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Université de Namur

Namur, Belgium
vverardi@unamur.be

Abstract. We introduce the command xtserialpm to perform the portmanteau
test developed in Jochmans (2019). The procedure tests for serial correlation in
the errors of a linear panel model after estimation of the regression coefficients
by the within-group estimator. The test is different from the test of Inoue and
Solon (2006) that is performed by xtistest (Wursten 2018) in that it allows
for heteroskedasticity. In simulations documented below, xtserialpm is found to
provide a much more powerful test than xtistest. xtserialpm can deal with
unbalanced panel data.

Keywords: xtserialpm, heteroskedasticity, fixed-effect model, portmanteau test,
serial correlation, short panel data, unbalanced panel.

Date: April 26, 2019

1 Introduction

Consider panel data on an outcome yg,i and a set of covariates xg,i, where g = 1, . . . , G

and i = 1, . . . , N . The data are independent across groups g but may be dependent

within groups. The workhorse specification to analyse such data is the regression model

yg,i = x>g,iβ + ηg,i, ηg,i = αi + εg,i,

where αi is a latent individual effect and εg,i is an idiosyncratic disturbance whose

mean is normalized to zero. These disturbances are taken to be mean independent of

the regressors and the individual effects but are otherwise allowed to be (conditionally)

heteroskedastic and correlated within each group g. Although we do not make it explicit

in the notation, everything to follow applies to settings where the panel is unbalanced

provided, of course, that missingness is at random.

The command xtserialpm performs a portmanteau test for the (multivariate) null

H0 : E(εg,iεg,i′) = 0 for all i 6= i′,

against the alternative
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2 xtserialpm

H1 : E(εg,iεg,i′) 6= 0 for some i 6= i′.

This is done via the test developed in Jochmans (2019) after estimation of β by the

within-group estimator.1

Several other tests for serial correlation in linear panel models with group effects are

available. xtserial (Drukker 2003) implements the test for first-order autocorrelation

suggested in Wooldridge (2002, pp. 282–283) and xthrtest (Wursten 2018) implements

a heteroskedasticity-robust version of this test (see Born and Breitung 2016). xtqptest

(Wursten 2018) performs a generalization of the Wooldridge test for correlation up to a

given order. The portmanteau test of Inoue and Solon (2006) is available in xtistest

(Wursten 2018) but this assumes homoskedasticity and does not use all information

available under the null (see Jochmans 2018). This has implications for power, as we

illustrate in simulations below. See Wursten (2018) for numerical evaluations of these

tests.

2 The test statistic

The approach followed in Jochmans (2019) is based on the observation that a test of

the above hypothesis is equivalent to a test of the null that the difference between all

pairwise within-group correlations are zero. Noting that

E(ηg,i′∆ηg,i) = E(ηg,i′εg,i)− E(ηg,i′εg,i−1) = E(εg,i′εg,i)− E(εg,i′εg,i−1),

for all i and i′, where we let ∆ denote the first-differencing operator, we can then test

that

H0 : E(ηg,i′∆ηg,i) = 0 for all i and each i′ ≤ i− 2 and i′ = i+ 1,

against the alternative

H1 : E(ηg,i′∆ηg,i) 6= 0 for some i and i′ ≤ i− 2 or i′ = i+ 1.

This null involves q := (N + 1)(N − 2)/2 restrictions that can be written compactly as

E(H>g ∆ηg) = 0,

1. The test in Jochmans (2019) is applicable more generally but we focus on the static regression
model and the within-group estimator here.
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where we have introduced the (N − 1)× q matrix

Hg :=



0 0 0 0 · · · 0 · · · 0 ηg,3 0 · · · 0

ηg,1 0 0 0 0 0 0 ηg,4
...

0 ηg,1 ηg,2 0 0 0
...

. . . 0
...

. . .
... 0 0 ηg,N

0 0 0 0 · · · ηg,1 · · · ηg,N−2 0 0 · · · 0


,

and the (N−1)×1 vector ∆ηg := (∆ηg,2, . . . ,∆ηg,N )>. The left block of the matrixHg

is reminiscent of the instrument matrix for GMM estimator of dynamic panel models

(see, e.g., Arellano 2003, pp. 88–89). The right block does not appear there as it would

not provide valid moment conditions in that context. The null can be tested using a

minimum-distance statistic in a sample version of the moment restrictions as soon as

three observations per group are available. In the case of only two observations per

group the null can always be rationalized due to the presence of the group effects. Note

that the dimension of the null grows with N . As such, the approach is designed for

short panels, where q is small compared to G.

To make the test operational an estimator of β is needed. xtserialpm uses the

within-group least-squares estimator,

b :=
(∑G

g=1X
>
g MXg

)−1∑G
g=1X

>
g Myg,

where we have collected all observations for a given group in∆yg := (∆yg,2, . . . ,∆yg,N )>

and Xg := (xg,1, . . . ,xg,N )>, and M denotes the usual N ×N projection matrix that

transforms observations into deviations from within-group means. Given b, the residuals

eg,i := yg,i − x>g,i b

can be used as estimators of the ηg,i.

We then define

vg := E>g ∆eg −
(∑G

h=1E
>
h∆Xh

)(∑G
h=1X

>
hMXh

)−1
X>g Meg,

where Eg denotes the plug-in estimator of Hg using the residuals eg,i instead of ηg,i and

we have introduced the notation eg := (eg,1, . . . , eg,N )>, ∆eg := (∆eg,2, . . . ,∆eg,N )>,

and ∆Xg := (∆xg,2, . . . ,∆xg,N )>. The test statistic for our null can then be written

as the quadratic form

s := v>V −1v,
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where v :=
∑G

g=1 vg and V is an estimator of the variance of v. xtserialpm uses the

uncentered estimator

V :=
∑G

g=1 vgv
>
g

as default. Use of a centered variance estimator instead is available as an option.

Under the null,

s
d→ χ2

q,

as G→∞. While ∑G
g=1 vg =

∑G
g=1E

>
g ∆eg,

the test statistic needs to use the sample variance of vg and not of E>g ∆eg for this

distributional approximation to hold. The second right-hand side term in vg is needed

to account for the fact that the statistic is computed from residuals rather than the

(latent) errors. xtserialpm can be run directly on the outcomes rather than residuals

from a within-group regression. In this case, no correction for within-group estimation

is needed.

3 Stata command xtserialpm

xtserialpm is a stand-alone routine that can run without first running xtreg. The

data must be tsset prior to executing xtserialpm. Unbalanced panel data is allowed.

The command has the following syntax:

xtserialpm depvar
[
indepvars

][
if
][

in
]
,
[
center

]
The option center returns the test statistic computed with centered covariance matrix

as discussed above.

Running the command produces a table with the value of the test statistic and the

associated p-value. The layout of the table mimics the layout of the table produced by

xtserial.

The following output is saved to r:

r(stat) returns the value of the test statistic;

r(df) returns the degrees of freedom of its limit distribution;

r(p) returns the p-value of the test.
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Help is available by typing help xtserialpm.

4 Example

We use the data from the illustration in Drukker (2003). The following extract loads

and manipulates the data.

. use http://www.stata-press.com/data/r8/nlswork.dta
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xtset idcode year
panel variable: idcode (unbalanced)
time variable: year, 68 to 88, but with gaps

delta: 1 unit

. drop if year>70
(24,241 observations deleted)

. gen age2 = age^2
(9 missing values generated)

. gen tenure2 = tenure^2
(147 missing values generated)

The portmanteau test is computed as

. xtserialpm ln_wage age* ttl_exp tenure* south

and delivers the output

Jochmans portmanteau test for within-group correlation in panel data.
H0: no within-group correlation

Chi-sq( 2) = 25.658
Prob > Chi-sq = 0.0000

The result provides strong evidence for the presence of serial correlation in the errors.

To compute the test statistic using a centered covariance matrix estimator use the

center option as

. xtserialpm ln_wage age* ttl_exp tenure* south, center

The output is

Jochmans portmanteau test for within-group correlation in panel data.
H0: no within-group correlation

Chi-sq( 2) = 26.180
Prob > Chi-sq = 0.0000

The test statistic is slightly larger and our initial conclusion unaltered.

To perform the test of Inoue and Solon (2006) in this example we first generate residuals
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from the within group regression by typing

. quietly xtreg ln_wage age* ttl_exp tenure* south, fe

. predict u, residuals

The test is then performed on these residuals

. xtistest u, lags(all)

By default, xtistest checks for serial correlation up to second order only. Here,

xtistest is envoked with the lag option set to all, so that the command yields the

proper portmanteau test of Inoue and Solon (2006).

The output of the test is

Inoue and Solo (2006) LM-test on variables u
Panelvar: idcode
Timevar: year

Variable IS-stat p-value N maxT balance?

u 159.44 0.000 2206 3 gaps

Notes: Under H0, LM ~ chi2((T-1)(T-2)/2)
H0: No auto-correlation of any order.
Ha: Auto-correlation of some order.

The same conclusion regarding our null is reached.

5 Simulations

We provide a size and power comparison between xtserialpm and xtistest. For

numerical comparisons between xtistest and the other routines available in Stata, see

Wursten (2018).

Outcomes were generated with fixed effects drawn from a standard normal and with

two regressors—the first standard normal and the second zero/one according to the

toss of a fair coin—each with a coefficient set to unity. We report results for sample

sizes G = 100 and N = 3 and consider four different specifications for the errors. In

Specification (A1) the errors follow a stationary moving-average process of order one,

εg,i = εg,i + θ εg,i−1,

with independent standard-normal innovations. In Specification (B1) the errors follow
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a stationary autoregressive process of order one,

εg,i = ρ εg,i−1 + εg,i,

again with standard-normal innovations. Specifications (A2) and (B2) differ from,

respectively, (A1) and (B1) in that the initial error is fixed as opposed to being drawn

from its steady-state distribution. More precisly, we set εg,0 = 0 in (A2) and εg,1 = 0

in (B2). The non-stationarity introduces heteroskedasticity only under the alternative

in (A2) and under both null and alternative in (B2).

Simulation results are provided in the form of power curves. Power is plotted against

the (stationary) first-order autocorrelation coefficient of the errors. In the autoregressive

specification this is simply ρ ∈ (−1, 1), the autoregressive coefficient. For the moving

average process the first-order autocorrelation, say ρ, is a function of θ. We plot power

against ρ ∈ (− 1
2 ,

1
2 ), which are all values for which the covariance matrix of the errors

has full rank. This is done by setting

θ =
1 +

√
1− 4ρ2

2ρ

when ρ 6= 0 and θ = 0 if ρ = 0. Figure 1 provides the power functions of xtserialpm

(solid line) and xtistest (dashed line) along with a horizontal line that indicates the

nominal size of the test (dashed-dotted). The nominal size of both tests was set to .05.

The results for Specifications (A1) and (B1) in the upper two plots of Figure 1

show that both tests are approximately size correct and unbiased. They also reveal a

rather dramatic difference in power between the two tests, with xtserialpm providing

an (almost) uniformly more powerful test than xtistest, and this by a large margin.

Both tests have some difficulty rejecting the null when the errors process is close to a

random walk.

The results for Specifications (A2) and (B2) in the bottom of Figure 1 reveal the

impact of non-stationarity on the performance of both tests. In Specification (A2)

both tests are size correct. xtserialpm is again the more powerful of the two tests,

especially against negative patterns of autcorrelation. Close to the null xtistest is

slighlty more powerful. This can be understood by recalling that this test interprets

heteroskedasticity as evidence against the null so that it boosts power. In Specification

(B2) only xtserialpm is size correct. xtistest delivers a biased test that is severly

size distorted. This, again, is a consequence of heteroskedasticity in the errors which,
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Figure 1: Simulated power curves

contrary to in Specification (A2), is now also present under the null. This makes the

size properties of the test break down.

Taken together, these results show that xtserialpm provides the more reliable test.

Size is controlled in all designs and any violation of the null tends to be spotted with

high probability.

6 Conclusion

We have introduced the command xtserialpm. It can be used to test for arbitrary

patterns of serial correlation in the errors of a fixed-effect regression model. Contrary

to the existing xtistest, it is robust to heteroskedasticity. A simulation study further

shows xtserialpm to provide a considerably more powerful test.
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