria: a pure influencer outcome and a pure connector

outcome (in which the hub chooses zero information purchase while peripheral players

purchase information).4

In the equilibria, any player can become the hub; in addition, in large groups, two

very different purchase configurations can be sustained in equilibrium. Thus players face

a challenging coordination problem and it is not clear if an equilibrium will be played and

which of them will be selected. Efficiency and equity considerations are sometimes useful as

guides to the behaviour of individuals and this may help in the selection of equilibrium.5 In

the model under consideration, the costs of effort and links are linear so the star network

structure maximizes social welfare. Turning to equity, observe that the pure influencer

equilibrium entails information purchase on the part of the hub and linking expenditures

on the part of the spokes; this leads to a fairer distribution as compared to the pure

connector outcome (in which the spokes do the information purchase as well as the linking

and therefore earn much less than the hub). Correspondingly, the pure connector outcome

offers large rents to the hub; and this creates an incentive for large information purchases

in a bid to attract links. These considerations motivate a study of the effects of group size

on behaviour: in line with existing literature, we study small groups of 4 and 8 (with a

3The platform is versatile and is being used to study questions relating to social learning in complex
networks, strategic interaction on large networks, and the rise of dominant platforms. The concluding
section below discusses this research.

4There is extensive empirical evidence for the existence of influencers and connectors; classical early
studies of these phenomena include Katz and Lazarsfeld (2017). See Galeotti and Goyal (2010) and Goyal
(2022) for an overview of the research in this field.
A number of paper have further theoretically explored the Galeotti and Goyal (2010) framework, see e.g.,
Baetz (2015), Perego and Yuksel (2016) and Herskovic and Ramos (2020). These models combine the two-
way linking model of Bala and Goyal (2000) with the public goods model in networks model of Bramoulle
and Kranton (2007).

5See for instance the seminal contributions of Charness and Rabin (2002), Bolton and Ockenfels (2000),
and Fehr and Schmidt (1999).
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unique pure influencer outcome) and large groups of 50 and 100 (with a pure influencer

and pure connector equilibrium outcome).

We start with a baseline setting where subjects only see their own payoffs: in this case,

for both small and large groups, subjects create star networks. In small groups, the hub

purchases equilibrium level information, but in large groups the hub makes excessive infor-

mation purchase and as a result earns low payoffs (Results 1 and 2). What are the reasons

for this excessive investment by hubs in large groups? In a pure connector equilibrium the

hub player earns large rents: so there is an incentive to make large information purchases

in order to become a hub. It seems that subjects fail to anticipate that the benefits they

can earn as a hub later do not compensate for the early costs of competing. This failure

could be due to computational complexity: it is indeed very difficult to compute expected

payoffs from being a hub in large groups as that depends on the linking and efforts of

others. The only way for subjects to find out may be to actually reach that position, but

by then it is too late to realize that the costs they incurred are not worth the benefits. This

possibility leads us to a treatment in which subjects are shown the payoffs of everyone,

including highly connected other individuals. We refer to this as the payoff information

treatment.

Sharing everyone’s payoff can help because a subject does not need to compute expected

payoffs from being a hub, or wait until they reach that position to find out: they can simply

observe how much others earn by reaching such a position. If subjects see that payoffs from

being a hub are not that large they may compete less aggressively. This may alter their

behaviour. This treatment can also test the non-material utility hypothesis because, should

they care about status or efficiency or be altruistic, seeing others’ payoffs should not have

any effect on their behavior (if anything, it should reinforce it as they would see evidence

that their extreme investments benefit everyone else in the group).

We find that in the payoff information treatment subjects create star networks in groups

of all four sizes. This is in line with the theoretical prediction. In small groups, the hub

continues to purchase information in line with equilibrium prediction. In large groups,

however the hub makes small information purchases in the majority of the rounds. Indeed,

in about 40% of the cases the hub purchases close to 0 information, giving rise to the pure

connector equilibrium outcome! This is in sharp contrast to the pure influencer outcome

observed in practically all the rounds of the baseline treatment.

In the final part of the paper, we study individual decision rules that account for the

powerful effects of group size and information. We propose a parsimonious model that
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enables us to estimate both the likelihood of the occurrence of influencer and connector

outcomes and the (contingent) decision rules on purchase activity. The decision rules

incorporate the following ideas – that individuals compete to become a hub, that they

choose a myopic best response, and that they imitate the activity level of the highest

earning individual. Individuals place weight on these factors and choose their activity. We

find that the influencer outcome is dominant in the baseline large group treatment, whereas

the connector outcome is most likely in the payoff information large group treatment. In

the influencer outcome state, individuals assign large weight to becoming the hub. In the

connector outcome state, individuals place more weight on imitating the highest earning

individual. The powerful interaction of group size and payoff information is thus explained

by the differences in the occurrence of outcome states and the contingent decision rules.

Our paper contributes to the study of networks in economics. As we noted above,

existing papers by Falk and Kosfeld (2012), Goeree, Riedl, and Ule (2009) and van Leeuwen,

Offerman, and Schram (2019) find that experimental subjects reject the predictions of the

model.6 Our first contribution therefore is robust experimental evidence that subjects

create hub-spoke networks, across group sizes and across payoff information treatments;

this experiment offers support for an economic approach that explains networks in terms

of the costs and benefits of links. Our second contribution is evidence on pure connector

equilibrium, with large payoff inequality favoring the central hub node. To the best of our

knowledge this is the first evidence of this interesting configuration in the literature. Our

third contribution pertains to the role of group size and payoff information provision in

shaping behaviour and payoff distributions.7

At a more general level, our paper contributes to the methodology of experiments by

providing a new platform for conducting large scale experiments in continuous time (see

e.g., Friedman and Oprea (2012) and Calford and Oprea (2017) and especially the early

work of Berninghaus et al. (2006) on network formation). Existing studies are built on an

6We would also like to mention the experimental literature on games in networks (see e.g., Leider, Mobius,
Rosenblat, and Do (2009), Charness, Corominas-Bosch, and Frechette (2007), Charness, Feri, Meléndez-
Jiménez, and Sutter (2014), Chandrasekhar, Larreguy, and Xandri (2019)) and on games in which players
choose partners and then play a coordination game (see e.g., Riedl, Rohde, and Strobel (2016), Kearns,
Judd, and Vorobeychik (2012)). Our experiment on the Galeotti and Goyal (2010) model supplements this
latter strand of work. The novelty is that actions are asynchronous and in continuous time.

7In particular, our paper is closely related to the recent paper of van Leeuwen et al. (2019) who also test
the model of Galeotti and Goyal (2010) model. There are a number of important differences in the specific
models that are used and so the hypotheses tested are very different. Given these differences we discuss
the relationship between the papers in section 5.1 below, after presenting our results.
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experimental software, called ConG (Pettit, Friedman, Kephart, and Oprea (2014)) and

have focused on small group interaction (see e.g., Friedman and Oprea (2012); Calford and

Oprea (2017)). The novelty of our paper is that we develop an experimental software that is

well suited for the study large group interaction. In order to overcome information overload

of evolving networks and relax subjects’ cognitive bounds in information processing, our

software integrates the network visualization tool with the interactive tool of asynchronous

choices in real time. This is achieved by adopting an enhanced communication protocol

between the server and subjects’ computers. It allows us to run both network visualization

and asynchronous dynamic choices in real time without communication congestion and

lagged responses, even when participants are interacting remotely from different physical

locations.

2 Theory

We present a model of linking and information purchases taken from Galeotti and Goyal

(2010).

Let the set of players be denoted by N = {1, 2, . . . , n} with n ≥ 3. Each player

i ∈ N simultaneously and independently chooses an effort level (that we will interpret as

information purchase) xi ∈ R and a set of links gi with others to access their efforts such

that gi = (gi1, . . . , gii−1, gii+1, . . . , gin), and gij ∈ {0, 1} for any j ∈ N\{i}. Let the set of

linking strategies of player i be given by Gi = {0, 1}n−1. We define the set of strategies

of player i as Si = R × Gi, and the set of strategies for all players as S = S1 × . . . × Sn.

A strategy profile s = (x, g) specifies efforts and the links made by every player. Observe

that g is a directed graph; the closure of g is an undirected network denoted by ḡ where

ḡij = max(gij , gji) for every i, j ∈ N . The undirected link between two players reflects

exchange of benefits from efforts. Let ηi(g) = |{j ∈ N : gij = 1}| be the number of links i

has formed. For any pair of players i and j in g, the geodesic distance, denoted by d(i, j; ḡ),

is the length of the shortest path between i and j in ḡ. If no such path exists, the distance

is set to infinity. Define N l
i (ḡ) = {j ∈ N : d(i, j; ḡ) = l} to be set of players at distance l

from i in ḡ.

Given a strategy profile s = (x, g), the payoffs of player i are:

Πi(x, g) = f(xi +
n−1∑
l=1

al[
∑

j∈N l
i (ḡ)

xj ])− cxi − ηi(g)k (1)
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where c > 0 denotes the constant marginal cost of efforts, k the cost of linking with another

player, and al reflects the spillover across players who are at distance l. So if j ∈ N l
i (ḡ),

then the value of agent j’s effort to i is given by alxj . The benefit function f(y) is twice

continuously differentiable, increasing, and strictly concave in y. For simplicity, also assume

that f(0) = 0, f ′(0) > c, and limy→∞ f
′(y) = m < c. Under these assumptions, there exists

a number ŷ ∈ X such that f ′(ŷ) = c.

In what follows we would like to take into account direct and indirect flow of benefits

and also decay in indirect benefits. A simple way to take these factors into account is to

set a1 = 1, a2 ∈ (0, 1), and al = 0, for all l ≥ 3 in the payoffs equation (1). In this setting,

building on arguments in Galeotti and Goyal (2010), we establish the following result for

large costs of linking. The proof is provided in the online appendix.

Proposition 1. Suppose payoffs are given by (1) that a1 = 1, a2 ∈ (0, 1) and al = 0 for

all l ≥ 3. Then there exists a k̂, such that for k ∈ (k̂, cŷ) the equilibrium network g∗ is a

periphery sponsored star and there exist two possible effort equilibrium configurations x∗:

• Pure influencer outcome (if n ≥ 3): the hub invests ŷ and everyone else invests 0.

• Pure connector outcome (if n ≥ 2 + k
(cŷ−k)a2

): the hub invests 0 and everyone else

invests ŷ/(1 + (n− 2)a2).

We note that the assumptions a2 > 0 and n ≥ 1 + k
(cŷ−k)a2

are necessary for the pure

connector equilibrium; if the condition on a2 is not satisfied, then indirect access is of no

value and following Galeotti and Goyal (2010) we can conclude that every (strict) equilib-

rium yields a pure influencer outcome. We also note that this assumption distinguishes our

setting from the model considered by van Leeuwen, Offerman, and Schram (2019): they

assume that a2 = 0. So in their model, there only exists a pure influencer equilibrium.

Assuming a2 > 0 gives rise to a qualitatively different type of equilibrium that plays an

important role in our experiment. However, this assumption is not sufficient to guarantee

the existence of the pure connector equilibrium: if the group size n is too small, then pe-

riphery players making positive investments do not sufficiently benefit from each other, and

therefore they can benefit from disconnecting the hub and making the optimal investment

on their own.

Experimental parameters: We specify a functional form and parameters used in

the experiment. The benefit function f(.) is taken from Goyal, Rosenkranz, Weitzel, and
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Figure 1: Pure influencer and pure connector equilibrium, n = 50 (individual effort levels
are specified inside the nodes, below the node IDs)

Buskens (2017).

f(y) =

y(29− y) if y ≤ 14

196 + y else
(2)

In our experiment, the cost of effort is c = 11, the cost of a link is k = 95 and the decay

parameter a2 = 1/2. Given these parameters, it can be checked that ŷ = 9 and the cutoff

value of group size for the existence of the pure connector equilibrium is 49.5.

Proposition 1 tells us that in the small groups of 4 and 8 used in the experimental

design a pure influencer is the unique equilibrium outcome; a single individual chooses 9,

all other individuals choose 0 and form a link with this positive effort player. For large

groups of 50 and 100 used in the experimental design, the network is a star with one hub,

all the other players form a link with this hub, but two very different effort profiles can

be sustained in equilibrium: the pure influencer outcome and the pure connector outcome.

Figure 1 illustrates the pure influencer equilibrium and the pure connector equilibrium.

We note that in the experiment efforts take on integer values and that there is an

upper bound on efforts, x = 20; the set of efforts is given by X = [0, 20]. The predictions

of Proposition 1 remain to hold as shown in Proposition 2 in the Appendix with the concept
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of ε-equilibrium.

For future reference, let us spell out the effort and payoffs in equilibrium under discrete

values of effort. In the pure influencer equilibrium, the hub chooses effort 9 and the spokes

choose 0 and form a link with the hub: the hub earns 81 and each of the spokes earn 85.

In the pure connector ε-equilibrium, the hub chooses effort 0, eighteen or nineteen spokes

choose 1 each, and the remaining spokes choose 0 each. In the presence of 18 active spokes,

the hub earns 214, the active spokes earn 79.25, and the inactive spokes earn 85 (our

interest is in the large payoff difference between spokes and the hub and these differences

are of a similar order in the pure connector outcome with an inactive hub and 19 active

spoke players).

2.1 Mapping theory on to the experimental design

The static model focuses on the trade-off between personal efforts and linking with others

and reveals that individual incentives and strategic interaction lead to a network that has a

very specific structure and that there are two effort configurations. To facilitate individual

experimentation and learning, we consider a design in continuous time with asynchronous

choice. However, this dynamic game opens the possibility of signalling, cheap talk, and

reputation building, forces that go far beyond the original static game. The mapping from

the static theory to the experiment is therefore not straightforward.

As we noted above in the introduction, this departure was partly motivated by consider-

ations of learning opportunities. But it is perhaps worth making a higher level observation

on the relation between theory and experimental design: our goal is to examine the eco-

nomic implications of the trade-off between the costs of linking and the costs of personal

investment as alternative routes to being well informed in a setting where information col-

lected by different individuals are strategic substitutes. If the trade-offs identified in the

theoretical model are central to the formation of unequal networks with great specializa-

tion then we believe that they should be reflected in choices made by subjects even if the

experimental design departs on some dimensions from the static model. With this general

observation in place, we now take up some more specific points.

First we note that we may consider the continuous time game as a sequence of simul-

taneous move games. In such an interpretation, it follows from standard arguments that

a repetition of the static equilibrium constitutes an equilibrium of the game in the exper-

iment. Second, we have a trial period of 60 seconds that has no direct pay-off relevance:
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actions in this period may therefore be viewed as ‘cheap talk’. This raises the question of

whether cheap talk can select between different equilibria of the game. There is a large

literature on this subject: a general message is that cheap talk is more likely to be effective

in equilibrium selection if equilibria are Pareto ranked (see, e.g., Cooper et al. (1992), Far-

rell and Rabin (1996), Charness (2000)). In our setting, equilibria are not Pareto ranked,

so, we believe that cheap talk is probably not an important factor in selecting equilibria

in our analysis. The final remark is about the potential repeated game effects. From the

work of Benoit and Krishna (1986), we know that repetition may be used to select among

different stage game equilibrium and indeed even go beyond stage game equilibrium – to

Pareto improving profiles of actions. This is certainly a possibility in our experimental

design and indeed will be an important part of the experimental analysis.

With these observations in hand, we now state the hypotheses. Recall that the theory

predicts a star network in both small groups and large groups. This suggests the following

hypothesis with regard to network structure.

Hypothesis A In both small and large groups the network is sparse, contains a highly

connected hub and has small average distance.

Next we state the hypothesis regarding information purchase. For small groups, the

theory predicts the unique pure influencer outcome with the hub choosing 9 and every spoke

choosing 0. On the other hand, in large groups there exists a pure influencer equilibrium

and a pure connector equilibrium with the hub choosing 0 and many spokes choosing 0.

Hence, the key potential effect of group size is therefore on the configuration of information

purchase. This suggests the following hypothesis.

Hypothesis B The hub in small groups chooses high effort and the hub in large groups

chooses either high or low effort. Spokes in both small and large groups choose low

effort.

As the costs of effort are linear and there is distance-based decay, for any given level

of effort, the hub-spoke network maximizes aggregate player welfare (for a proof of this

property see Galeotti and Goyal (2010).) We have noted above in the introduction that

the pure influencer is more equitable as compared to the pure connector equilibrium (and

the computations in the previous section make this explicit). Following the experimental

literature on the role of efficiency (Charness and Rabin (2002)) and inequality aversion

9



(Fehr and Schmidt (1999), Bolton and Ockenfels (2000)) this suggests that players would

opt for the pure influencer outcome. On the other hand, the pure connector outcome offers

the hub large rents and thereby creates an incentive for them to make large investments

in a bid to become the hub. Although these considerations of efficiency and equity may

suggest an equilibrium selection, it is ultimately an empirical question of whether to observe

equilibrium outcomes and, if so, which outcome to observe in the experimental data.

Apart from group size that plays an important role in stating the hypotheses, as will be

explained in the next section, we vary the visibility of others’ payoffs in the experimental

design. Motivated by the experimental literature of learning (see Camerer (2003) for a

survey), this informational variation is hypothesized to play a further role in selecting which

type of outcomes subjects coordinate on when both influencer and connector outcomes are

predicted, that is, in large groups.

3 Experiment

3.1 Challenges and methodology

As the complexity of subjects’ decision making increases in scale, large-scale experiments

on network formation pose several major challenges. This section discusses these challenges

and points to ways in which our experimental software and design addresses each of them.

Technical details are provided in the Appendix.

Network visualization. Existing studies of network formation in economics have con-

sidered small group sizes such as 4 or 8 people and visualized evolving networks with fixed

positions of nodes (e.g., Goyal et al. (2017); van Leeuwen et al. (2019)). When the group

size increases, such a representation of networks with fixed positions of nodes makes it

very difficult for subjects to perceive network features. We use force-directed algorithms to

visualize networks in real time (see, e.g., Eades (1984), Fruchterman and Reingold (1991),

Hu (2005), Bostock et al. (2011), and Jacomy et al. (2014)). Such algorithms are common,

and have been previously used in Gallo and Yan (2015). The technical details of the specific

algorithms are provided in the Appendix.

For example, consider a group of 20 people with fixed positions of nodes in a circle as

depicted in Figure 2a; the exact network is barely perceptible by observing this figure (the

same network visualized through a force-directed algorithm is shown in Figure 2b).

Visualization choices can potentially impact behaviour. In this paper we have opted

10



(a) Fixed visualization (b) Adaptive visualization

Figure 2: Examples of network visualization

to go with an approach that makes it easy for individuals to keep track of the evolving

network. We are conscious that in actual practice, in the real world, individuals may not

have access to such efficient visualization tools. The software we are developing allows for

alternative visualization approaches and in future research we hope to examine the impact

of visualization on behavior.

Continuous time with asynchronous choices. It is important to offer subjects ad-

equate opportunities to learn about the environment of decision making, other subjects’

behaviors, and how to respond optimally to them. In view of the strategic complexity

alluded to above, the issues of learning and behavioral convergence are particularly com-

plicated. To address them, we build on the work of Berninghaus et al. (2006), Friedman

and Oprea (2012) and Goyal et al. (2017), and run the experiment in continuous time with

near real time updating of all actions and linking by everyone.8 At any instant of the game,

every subject is free to asynchronously adjust their actions of efforts and linking.

Network information. In addition to the issue of network visualization, there is the

issue of network information available to individual subjects. Our platform is flexible with

respect to the level of information that is provided on the network. The platform allows

us to show only local neighbourhoods to subjects and it allows us to go all the way to

8Although the experimental software allows for real time updating of actions, we voluntarily introduce
some latency in our experiment to avoid any possible confusion caused by some overload of activity on the
subjects’ screen. More precisely, the network depicted on any subject’s screen is updated every 5 seconds
or whenever the subject makes a decision. Figure A7 in the Appendix illustrates the number of choices
made by participants in our experiment.
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Figure 3: Network Information

showing subjects the complete network. In this paper, given a fixed network, for every

subject, we can partition the subjects into two mutually exclusive subgroups: those who

are located within (geodesic) distance 3 from the decision maker, and those who are located

farther away. Figure A1 provides an illustration of network visualization and information

in the experiment with 50 subjects. The left side of the screen shows the group of subjects

within distance 3 of the decision maker identified through the yellow node as ‘Me’ (and all

their links with other subjects within distance 3). The right side of the screen collects the

subjects who lie at a distance greater than 3. Observe that in addition to local network

information, subjects are informed about every subject’s effort—presented as a number

within the corresponding node along with that subject’s ID. A node’s access to others’

efforts is reflected in the size of that node. In other words, a subject can, by comparing

the number within a node to its size, make inferences on how much information/efforts it

accesses from others.

3.2 Treatments and design details

We vary the group size N ∈ {4, 8, 50, 100} and the visibility of others’ payoff. Table 1

summarizes the 4 × 2 structure of our experiment.
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Group size
Small group Large group

N = 4 N = 8 N = 50 N = 100

Others’ payoff NO Baseline4 Baseline8 Baseline50 Baseline100
information YES PayInfo4 PayInfo8 PayInfo50 PayInfo100

Table 1: Experimental Treatments

At any instant in the 6 minutes game, a subject is free to asynchronously adjust their

actions of efforts and linking. For the linking choice, the subject can form or delete a

link with any other subject by simply double-clicking on the corresponding node in the

computer screen. If the subject forms a link with another subject on the right side of the

screen (i.e., someone who is in more than 3 geodesic distance away), that subject along

with his neighbors and neighbors’ neighbors would be instantly transferred to the left side

of the computer screen. In a case where the subject removes a link with another subject

on the left side of the screen, that subject would be transferred to the right side of the

computer screen if they go more than 3 links apart and would remain in the left side of

the screen otherwise.

During the experiment, each subject can also choose any level of effort by moving a

slider varying from 0 to 20 by increments of 1. This slider is provided on top of the decision

screen along with other payoff-relevant information including the subject’s gross earnings

(i.e., the benefit f(x) where x is the total amount of information the subject has access

to), cost of effort, cost of linking, and resulting net earnings (i.e., payoff Πi(xg)). Further

information on the screen is provided in the Appendix.

3.3 Experimental procedures

The experiment was conducted at the Laboratory for Research in Experimental and Be-

havioral Economics (LINEEX) located in University of Valencia and at the Laboratory for

Experimental Economics (LEE) that is located at the University Jaume I of Castellón. All

the treatments except for N = 100 treatments were conducted at the LINEEX. The ex-

perimental sessions with N = 100 subjects were conducted through an internet connection

between LINEEX and LEE (the number of subjects was then evenly distributed across the

two locations). Subjects in the experiment were recruited from online recruitment systems

of the two laboratories. A subject participated in only one of the experimental sessions.
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After subjects read the instructions, the instructions were read aloud by an experimenter

to guarantee that they all received the same information. While reading the instructions,

the subjects were provided with a step by step interactive tutorial which allowed them to

get familiarized with the experimental software and the game. Subjects interacted through

a web browser (Google Chrome) on computer terminals and the experimental software was

programmed using HTML, PHP, Javascript, and SQL. Sample instructions and interactive

tutorials are available in the Appendix.

There were in total 18 sessions: 1 session of 16 subjects for each of the Baseline4

and PayInfo4 treatments, 1 session of 32 subjects for each of the Baseline8 and PayInfo8

treatments, 4 sessions of 50 subjects for each of the Baseline50 and PayInfo50 treatments,

and 3 sessions of 100 subjects for each of the Baseline100 and PayInfo100 treatments. In

each experimental session, subjects were (randomly) matched into a fixed group (if there

were more than one group in a session) and interacted with the same subjects throughout

the experiment. Therefore, there are 4 independent groups for each of the N = 4, N = 8,

and N = 50 treatments and 3 independent groups for each of the N = 100 treatments. A

total of 1096 subjects participated in the experiment.

The experiment consists of 6 rounds of the continuous-time game, each of which lasted

for 6 minutes with the first minute as a trial period and the subsequent 5 minutes as the

game with payment consequence. The first-minute trial period has two practical purposes:

first, making subjects familiar with the play of the game and second, allowing them to build

a network on their own, from an empty one to start with, for the game with real payment.9

At the end of each round every subject was informed, using the same computer screen, of

a moment randomly chosen for payment, detailed information on subjects’ behavior at the

chosen moment including a network structure and all subjects’ efforts, and the resulting

earning of the subject. While the membership of a group was fixed within a session,

subjects’ identification numbers were randomly reassigned at the beginning of every round

in order to reduce potential reputation effects. The first round was a trial round with

no payoff relevance and the subsequent 5 rounds were effective for subjects’ earnings. In

analyzing the data, we will focus on subjects’ behavior and group outcomes from the last

5 rounds. At the beginning of the experiment, each subject was endowed with an initial

9The design with a non-paying trial period is used by leading papers in this literature such as e.g.,
Charness, Feri, Meléndez-Jiménez, and Sutter (2014). On the issue of generating a network, it is a com-
mon practice to assign an initial action profile in continuous-time game experiments as for example in
Berninghaus et al. (2006) and Friedman and Oprea (2012).
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balance of 500 points and added positive earnings to or subtracted negative earnings from

that initial balance. Subjects’ total earnings in the experiment amounted to the sum of

earnings across the last 5 rounds and the initial endowment. Earnings were calculated in

terms of experimental points and then exchanged into euros at the rate of 100 points being

equal to 1 euro. Each session lasted on average 90 minutes, and subjects earned on average

about 18 euros (including a 5 euros show-up fee).

At the end of the experiment, subjects took incentivized tasks to elicit social preferences

and risk preferences. They are a modified version of the tasks proposed by Andreoni and

Miller (2002) and Holt and Laury (2002), respectively. In addition, subjects answered

a brief version of the Big Five personality inventory test adapted from Rammstedt and

John (2007), a comprehension test related to the experimental game, and a debriefing

questionnaire including demographic information. More details about these facts can be

found in the Appendix.

4 Results: Baseline Treatments

In all the data analyses that follow, the data used from every round of the game consists

of 360 observations (snapshots of every subject’s choices in the group) selected at regular

time intervals of one second. Although some information about choice dynamics between

two time intervals may be lost, we consider the possible impact of such a simplification as

negligible to our analyses. Unless stated otherwise, the analyses are focused on data from

the last 5 minutes of each round of the game.

We begin our study of experimental findings by presenting an overview of the dynamics

of linking and efforts in small and large groups. Figure 4 presents snapshots taken from

the experiment with N = 8 and N = 100 subjects (node size correlates with the individual

effort level).10

In the small group (N = 8), subjects rarely make an effort in excess of 9, in line with

the theoretical prediction. Over time, a single subject (red node in Figures 4a and 4b)

emerges as the main hub with effort 9 while others make little investment (typically 0, as

predicted by the theory).

By contrast, in the large group (N = 100), early in the game, a single subject (green

node) emerges as the main hub with the maximum effort 20. There are other subjects who

10Full details of the 6 minute animations corresponding to Figures 4 and 8 are available at the following
web site: http://networks.econ.cam.ac.uk/net_formation/connectors_influencers.html.
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(a) Group with N=8: minute 3 (b) Group with N=8: minute 6

(c) Group with N=100: minute 3 (d) Group with N=100: minute 6

Figure 4: Snap shots from Baseline (N=8 and N=100)

make maximal effort (such as the red node). By minute 3, the green node player continues

to be a hub but has substantially lowered her effort (see Figure 4c). Due to this shading of

effort, she starts to lose some of her links to the red node player, who has kept her effort

at maximum. The transition becomes clearer and at the end, the initial hub (the green

node) has lost most of her links to the emerging hub (red node), as shown in Figure 4d.

We now examine the data more systematically.

Let us first discuss the network structure. Figure 5 summarizes our findings about

network structure across the different group sizes. We use average per capita degree as a

measure of sparseness of a network11, the maximum degree (normalized for group size) as

a measure of being a hub, and average distance between two nodes as a measure of network

11Degree is defined as the number of links formed and received by an individual. This measure is justified
here by the assumption in our model that information spillover is independent of the direction of links
(see Section 2 for details). Note however that restricting this measure to incoming links only shows similar
patterns.
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closeness. In the left and right panel of Figures 5, the equilibrium benchmark is provided

in dashed horizontal lines with the colour corresponding to group sizes. The equilibrium

benchmark for normalized hub degree is equal to 1 for all group sizes and hence omitted.

First, we find that subjects create sparse graphs. Average degree is less than 2 in the

small groups. In baseline50, the average degree is stable around 2. In Baseline100, average

degree is falling over time to reach 2 at the end of the game. Recall that average degree is

roughly equal to 2 in the star network (dotted horizontal lines in Figure 5a).

Second, the maximal (normalized) degree is high: it is between 0.6 and 0.8 in Baseline4,

slightly above 0.6 in Baseline8, slightly below 0.6 in Baseline50 and between 0.50 and 0.60

in Baseline100.

Third, average distance is smaller than 2 in the small groups and it converges to 3 in

the large groups.12 Recall that the average distance (dotted horizontal lines in Figure 5c)

in a star network would be close to 2. Therefore, we conclude that subjects create networks

that are sparse, contain a hub, and have small average distance.

(a) Degree (b) Link inequality (c) Distance

Figure 5: Network Structure in the baseline treatments

We summarize these findings about network structure.

Result 1 In both small and large groups, subjects create a network that is sparse (average

degree close to 2 in small groups and 3 in large groups), contains a hub (connected

to 60%-70% of all nodes in small groups and 50%-60% of all nodes in large groups)

and has small average distances (less than 2 in small groups and close to 3 in large

groups).

12Here we are considering the largest component, but the average size of the largest component is close
to the group size in each treatment suggesting that the network is connected: average size of the largest
component is 3.3 for Baseline4, 6.4 for Baseline8, 44.9 for Baseline50, and 94.8 for Baseline100.
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(a) Most connected individual (hub) (b) Others

Figure 6: Time series of efforts for the most connected subject and others in the baseline
treatments

We conclude that the network structures in both small and large groups are in line with

Hypothesis A.

We next take up efforts. Figure 6 presents, for every second, the average efforts of

the subject with the highest degree and the average efforts of all the other subjects.13 In

small groups the average effort by the highest degree subject is close to 9. There is a very

sharp increase in effort by the most connected individual as we move from Baseline8 to

Baseline50: it is 20 at some points in time and it remains above 15 for most of duration of

the experiment. Similarly, in Baseline100 it remains above 13 for most of the period of the

experiment. On the other hand, figure 6(b) shows that the average level of effort made by

the other subjects is low and it steadily decreases over time.

We summarize these findings about the configuration of information purchase.

Result 2 In small groups, the maximally connected subject chooses high effort (close to

9) and the spokes choose low effort (between 2 and 3). In large groups, the maxi-

mally connected subject chooses high effort (above 15 when N=50 and above 13 when

N=100) and the spokes choose low effort (between 2 and 3).

We conclude that in both small and large groups subjects’ behavior is consistent with

Hypothesis B: the hub chooses high efforts and the spokes choose low efforts. However, in

13Table A10 in the Appendix shows that the identity of the most connected individual differs across
most rounds. In fact, we observe that 75% (67%) of subjects in a group of 100 (50) who become the most
connected individual for at least 10 seconds in a round do so in only one of the five rounds. Overall, the
fraction of subjects becoming the most connected individuals in any number of rounds is 7.6% (19.5%) in
the group of 100 (50).
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(a) Baseline4 (b) Baseline8

(c) Baseline50 (d) Baseline100

Figure 7: Time series of median payoffs for the three different types of subjects in the
baseline treatments

large groups the hub chooses efforts far in excess of the equilibrium prediction. We examine

the reasons for this sharp increase in efforts when we move from small to large groups next.

We start by asking if the excessive effort yields higher payoffs to the competing subjects.

Recall that, in equilibrium, there is a negligible difference between the payoffs of the hub

and spokes in the pure influencer outcomes but that the hub earns a much higher payoffs as

compared to the spokes in the pure connector outcome. Figure 7 presents the dynamics of

median payoffs obtained by three different types of subjects: the most connected and the

second most connected individuals and the others. We see that the 2nd most connected

subject in both Baseline50 and Baseline100 earns significantly lower payoffs than the ‘other’

subjects. The most connected subject in Baseline50 also earns lower payoffs than the ‘other’

subjects (except for the last 10 seconds). In Baseline100, they earn as much as the others

for brief periods but the average payoffs are lower than others’ payoffs. By contrast, in

small groups, all three types of subjects earn similar payoffs.

We conduct a regression analysis of mean efforts made and a median regression of
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payoffs obtained by each type of subjects—most connected, 2nd most connected, and the

others—on the dummy of large groups (N = 50 or 100). In this analysis, we define the

types of subjects with the ranking of the fraction of time (across the five minutes) in

which a subject is most connected.14 The most connected individual is the subject who

receives the most links for the largest fraction of time. The 2nd most connected individual

is similarly defined. We refer to the rest of subjects as the ‘others’.

Table 2 reports the regression results after controlling for round dummies, demographic

information, comprehension test score, experimental measures of risk aversion and altruism,

and personality. Robust standard errors (clustered by individual subject in the regression

of efforts) are reported. Average efforts and median payoffs for each type of subjects in

the small groups (N = 4 and 8) are also reported for comparison.

Table 2 says that there are significant group size effects on efforts and payoffs. The two

most connected subjects make significantly higher efforts and earn substantially less in the

large groups than in the small groups: 68% more efforts and 27% less payoff for the most

connected subject, and 173% more efforts and 55% less payoff for the 2nd most connected

subject.15 Thanks to the intense competition of the two most connected subjects, the other

subjects earned 44% more in the large groups than in the small groups.

To summarize: as the group size grows, individuals compete fiercely to become hubs.

This leads them to invest very large amounts and, as a result, their earnings suffer. Indeed,

in some cases the hubs actually make negative earnings. We observe that 25% (13%) of the

most connected subject’s sample in the Baseline50 (Baseline100) earn negative earnings

(there is no incidence of negative earnings for the most connected subject in the small

group treatments). We note that these negative earnings are neutralized by the initial

endowment, which allows subjects to earn positive rewards at the end of the experiment

despite having made losses in some round(s).

It is possible that in large groups, due to the complexity of the environment, some

14Figure A5 in the Appendix presents histograms showing the time fraction of different efforts over 5
minutes for the three different types of subjects across group sizes in the baseline treatment. The two most
connected subjects in the large groups chose the maximum effort level, 20, for the majority of time, whereas
in the small groups they chose significantly less with the mode of the most connected subject’s effort being
around the equilibrium effort level, 9

15Tables A1 and A2 in the Appendix report the replications of Table 2 by splitting the two large groups.
The results remain similar with each of the large groups. In addition, we report the regression analysis of
outdegree (the number of links) in Table A3 in the Appendix. We find that outdegree increases modestly
for each type of subjects in the large groups: by about 1 for the most connected, by 0.8 for the 2nd most
connected, and by 0.2 for the other subjects.
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Table 2: Scale effects on effort and payoffs in the baseline treatments

Mean effort Median payoff
most 2nd most others most 2nd most others

connected connected connected connected

Large group 6.00*** 9.04*** 0.62* -23.75* -44.94** 37.12***
(1.05) (1.10) (0.32) (13.25) (18.13) (2.90)

Mean or median
in small group 8.77 5.24 2.65 86.50 81.00 85.00
Number of
observations 75 75 2590 75 75 2590
R-squared 0.59 0.64 0.04 0.19 0.23 0.08

Notes: Robust standard errors (clustered by individual subject in the regression analysis of efforts) are
reported in parenthesis. *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively.
The dummy of large group assigns 1 if the group size is either 50 or 100, and 0 otherwise. All regressions
include a constant, round dummies, age, female, education, comprehension test score, experimental measures
of risk aversion and altruism, and Big 5 personality.

individuals who are keen to become hubs do not appreciate the payoff consequences of

large efforts. If this is the case, then providing them information on everyone’s payoffs

would help them in choosing efforts more judiciously.

5 Payoff Information

Clearly subjects need to be able to see their own payoffs in order to learn the profitability

of different linking and effort combinations. In small groups, showing the payoffs of others

may not be a first order issue, as subjects can compute these payoffs themselves in a fairly

straightforward manner. However, in a dynamic continuous time game with fifty or a

hundred subjects—and with the network and efforts configuration constantly evolving—an

individual may find it much harder to compute the payoffs of other subjects. Therefore,

in large groups the knowledge of others’ payoffs may become a major factor. The first

reason is learning dynamics: observing the others’ payoffs, especially those who are hubs,

could assist subjects in better appreciating the trade-offs associated with different courses

of action. The second reason is fairness considerations: the two equilibria described in

Proposition 1 exhibit very different level of payoff inequality across players. The pure-

influencer equilibrium exhibits a minor payoff difference between the hub player and the

spoke players, whereas the pure-connector equilibrium yields a much larger payoff difference
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between the hub player and the spokes players. These considerations motivate a treatment

in which we provide information on others’ payoff to everyone.

The literature of learning in games provides some guidance on the issue of information

and learning, see Camerer (2003) for a survey. In adaptive models such as reinforcement

learning and experience-weighted attraction learning (Camerer and Ho (1999)), players

ignore information on payoffs of other individuals. In models of imitation learning (Schlag

(1998)) and sophisticated learning (Camerer et al. (2002)), players would behave differently

if the payoffs of others are known. In the recent body of network experiments (e.g., Goeree

et al. (2009) and Falk and Kosfeld (2012)), researchers have tended not to show subjects the

payoffs of others. However, when information on others’ payoffs is available in particular in

large groups where it is difficult to infer such information, subjects may follow a different

behavioral rule. In fact, the experimental literature documents that human subjects may

behave differently when information on the payoffs of other individuals is available (e.g.,

Huck et al. (1999)). With these observations in mind, let us describe how we proceed.

In the baseline treatments, subjects are shown their own payoffs but not others’ payoffs.

A subject is also shown the efforts and public good access for all other subjects, as shown in

Figure A1 in the Appendix. In principle, therefore, a subject can infer the gross payoffs of

any subject. But we believe that such inference would be challenging for subjects during a

large scale continuous-time game, where the network and effort levels are evolving rapidly.

To facilitate learning, we add information about every player’s payoff through a set of

colour codes as illustrated by Figure A2 in the Appendix. Specifically, the border of every

node is coloured: the colour varies from green (high positive payoff) to red (high negative

payoff). The scale of the colour code is presented at all times on the left hand side, as in

Figure A2.

We start by presenting the dynamics of linking and efforts. Figure 8 presents snapshots

taken in the payoff information treatment with N = 8 and N = 100 subjects. Observe

that the properties of the network carry over as before. However, there is a change in the

effort of the hub in the large group: the most connected individual (red node) starts at a

high effort 14, but then gradually shades her efforts (reflected by her node size). By the

end of the experiment, she is choosing an effort close to 0; as a result, the situation is close

to a “pure connector outcome’ (as in Figure 8d).

Figure 9 summarizes our findings about network structure in the payoff treatment.

In the left and right panel of Figure 9, the equilibrium benchmark is provided in dashed

horizontal lines with the colour corresponding to group sizes. The equilibrium benchmark

22



(a) Group with N=8: minute 3 (b) Group with N=8: minute 6

(c) Group with N=100: minute 3 (d) Group with N=100: minute 6

Figure 8: Snap shots with payoff information (N=8 and N=100)
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for normalized hub degree is equal to 1 for all group sizes and hence omitted. We observe

sparse networks across all group sizes (the average degree is less than 2 in small groups and

it is less than 3 in large groups), the presence of a hub (the maximal (normalized) degree

is 0.6 in small groups and 0.5 in large group), and small average distances (less than 2 in

small groups and close to 3 in large groups).16 These patterns are very similar to those

observed in the Baseline treatments.

(a) Indegree (b) Link inequality (c) Distance

Figure 9: Network Structure in the payoff information treatments

Turning to efforts and their relation with degree, Figure 10 presents the dynamics of

effort for the most connected individual and others over time. Compared to Figure 6

in the baseline treatments, we observe that behavior dynamics in the large group payoff

information treatments are quite different: the efforts made by the most connected subjects

are substantially lower. By contrast, in the small groups, the dynamics of efforts is similar

across the payoff information treatment and the baseline. The behavior of ‘other’ subjects

is similar across the two information treatments and across different group sizes.17

To better appreciate the effects of showing payoff information, it is helpful to separate

the rounds into three types of outcomes with eyeballing the data: (1) a pure influencer

outcome in which the hub chooses a large level of effort (in excess of 7) compared to efforts

of others, (2) a pure connector outcome in which the hub chooses an effort less than 3,

and (3) other outcomes in which the hub chooses effort between 3 and 7. In Section 6, we

conduct a model-driven, statistical analysis of estimating the likelihood of influencer and

connector outcomes with decision rules.

16The average size of the largest component is close to the group size in each treatment: 3.1 for PayInfo4,
6.1 for PayInfo8, 43.5 for PayInfo50, and 93.5 for PayInfo100.

17Table A4 in the Appendix presents the treatment effects of group size and information on efforts and
payoffs, providing a statistical confirmation of the patterns arising from Figures 6 and 10.
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(a) Most connected individual (hub) (b) Others

Figure 10: Time series of efforts for the most connected subject and others in the payoff
information treatments

Table 3 presents a classification of outcomes across treatments (together with the cor-

responding effort level by the hub and others averaged across the last 5 minutes).18 Recall

that there are 5 rounds per group, and 4 groups for sizes 4, 8 and 50 but 3 groups of size

100. So there are 20 rounds each for group sizes 4,8 and 50, and 15 rounds for group size 100

(for each of the Baseline and Payoff Information treatments). Table 3 tells us that in small

groups there are practically no pure connector outcomes in the Baseline and the Payoff

Information treatments. Matters are quite different when we turn to large groups. In the

Baseline treatment, the pure connector outcome does not arise in a single round. However,

in the Payoff Information treatment, the pure connector outcome arises in 9 rounds (out

of 20) for group size 50 and in 6 rounds (out of 15) for group size 100. Thus in 15 out of

35 rounds the outcomes are consistent with the pure connector outcome where hub makes

lower effort than others.19

Note that unreasonable choices made by a single individual can significantly contami-

nate the entire group’s behavior. In our experiment, we occasionally observe that the most

connected individual forms a disproportionate number of links (thereby generating large

negative payoffs) for a significant period of time. We classify those individuals as outliers.

In Table A9 from the Appendix, we therefore provide the same outcome classification that

excludes rounds where the most connected individual earns less than -100 points during

at least 60 seconds in the last 5 minutes. We observe that our results hold under this

constraint.

18Time series of effort dynamics for the most connected individuals for each outcome types and each
treatment are provided in Tables A5 and A6 in the Appendix.

19See Table A6 in the Appendix for an illustration of the corresponding time series analysis of efforts.
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Outcome Types
Pure Influencer Pure Connector Other

Treatment N #Obs Hub Others #Obs Hub Others #Obs Hub Others

Baseline

4 14 10.2 3.6 0 . . 6 5.8 3.3
8 16 9.2 2.9 0 . . 4 5.8 3.4
50 19 16.3 3 0 . . 1 5.8 3.2
100 15 16.3 3.6 0 . . 0 . .

PayInfo

4 7 8.1 3.1 0 . . 13 5.25 3.8
8 16 8.4 2.6 0 . . 4 5.3 3.5
50 4 11.1 2.8 9 1.4 2.1 7 5.3 2.3
100 4 11.9 2.1 6 0.6 2.4 5 4.9 2.2

Table 3: Mean effort in last 5 minutes across different types of Outcomes

Table 4 presents the regressions on treatment effects. In the small groups, there is

little difference in each likelihood of infuencer and connector outcomes between the two

information treatments. However, there is a marked difference between the two information

treatments in large groups, regarding the occurrence of these outcomes. Thus, the key take

away is the statistical significance of the interaction between payoff-information and group

size. These observations are summarized as follows.

Result 3 In small groups, subjects choose networks that are sparse, contain a hub and

have small average distances. The hub chooses high effort and the spokes choose low

effort.

In large groups, subjects choose networks that are sparse, contain a hub and have

small average distances. In some rounds, the hub chooses high effort while the spokes

choose low effort, but in the majority of rounds the hub chooses low effort while the

spokes choose higher effort.

In small groups, subjects behave in line with Hypotheses A and B. In large groups, the

networks created are in line with Hypothesis A. Regarding information purchase, in contrast

to the baseline large groups, in the vast majority of the rounds in the payoff information

large groups, the hub chooses low or very low efforts. This behavior has important payoff

consequences for the most connected subjects who constantly earn more than others, in

line with the pure connector prediction. This is clearly brought out in Figure 11.20

20Tables A7 and A8 in the Appendix presents time series of payoffs across different types of outcomes.
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Infuencer Connector

Payoff info -0.175 -0.000
(0.142) (0.018)

Large group 0.225** 0.004
(0.094) (0.020)

Payoff info × Large group -0.568*** 0.429***
(0.176) (0.141)

Frequency in
small group baseline 0.750 0.000
Number of
observations 150 150
R-squared 0.357 0.388

Table 4: Treatment effects on equilibrium selection

Notes: Robust standard errors clustered at the group level are reported in parenthesis. *, **, and ***
represent significance at the 10%, 5%, and 1% levels, respectively. The dummy of large group assigns 1
if the group size is either 50 or 100, and 0 otherwise. The dummy of Payoff info assigns 1 for the payoff
information treatment. All regressions include a constant, round dummies, and group dummies.

(a) PayInfo4 (b) PayInfo8

(c) PayInfo50 (d) PayInfo100

Figure 11: Time series of median payoffs for the three different types of subjects in the
payoff information treatments
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5.1 Relation with van Leeuwen, Offerman, and Schram (2019)

van Leeuwen et al. (2019) study the model of Galeotti and Goyal (2010) but set α2 = 0.

With this restriction, the pure influencer is the unique equilibrium outcome. By contrast,

we consider a variant of the model (that is perhaps slightly more natural) in which indirect

benefits are positive, i.e., α2 > 0. As we showed in section 2, for small groups of 4 and 8, the

pure influencer configuration constitutes the unique equilibrium profile in our setting too.

On the other hand, with large groups of size 50 or 100, there exist two equilibrium profiles:

a pure influencer and a pure connector outcome. This is the fundamental difference in the

theoretical underpinnings of the two papers.

Turning to experimental findings, consider small groups of 4 and 8. Results 1 and 3 tell

us that, both in the baseline as well as in the payoff information treatment, subjects abide

by the pure influencer equilibrium. As there are no status-rents to be made in the pure

influencer equilibrium, let us compare these findings with the no-status rents treatment

in van Leeuwen, Offerman, and Schram (2019). They find that star networks and pure

influencer outcome rarely arises (in less than 10% of the cases); a majority of the cases

are instead characterized by mixing by players between low and high efforts. We believe

that asynchronous activity in continuous time is probably the reason for the difference in

findings.

Perhaps the biggest difference in the papers arises when we turn to large groups. They

do not consider large groups, whereas most of our focus is in large groups. This is because in

large groups, there exist two very different types of equilibria – the pure influencer and the

pure connector. Our experiments with large groups present the first evidence for the rise

of the pure connector outcome. Moreover, our analysis draws attention to the interaction

between group size and provision of payoff information in shaping behaviour and creating

large payoff inequalities.

As a final remark we note that the key finding of van Leeuwen, Offerman, and Schram

(2019) is that subjects abide by a challenge-free equilibrium: this is a star network equi-

librium of the repeated game in which the hub chooses high enough efforts to nullify any

extra rents that she earns. Our evidence goes against this finding: there are very large

payoff differences between the hub and the spoke in large groups (both in the baseline as

well as in the payoff information treatment). In particular, in the baseline treatment, the

hub makes excessive investments and earns much less than the spokes. On the other hand,

in the payoff information treatment, the hub invests well below the spokes in 40% of the
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rounds and the outcome is close to a pure-connector outcome. The hub earns far more

than the spokes – an outcome that is clearly not challenge-free. In our view, this brings

out the powerful role of inertia: once a subject has emerged as a hub it is very difficult

for a challenger to dislodge them without incurring large losses. Incumbency advantages

appear to be much larger in the payoff information treatment as compared to the baseline

treatment.

6 Estimating Treatment Effects on Decision Rules

We provide an estimable framework to gain a deeper understanding of the treatment effects

on behavior and outcomes. As the differences in behavior across groups and information

pertain mostly to the most connected individuals, we focus on them in this section. We

examine the behavior of these two individuals in association with influencer and connector

outcomes discussed in Tables 3 and 4.

Before introducing the framework, we first note that the behavior of most connected

subjects in the large group baseline treatment is not justifiable from a dynamically rational

point of view. A subject can guarantee herself an average payoff of 81 with an effort of 9

and zero links (regardless of what others do). Figure 7 shows that the two most connected

subjects reach payoffs lower than this payoff in most cases. Therefore their behavior is

not consistent with dynamic optimal choice.21 This suggests that individuals in the base-

line treatment who make large investments do not appreciate that their strategy is not as

profitable as other strategies. As these excessive investments happen only in large groups,

and it often disappears when payoff information for everyone is provided, we are led to

the conclusion that increasing group size makes it difficult for highly connected subjects to

keep track of the relation between actions and payoffs and this leads to over-investment.

Therefore, we propose a single framework with selection of outcomes and boundedly ra-

tional decision rules that can account for the behavior of the two most connected subjects

across the treatments.

Consider two most connected individuals, i = 1, 2, in a group. We assume, for the sake

of parsimony, that they are either in the state of influencer outcome (s = IO) or in the state

21Figure A8 in the Appendix shows the continuation payoff that can be expected by one of the most
connected individuals at any moment in time, by averaging the actual payoffs earned from that moment
until the end of the game. In the large group baseline treatment, competing for the hub position is not
profitable. On the other hand, under the payoff information treatment, it is more profitable in the large
group as compared to the small group.
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of connector outcome (s = CO). When they are in the state of influencer outcome, the

two most connected individuals compete with the level of effort under influencer outcome,

x. When they are in the state of connector outcome, their decisions are based on the

myopic best response effort. On top of this basic specification of decision rules in both

outcomes, we allow the possibility that the individuals can follow the effort level chosen

by a group member with the highest payoff in a previous time window. Allowing the

possibility of imitating the higest earning individual in the decision rules enables us to

examine the potential impacts of payoff information on the behavior of the two most

connected individuals and group outcomes. The incorporation of ‘imitate the best’ to our

specification of decision rules is partly motivated by the experimental literature of learning

documenting that subjects adopt this imitation rule when they have necessary information

to do so (see, e.g., Huck et al. (1999)). Because the computer screen was updated every 5

seconds or whenever the individual made a decision, we allow 3 seconds time lag in defining

effort level in a previous time window.

Formally, we assume the following decision rule xdit with parameters, (x, γ, λ): for indi-

vidual i in period t,

xdit =

{
γx+ (1− γ)xmax

t−3

λxmbr
it + (1− λ)xmax

t−3

if

if

s = IO

s = CO

where xmbr
it denotes the level of myopic best response effort for individual i at period t

conditional on a game outcome at period t− 3, and xmax
t−3 denotes the level of effort chosen

by an individual with the highest payoff in the group at period t− 3. When the influencer

outcome occurs, the decision rule places weight γ on x that captures the extent to which

the two individuals compete for hub status. In the state of connector outcome, weight λ

is placed on myopic best response effort.

Because the state of either influencer outcome or connector outcome is a latent variable,

we estimate the probability of the game being in the state of influencer outcome, Pr{s =

IO}. To use the maximum likelihood estimation method, we introduce an error term,

εit, following the normal distribution with mean 0 and variance σ2 independently and

identically across i and t, in the decision rule: we treat an observed effort for individual

i at period t, xit, is a realization of a random variable, h(xdit + εit), where h (z) reports a

value from the action set {0, 1, 2, ..., 20} that is nearest to z. This stochastic formulation

of decisions leads us to compute the likelihood of observing xit conditional on being in the
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state of influencer outcome or connector outcome, ψ (xit|s = IO) and ψ (xit|s = CO).

Let
{
{(xgit, x

mbr,g
it )i=1,2, x

max,g
t }360

t=61

}
g

denote the samples of the two most connected

individuals across group g over all the treatments. We estimate the parameters (Pr{s =

IO}, γ, λ, x) for each treatment TR – the baseline small group treatment, the baseline

large group treatment, the PayInfo small group treatment, and the PayInfo large group

treatment – together with σ2 common across all treatments. The log-likelihood function

for the data is then given by

L
({
{(xgit, x

mbr,g
it )i=1,2, x

max,g
t }360

t=61

}
g

;
{
Pr{s = IO}TR, γTR, λTR, xTR

}
TR

, σ2

)
=

∑
TR

∑
i=1,2

360∑
t=61

ln [Pr {s = IO}ψ (xit|s = IO) + (1− Pr {s = IO})ψ (xit|s = CO)]

Table 5 reports the results that maximize the above-mentioned log-likelihood function.

Standard errors, reported in parenthese, are computed with cluster bootstrapping at the

level of game in every treatment with 500 replications. Several features of the results are

noteworthy.

First of all, regarding the probability of being in the state of influencer or connector

outcome, there is a marked difference between two information treatments in large groups.

The estimated probability of being in the state of influencer outcome is 69% in the baseline

large group treatment, whereas it is only 31% in the PayInfo large group treatment. In

contrast, this probability is similar in the two information treatments in small groups;

55% in the baseline small group treatment and 60% in the PayInfo small group treatment.

These findings about the likelihoods of influencer and connector outcomes corroborate

those reported in Tables 3 and 4.

Second, we observe a significant effect of group size and payoff information on the

decision rule. When they are in the state of influencer outcome, the two individuals in

every treatment rarely pay attention to the effort level of a highest earning individual in

the group and direct their full attention to seeking hub status. In addition, the estimated

level of efforts under the state of influencer outcome show clear scale effects: they are

much higher than the equilibrium level (around 18 in the baseline and 15 in the payoff

information) in the large groups, whereas close to the equilibrium level (about 12 in the

baseline and 8 in the payoff information) in the small groups.

When the two individuals are in the connector outcome state, we observe the powerful

31



Influencer Connector
Information N Pr{s = IO} γ x λ

Baseline

Small 0.55 0.88 11.66 0.49
(0.031) (0.003) (0.234) (0.062)

Large 0.69 1.00 18.41 1.00
(0.036) (0.028) (0.513) (0.168)

PayInfo

Small 0.60 1.00 8.34 0.52
(0.048) (0.001) (0.287) (0.097)

Large 0.31 1.00 14.64 0.00
(0.040) (0.100) (1.906) (0.135)

σ2 2.98
(0.125)

Log likelihood value -265796.4

Table 5: Maximum likelihood estimation
Notes: Standard errors, reported in parenthese, are computed by cluster bootstrapping at
the game level with 500 replications.

interaction of group size and payoff information. In the baseline large group the two indi-

viduals place full weight on myopic best response effort, completely ignoring the effort level

of a highest earning individual. In contrast, in the payoff information large group treat-

ment, they imitate the effort level of a highest-payoff individual while completely ignoring

their myopic best response effort. On the other hand, in the baseline small group and pay-

off information small group treatments, these two individuals adopt a similar decision rule

that places equal weight on myopic best response effort and effort level of a highest-payoff

individual.

These estimated decision rules deepen our understanding of the observed effort dy-

namics shown in Figures 6a and 10a. Excessive investment in the baseline large group

treatment is driven by the high likelihood of influence outcome and competition for hub

status through high efforts in that state. The low level of efforts in the payoff information

large group treatment is explained by the high likelihood of connector outcome and the

adoption of the imitate-the-best rule in that state.
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7 Conclusion

There is a large body of research that describes the structure of large empirical networks.

A recurring theme in this work is that networks exhibit great inequality in connections.

The economic theory of network formation shows that the trade-off between the costs of

linking and the benefits of direct and indirect links is resolved in strategic models in favor

of unequal networks. However, experiments on these models show that subjects do not

form such networks. This mismatch between the theory and the experimental evidence

provides the motivation for our paper.

We develop a new platform for the study of network formation. The platform allows

for continuous time linking and effort choice and it allows for large scale experiments. The

paper presents an experiment on this platform with small groups of 4 and 8 and large

groups of 50 and 100 subjects; we test the predictions on specialization on linking and

efforts in the model of Galeotti and Goyal (2010). Our experiments provide strong support

for the specialization prediction. Furthermore, our experiment offers first evidence for

the emergence of a pure connector outcome. Finally, we show that group size and payoff

information provision interact strongly to shape behaviour and payoffs.

The experiment reported in this paper is based on a network visualization technique of

presenting subjects evolving networks in an efficient and visibly transparent manner. The

reason of using this visualization is to facilitate subjects’ learning about the evolution of

networks during the games. Changing the visualization of networks may affect subjects’

knowledge and perceptions about network changes and thus alter subjects’ behavior. Ex-

ploring the effects of varying network visualization on game outcomes is an interesting

avenue for future research.

The platform we have developed is versatile and can be used for the study of a wide

range of questions. This is brought out in a series on companion papers. In Choi, Goyal,

and Moisan (2020), we examine the formation of networks of intermediaries. The theory

is permissive: equilibrium networks range all the way from hub-spoke networks with a

dominant intermediary to the perfectly symmetric cycle network in which there are long

chains of intermediation. In this experiment we study two-sided link formation (in contrast

to the present paper where links are created unilaterally). In Choi, Goyal, Moisan, and

To (2022) we study learning in large given canonical networks – Erdos-Renyi, Stochastic

Block and Royal Family networks. The experimental design considers repeated discrete

choice by subjects. Finally, in a new ongoing experiment, we study games on networks on
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large exogenous networks.
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Appendices: For Online Publication

A ONLINE: Appendix

A Theory

There are no general equilibrium characterization results available for this model. The

analysis of Galeotti and Goyal (2010) focuses on polar cases in which a1 = 1 and al = 0,

for all l ≥ 2 and the case where al = 1, for all l. Our formulation allows for indirect flow

of benefits with decay; this appears to be a natural case.

Proof of Proposition 1: The first step is to observe that in equilibrium, every

individual must access at least ŷ. This is true because if someone is accessing less than

ŷ, then due to the concavity of the f(.) function, she can simply increase her utility by

raising effort so that the total access equals ŷ.

The second step is to show that players will form one link or zero link, for sufficiently

large linking costs. Observe that an isolated individual will choose ŷ. So it follows that in a

network with connections, no one will ever choose more than ŷ. Note that if link costs are

close to cŷ then it is not profitable to form links with two individuals who each chooses ŷ.

So the only situation in which an individual, A, may choose two or more links arises if an

individual accesses significantly more than ŷ through each link. Consider a link between

A and B. Iterating on optimal effort, it is true that if B chooses ŷ then every neighbor of

B must choose 0. So A accesses more than ŷ only if B chooses strictly less than ŷ. If a

neighbour of B chooses a positive effort, then it must be the case that this person must

meet the first order condition on optimal efforts: her total efforts invested and accessed

must equal ŷ. As this person is a neighbour of B, it follows that A cannot access more

than ŷ via the link with B. So, A will form at most one link in equilibrium.

The third step considers effort configurations. Take the situation in which some indi-

vidual (say) A chooses ŷ. It is optimal for everyone else to choose effort 0 and form a link

with this person. And it is clearly optimal for A to choose ŷ when faced with zero efforts

by everyone else.

To conclude the proof, we need to show that the pure connector outcome is the only

possible equilibrium in a situation where no player chooses ŷ. Observe first that the

pure connector outcome is an equilibrium so long as k < cŷ(n − 2)a2/(1 + (n − 2)a2) or

n ≥ 2 + k
(cŷ−k)a2

. Observe that cŷ(n− 2)a2/(1 + (n− 2)a2) converges to cŷ, as n gets large.
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The next step is to rule out any other possible equilibrium. The key observation here

is that any equilibrium network must have diameter less than or equal to 2. Suppose the

diameter of a component is 3 or more. We know from step 2 that the component must be

acyclic. So consider two furthest apart leaf nodes. A variant of the ‘switching’ argument,

developed in Bala and Goyal (2000), shows that one of the two leaf players has a strict

incentive to deviate. So every component must have diameter 2. Given that the network is

acyclic, this implies it must be a star. It is now possible to apply standard agglomeration

arguments to deduce that multiple components cannot be sustained in equilibrium.

Finally, the hub player must choose zero. Suppose not. By hypothesis the hub chooses

less than ŷ. Given that a1 = 1 and a2 < 1, both the hub and the spokes cannot be accessing

exactly ŷ. A contradiction that implies that the hub must choose zero effort.

�

We next show that, under discrete values of personal effort, a sufficiently high cost of

linking implies a pure influencer equilibrium (for any group size n) and a pure connector ε

equilibrium (for a sufficiently large group size; e.g., with ε < 2 for group size 50).

Proposition 2. Suppose payoffs are given by (1), a1 = 1, a2 ∈ (0, 1), ŷ ∈ X = {0, 1, 2, . . . , x},
and c(ŷ + a2 − 1) < k < cŷ. Every Nash equilibrium s∗ = (x∗, g∗) is such that g∗ is a star.

(a) For n ≥ 3, there exists a pure influencer outcome: the hub chooses ŷ and every spoke

chooses 0.

(b) If n ≥ 2 + ŷ−1
a2

, there also exists a pure connector ε-equilibrium, in which the hub

chooses 0, m spokes invest 1 and the remaining other spokes invest 0.

Proof of Proposition 2: It follows from Proposition 1 that the pure influencer equi-

librium always hold, regardless of n. Moreover, the pure connector equilibrium holds only

if n ≥ 2 + k
a2(cŷ−k) , in which case it requires every spoke to personally invest ŷ

1+(n−2)a2
.

Since c(ŷ + a2 − 1) < k implies ŷ < k
c + 1, we have that n ≥ 2 + k

a2(cŷ−k) > 2 + ŷ−1
a2

, and

consequently ŷ
1+(n−2)a2

< 1 for any n ≥ 2 + ŷ−1
a2

. However, since the lowest positive effort

that can be made in the game is 1, there is a limited number of m < n players who can

benefit from making such minimum positive effort. In this case, each of those positive in-

vestors accesses (m−1)a2 from forming a link and therefore earns f(1+(m−1)a2)− c−k.

They would earn f(ŷ) − cŷ should they form no link and invest ŷ. They would also

earn f((m − 1)a2) − k, should they maintain their link and invest 0. The pure connector

outcome is an ε-equilibrium whenever ε > f(ŷ) − f(1 + (m − 1)a2) + c(ŷ − 1) + k and
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ε > f((m−1)a2)−f(1 + (m−1)a2) +k, where m is the number of investing spokes. Given

the definition of f from (1), those conditions are satisfied for some values of ε ≥ 0 and

m ≤ n.

�

The combination of high linking costs and integer action levels leads to some complica-

tions with regard to the pure connector outcome that we now spell out. As noted above,

a pure connector equilibrium does not exist for n = 4 or n = 8. In the treatments with 50

and 100 subjects there exists an ε-equilibrium in which 18 peripheral individuals choose 1

and the rest of the subjects choose 0. The equilibrium is ‘approximate’ because the pe-

riphery player who chooses effort 1 and forms a link with the hub earns 79.25 whereas she

could earn 81 by deleting the link and instead choosing effort level 9. This asymmetry in

behavior among the peripheral players makes the coordination problem more challenging

than in the pure influencer outcome where it is solely about determining who is to be the

hub.

B Experimental platform

A Network visualization

Existing studies of network formation in economics have considered small group sizes such

as 4 or 8 people and visualized evolving networks with fixed positions of nodes (e.g., Goyal

et al. (2017); van Leeuwen et al. (2019)). When the group size increases, such a repre-

sentation of networks with fixed positions of nodes makes it very difficult for subjects to

perceive network features. For subjects to learn their optimal choices, they must have a

good idea of the evolving networks. An appropriate tool for visualizing networks is thus

critical in running the experiment in continuous time. This leads us to develop an experi-

mental software including an interactive network visualization tool that allows the network

to automatically reshape itself in response to decisions made by subjects. We use force-

directed algorithms to visualize networks in real time (see, e.g., Eades (1984), Fruchterman

and Reingold (1991), Hu (2005), Bostock et al. (2011), and Jacomy et al. (2014)).22

Clearly, different network environments will offer differ levels of transparency and in-

formation on network architecture. Our strategy is to start with a visualization approach

22Such algorithms are common, and have been previously used in Gallo and Yan (2015). The technical
details of the specific algorithms are provided in the Appendix.
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that is efficient and that allows us to systematically explore the effects of different vari-

ables – such as scale and variations in information on networks. Of course, the experimental

platform is flexible enough to incorporate other ways of representing networks and can be

used to explore the effects of network visualization itself on human behavior and network

formation. Thus, the experiment reported in this paper could be interpreted as benchmark

findings with efficient network visualization.

The network structure in Figure 2a from the Appendix can be represented in a trans-

parent manner in Figure 2b with the network visualization tool we use. In our large-scale

experiment, this visualization tool improves graphical clarity of evolving networks and

helps subjects distinguish between those who are more connected and those who are less

connected. Note that this feature does not aim at reproducing any cognitive representation

of networks (i.e., how people mentally visualize networks), but instead attempts to facil-

itate access to information about the network structure, which people may use to make

decisions. It is important to emphasize that this tool allows interaction between the subject

and the network: while the nodes are subject to the above attraction and repulsion forces,

they can also be freely manipulated by the participant through the usual drag-select func-

tionality. The creation and removal of links is also interactive through double-clicking on

corresponding nodes. This network visualization tool is built on the open source Javascript

library vis.js.

The force-directed algorithms of the network visualization tool use attraction and re-

pulsion forces between nodes in the network and gravity force toward the center of the

screen, in order to readjust their positions in two-dimensional space and improve the over-

all visibility on the subjects’ screen.

Any two nodes o and o′ in the network repulse each other with a repulsion force Fr(o, o
′)

in order to avoid overlaps and allow a sparse visualization of the network. It is modelled

as a decreasing function of the Euclidean distance between two nodes dist(o, o′), implying

that close nodes repulse more than distant nodes. Two connected nodes o and o′ in the

network apply an attractive force Fa(o, o′) towards each other to allow for visual proximity.

A classical approach of modelling attraction force is a linear and positive relation with the

distance, implying that close nodes attract less than distant nodes. Finally, every node o

applies a gravity force Fg(o) to the center of the spatialisation space O to pull the entire

network towards the center of the screen. In particular, such a force allows disconnected

components to be within reasonable distance from each other, and therefore more easily

visualized on the screen.
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The net force vector applied to any node o resulting from the above three forces is then

given by the following form of weighted sum (where Fx and Fy represent corresponding

force vectors applied to the x and y axes of the Euclidean space respectively):

Fx(o) =
xO − xo
dist(o,O)

Fg(o) +
∑

o′∈N\{o}

xo′ − xo
dist(o, o′)

Fa(o, o′) +
∑

o′′∈N\{o}

xo′′ − xo
dist(o, o′′)

Fr(o, o
′′) (3)

Fy(o) =
yO − yo
dist(o,O)

Fg(o) +
∑

o′∈N\{o}

yo′ − yo
dist(o, o′)

Fa(o, o′) +
∑

o′′∈N\{o}

yo′′ − yo
dist(o, o′′)

Fr(o, o
′′) (4)

Note that the computation of the repulsion force for every node can be a complex task,

especially in the context of large networks. In order to address this issue, the experimen-

tal software approximates this computation using the well-known algorithm introduced by

Barnes and Hut (1986). More concretely, it finds groupings of nodes in proximity and

determines a repulsion force Fr(o, c) between node o and the group of nodes with a center

of mass c, in replacement of the brute force method of computing repulsion forces be-

tween all pairs of nodes. More details of this approximation algorithm are provided at

the following website: http://networks.econ.cam.ac.uk/net_formation/connectors_

influencers.html.

We turn back to Figure 2 to derive some intuition of how the net force equations

aggregate forces for every node and the network is visualized in the two-dimensional space.

The adaptive visualization in Figure 2b is obtained by using the force-directed algorithm.

The network has a petal-like structure with three independent sub-components connected

through a common player, P5. The visualization algorithm makes P5 to be located at the

center of the screen because the neighbors of P5 repluse each other and surround P5, while

each pair of P5’s neighbors belonging to the same sub-component are in close proximity

and positioned side by side. The three forces then operate to make the rest of players

located to draw non-overlapping petal-like structures.

Dynamic adjustment. The above equations (3) and (4) describe the net forces that

are applied for the visualization of the network, given the positions of all nodes and the

links between nodes. When the network changes, the algorithm updates dynamically the

network visualization by computing the corresponding velocity of nodes on both coordinate

axes.

In order to get a sense of how the network visualization is updated, we turn again to the

example of network visualization in Figure 2 and show how the algorithm makes the transi-
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tion from the fixed visualization in Figure 2a to the adaptive visualization in Figure 2b. Six

(slow-motion) snap shots of the transition are presented at the following website: http://

networks.econ.cam.ac.uk/net_formation/connectors_influencers.html. They show

how the hub player, P5, moves from the bottom of the fixed circle to the center of the screen,

and the petal-like structures emerge. This dynamic adjustment occurs rapidly to arrive at

Figure 2b.

In our large-scale experiment, this visualization tool improves graphical clarity of evolv-

ing networks and helps subjects distinguish between those who are more connected and

those who are less connected. It is wothwhile to note that this tool allows interaction

between the subject and the network: while the nodes are subject to the above attrac-

tion and repulsion forces, they can also be freely manipulated by the participant through

the usual drag-select functionality. The creation and removal of links is also interactive

through double-clicking on corresponding nodes. This network visualization tool is built

on the open source Javascript library vis.js.

Model parameter setting used in the experiment:

• Kg = −2000

• Ks = 0.04

• Kcg = 0.3

• L = 95

• D = 0.09

• T = 0.5

• Vmin = 0.3

• Vmax = 10

Continuous time with asynchronous choices. We elaborate on some of the technical

aspects of the platform in relation to these points. Running the continuous time experi-

ments in large groups poses a number of technical challenges. First, every action made by

a subject on her computer must be updated instantly on the computer screens of all other

participants through the server computer. Network visualization must also be correspond-

ingly updated in real time. As the group size increases, the information flows across the
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computer network increases dramatically. This can cause communication congestion and

lagged responses. Another challenge with a large scale experiment is that it is constrained

by the limited capacity of existing laboratories. Large groups that cannot fit into a single

lab therefore require remote interactions between subjects in different geographical loca-

tions (that is, across different labs). In order to handle both of these technical challenges,

we use a Websocket protocol with enhanced two-way communication between the server

and subjects’ computers. It fits naturally into the environment of asychronous choices in

real time and the updates are made only when necessary. Our Websocket technology relies

on the Javascript run-time environment Node.js. Since it only requires an internet con-

nection and is compatible with most existing web browsers (e.g., Google Chrome, Mozilla

Firefox, Internet Explorer), this technology makes no specific restriction on the physical

location of every participant. Information on Payoffs. We turn finally to information on

payoffs: clearly subjects need to be able to see their own payoffs in order to learn the prof-

itability of different linking and effort combinations. In the baseline treatments, subjects

are shown their own payoffs but not others’ payoffs. A subject is also shown the efforts and

public good access for all other subjects, as shown in Figure A1. To facilitate learning, we

add information about every player’s payoff through a set of color codes as illustrated by

Figure A2 in the Appendix. Specifically, the border of every node is coloured: the colour

varies from green (high positive payoff) to red (high negative payoff). The scale of the

colour code is presented at all times on the left hand side, as in Figure A2.
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Figure A1: Network Information

Figure A2: Payoff Information
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C Experimental instructions

[In the following instructions, N is to be replaced with any value from {3, 7, 49, 99} depend-

ing on the treatment]

Please read the following instructions carefully. These instructions are the same

for all the participants. The instructions state everything you need to know in order to

participate in the experiment. If you have any questions, please raise your hand. One of

the experimenters will answer your question.

You can earn money by earning points during the experiment. The number of points

that you earn depends on your own choices and the choices of other participants. At the

end of the experiment, the total number of points that you have earned will be exchanged

at the following exchange rate:

100 points = 1 Euro

The money you earn will be paid out in cash at the end of the experiment. The other

participants will not see how much you earned.

Details of the experiment

The experiment consists of 6 (six) independent rounds of the same form. The first

round is for practice and does not count for your payment. The next 5 rounds will be

counted for your payment.

At the beginning of each round, you will be grouped with N other participants. This

group will remain fixed throughout the 6 rounds. Each of the participants will be randomly

assigned an identification number of the form “Px” where x is a number between 1 and N.

Those numbers will be randomly changed across every round of the experiment. The actual

identity of the participants will not be revealed to you during or after the experiment. The

participants will always be represented as blue circles on the decision screen. You are

always represented as a yellow circle identified as “ME”.

Each round will last 6 (six) mins: the first minute will be a trial period, only

the latter 5 minutes will be relevant for the earnings. Your earnings in a given

round will be based on everyone’s choice at a randomly selected moment in the last

5 mins of the round. In other words, any decision made before or after that randomly
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chosen moment will not be used to determine your points. This precise moment will be

announced to everyone only at the end of the round, along with the corresponding behavior

and earnings.

At the beginning of the experiment, you are given an initial balance of 500 points.

Your final earnings at the end of the experiment will consist of the sum of points you earn

across the 5 last rounds plus this initial capital (the first round will be used to familiarize

yourself with the game and will have no influence on your earnings). Note that if your final

earnings (i.e., the sum of your earnings across the 5 last rounds plus the initial endowment)

go below 0, your final earnings will be simply treated as 0.

In each round, every participant will have choose two types of actions:

• How many any units to buy/invest: You may buy at most 20 units. Each unit

costs you 11 points.

• Add/delete links with other participants: You are linked with another person

if you form a link with that person or that person forms a link with you (or both).

You do not pay any fee for links formed by others. The people that you are linked

with (regardless of whether you or they form the links) are called your neighbours.

You automatically have access to all units bought by your neighbours as well

as half of the units bought by your neighbours’ neighbours (see below for an

example). Each link you form costs you 95 points.

You may revise your choices at any moment before the round ends. During a round, you

will also be informed about every other participant’s most recent decision (units bought

and formed links), which will be updated every 5 seconds or whenever you change your

own choice.

At any moment, the total number of units you have access to (i.e., units you bought +

units bought by your neighbours + units bought by your neighbours’ neighbours) generates

points for you according to the following figure (for example, accessing 4 units generates

100 points, as shown by the dotted lines):

Moreover, having access to 20+m units generates 216+m points.

The computer screen will be split into two parts:

• The middle side of the screen presents you and your local neighbourhood.

More precisely, you will see your neighbours, the neighbours of your neighbours,
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and the neighbours of neighbours’ neighbours. In other words, you will see the

participants that are up to 3 links away from you.

• The right side of the screen presents participants outside of your local

neighbourhood.

• The left side of the screen presents the code for the players’ net earn-

ings in the network. [Payoff information treatment only] The inner circle of each

node from the middle or right part side of the screen is characterized by some color,

which varies from green (high positive net payoff) to red (high negative net payoff)

depending on the player’s corresponding net earnings.

Each node is described by their identification number “Px” and the number of units

that they buy. Identification numbers “Px” are randomly assigned in every round. There-

fore, every player is likely to have a different ID in different rounds. In the initial state of

the network, nobody buys any unit and no link is formed.

Tutorial

Please follow this simple tutorial simulating a simple virtual scenario on the computer

screen. In this tutorial you are interacting with 9 other players. In the initial state, you

are not linked with anyone and you do not buy any units: you start at 0 points.

1. The slider allows you to choose how many units you wish to buy yourself. For

example, buying 4 units costs you 44 points (= 4 units × 11 points, in red on the
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screen) and generates 100 points (according to the figure from the previous page, in

green on the screen).

2. Initially, the nodes on the right side of the screen represent all other players (in this

simulation, those players are not real people). The size of node reflects the total

number of units bought by that node and the units accessed via the network. For

example, P1-P4 are the largest nodes because these players have access to the most

units.

3. You may choose to form a link with any player by simply double clicking on the

corresponding node. For example, forming a link with P4 reveals that P1, P2, and

P3 each form a link with P4, and P9 forms a link with P1. Forming a link with P4

costs you 95 points (in red on the screen), but it also gives you access to 8.5 units (7

from P4 + 0.5 × 1 from P1 + 0.5 × 1 from P2 + 0.5 × 1 from P3), which generates

174 points (according to the above figure, describing the benefit function in green on

the screen). If you do not buy any additional unit yourself, your resulting net payoff

is 79 points (= 174 points − 1 link × 95 points).

4. After forming a link with P4, you observe that some nodes remain unobserved (P5,

P6, P7, and P8 on the right side). However, forming an additional link with P9 (by

double clicking on the corresponding node) reveals that those nodes all form a link

with P9. You were not allowed to observe them before because they were 4 nodes

away from you (for example, P5 were connected to you via P4, P1, and P9). You can

now observe them because they are only 2 nodes away from you (for example, P5 is

connected to you via P9 only). Remember that you can only see players that are at

most 3 nodes away. Assuming you still do not buy any unit yourself, your resulting

net payoff is 16 points (= 206 points from accessing 12.5 units − 2 links ×
95 points).

5. Alternatively, you may choose to remove a link that you previously formed by double

clicking on the corresponding node. For example, after forming links with P4 and P9,

removing the link with P4 leads to players P2 and P3 becoming unobserved again,

as they are now more than 3 nodes away from you.

6. Note that varying the amount of units you buy directly affects the sizes of the nodes

you are linked with as well as their neighbours. Indeed, the amount of units they
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each have access to includes the units you buy (the larger this amount, the larger the

node).

7. You may also shape the visual structure of the network by dragging nodes as it pleases

you.

Summary

Here is a brief description of information available on the decision screen:

1. The timer indicates elapsed time since the beginning of the round. Any round lasts

6 mins. A moment will be randomly selected in the last 5 mins to determine

everyone’s payoff. The time displayed will turn red when entering this interval.

2. Only decisions made at the randomly selected moment in the round matter

to directly determine the earnings. The payoff may be negative at the end of a round.

However, starting from a balance of 500 pts, any negative total of points at the end

of the 5 rounds will be equivalent to 0 point.

3. The amount of units you have access is equal to the sum of (1) the units bought by

you, (2) the units bought by your neighbours, and (3) half of the units bought by

your neighbours’ neighbours.

4. You are represented as the yellow node, and your ID is “ME”.

5. Every other node’s ID is represented as “Px” (inside the node) where x is a number.

Every node has a unique ID, which is randomly reassigned in every round.

6. The size of each node determines how many units that node has access to (units

bought personally plus units accessed from others, directly and indirectly).

7. The amount of units bought personally by a player is mentioned inside the corre-

sponding node.

8. [Payoff information treatment only] The color of each node determines that node’s

net earnings according to the code depicted on the left side of the screen.
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D Network game interface

The decision making interface used in the experiment is similar across all treatments. More

specifically, Figure A3 illustrates a (fictitious) example of a subject’s computer screen in

Treatment Baseline100. The top part of the screen depicts information about the timer

indicating how much time has lapsed in the current round (the timer turns red when

payoffs become effective, i.e., after more than 1 minute), the subject’s own effort, which

can be modified via the slider, and a comprehensive description of the subject’s own payoff.

Information about payoffs include gross earnings (output of function f(.)), the cost of effort

(own effort multiplied by c), the cost of linking (number of links multiplied by k), and the

net earnings (costs substracted from gross earnings). The bottom part of the screen shows

detailed information about the network (the subject’s node is highlighted in yellow): the

subject’s local network is represented on the left, other players outside of the subject’s

local network are found on the right. Note that a scrolldown feature is available for the

subject to explore every player outside of his/her local network. Baseline treatments with

smaller group sizes use the very same interface (the scrolldown feature is not available then

because all players are then directly visible on the screen).

Similarly, Figure A4 illustrates a (fictitious) example of a subject’s computer screen

in Treatment PayInfo100. The only difference with the decision screen from Figure A3

is about the wider range of colors used to represent the border of each node depicted in

the network. Any given node’s color is directly associated with that node’s corresponding

payoff, according to the scale presented on the left part of the screen. payoff-information

treatments with smaller group sizes use the very same interface.
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Figure A3: Example of decision screen for Treatment Baseline100
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Figure A4: Example of decision screen for Treatment PayInfo100
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E Questionnaires

At the end of the experiment, subjects answered a set of surveys aiming at measuring

various types of individual differences. More precisely, incentivized measures of compre-

hension in network game, social preferences, and risk preferences were used. Finally non

incentivized personality measures were used before which subjects filled up a debriefing

questionnaire that includes demographics information.

A Comprehension check

In order to assess the subjects’ comprehension of the network game played during the

experiment, we provided 5 questions, each of which with a unique correct answer. Each

correct answer was rewarded with 0.1 euro for the subject.

The following first 2 questions were used across all treatments (correct answers are “11

pts” to question 1, and “95 pts” to question 2).

The third question depicted below was used in the payoff information treatment with

n = 50 (the correct answer is “P36”). This question was adapted in all other treatments

by matching the number of nodes to the group size in the experiment, and by removing

the colors in the baseline treatments.

The following questions 4 and 5 below were also used in the payoff information treatment

with n = 50 (correct answers are “P1” for both questions 4 and 5). These questions were
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however adapted only in other treatments where n > 4 by again matching the number

of nodes to the group size in the experiment. The reason for filtering the small group

treatments (with n = 4) is that the limited number of nodes did not allow representing

the corresponding scenarios. As before, these questions were also adapted to the baseline

treatments by simply removing the colors to match the design of the actual game that

subjects played.
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B Social preferences

The social preferences measure was adapted from Andreoni and Miller (2002) and involved

a series of five money allocation tasks between the decision maker and some anonymous

external participants of another experiment at the LINEEX lab (corresponding payments

were therefore made to these external passive participants). The five tasks used in our

experiment were represented through sliders as shown in the following figure:
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Note however that each question was presented in a different screen, and the order

of presentation was randomized for every subject. Furthermore, 50 points were worth 1

euro both the subject, and the other anonymous external participant. Detailed instructions

provided to the subjects, as well as a screenshot highlighting one of the above five questions

are described below.

Instructions: You are asked to answer a series of 5 questions, each of which consists of

selecting an allocation of points that you most prefer between yourself and an anonymous

randomly selected person who is participating to a different experiment in this lab. At

the end of the study, we will randomly select your allocation for 1 of the 5 questions to

determine the payments for both you and the other person in this part. Your decisions will

remain unknown to the other persons you are matched with.

C Risk preferences

The risk preference measure was adapted from Holt and Laury (2002) and consisted of a

series of five binary choices between lotteries, presented as in the figure below.
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D Personality test

Non incentivized measures were used through a simplified version of the Big Five person-

ality inventory test adapted from Rammstedt and John (2007), as shown below.
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F Additional tables and figures

A Regression tables
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Table A1: Scale effects on effort and payoff in the baseline treatments

Mean effort Median payoff

most 2nd most others most 2nd most others
connected connected connected connected

N = 50 6.61*** 7.27*** 0.32 -40.81*** -51.09** 28.82***
(1.08) (1.41) (0.32) (10.20) (23.61) (1.73)

Average in
small group 8.77 5.24 2.65 86.50 81.00 85.00
Number of
observations 60 60 1120 60 60 1120
R-squared 0.61 0.59 0.04 0.39 0.23 0.11

Notes: Robust standard errors (clustered by individual subject in the regression analysis) are reported in
parenthesis. *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively. All regressions
include a constant, round dummies, age, female, education, comprehension test score, experimental measures
of risk aversion and altruism, and Big 5 personality.

Table A2: Scale effects on effort and payoff in the baseline treatments

Mean effort Median payoff

most 2nd most others most 2nd most others
connected connected connected connected

N = 100 6.64*** 11.06*** 0.88*** 16.54 -25.41* 53.20***
(1.54) (1.10) (0.32) (29.95) (14.54) (2.77)

Average in
small group 8.77 5.24 2.65 86.50 81.00 85.00
Number of
observations 55 55 1630 55 55 1630
R-squared 0.62 0.83 0.04 0.20 0.38 0.14

Notes: Robust standard errors (clustered by individual subject in the regression analysis) are reported in
parenthesis. *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively. All regressions
include a constant, round dummies, age, female, education, comprehension test score, experimental measures
of risk aversion and altruism, and Big 5 personality.
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Table A3: Scale effects on outdegree in the baseline treatments

Mean outdegree

most 2nd most others
connected connected

Large group 1.03*** 0.75* 0.24***
(0.35) (0.40) (0.05)

Average in
small group 0.20 0.62 0.90
Number of
observations 75 75 2590
R-squared 0.38 0.41 0.03

Notes: Robust standard errors, clustered by individual subject, are reported in parenthesis. *, **, and
*** represent significance at the 10%, 5%, and 1% levels, respectively. All regressions include a constant,
round dummies, age, female, education, comprehension test score, experimental measures of risk aversion
and altruism, and Big 5 personality.

Table A4: Treatment effects on effort and payoffs

Mean effort Median payoff
most 2nd most others most 2nd most others

connected connected connected connected

Payoff info -0.75 0.52 0.00 6.71 -12.75*** -10.56***
(0.77) (0.70) (0.36) (11.54) (4.53) (1.97)

Large group 6.30*** 8.41*** 0.62** -30.33* -42.76** 36.20***
(1.04) (1.19) (0.30) (17.08) (17.34) (1.90)

Payoff info × Large group -9.24*** -9.00*** -0.91** 119.24*** 120.76*** -14.07***
(1.41) (1.63) (0.39) (29.18) (29.02) (2.30)

Mean or median in
large group baseline 15.12 13.22 3.22 59.00 47.00 126.50
Number of
observations 150 150 5180 150 150 5180
R-squared 0.53 0.51 0.05 0.09 0.17 0.09

Notes: Robust standard errors (clustered by individual subject in the regression analysis of efforts) are
reported in parenthesis. *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively.
All regressions include a constant, round dummies, age, female, education, comprehension test score, exper-
imental measures of risk aversion and altruism, and Big 5 personality.
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B Additional figures
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(a) the 1st most connected (b) the 2nd most connected

(c) the others

Figure A5: Distribution of efforts in the baseline treatment
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(a) the 1st most connected (b) the 2nd most connected

(c) the others

Figure A6: Distribution of efforts in the payoff information treatment
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Types of Outcomes
N Pure Influencer Pure Connecteor Other

14 obs. 6 obs.

4 NA

16 obs. 4 obs.

8 NA

19 obs. 1 obs.

50 NA

15 obs.

100 NA NA

Table A5: Time series of efforts for the two different types of subjects in different types of
outcomes (Baseline treatments)

68



Types of Outcomes
N Pure Influencer Pure Connecteor Other

7 obs. 13 obs.

4 NA

16 obs. 4 obs.

8 NA

4 obs. 9 obs. 7 obs.

50

4 obs. 6 obs. 5 obs.

100

Table A6: Time series of efforts for the two different types of subjects in different types of
outcomes (PayInfo treatments)
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Types of Outcomes
N Pure Influencer Pure Connecteor Other

14 obs. 6 obs.

4 NA

16 obs. 4 obs.

8 NA

19 obs. 1 obs.

50 NA

15 obs.

100 NA NA

Table A7: Time series of median payoffs for the two different types of subjects in different
types of outcomes (Baseline treatments)
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Types of Outcomes
N Pure Influencer Pure Connecteor Other

7 obs. 13 obs.

4 NA

16 obs. 4 obs.

8 NA

4 obs. 9 obs. 7 obs.

50

4 obs. 6 obs. 5 obs.

100

Table A8: Time series of median payoffs for the two different types of subjects in different
types of outcomes (PayInfo treatments)
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(a) Effort updates in Baseline (b) Link updates in Baseline

(c) Effort updates in PayInfo (d) Link updates in PayInfo

Figure A7: Distribution of choice updates

Outcome Types
Pure Influencer Pure Connector Other

Treatment N #Obs Hub Others #Obs Hub Others #Obs Hub Others

Baseline

4 14 10.2 3.6 0 . . 6 5.8 3.3
8 16 9 2.9 0 . . 3 5.9 3.4
50 14 15.9 2.8 0 . . 0 . .
100 11 15.5 3.4 0 . . 0 . .

PayInfo

4 7 8.1 3.1 0 . . 13 5.25 3.8
8 16 8.4 2.6 0 . . 4 5.3 3.5
50 4 11.1 2.8 9 1.4 2.1 4 6 2.2
100 0 . . 6 0.6 2.4 4 4.5 2.3

Table A9: Mean effort in last 5 minutes across different types of Outcomes (excluding
outliers, i.e., rounds where the most connected individual earns less than -100
points during at least 60 seconds in the last 5 minutes)
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Nb of Rounds
Treatment N 1 2 3 4 5

Baseline

4 0 12.5 31.2 50
8 18.7 25 21.9 12.5 18.7
50 13 3.5 1.5 1 0.5
100 5.7 1 0.3 0.3 0.3

PayInfo

4 0 0 0 0 1
8 3.1 28.1 25 15.6 21.9
50 21 4.5 1.5 0.5 0
100 9.3 0.3 0.7 0 0

Table A10: Fraction of subjects (%) becoming the most connected individual for at least
10 seconds in any number of rounds, across treatments

(a) Baseline (b) PayInfo

Figure A8: Continuation payoffs
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