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1 Introduction

Over the past decade and a half, high-frequency financial data have become increasingly available.

In tandem, the development of econometric tools to study the dynamic properties of high-frequency

data has become an important subject area in economics and statistics. A major challenge is provided

by the accumulation of market microstructure noise at higher frequencies, which can be attributed to

various market microstructure effects including, for example, information asymmetries (see Glosten

and Milgrom (1985)), inventory controls (see Ho and Stoll (1981)), discreteness of the data (see Harris

(1990)), and transaction costs (see Garman (1976)).

It has been well-established (see, e.g., Black (1986)) that the observed transaction price1 Y can be

decomposed into the unobservable “efficient price” (or “frictionless equilibrium price”) X plus a noise

component U that captures market microstructure effects. That is, it is natural to assume that

Yt = Xt + Ut, (1)

where further assumptions on X and U need to be stipulated. While estimating the IV of the efficient

price is a canonical problem in high-frequency financial econometrics (see, for example, Aı̈t-Sahalia

and Jacod (2014)), the study of microstructure noise, e.g., its magnitude, dynamic properties, etc., is the

main focus of the market microstructure literature (see, for example, Hasbrouck (2007)). A common

challenge, however, is that the two components of the observed price Y in (1) are latent. Therefore,

distributional features of one component, say, of the microstructure noise, will affect the estimation of

characteristics of the other, such as the IV of the efficient price.2

While the semimartingale framework provides the natural class to model the efficient price (see,

e.g., Duffie (2010)), the statistical assumptions on noise induced by microeconomic financial models

range from simple to very complex, depending on which phenomena the model aims to capture. For

example, the classic Roll model (see Roll (1984)) postulates an i.i.d. bid-ask bounce resulting from un-

correlated order flows; Hasbrouck and Ho (1987), Choi et al. (1988), and Stoll (1989) introduce autocor-

related order flows, yielding autoregressive microstructure noise; and Gross-KlussMann and Hautsch

(2013) model microstructure noise with long-memory properties. Therefore, being able to account for

the potentially complex statistical behavior of microstructure noise that contaminates our observations

of the semimartingale efficient price dynamics, would be an appealing property of any method that

aims at disentangling the efficient price and microstructure noise.

1In this paper, “price” always refers to the “logarithmic price”.
2Indeed, while high-frequency data in principle facilitate the asymptotic and empirical analysis of volatility estimators, the

pronounced presence of microstructure noise at high frequency subverts the desirable properties of traditional estimators such
as realized volatility.
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To estimate the IV of the efficient price, several de-noise methods have been developed, mostly

assuming i.i.d. microstructure noise. Examples include the two-scale and multi-scale realized volatility

estimators developed in Zhang et al. (2005) and Zhang (2006), the likelihood approach initiated by Aı̈t-

Sahalia et al. (2005) and Xiu (2010), the realized kernel methods developed in Barndorff-Nielsen et al.

(2008), and the pre-averaging method developed in a series of papers by Podolskij and Vetter (2009b)

and Jacod et al. (2009, 2010), see also Podolskij and Vetter (2009a). The variance of noise is usually

obtained as a by-product.

In this paper, we allow the microstructure noise to be serially dependent in a general setting, nesting

many special cases (including independence). We do not impose any parametric restrictions on the

distribution of the noise, except for some rather general mixing conditions that guarantee the existence

of limit distributions, hence our approach is essentially nonparametric. In this setting, we first derive

the stochastic limit of the realized volatility of observed prices after j lags. Using this limit result,

we develop consistent estimators of the variance and covariances of noise. The aim of estimating the

second moments of noise is twofold. On the one hand, we would like to explore the dynamic properties

of microstructure noise. In particular, we would like to compare these properties to those induced by

various parametric models of microstructure noise based on leading microstructure theory, and obtain

corresponding economic interpretations to achieve a better understanding of the microstructure effects

in high-frequency data. On the other hand, the second moments of noise become nuisance parameters

when estimating the IV, which is a prime objective in the analysis of high-frequency financial data.

To estimate the IV, we next adapt the pre-averaging approach (PAV) to allow for serially dependent

noise in our general setting, first based on non-overlapping sampling blocks and next based on overlap-

ping sampling blocks, in both cases using general weight functions (i.e., general kernels). We find that

the stochastic limits of the adapted PAV estimators are functions of the volatility and the variance and

covariances of noise, and the latter, constituting an asymptotic bias, can be consistently estimated by our

realized volatility estimator. Hence, we can correct the asymptotic bias, resulting in centered estimators

of the IV, for which we establish the associated central limit theorems.

A key interest in this paper is to unravel the interplay between asymptotic and finite sample biases

when estimating the IV. In a formal finite sample analysis, we find that the realized volatility estimator

has a finite sample bias that is proportional to the IV. This bias term becomes significant when the num-

ber of lags (in computing the variant of realized volatility) is large, or the noise-to-signal ratio3 is small.

Therefore, we are in a situation in which the IV generates a finite sample bias to the estimators of the

second moments of noise, while the latter introduce an asymptotic bias when estimating the former. This

“feedback effect” in the bias corrections motivates us to develop multi-step estimators. First, we simply

3That is, the ratio of the variance of noise and the IV.
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ignore the dependence in noise and proceed with the pre-averaging method to obtain an estimator of

the IV. Next, we use this estimator to obtain finite sample bias corrected estimators of the second moments

of noise, which can then be used to correct the asymptotic bias, yielding the second-step estimator of the

IV. Repeating this process leads to three-step estimators (and beyond). Figure 1 gives a simple graphical

illustration of the implementation of the multi-step estimators. We establish consistency and a central

limit theorem for our multi-step estimators.

We conduct extensive Monte Carlo experiments to examine the performance of our estimators,

which proves to be excellent. We demonstrate in particular that they can accommodate both serially

dependent and independent noise and perform well in finite samples with realistic data frequencies

and sample sizes. The experiments reveal the importance of a unified treatment of asymptotic and

finite sample biases when estimating IV.

Empirically, we apply our new estimators to a sample of Citigroup transaction data. We find that the

associated microstructure noise tends to be positively autocorrelated. This is in line with earlier find-

ings in the microstructure literature, see Hasbrouck and Ho (1987), Choi et al. (1988), and Huang and

Stoll (1997). When we attribute this positive autocorrelation to order flow continuation, the estimated

probability that a buy (or sell) order follows another buy (or sell) order is found to be 0.87. Furthermore,

microstructure noise turns out to be negatively autocorrelated under tick time sampling. This is con-

sistent with inventory models, in which dealers alternate quotes to maintain their inventory position.

We obtain an estimate of the probability of reversed orders equal to 0.84. Turning to the estimators of

IV, we find that with positively autocorrelated noise the commonly adopted methods that hinge on the

i.i.d. assumption of noise tend to overestimate the IV. Under two alternative (sub)sampling schemes

our estimators also appear to work well. This testifies to the critical relevance of the bias corrections

embedded in our multi-step estimators.

In earlier literature, Aı̈t-Sahalia et al. (2011) show that the two-scale and multi-scale realized volatil-

ity estimators are robust to exponentially decaying dependence in noise. In this paper, we provide

explicit estimators of the second moments of noise and analyze their asymptotic behavior, develop

bias-corrected estimators of the IV based on these moments of noise, and empirically assess the noise

characteristics. Furthermore, Hautsch and Podolskij (2013) study q-dependent microstructure noise, de-

velop consistent estimators of the first q autocovariances of microstructure noise and define the associ-

ated pre-averaging estimators. An appealing feature of their approach is that their autocovariance-type

estimators of q-dependent noise consider non-overlapping increments which avoids finite sample bias.

We allow for more general assumptions on the dependence structure of microstructure noise. Owing

to its generality our setting incorporates many microstructure models as special cases. We therefore do

not need to advocate any particular model of microstructure noise.

4



In two contemporaneous works, Jacod et al. (2017, 2019) also study dependent noise in high-

frequency data. In Jacod et al. (2017), they develop a novel local averaging method to “recover” the

noise and can, in principle, estimate any finite (joint) moments of noise with diurnal features. More-

over, they also allow observation times to be random. Empirically, they find some interesting statistical

properties of noise. In particular, they find that noise is strongly serially dependent, with polynomi-

ally decaying autocorrelations. Employing this local averaging method, Jacod et al. (2019) develop an

estimator of IV that allows for dependent noise. The local averaging method differs from, and allows

to analyze more general noise characteristics than, the simpler realized volatility method developed

here. The key difference is our explicit treatment of the feedback effect between the asymptotic and

finite sample biases: we show that in a finite sample, the IV and second moments of microstructure

noise should be estimated in a unified way, since they induce biases in each other. We design novel

and easily implementable multi-step estimators to correct for the intricate biases. Our multi-step esti-

mators of the IV, which are designed to allow for dependent noise, also perform well in the special case

of independent noise, and in a sample of reasonable size as encountered in practice. This robustness

to (mis)specification of noise and to sampling frequencies is an important advantage of our multi-step

estimators. Our unified treatment of the asymptotic and finite sample biases may help explain why the

empirical studies in Jacod et al. (2017) render the strong dependence in noise they find (and question

themselves); see our empirical analysis in Section 7.

In another independent paper, Da and Xiu (2019) introduce a novel quasi maximum likelihood ap-

proach to estimate both the volatility and the autocovariances of moving-average microstructure noise.

They also extend their estimators to general settings that allow for irregular observation times, intraday

patterns of noise and jumps in asset prices. Their approach treats “large” and “small” microstructure

noise in a uniform way which leads to a potential improvement in the convergence rate. Our approach

is essentially of a nonparametric nature and provides unified estimators of a class of volatility func-

tionals (see Theorem 4.1) including the asymptotic variance, which account for the feedback between

finite sample and asymptotic biases. Our empirical study also has a different focus. Our investigation

is not as extensive as in Da and Xiu (2019),4 but we explicitly consider different sampling frequencies,5

analyzing the autocovariance patterns of noise in connection to microstructure noise models and their

impact on IV estimation.

The remainder of this paper is organized as follows. In Section 2, we introduce the basic setting

and notation. In Section 3, we analyze realized volatility with dependent noise and develop consistent

estimators of the second moments of noise. The pre-averaging method with dependent noise is studied

4Da and Xiu maintain a website to provide up-to-date daily annualized volatility estimates for all S&P 1500 index constituents,
see http://dachxiu.chicagobooth.edu/#risklab.

5In their empirical studies, Da and Xiu (2019) only consider tick time sampling.
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in Section 4. Section 5 introduces our multi-step estimators. Section 6 reports extensive simulation

studies. Our empirical study is presented in Section 7. Section 8 concludes the paper. All proofs and

some additional Monte Carlo simulation and empirical results are collected in an online appendix, see

Li et al. (2019).

2 Framework and Assumptions

We state the following assumption regarding the efficient log-price process:

Assumption 2.1 (Efficient log-price). The efficient log-price process X follows a continuous Itô semimartingale

defined on a filtered probability space (Ω,F , (Ft)t≥0, P):

Xt = X0 +
∫ t

0
bsds +

∫ t

0
σsdWs, (2)

where W is a standard Brownian motion, the drift process bs is optional and locally bounded, and the volatility

process σs is adapted with càdlàg paths.

We assume that all price observations are collected in the fixed time interval [0, T], where without

losing generality we let T = 1. We let n + 1 be the number of observations and denote ∆n = 1/n. The

observation times are given by tn
i = i∆n, i = 0, . . . , n. We make the following assumption regarding the

market microstructure noise:

Assumption 2.2 (Market microstructure noise). The noise process (Ui)i∈N is defined on the probability space

(Ω(0),G, P(0)), which has discrete filtrations Gi = σ(Uk : k ≤ i), G i = σ(Uk : k ≥ i) that satisfy G = G∞ =

G∞. Moreover, we assume

1. U is stationary and ρ-mixing and the mixing coefficients6 {ρh}∞
h=1 decay at a polynomial rate, i.e., there

exist some constants C > 0, v > 0 such that

ρh ≤
C
hv . (3)

2. v > 1, E(U) = 0, and all moments of noise exist.

The mixing conditions in Assumption 2.2 item (1.) ensure that the noise process evaluated at differ-

ent time instances, say, i and i + h, is increasingly limited in dependence when the lag h increases. In

6The mixing coefficients constitute a sequence satisfying

ρh = sup
{
|E(VkVk+h)| : E(Vk) = E(Vk+h) = 0, ‖Vk‖2 ≤ 1, ‖Vk+h‖2 ≤ 1, Vk ∈ Gi , Vk+h ∈ G i+h

}
.

We refer to Bradley (2007) or Chapter VIII of Jacod and Shiryaev (2003) for further details on and properties of mixing sequences.
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particular, that assumption implies that there exists some C′ > 0 such that

|γ(h)| ≤ C′

hv , (4)

where γ(h) = Cov(Ui, Ui+h) is the autocovariance function of U. We assume all moments of noise exist

because this is required for the validity of Theorem 4.1 below for any even integer r ≥ 2.

At stage n, we will denote Ui by Un
i , ∀i ≤ n. The i-th observed price is thus given by

Yn
i = Xn

i + Un
i , (5)

where Xn
i = Xi∆n .

Remark 2.1 (Microstructure noise in discrete time). We allow the noise process U to generate dependencies

in sampling time. Hence, our noise process essentially constitutes a discrete-time model — it does not depend

explicitly on the time between successive observations. Aı̈t-Sahalia et al. (2005), Hansen and Lunde (2006),

and Hansen et al. (2008) study various continuous-time models of dependent microstructure noise. In these

continuous-time models, the noise component of a log-return over a time interval ∆ is of order Op(
√

∆), the

same order as the logarithmic return of the efficient price. Our theory focuses primarily on sampling in calendar

time.7 In our simulations and empirical work, we also analyze sampling in transaction time,8 and tick time.9

Remark 2.2 (General dynamic properties of microstructure noise). Our assumptions on the dependence of

noise are quite general, nesting many models as special cases including, for example, i.i.d. noise, q-dependent noise

(i.e., γ(h) = 0, ∀h > q), ARMA(p, q) noise (see Mokkadem (1988)) and some long-memory processes (see Tsay

(2005)). We note that AR(1) and AR(2) noise are studied in Barndorff-Nielsen et al. (2008) and Hendershott et al.

(2013) respectively, q-dependent noise is considered by Hansen et al. (2008) and Hautsch and Podolskij (2013),

while Gross-KlussMann and Hautsch (2013) study long-memory bid-ask spreads.

Another recent strand of the literature explores the variety of microstructure data including observable infor-

mation, seeking to parameterize the microstructure noise; see Li et al. (2016), Chaker (2017), Clinet and Potiron

(2017) and Clinet and Potiron (2019). The parametrization allows for rich dynamics of the microstructure noise

and at the same time improves the convergence rates of associated volatility estimators. Specifically, the noise

component in these models can be serially correlated. The correlation is attributed to persistent observable quanti-

ties, e.g., trading volume and trading directions, that constitute the “observable part” of the microstructure noise.

7Under this sampling scheme, Yn
i (resp. Xn

i , Un
i ) is the observed log-price (resp. efficient log-price, microstructure noise) at

regular time i∆n, with ∆n = 1/n in the main text.
8Under this sampling scheme, Yn

i (resp. Xn
i , Un

i ) is the observed log-price (resp. efficient log-price, microstructure noise)
associated with the i-th trade. The observation times (tn

i )0≤i≤n can, in general, be deterministic or random, and regular or
irregular.

9Tick time sampling removes all zero returns; see Aı̈t-Sahalia et al. (2011) and Griffin and Oomen (2008). Hence, Yn
i is by

definition different from Yn
i−1 and Yn

i+1 under this sampling scheme.
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By contrast, we introduce an essentially nonparametric model of microstructure noise, without singling out the

sources of the noise.

3 Estimation of the Variance and Covariances of Noise

In this section, we develop consistent estimators of the second moments of noise under Assumptions 2.1

and 2.2. These estimators will later serve as important inputs to adapt the pre-averaging method. We

also analyze our estimators’ finite sample properties.

3.1 Realized volatility with dependent noise

We start with the following preliminary result:

Proposition 3.1. Assume that the efficient log-price satisfies Assumption 2.1, the observations follow (5), the

noise process satisfies Assumption 2.2, and that G is independent of F . Let j > 0 be a fixed integer and assume

the sequence of integers jn satisfies jn → ∞, jn∆n → 0. Then we have the following convergences in probability

as n→ ∞:

〈̂Y, Y〉(j)n :=
∑

n−j
i=0 (Y

n
i+j −Yn

i )
2

2(n− j + 1)
P→ γ(0)− γ(j), (6)

γ̂(0)n :=
∑

n−jn
i=0 (Yn

i+jn −Yn
i )

2

2(n− jn + 1)
P→ γ(0), (7)

γ̂(j)n := γ̂(0)n − 〈̂Y, Y〉(j)n
P→ γ(j). (8)

The special case of (6) that occurs when j = 1 appears in Aı̈t-Sahalia et al. (2011) assuming expo-

nential decay. We also note that in the most recent version of Jacod et al. (2017) similar estimators as

〈̂Y, Y〉(j)n are mentioned but without formal analysis of their limiting behavior. To our best knowledge,

our paper is the first to estimate the variance and covariances of noise using realized volatility under a

general dependent noise setting.

3.2 Finite sample bias correction

The theoretical validity of our realized volatility estimators in (6)–(8) hinges on the increasing avail-

ability of observations in a fixed time interval, the so-called infill asymptotics. In general, an estimator

derived from asymptotic results can, however, behave very differently in finite samples. Our realized

volatility estimators of the second moments of noise are an example for which the asymptotic theory

provides a poor representation of the estimators’ finite sample behavior.10

10This applies to the local averaging estimators developed in Jacod et al. (2017) as well; see Footnote 13 for further details.
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Intuitively, the finite sample bias stems from the diffusion component, when computing the realized

volatility 〈̂Y, Y〉(j)n over large lags j in a finite sample, and we will explain later (e.g., in Remark 3.3)

why it is critically relevant to account for it in real applications. In the remainder of this section, we

assume the drift bt in (2) to be zero. As shown by, for example, Bandi and Russell (2008) and Lee and

Mykland (2012) this is not restrictive in high-frequency analysis. This will be confirmed in our Monte

Carlo simulation studies in Section 6 and Appendix B.

Proposition 3.2. Assume that the efficient log-price follows (2) with bs = 0 ∀s, and assume there is some δ > 0

so that σt is bounded for all t ∈ [0, δ] ∪ [1− δ, 1]. Furthermore, assume the observations follow (5), the noise

process satisfies Assumption 2.2 and G is independent of F . Then,

Eσ

(
〈̂Y, Y〉(j)n

)
=

jIV
2(n− j + 1)

+ γ(0)− γ(j) + Op

(
j2/n2

)
, (9)

where IV :=
∫ 1

0 σ2
t dt is the integrated volatility. Here, Eσ(·) denotes the expectation conditional on the volatility

path.

Remark 3.1. If σt is locally bounded, then the assumptions on σt required for Proposition 3.2 will hold. The

regularity conditions with respect to σt in Proposition 3.2 trivially hold if the volatility process is assumed to be

continuous. (Volatility is usually assumed to be continuous when making finite sample bias corrections.)

Remark 3.2. Let j = 1. In that special case the result in Proposition 3.2 bears similarities to Theorem 1 in Hansen

and Lunde (2006). Contrary to Hansen and Lunde (2006) we assume that the efficient log-price X is independent

of the noise U. Therefore, any correlations between the two drop out.

Proposition 3.2 reveals that 〈̂Y, Y〉(j)n − jIV
2(n−j+1) will be a better estimator of γ(0) − γ(j) in finite

samples than 〈̂Y, Y〉(j)n, and this motivates the following finite sample bias corrected estimators:

〈̂Y, Y〉
(adj)

(j)n := 〈̂Y, Y〉(j)n −
σ̂2 j

2(n− j + 1)
; (10)

γ̂(0)
(adj)
n := γ̂(0)n −

σ̂2 jn
2(n− jn + 1)

; (11)

γ̂(j)
(adj)
n := γ̂(0)

(adj)
n − 〈̂Y, Y〉

(adj)
(j)n; (12)

where σ̂2 is an estimator of IV. We note that the bias corrected estimators are still consistent, as the

fraction j
n−j+1 is negligible when j is much smaller than n.

Remark 3.3 (Why the finite sample bias matters). We now explain why the finite sample bias correction is

9



crucial in applications. We first rewrite (9):

Eσ

(
〈̂Y, Y〉(j)n

)
=

jIV
2(n− j + 1)

+ γ(0)− γ(j) + Op

(
j2/n2

)
= (γ(0)− γ(j))

1 +
j

2(n−j+1)
γ(0)−γ(j)

IV

+ Op

(
j2/n2

)
.

(13)

Observe that the finite sample bias is determined by the ratio of the two terms j
2(n−j+1) and γ(0)−γ(j)

IV . The first

term, j
2(n−j+1) , depends on the data frequency (n) and “target parameters” (j); the second term, γ(0)−γ(j)

IV , is

the (latent) noise-to-signal ratio. If the second term is “relatively larger (smaller)” than the first one, then the

finite sample bias will be small (large). In other words, the finite sample bias is not only determined by the data

frequency and target parameters, but also by other properties of the underlying efficient price and noise processes.

In high-frequency financial data, the noise-to-signal ratio γ(0)
IV is typically small, but it can vary from O(10−2)

(see Bandi and Russell (2006)) to O(10−6) (see Christensen et al. (2014)) in empirical studies. The ratio j
2(n−j+1) ,

while typically small as well, can still be relatively large, depending on the specific situation. Consider the

following two scenarios:

1) We have ultra high-frequency data with n = O(105) (recall that the number of seconds in a business day is

23,400), and we select jn = 20. Then, the ratio jn
2(n−jn+1) = O(10−4).

2) We have i.i.d. noise and we would like to estimate the variance of noise by 〈̂Y, Y〉(1)n using high-frequency

data with average duration of 20 seconds (thus n ≈ 103); see, e.g., Bandi and Russell (2006). Hence,
j

2(n−j+1) = O(10−3).

In both scenarios, the ratio of j
2(n−j+1) and γ(0)−γ(j)

IV can vary widely, depending on the magnitude of the latent

noise-to-signal ratio. It is then clear from the first line of (13) that the finite sample bias term, which is proportional

to the IV, may well wipe out the variance of noise, depending on the specific situation.

Remark 3.4. Note that increasing the sample size by extending the time horizon to [0, T] with large T will not

remove the finite sample bias. Hence, the finite sample bias may be viewed as a low frequency bias.

Throughout the remainder of this paper, we assume the following conditions hold:11

v > 3, jn � ∆−δ
n , `n � ∆−κ

n , δ ∈
(

5
36

,
1
6

)
, κ ∈

(
1
8

,
1
6

)
, (14)

with `n another sequence of integers. The following proposition provides an estimator of the “long-run

variance” of microstructure noise. As we shall see later, the long-run variance of noise appears as an

asymptotic bias in the de-noise method developed in this paper.
11Some results, e.g., Proposition 3.3, hold already under weaker conditions. The conditions (14) are, however, needed to

establish our main theorems in the next sections.
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Proposition 3.3. Assume that the efficient log-price satisfies Assumption 2.1, the observations follow (5), the

noise process satisfies Assumption 2.2 and G is independent of F . Define

Σ̂Un := γ̂(0)n + 2
`n

∑
j=1

γ̂(j)n, (15)

where γ̂(0)n and γ̂(j)n are defined in (7) and (8). Then,

Σ̂Un
P→ ΣU , (16)

where

ΣU = γ(0) + 2
∞

∑
j=1

γ(j). (17)

For i.i.d. noise, ΣU reduces to γ(0), and it is known (see Zhang et al. (2005) and Bandi and Russell

(2008)) that the variance of noise can then be consistently estimated by the standardized realized volatil-

ity of observed returns. However, when noise is dependent we face a much more complex situation: all

variance and covariance terms constitute ΣU . Nevertheless, Proposition 3.3 above provides a consistent

estimator of ΣU .

4 The Pre-Averaging Method with Dependent Noise

In this section, we adapt a popular “de-noise” method — the pre-averaging method — to allow for

serially dependent noise in our general setting. The pre-averaging method was originally introduced

by Podolskij and Vetter (2009b) (see also Jacod et al. (2009), Jacod et al. (2010), Podolskij and Vetter

(2009a), Hautsch and Podolskij (2013), and the textbook treatment in Aı̈t-Sahalia and Jacod (2014)). We

first construct our pre-averaged statistics based on non-overlapping sampling blocks and next based on

overlapping sampling blocks, in both cases using general weight functions.

4.1 Pre-averaging based on non-overlapping intervals

Let kn be a sequence of integers, with kn → ∞ and kn∆n → 0 as n→ ∞, satisfying

√
∆nkn = θ + o(∆1/4

n ), (18)
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where θ > 0 is a constant. Furthermore, let g be a general kernel (i.e., weight function). We assume g

is continuous, piecewise C1 with a piecewise Lipschitz derivative g′, and satisfies g(s) = 0, ∀s /∈ (0, 1),

and
∫ 1

0 g2(s)ds > 0, as in Jacod et al. (2009). We introduce the following notation associated with g:



gn
i = g(i/kn); gn

i = gn
i+1 − gn

i ;

φn
0 = 1

kn
∑i∈Z

(
gn

i
)2 ; φn

1 (j) = kn ∑i∈Z gn
i gn

i−j;

φ0(s) =
∫ 1

s g(u)g(u− s)du; φ1(s) =
∫ 1

s g′(u)g′(u− s)du;

Φij =
∫ 1

0 φi(s)φj(s)ds, ψi = φi(0), i, j ∈ {0, 1}.

Example 4.1 (Triangular kernel). A simple canonical example of g is given by the triangular kernel g(x) =

x ∧ (1− x). Then,

ψ0 = 1/12, ψ1 = 1, Φ00 = 151/80640, Φ01 = 1/96, Φ11 = 1/6.

For any sequence {Zn
i }n

i=0, denote ∆n
i Z = Zn

i − Zn
i−1, i = 1, 2, . . ., and let its pre-averaged value be

given by

Zn
i :=

kn−1

∑
j=1

gn
j ∆n

i+jZ = −
kn−1

∑
j=0

gn
j Zn

i+j, i = 0, 1, . . . . (19)

Furthermore, let Mn = b n
kn
c, where b·c is the floor function. For any real r ≥ 2, the pre-averaged

statistics of the log-price process Y based on non-overlapping intervals are defined as follows:

PAV(Y, r)n := n
r−2

4

Mn−1

∑
m=0

∣∣∣Yn
mkn

∣∣∣r , r ≥ 2. (20)

Under our general setting of dependent noise, we establish in the following results first a consistency

theorem for the general functional form of the pre-averaged statistics, based on which we derive a con-

sistent estimator of the IV, and next a central limit theorem providing the associated limit distribution,

with a consistent estimator of the asymptotic variance.

Theorem 4.1. Assume that the efficient log-price satisfies Assumption 2.1, the observations follow (5), and the

noise process satisfies Assumption 2.2. Furthermore, assume G and F are independent. Then, for any even

integer r ≥ 2,

PAV(Y, r)n
P→ PAV(Y, r) :=

µr

θ

∫ 1

0

(
θψ0σ2

s +
ψ1

θ
ΣU

) r
2

ds, (21)

where ΣU is defined in (17) and µr = E(Zr) for a standard normal random variable Z.

Aided by this result, we obtain consistent estimators of the IV and the integrated quarticity IQ :=

12



∫ 1
0 σ4

s ds, as follows:

Corollary 4.1. Under the assumptions of Theorem 4.1, we have the following consistency result for the IV and

the IQ:

ÎVn :=
PAV(Y, 2)n

ψ0
− ψ1Σ̂Un

ψ0θ2
P→ IV, (22)

ÎQn :=
PAV(Y, 4)n

3ψ2
0θ

− 2ψ1Σ̂Un ÎVn

ψ0θ2 −
ψ2

1

(
Σ̂Un

)2

θ4ψ2
0

P→ IQ, (23)

where Σ̂Un is defined in (15).

Theorem 4.2. Assume all conditions in Theorem 4.1 hold. Furthermore, assume that the process σ is a continu-

ous Itô semimartingale. Then,

∆
− 1

4
n

(
ÎVn − IV

) L−s−→
√

2
θψ2

0

∫ 1

0

(
θψ0σ2

s +
ψ1

θ
ΣU

)
dW ′s , (24)

where L−s−→ denotes stable convergence in law and where W ′ is a standard Wiener process independent of F .

Moreover, letting Σ̂n := 2PAV(Y, 4)n/3ψ2
0 , we have that ∆

− 1
4

n

(
ÎVn − IV

)
/
√

Σ̂n converges stably in law to a

standard normal random variable, which is independent of F .

A main advantage of the pre-averaging approach and the associated estimators introduced in this

section is their simplicity. In fact, we obtain from Theorem 4.1 a class of consistent estimators of
∫ 1

0 σr
s ds

with arbitrary even integer r, since we have a consistent estimator of ΣU . When only estimation of the

IV is concerned, this leads to a simple estimator of the asymptotic variance of the IV estimator.12

4.2 Pre-averaging based on overlapping intervals

Now we extend our pre-averaging estimator of the IV in two directions. First, we allow for overlapping

intervals to conduct pre-averaging; second, we accommodate more general stochastic volatility pro-

cesses when deriving the respective limit distribution. (We recall that we assumed the process σ to be a

continuous Itô semimartingale in Theorem 4.2.)

In particular, we propose the following estimator of the IV, with Σ̂Un as introduced in (15):

ĨVn :=
√

∆n

θψ0

n−kn+1

∑
i=0

(
Yn

i

)2
− ψ1Σ̂Un

θ2ψ0
. (25)

12Our simulation experiments presented later show that, compared to the pre-averaging estimators based on overlapping
intervals introduced in the next subsection, the pre-averaging estimators based on non-overlapping intervals often deliver a
somewhat smaller bias, although their standard deviations are typically somewhat larger.
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Theorem 4.3. Assume that the efficient log-price satisfies Assumption 2.1, the observations follow (5), the noise

process satisfies Assumption 2.2, and G is independent of F .Then,

∆
− 1

4
n

(
ĨVn − IV

) L−s−→ Υ1, (26)

with Υt =
∫ t

0 VsdW ′s , where W ′ is a standard Wiener process independent of F , and where Vt satisfies

V2
t :=

4
ψ2

0

(
Φ00θσ4

t + 2Φ01
σ2

t ΣU

θ
+

Φ11Σ2
U

θ3

)
. (27)

Remark 4.1. The tuning parameter θ (recall (18)) can be chosen such that it minimizes the asymptotic variance,

which will improve the efficiency of our estimators. The optimal θ is given by

θ∗ =


√

Φ2
01IV2Σ2

U + 3Φ00Φ11Σ2
UIQ + Φ01IVΣU

Φ00IQ

1/2

. (28)

The optimal choice of θ requires an estimate of IQ. Therefore, we provide a consistent estimator, as follows:

ĨQn :=
∑n−kn+1

i=0

(
Yn

i

)4

3θ2ψ2
0

− 2ψ1Σ̂Un ĨVn

ψ0θ2 −
ψ2

1

(
Σ̂Un

)2

θ4ψ2
0

P→ IQ. (29)

Note that that ĨQn is analogous to ÎQn introduced in (23).

To apply the limit distribution result in Theorem 4.3 above to construct confidence intervals, we

need a consistent estimator of the asymptotic variance
∫ 1

0 V2
t dt. Among other possibilities, we propose

the following:

Σ̃n :=
4Φ00

3θψ4
0

n−kn+1

∑
i=0

(
Yn

i

)4
+

8Σ̂Un ĨVn

θψ2
0

(
Φ01 −

ψ1Φ00

ψ0

)
+

4
(

Σ̂Un

)2

θ3ψ2
0

(
Φ11 −

ψ2
1Φ00

ψ2
0

)
. (30)

Corollary 4.2. Under the assumptions of Theorem 4.3, we have

Σ̃n
P→
∫ 1

0
V2

t dt. (31)

Therefore, the sequence ∆
− 1

4
n

(
ĨVn − IV

)
/
√

Σ̃n converges stably in law to a standard normal random variable,

which is independent of F .

Remark 4.2 (Irregular Observation Schemes). We note that, following similar arguments as in Jacod and

Mykland (2015), our results, in particular those in Theorem 4.3, extend to (i.e., are robust to) mildly irregu-
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lar observation schemes, as follows. Let T be a function with strictly positive Lipschitz derivative. Assume

T (0) = 0 and T (1) = 1. Now let t̃n
i := T (i∆n). Such irregular observation schemes have been considered e.g.,

by Barndorff-Nielsen et al. (2008) and Mykland and Zhang (2012).

First, we note that such a time transformation theoretically does not affect the microstructure noise process,

as the noise is a discrete-time process that does not depend on the time between successive observations. Thus,

under the new observation scheme, we have that

Yt̃n
i
= Xt̃n

i
+ Un

i . (32)

Denote the time-transformed efficient price process by XT ,t := XT (t) with bT ,t := bT (t)T ′(t) and σT ,t :=

σT (t)
√
T ′(t).

Several conclusions are immediate. First, the new process XT satisfies Assumption 2.1; second, under the

transformation T , the irregular observation scheme becomes regular in the sense that Xt̃n
i
= XT ,i∆n ; third, the

integrated volatility is unchanged due to the properties of T , upon a change of variable; finally, the probabilistic

and statistical behavior of the noise is unchanged, in particular, ΣU is unchanged and its consistent estimator

remains valid.

Thus, upon replacing i∆n by t̃n
i , we can apply our Theorem 4.3 to observed noisy prices YT ,

n
i = XT ,

n
i +

Un
i , which agrees exactly with (32). The limit distribution remains valid but the limit has a slightly different

asymptotic variance:

V2
T ,t :=

4
ψ2

0

(
Φ00θσ4

t T ′(T −1(t)) + 2Φ01
σ2

t ΣU

θ
+

Φ11Σ2
U

θ3

)
. (33)

Remark 4.3 (Jumps in the Efficient Price). Assumption 2.1 does not allow for jumps in the efficient price

process X. (Jumps in the stochastic volatility process are allowed.) We note from the proof of Proposition 3.1

that jumps in the efficient price will not affect the convergences of the realized volatility estimators of the second

moments of noise, as the noise has larger asymptotic orders. For the pre-averaging estimators, we conjecture that

under suitable conditions both ÎVn and ĨVn will converge to the quadratic variation of X instead of to the IV. One

can apply the truncation method (Mancini (2001)) to eliminate the jumps. But this is beyond the scope of this

paper. In this context, it is worth mentioning an extensive empirical study by Christensen et al. (2014), in which

the authors show that, as far as IV estimation is concerned, the jump component of the efficient price process in

(very) high-frequency data typically only accounts for a small portion of the total price variation.
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4.3 Efficiency

It is well-known that estimators of volatility from noisy observations can achieve efficiency when the

volatility is a constant, cσ, i.e., the integrated volatility over [0, t] equals tcσ, and the noise takes the form

of Gaussian white (i.e., i.i.d.) noise with variance Var(U); see Gloter and Jacod (2001a) and Gloter and

Jacod (2001b) for a detailed account. In this case, an efficient estimator of the IV will converge at rate

∆
− 1

4
n with an asymptotic variance equal to Σopt

t = 8tc3/2
σ

√
Var(U). This result has been extended to

time-varying but non-random volatility processes plus Gaussian additive noise; see Reiß (2011). When

the assumption of constant volatility is maintained but the noise is serially dependent, the optimal

asymptotic variance becomes Σopt
t = 8tc3/2

σ

√
ΣU , with the variance of noise replaced by the long-run

variance of noise; see Da and Xiu (2019). We can show that the asymptotic variance of our estimator

ĨVn, with the optimally selected θ (recall Remark 4.1) and using the triangular kernel, is quite close to

Σopt
t under constant volatility: ∫ t

0 V2
s ds

Σopt
t

≈ 1.07. (34)

With stochastic volatility, it is still possible to achieve (34) asymptotically using local estimation —

divide all observations into B blocks and perform estimation on each block and then aggregate the block

estimates; see, e.g., Jacod and Mykland (2015), Clinet and Potiron (2018) and Da and Xiu (2019). Our

simulation experience (not reported here) shows that in finite samples our estimators often do, but need

not always, improve when following such a local estimation procedure. In those cases in which there is

a lack of improvement, this may be partially due to a relatively worse estimation of the optimal θ in a

smaller sample.

Any proper estimation of θ, whether local or global, requires accurate estimates of characteristics of

the efficient price and noise processes. We will show through our extensive simulations and empirical

studies that model (mis)specification and finite sample biases play first-order roles in the estimation of

such characteristics, and that our multi-step method introduced in the next section provides a robust

approach. In our analyses presented later, we don’t pursue local estimation, but focus on illustrating

the robustness of our multi-step approach to model misspecification and to finite sample biases.

5 Multi-Step Estimators

In this section, we introduce our multi-step estimators of the IV and the second moments of noise based

on both our asymptotic theory and finite sample analysis.

We observe from Theorem 4.3 that the second moments of noise contribute to an asymptotic bias in

the estimation of the IV. Our finite sample analysis indicates, however, that we need an estimator of
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the IV to correct the finite sample bias when estimating the second moments of noise. Our multi-step

estimators are specifically designed for the purpose of correcting the “interlocked” bias.

In the first step, we ignore the dependence in noise and estimate the variance of noise by realized

volatility. Hence, our first-step estimators of the second moments of noise are given by

γ̃(0)
(1)
n := 〈̂Y, Y〉(1)n; γ̃(j)

(1)
n := 0, j 6= 0; Σ̃(1)

Un
:= γ̃(0)

(1)
n . (35)

Next, we proceed with the pre-averaging method to obtain the first-step estimator of the IV (cf. (25)):

ĨV
(1)
n =

√
∆n

θψ0

n−kn+1

∑
i=0

(
Yn

i

)2
−

ψ1Σ̃(1)
Un

θ2ψ0
. (36)

To initiate the second step, we first replace σ̂2 by ĨV
(1)
n in (10) and (11) and obtain the second-step

estimators of the variance and covariances of noise. They will in turn be used to correct the asymptotic

bias in the estimation of the IV, to eventually obtain the second-step estimator of the IV. Upon iterating

this procedure, one obtains multi-step estimators. Specifically, for any k ≥ 2, we define the k-step

estimators recursively as follows:

〈̃Y, Y〉(j)(k)n := 〈̂Y, Y〉(j)n −
jĨV

(k−1)
n

2(n− j + 1)
; (37)

γ̃(0)
(k)
n := γ̂(0)n −

jn ĨV
(k−1)
n

2(n− jn + 1)
; (38)

γ̃(j)
(k)
n := γ̃(0)

(k)
n − 〈̃Y, Y〉(j)(k)n ; (39)

Σ̃(k)
Un

:= γ̃(0)
(k)
n + 2

`n

∑
j=1

γ̃(j)
(k)
n ; (40)

ĨV
(k)
n :=

√
∆n

θψ0

n−kn+1

∑
i=0

(
Yn

i

)2
−

ψ1Σ̃(k)
Un

θ2ψ0
; (41)

Σ̃(k)
IVn

:=
4Φ00

3θψ4
0

n−kn+1

∑
i=0

(
Yn

i

)4
+

8Σ̃(k)
Un

ĨV
(k)
n

θψ2
0

(
Φ01 −

ψ1Φ00

ψ0

)
+

4
(

Σ̃(k)
Un

)2

θ3ψ2
0

(
Φ11 −

ψ2
1Φ00

ψ2
0

)
. (42)

We state the following theorem:

Theorem 5.1. Under the assumptions of Theorem 4.3, for any fixed K ∈N∗, we have

Σ̃(K)
Un

P→ ΣU , (43)
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and the sequence ∆
− 1

4
n

(
ĨV

(K)
n − IV

)
/
√

Σ̃(K)
IVn

converges stably in law to a standard normal random variable,

which is independent of F .

We note that, for brevity, our multi-step estimators introduced above are based only on the pre-

averaging estimators using overlapping intervals. Of course, we can adopt the same approach and de-

velop, by analogy, consistent and asymptotically normal multi-step estimators from the pre-averaging

estimators using non-overlapping intervals as well. They will henceforth be denoted by ÎV
(k)
n and will

be analyzed alongside ĨV
(k)
n later.

Remark 5.1. As the simulation results in the next section will reveal, our multi-step estimators introduced above

perform well. An advantage of our multi-step estimators is that they are quite robust to the choice of the tuning

parameter θ. To offer some insight into this issue, we briefly analyze the relationship between the choice of θ and

the theoretical finite sample bias of two estimators: our ĨVn and the benchmark estimator ĨV
JLZ
n recently proposed

by Jacod et al. (2019), which employs the local averaging (LA) method to correct the asymptotic bias of pre-

averaging estimators. A simple calculation shows that the finite sample errors of ĨVn and ĨV
JLZ
n (as a percentage)

are approximately given by

ErrRV ≈
(2`n + 1)jn + ∑|`|≤`n |`| φ

n
1 (`)

2nθ2ψ0
, ErrJLZ ≈

4Kn ∑|`|≤`n φn
1 (`)

3nθ2ψ0
, (44)

respectively, where Kn is the tuning parameter of the LA method. While these errors can be significant for both

estimators, and moreover a small change in θ can lead to sharp changes in the errors, our multi-step estimators

are specifically designed to remove this error. Consequently, they are much more robust to changes in θ than

estimators without unified bias corrections.

6 Simulation Study

6.1 Simulation design

Motivated by the empirical studies in Aı̈t-Sahalia et al. (2011), we consider an ARMA(1,1) noise process

U given by the following dynamics:

Ut = et + εt, (45)

where e is centered i.i.d. Gaussian and ε is an AR(1) process with first-order coefficient ι, |ι| < 1. We will

examine the performance of our estimators for different values of this coefficient: ι ∈ {−0.7, −0.3, 0, 0.3, 0.7}.

The processes e and ε are assumed to be statistically independent. We set E
(
e2

t
)
= 1.9 × 10−7, and

E
(
ε2

t
)
= 1.3× 10−7. These values are chosen to mimic the results of our empirical studies.
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We assume that the efficient price is generated by the following dynamics:


dXt = −κ1(Xt − µ1)dt + σtdWt,

dσ2
t = κ2

(
µ2 − σ2

t
)

dt + κ3σtdBt + ξtdNt,

where B and W are standard Brownian motions with quadratic covariation 〈B, W〉t = $t, N is a Poisson

process with parameter λ, and ξt is an independent jump size following an exponential distribution

with parameter κ3. We set the parameters as follows: κ1 = 0.5, µ1 = 1.6, κ2 = 5/252, µ2 = 0.04/252,

κ3 = 0.05/252, λ = 3, and $ = −0.5. We assume the processes X and U to be mutually independent.

We simulate each sample path within a fixed time interval [0, 1] that represents one trading day.

6.2 Realized volatility estimators of the second moments of noise

To get a first impression of the properties of our estimator 〈̂Y, Y〉(j)n defined in (6), we plot 〈̂Y, Y〉(j)n

against the number of lags j in Figure 2. In addition to 〈̂Y, Y〉(j)n, we also plot the bias adjusted version

〈̂Y, Y〉
(adj)

(j)n defined in (10), in which we employ three “approximations” to the IV that 〈̂Y, Y〉
(adj)

(j)n

depends on: σ̂2
H = 1.2IV, σ̂2

M = IV, and σ̂2
L = 0.8IV. Figure 2 shows that a prominent feature of our

realized volatility estimator 〈̂Y, Y〉(j)n is that it deviates from its stochastic limit γ(0) − γ(j) almost

linearly in the number of lags j, as predicted by Proposition 3.2. The deviation, induced by the finite

sample bias, can be largely corrected when only rough “estimates” of the IV are available. In the ideal

but infeasible situation that we know exactly the true volatility (σ̂2
M = IV), the bias corrected estimators

almost perfectly match the underlying true values.

Next, we estimate the second moments of noise by our realized volatility estimators (RV) and, for

comparison purposes, by the local averaging estimators (LA) proposed by Jacod et al. (2017). We

demonstrate the importance of the finite sample bias correction to obtain accurate estimates, and this

applies to both estimators.13 In Figure 3, we plot the means of the autocorrelations of noise estimated

by RV and LA based on 1,000 simulations. In the top panel we plot the estimators without finite sample

bias correction and we plot the estimators with finite sample bias correction in the bottom panel, in

which we use the true IV instead of any approximation/estimator to make the bias correction. We will

analyze the case in which IV is estimated in the next subsection.

13The finite sample bias corrected local averaging estimators of the noise covariances are given by

R̂(j)n =
1
n

U((0, j))n −
Kn

n

(
4
3

σ̂2
)

,

where U((0, j))n/n is the local averaging estimator of the j-th covariance without bias correction and σ̂2 is an estimator of the IV;
see Jacod et al. (2017) for more details. While Jacod et al. (2017) provide a finite sample bias correction when developing their
local averaging estimators of noise covariances, they don’t consider the feedback between, and unified treatment of, asymptotic
and finite sample biases, which is a key interest in this paper.
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We observe that both estimators (RV and LA) perform poorly without finite sample bias correction.

In particular, the noise autocorrelations estimated by the LA estimators decay slowly and hover above

0 up to 20 lags, from which we might conclude that the noise exhibits strong and long-memory de-

pendence, while the underlying noise is, in fact, only weakly dependent. However, both estimators

perform well after the finite sample bias correction. In Figure 3, we also plot the 95% simulated confi-

dence intervals of the two bias corrected estimators. In terms of mean squared errors, both estimators,

after bias correction, yield accurate estimates.

Figures 2-3 reveal that the finite sample bias correction is crucial to obtain reliable estimates of noise

moments. The key ingredient of this correction, however, is (an estimate of) the IV. Yet, to obtain an

estimate of the IV, we need to estimate the second moments of noise first — whence the feedback loop

of bias corrections. This is why we introduced our multi-step estimators, which allow successive bias

corrections in estimates for both the IV and noise autocorrelations.

6.3 Multi-step estimators of IV

In this subsection, we examine the performance of different estimators of the IV. We compare the es-

timator ÎVn in (22) which is generated by the pre-averaging method using non-overlapping intervals,

with the estimator ĨVn defined in (25) using overlapping intervals. We then assess the improvement

in accuracy from our unified treatment of asymptotic and finite sample biases that can be achieved

by using the K-step estimators ÎV
(K)
n and ĨV

(K)
n introduced in (41). We also compare ÎV

(1)
n and ĨV

(1)
n

to ÎV
(2)
n and ĨV

(2)
n to assess the gained accuracy by dropping the possibly misspecified assumption of

independent noise.

In Table 1, we report the centered means of our estimators and the standard deviations (between

parentheses), based on 1,000 simulations.14 Throughout this subsection, the tuning parameter jn is

fixed at 20, we take `n = 10 and θ = 0.4, and use the triangular kernel. When comparing the estimators

ÎVn and ÎV
(2)
n in the first and the third rows of Table 1, we observe the important advantage of our multi-

step estimators over the pre-averaging method that ignores the finite sample bias, since our estimators

yield strongly improved accuracy. Furthermore, a comparison to the results for ÎV
(1)
n and ÎV

(2)
n in the

second and third rows leads to the striking conclusion that ignoring the finite sample bias yields even

more inaccuracy than ignoring the dependence in noise. This shows that one should be cautious when

applying estimators without appropriate bias corrections even with data on a 1-sec time scale (i.e.,

23,400 observations in a day of 6.5 trading hours). The “cost” of applying our multi-step estimators

ÎV
(K)
n is the slightly larger standard deviations they induce. This increased uncertainty is introduced by

14The numbers are multiplied by 105.
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correcting the “interlocked” bias. However, the reduction in bias strictly dominates the slight increase

in standard deviations when noise is dependent. Therefore, the multi-step estimators have smaller

mean-squared errors than their counterparts in the first two rows of Table 1. These standard deviations

can be reduced by the use of overlapping intervals, as can be observed when we compare the standard

deviations of ÎV
(K)
n with those of ĨV

(K)
n (i.e., the first four rows in Table 1 and the next four rows).

Although the centered means of the estimators become slightly worse when we adopt overlapping

pre-averaging intervals, the significant reduction in the standard deviations implies a better overall

performance under a mean-squared error criterion.

The estimator ĨV
JLZ
n recently proposed in Jacod et al. (2019), which corrects the asymptotic bias of

pre-averaging estimators by local averaging but does not include a unified treatment of asymptotic and

finite sample biases, performs better than the estimators ÎVn and ĨVn, but worse than all estimators

with finite sample bias corrections. The method proposed in Da and Xiu (2019) generates an estimator

ÎV
QMLE
n which outperforms our method when the autocorrelation in the noise is small, but its perfor-

mance deteriorates when the noise autocorrelation parameter ι is closer to −1 or 1.

In Table 2, we replicate the results of Table 1 but now with a higher data frequency, which corre-

sponds to sampling every 0.2 seconds (i.e., 117,000 observations in a day of 6.5 trading hours). We

observe that, with such very high-frequency data, the multi-step estimators still perform much bet-

ter than their counterparts in rows 1 and 2, and 5 and 6, of Table 2 — with much smaller biases and

only slightly larger standard deviations. Indeed, both the errors caused by ignoring the finite sample

bias and the inconsistencies caused by a potential misspecification of the dependence structure in noise

when using the first-step estimators remain clearly visible. The biases in the estimates typically reduce

further when we replace ÎV
(2)
n by ÎV

(3)
n , but not in all cases where ĨV

(2)
n is replaced by ĨV

(3)
n . We also

observe that increasing K in our multi-step estimators ÎV
(K)
n and ĨV

(K)
n gives only a slight increase in the

estimators’ standard deviations. As before, the standard deviations of ĨV
(2)
n and ĨV

(3)
n are substantially

smaller than for ÎV
(2)
n and ÎV

(3)
n , and for ĨV

JLZ
n and ÎV

QMLE
n . In terms of CPU, the QMLE-estimator is rel-

atively more time-consuming to compute. Indeed, in the setting of Table 2, 0.1% of the total computing

time was spent on our four estimators based on non-overlapping intervals; 3.1% was spent on our four

estimators based on overlapping intervals; 7.2% was spent on ĨV
JLZ
n ; and 89.6% was spent on ÎV

QMLE
n .

To numerically “verify” the central limit theorem established in Theorem 5.1, we plot the quantiles of

the normalized estimators ∆
− 1

4
n

(
ÎV

(2)
n − IV

)
/
√

Σ̂(2)
IVn

and ∆
− 1

4
n

(
ĨV

(2)
n − IV

)
/
√

Σ̃(2)
IVn

against standard

normal quantiles in Figure 4. We observe that the established limit distributions are clearly verified.

Remark 6.1 (Dependence between X and U). The theoretical results in this paper assume independence

between X and U. In practice, the efficient price and the microstructure noise processes may be correlated. In
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Appendix B, we provide additional Monte Carlo simulation results that assess the effects of price discreteness and

correlation between X and U. (Price discreteness renders dependence between X and U.) Our results show that

the presence of minimal ticks has relatively little impact on the estimation of the moments of noise and the IV.

Furthermore, our results show that in the situation when X and U are correlated our multi-step estimators still

appear to be performing well.

7 Empirical Study

7.1 Data description

We analyze the NYSE TAQ transaction prices of Citigroup (trading symbol: C) over the month January

2011. We discard all transactions before 9:30 and after 16:00. We retain a total of 4,933,059 transactions

over 20 trading days, thus on average 10.5 observations per second. The estimation is first performed

on the full sample, and then on subsamples obtained by different sampling schemes. We demonstrate

how the sampling methods affect the properties of the noise, and thus affect the estimation of the IV. We

employ pre-averaging on overlapping intervals, and use the triangular kernel. Throughout this section,

the tuning parameter of the RV estimator is fixed at jn = 30 and θ is selected according to the optimal

rule (28).

7.2 Estimating the second moments of noise

We estimate the j-th autocovariance and autocorrelation of microstructure noise with j = 0, 1, . . . , 30

by three estimators: our realized volatility (RV) estimators in (7) and (8), the local averaging (LA) es-

timators proposed by Jacod et al. (2017), and the bias corrected realized volatility (BCRV) estimators

in (38) and (39). We perform the estimation over each trading day and end up with 20 estimates (of the

30 lags of autocovariances or autocorrelations) for each estimator. In Figure 5 we plot the average of

the 20 estimates (over the month) as well as the approximated confidence intervals that are two sample

standard deviations away from the mean.

We observe that the three estimators yield quite close estimates by virtue of the high data frequency.

Noise in this sample tends to be positively autocorrelated — with the BCRV estimators yielding the

fastest decay. Empirically this positive autocorrelation is consistent with the finding that the arrivals of

buy and sell orders are positively autocorrelated; see Hasbrouck and Ho (1987). This corresponds to

the trading practice that informed traders split their orders over (a short period of) time and trade on

one side of the market, rendering continuation in their orders.

We emphasize that the finite sample bias can be much more pronounced than what we observe in
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Figure 5, even if we conduct estimation on a full transaction data sample. Indeed, in Appendix C, we

analyze a sample of transaction prices of General Electric (GE) and show that, when the data frequency

is very high, the finite sample bias correction is particularly essential when the noise-to-signal ratio is

very small (recall Remark 3.3).

7.3 Estimating the IV

Turning to the estimation of the IV, we study four estimators of the pre-averaging class: ĨVn, ĨV
(1)
n ,

ĨV
(2)
n , and ĨV

JLZ
n . In the top panel of Figure 6, we plot the four estimators of the IV for each trading

day. We note that the three estimators ĨVn, ĨV
JLZ
n , and ĨV

(2)
n yield quite close results. This is expected,

as the three methods, RV, LA, and BCRV, provide close estimates of the second moments of noise.

However, the estimator ĨV
(1)
n , which ignores the dependence in noise, yields very different estimates,

and the differences are persistent — ĨV
(1)
n yields higher estimates over each trading day. Moreover, the

differences are statistically significant by virtue of Theorem 5.1 — all the 20 estimates fall outside of the

95% confidence intervals, as the bottom panel of Figure 6 reveals.

7.4 Decaying rate of autocorrelation

Figure 5 shows that the positive autocorrelations of noise drop to zero rapidly. To assess the rate of de-

cay, we perform a logarithmic transformation of the autocorrelations estimated by BCRV.15 In Figure 7,

we plot the logarithmic autocorrelations for each trading day (top panel) and the mean logarithmic au-

tocorrelations over all days (bottom panel). The plots indicate that the logarithmic autocorrelation is

approximately a linear function of the number of lags, i.e., the autocorrelation function is decaying at

an exponential rate.16

7.5 Robustness check — estimation under other sampling schemes

It is interesting to analyze how our estimators perform when the data is sampled at different time scales.

In this section, we consider two alternative (sub)sampling schemes: regular time sampling and tick time

sampling (recall Remark 2.1 for details on the sampling schemes).

15We restrict attention to the lags up to j = 10. The logarithmic autocorrelations at higher lags are very volatile since the
autocorrelations are close to zero.

16The autocorrelation decay rate would be slower without unified treatment of the bias corrections, which may explain the
relatively strong polynomial dependence in noise found in Jacod et al. (2017) and questioned by these authors themselves.
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7.5.1 Regular time sampling

The prices in this sample are recorded on a 1-second time scale. If there were multiple prices in a second,

we select the first one; and we do not record a price if there is no transaction in a second. We end up with

21,691 observations on average per trading day. Figure 8 is analogous to Figure 5. The three estimators,

RV, LA, and BCRV, now produce very different patterns. Both the RV and LA estimators suggest that

the noise is strongly autocorrelated in this subsample, even stronger than in the original full sample.

This would be counterintuitive since we eliminate more than 90% of the full sample in a fairly random

way — the elimination should have weakened the serial dependence of noise in the remaining sample.

However, the estimates by BCRV reveal that in fact the noise is approximately uncorrelated — it is the

finite sample bias that makes the autocorrelations of noise seem strong and persistent if not taken into

account.

If the noise is close to being independent, then ĨV
(1)
n , which assumes i.i.d. noise, would be a sound

estimator of the IV. An alternative estimator, e.g., ĨV
(2)
n , ĨVn, or ĨV

JLZ
n would then be robust if it would

deliver similar estimates. In the top panel of Figure 9, we observe that ĨV
(1)
n and ĨV

(2)
n yield virtu-

ally identical estimates. The other two estimators, ĨVn and ĨV
JLZ
n which don’t apply finite sample

bias corrections, however, yield even negative estimates. It is interesting to briefly elaborate on the

performance of ĨVn and ĨV
JLZ
n in this scenario. Using the triangular kernel, with the selected tun-

ing parameters jn = 30, `n = 4, Kn = 7 and a reasonable choice of θ = 0.2, we have by (44) that

ErrJLZ = 103.69%, ErrRV = 175.64%. Therefore, ĨV
JLZ
n and ĨVn are in fact estimating −3.69% and

−75.64% of the IV, and this is in line with the estimates in the top panel of Figure 9. We conclude

that Figures 6 and 9 jointly confirm the importance of our multi-step approach. Indeed, ĨV
(1)
n , which as-

sumes i.i.d. noise, exhibits unreliable behavior in Figure 6, while ĨVn, which doesn’t apply finite sample

bias corrections, shows unreliable behavior in Figure 9.

7.5.2 Tick time sampling

In a tick time sample, prices are collected with each price change, i.e., all zero returns are suppressed,

see, e.g., Zhou (1996), Griffin and Oomen (2008), Aı̈t-Sahalia et al. (2011), Kalnina (2011) and Da and

Xiu (2019). For the Citigroup transaction data, 70% of the returns are zero. The corresponding average

number of prices per second in our tick time sample is 3.2. Figure 10 shows that the microstructure noise

has a different dependence pattern in the tick time sample — its autocorrelation function is alternating.

Masked by alternating noise, the observed returns at tick time have a similar pattern; see Aı̈t-Sahalia

et al. (2011) and Griffin and Oomen (2008). This dependence structure of noise is perceived to be due

to the discreteness of price changes, irrespective of the distributional features of noise in the original
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transactions or quotes data.

Interestingly, the bottom panel of Figure 9 shows that the two estimators of the IV, ĨV
(1)
n and ĨV

(2)
n ,

remain close. It is not immediate why ĨV
(1)
n and ĨV

(2)
n deliver almost identical estimates, given the fact

that the dependence of noise in this tick time sample is drastically different from i.i.d. noise. However,

a clue is provided by the observation that negatively autocorrelated noise has less impact on the esti-

mation of the IV, as the high-order alternating autocovariances partially cancel out, and thus contribute

less to the asymptotic bias σ2
U .17 ĨVn and ĨV

JLZ
n are still significantly underestimating the IV due to the

finite sample bias.

7.6 Economic interpretation and empirical implication

The dependence structure of microstructure noise depends on the sampling frequency and scheme. In

an original transaction data sample, noise is likely to be positively autocorrelated as a result of various

trading practices that entail continuation in order flows. The dependence of noise can be reduced by

sampling sparsely, say, every few (or more) seconds as we show in Section 7.5.1; noise is close to inde-

pendent in such sparse subsamples. If, however, we remove all zero returns, thus sample in tick time,

noise typically exhibits an alternating autocorrelogram.

Microstructure theories can provide some intuitive economic interpretations of the dynamic proper-

ties of microstructure noise recovered in this paper. The positive autocorrelation function displayed in

Figure 5 is consistent with the findings in Hasbrouck and Ho (1987), Choi et al. (1988) and Huang

and Stoll (1997) that explicitly model the probability of order reversal π (or order continuation by

1 − π),18 so that the deviation of transaction prices from fundamentals becomes an AR(1) process.

Fitting the autocorrelation function recovered by BCRV in Figure 5 to that of an AR(1) model, we ob-

tain an estimate of the AR(1) coefficient equal to ι̂ = 0.73 and the probability of order continuation is

1− π̂ = (1 + ι̂)/2 = 0.87. That is, the estimated probability that a buy (or sell) order follows another

buy (or sell) order is 0.87. In view of the extensive empirical results in Huang and Stoll (1997) (see Table

5 therein), this is a reasonable estimate.

One possible interpretation of the positively autocorrelated order flows is that a large order is often

executed as a series of smaller trades to reduce the price impact, or conducted against multiple trades

from stale limit orders. However, such positive autocorrelation contradicts the prediction of inventory

17For a tractable analysis, one may consider AR(1) noise processes. Let ι ∈ (0, 1) be the absolute value of the AR(1) coefficient.

When the noise is positively autocorrelated, the asymptotic bias σ2
U corrected by ĨV

(1)
n and ĨV

(2)
n is (1 − ι)γ(0) and 1+ι

1−ι γ(0),
respectively; when the noise is negatively autocorrelated, it is (1 + ι)γ(0) and 1−ι

1+ι γ(0). Consider ι = 0.8. Then, (1− ι)γ(0) =

0.2γ(0) and 1+ι
1−ι γ(0) = 9γ(0) while (1 + ι)γ(0) = 1.8γ(0) and 1−ι

1+ι γ(0) = 1
9 γ(0). Therefore, the difference in the asymptotic bias

is smaller when the noise is negatively autocorrelated; consequently, the IV estimates by ĨV
(1)
n and ĨV

(2)
n are close, see also Tables 1

and 2 in our simulation study.
18It is the probability that a buy (sell) order follows another sell (buy) order.
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models, in which market makers induce negatively autocorrelated order flows to equilibrate invento-

ries; see Ho and Stoll (1981). Consequently, according to inventory models the probability of order

reversal would be π > 0.5. One remedy, suggested by Huang and Stoll (1997), is to collapse multi-

ple trades at the same price into one order, which is exactly the tick time sampling scheme considered

in Section 7.5.2. Exploiting the estimates by BCRV presented in Figure 10, we obtain an estimate of

the probability of order reversal equal to π̂ = 0.84, which is very close to the average probability 0.87

in Huang and Stoll (1997). We emphasize that we recover these probabilities without any prior knowl-

edge or estimates of the order flows.

The dependence structure of microstructure noise affects the estimation of the IV. Popular de-noise

methods that assume i.i.d. noise work reasonably well with relatively sparse regular time samples

or tick time samples. However, this discards a substantial amount of the original transaction data.19

Instead, we can directly estimate the IV from the original data using our multi-step estimators that

explicitly take the potential dependence in noise into account.

In our empirical study, we have also illustrated that bias corrections play an essential role in recover-

ing the statistical properties of noise and in estimating the IV. Our multi-step estimators are specifically

designed to conduct such bias corrections.

8 Conclusion

In high-frequency financial data the efficient price is contaminated by microstructure noise, which is

usually assumed to be independently and identically distributed. This simple distributional assump-

tion is challenged by both microeconomic financial models and various empirical facts. In this paper,

we deviate from the i.i.d. assumption by allowing noise to be dependent in a general setting. We

then develop econometric tools to recover the dynamic properties of microstructure noise and design

improved approaches for the estimation of the integrated volatility.

This paper makes four contributions. First, it develops nonparametric estimators of the second

moments of microstructure noise in a general setting. Second, it provides robust estimators of the

integrated volatility, without assuming serially independent noise. Third, it reveals the importance

of both asymptotic and finite sample bias analysis and develops simple and readily implementable

multi-step estimators. Empirically, it characterizes the dependence structures of noise at several time

scales and provides intuitive economic interpretations; it also investigates the impact of the dynamic

properties of microstructure noise on integrated volatility estimation.

19To obtain the Citigroup tick time sample and the 1-second regular time sample, we delete roughly 70% and 90% of the original
transaction data, respectively.
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This paper thus introduces a robust and accurate method to effectively separate the two compo-

nents of high-frequency financial data — the efficient price and microstructure noise. The robustness

lies in its flexibility to accommodate rich dependence structures of microstructure noise motivated by

various economic models and trading practices, whereas the accuracy is achieved by the finite sam-

ple refinement. As a result, we discover dynamic properties of microstructure noise consistent with

microstructure theory and obtain accurate volatility estimators.
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Tables and Figures

ι -0.7 -0.3 0 0.3 0.7

ÎVn -22.37 (14.15) -22.36 (14.17) -22.36 (14.18) -22.40 (14.20) -22.87 (14.27)

ÎV
(1)
n -1.71 (4.19) -0.97 (4.21) -0.23 (4.24) 0.85 (4.29) 4.33 (4.47)

ÎV
(2)
n -0.94 (5.58) -0.55 (5.61) -0.19 (5.65) 0.31 (5.72) 1.57 (5.98)

ÎV
(3)
n -0.55 (6.32) -0.35 (6.35) -0.17 (6.40) 0.04 (6.48) 0.19 (6.79)

ĨVn -22.66 (13.94) -22.66 (13.96) -22.68 (13.96) -22.74 (13.97) -23.30 (13.99)

ĨV
(1)
n -2.00 (3.07) -1.27 (3.08) -0.55 (3.09) 0.51 (3.10) 3.90 (3.18)

ĨV
(2)
n -1.37 (3.60) -1.01 (3.60) -0.67 (3.60) -0.20 (3.61) 0.93 (3.69)

ĨV
(3)
n -1.06 (3.89) -0.88 (3.89) -0.73 (3.90) -0.56 (3.91) -0.55 (3.99)

ĨV
JLZ
n -11.74 (7.63) -11.65 (7.63) -11.65 (7.64) -11.65 (7.65) -11.19 (7.68)

ÎV
QMLE
n 0.83 (10.13) -0.19 (3.16) -0.18 (3.43) 0.04 (3.52) 1.08 (4.35)

Table 1: Estimation of the IV. We take ∆ = 1 sec and the number of observations is n = 23,400. We report
the estimation results of three groups of IV estimators: our pre-averaging estimator and its multi-step

versions based on non-overlapping intervals ÎVn, ÎV
(1)
n , ÎV

(2)
n and ÎV

(3)
n ; our pre-averaging estimator and

its multi-step versions based on overlapping intervals ĨVn, ĨV
(1)
n , ĨV

(2)
n and ĨV

(3)
n ; the estimator ĨV

JLZ
n

based on the pre-averaging method proposed in Jacod et al. (2019) and the estimator ÎV
QMLE
n based on

the QMLE method in Da and Xiu (2019). The numbers represent the centered mean estimates based on
1,000 simulations with standard deviations between parentheses. All numbers in the table have been
multiplied by 105. The tuning parameters for the first eight estimators are jn = 20, `n = 10 and θ = 0.4,
and we use the triangular kernel. For the estimator in Jacod et al. (2019) we used the choices suggested
in that paper: h̄n = 0.5/

√
∆n, kn = (∆n)−1/5 and k′n = (∆n)−1/8. In Da and Xiu (2019) the parameter q

of the fitted MA(q) model was found by optimization over q ∈ {8, 9, 10} only for each sample in order
to save time, since test runs indicated that the optimal order was usually around q = 9.
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ι -0.7 -0.3 0 0.3 0.7

ÎVn -4.49 (3.87) -4.49 (3.88) -4.49 (3.90) -4.50 (3.93) -4.62 (4.05)

ÎV
(1)
n -1.47 (2.83) -0.72 (2.85) 0.02 (2.87) 1.13 (2.91) 4.98 (3.06)

ÎV
(2)
n -0.11 (3.07) -0.03 (3.09) 0.04 (3.11) 0.13 (3.15) 0.40 (3.32)

ÎV
(3)
n 0.02 (3.09) 0.04 (3.12) 0.04 (3.14) 0.03 (3.18) -0.06 (3.35)

ĨVn -4.83 (3.48) -4.83 (3.48) -4.83 (3.49) -4.85 (3.50) -5.00 (3.55)

ĨV
(1)
n -1.80 (2.13) -1.06 (2.13) -0.32 (2.14) 0.78 (2.15) 4.60 (2.20)

ĨV
(2)
n -0.48 (2.28) -0.41 (2.29) -0.34 (2.29) -0.25 (2.31) -0.02 (2.37)

ĨV
(3)
n -0.35 (2.30) -0.34 (2.30) -0.34 (2.31) -0.36 (2.32) -0.48 (2.39)

ĨV
JLZ
n -3.79 (3.11) -3.68 (3.12) -3.68 (3.12) -3.68 (3.13) -3.09 (3.17)

ÎV
QMLE
n 0.50 (3.61) -0.69 (2.64) -0.76 (3.16) -0.80 (3.28) 0.28 (4.74)

Table 2: Estimation of the IV. We take ∆ = 0.2 sec and the number of observations is n = 117,000.
We report the estimation results of three groups of IV estimators: our pre-averaging estimator and its

multi-step versions based on non-overlapping intervals ÎVn, ÎV
(1)
n , ÎV

(2)
n and ÎV

(3)
n ; our pre-averaging

estimator and its multi-step versions based on overlapping intervals ĨVn, ĨV
(1)
n , ĨV

(2)
n and ĨV

(3)
n ; the es-

timator ĨV
JLZ
n based on the pre-averaging method proposed in Jacod et al. (2019) and the estimator

ÎV
QMLE
n based on the QMLE method in Da and Xiu (2019). The numbers represent the centered mean

estimates based on 1,000 simulations with standard deviations between parentheses. All numbers in
the table have been multiplied by 105. The tuning parameters for the first eight estimators are jn = 20,
`n = 10 and θ = 0.4, and we use the triangular kernel. For the estimator in Jacod et al. (2019) we used
the choices suggested in that paper: h̄n = 0.5/

√
∆n, kn = (∆n)−1/5 and k′n = (∆n)−1/8. In Da and Xiu

(2019) the parameter q of the fitted MA(q) model was found by optimization over q ∈ {8, 9, 10} only for
each sample in order to save time, since test runs indicated that the optimal order was usually around
q = 9.
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Step 1: γ̃(0)
(1)
n ĨV

(1)
n

Step 2: ĨV
(2)
n γ̃(0)

(2)
n , γ̃(j)

(2)
n

Step 3: γ̃(0)
(3)
n , γ̃(j)

(3)
n ĨV

(3)
n

...
...

...

Step K: γ̃(0)
(K)
n , γ̃(j)

(K)
n ĨV

(K)
n

Observed price Y

RV

Asymptotic bias

PAV

Finite sample bias RV

PAV

Asymptotic bias

Finite sample bias RV

Asymptotic bias

PAV

Figure 1: Illustration of the construction of the multi-step estimators. In the first step, we use realized

volatility (RV) to obtain an estimator of the variance of (possibly misspecified) i.i.d. noise, γ̃(0)
(1)
n . Next,

this estimator is used to correct the asymptotic bias of the pre-averaging estimator (PAV) to derive the

first-step estimator of the IV, ĨV
(1)
n . In the second step, we use ĨV

(1)
n to obtain finite sample bias corrected

estimators of the variance and covariances of noise, γ̃(0)
(2)
n and γ̃(j)

(2)
n , which are then used to remove

the asymptotic bias in PAV, leading to the second-step IV estimator, ĨV
(2)
n . Iterating this procedure will

lead to K-step estimators γ̃(0)
(K)
n , γ̃(j)

(K)
n , ĨV

(K)
n .
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Figure 2: Realized volatility estimators against the number of lags j, based on a single simulated sample,
without and with finite sample bias correction, cf. (6) and (10). Here, RV: 〈̂Y, Y〉(j)n; RVL: 〈̂Y, Y〉(j)n −

0.8jIV
2(n−j+1) ; RVM: 〈̂Y, Y〉(j)n − jIV

2(n−j+1) ; and RVH: 〈̂Y, Y〉(j)n − 1.2jIV
2(n−j+1) . We take ∆ = 1 sec, the number

of observations is 23,400, and ι = −0.7. The designation “True” corresponds to the stochastic limit
γ(0)− γ(j).
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Figure 3: Realized volatility (RV) and local averaging (LA) estimators of the autocorrelations of noise
against the number of lags j, averaged over 1,000 simulated samples. Top panel: RV and LA estimators
without finite sample bias corrections. Bottom panel: RV and LA estimators with finite sample bias
corrections (RVBC, LABC). The dashed lines are the 95% simulated confidence intervals. We take ∆ = 1
sec, the number of observations is 23,400, and ι = −0.7. The tuning parameters of the RV and LA
estimators are jn = 20 and Kn = 6, respectively.
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Figure 6: Estimation of the IV based on transaction data for Citigroup. Sample period: January, 2011,
consisting of 20 trading days. On average there are 10.5 observations per second in the sample. The

estimators ĨV
(1)
n , ĨV

(2)
n , and ĨVn are given by (36), (41), and (25). The ĨV

JLZ
n estimator is proposed in Jacod

et al. (2019). In the bottom panel, the asymptotic confidence intervals (CIs) are based on the limit
distribution in Theorem 5.1. The tuning parameter of the RV estimator is jn = 30, and `n = 10. θ is
selected according to (28).
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Figure 7: Top panel: Logarithmic autocorrelations of noise against the number of lags j estimated by
BCRV for each trading day based on transaction data for Citigroup. Bottom panel: Means of the loga-
rithmic autocorrelations of noise and a linear regression line. Sample period: January, 2011, consisting
of 20 trading days. On average there are 10.5 observations per second in the sample. The tuning pa-
rameter of the RV estimator is jn = 30.
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ĨV
(2)
n

ĨVn

ĨV
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Figure 9: Estimation of the IV based on subsamples of the transaction data for Citigroup. Sample
period: January, 2011, consisting of 20 trading days. In the top panel, the estimation is performed on a
subsample that is recorded on a 1-sec time scale. In the bottom panel, the estimation is performed on a
subsample that is recorded at tick time; on average there are 3.2 observations per second in the sample.

The estimators ĨV
(1)
n , ĨV

(2)
n , and ĨVn are given by (36), (41), and (25). The ĨV

JLZ
n estimator is proposed

in Jacod et al. (2019). The tuning parameter of the RV estimator is jn = 30, and `n = 4 for the 1-sec
sample and `n = 6 for the tick time sample. θ is selected according to (28).
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A Proofs

A.1 Assumptions and Notation

In all proofs that follow, the constants C may vary from line to line, or even within one line. We add a

subscript par if they depend on some parameter par. In the sequel, we will employ Lemma VIII.3.102

in Jacod and Shiryaev (2003) repeatedly, and we will refer to it as the JS-Lemma.

Adopting the standard localization procedure (see e.g., Jacod and Protter (2011) for further details),

we may assume that:

Assumption A.1. The efficient price X satisfies the Assumption 2.1 with bt and σt bounded (uniformly in ω

and t).

This implies that for all stopping times 0 ≤ S ≤ T ≤ 1 we have

E
(
|XT − XS|p |FS

)
≤ CpE (T − S |FS ) , ∀p ≥ 2. (A.1)

|E (XT − XS |FS ) | ≤ CE (T − S |FS ) .

We first introduce some notation that is used to prove the results in Section 4.1:

Gn
i (s) :=

kn−1

∑
j=1

gn
j 1{((i+j−1)∆n ,(i+j)∆n ]}(s);

Hn
i := Fn

i ⊗ Gi;

βn
m := n1/4

(
σmkn∆nWn

mkn + Un
mkn

)
;

ξn
m := n1/4Yn

mkn − βn
m;

ηn
m :=

nr/4

θ
E
(∣∣∣Yn

m

∣∣∣r ∣∣∣Hn
mkn

)
;

η̃n
m :=

µr

θ

(
θψ0σ2

mkn∆n
+

ψ1

θ
ΣU

) r
2

;

PAVn :=
Mn−1

∑
m=0

ηn
m;

P̃AV
n

:=
Mn−1

∑
m=0

η̃n
m.

To prove the results presented in Section 4.2 we will also need the following:

Ĝn
i (j, j′) =

∫ ∞

0
Gn

i+j(s)G
n
i+j′(s)ds,

Gn
i (j, j′) =

∫ ∞

0
Gn

i+j(s)G
n
i+j′(s)ds

∫ s

0
Gn

i+j(u)G
n
i+j′(u)du,

Xn
i (t) = Bn

i (t) + Mn
i (t);

2



where Bn
i (t) =

∫ t
0 bsGn

i (s)ds, and Mn
i (t) =

∫ t
0 σsGn

i (s)dWs. Furthermore, we define

Kn
i = Fn

i ⊗ Gi−b kn
2 c

, J (p)n
j = Kn

j(p+1)kn
, J ′(p)n

j = Kn
j(p+1)kn+pkn

, IVt =
∫ t

0
σ2

s ds;

ĉn
i =

kn−1

∑
j=1

(
gn

j

)2
∆n

i+jIV, αn = E

((
Un

i

)2
)

, Ûn
i =

(
Un

i

)2
− αn, X̂n

i = (Xn
i )

2 − ĉn
i ;

Ψn
i =

(
Yn

i

)2
− ĉn

i − αn = X̂n
i + Ûn

i + 2Xn
i Un

i , ζ(p)n
i =

i+pkn−1

∑
j=i

Ψn
j ;

η(p)n
j =

√
∆n

θψ0
ζ(p)n

j(p+1)kn
, η(p)n

j = E
(

η(p)n
j

∣∣∣J (p)n
j

)
;

η′(p)n
j =

√
∆n

θψ0
ζ(1)n

j(p+1)kn+pkn
, η′(p)n

j = E
(

η′(p)n
j

∣∣∣J ′(p)n
j

)
,

and let Kp
n = b 1

(p+1)kn∆n
c − 1, Ip

n = (Kp
n + 1)(p + 1)kn. We can then decompose ĨVn − IV into the

following terms:

F(p)n =
Kp

n

∑
j=0

η(p)n
j , M(p)n =

Kp
n

∑
j=0

(
η(p)n

j − η(p)n
j

)
;

F′(p)n =
Kp

n

∑
j=0

η′(p)n
j , M′(p)n =

Kp
n

∑
j=0

(
η′(p)n

j − η′(p)n
j

)
;

Ĉ(p)n =

√
∆n

θψ0

n−kn+1

∑
i=Ip

n

Ψn
i ;

Ĉ′(p)n =
(n− kn + 2) αn

√
∆n

θψ0
− ψ1

θ2ψ0

(
γ̂(0)n + 2

`n

∑
j=1

γ̂(j)n

)
;

Ĉ′′n =

√
∆n

θψ0

n−kn+1

∑
i=0

ĉn
i − IV,

since we have

ĨVn − IV = M(p)n + M′(p)n + F(p)n + F′(p)n + Ĉ(p)n + Ĉ′(p)n + Ĉ′′n . (A.2)

A.2 Auxiliary Lemmas

We will often need the following two useful results based on the JS-Lemma.

Let Z be an integrable random variable with finite variance and measurable with respect to Gk′+k

(see Assumption 2.2 for the definition of this σ-algebra) and define

Ck
Z := E

(
(E (Z |Gk′ )−E(Z))2

)
, ΛZ :=

E (Z |Gk′ )−E(Z)√
Ck

Z

.
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Then we have by the JS-Lemma

E (Z |Gk′ ) = E(Z) + ΛZ

√
Ck

Z, (A.3)

with E
(
Λ2

Z
)
= 1 and Ck

Z ≤ Ck−2v.

Another application of the JS-Lemma gives that if Zi, Zj are Gi- and Gj-measurable random variables

respectively, with mean zero and bounded variance, then we have for all k ≤ i < j that

E
(∣∣E (ZiZj |Gk

)∣∣) ≤ C (j− i)−v . (A.4)

To see this, we use the JS-Lemma to obtain (since the Zj have bounded variance):

cij := E
((

E
(
Zj |Gi

))2
)
≤ C (j− i)−2v . (A.5)

Then,

E
(∣∣E (ZiZj |Gk

)∣∣) ≤ √C (j− i)−2v
E

(∣∣∣∣∣E
(

Zi
E
(
Zj |Gi

)
√cij

|Gk

)∣∣∣∣∣
)

.

Now applying the Cauchy-Schwarz inequality and using the fact that the variance of the Zi is bounded,

we obtain (A.4).

Next, in the setting of Section 4, we recall some useful estimates (see Jacod et al. (2009)) for pre-

averaged sequences defined in (19):

∣∣∣E(Xn
i |Fn

i

)∣∣∣ ≤ C
√

∆n, E
(∣∣∣Xn

i

∣∣∣q |Fn
i

)
≤ Cq∆q/4

n , (A.6)

for any q > 0, and

E

((
Wn

i

)2
|Fn

i

)
= kn∆nψ0 + Op(∆3/4

n ). (A.7)

The following lemma, which establishes a central limit theorem for general pre-averaged noise,

plays a central role in the proofs of the results in Sections 4 and 5.

Lemma A.1. Assume that the noise satisfies Assumption 2.2 and that (14) is satisfied. Then, the following

central limit theorem holds for Un
i :

n1/4Un
i
L−→N

(
0,

ψ1ΣU
θ

)
. (A.8)

Proof. Let an
j = −gn

j

√
kn/φn

1 (0). First, a Riemann sum approximation implies

φn
1 (0) = ψ1 + o(∆1/4

n ). (A.9)
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Next, for any ` ∈ Z, the Lipschitz property of g′ implies
∣∣∣gn

j − gn
j−`

∣∣∣ ≤ C|`|k−2
n , so

|φn
1 (`)− ψ1| ≤ C|`|/kn + o(∆1/4

n ). (A.10)

Since E

((
∑kn−1

j=0 an
j Ui+j

)2
)
= 1

φn
1 (0)

∑|`|≤kn φn
1 (`)γ(`), we have

∣∣∣∣∣∣E
(kn−1

∑
j=0

an
j Ui+j

)2
− 1

φn
1 (0)

∑
|`|≤kn

ψ1γ(`)

∣∣∣∣∣∣ ≤ C
φn

1 (0)
∑
|`|≤kn

|γ(`)`|
kn

≤ C
√

∆n, (A.11)

where we used that |γ(`)`| ≤ C|`|1−v with v > 2, and kn = O(n1/2). Then ∑|`|>kn γ(l) ≤ Ck1−v
n gives

∣∣∣∣∣∣ 1
φn

1 (0)
∑
|`|≤kn

ψ1γ(`)− ΣU

∣∣∣∣∣∣ ≤ C
√

∆n, (A.12)

and we see that E

((
∑kn−1

j=0 an
j Ui+j

)2
)
→ ΣU .

Since we assume the existence of moments of noise of all orders, and v > 1, we have for sufficiently

large r that v− 2
r−2 > 1, which implies

∑
k∈N∗

k
2

r−2 ρk < ∞,

where the {ρk} are the ρ-mixing coefficients. This is sufficient for the following CLT, according to Rio

(1997)1:

kn−1

∑
j=0

an
j Ui+j

L−→ N (0, ΣU) .

Since n1/4Un
i =

√
φn

1 (0)

∆1/2
n kn

∑kn−1
j=0 an

j Ui+j, we obtain by (A.11) and (A.12), using (18) and (A.9), that

E

((
n1/4Un

i

)2
)
=

ψ1ΣU
θ

+ o(∆1/4
n ), (A.13)

and the stated result follows.

The result of Lemma A.1 for the asymptotics of pre-averaged noise will allow us to prove the results

in Subsection 4.1 using a similar strategy as in Podolskij and Vetter (2009a,b). However, their proofs

need to be modified for our setting. The following lemmas will therefore turn out to be useful.

Lemma A.2. Assume the conditions of Theorem 4.1 are satisfied. Then there is, for any q > 0, some constant

1Rio (1997) discusses strongly mixing or α-mixing, which is implied by ρ-mixing.
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Cq > 0 (depending on q), such that for all m:

E
(
|ξn

m|
q)+ E

(∣∣∣n1/4Xn
i

∣∣∣q) < Cq; (A.14)

E
(
|βn

m|
q)+ E

(∣∣∣n1/4Yn
i

∣∣∣q) < Cq. (A.15)

Proof of Lemma A.2. The boundedness of the moments of n1/4Xn
i follows from (A.6), which also es-

tablishes the same bound for n1/4Wn
i if we take the drift of X equal to zero and the volatility con-

stant. This, together with the boundedness of σ, gives the boundedness of E(ξn
m) since we can write

ξn
m = n1/4

(
Xn

mkn − σmkn∆n Wn
mkn

)
.

Now we show the boundedness of E
(∣∣∣n1/4Yn

i

∣∣∣q). Hölder’s inequality implies

E
(∣∣∣n1/4Yn

i

∣∣∣q) ≤ Cq

(
E
(∣∣∣n1/4Xn

i

∣∣∣q)+ E
(∣∣∣n1/4Un

i

∣∣∣q)) .

Boundedness of E
(∣∣∣n1/4Xn

i

∣∣∣q) has already been established, while E
(∣∣∣n1/4Un

i

∣∣∣q) is known to be bounded

by Lemma A.1 and the well known fact that convergence in distribution implies convergence in mo-

ments under a uniformly bounded moments condition, see, e.g., Theorem 4.5.2 of Chung (2001). The

result for E
(
|βn

m|
q) follows by similar arguments.

Lemma A.3. Assume the conditions of Theorem 4.1 are satisfied. Then we have for all even integers r > 2 that,

uniformly in m,

E
(
(βn

m)
2
∣∣∣Hn

mkn

)
=

(
θψ0σ2

mkn∆n
+

ψ1ΣU
θ

)
+ op(n−1/4), (A.16)

E
(
(βn

m)
r
∣∣∣Hn

mkn

)
= µr

(
θψ0σ2

mkn∆n
+

ψ1ΣU
θ

)r/2
+ op(1), (A.17)

with µr the moment of order r of a standard normal random variable.

Proof. Let {rn} be a sequence of integers satisfying

rn � nϑ,
1

4v
< ϑ <

1
4

. (A.18)

For any process Z, denote

Zn
m,rn := −

rn−1

∑
j=0

gn
j Zn

mkn+j,

Zn
rn ,m+1 := −

kn−1

∑
j=rn

gn
j Zn

mkn+j.

Let

β
n
m,rn

:= n1/4Un
m,rn β

n
rn ,m+1 := n1/4

(
σmkn∆n Wn

mkn + Un
rn ,m+1

)
. (A.19)
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This implies that βn
m = β

n
m,rn

+ β
n
rn ,m+1. We first prove (A.16) by establishing the following three results:

E
(
(βn

m)
2
∣∣∣Hn

mkn

)
−E

((
β

n
rn ,m+1

)2 ∣∣∣Hn
mkn

)
= op(n−1/4), (A.20)

E

((
β

n
rn ,m+1

)2 ∣∣∣Hn
mkn

)
−E

((
β

n
rn ,m+1

)2 ∣∣∣Fn
mkn

)
= op(n−1/4), (A.21)

E

((
βrn ,m+1

)2 ∣∣∣Fn
mkn

)
−
(

θψ0σ2
mkn∆n

+
ψ1ΣU

θ

)
= op(n−1/4). (A.22)

1. To prove (A.20), it is enough to show that

E

((
β

n
m,rn

)2 ∣∣∣Hn
mkn

)
= op(n−1/4), (A.23)

E
((

β
n
rn ,m+1

) (
β

n
m,rn

) ∣∣∣Hn
mkn

)
= op(n−1/4). (A.24)

To establish (A.23), we write

(
β

n
m,rn

)2
= n1/2

(
Un

m,rn

)2
= n1/2

rn−1

∑
j=0

rn−1

∑
j′=0

gn
j gn

j′U
n
mkn+jU

n
mkn+j′ .

Taking conditional expectations we see that the left-hand side in (A.23) is smaller than

rn−1

∑
j=0

(gn
j )

2E

((
Umkn+j

)2 ∣∣∣Hn
mkn

)
+ 2

rn−2

∑
j=0

rn−1

∑
j′=j+1

∣∣∣gn
j gn

j′

∣∣∣ ∣∣∣E(Umkn+jUmkn+j′
∣∣∣Hn

mkn

)∣∣∣.
Since

∣∣∣gn
j

∣∣∣ ≤ C
√

∆n for all j, we find by (A.4),

E

((
β

n
m,rn

)2 ∣∣∣Hn
mkn

)
≤ C

√
∆n

rn + 2
rn−2

∑
j=0

rn−1

∑
j′=j+1

(j′ − j)−v

 ≤ C
√

∆nrn, (A.25)

and this proves (A.23) due to (A.18). To prove (A.24) it is enough to show that

√
nE
(

Un
m,rn Un

rn ,m+1
∣∣Gmkn

)
= Op(n−1/2), (A.26)

n
1
4 E
(

E
(

β
n
m,rn

Wn
mkn

∣∣∣Hn
mkn

))
= op(n−1/4). (A.27)

The first result follows since the left-hand side equals

E

n1/2
rn−1

∑
j=0

kn−1

∑
j′=rn

gn
j gn

j′U
n
mkn+jU

n
mkn+j′

∣∣ Gmkn

 ≤ Cn1/2
rn−1

∑
j=0

kn−1

∑
j′=rn

√
∆n
√

∆n |j′ − j|−v

by (A.4), and since v > 2 we get (A.26).
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For (A.27), we note that the independence of G,F , and the estimates (A.6) and (A.23) imply

n
1
4 E
(∣∣∣E (β

n
m,rn

Wn
mkn

∣∣∣Hn
mkn

)∣∣∣) ≤ Cn
1
4
√

∆nE
(∣∣∣E (β

n
m,rn

∣∣Gmkn

)∣∣∣) ≤ C∆
1
4
n

√
n−

1
4 . (A.28)

This proves (A.24) and hence (A.20) has now been established.

2. To prove (A.21) we note that the left-hand side of (A.21) is

E

((
n

1
4 Un

rn ,m+1

)2 ∣∣∣Hn
mkn

)
−E

((
n

1
4 Un

rn ,m+1

)2
)

,

which is of order Op(r−v
n ) by (A.3), so (A.21) follows from (A.18).

3. Finally, we prove (A.22). We have by Lemma 4 of Podolskij and Vetter (2009a) that

E

((
n1/4σmkn∆n Wn

mkn

)2 ∣∣∣Fn
mkn

)
= n1/2σ2

mkn∆n
kn∆nψ0 + op(n−1/4) = σ2

mkn∆n
ψ0θ + op(n−1/4),

where the last equality follows from (18). Due to the independence of G and F we therefore only

need to show that

E

((
n1/4Un

rn ,m+1

)2
)
=

ψ1ΣU
θ

+ op(n−1/4).

We know from (A.13) that

E

((
n1/4Un

mkn

)2
)
=

ψ1ΣU
θ

+ o(∆1/4
n ),

so the desired result follows if we can show that∣∣∣∣E((n1/4Un
mkn

)2
)
−E

((
n1/4Un

rn ,m+1

)2
)∣∣∣∣ = op(n−1/4). (A.29)

But this follows from

E

((
n1/4Un

m,rn

)2
)
≤ C∆nrn; E

(
Un

m,rn Un
rn ,m+1

)
≤ C∆n,

which can be obtained from (A.23) and (A.26).

This completes the proof of (A.16). To establish (A.17), we show that

E
(
|βn

m|r
∣∣∣Hn

mkn

)
−E

(
|βn

rn ,m+1|
r
∣∣∣Hn

mkn

)
= op(1), (A.30)

E
(
|βn

rn ,m+1|
r
∣∣∣Hn

mkn

)
−E

(
|βn

rn ,m+1|
r
∣∣∣Fn

mkn

)
= op(n−1/4), (A.31)

E
(
|βrn ,m+1|

r
∣∣∣Fn

mkn

)
−
(

θψ0σ2
mkn∆n

+
ψ1ΣU

θ

)r/2
= op(1). (A.32)
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1. For (A.30), we use the Mean Value Theorem and (A.23) to write

E
(
(βn

m)
r −

(
β

n
rn ,m+1

)r ∣∣∣Hn
mkn

)
= E

(
r
(

β
n
rn ,m+1

)r−1 (
β

n
m,rn

) ∣∣∣Hn
mkn

)
+ op(1).

Application of the Cauchy-Schwarz inequality yields that the right-hand side is op(1) due to (A.25)

and Lemma A.2.

2. We now turn to (A.31). For any l ≤ r, apply (A.3) to write

E

((
n1/4Un

rn ,m

)l ∣∣∣Hn
mkn

)
= E

((
n1/4Un

rn ,m

)l
)
+ Crn ,lΛl ,

with E
(
Λ2

l
)
= 1 and Crn ,l ≤ Cr−v

n ≤ Cn−1/4 because of (A.18). This means we can replace the

conditional moments by the unconditional moments plus a correction term that vanishes asymp-

totically. Using the notation Ck
r = r!

k!(r−k)! for the binomial coefficients, this gives:

E
((

β
n
rn ,m+1

)r ∣∣∣Hn
mkn

)
= E

(
r

∑
k=0

Ck
r σk

mkn∆n

(
n1/4Wn

mkn

)k (
n1/4Un

rn ,m

)r−k ∣∣∣Hn
mkn

)

=
r

∑
k=0

Ck
r σk

mkn∆n
E

((
n1/4Wn

mkn

)k ∣∣∣Fn
mkn

)
E

((
n1/4Un

rn ,m

)r−k ∣∣Gmkn

)
= E

((
β

n
rn ,m+1

)r ∣∣∣Fn
mkn

)
+

r

∑
k=0

Cr
kσk

mkn∆n
E

((
n1/4Wn

mkn

)k ∣∣∣Fn
mkn

)
Crn ,r−kΛr−k.

Clearly, the last term is op(1) since (A.6) shows that the conditional expectation in the summation

is bounded for all k, while Crn ,l ≤ n−1/4. This proves (A.31).

3. The equality (A.32) is a consequence of the asymptotic distribution of βn
m, which follows from

Lemma A.1, the fact that the sequence of the moments of the noise is uniformly bounded, and the

independence of W and U.

This concludes the proof of Lemma A.3.

Lemma A.4. Assume that the conditions of Theorem 4.2 hold and let

Ln := n−1/4
Mn−1

∑
m=0

(
(βn

m)
2 −E

(
(βn

m)
2
∣∣∣Hn

mkn

))
. (A.33)

We have the following stable convergence in law:

Ln
L−s−→

√
2
θ

∫ 1

0

(
θψ0σ2

s +
ψ1ΣU

θ

)
dW ′s , (A.34)

where W ′ is a standard Wiener process independent of F .
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Proof. Let ϑn
m := n−1/4

(
(βn

m)
2 −

(
θψ0σ2

mkn∆n
+ ψ1ΣU

θ

))
. Then, since Mn ≤ C

√
n,

Ln =
Mn−1

∑
m=0

ϑn
m + op(1),

by Lemma A.3. We also have

Mn−1

∑
m=0

E
(

ϑn
m

∣∣∣Hn
mkn

)
P→ 0, (A.35)

again by Lemma A.3, and

Mn−1

∑
m=0

E
(
(ϑn

m)
2
∣∣∣Hn

mkn

)
=

1
θMn

Mn−1

∑
m=0

E
(
(βn

m)
4
∣∣∣Hn

mkn

)
+

1
θMn

Mn−1

∑
m=0

(
θψ0σ2

mkn∆n
+

ψ1ΣU
θ

)2

− 2
θMn

Mn−1

∑
m=0

E
(
(βn

m)
2
∣∣∣Hn

mkn

)(
θψ0σ2

mkn∆n
+

ψ1ΣU
θ

)
+ op(∆1/4

n ).

The last remainder term op(∆1/4
n ) is due to the approximation Mn =

√
n/θ + o(n1/4). Now it follows

from (A.17) and a Riemann approximation that

Mn−1

∑
m=0

E
(
(ϑn

m)
2
∣∣∣Hn

mkn

)
P→ 2

θ

∫ 1

0

(
θψ0σ2

u +
ψ1ΣU

θ

)2
du. (A.36)

Next, denote Ę∆n
mZ = Zn

(m+1)kn
− Zn

mkn
, for any process Z. We will show that

Mn−1

∑
m=0

E
(

ϑn
m

Ę∆n
mN

∣∣∣Hn
mkn

)
P→ 0, (A.37)

for any bounded martingale N defined on the probability space (Ω,F , (Ft)t≥0, P).

According to Jacod et al. (2009) and the proof of Theorem IX 7.28 of Jacod and Shiryaev (2003)

it suffices to consider martingales in N 0 or N 1, where N 0 is the set of all bounded martingales on

(Ω,F , (Ft)t≥0, P) which are orthogonal to W, and where N 1 is the set of all martingales having a limit

N∞ = f (Yt1 , . . . , Ytq), where f is any bounded Borel function on Rq, t1 < . . . < tq and q ≥ 1.

First, let N ∈ N 0 and let F̃ ′t =
⋂

s>t Fs ⊗ G. Then, for any t > mkn∆n, ϑ
n
m(t) := E

(
ϑn

m

∣∣∣F̃ ′t ), condi-

tional on σmkn∆n , is a martingale with respect to the filtration generated by {Wt −Wmkn∆n |t > mkn∆n}.
By the martingale representation theorem, we have ϑ

n
m(t) = ϑ

n
m(mkn∆n) +

∫ t
mkn∆n

τudWu for some pre-

dictable process τ. The orthogonality of W and N and the martingale property of N imply that

E
(

ϑn
m

Ę∆n
mN

∣∣∣F̃ ′mkn∆n

)
= E

((
ϑn

m − ϑ
n
m (mkn∆n)

)
Ę∆n

mN + ϑ
n
m (mkn∆n) Ę∆n

mN
∣∣∣F̃ ′mkn∆n

)
= 0,

which gives

E
(

ϑn
m

Ę∆n
mN

∣∣∣Hn
mkn

)
= 0, (A.38)
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sinceHn
mkn
⊂ F̃ ′mkn∆n

.

Next, assume that N ∈ N 1. It can be shown (see Jacod et al. (2009)) that there exists some f̂t such

that for all t ∈ [tl , tl+1), Nt = f̂t(Yt0 , Yt1 , . . . , Ytl ):= E( f (Yt0 , . . . , Ytl , Ytl+1 , . . . , Ytq)|Ft) with t0 = 0, tq+1 =

∞, and such that it is measurable in (Yt1 , . . . , Ytl ). Hence, Ę∆n
mN = 0 if it does not cover any of the

points t1, . . . , tq+1. But such intervals (to compute Ę∆n
mN) that contain any of the points t1, . . . , tq+1 are

at most q + 1 in number. Furthermore, by the boundedness of N and the conditional Cauchy-Schwarz

inequality, we have the following:

E
(∣∣ϑn

m
Ę∆n

mN
∣∣ ∣∣∣Hn

mkn

)
≤
√

E
(
(ϑn

m)
2
∣∣∣Hn

mkn

)√
E
((

Ę∆n
mN
)2
∣∣∣Hn

mkn

)
= Op(n−1/4).

Now (A.37) follows since there are at most finitely many such intervals.

Due to the fact that ϑn
m is an even functional of n1/4Wn

mkn and n1/4Un
mkn we know that both have a

symmetric asymptotic distribution, and

E
(

ϑn
m

Ğ∆n
mW

∣∣∣Hn
mkn

)
P→ 0. (A.39)

From (A.17), we deduce that (ϑn
m)

21{|ϑn
m |>ε} = op(n−1/2) for any ε > 0, so we have

Mn−1

∑
m=0

E
(
(ϑn

m)
21{|ϑn

m |>ε}

∣∣∣Hn
mkn

)
P→ 0. (A.40)

Now the proof is complete in view of (A.35)-(A.40), and Theorem IX.7.28 of Jacod and Shiryaev (2003).

Lemma A.5. Assume that the conditions of Theorem 4.2 hold. We then have that

Mn−1

∑
m=0

(
Yn

mkn

)2
− 1√

n

Mn−1

∑
m=0

(βn
m)

2 = op(n−1/4). (A.41)

Proof. Denote

Ỹn
m = n−1/4βn

m = σmkn∆n Wn
mkn + Un

mkn . (A.42)

Then,

E

(∣∣∣∣∣Mn−1

∑
m=0

(
Yn

mkn

)2
− 1√

n

Mn−1

∑
m=0

(βn
m)

2

∣∣∣∣∣
)
≤

Mn−1

∑
m=0

√
E

((
Yn

mkn − Ỹn
m

)2
)√

E

((
Yn

mkn + Ỹn
m

)2
)

.

Since

√
E

((
Yn

mkn + Ỹn
m

)2
)
= O(n−1/4) by (A.6), the result is proven if

Mn−1

∑
m=0

√
E

((
Yn

mkn − Ỹn
m

)2
)
→ 0. (A.43)

But this follows directly from Lemma 7.8 in Barndorff-Nielsen et al. (2006).
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A.3 Proofs of the Results in Section 3 and Subsection 4.1

A.3.1 Proof of Proposition 3.1

Proof. For any process Z, we write ∆n
i,jZ := Zn

i+j − Zn
i , for j = 1, 2, . . . , n− i. The process Y then satisfies

n−j

∑
i=0

(∆n
i,jY)

2 =
n−j

∑
i=0

(∆n
i,jX)2 + 2

n−j

∑
i=0

∆n
i,jX ∆n

i,jU +
n−j

∑
i=0

(∆n
i,jU)2. (A.44)

We now analyze the asymptotic properties of the three components on the right-hand side of (A.44):

(i) First note that ∑
n−j
i=0 (∆

n
i,jX)2/j P→ [X, X], where [X, X] is the quadratic variation of X.

(ii) By the independence of X and U, we have

n−j

∑
i=0

E

((
∆n

i,jX ∆n
i,jU
)2
)
=

n−j

∑
i=0

E

((
∆n

i,jX
)2
)

E

((
∆n

i,jU
)2
)
≤ Cj. (A.45)

The last inequality follows from the fact that U has bounded moments and from an application

of (A.1). Next,

∑
i,i′ :i<i′

E
(

∆n
i,jX ∆n

i,jU ∆n
i′ ,jX ∆n

i′ ,jU
)

= ∑
i,i′ :i<i′

E
(

∆n
i,jX ∆n

i′ ,jX
)

E
(

∆n
i,jU ∆n

i′ ,jU
)

≤Cj∆n

 ∑
i,i′ :i+j<i′

E
(

∆n
i,jU ∆n

i′ ,jU
)
+ ∑

i,i′ :i+j≥i′>i
E
(

∆n
i,jU ∆n

i′ ,jU
)

≤Cj2.

(A.46)

The first inequality follows from the Cauchy-Schwarz inequality and (A.1). To establish the second

inequality, we apply the Cauchy-Schwarz inequality, (A.5), and the fact that v > 1, to obtain

∑
i,i′ :i+j<i′

E
(

∆n
i,jU ∆n

i′ ,jU
)
= ∑

i,i′ :i+j<i′
E
(

∆n
i,jU E

(
∆n

i′ ,jU
∣∣∣F(i+j)∆n

))

≤ C ∑
i

∑
i′ :i+j<i′

√
E

((
E
(

∆n
i′ ,jU

∣∣∣F(i+j)∆n

))2
)

≤ C ∑
i

∑
i′ :i+j<i′

(i′ − (i + j))−v ≤ C∆−1
n .

(A.47)

Equations (A.45) and (A.46) imply that E

((
∑

n−j
i=0 ∆n

i,jX ∆n
i,jU
)2
)
≤ Cj2, so

n−j

∑
i=0

∆n
i,jX ∆n

i,jU = Op(j). (A.48)

(iii) Turning to the last sum of (A.44), let νj := E
(
(Un

i+j −Un
i )

2
)
= 2(γ(0)− γ(j)). For i > j, we obtain
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the following, using similar arguments as the ones used to prove (A.47):

∣∣∣Cov
(
(Un

j −Un
0 )

2, (Un
i+j −Un

i )
2
)∣∣∣ ≤ C(i− j)−v,

which implies

E

(n−j

∑
i=0

(
(∆n

i,jU)2 − νj

))2 ≤ C∆−1
n j. (A.49)

For any fixed j and any jn satisfying ∆n jn → 0, jn → ∞, we have by (A.48), (A.49) and (4) that

〈̂Y, Y〉(j)n − (γ(0)− γ(j)) = Op

(√
∆n j
)

;

〈̂Y, Y〉(jn)n − γ(0) = Op

(
max

{√
∆n jn, j−v

n

})
.

(A.50)

Now the stated result follows.

A.3.2 Proof of Proposition 3.2

Proof. By Itô’s isometry, we have

Eσ

(
n−j

∑
i=0

(∆n
i,jX)2

)
=

n−j

∑
i=0

i+j−1

∑
h=i

∫ (h+1)∆n

h∆n
σ2

s ds =
n−1

∑
h=0

(n−j)∧h

∑
i=0∨(h−j+1)

∫ (h+1)∆n

h∆n
σ2

s ds

=
n−j

∑
h=j−1

h

∑
i=h−j+1

∫ (h+1)∆n

h∆n
σ2

s ds + o(j2∆n) = j
∫ (n+1−j)∆n

(j−1)∆n
σ2

s ds + o(j2∆n),

where we reversed the order of summation in the second equality, while the stochastic orders follow

from the regularity conditions on the volatility path around 0 and 1. Hence, we have

2(n− j + 1)Eσ

(
〈̂X, X〉(j)n

)
= j

∫ 1

0
σ2

s ds + Op(j2∆n).

Furthermore, it is immediate that Eσ

(
∑

n−j
i=0 (∆

n
i,jU)2

)
= 2(n − j + 1)(γ(0) − γ(j)). Thus, we have, by

the independence of X and U,

Eσ

(
〈̂Y, Y〉(j)n

)
=

j
∫ 1

0 σ2
s ds

2(n− j + 1)
+ γ(0)− γ(j) + Op(j2∆2

n).

A.3.3 Proof of Proposition 3.3

Proof. We note that |ΣU − Σ̂Un | is smaller than

2
`n

∑
j=0
|γ(j)− γ̂(j)n|+ 2

∞

∑
j=`n+1

|γ(j)|.
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The last sum is of order (`n)1−v with v > 3 and `n ≥ Cn1/8 by (14), so it is o(n−1/4). For the first sum

we use definitions (6)-(8) and then apply (A.50) to conclude that for j ≤ `n:

|γ(j)− γ̂(j)n| = |γ(j)− 〈̂Y, Y〉(jn)n + 〈̂Y, Y〉(j)n| = Op

(
max

{√
∆n jn, j−v

n ,
√

∆n`n

})
.

Our restrictions in (14) then guarantee that |γ(j)− γ̂(j)n| = Op((∆n)5/12) while `n = o((∆n)−1/6), so

`n

∑
j=0
|γ(j)− γ̂(j)n| = op(n−1/4); |ΣU − Σ̂Un | = op(n−1/4). (A.51)

This establishes the result.

A.3.4 Proof of Theorem 4.1

Proof. We present the proof in three steps, which correspond to the following three equations:

PAV(Y, r)n −
1

Mn
PAVn P→ 0, (A.52)

1
Mn

PAVn − 1
Mn

P̃AV
n P→ 0, (A.53)

1
Mn

P̃AVn − PAV(Y, r) P→ 0. (A.54)

We invoke Lemmas A.2 and A.3, which in turn rely on Lemma A.1.

(i) To prove (A.52), recall our choice2 of Mn =
⌊

n
kn

⌋
. The difference on the left-hand side of (A.52) is

a sum of martingale differences:

PAV(Y, r)n −
1

Mn
PAVn

=
Mn−1

∑
m=0

1√
n

(∣∣∣n 1
4 Yn

mkn

∣∣∣r −E
(∣∣∣n 1

4 Yn
mkn

∣∣∣r ∣∣∣Hn
mkn

))
.

In light of Lemma 2.2.11 in Jacod and Protter (2011), it suffices to show that

1
n

Mn−1

∑
m=0

E

(∣∣∣n 1
4 Yn

mkn

∣∣∣2r ∣∣∣Hn
mkn

)
P→ 0. (A.55)

But this follows from the boundedness established in Lemma A.2 and the choice of Mn.

(ii) To establish (A.53), we proceed in several steps:

(a) We first note that the error when approximating n1/4Yn
i by βn

m, denoted by ξn
m, is small in the

sense that
1

Mn

Mn−1

∑
m=0

E
(
|ξn

m|
2
)
→ 0. (A.56)

2We interchangeably use kn∆n and 1/Mn in the sequel; the difference of the two is always negligible.
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To see this, we write

ξn
m = n1/4

(∫ (m+1)kn∆n

mkn∆n
bsGn

mkn
(s)ds +

∫ (m+1)kn∆n

mkn∆n
(σs − σmkn∆n) Gn

mkn
(s)dWs

)
.

Since b and G are bounded, we have

E

(
n1/2

(∫ (m+1)kn∆n

mkn∆n
bsGn

mkn
(s)ds

)2)
≤ Cn1/2(kn∆n)

2 ≤ C
√

∆n.

By Itô isometry,

E

(
n1/2

(∫ (m+1)kn∆n

mkn∆n
(σs − σmkn∆n) Gn

mkn
(s)dWs

)2)

≤ C∆−1/2
n

∫ (m+1)kn∆n

mkn∆n
E
(
(σs − σmkn∆n)

2
)

ds,

and hence

1
Mn

Mn−1

∑
m=0

E
(
|ξn

m|
2
)
≤ C

(
∆1/2

n +
∫ 1

0
E

((
σs − σkn∆nb s

kn∆n
c

)2
)

ds
)
→ 0,

by Lebesgue’s dominated convergence theorem, since σkn∆nb s
kn∆n

c → σs and σ is bounded.

(b) Next, define the approximation error

ζn
m :=

∣∣∣n1/4Yn
mkn

∣∣∣r − |βn
m|

r

θ
.

We note that this error is also small:

1
Mn

Mn−1

∑
m=0

E(|ζn
m|)→ 0, (A.57)

which follows from
1

Mn

Mn−1

∑
m=0

E
(
|ζn

m|
2
)
→ 0. (A.58)

This can be proved using similar arguments as in the proof of (A.56). Equation (A.57) then

follows, and it implies
1

Mn

Mn−1

∑
m=0

E
(

ζn
m

∣∣∣Hn
mkn

)
P→ 0, (A.59)

by the Markov inequality.

(c) By Lemma A.3 we have

E
(
|βn

m|
r
∣∣∣Hn

mkn

)
= µr

(
θψ0σ2

mkn∆n
+

ψ1ΣU
θ

) r
2
+ op(1), (A.60)
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which holds uniformly in m for any even integer r ≥ 2. Now (A.53) follows from (A.59)

and (A.60).

(iii) Following Proposition 2.2.8 in Jacod and Protter (2011), we see that (A.54) boils down to conver-

gence of a Riemann approximation.

This finishes the proof of Theorem 4.1.

A.3.5 Proof of Theorem 4.2

Proof. We have, by the definition of ÎVn and (A.16) of Lemma A.3 that

n1/4ÎVn = n1/4(ψ0)
−1

(
Mn−1

∑
m=0
|Yn

mkn |
2 − ψ1θ−2Σ̂Un

)
,

n1/4IV = n1/4(ψ0)
−1

(
1

θMn

Mn−1

∑
m=0

E
(
(βn

m)
2
∣∣∣Hn

mkn

)
− ψ1θ−2ΣU

)
+ op(1).

Subtraction gives, due to (A.41) of Lemma A.5 and because θMn =
√

n, that n1/4(ÎVn − IV) equals

(ψ0)
−1Ln + Cn1/4(ΣU − Σ̂Un) + op(1),

with Ln as defined in (A.33) of Lemma A.4. The first statement of Theorem 4.2 now follows from that

Lemma and (A.51), while the second statement is implied by the consistency result in (21).

A.4 Proofs of the Results in Subsection 4.2

In this subsection we first establish several lemmas to facilitate the proofs of our results in Subsec-

tion 4.2. We follow the classical approach in Jacod et al. (2009) and also use several estimates that have

been derived in Jacod et al. (2019). Our proofs are often less involved than those in the last paper. This is

partly due to our Lemma A.1, which we proved under relatively mild assumptions and from which the

higher order moments of the pre-averaged noise process can be easily obtained. Moreover, our setting

is not as general as in Jacod et al. (2019).

A.4.1 Auxiliary Lemmas for Subsection 4.2

In the following Lemmas A.6 to A.10, we assume the conditions of Theorem 4.3 are satisfied.

Lemma A.6. For any q ≥ 1, we have

∣∣∣E (X̂n
i |Fn

i

)∣∣∣ ≤ C∆n; E
(∣∣∣X̂n

i

∣∣∣q |Fn
i

)
≤ Cq∆q/2

n . (A.61)

Proof. Using the decomposition in the proof of Lemma 5.2 in Jacod et al. (2009), we have by Itô’s formula
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that X̂n
i

2 = ∑3
`=1 Dn

i,`, where

Dn
i,1 =

∫ (i+kn−1)∆n

i∆n
Xn

i (t)dMn
i (t), Dn

i,2 = bi∆n

∫ (i+kn−1)∆n

i∆n
Mn

i (t)G
n
i (t)dt,

Dn
i,3 =

∫ (i+kn−1)∆n

i∆n
Mn

i (t)(bt − bi∆n)G
n
i (t)dt +

∫ (i+kn−1)∆n

i∆n
Bn

i (t)dBn
i (t).

The boundedness of b, σ and g imply that we have that E
(∣∣Mn

i (t)
∣∣q ∣∣Fn

i

)
≤ C(kn∆n)q/2 and that

E
(∣∣Bn

i (t)
∣∣q ∣∣Fn

i

)
≤ C(kn∆n)q, and since kn = θ∆−1/2

n + o
(

∆−1/4
n

)
this gives

E
(∣∣Dn

i,2
∣∣q |Fn

i

)
≤ Cq∆3q/4

n ; (A.62)

E
(∣∣Dn

i,3
∣∣q |Fn

i

)
≤ Cq∆q

n. (A.63)

The boundedness of σ and g also establish that
∣∣E (Mn

i (t)
∣∣Fn

i
)∣∣ = 0 which gives, together with the

boundedness of b and g, that

∣∣E (Dn
i,2 |Fn

i
)∣∣ ≤ C∆n. (A.64)

The martingale property of M yields E
(

Dn
i,1

∣∣Fn
i

)
= E

(∫ (i+kn−1)∆n
i∆n

Xn
i (t)dMn

i (t)
∣∣Fn

i

)
= 0 and com-

bining this with (A.63) and (A.64) proves the first part of (A.61). The second part of (A.61) follows

from (A.62), (A.63) and

E
(∣∣Dn

i,1
∣∣q |Fn

i

)
≤ Cq∆q/2

n ,

which can be obtained by applying the Burkholder-Davis-Gundy inequalities. This finishes the proof.

Lemma A.7. For any p ≥ 2, we have

E
(

E
(
(ζ(p)n

i )
4 |Kn

i

))
≤ Cp; (A.65)

E
(
(E (ζ(p)n

i |Kn
i ))

2
)
≤ Cp∆n. (A.66)

Proof. We have by Lemma A.1 that

E

((
Un

i

)8
)
≤ C∆2

n, E

((
Un

i

)4
)
≤ C∆n, αn = E

((
Un

i

)2
)
≤ C∆1/2

n . (A.67)

This implies

E

(
E

((
Ûn

i

)4
|Kn

i

))
≤ C

(
E

((
Un

i

)8
)
+ α4

n

)
≤ C∆2

n. (A.68)

Hölder’s inequality gives
((

ζ(p)n
j

)4
)
≤ Cpk3

n ∑
i+pkn−1
j=i

((
X̂n

i

)4
+
(

Ûn
i

)4
+ 2

(
Un

i

)4 (
Xn

i

)4
)

. Now
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(A.67), (A.68), together with the second part of (A.61), the independence of X and U, and (A.6) yield (A.65).

We now turn to (A.66). By (A.4) we have

i+pkn−1

∑
j=i

E

((
E
(

Ûn
j

∣∣∣Gi−b kn
2 c

))2
)
≤

i+pkn−1
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On the other hand, for any i ≤ j ≤ i + pkn − 1 we have, by again applying (A.4) and using |gn
k | ≤ C/kn,

that
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whence
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v−1/2. (A.70)

By the independence of X and U, (A.6) and (A.61), we deduce
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. (A.71)

Since v > 2, we can now apply Hölder’s inequality to the square of this expression to get (A.66)

from (A.69), (A.70) and (A.71).

Lemma A.8. Let tn
j,p = j(p + 1)kn∆n and define Ξij = −

∫ 1
0 sφi(s)φj(s)ds, and Λij(p) = pΦij + Ξij for

i, j ∈ {0, 1}. We then have
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(A.72)

Proof. First, we note that

(ζ(p)n
i )

2 =
pkn−1

∑
j,j′=0
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Applying the estimate (A.20) in Jacod et al. (2019), we get
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n . (A.73)

Another estimate gives (see the proof of Lemma A.5 in Jacod et al. (2019)):
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A direct application of the JS-Lemma then leads to

E
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since v > 5/2.

We now find bounds for the six remaining terms in the conditional expectation of (ζ(p)n
i )

2 using

symmetry. We first apply the JS-Lemma (A.5) to derive
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E

(
E
(

Un
i+j

∣∣∣Gi−b kn
2 c

)2
)
≤ CE

((
Un

i+j

)2
)
(j + kn/2)−2v ≤ C

√
∆n(j + kn/2)−2v. (A.77)

We use this to find, by the independence of X and U and using (A.61), that
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For a second estimate, we apply the Cauchy-Schwarz inequality, the bounds of (A.6) and (A.61) and the

independence of X and U to derive
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Therefore, using (A.77),
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For a third estimate, we use that we know from (A.67) and (A.68) that n1/2Ûn
i+j and n1/4Un

i+j are se-

quences of stochastic variables with variances that converge to one. Together with the estimates in

(A.6), this gives
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Lemmas A.9 and A.10 in Jacod et al. (2019) yield∣∣∣∣∣∣
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Now the result follows from (A.73)-(A.81).

Lemma A.9. For any p ≥ 2, we have

∆−1/4
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P→ 0; (A.82)
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n F′(p)n

P→ 0; (A.83)
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Proof. We prove these equations in a number of separate steps.

(1) Proof of (A.82) and (A.83). First, we note that due to (A.76) we have E
(∣∣∣E (Ûn
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∣∣Kn
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√
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Together with (A.61), and the independence of X and U, we get
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Since Kp
n ≤ C

pkn∆n
, we have E(|F(p)n|) ≤ C∆

1
2
n . The same result holds for F′(p)n. Now (A.82)

and (A.83) follow.

(2) Proof of (A.84). From the estimates (A.61), (A.6) and (A.67), we have

E
(
(Ψn

i )
2
)
≤ C∆n. (A.88)

Since n− kn − Ip
n ≤ Cp/

√
∆n, the claim follows.
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where the second inequality is due to (A.10) and the last inequality follows from the fact that v > 2

so that ∑ γ(`)` < ∞, while `n � ∆−κ
n . Then (A.89) and (A.90) imply
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Since (v− 1)κ > 1/4 we have
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On the other hand, we have by (A.51) that
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 ψ1
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γ̂(`)n

 P→ 0. (A.92)

Now (A.85) is proven by (A.91) and (A.92).

(4) Proof of (A.86): see Lemma 5.5 of Jacod et al. (2009).

(5) For (A.87), we apply Hölder’s inequality and (A.88) to conclude that E
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η′(p)n

j

)2
)
≤ Cp∆n.
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Doob’s inequality and the fact that Kp
n ≤ C/(p
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∆n) then together imply

E

(
sup
t≤T

(
M′(p)n

)2
)
≤ 4

Kp
n

∑
j=0

E

((
η′(p)n

j

)2
)
≤ C

√
∆n/p.

Lemma A.10. For any p ≥ 2, the sequence ∆−1/4
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Proof. In view of the classical central limit theorems for triangular arrays of martingale differences in,

e.g., Theorem IX.7.28 in Jacod and Shiryaev (2003), it suffices to prove the following:
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1
∆n

Kp
n

∑
j=0

E

((
η(p)n

j

)4 ∣∣∣J (p)n
j

)
P→ 0, (A.96)

1

∆1/4
n

Kp
n

∑
j=0

E
((

η(p)n
j

)
∆(N, p)n

j

∣∣∣J (p)n
j

)
P→ 0, (A.97)

where ∆(Z, p)n
j = Z(j+1)(p+1)kn∆n − Zj(p+1)kn∆n , and N is any bounded martingale on (Ω,F , (Ft)t≥0, P)

orthogonal to W, or N = W.
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In view of (5.62) of Jacod et al. (2009), it then suffices to prove that
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where we may assume that N is a square-integrable martingale.

Since N is a process on (Ω,F , (Ft)t≥0, P), the independence of F and G implies that
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Note that we have used (A.6) to bound E
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Repeated applications of the JS-Lemma and the independence of G and F give
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so we have
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The first inequality is an application of Cauchy-Schwarz inequality, and the second one is due

to the fact that N is a square-integrable martingale, the estimate (A.99) and the fact that Kp
n ≤

Cp/
√

∆n.

This completes the proof of Lemma A.10.
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A.4.2 Proof of Theorem 4.3

Proof. We invoke Lemmas A.9 and A.10, which in turn rely on Lemmas A.6, A.7 and A.8. Recalling the

decomposition in (A.2), we note that we have proved in Lemma A.9 that

lim
p→∞

lim sup
n→∞

P(|Q(p)n| ≥ ε) = 0,

for any ε > 0, where
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)
.

Lemma A.10 shows convergence of ∆−1/4
n M(p)n to Υ1(p), and for the fixed Brownian motion W ′ we

have that V(p)t(ω) converges pointwise to Vt(ω) so Υ(p)1
P→ Υ1. This proves Theorem 4.3.

A.4.3 Proof of Corollary 4.2

Proof. The result Σ̂n
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0 V2
t dt follows from the following convergence in probability results:
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The first two statements follow from Proposition 3.3 and Theorem 4.3, whereas the last one is due to

(5.65) in Jacod et al. (2009) when we replace the asymptotic variance of pre-averaged noise (called αt in

that paper) by ΣU , and this can be done because of our Lemma A.1.

A.5 Proofs of the Results in Section 5

A.5.1 Proof of Theorem 5.1

Proof. By Theorem 4.3 we have ĨVn
P→ IV, by Proposition 3.3 we have Σ̂Un

P→ ΣU and by Proposition 3.1

we have Σ̃(1)
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which gives
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n

(
ĨV

(2)
n − ĨVn

)
P→ 0.

Now assume we have for a certain k ≥ 2 that

∆−1/4
n

(
Σ̃(k)

Un
− Σ̂Un

)
P→ 0; (A.100)

∆−1/4
n

(
ĨV

(k)
n − ĨVn

)
P→ 0; (A.101)

Σ̃(k)
IVn

P→
∫ 1

0
V2

t dt. (A.102)

A direct calculation shows

Σ̃(k+1)
Un

− Σ̃(k)
Un

=

(
− (2`n + 1)jn

2(n− jn + 1)
+

`n

∑
j=1

j
n− j + 1

)
(ĨV

(k)
n − ĨV

(k−1)
n ) = Op((`

2
n ∨ jn`n)∆n);

ĨV
(k+1)
n − ĨV

(k)
n =

ψ1

(
Σ̃(k)

Un
− Σ̃(k+1)

Un

)
θ2ψ0

= Op((`
2
n ∨ jn`n)∆n).

Assumption (14) then implies that (A.100) and (A.101) hold for k + 1 as well, and (A.102) then follows.

This proves Theorem 5.1.
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B Additional Simulation Studies

In this section, we provide additional Monte Carlo simulation results that assess the effects of price

discreteness and correlation between X and U. Price discreteness renders dependence between X and

U. The results in Section B.1 show that the presence of minimal ticks has relatively little impact on the

estimation of the moments of noise and the IV. Furthermore, the results in Section B.2 show that in the

situation when X and U are correlated our multi-step estimators still appear to be performing well.

B.1 Price Discreteness

We consider a setting in which the observed price is rounded to 1 cent. The observed logarithmic price

is then given by:

Yrd
t = log ([100 exp(Yt)]/100) , (B.1)

where [x] denotes the integer that is closest to x. Now the microstructure noise has two components:

Urd
i = Yrd

i∆n
− Xi∆n = Yrd

i∆n
−Yi∆n︸ ︷︷ ︸

error due to discreteness

+ Yi∆n − Xi∆n︸ ︷︷ ︸
error due to market microstructure

. (B.2)

Figure B.1 compares our two-step estimators of the second moments of Urd to the true values for the

model setup of Section 6. The two-step estimators still yield accurate estimates, although there is a

small bias. In the estimation of the integrated volatility, we have a bias of 4.47× 10−5 and a standard

deviation of 3.55× 10−5; these are relatively small compared to the expected value of the integrated

volatility which is 4.44× 10−4.

B.2 Correlation between X and U

We also provide simulation evidence on the robustness of our estimators when dependence between X

and U is introduced by choosing a fixed correlation ρεW between the process ε in (45) and the increments

of the Brownian motion W. Table B.1 shows the centered means and standard deviations of ĨV
(2)
n .

Results are shown for the cases ρεW = 0, ρεW = 0.7 and ρεW = −0.7, and for three different values of

the tuning parameter: θ = 0.4, θ = 0.6, and the value θ = θ∗ defined in (28). The results show that our

estimator is relatively insensitive to the choice of the tuning parameter θ and to the correlation between

X and U for this model specification.

In a second simulation experiment, we investigate the performance of our two-step estimators for

the second moments of noise when the increments of the Brownian motion W and the noise component

e in (45) are correlated. The fixed correlation coefficient ρeW was taken to be either 1 or −1. The results

in Figure B.2 show that the biases in the estimates are very small, both for a fixed value of θ and for the

optimized value θ∗.
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ι -0.7 -0.3 0 0.3 0.7
θ = 0.4
ρεW = 0 -1.33 (3.72) -0.96 (3.71) -0.62 (3.71) -0.14 (3.72) 1.00 (3.78)
ρεW = 0.7 -1.39 (3.71) -1.01 (3.72) -0.60 (3.72) 0.04 (3.74) 2.00 (3.88)
ρεW = −0.7 -1.26 (3.71) -0.90 (3.70) -0.62 (3.70) -0.31 (3.71) 0.02 (3.73)
θ = 0.6
ρεW = 0 -1.00 (4.33) -0.93 (4.33) -0.86 (4.33) -0.77 (4.34) -0.56 (4.38)
ρεW = 0.7 -1.00 (4.33) -0.93 (4.33) -0.85 (4.34) -0.72 (4.35) -0.35 (4.43)
ρεW = −0.7 -0.99 (4.33) -0.92 (4.33) -0.87 (4.33) -0.81 (4.33) -0.76 (4.34)
θ = θ∗

ρεW = 0 -1.18 (3.87) -0.97 (3.91) -0.80 (3.91) -0.59 (3.96) -0.24 (4.13)
ρεW = 0.7 -1.21 (3.88) -0.99 (3.90) -0.79 (3.92) -0.48 (4.00) 0.00 (4.28)
ρεW = −0.7 -1.15 (3.90) -0.96 (3.89) -0.82 (3.90) -0.67 (3.92) -0.59 (3.95)

Table B.1: Estimation of the IV using ĨV
(2)
n when X and U are correlated. The numbers represent the

centered means with standard deviations between parentheses, based on 1,000 simulations for each
scenario. All numbers in the table are multiplied by 105. The time step is ∆n = 1 sec and the number of
observations n is 23,400. For the tuning parameters we took jn = 20 and `n = 10 while the value of θ
varies, as shown in the first column of the table.

C Empirical Study of Transaction Data for General Electric

We collect 2,721,475 transaction prices of General Electric (GE) over the month January 2011. On aver-

age there are 5.8 observations per second. In contrast to the analysis of Citigroup transaction prices in

Sections 7.2 and 7.3, bias correction plays a very pronounced role here. Despite the high data frequency,

the finite sample bias can be very significant if the underlying noise-to-signal ratio is small (recall Re-

mark 3.3). This is indeed the case as Figure C.1 reveals: compared with Citigroup, the data frequency of

the General Electric sample is typically lower but the noise-to-signal ratio is also (much) smaller. While

the data frequency is immediately available, the noise-to-signal ratio is latent. Therefore, one should

always be wary to rely solely on asymptotic theory in practice.

The top panel of Figure C.2 shows that both the realized volatility (RV) and local averaging (LA)

estimators indicate that the noise is strongly autocorrelated, while the bias corrected realized volatility

(BCRV) estimator reveals that the noise is only weakly dependent. Such a pattern also appears in our

simulation study, where we have seen that it is the finite sample bias that induces this discrepancy.

Since the dependence in noise is quite weak, we would expect the estimators ĨV
(1)
n and ĨV

(2)
n to be close

to each other, if the latter is accurate. This is indeed the case, as the bottom panel of Figure C.2 shows.

However, the other two estimators ĨVn and ĨV
JLZ
n , which don’t apply finite sample bias corrections,

seem to be biased downwards.
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Figure B.1: Estimation of the autocovariances of microstructure noise with rounded prices as specified

in (B.1) and (B.2) for the model setup of Section 6. The estimators γ̃(0)
(2)
n , γ̃(j)

(2)
n are defined in (38)

and (39). The AR(1)-coefficient of U equals ι = 0.7. The number of simulations is 1,000 and the time
step is ∆n = 0.2 sec. The tuning parameters are jn = 20 and `n = 10 and θ is selected according to (28).
The “true autocovariances” were determined as the means of the 1,000 sample autocovariances of Urd.
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Figure C.1: Number of daily observations of transaction prices (top panel) and noise-to-signal ratio
(bottom panel) for Citigroup (C) and General Electric (GE). Sample period: January, 2011, consisting of

20 trading days. In the bottom panel, the noise-to-signal ratio, Σ2
U∫ 1

0 σ2
s ds

, is estimated by
Σ̃(2)

Un

ĨV
(2)
n

, where Σ̃(2)
Un

and ĨV
(2)
n are defined in (40) and (41), respectively. We set jn = 30, `n = 10 and θ is selected according

to (28).
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ĨV
JL

Z
n

0
10

20
30

−
0.

20

0.
2

0.
4

0.
6

0.
81

La
gs

B
C

R
V

Fi
gu

re
C

.2
:A

ut
oc

or
re

la
ti

on
s

of
no

is
e

an
d

in
te

gr
at

ed
vo

la
ti

lit
y

ba
se

d
on

tr
an

sa
ct

io
n

da
ta

fo
r

G
en

er
al

El
ec

tr
ic

(G
E)

.S
am

pl
e

pe
ri

od
:J

an
ua

ry
,2

01
1,

co
ns

is
t-

in
g

of
20

tr
ad

in
g

da
ys

.
O

n
av

er
ag

e
th

er
e

ar
e

5.
8

ob
se

rv
at

io
ns

pe
r

se
co

nd
in

th
e

sa
m

pl
e.

To
p

pa
ne

l:
Fr

om
th

e
le

ft
to

th
e

ri
gh

t,
w

e
di

sp
la

y
th

e
re

al
iz

ed
vo

la
ti

lit
y

(R
V

),
lo

ca
la

ve
ra

gi
ng

(L
A

),
an

d
th

e
bi

as
co

rr
ec

te
d

re
al

iz
ed

vo
la

ti
lit

y
(B

C
R

V
)

es
ti

m
at

or
s

of
th

e
au

to
co

rr
el

at
io

ns
of

no
is

e
ag

ai
ns

t
th

e
nu

m
be

r
of

la
gs

j.
Th

e
th

re
e

es
ti

m
at

or
s

ar
e

ap
pl

ie
d

to
an

d
th

en
av

er
ag

ed
ov

er
ea

ch
of

th
e

20
tr

ad
in

g
da

ys
.

Th
e

st
ar

s
in

di
ca

te
th

e
m

ea
ns

of
th

e
20

es
ti

m
at

es
.

Th
e

da
sh

ed
lin

es
ar

e
2

st
an

da
rd

de
vi

at
io

ns
aw

ay
fr

om
th

e
m

ea
n.

Bo
tt

om
pa

ne
l:

Es
ti

m
at

io
n

of
th

e
in

te
gr

at
ed

vo
la

ti
lit

y.
Th

e
es

ti
m

at
or

s
ĨV
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