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Abstract

This paper studies a semiparametric single-index predictive regression model with

multiple nonstationary predictors that exhibit co-movement behaviour. Orthogonal series

expansion is employed to approximate the unknown link function in the model and the

estimator is derived from an optimization under constraint. The main finding includes

two types of super-consistency rates for the estimators of the index parameter. The

central limit theorem is established for a plug-in estimator of the unknown link function.

In the empirical studies, we provide ample evidence in favor of nonlinear predictability

of the stock return using four pairs of nonstationary predictors.
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1 Introduction

Whether stock returns are predictable or not is a fundamental issue in finance. In the

study of a standard predictive regression, predictability is examined in the context of a

parametrically linear model:

yt = α + β × xt−1 + et, (1.1)

where yt is the equity premium, xt−1 is the lagged financial predictor and et is a martingale

difference sequence. The earliest method used in the literature to test predictability is to

apply the conventional t-test for β. If the estimate of the slope coefficient β is statistically

significant, we can conclude that xt−1 is a significant predictor.

Although various empirical studies have been conducted to examine stock return pre-

dictability (Fama and French, 1988; Goyal and Welch, 2003; Shiller et al., 1984; Welch

and Goyal, 2008), this widely used linear predictive regression model may encounter two

main problems (see Phillips, 2015 for an overview of certain aspects of predictive regres-

sion). The first problem is that several financial predictors are highly persistent or even

nonstationary, yet the equity premium behaves like a stationary process. Therefore, a

linear predictive regression model can be unbalanced because the time-series properties

on both sides of the equation (1.1) are different. The second problem is that the paramet-

rically linear models may not be robust to functional form misspecification. To address

these two problems, Kasparis et al. (2015) proposed a nonparametric predictive regres-

sion model and estimated it with a kernel-based method. Cai and Gao (2013) estimated

this unknown function with Hermite functions—a sieve-based method.

However, practical implementation of these methods presents one major drawback—the

methodology is restricted to the case of a scalar predictor only. Research on the multiple

predictive regression model is limited in the literature, with one difficulty being the need

to cope with multiple degrees of persistence of the predictors. Lamont (1998) suggested

using dividend-price ratio (dp) and the payout ratio as predictors based on the conven-

tional t-test. Ang and Bekaert (2007) found the predictability of the equity premium

using both dividend yield (dy) and short rates according to the F test, with standard

errors adjusted for the overlapping issue. In addition, Chen and Hong (2009) applied a

smoothed kernel method on the predictive residuals to capture the potentially nonlinear
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predictable component. Kostakis et al. (2015) proposed a testing procedure based on IVX

estimation (self-generated instrument variables estimation)—which was first studied by

Phillips and Magdalinos (2009)—and found some evidence regarding the short-horizon

predictability of the equity premium. Recently, Xu and Guo (2019) proposed three new

dimensionality-robust tests built on the IVX estimator. Their proposed tests can detect

potential spurious predictability driven by existing tests that tend to over-reject the null

of no predictability in a finite sample with a large model size. The methods discussed

here are all based on parametrically linear models, while the nonlinear predictability of

the equity premium using multiple predictors remains unknown.

To make our proposed model more balanced and allow for a potential nonlinear rela-

tionship between the liner combination of comoving predictors and the dependent vari-

able, we propose a semiparametric single-index predictive regression model of the form:

yt = g0(θ>0 xt−1) + et, (1.2)

where xt = (x1,t, ..., xd,t)
> is a vector of d-dimensional nonstationary time series, g0(.) is

an unknown univariate link function, θ0 is the single-index parameter such that ut−1 =

θ>0 xt−1 is stationary, and et is a martingale difference sequence. In terms of the identifi-

cation condition, we impose that ‖θ0‖2 = 1 with a positive first element.

In a nonparametric multiple regression estimation context, researchers often encounter

the curse of dimensionality problem. The single-index model considers a linear combina-

tion of predictors that can capture the most information about the potentially nonlinear

relationship between the dependent variable and the predictors; hence, this is an efficient

way to solve the dimensionality problem.

Dong et al. (2016) (hereafter DGT) assumed that the single-index component ut =

θ>0 xt was nonstationary based on the nonstationary assumption for xt. However, we

are more interested in the case in which ut−1 is stationary, and this is a natural way

to cope with the unbalanced issue we mentioned before. From an empirical point of

view, many financial predictors exhibit co-movement behaviour (e.g., Figure 3 below

shows the co-movement between dp and dy), and our proposed model can potentially

consider this characteristic in the context of stock return predictability. In the literature

for predictive regression with multiple predictors, Amihud et al. (2008) only considered
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stationary predictors and Kostakis et al. (2015) assumed predictors with an arbitrary

degree of persistence, yet excluded comoving predictors. Recently, Koo et al. (2016)

proposed a Least Absolute Shrinkage and Selection Operator (LASSO) estimator in the

presence of comoving predictors. In addition, Xu (2017) considered a linear predictive

regression model allowing for both highly persistent and comoving predictors, and studied

the behaviour of the proposed IVX test. To the best of our knowledge, no study is

available for the single-index model when xt−1 is nonstationary yet ut−1 = θ>0 xt−1 is

stationary.

In the literature for single-index models, Härdle and Stoker (1989) and Powell et al.

(1989) proposed an average derivative estimation for the single-index parameter θ0. In

addition, there have been many papers (Ichimura, 1993; Powell et al., 1989; Xia, 2006)

devoted to the estimation of single-index models based on the conventional nonpara-

metric kernel-based method. Alternatively, the nonparametric sieve-based approach has

attracted great attention recently in the literature to approximate unknown functions

(see Chen, 2007 for a detailed review). Yu and Ruppert (2002) proposed penalised spline

estimation for partially linear single-index models. Dong et al. (2015) proposed consis-

tent closed-form estimators for both the single-index parameter and the unknown link

function, based on Hermite expansion.

This paper studies the estimation of model (1.2) using Hermite polynomials. Although

ut−1 = θ>0 xt−1 is considered a stationary process, the nonstationarity of each regressor is

harder to deal with than the pure stationary case. Some recent work by Park and Phillips

(2000) and DGT employed the so-called rotation technique to decompose the estimator

into two directions: alongside and orthogonal to the direction of the true parameter θ0.

We adopt the same technique to develop the theory. However, in contrast with these two

previous papers, we assume u1t−1 = θ>0 xt−1 is stationary, rather than nonstationary, and

need to ensure that the nonstationary component will not dominate and the stationarity

on ut−1 will not break down.

To ensure the identification requirements we discussed before, the relevant literature

uses the estimate θ̂ without constraint at first, and then standardises it with the form

θ̂/‖θ̂‖. This paper employs the Lagrange optimisation, which adds the constraint ‖θ0‖2 =

1 directly to the estimation procedure. In addition, we allow for a possible unbounded
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support of the unknown link function and an unbounded link function itself. In the

literature for unbounded issues of nonparametric sieve regression, Chen and Christensen

(2015) introduced an indicator function based on the sample size, which reduced the

unbounded support to a compact set. Hansen (2015) allowed for an unbounded support

by imposing the bound on the moment. Wang et al. (2010) applied a re-parametrisation

method that estimated the equation over a restricted region in the Euclidean space Rd−1.

We will adopt our own method to develop the theory.

In summary, this paper aims to find a pair of (θ0, g0), such that et = yt−g0(θ>0 xt−1) is

stationary. In contrast to DGT, who considered a pure nonstationary case with in-

tegrable function g0(w) ∈ L2(R), we assume ut−1 = θ>0 xt−1 ∼ I(0) with g0(w) ∈

L2(R, exp(−w2/2))—a larger Hilbert space. The main contributions of this paper are

as follows:

1. The proposed model considers comoving nonstationary predictors, such that ut−1 =

θ>0 xt−1 is stationary.

2. The stationarity on ut−1 implies that the model becomes more balanced with the

observed I(0) property of the equity premium.

3. The model allows for unbounded support of the regressors and unbounded regression

function itself.

4. The proposed estimation method estimates θ0 under the constraint ‖θ0‖2 = 1 di-

rectly, rather than artificially standardising θ̂ by the form θ̂/‖θ̂‖. Under our model

setting, a n-super-rate of convergence can be achieved for the proposed estimator,

θ̂n.

5. The model establishes new asymptotic properties for the proposed estimators, in-

cluding both the NLS estimator of the single-index parameter and the plug-in esti-

mator of the unknown link function.

This paper uncovers some important results. We find that there are dual convergence

rates for the estimator of the index parameter in a new coordinate system. They include
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a type 1 super-consistency rate, OP (n−2), in the direction along θ0,2 and a type 2 super-

consistency rate, OP (n−1), along all the other directions orthogonal to θ0. Given that

θ̂n is the composite of its coordinates along these two directions in the new system, its

behaviour will be dominated by the one with a slower rate of convergence, and then

we have θ̂n − θ0 = OP (n−1), which is still super-consistent. One factor contributing to

this super rate is our constraint, ‖θ0‖2 = 1. Roughly speaking, the constraint within

the estimation procedure can scale θ̂n to the unit ball, so that the norm of the estimate

θ̂n always matches that of θ0. Therefore, it accelerates the convergence rate along θ0

direction relative to the one without constraint and hence the overall convergence rate.

Given that our model includes multiple regressors and can cope with the unbalance

issue naturally, we then apply it in the context of stock return predictability. Considering

monthly and quarterly data over the 1927 to 2017 sample period and the 1952 to 2017

sub-period, we examine the predictability of the equity premium using four pairs of

nonstationary predictors, and find significant evidence of nonlinear predictability.

The remainder of this paper is organised as follows. Section 2 gives some preliminaries

about the Hermite polynomials that will be used in the series expansion and then pro-

poses the estimation procedures. The asymptotic theories for the nonlinear least squares

estimator θ̂n as well as the plug-in estimator ĝn(w) are discussed in Section 3. In Sec-

tion 4, computational estimation procedures are introduced and Monte-Carlo simulation

experiments are conducted to examine the finite sample performance of the proposed

estimators. Section 5 provides an empirical study to examine stock return predictability.

Section 6 concludes this paper. Appendix A presents some discussions of the main as-

sumptions in Section 3. Appendix B gives the proof of the main theorems. Appendix C

and Appendix D show all the lemmas and their proofs, respectively. An online sup-

plemental document (Zhou et al., 2019) contains Appendices E–G where the remaining

proofs of Lemma 8 and Lemma 9 are proven in Appendix E, the additional Monte-Carlo

results are placed in Appendix F and additional empirical results are shown in Appendix

G.

Throughout this paper, the following notation is used. Id is the d-dimensional identity

matrix; [a] is the maximum integer not exceeding a; R is the real line; and, for any function

2Without the identification condition that ‖θ0‖2 = 1, θ̂n will degenerate along θ0 direction.
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f(·), f (1)(x), f (2)(x) and f (3)(x) are the derivatives of the first, second and third order of

f(·) at x. ‖·‖ is the Euclidean norm for vectors and element-wise norm for matrices—that

is, if A = (aij)nm, ‖A‖ = (
∑n

i=1

∑m
j=1 a

2
ij)

1/2; Convergence in probability and convergence

in distribution are signified as →P and →D.

2 Estimation procedure

Suppose that the link function g0(w) belongs to the Hilbert space L2(R, exp(−w2/2)),

which is a very useful space covering a great deal of functions on R, such as polynomials,

power functions, and bounded functions. It is known that Hermite polynomials form a

complete orthogonal system in the Hilbert space L2(R, exp(−w2/2)) with each element

defined by

hi(w) = (−1)i exp(w2/2)
di

dwi
exp(−w2/2), i = 0, 1, 2, ..., (2.1)

and the orthogonality gives
∫
hi(w)hj(w) exp (−w2/2)dw =

√
2πi!δij, where δij is the

Kronecker delta. Based on this property, we define the standardized Hermite polynomials

as

Hi(w) = (
√

2πi!)−1/2hi(w), (2.2)

and hence, {Hi(w)} becomes a complete orthonormal basis in L2(R, exp(−w2/2)) satis-

fying
∫
Hi(w)Hj(w) exp (−w2/2)dw = δij. Then we have an orthogonal series expansion

for any g0(w) ∈ L2(R, exp(−w2/2)) as follows

g0(w) =
∞∑
i=0

c0,iHi(w), (2.3)

where c0,i =
∫
g0(w)Hi(w) exp(−w2/2)dw.

The standardized Hermite polynomials can be listed as follows

H0(w) =
1√√

2π
· 1, H1(w) =

1√√
2π
· w,

H2(w) =
1√

2
√

2π
· (w2 − 1), H3(w) =

1√
6
√

2π
· (w3 − 3w),

and so on.
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By virtue of (2.3), model (1.2) can be represented as

yt = Hk(θ
>
0 xt−1)>C0,k + γk(θ

>
0 xt−1) + et, t = 1, ..., n, (2.4)

where xt−1 = (x1,t−1, . . . , xd,t−1)>, Hk(·) = (H0(·), ..., Hk−1(·))>, C0,k = (c0,0, ..., c0,k−1)>,

and γk(·) =
∑∞

i=k c0,iHi(·). Throughout this paper, let k be the truncation parameter

and k → ∞ as n → ∞. We then define gk(w) = Hk(w)>C0,k =
∑k−1

i=0 c0,iHi(w), which

converges to g0(w) under certain conditions.

Let Y = (y1, ..., yn)>, Z = (Hk(θ
>
0 x0), ...,Hk(θ

>
0 xn−1))> an n × k matrix, γ =

(γk(θ
>
0 x0), ..., γk(θ

>
0 xn−1))>, and e = (e1, ..., en)>. We have a matrix form equation

Y = ZC0,k + γ + e (2.5)

Since our interests are in both unknown index parameter θ0 and the unknown link

function g0, we define a 2-fold Cartesian product space by Rd and L2(R, exp(−w2/2)).

Thus, (θ0, g0) can be viewed as a point in this infinite-dimensional space and this space

is equipped with the norm ‖.‖2 given by

∥∥(θ, g)
∥∥

2
=
(
‖θ‖2

2 + ‖g‖2
L2

)1/2

, (2.6)

Then it follows from the Parseval’s equality that ‖g‖2
L2 =

∫ (
g(w)

)2
exp(−w2/2)dw =∑∞

i=0 c
2
i , and hence, the unknown link function g(w) can be identified by its corresponding

expansion coefficients {ci, i = 0, 1, 2, ...}.

Suppose that Θ ⊂ Rd, Θ is compact, and θ0 ∈ Θ. Suppose further that G is a subset

of L2(R, exp(−w2/2)) and g0 ∈ G. After taking into account the identification condition,

we introduce the following objective function:

Wn,λ(θ, g) =
n∑
t=1

[
yt − g(θ>xt−1)

]2

+ λ(‖θ‖2 − 1), (2.7)

where (θ, g) ∈ Θ×Gk and Gk = G∩span{H0(.), H1(.), ..., Hk−1(.)}. After the truncation,

the infinite-dimensional point (θ0, g0) can be approximated by the finite dimensional

parameter θ and function g.

Using the Hermite expansion, the objective function employed in practice is given by

Wn,λ(θ, Ck) =
n∑
t=1

[
yt − C>k Hk(θ

>xt−1)
]2

+ λ(‖θ‖2 − 1), (2.8)
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where Ck = (c0, ..., ck−1)>, Hk(·) is defined in equation (2.4), and k is the truncation

parameter.

Suppose θ is given for the time being, the estimator of the expansion coefficient can

be easily obtained from the matrix form equation (2.5) by ordinary least squares (OLS)

method,

C̄k = C̄k(θ) =
(
Z(θ)>Z(θ)

)−1

Z(θ)>Y. (2.9)

Then, we obtain the optimum θ̂n such that

θ̂n = argmin
θ∈Θ

Wn,λ(θ, C̄k(θ)). (2.10)

We then define a plug-in estimator ĝn(w) = C̄>k Hk(w) for any w ∈ R with C̄k = C̄k(θ̂n).

To study the asymptotic properties of (θ̂n, ĝn), we need to introduce some necessary

assumptions.

3 Asymptotic theory

The rest of this paper focuses on the case where xt−1 is nonstationary but ut−1 = θ>0 xt−1

is strictly stationary. To show the main results of this paper, we make the following

assumptions. Their justifications are available from Appendix A below.

Assumption 1.

1. (a) There exists a σ-field Fn,t, such that {et,Fn,t} is a martingale difference se-

quence with E(et|Fn,t−1) = 0 almost surely (a.s.), E(e2
t |Fn,t−1) = σ2 a.s., and

sup1≤t≤nE(e4
t |Fn,t−1) <∞ a.s

(b) εt are d-dimensional independent and identically distributed (i.i.d.) continuous

random variables with E(εt) = 0, E(ε1ε
>
1 ) = Σε, and E‖ε1‖p < ∞ for some

p > 4.

2. Let xt = xt−1 + vt and x0 = OP (1), where vt = φ(L)εt with φ(L) =
∑∞

j=0 φjL
j and

{φj} being a sequence of d× d matrices, such that:

(a) φ0 = Id

8
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(b)
∑∞

j=0 j‖φj‖ <∞

(c) φ(1) has rank d− 1 and θ>0 φ(1) = 0

(d) ut = θ>0 xt is a strictly stationary process and has probability density function

ρ(u), such that exp(u2/2)ρ(u) <∞ uniformly in u.

3. Suppose
∥∥∥(θ̂n, ĝn)− (θ0, g0)

∥∥∥
2
→P 0 as n→∞.

4. Suppose that g0(w) is differentiable on R and g
(r−i)
0 (w)wi ∈ L2(R, exp(−w2/2)) for

0 ≤ i ≤ r and an integer r ≥ 4.

5. k = [a · nκ] with some constant a > 0 and κ ∈ [1/r, 1/4) with r as in 4 above.

6. Suppose that:

(a) inf
c∈R
E
[
g0(θ>0 x1)− c

]2
> 0

(b) The smallest eigenvalue of E
[
Hk(θ

>
0 x1)Hk(θ

>
0 x1)>

]
is bounded away from zero

uniformly in k ≥ 1.

7. Let ut = θ>0 xt.

(a) E
[
g

(1)
0 (u1)

]4

<∞

(b)
∑k−1

i=0

∑k−1
j=0 E

[
Hi(u1)Hj(u1)

]2
= o(n) as (n, k)→ (∞,∞)

(c)
∑n

t=2

∑t−1
s=1

∣∣∣∣∣Cov
((

g
(1)
0 (ut−1)

)2

,
(
g

(1)
0 (us−1)

)2
)∣∣∣∣∣ = o(n2) as n→∞

(d)
∑k−1

i=0

∑k−1
j=0

∑n
t=2

∑t−1
s=1

∣∣∣Cov (Hi(ut−1)Hj(ut−1), Hi(us−1)Hj(us−1)
)∣∣∣ = o(n2) as

(n, k)→ (∞,∞).

We assume that θ0 ∈ int(Θ) and use the ideas from Wooldridge (1994) to establish

the asymptotic normality for the extremum estimator θ̂n. From equation (2.8), the Score

Sn(θ) and the Hessian Jn(θ) are given by:

Sn(θ) =
∂

∂θ
Wn,λ̂(θ)

∣∣∣∣
(θ,Ck)=(θ,C̄k(θ))

= −2

n∑
t=1

(
yt − ĝn(θ>xt−1)

) ∂ĝn(θ>xt−1)

∂θ
+ 2θλ̂(θ)

Jn(θ) =
∂2

∂θ∂θ>
Wn,λ̂(θ)

∣∣∣∣∣
(θ,Ck)=(θ,C̄k(θ))

9
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= 2

n∑
t=1

∂ĝn(θ>xt−1)

∂θ

∂ĝn(θ>xt−1)

∂θ>
− 2

n∑
t=1

(
yt − ĝn(θ>0 xt−1)

) ∂2ĝn(θ>xt−1)

∂θ∂θ>
+ 2λ̂(θ),

where λ̂(θ) = (θ>θ)−1θ>
∑n

t=1

(
yt − ĝn(θ>xt−1)

) ∂ĝn(θ>xt−1)
∂θ

with θ>θ 6= 0.

Then, the asymptotic distribution of θ̂n can be obtained by the expansion:

0 = Sn(θ̂n) = Sn(θ0) + Jn(θn)(θ̂n − θ0), (3.1)

where Sn(θ̂n) and Sn(θ0) are the Scores evaluated at θ̂n and θ0, respectively. Jn(θn) is the

Hessian matrix with the rows evaluated at a point θn between θ̂n and θ0.

To further develop the theory, we need to rotate the coordinate system based on the

true parameter θ0. Let Q = (θ0, Q2) be a d× d orthogonal matrix. We can represent the

single-index model as:

yt = g0(θ>0 QQ
>xt−1) + et = g0(α1

0x1t−1 + α2>
0 x2t−1) + et, (3.2)

where α1
0 = ‖θ0‖2 = 1, α2

0 = Q>2 θ0 = 0d−1 is a (d − 1)-dimensional zero vector,

x1t−1 = θ>0 xt−1 is a stationary scalar process and x2t−1 = Q>2 xt−1 is a (d− 1)-dimensional

nonstationary process. Let α0 = (α1
0, (α

2
0)>)> = Q>θ0, and α = (α1, (α2)>)> = Q>θ for

later use. If α̂n is the NLS estimator of α0, then α̂n = Q>θ̂n. In addition, the Score

function Sn(α) and the Hessian function Jn(α) can be derived from those for θ, such that

Sn(α) = Q>Sn(θ) and Jn(α) = Q>Jn(θ)Q. Based on these relationships, we can obtain:

0 = Sn(α̂n) = Sn(α0) + Jn(αn)(α̂n − α0). (3.3)

Given that the constraint ‖θ‖2 = 1 is imposed directly within the estimation proce-

dure, a projection matrix Pα0 = Id−α0α
>
0 = ( 0 0

0 Id−1
) will be evolved and will project the

Score function into the space orthogonal to α0, which is a (d−1)-dimensional space. The

projection matrix Pα0 has eigenvalues 0, 1, ..., 1, where 0 corresponds to the eigenvector

α0. Let P1 = (p1, ..., pd−1) =

(
p1,1 ··· p1,d−1

...
...

...
pd,1 ··· pd,d−1

)
with pi+1,i = 1 for 1 ≤ i ≤ d − 1 and zero

otherwise. p1, ..., pd−1 are the eigenvectors associated with the eigenvalues 1 of Pα0 and

are orthogonal to α0. Therefore, we have Pα0 = P1P
>
1 and P>1 P1 = Id−1.

To establish the asymptotic distribution of α̂n − α0, we can obtain the following

equation through (3.3):

P>1 Dn(α̂n − α0) = −
(
P>1 D

−1
n Jn(α0)D−1

n P1

)−1

P>1 D
−1
n Sn(α0) + oP (1), (3.4)
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where Dn = diag(
√
n, nId−1) and the asymptotic properties of the Score Sn(α0) and the

Hessian Jn(α0) are discussed at Lemma 8 in Appendix C.

Given that the leading term in the Score function belongs to a (d − 1)-dimensional

space orthogonal to α0, P1 is used to rotate the whole Score function. Also notice that,

without P1 that transforms α̂n − α0 into a (d − 1)-dimensional space, the covariance

matrix must be singular.

Let α̂n =
(
α̂1
n, (α̂

2
n)>
)>

be the estimator for α0 = (α1
0, (α

2
0)>)>. In view of the structure

of Dn and the constraint ‖α‖2 = ‖θ‖2 = 1, we have two limits obtained from (C.3).

Theorem 3.1. Under Assumption 1, as n→∞

n2(α̂1
n − α1

0)→D −
1

2
‖ξ‖2, (3.5)

and

n(α̂2
n − α2

0)→D ξ. (3.6)

where ξ := (ξ1, ..., ξd−1) ∼ MN(0, σ2r−1
0 ), MN stands for mixture normal distribution,

r0 = E
[
g

(1)
0 (θ>0 x1)

]2 (∫ 1

0
V2(r)V >2 (r)dr −

∫ 1

0
V2(r)dr

∫ 1

0
V2(r)>dr

)
, and V2 is Brownian

motion of dimension d− 1 with variance matrix ΣV = Q>2 φ(1)Σεφ(1)>Q2.

By using the rotation technique, the estimator (α̂1
n, (α̂

2
n)>)> := Q>θ̂n = (θ>0 θ̂n, Q

>
2 θ̂n)

is the coordinates of θ̂n in the system Q = (θ0, Q2) with α̂1
n along the θ0 direction and

α̂2
n along all the other directions orthogonal to θ0. As can be seen from Theorem 3.1,

there are two types of super-consistency rates: the higher rate of convergence OP (n−2)

lying in the direction along θ0, and the lower rate of convergence OP (n−1), which is still

super-consistent, lying along all the other directions orthogonal to θ0. Also notice that

|α̂1
n| = |θ>0 θ̂n| ≤ ‖θ0‖‖θ̂n‖ = 1 by Cauchy-Schwarz inequality and the equality holds when

θ̂n = θ0, which implies that α̂1
n is an under-estimator for α1

0 = 1.

Therefore, there are dual rates of convergences in our proposed single-index model

and the asymptotic distribution for θ̂n in the next theorem can be obtained from α̂n,

more precisely (θ̂n − θ0) = Q(α̂n − α0).

Theorem 3.2. Under Assumption 1, as n→∞

n(θ̂n − θ0)→D MN(0, σ2Q2r
−1
0 Q>2 ), (3.7)
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where r0 is the same as in Theorem 3.1.

Theorem 3.2 indicates that θ̂n converges to θ0 at rate ofOP (n−1) and this is because the

slower rate OP (n−1) along Q2 direction will eventually dominate the faster rate OP (n−2)

along θ0 direction. Intuitively, the constraint ‖θ‖2 = 1 scales the estimator to the surface

of the unit ball, so that the norm of θ̂n can always match that of θ0; therefore, it accelerates

the convergence rate along θ0 direction, and hence the overall convergence rate. This

n-super-rate of convergence is not a surprise to us. As has been shown in Park and

Phillips (2001), if g
(1)
0 is H-regular with xt being nonstationary,

√
nv̇(
√
n)(θ̂n − θ0) =

OP (1). The convergence rate will be faster than
√
n when v̇(

√
n) is divergent, which is

usually the case. The proposed estimation procedure in Section 2 is called the ‘profile

method’ in the literature, and a general discussion on the asymptotic properties of profiled

semiparametric estimators for the i.i.d. case can be found in Chen et al. (2003).

Meanwhile, define the estimator for σ2 and Hx = E
[
Hk(θ

>
0 x1)Hk(θ

>
0 x1)>

]
by:

σ̂2 =
1

n

n∑
t=1

[
yt − ĝn(θ̂>n xt−1)

]2

Ĥx =
1

n

n∑
t=1

Hk(θ̂
>
n xt−1)Hk(θ̂

>
n xt−1)>. (3.8)

We then establish the central limit theorem (CLT) for the plug-in estimator ĝn(w) =

Hk(w)>C̄k(θ̂n), given w ∈ R.

Theorem 3.3. Under Assumption 1, as n→∞

√
nΣ̂−1(w)

(
ĝn(w)− g0(w) + γk(w)

)
→D N(0, 1), (3.9)

where Σ̂2(w) = σ̂2Hk(w)>Ĥ−1
x Hk(w) is the estimator of Σ2(w) = σ2Hk(w)>H−1

x Hk(w)

and γk(w) = g0(w)−
∑k−1

i=0 c0,iHi(w) =
∑∞

i=k c0,iHi(w).

The order involved in the normality is OP (1)n1/2k−1/2 in view of
∣∣Σ(w)

∣∣2 = O(1)k,

and it is not a super rate. This is because we assume that θ>0 xt−1 ∼ I(0) and (3.9) is a

standard result in the literature for the nonparametric series estimation. The term γk(w)

is the bias of the estimator ĝn(w) and
√
nΣ̂−1(w)γk(w) = OP (1) under Assumption 1.5.

Before the proofs of Theorem 3.1 - Theorem 3.3 are given in Appendix B, we now

discuss how to computationally implement our proposed model and how to construct the

confidence interval for g0(.) in practice, and then evaluate the finite-sample performance

of θ̂n, α̂n and ĝn in Section 4 below.
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4 Numerical results

In this section, we conduct Monte-Carlo simulations to examine the finite-sample perfor-

mance of the proposed estimators in the single-index model.

4.1 Computational aspects

To conduct the optimisation of (2.10) in practice, we introduce the estimation procedures

using a bivariate case (xt = (x1,t, x2,t)
>) as follows:

1. Conduct a cointegration test on xt to see whether they are cointegrated or not.

2. Estimate the cointegrated coefficient for xt from the cointegrated model x1,t =

θx2,t + zt and the estimate is denoted as β̃. Let θ̃ = (1,−β̃) and we use θ̃0 = θ̃/‖θ̃‖

as the initial value for the NLS estimation algorithm.3

3. For given data {(xt−1, yt), 1 ≤ t ≤ n}, estimate (θ0, g0) by our proposed estimation

procedure in Section 2 and denote the resulting estimates by (θ̂n, ĝn). The value

for the truncation parameter k can be chosen by theory driven value k = [a · nκ]

with some constants a and κ that satisfy Assumption 1.5. Alternatively, we can

consider some statistics to help us determine k. In this paper, we consider two

methods to select the optimal truncation parameter. The first is the Generalised

Cross-Validation (GCV) method proposed by Gao et al. (2002), which selects an

optimal value k̂ such that:

k̂ = argmin
k∈K

(
1− k

n

)−2

σ̂2
1(k), (4.1)

where σ̂2
1(k) = 1

n

∑n
t=1

(
rt − ĝn(θ̂>n xt−1)

)2

and K = {2, · · · , K0} with K0 pre-

determined.

The second method is a nonparametric version of Akaike information criterion (AIC)

(see Cai, 2007) that selects the truncation parameter k̂ such that:

k̂ = argmin
k∈K

log
(
σ̂2

1(k)
)

+ 2
nλ + 1

n− nλ − 2
, (4.2)

3Given that we assume that θ>0 xt ∼ I(0), the estimated cointegrating coefficient is a consistent initial

estimate.
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where nλ is the trace of Z(θ̂n)(Z(θ̂n)>Z(θ̂n))−1Z(θ̂n)>, which is called the effec-

tive number of parameters or the nonparametric version of degrees of freedom for

nonparametric models.

4. For given w, according to the CLT in Theorem 3.3, the 95% confidence interval of

g0(w) is given by:[
ĝn(w)− 1.96× ŜD(ĝn(w)), ĝn(w) + 1.96× ŜD(ĝn(w)

]
,

where ĝn(w) = Hk(w)>C̄k, σ̂
2 = 1

n

∑n
t=1

(
yt − ĝn(θ̂>n xt−1)

)2

and ŜD
2
(ĝn(w)) =

1
n
σ̂2Hk(w)>

(
1
n

∑n
t=1Hk(θ̂

>
n xt−1)Hk(θ̂

>
n xt−1)>

)−1

Hk(w).

4.2 Simulation experiments

Let d = 2 and xt = (x1,t, x2,t)
> be generated by:

xt = xt−1 + vit, t = 1, ..., n and i = 1, 2,

v1t = εt + C10εt−1 (4.3)

v2t = A20v2t−1 + εt + C20εt−1 (4.4)

where εt ∼ iiN(0, ( 1 0.5
0.5 1 )) and x−500 = 02 surely. In addition, set C10 = ( −1 4/3

0 0
),

A20 = ( 2/5 0
0 0

) and C20 = ( −1 4/5
0 0

). Case (4.3) assumes MA(1) process for the innovations

of I(1) variables, and case (4.4) considers a VARMA(1,1) that can be rewritten as an

infinite MA process according to the Wold representation theorem. Both settings are

consistent with Assumption 1.2. Under these two settings, x1,t and x2,t are cointegrated

with cointegrating vector θ0 = (0.6,−0.8)>, which satisfies the identification condition

‖θ0‖2 = 1, and, hence, Q2 = (0.8, 0.6)>. The simulation is conducted with sample sizes

n = 100, 200, 600, 1000, and the Monte-Carlo replication M = 2000. The truncation

parameter k is determined by the GCV method described in Section 4.1.4 The initial

value for the estimation procedure is set at the standardised estimated cointegrating

coefficient and is a consistent initial estimate.

4We use the average value of k̂ from another 100 replications. The use of nonparametric AIC produces

identical results.
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The single-index model is given by yt = g0(θ>0 xt−1) + et with et ∼ iiN(0, 1). We next

consider four options for the link function:

(a). g10(w) = 1 + w

(b). g20(w) = 1 + w2

(c). g30(w) = exp(w)

(d). g40(w) = (1 + w2)−1.

It is clear that the first three link functions are unbounded on R, and the last is bounded

on R. More importantly, gi0(w) ∈ L2(R, exp(−w2/2)) for i = 1, 2, 3, 4.

Table 1: Bias and standard deviation for single-index model for case (4.3)

g0(u) Bias S.d.

n 100 200 600 1000 100 200 600 1000

(a)

θ̂1
n 5.6820 ×10−4 -2.1518 ×10−4 -2.6838 ×10−5 8.3123 ×10−6 0.0172 0.0078 0.0026 0.0017

θ̂2
n 7.1917 ×10−4 -1.0116 ×10−4 -1.3459 ×10−5 8.9217 ×10−6 0.0132 0.0059 0.0020 0.0012

α̂1
n -2.3442 ×10−4 -4.8182 ×10−5 -5.3353 ×10−6 -2.1499 ×10−6 7.2664 ×10−4 1.0668 ×10−5 1.0975 ×10−5 4.3762 ×10−6

α̂2
n -2.3442 ×10−4 -4.8182 ×10−5 -5.3353 ×10−6 -2.1499 ×10−6 0.0216 0.0098 0.0033 0.0021

(b)

θ̂1
n 2.1118 ×10−4 1.3483 ×10−4 1.4560 ×10−5 2.7273 ×10−6 0.0135 0.0061 0.0019 0.0011

θ̂2
n 3.3963 ×10−4 1.3754 ×10−4 -1.4305 ×10−5 3.2635 ×10−6 0.0104 0.0046 0.0014 8.3773 ×10−4

α̂1
n -1.4499 ×10−4 -2.9132 ×10−5 -2.7077 ×10−6 -9.7440 ×10−7 7.6506 ×10−4 6.2255 ×10−5 5.4454 ×10−6 2.0854 ×10−6

α̂2
n 3.7272 ×10−4 1.9039 ×10−4 2.0231 ×10−5 4.1399 ×10−6 0.0170 0.0076 0.0023 0.0014

(c)

θ̂1
n -5.0755 ×10−4 -9.2284 ×10−5 -1.6759 ×10−5 -8.8116 ×10−6 0.0112 0.0053 0.0016 9.8054 ×10−4

θ̂2
n -2.5732 ×10−4 9.6652 ×10−5 -1.0010 ×10−5 -5.6702 ×10−6 0.0084 0.0040 0.0012 7.3533 ×10−4

α̂1
n -9.8673 ×10−5 -2.1951 ×10−5 -2.0479 ×10−6 -7.5077 ×10−7 1.9668 ×10−4 4.6332 ×10−5 3.7910 ×10−6 1.3660 ×10−6

α̂2
n -5.6043 ×10−4 1.3182 ×10−4 -1.9413 ×10−5 -1.0451 ×10−5 0.0140 0.0066 0.0020 0.0012

(d)

θ̂1
n -0.0332 -0.0130 1.4519 ×10−4 4.0386 ×10−5 0.1756 0.1140 0.0080 0.0038

θ̂2
n 0.0598 0.0248 1.7172 ×10−4 4.4294 ×10−5 0.3164 0.2037 0.0060 0.0028

α̂1
n -0.0678 -0.0276 -5.0264 ×10−5 -1.1204 ×10−5 0.2740 0.1776 2.7537 ×10−4 2.2445 ×10−5

α̂2
n 0.0093 0.0045 2.1918 ×10−4 5.8885 ×10−5 0.2364 0.1515 0.0100 0.0047

The aim of this simulated setting is to illustrate the asymptotic results in Theorem 3.1

and Theorem 3.2. Actually, the rotation technique is not necessary in practice because

we will never know the value for the true parameter θ0 and its corresponding rotation

matrix Q. It is only used as a tool to develop the asymptotic theory and can help us

better understand the theory.
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Table 2: Bias and standard deviation for single-index model for case (4.4)

g0(u) Bias S.d.

n 100 200 600 1000 100 200 600 1000

(a)

θ̂1
n 4.4993 ×10−4 9.2089 ×10−5 3.7655 ×10−5 1.3384 ×10−6 0.0173 0.0083 0.0026 0.0015

θ̂2
n 6.3140 ×10−4 1.3625 ×10−4 -3.4817 ×10−5 3.3417 ×10−6 0.0131 0.0062 0.0019 0.0012

α̂1
n -2.3516 ×10−4 -5.3745 ×10−5 -5.2609 ×10−6 -1.8704 ×10−6 5.2595 ×10−4 1.1703 ×10−4 1.1005 ×10−5 3.6561 ×10−6

α̂2
n 7.3878 ×10−4 1.5542 ×10−4 5.1014 ×10−5 3.0757 ×10−6 0.0217 0.0104 0.0032 0.0019

(b)

θ̂1
n -2.5591 ×10−4 6.6924 ×10−5 6.2712 ×10−5 -2.2750 ×10−5 0.0124 0.0054 0.0017 9.8457 ×10−4

θ̂2
n -4.3268 ×10−5 7.8797 ×10−5 4.9923 ×10−5 -1.6116 ×10−5 0.0092 0.0041 0.0013 7.3832 ×10−4

α̂1
n -1.1893 ×10−4 -2.2883 ×10−5 -2.3116 ×10−6 -7.5726 ×10−7 3.8760 ×10−4 5.0733 ×10−5 4.5696 ×10−6 1.4376 ×10−6

α̂2
n -2.3069 ×10−4 1.0082 ×10−4 -8.0124 ×10−5 -2.7870 ×10−5 0.0154 0.0068 0.0021 0.0012

(c)

θ̂1
n 1.0929 ×10−4 4.0062 ×10−5 2.2476 ×10−5 -3.9887 ×10−6 0.0111 0.0051 0.0015 9.0131 ×10−4

θ̂2
n 2.0266 ×10−4 5.5099 ×10−5 1.9142 ×10−5 -2.1986 ×10−6 0.0084 0.0038 0.0011 6.7596 ×10−4

α̂1
n -9.6553 ×10−5 -2.0042 ×10−5 -1.8278 ×10−6 -6.3434 ×10−7 2.2034 ×10−4 4.3659 ×10−5 3.8001 ×10−6 1.4144 ×10−6

α̂2
n 2.0902 ×10−4 6.5109 ×10−5 2.9466 ×10−5 -4.5102 ×10−6 0.0139 0.0063 0.0019 0.0011

(d)

θ̂1
n -0.0249 -0.0129 -2.7656 ×10−4 1.0647 ×10−5 0.1717 0.1012 0.0109 0.0041

θ̂2
n 0.0678 0.0166 -9.9898 ×10−5 2.4583 ×10−5 0.3222 0.1774 0.0074 0.0031

α̂1
n -0.0692 -0.0211 -8.6019 ×10−5 -1.3278 ×10−5 0.2696 0.1575 9.7176 ×10−4 4.9688 ×10−5

α̂2
n 0.0207 -3.2857 ×10−4 -2.8119 ×10−4 2.3268 ×10−5 0.2462 0.1299 0.0131 0.0052

The simulation results of the bias and the standard deviation for θ̂n = (θ̂1
n, θ̂

2
n)>

and α̂n = (α̂1
n, α̂

2
n)> are summarised in Table 1 and Table 2. We can observe that θ̂1

n

and θ̂2
n under all four link functions have similar performance. In general, the biases

and standard deviations for θ̂n decrease with the increase of the sample size n and the

convergence speed is quite fast,5 which verifies the asymptotic theory in Theorem 3.2 that

θ̂n − θ0 = OP (n−1). In terms of the rotated estimator α̂n, both the biases and standard

deviations are approaching zero with the sample size increasing. Moreover, α̂1
n converges

at a faster rate than α̂2
n. This is implied by Theorem 3.1 that α̂1

n − α1
0 = OP (n−2) and

α̂2
n − α2

0 = OP (n−1). It is noteworthy that the biases of α̂1
n are always negative, which

verifies that α̂1
n is an under-estimator for α1

0.

Next, we move on to examine the CLT results in Theorem 3.3. The 95% confidence

intervals of g0(w) are constructed using the procedure described in Section 4.1. In terms

5 Under the stationary setting, it is well known that θ̂n − θ0 = OP (n−1/2). When n = 1000, the

magnitude of the s.d. is about 1000−1/2 = 0.0316; however, under our setting, the s.d. is 10 times

smaller than the usual case and is of magnitude around 1000−1 = 0.001.
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Figure 1: 95% confidence interval for case (4.3) (n=1000)
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Figure 2: 95% confidence interval for case (4.4) (n=1000)
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of the evaluation point w, we use n evenly spaced points between -1.5 and 1.5.

We plot the average values of the estimate ĝn(w) and the 95% pointwise confidence

interval for each function based on M = 1000 replicated data when n = 1000 in Figure 1

and Figure 2. All the figures show that the 95% pointwise confidence interval constructed

from the asymptotic normality covers g0(w) very well and the plot of ĝn(w) seems to

coincide with the plot of g0(w), which supports the result in Theorem 3.3.

In addition, we also consider an empirical example in Section 5 below.

5 Empirical study

There is now a large quantity of empirical literature examining the predictability of

stock returns using a variety of lagged financial and macroeconomic variables, including

dividend-price ratio, earning-price ratio, dividend-payout ratio, book-to-market ratio,

interest rates, term spreads and default spreads; see, for example, Lettau and Ludvigson

(2001), Cochrane (2011) and Rapach and Zhou (2013). Numerous studies, including

those by Campbell and Yogo (2006) and Kostakis et al. (2015), have found evidence that

many of these predictor variables are highly persistent and are often integrated of order

one. If these variables are cointegrated, our semiparametric single-index predictive model

can be used to test the predictability of stock returns.6

We extend the univariate linear predictive regression model of Welch and Goyal (2008),

focusing on predictors that can plausibly be modelled as cointegrated. We use their

updated monthly and quarterly data over the 1927 to 2017 sample period.7 Their dataset

is one of the most widely used datasets in empirical finance. The dependent variable is

the United States (US) equity premium, which is defined as the log return on the S&P

500 index, including dividends minus the log return on a risk-free bill.

Among the 16 financial and macroeconomic variables used by Welch and Goyal (2008)

to predict the equity premium, we consider the following four pairs of I (1) variables for

which the two variables in each pair are potentially cointegrated: (a) dividend-price ratio

6Recent studies by Koo et al. (2016) and Xu (2017) have found evidence that a subset of these

integrated predictors are cointegrated.
7The dataset was obtained from Amit Goyal’s website at http://www.hec.unil.ch/agoyal/.
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Figure 3: Time-series plots of cointegrated predictors
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Notes: This figure plots the following four pairs of cointegrated predictors: (a) ep (earning-price ratio) and dp (dividend-price ratio), (b) tbl
(T-bill rate) and lty (long-term yield), (c) BAA and AAA (-rated corporate bond yields), and (d) dp and dy (dividend yield). The sample
period is 1952:Q1 to 2017:Q4.
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(dp) and earning-price ratio (ep); (b) three-month T-bill rate (tbl) and long-term yield

(lty); (c) BAA- & AAA- rated corporate bond yields; and (d) dp and dividend yield (dy).

Welch and Goyal (2008) provided the definitions and sources of these predictors.

For initial illustration, Figure 3 plots the four pairs of cointegrated variables using

quarterly data in the sub-period 1952 to 2017, and demonstrated that each pair of vari-

ables appeared to be cointegrated. In addition, visual inspection of Figure 1 in Campbell

and Yogo (2006) suggests that cointegration is plausible between dp and ep. Fama and

French (1989) used the term spread (which is tbl minus lty) and the default spread (which

is BAA minus AAA) to predict the equity premium, and, under the assumption that these

spreads are stationary, their paper implies that tbl-lty and BAA-AAA are modelled in

cointegrating relationships.

A preliminary unit test indicates that every variable has a unit root, while the Engle-

Granger Cointegration test suggests the existence of cointegration in each of the four

pairs. These tests provide statistical evidence supporting the impression of co-movement

behaviour from visually inspecting Figure 3. We now test the hypothesis that the US

equity premium is predictable using a linear combination of a pair of I (1) predictors, via

the following semiparametric single-index predictive regression model:

yt = d0 + d1ut−1 + d2u
2
t−1 + ...+ dk−1u

k−1
t−1 + ek,t, (5.1)

with ek,t = γk(ut−1) + et, while the truncation parameter k is determined by the GCV

method described in Section 4.1.8 Under the null hypothesis of no predictability, d1 =

d2 = ... = dk−1 = 0; thus, the model (5.1) reduces to the constant expected equity

premium model. Given that ut−1 ∼ I (0), the no-predictability null hypothesis can be

tested using F -statistic. The OLS coefficient estimates in (5.1) and their conventional

standard errors can be obtained in the standard way from a multiple regression of yt on

1, ut−1, u
2
t−1, ..., u

k
t−1.

Table 3 reports the least-squares estimates of the coefficients in (5.1) and the results of

the F -tests under the null hypothesis of no predictability. Numbers in parentheses below

the coefficients are t-ratios and below the F -tests are p-values. Panels A and C report

8The use of nonparametric AIC produces identical results. We provide the results of both the GCV

and nonparametric AIC methods in the online supplemental material Appendix G.
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Table 3: Estimates of the single index model parameters and predictive test

Pair of predictors d̂0 d̂1 d̂2 d̂3 d̂4 F-test R̄2

Panel A: 1927Q1 - 2017Q4

ẽp and d̃p 0.0221*** 0.0685** −0.2288** −0.1998*** 4.1762 0.0256

(3.3005) (2.3507) (−2.2317) (−2.9103) (0.0063)

lty and tbl 0.0167*** 0.5449 2.1357 0.0031

(2.9890) (1.4614) (0.1448)

BAA and AAA 0.0128* 9.0449** −1602.0866*** 52 371.3111*** 11.2738 0.0785

(1.8883) (2.5737) (−4.0084) ( 4.9546) (0.0000)

dp and dy 0.0223*** −0.4421*** 0.7292** 7.0280*** 10.2787 0.0714

(3.5254) (−3.8853) ( 2.2705) ( 5.4615) (0.0000)

Panel B: 1952Q1 - 2017Q4

ẽp and d̃p 0.0192*** 0.0585*** −0.0942** −0.0848*** 4.1318 0.0346

(3.3997) (2.7383) (−1.9821) (−2.8597) (0.0069)

lty and tbl 0.0035 3.3153*** −30.5827 −3713.8087** 4.8013 0.0417

(0.5064) (3.7572) (−1.1124) (−2.5512) (0.0028)

BAA and AAA 0.0234*** 3.0394** 3.9085 0.0110

(3.6901) (1.9770) (0.0491)

dp and dy 0.1483*** −1.2062*** 2.4386*** 6.7875 0.0423

(4.0082) (−3.4235) ( 3.0305) (0.0013)

Panel C: 1927M01 - 2017M12

ẽp and d̃p 0.0078*** 0.0280*** −0.0779*** −0.0660*** 6.3716 0.0146

(3.8704) (3.3305) (−2.7900) (−3.5847) (0.0003)

lty and tbl 0.0060*** 0.1776* 3.0217 0.0019

(3.4961) (1.7383) (0.0824)

BAA and AAA −0.0027 4.6983*** −556.7487*** 14 845.4336*** 8.8212 0.0211

(−0.6603) (2.8003) (−3.6998) ( 4.3978) (0.0000)

dp and dy −0.0032 0.1956 0.8806 −26.2959*** 75.3145*** 9.8392 0.0314

(−0.4405) (1.4243) ( 1.5099) (−4.5989) (4.1201) (0.0000)

Panel D: 1952M01 - 2017M12

ẽp and d̃p 0.0067*** 0.0183** −0.0776** −0.0646*** 4.3291 0.0125

(3.7773) (2.0161) (−2.3023) (−2.9177) (0.0049)

lty and tbl 0.0030 0.8977*** −14.0718* −844.6374** 4.5656 0.0134

(1.4755) (3.4994) (−1.8033) (−2.0658) (0.0035)

BAA and AAA 0.0079*** 1.8151*** −203.2458** 5.6802 0.0117

(4.6176) (3.0778) (−2.4959) (0.0036)

dp and dy 0.0244** −0.0705** 4.2858 0.0041

(2.5816) (−2.0702) (0.0388)

Notes: This table reports ordinary least squares estimates of the parameters in (5.1). The dependent variable
yt is the US equity premium, while the lagged regressors, x1,t−1 and x2,t−1, are the cointegrated predictors. Four
pairs of cointegrated predictors are considered, as follows: (i) ep (earning-price ratio) and dp (dividend-price
ratio), (ii) tbl (T-bill rate) and lty (long-term yield), (iii) BAA and AAA (-rated corporate bond yields), and
(iv) dp and dy (dividend yield). We use the GCV method to select the truncation parameter k. The F-tests are
computed under the null hypothesis of no predictability—that is, H0 : d1 = d2 = ... = dk = 0. The number in
parenthesis below each estimate is t-ratio and below each F -test is p-value. Panels A and B (C and D) report
estimation results for the quarterly (monthly) data. *,**,*** indicate significance at the 10%, 5% and 1% levels,
respectively.
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the results for the whole sample period of 1927 to 2017, based on quarterly and monthly

data, respectively. Following Kostakis et al. (2015), we also consider the post-1952 period

because the interest rate variables are expected to be linked together after the Federal

Reserve abandoned the interest rate pegging policy in 1951. Moreover, Campbell and

Yogo (2006) and Kostakis et al. (2015) reported weak or no evidence of stock return

predictability in the post-1952 period. Our results for this sub-period are reported in

Panels B (quarterly data) and D (monthly data).

In Table 3, using the F -tests, we reject the null hypothesis of no predictability at the

5% level in both the full sample and the post-1952 sample for all four pairs at quarterly

and monthly frequencies, with one exception. The pair of lty and tbl is not a significant

predictor of equity premium at quarterly and monthly frequencies in the full sample, yet

is a significant predictor in the post-1952 period. This result supports the view that the

term-structure variables are closely linked together after 1952, yet not before.

While numerous studies (such as Campbell and Yogo, 2006 and Kostakis et al., 2015)

found no or weak evidence of predictability in the post-1952 period using a univariate or

multivariate framework, we do find strong evidence using bivariate cointegrated predictors

in this sub-period.

Moreover, the results in Table 3 provide ample evidence in favour of nonlinear pre-

dictability of stock returns, since the coefficients on the highest power in the polynomial

regression (5.1) are statistically significant at conventional levels. To illustrate the approx-

imate form of nonlinearity, Figure 4 plots predicted value of equity premium, ĝn (ût−1),

against ût−1 = θ̂1x1,t−1 + θ̂2x2,t−1, along with the 90% pointwise confidence intervals using

the post-1952 quarterly data. The confidence intervals are obtained using the procedure

described in Section 4.1. The corresponding plots for the monthly data are given in

Figure 5.

Figure 4 and Figure 5 indicate that the pair of lty and tbl and pair of ep and dp

exhibit a hump-shaped relationship between ĝn (ût−1) and ût−1 at both quarterly and

monthly frequencies. This empirical finding of nonlinear predictability using these two

pairs of cointegrated predictors highlights a useful feature of our proposed semiparametric

single-index predictive model. Using quarterly lty and tbl as an illustration, Figure 4

shows that the predicted value of equity premium peaks at around ût−1 = 0.6758ltyt−1−
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Figure 4: Estimated link function ĝ (ût−1) at quarterly frequency
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Notes: This figure plots the estimated link function of each pair of comoving predictors. The dashed line shows the approximate 90%
pointwise confidence interval, and the horizontal line depicts the sample mean of equity premium. The confidence interval is constructed by
the procedure described in Section 4.1. The sample period is 1952:Q1 to 2017:Q4.
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Figure 5: Estimated link function ĝ (ût−1) at monthly frequency
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Notes: This figure plots the estimated link function of each pair of comoving predictors. The dashed line shows the approximate 90%
pointwise confidence interval, and the horizontal line depicts the sample mean of equity premium. The confidence interval is constructed by
the procedure described in Section 4.1. The sample period is January 1952 to December 2017.
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0.7371tblt−1 = 0.015. In contrast, there is a small or negligible amount of nonlinear

predictability of equity premium using the pair of BAA and AAA and the pair of dp and

dy, at quarterly and monthly frequencies.

6 Conclusion

This paper has proposed estimation procedures for the single-index predictive regres-

sion model when the nonstationary predictors exhibit co-movement behaviour. We have

studied the two types of super-consistency rates for the estimator of the single-index pa-

rameter θ0 along two orthogonal directions in a new coordinate system, as well as their

corresponding asymptotic distributions. This paper has also established the asymptotic

normality of the plug-in estimator of the unknown link function. In addition, through

Monte-Carlo simulations, we have evaluated the finite-sample properties of α̂n, θ̂n, as

well as ĝn. Further, we have applied the proposed model in the context of stock return

predictability, and found nonlinear predictability of the equity premium using four pairs

of comoving predictors.

Appendix A Discussion on the assumptions

For Assumption 1.1 (a), similar arguments are widely used in the literature for nonstationary

models, such as by Park and Phillips (2000, 2001), and the σ-field sequence Fn,t−1 can be taken

as Fn,t−1 = σ(x1, · · · , xn−1; e1, · · · , et−1). For Assumption 1.2 (a) − (b), suppose that xt is a

d-dimensional integrated process, which is generated by a linear process vt with i.i.d. sequence

{εj ,−∞ < j < ∞} in Assumption 1.1 (b) as building blocks. Assumption 1.2 (c) assumes a

cointegration structure for xt, and more details of cointegration structure have been discussed

by Granger and Weiss (1983) and Engle and Granger (1987). Assumption 1.2 (c) also implies

that there exists only one cointegration equation among xt. This is an important assumption

to develop the asymptotic theory for θ̂n − θ0 using the rotation technique because we need to

ensure that x2t is a pure (d− 1)-dimensional nonstationary process. Assumption 1.2 (d) is our

main assumption, in which we consider θ>0 xt to be stationary inside the unknown link function,

even though xt is a d-dimensional integrated process. We also impose some restrictions on the

probability density function of ut = θ>0 xt to exclude heavy-tailed distributions, and subsequently
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can control the potentially unbounded support and unbounded function smoothly.

Assumption 1.3 assumes the consistency for (θ̂n, ĝn) directly. The consistency is established

with respect to the norm ‖.‖2 defined in (2.6). This assumption implies that θ̂n →P θ0 and

‖ĝn − g0‖L2 →P 0, respectively. Let δ > 0 and define Θδ×Gδ = {
∥∥(θ, g)− (θ0, g0)

∥∥
2
≥ δ} ⊂ Θ×

G. This assumption can be replaced by the condition
∑n

t=1

(
g(θ>xt−1)− g0(θ>0 xt−1)

)2
→P ∞

uniformly in (θ, g) ∈ Θδ ×Gδ. To prove the consistency under this condition, define:

An =

n∑
t=1

(
g(θ>xt−1)− g0(θ>0 xt−1)

)2
,

Bn =
n∑
t=1

(
g(θ>xt−1)− g0(θ>0 xt−1)

)
et,

Dn =

n∑
t=1

(
yt − g(θ>xt−1)

)2
−

n∑
t=1

(
yt − g0(θ>0 xt−1)

)2
.

Then we can show that:

E
[
A−1/2
n Bn

]2
= E


 n∑
t=1

(
g(θ>xt−1)− g0(θ>0 xt−1)

)2

−1/2
n∑
t=1

(
g(θ>xt−1)− g0(θ>0 xt−1)

)
et


2

=E


 n∑
t=1

(
g(θ>xt−1)− g0(θ>0 xt−1)

)2

−1
n∑
t=1

(
g(θ>xt−1)− g0(θ>0 xt−1)

)2
E
[
e2
t |Fn,t−1

] = σ2.

Therefore, A
−1/2
n Bn = OP (1) uniformly in (θ, g) ∈ Θδ ×Gδ. Then, we have:

Dn = An(1−A−1
n Bn) = An(1 + oP (1))→P ∞,

uniformly in (θ, g) ∈ Θδ ×Gδ. Given that Θδ ×Gδ is compact, we may easily deduce that:

inf
(θ,g)∈Θδ×Gδ

Dn →P ∞.

This condition is sufficient to ensure the consistency, as shown in earlier work by Wu (1981):

for any δ > 0, lim infn→∞ inf‖(θ,g)−(θ0,g0)‖2≥δDn > 0 in probability.

To verity the assumption that
∑n

t=1

(
g(θ>xt−1)− g0(θ>0 xt−1)

)2
→P ∞ uniformly in (θ, g) ∈

Θδ ×Gδ, we consider four cases:

(1) Given the point (θ0, g) ∈ Θδ × Gδ, by Weak Law of Large Numbers (WLLN), we can

show that

1

n

n∑
t=1

(
g(θ>0 xt−1)− g0(θ>0 xt−1)

)2
→P E

[
g(x11)− g0(x11)

]2
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uniformly in (θ0, g) ∈ Θδ×Gδ and E
[
g(x11)− g0(x11)

]2
> 0 is implied by ‖g − g0‖2L2 > δ2 > 0.

Then we can obtain that
∑n

t=1

(
g(θ>0 xt−1)− g0(θ>0 xt−1)

)2
→P ∞ uniformly in (θ0, g) ∈ Θδ×Gδ.

(2) Given the point (θ, g0) ∈ Θδ ×Gδ, suppose that g0 is H-regular such that:

g0(ηx) = κ(η)H(x) + ξ(η;x),
∣∣ξ(η;x)

∣∣ ≤ a(η)P (x),

where H(x) and P (x) are both locally integrable, lim supη→∞ a(η)/κ(η) = 0 and κ(
√
n)→∞

as n→∞.

According to (19) in Phillips and Solo (1992), we have:

sup
r

∣∣∣∣∣∣ 1

n1/2

bnrc∑
t=1

θ>xt−1 − θ>φ(1)
1

n1/2

bnrc∑
t=1

εt−1

∣∣∣∣∣∣→P 0.

We further suppose that, for all m > 0,
∫
|r|≤mH(r)2dr > 0. Then we can show that:

1

nκ(
√
n)2

n∑
t=1

(
g0(θ>xt−1)− g0(θ>0 xt−1)

)2
→P

∫ 1

0
H(Vθ(r))

2dr

uniformly in (θ, g0) ∈ Θδ × Gδ, where Vθ is Brownian motion of dimension 1 with variance

ΣVθ = θ>φ(1)Σεφ(1)>θ. Define a scaled local time L of Vθ by L(t, s) = 1/ΣVθLVθ(t, s), where

LVθ is the local time of Brownian motion Vθ(r). By the occupation formula for Brownian motion:∫ 1

0
H(Vθ(r))

2dr =

∫
H(s)2L(1, s)ds ≥

∫
|s|≤m

H(s)2L(1, s)ds > 0 a.s..

Then we can obtain that
∑n

t=1

(
g0(θ>xt−1)− g0(θ>0 xt−1)

)2
→P ∞ uniformly in (θ, g0) ∈ Θδ ×

Gδ.

(3) Given the point (θ, g0) ∈ Θδ ×Gδ, and suppose that g0 is I-regular, we can show that:

1

n

n∑
t=1

(
g0(θ>xt−1)− g0(θ>0 xt−1)

)2
→P E

[
g0(x11)

]2
> 0,

uniformly in (θ, g0) ∈ Θδ×Gδ. Then we can obtain that
∑n

t=1

(
g0(θ>xt−1)− g0(θ>0 xt−1)

)2
→P

∞ uniformly in (θ, g0) ∈ Θδ ×Gδ.

(4) Given the point (θ, g) ∈ Θδ ×Gδ, following the same ideas in cases (2) and (3), we can

show that
∑n

t=1

(
g(θ>0 xt−1)− g0(θ>xt−1)

)2
→P ∞ uniformly in (θ, g) ∈ Θδ × Gδ when g is

H-regular and I-regular, respectively. For more details about H-regular and I-regular, we refer

to Park and Phillips (2001).

Assumption 1.4 assumes a high degree of smoothness for the unknown link function g0(w),

and all polynomials on R satisfy this condition. Although there is no theory about how to
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choose the truncation parameter, it must satisfy some conditions in Assumption 1.5 to ensure

that the estimators θ̂n and ĝn converge with a certain rate. In addition, we also consider the

identification condition that inf
c∈R

E
[
g0(θ>0 x1)− c

]2
> 0 in Assumption 1.6 (a). If there exists

c ∈ R such that E
[
g0(θ>0 x1)− c

]2
= 0, then θ0 will be unidentifiable. Assumption 1.6 (b)

is standard in the literature (Newey, 1997). Suppose that ut = θ>0 xt ∼ iiN(0, 1), we have

E
[
Hk(u1)Hk(u1)>

]
= (2π)−1/2Ik, where Ik is a k-dimensional identity matrix. Then all the

eigenvalues of E
[
Hk(u1)Hk(u1)>

]
are (2π)−1/2, and hence they are bounded away from zero

uniformly in k ≥ 1.

In Assumption 1.7 (a), we require the fourth moment of g0(θ>0 xt−1) to exist, and many func-

tional forms for g0(.) together with Assumption 1.2 (d) can satisfy this condition. Suppose g0(.)

to be polynomials (e.g. g0(w) = 1+w2), exponential functions (e.g. g0(w) = exp(w)) or bounded

functions (e.g. g0(w) = (1 + w2)−1), and it is easy to see that g0(w) ∈ L2(R. exp(−w2/2)) and(
g0(w)

)2 ∈ L2(R. exp(−w2/2)). Then, simple algebra can show that Assumption 1.7 (a) is

satisfied. Assumption 1.7 (b) can be replaced by a stronger version of Assumption 1.2 (d), as

follows:

• Suppose that ut = θ>0 xt is a strictly stationary time series and has probability density

function ρ(u) such that exp(u2)ρ(u) <∞ uniformly in u.

Follow the truth that
∣∣Hi(u)

∣∣× exp(−u2/4) being bounded uniformly, we are able to show that

1

n

k−1∑
i=0

k−1∑
j=0

E
[
Hi(u1)Hj(u1)

]2
=

1

n

k−1∑
i=0

k−1∑
j=0

∫
H2
i (u)H2

j (u)ρ(u)du

=
1

n

k−1∑
i=0

k−1∑
j=0

∫
H2
i (u) exp(−u2/2)H2

j (u) exp(−u2/2) exp(u2)ρ(u)du

≤O(1)
1

n

k−1∑
i=0

k−1∑
j=0

∫
H2
j (u) exp(−u2/2)du. = O(n−1k2) = o(1).

Alternatively, we can assume E
[
Hi(u1)

]4
is uniformly bounded for 1 ≤ i ≤ k− 1, and then

Assumption 1.7 (b) can be easily verified.

Assumption 1.7 (c) and (d) can be replaced by a condition on the density function of εj and a

condition on the coefficients of the linear process for vt. According to the Beveridge and Nelson

(BN) decomposition Beveridge and Nelson, 1981 for xt, we can write x1t = θ>0 xt =
∑∞

i=0 diεt−i

(more details can be found in the proof of Lemma 3 in Appendix D). Suppose that: (1) the

innovations {εj ,−∞ < j < ∞} have density p(x) satisfying
∫ ∣∣p(x)− p(x+ y)

∣∣ ≤ C |y| where

0 < C <∞; and (2) limj→∞ djj
λ exists with λ > 11/4. Then, using the Corollary 4 in Withers
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(1981), we can show that the linear process x1t is a α-mixing process with mixing coefficient α(τ),

such that α(τ) = O(τ−1/2) and hence 1
n

∑n−1
τ=1 α(τ)ν/(4+ν) = O(n−1/2) for some ν > 0. In addi-

tion, we also need to assume that E
∣∣∣g(1)

0 (θ>0 x1)
∣∣∣4+ν

<∞ and max0≤i≤k−1E
∣∣∣Hi(θ

>
0 x1)

∣∣∣4+ν
<∞

for the same ν defined before.

Then for Assumption 1.7 (c), we can show that:

1

n2

n∑
t=2

t−1∑
s=1

∣∣∣∣∣Cov
((

g
(1)
0 (θ>0 xt−1)

)2
,
(
g

(1)
0 (θ>0 xs−1)

)2
)∣∣∣∣∣

=
1

n2

n∑
t=2

t−1∑
s=1

∣∣∣∣∣Cov
((

g
(1)
0 (x1t−1)

)2
,
(
g

(1)
0 (x1s−1)

)2
)∣∣∣∣∣

=
1

n

n−1∑
τ=1

(
1− τ

n

) ∣∣∣∣∣Cov
((

g
(1)
0 (x11)

)2
,
(
g

(1)
0 (x1,1+τ )

)2
)∣∣∣∣∣

≤cα
1

n

n−1∑
τ=1

(
1− τ

n

)
α(τ)ν/(4+ν)

(
E
[
g

(1)
0 (x11)

](4+ν)
)4/(4+ν)

=O(1)
1

n

n−1∑
τ=1

(
1− τ

n

)
α(τ)ν/(4+ν) = O(n−1/2) = o(1),

where cα = 2(4+2ν)/(4+ν) × (4 + v)/v.

Similarly, in terms of Assumption 1.7 (d), we have:

1

n2

k−1∑
i=0

k−1∑
j=0

n∑
t=2

t−1∑
s=1

∣∣∣∣Cov (Hi(θ
>
0 xt−1)Hj(θ

>
0 xt−1), Hi(θ

>
0 xs−1)Hj(θ

>
0 xs−1)

)∣∣∣∣
=

1

n2

k−1∑
i=0

k−1∑
j=0

n∑
t=2

t−1∑
s=1

∣∣∣Cov (Hi(x1t−1)Hj(x1t−1), Hi(x1s−1)Hj(x1s−1)
)∣∣∣

=
1

n

k−1∑
i=0

k−1∑
j=0

n−1∑
τ=1

(
1− τ

n

) ∣∣∣Cov (Hi(x11)Hj(x11), Hi(x1,1+τ )Hj(x1,1+τ )
)∣∣∣

≤cα
1

n

k−1∑
i=0

k−1∑
j=0

n−1∑
τ=1

(
1− τ

n

)
α(τ)ν/(4+ν)

(
E
[
Hi(x11)Hj(x11)

](4+ν)/2
)4/(4+ν)

≤cα
1

n

k−1∑
i=0

k−1∑
j=0

n−1∑
τ=1

(
1− τ

n

)
α(τ)ν/(4+ν)

(
E
[
Hi(x11)

]4+ν
E
[
Hj(x11)

]4+ν
)2/(4+ν)

=O(1)
1

n

k−1∑
i=0

k−1∑
j=0

n−1∑
τ=1

(
1− τ

n

)
α(τ)ν/(4+ν) = O(n−1/2k2) = o(1).

Appendix B Proofs of the theorems

Proof of Theorem 3.1:
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According to Lemma 9 in Appendix C, we have as n→∞

P>1 Dn(α̂n − α0)→D σr
−1/2
0 W (1).

Since P1 =

( p1,1 ··· p1,d−1

...
. . .

...
pd,1 ··· pd,d−1

)
with pi+1,i = 1 for 1 ≤ i ≤ d− 1 and others equal zero, simple

algebra shows that

n(α̂2
n − α2

0)→D ξ.

In addition, notice that

θ̂>n θ0 − 1 =(θ̂n − θ0)>θ0 = (θ̂n − θ0)>(θ0 − θ̂n + θ̂n) = −‖θ̂n − θ0‖2 − (θ̂>n θ0 − 1).

Therefore, θ̂>n θ0 − 1 = −1
2‖θ̂n − θ0‖2.

Consider the orthogonal expansion that ‖θ̂n − θ0‖2 = ‖Q>2 (θ̂n − θ0)‖2 + ‖θ>0 (θ̂n − θ0)‖2, we

can obtain

n2(α̂1
n − α1

0) =n2θ>0 (θ̂n − θ0) = − 1

1 + θ>0 θ̂n
‖nQ>2 (θ̂n − θ0)‖2

=− 1

2
‖nQ>2 (θ̂n − θ0)‖2(1 + oP (1))→D −

1

2
‖ξ‖2 .

Proof of Theorem 3.2:

Since θ̂n is the composite of α̂1
n and α̂2

n, we have

n(θ̂n − θ0) = Qn(α̂n − α0) = Qn

α̂1
n − 1

α̂2
n



=(θ0, Q2)

 0

nα̂2
n

+ oP (1) = Q2nα̂
2
n + oP (1)

→D MN(0, σ2Q2r
−1
0 Q>2 ).

Proof of Theorem 3.3:

We first show the consistency of Ĥx and σ̂2. Ĥx →P Hx follows from Lemma 5 in Ap-

pendix C directly.

For σ̂2, note that

σ̂2 =
1

n

n∑
t=1

[
yt − ĝn(θ̂>n xt−1)

]2
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=
1

n

n∑
t=1

[
et + g0(x1t−1)− ĝn(η̂t−1)

]2
=

1

n

n∑
t=1

e2
t +

1

n

n∑
t=1

[
g0(x1t−1)− ĝn(η̂t−1)

]2
+

2

n

n∑
t=1

et
[
g0(x1t−1)− ĝn(η̂t−1)

]
:=A1 +A2 + 2A3.

It is obvious that A1 →P σ
2.

Given any ε > 0, define for any function f(x) ∈ L2(R, exp(−x2/2)),

f εsup(x) = sup
|α−1|<ε

sup
|b|<ε

∣∣f(ax+ b)
∣∣ .

The discussion of its properties can be found in the proof of Lemma 5 in Appendix D.

For A2, write

A2 =
1

n

n∑
t=1

[
g0(x1t−1)− ĝn(η̂t−1)

]2
=

1

n

n∑
t=1

[
g0(x1t−1)− g0(η̂t−1) + gk(η̂t−1)− ĝn(η̂t−1) + γk(η̂t−1)− γk(x1t−1) + γk(x1t−1)

]2
≤O(1)

1

n

n∑
t=1

[
g0(x1t−1)− g0(η̂t−1)

]2
+O(1)

1

n

n∑
t=1

[
gk(η̂t−1)− ĝn(η̂t−1)

]2
+O(1)

1

n

n∑
t=1

[
γk(η̂t−1)− γk(x1t−1)

]2
+O(1)

1

n

n∑
t=1

[
γk(x1t−1)

]2
≤O(1)

∣∣∣α̂1
n − α1

0

∣∣∣2 1

n

n∑
t=1

[(
g

(1)
0

)
sup

(x1t−1)x1t−1

]2

(1 + oP (1))

+O(1)
∣∣∣α̂2
n − α2

0

∣∣∣2 1

n

n∑
t=1

[(
g

(1)
0

)
sup

(x1t−1)x2t−1

]2

(1 + oP (1))

+O(1)
∥∥C̄k(α̂n)− C0,k

∥∥2 1

n

n∑
t=1

k−1∑
i=0

[
(Hi)sup (x1t−1)

]2
(1 + oP (1))

+O(1)
∣∣∣α̂1
n − α1

0

∣∣∣2 1

n

n∑
t=1

[(
γ

(1)
k

)
sup

(x1t−1)x1t−1

]2

(1 + oP (1))

+O(1)
∣∣∣α̂2
n − α2

0

∣∣∣2 1

n

n∑
t=1

[(
γ

(1)
k

)
sup

(x1t−1)x2t−1

]2

(1 + oP (1))

+O(1)
1

n

n∑
t=1

[
γk(x1t−1)

]2
:=O(1)A2,1 + · · ·+O(1)A2,6.

Similar to the proof of (E.3) in online Appendix E, we can show that ‖C̄k(α̂n) − C0,k‖ =

OP (n−1/2k1/2) + oP (k−r/2). Then, we can obtain that

A2,1 = OP (n−4), A2,2 = OP (n−1),
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A2,3 = OP (n−1k2) + oP (k−(r−1)), A2,5 = oP (n−4k−(r−2)),

A2,6 = oP (n−1k−(r−1)), A2,7 = oP (k−r),

and hence we have shown that A2 = oP (1).

For the proof of the normality, in view of the consistency of σ̂ and Ĥx, we show the result

with the replacement of σ and Hx. Let Ẑ = Z(θ̂n) = Z(α̂n) and write

ĝn(w)− g0(w) + γk(w) = Hk(w)>
(
C̄k(θ̂n)− C0,k

)
=Hk(w)>

(
Ẑ>Ẑ

)−1
Ẑ> (γ + e) +Hk(w)>

(
Ẑ>Ẑ

)−1
Ẑ>
(
Z − Ẑ

)
C0,k

=
1

n
Hk(w)>H−1

x Ẑ>e(1 + oP (1)) +
1

n1/2
Hk(w)>H−1/2

x

(
Z>Z

)−1/2
Ẑ>γ(1 + oP (1))

+
1

n
Hk(w)>H−1

x Ẑ>
(
Z − Ẑ

)
C0,k(1 + oP (1))

=
1

n
Hk(w)>H−1

x Ze(1 + oP (1)) +
1

n
Hk(w)>H−1

x

(
Ẑ − Z

)>
e(1 + oP (1))

+
1

n1/2
Hk(w)>H−1/2

x

(
Z>Z

)−1/2
Z>γ(1 + oP (1)) +

1

n
Hk(w)>H−1

x

(
Ẑ − Z

)>
γ(1 + oP (1))

+
1

n
Hk(w)>H−1

x Z>
(
Z − Ẑ

)
C0,k(1 + oP (1))

+
1

n
Hk(w)>H−1

x

(
Ẑ − Z

)> (
Z − Ẑ

)
C0,k(1 + oP (1))

Then it follows that

√
nΣ−1(w)

(
ĝn(w)− g0(w) + γk(w)

)
=n−1/2σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x Z>e(1 + oP (1))

+ n−1/2σ−1
(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

(
Ẑ − Z

)>
e(1 + oP (1))

+ σ−1
(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1/2
x

(
Z>Z

)−1/2
Z>γ(1 + oP (1))

+ n−1/2σ−1
(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

(
Ẑ − Z

)>
γ(1 + oP (1))

+ n−1/2σ−1
(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x Z>

(
Z − Ẑ

)
C0,k(1 + oP (1))

+ n−1/2σ−1
(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

(
Ẑ − Z

)> (
Z − Ẑ

)
C0,k(1 + oP (1))

=F1(1 + oP (1)) + · · ·+ F6(1 + oP (1))

By Assumption 1.1, F1 is a martingale array and we shall use Corollary 3.1 of Hall and

Heyde (1980) to show that F1 →D N(0, 1).

The conditional variance process is given by

1

n
σ−2

(
Hk(w)>H−1

x Hk(w)
)−1

n∑
t=1

(
Hk(w)>H−1

x Hk(x1t−1)
)2
E
[
e2
t |Fn,t−1

]
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=
(
Hk(w)>H−1

x Hk(w)
)−1
Hk(w)>H−1

x

 1

n

n∑
t=1

Hk(x1t−1)Hk(x1t−1)>

H−1
x Hk(w)

=
(
Hk(w)>H−1

x Hk(w)
)−1
Hk(w)>H−1

x HxH−1
x Hk(w)(1 + oP (1)) = 1 + oP (1)

Moreover, to make the conditional Lindeberg’s condition fulfilled, we have

1

n2

(
Hk(w)>H−1

x Hk(w)
)−2

n∑
t=1

E

[(
Hk(w)>H−1

x Hk(x1t−1)et

)4
∣∣∣∣Fn,t−1

]

=O(1)
1

n2

(
Hk(w)>H−1

x Hk(w)
)−2

n∑
t=1

[
Hk(w)>H−1

x Hk(x1t−1)
]4

≤O(1)
1

n2

(
Hk(w)>H−1

x Hk(w)
)−2 ∥∥∥Hk(w)>H−1

x

∥∥∥4
n∑
t=1

∥∥Hk(x1t−1)
∥∥4

=O(1)
1

n2

(
Hk(w)>H−1

x Hk(w)
)−2 (

Hk(w)>H−2
x Hk(w)

)2
n∑
t=1

∥∥Hk(x1t−1)
∥∥4

≤O(1)λ−2
min(Hx)

(
Hk(w)>H−1

x Hk(w)
)−2 (

Hk(w)>H−1
x Hk(w)

)2 1

n2

n∑
t=1

∥∥Hk(x1t−1)
∥∥4

=oP (1)

To show that F2 = oP (1), by mean value theorem

F2 = n−1/2σ−1
(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

(
Ẑ − Z

)>
e

=n−1/2σ−1
(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

n∑
t=1

H(1)
k (η̂∗t−1)

((
α̂1
n − α1

0

)
x1t−1 +

(
α̂2
n − α2

0

)
x2t−1

)
et

=
(
α̂1
n − α1

0

)
σ−1n−1/2

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

n∑
t=1

H(1)
k (η̂∗t−1)x1t−1et

+
(
α̂2
n − α2

0

)
σ−1n−1/2

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

n∑
t=1

H(1)
k (η̂∗t−1)x2t−1et

=
(
α̂1
n − α1

0

)
σ−1n−1/2

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

n∑
t=1

H(1)
k (x1t−1)x1t−1et(1 + oP (1))

+
(
α̂2
n − α2

0

)
σ−1n−1/2

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

n∑
t=1

H(1)
k (x1t−1)x2t−1et(1 + oP (1))

:=F2,1(1 + oP (1)) + F2,2(1 + oP (1)).

Then for the stationary component

E

n−1/2σ−1
(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

n∑
t=1

H(1)
k (x1t−1)x1t−1et

2

=
1

n

(
Hk(w)>H−1

x Hk(w)
)−1 n∑

t=1

E
[
Hk(w)>H−1

x H
(1)
k (x1t−1)x1t−1

]2
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≤ 1

n

(
Hk(w)>H−1

x Hk(w)
)−1 ∥∥∥Hk(w)>H−1

x

∥∥∥2 n∑
t=1

E
∥∥∥H(1)

k (x1t−1)x1t−1

∥∥∥2

=
1

n

(
Hk(w)>H−1

x Hk(w)
)−1 (

Hk(w)>H−2
x Hk(w)

) n∑
t=1

E
∥∥∥H(1)

k (x1t−1)x1t−1

∥∥∥2

≤λ−1
min(Hx)

1

n

(
Hk(w)>H−1

x Hk(w)
)−1 (

Hk(w)>H−1
x Hk(w)

) n∑
t=1

E
∥∥∥H(1)

k (x1t−1)x1t−1

∥∥∥2

=O(k3).

Since
∣∣α̂1
n − α1

0

∣∣ = OP (n−2) from Theorem 3.1, we have F2,1 = OP (n−2k3/2) = oP (1).

Regarding the nonstationary component, consider

E

σ−1n−1/2
(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

n∑
t=1

H(1)
k (x1t−1)x2t−1et

2

=
1

n

(
Hk(w)>H−1

x Hk(w)
)−1 n∑

t=1

E
[
Hk(w)>H−1

x H
(1)
k (x1t−1)x2t−1

]2
≤ 1

n

(
Hk(w)>H−1

x Hk(w)
)−1 ∥∥∥Hk(w)>H−1

x

∥∥∥2 n∑
t=1

E
∥∥∥H(1)

k (x1t−1)x2t−1

∥∥∥2

=
1

n

(
Hk(w)>H−1

x Hk(w)
)−1 (

Hk(w)>H−2
x Hk(w)

) n∑
t=1

E
∥∥∥H(1)

k (x1t−1)x2t−1

∥∥∥2

≤λ−1
min(Hx)

1

n

(
Hk(w)>H−1

x Hk(w)
)−1 (

Hk(w)>H−1
x Hk(w)

) n∑
t=1

E
∥∥∥H(1)

k (x1t−1)x2t−1

∥∥∥2

=O(nk2).

Since
∣∣α̂2
n − α2

0

∣∣ = oP (n−1) from Theorem 3.1, we have F2,2 = OP (n−1/2k) = oP (1).

Then we move on to F3, write

|F3| =
∣∣∣∣σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1/2
x

(
Z>Z

)−1/2
Z>γ

∣∣∣∣
≤σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2 ∥∥∥Hk(w)>H−1/2

x

∥∥∥∥∥∥∥(Z>Z)−1/2
Z>γ

∥∥∥∥
=σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2 (

Hk(w)>H−1
x Hk(w)

)1/2
(
γ>Z

(
Z>Z

)−1
Z>γ

)1/2

≤O(1) ‖γ‖ = oP (n1/2k−r/2) = o(1).

In terms of F4, by mean value theorem, we have

|F4| =
∣∣∣∣n−1/2σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

(
Ẑ − Z

)>
γ

∣∣∣∣
=

∣∣∣∣n−1/2σ−1
(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

×
n∑
t=1

H(1)
k (η̂∗t−1)

((
α̂1
n − α1

0

)
x1t−1 +

(
α̂2
n − α2

0

)
x2t−1

)
γk(x1t−1)

∣∣∣∣∣∣
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≤
∣∣∣α̂1
n − α1

0

∣∣∣n−1/2σ−1
(
Hk(w)>H−1

x Hk(w)
)−1/2 ∥∥∥Hk(w)>H−1

x

∥∥∥ n∑
t=1

(∥∥∥H(1)
k γkx

∥∥∥)
sup

(x1t−1)(1 + oP (1))

+
∣∣∣α̂2
n − α2

0

∣∣∣n−1/2σ−1
(
Hk(w)>H−1

x Hk(w)
)−1/2 ∥∥∥Hk(w)>H−1

x

∥∥∥ n∑
t=1

(∥∥∥H(1)
k γk

∥∥∥)
sup

(x1t−1) |x2t−1| (1 + oP (1))

≤O(1)
∣∣∣α̂1
n − α1

0

∣∣∣n−1/2
n∑
t=1

(∥∥∥H(1)
k γkx

∥∥∥)
sup

(x1t−1)(1 + oP (1))

+O(1)
∣∣∣α̂2
n − α2

0

∣∣∣n−1/2
n∑
t=1

(∥∥∥H(1)
k γk

∥∥∥)
sup

(x1t−1) |x2t−1| (1 + oP (1))

=O(1)OP (n−2)n−1/2oP (nk−(r−3)/2) +O(1)OP (n−1)n−1/2oP (n3/2k−(r−2)/2)

=oP (n−3/2k−(r−3)/2) + oP (k−(r−2)/2) = oP (1).

Regarding F5, we can show that

F5 = n−1/2σ−1
(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x Z>

(
Z − Ẑ

)
C0,k

=σ−1
(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

1√
n

n∑
t=1

Hk(x1t−1)
(
g0(x1t−1)− g0(η̂t−1) + γk(η̂t−1)− γk(x1t−1)

)
=
(
α1

0 − α̂1
n

)
σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

1√
n

n∑
t=1

Hk(x1t−1)g
(1)
0 (η̂∗t−1)x1t−1

+
(
α2

0 − α̂2
n

)
σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

1√
n

n∑
t=1

Hk(x1t−1)g
(1)
0 (η̂∗t−1)x2t−1

+ σ−1
(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

1√
n

n∑
t=1

Hk(x1t−1)
(
γk(η̂t−1)− γk(x1t−1)

)
:=F5,1 + F5,2 + F5,3

In terms of F5,1, consider

∣∣F5,1

∣∣ =

∣∣∣∣∣∣
(
α1

0 − α̂1
n

)
σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

1√
n

n∑
t=1

Hk(x1t−1)g
(1)
0 (η̂∗t−1)x1t−1

∣∣∣∣∣∣
≤
∣∣∣α̂1
n − α1

0

∣∣∣σ−1
(
Hk(w)>H−1

x Hk(w)
)−1/2 ∥∥∥Hk(w)>H−1

x

∥∥∥ 1√
n

n∑
t=1

∥∥∥Hk(x1t−1)g
(1)
0 (η̂∗t−1)x1t−1

∥∥∥
≤O(1)

∣∣∣α̂1
n − α1

0

∣∣∣ 1√
n

n∑
t=1

(∥∥∥Hkg(1)
0 x

∥∥∥)
sup

(x1t−1)(1 + oP (1)) = OP (n−3/2k1/2) = oP (1).

For F5,2, we have(
α2

0 − α̂2
n

)
σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

1√
n

n∑
t=1

Hk(x1t−1)g
(1)
0 (η̂∗t−1)x2t−1

=
(
α2

0 − α̂2
n

)
σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

1√
n

n∑
t=1

Hk(x1t−1)Hk(η̂∗t−1)>B>k C0,kx2t−1

+
(
α2

0 − α̂2
n

)
σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

1√
n

n∑
t=1

Hk(x1t−1)γ
(1)
k (η̂∗t−1)x2t−1

=
(
α2

0 − α̂2
n

)
σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

1√
n

n∑
t=1

Hk(x1t−1)Hk(x1t−1)>B>k C0,kx2t−1
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+
(
α2

0 − α̂2
n

)
σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

1√
n

n∑
t=1

Hk(x1t−1)
(
Hk(η̂∗t−1)−Hk(x1t−1)

)>
B>k C0,kx2t−1

+
(
α2

0 − α̂2
n

)
σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

1√
n

n∑
t=1

Hk(x1t−1)γ
(1)
k (η̂∗t−1)x2t−1

:=F5,2,1 + F5,2,2 + F5,2,3,

where Bk =


0 0 ... ... 0
1 0 ... ... 0
0
√

2 ... ... 0

...
...

. . . ... 0
0 0 ...

√
k−1 0

.

For F5,2,1, by Lemma 3 and Lemma 5 in Appendix C

F5,2,1 =
(
α2

0 − α̂2
n

)
σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

1√
n

n∑
t=1

Hk(x1t−1)Hk(x1t−1)>B>k C0,kx2t−1

=n
(
α2

0 − α̂2
n

)
σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x HxB>k C0,k

1

n
√
n

n∑
t=1

x2t−1(1 + oP (1))

=n
(
α2

0 − α̂2
n

)
σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2 (

g
(1)
0 (w)− γ(1)

k (w)
) 1

n
√
n

n∑
t=1

x2t−1(1 + oP (1)).

Since n
(
α̂2
n − α2

0

)
= OP (1),Hk(w)>H−1

x Hk(w) = O(k), γ
(1)
k (w) = o(k−(r−1)/2), and 1

n
√
n

∑n
t=1 x2t−1 →D∫ 1

0
V2(r)dr, it is easy to see that F5,2,1 = OP (k−1/2) + oP (k−(r−2)/2) = oP (1). More proof details about

the first equality can be found in (E.1) in online Appendix E.

In terms of F5,2,2, by mean value theorem again, we have

F5,2,2

=

∣∣∣∣∣∣
(
α2

0 − α̂2
n

)
σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

1√
n

n∑
t=1

Hk(x1t−1)
(
Hk(η̂∗t−1)−Hk(x1t−1)

)>
B>k C0,kx2t−1

∣∣∣∣∣∣
≤
∣∣∣α̂2
n − α2

0

∣∣∣σ−1
(
Hk(w)>H−1

x Hk(w)
)−1/2 ∥∥∥Hk(w)>H−1

x

∥∥∥ 1√
n

n∑
t=1

∥∥∥Hk(x1t−1)
(
Hk(η̂∗t−1)−Hk(x1t−1)

)>
B>k C0,kx2t−1

∥∥∥
≤O(1)

∣∣∣α̂1
n − α1

0

∣∣∣ ∣∣∣α̂2
n − α2

0

∣∣∣ 1√
n

n∑
t=1

(∥∥∥HkH(2)
k x

∥∥∥)
sup

(x1t−1) |x2t−1| (1 + oP (1))

+O(1)
∣∣∣α̂2
n − α2

0

∣∣∣2 1√
n

n∑
t=1

(∥∥∥HkH(2)
k

∥∥∥)
sup

(x1t−1) |x2t−1|2 (1 + oP (1))

=OP (n−2k5/2) +OP (n−1/2k2) = oP (1).

For F5,2,3, we have

∣∣F5,2,3

∣∣ =

∣∣∣∣∣∣
(
α2

0 − α̂2
n

)
σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

1√
n

n∑
t=1

Hk(x1t−1)γ
(1)
k (η̂∗t−1)x2t−1

∣∣∣∣∣∣
≤
∣∣∣α̂2
n − α2

0

∣∣∣σ−1
(
Hk(w)>H−1

x Hk(w)
)−1/2 ∥∥∥Hk(w)>H−1

x

∥∥∥ 1√
n

n∑
t=1

∥∥∥Hk(x1t−1)γ
(1)
k (η̂∗t−1)x2t−1

∥∥∥
≤O(1)

∣∣∣α̂2
n − α2

0

∣∣∣ 1√
n

n∑
t=1

(∥∥∥Hkγ(1)
k

∥∥∥)
sup

(x1t−1) |x2t−1| (1 + oP (1)) = oP (k−(r−2)/2) = oP (1).
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Regarding F5,3, by mean value theorem

∣∣F5,3

∣∣ =

∣∣∣∣∣∣σ−1
(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

1√
n

n∑
t=1

Hk(x1t−1)
(
γk(η̂t−1)− γk(x1t−1)

)∣∣∣∣∣∣
≤σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2 ∥∥∥Hk(w)>H−1

x

∥∥∥ 1√
n

n∑
t=1

∥∥∥Hk(x1t−1)
(
γk(η̂t−1)− γk(x1t−1)

)∥∥∥
≤O(1)

∣∣∣α̂1
n − α1

0

∣∣∣ 1√
n

n∑
t=1

∥∥∥Hk(x1t−1)γ
(1)
k (η̂∗t−1)x1t−1

∥∥∥+O(1)
∣∣∣α̂2
n − α2

0

∣∣∣ 1√
n

n∑
t=1

∥∥∥Hk(x1t−1)γ
(1)
k (η̂∗t−1)x2t−1

∥∥∥
≤O(1)

∣∣∣α̂1
n − α1

0

∣∣∣ 1√
n

n∑
t=1

(∥∥∥Hkγ(1)
k x

∥∥∥)
sup

(x1t−1)(1 + oP (1))

+O(1)
∣∣∣α̂2
n − α2

0

∣∣∣ 1√
n

n∑
t=1

(∥∥∥Hkγ(1)
k

∥∥∥)
sup

(x1t−1) |x2t−1| (1 + oP (1))

=oP (n−3/2k−(r−3)/2) + oP (k−(r−2)/2) = oP (1).

Therefore, we have shown that F5 = oP (1).

For F6, we write

|F6| =
∣∣∣∣n−1/2σ−1

(
Hk(w)>H−1

x Hk(w)
)−1/2

Hk(w)>H−1
x

(
Ẑ − Z

)> (
Z − Ẑ

)
C0,k

∣∣∣∣
≤O(1)n−1/2

(
Hk(w)>H−1

x Hk(w)
)−1/2 ∥∥∥Hk(w)>H−1

x

∥∥∥
×

∣∣∣∣∣∣
n∑
t=1

(
Hk(η̂t−1)−Hk(x1t−1)

) (
g0(x1t−1)− g0(η̂t−1) + γk(η̂t−1)− γk(x1t−1)

)∣∣∣∣∣∣
≤O(1)n−1/2

∣∣∣∣∣∣
n∑
t=1

(
Hk(η̂t−1)−Hk(x1t−1)

) (
g0(x1t−1)− g0(η̂t−1) + γk(η̂t−1)− γk(x1t−1)

)∣∣∣∣∣∣
≤O(1)

∣∣∣α̂1
n − α1

0

∣∣∣2 n−1/2
n∑
t=1

(∥∥∥H(1)
k g

(1)
0 x2

∥∥∥)
sup

(x1t−1) (1 + oP (1))

+O(1)
∣∣∣α̂2
n − α2

0

∣∣∣2 n−1/2
n∑
t=1

(∥∥∥H(1)
k g

(1)
0

∥∥∥)
sup

(x1t−1) (x2t−1)
2

(1 + oP (1))

+O(1)
∣∣∣α̂1
n − α1

0

∣∣∣2 n−1/2
n∑
t=1

(∥∥∥H(1)
k γ

(1)
k x2

∥∥∥)
sup

(x1t−1)(1 + oP (1))

+O(1)
∣∣∣α̂2
n − α2

0

∣∣∣2 n−1/2
n∑
t=1

(∥∥∥H(1)
k γ

(1)
k

∥∥∥)
sup

(x1t−1) (x2t−1)
2

(1 + oP (1))

=OP (n−7/2k) +OP (n−1/2k) + oP (n−7/2k−(r−5)/2) + oP (n−1/2k−(r−3)/2) = oP (1).

Appendix C Lemmas

Lemma 1. Suppose that g(u) is differentiable on R and gr−i(u)ui ∈ L2(R, exp(−u2/2)) for 0 ≤ i ≤ r

and r ≥ 4, and ut = θ>0 xt. Then the following holds:

(1) (i) E|γk(u1)|2 = o(k−r); (ii) E|γ(1)
k (u1)|2 = o(k−(r−1)); (iii) E|γk(u1)u1|2 = o(k−(r−1));
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(iv) E|γ(1)
k (u1)u1|2 = o(k−(r−2)).

(2) (i) E‖Hk(u1)‖2 = O(k); (ii) E‖Hk(u1)u1‖2 = O(k2) ; (iii) E‖H(1)
k (u1)‖2 = O(k2);

(iv) E‖H(1)
k (u1)u1‖2 = O(k3) ; (v) E‖H(2)

k (u1)‖2 = O(k3); (vi) E‖H(2)
k (u1)u1‖2 = O(k4).

Lemma 2. The following assertions hold:

(1)
(
x1t,

1√
t
x>2t

)
has a joint density ψt(x,w

>);
(
x1t, x1s,

1√
t
x>2t,

1√
s
x>2s

)
has a joint probability density

ψts(x, y, w
>, z>) where t > s. Meanwhile, these functions are bounded uniformly in (x,w>) and

(x, y, w>, z>) as well as t and (t, s), respectively.

(2) For large t and s, we have ψt(x,w
>) = ρ(x)qt(w)(1+o(1)) and ψts(x, y, w

>, z>) = ρts(x, y)qts(w
>, z>)(1+

o(1)) where ρ(x) is the marginal density of x1t, ρts(x, y) is the joint density of (x1t, x1s), qt(w) is

the marginal density of 1√
t
x2t and qts(w

>, z>) is the joint density of
(

1√
t
x>2t,

1√
s
x>2s

)
.

Lemma 3. Let Assumption 1 hold. If 1
n2

∑n
t=2

∑t−1
s=1

∣∣Cov(f(x1t), f(x1s))
∣∣ → 0 as n → ∞, where

f(w) ∈ L2(R, exp(−w2/2)), then as n→∞:

(a) 1
n

∑n
t=1 f(x1t)→p E[f(x11)],

(b) 1
n
√
n

∑n
t=1 f(x1t)x2t →d E[f(x11)]

∫ 1

0
V2(r)dr,

(c) 1
n2

∑n
t=1 f(x1t)x2tx

>
2t →d E[f(x11)]

∫ 1

0
V2(r)V >2 (r)dr,

(d) 1
n2

∑n
t=1 f(x1t) (x2t − x̄2) (x2t − x̄2)

> →d E[f(x11)]
[∫ 1

0
V2(r)V >2 (r)dr −

∫ 1

0
V2(r)dr

∫ 1

0
V2(r)>dr

]
where V2 is the Brownian motion with variance matrix ΣV = Q>2 φ(1)Σεφ(1)>Q2 and x̄2 = 1

n

∑n
t=1 x2t.

Lemma 4. Let Assumption 1 hold, as n→∞

1

n

n∑
t=1

g
(1)
0 (x1t−1)

x2t−1 −
1

n

n∑
s=1

x2s−1

 et →D σr
1/2
0 W (1), (C.1)

where r0 = E
[
g

(1)
0 (x11)

]2 (∫ 1

0
V2(r)V >2 (r)dr −

∫ 1

0
V2(r)dr

∫ 1

0
V2(r)>dr

)
and W (1) is an (d-1)-dimensional

standard normal vector independent of V2.

Lemma 5. (1). Let Assumption 1 hold, as n→∞∥∥∥∥∥∥ 1

n

n∑
t=1

Hk(x1t)Hk(x1t)
> − E

[
Hk(x11)Hk(x11)>

]∥∥∥∥∥∥→P 0.

(2) Let Assumption 1 hold, as n→∞∥∥∥∥∥∥ 1

n

n∑
t=1

Hk(η̂t)Hk(η̂t)
> − 1

n

n∑
t=1

Hk(x1t)Hk(x1t)
>

∥∥∥∥∥∥→P 0,

where η̂t = θ̂>n xt.
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Lemma 6. Let Assumption 1 hold, as n→∞

∥∥C̄n(α0)− C0,k

∥∥ = Op(n
−1/2k1/2) + oP (k−r/2). (C.2)

Lemma 7. For any function f(x) defined on R, define

T i,j =

n∑
t=1

f(x1t−1)xit−1xjt−1

[(
α1 − α1

0

)
x1t−1 +

(
α2 − α2

0

)>
x2t−1

]
,

where α = (α1, (α2)>)> ∈ Φδn = {α = (α1, α2)> :
∣∣α1 − α1

0

∣∣ < n−1/2+δ,
∥∥α2 − α2

0

∥∥ < n−1+δ} and

i, j ∈ {1, 2} for some small δ > 0. Then

T i,j =


OP (1)n1/2+δE

∣∣∣f(x11) (x11)
3
∣∣∣ , when i = j = 1

OP (1)n1+δE
∣∣∣f(x11) (x11)

2
∣∣∣ , when i = 1, j = 2 or i = 2, j = 1

OP (1)n3/2+δE
∣∣f(x11)x11

∣∣ , when i = j = 2.

Lemma 8. Under Assumption 1, as n→∞,

P>1 D
−1
n Sn(α0)→D −2σr

1/2
0 W (1) and P>1 D

−1
n Jn(α0)D−1

n P1 →D 2r0, (C.3)

where Dn = diag(
√
n, nId−1), r0 = E

[
g

(1)
0 (x11)

]2 (∫ 1

0
V2(r)V >2 (r)dr −

∫ 1

0
V2(r)dr

∫ 1

0
V2(r)>dr

)
, W(1)

is a standard normal vector of dimension d − 1 independent of V2(r), which is Brownian motion of

dimension d− 1 with variance matrix ΣV = Q>2 φ(1)Σεφ(1)>Q2.

Lemma 9. Under Assumption 1, as n→∞

P>1
(
Dn(α̂n − α0)

)
→D σr

−1/2
0 W (1), (C.4)

where the notations are the same as those in Lemma 8.

Appendix D Proofs of lemmas

Proof of Lemma 1:

(1). According to definition, hi(u) = (−1)i exp(u2/2) di

dui exp(−u2/2). By integration by parts, we have

ci(g) =

∫
g(u)Hi(u)e−u

2/2du =
(−1)i

bi

∫
g(u)d(e−u

2/2)(i−1) = − (−1)i

bi

∫
g(1)(u)(e−u

2/2)(i−1)du

=
bi−1

bi

∫
g(1)(u)Hi−1(u)e−u

2/2du =
1√
i
ci−1(g(1)),

where bi =
√√

πi! and ci−1(g(1)) is the (i− 1)-th Hermite polynomial expansion coefficient of g(1)(u).

Iterate the previous procedure, for i ≥ r − 1 we have

ci(g) =
1√

i(i− 1)...(i− r + 1)
ci−r(g

(r)).
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By orthogonality, for k ≥ r,

E|γk(u1)|2 =

∫ (
γk(u)

)2
ρ(u) exp(u2/2) exp(−u2/2)du ≤ O(1)

∫ (
γk(u)

)2
exp(−u2/2)du

= O(1)

∞∑
i=k

c2i (g) = O(1)

∞∑
i=k

1

i(i− 1)...(i− r + 1)
c2i−r(g

(r))

= O(k−r)

∞∑
i=k

c2i−r(g
(r)) = o(k−r),

where
∑∞
i=k c

2
i−r(g

(r)) = o(1) as n → ∞ is due to Parseval’s equality
∑∞
i=r c

2
i−r(g

(r)) = ‖g(r)(u)‖2L2 <

∞9.

The following formulae are necessary for the development.

H
(1)
0 (u) = 0, H

(1)
i (u) =

√
iHi−1(u) (D.1)

H0(u)u = H1(u), Hi(u)u =
√
i+ 1Hi+1(u) +

√
iHi−1(u). (D.2)

For E|γ(1)
k (u)|2, we have

E|γ(1)
k (ut)|2 =

∫ (
γ

(1)
k (u)

)2

ρ(u) exp(u2/2) exp(−u2/2)dw

≤O(1)

∫ (
γ

(1)
k (u)

)2

exp(−u2/2)du = O(1)

∞∑
i=k

ic2i (g)

=O(1)

∞∑
i=k

i

i(i− 1)...(i− r + 1)
c2i−r(g

(r)) = O(k−(r−1))

∞∑
i=k

c2i−r(g
(r))

=o(k−(r−1)).

(2). The assertion (i) is obvious by orthogonality. To prove (ii), it follows from (D.1) that

E
∥∥Hk(ut)ut

∥∥2
=

∫
‖Hk(u)u‖2ρ(u) exp(u2/2) exp(−u2/2)du

≤O(1)

∫
‖Hk(u)u‖2 exp(−u2/2)du =

∫ k−1∑
i=0

H2
i (u)u2 exp(−u2/2)du

=O(1)

k−1∑
i=0

∫
(i+ 1)H2

i+1(u) exp(−u2/2)dx+O(1)

k−1∑
i=1

∫
iH2

i−1(u) exp(−u2/2)du = O(k2)

To prove (iii), it follows from (D.2) that

E
∥∥∥H(1)

k (ut)
∥∥∥2

=

∫ ∥∥∥H(1)
k (u)

∥∥∥2

ρ(u) exp(u2/2) exp(−u2/2)du

≤O(1)

∫ ∥∥∥H(1)
k (u)

∥∥∥2

exp(−u2/2)du = O(1)

∫ k−1∑
i=0

(
H

(1)
i (u)

)2

exp(−u2/2)dw

=O(1)

k−1∑
i=1

∫
iH2

i−1(u) exp(−u2/2)du = O(k2).

Similarly, we can show that other assertions hold.

9We can further assume that
∑∞
i=k c

2
i = O(k−ν) for a constant 0 < ν ≤ r, then E|γk(ut)|2 = O(k−2ν)
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Proof of Lemma 2:

(1): Due to BN decomposition for linear process, x1t is stationary process and x2t is integrated process

(more details can be found in the proof of Lemma 3 below). Similar to the proof of Corollary 2.2 in

Wang and Phillips (2009, p. 729), we can show that
(
x1t,

1√
t
x>2t

)
has a joint density ψt(x,w

>) and(
x1t, x1s,

1√
t
x>2t,

1√
s
x>2s

)
has a joint probability density ψts(x, y, w

>, z>) where t > s. Meanwhile, these

functions are bounded uniformly in (x,w>) and (x, y, w>, z>) as well as t and (t, s), respectively.

(2): ψt(x,w
>) = νt(x|w)qt(w), where νt(x|w) is the conditional density of x1t given 1√

t
x2t. Mean-

while, x1t and x2t are asymptotically independent (see Remark 1 of Park and Phillips (2000, p. 1257),

Lemma A.3 of Dong and Gao (2014) and Lemma A.6 of Dong et al. (2017)). According to the proof of

Lemma A.5 in Cai et al. (2015), we can get that supx,w
∣∣ψt(x,w>)− ρ(x)qt(w)

∣∣→ 0 as t→∞. Similarly,

we can show that supx,y,w,z
∣∣ψts(x, y, w>, z>)− ρts(x, y)qts(w

>, z>)
∣∣→ 0 as (t, s)→ (∞,∞). Therefore,

we have qt(x,w
>) = ρ(x)ρt(w)(1+o(1)) for large t and ψts(x, y, w

>, z>) = ρts(x, y)qts(w
>, z>)(1+o(1))

for large t and s.

Proof of Lemma 3:

We consider the Beveridge and Nelson (BN) decomposition (Beveridge and Nelson, 1981) for xt. Without

loss of generality, in what follows let x0 = 0 almost surely. It follows that

(1− L)xt = φ(L)εt =
(
φ(1)− (1− L)φ̃(L)

)
εt

xt =

t∑
i=1

φ(1)εi −
t∑
i=1

φ̃(L) (εi − εi−1) =

t∑
i=1

φ(1)εi + φ̃(L) (ε0 − εt) ,

where φ(L) =
∑∞
j=0 φjL

j with {φj} being a d × d matrix such that φ0 = Id,
∑∞
j=0 j‖φj‖ < ∞, φ(1) =∑∞

j=0 φj , and φ̃(L) =
∑∞
j=0 φ̃jL

j with φ̃j =
∑∞
k=j+1 φk. Then based on lemma 2.1 in Phillips and Solo

(1992), we have
∑∞
j=0 ‖φ̃j‖2 <∞.

Since θ0 is the standardized cointegrated coefficient, it is obvious that θ>0 φ(1) = 01×d. Therefore, we

can rewrite x1t = θ>0 xt as follows

x1t = θ>0 xt = θ>0

 t∑
i=1

φ(1)εi + φ̃(L) (ε0 − εt)

 = θ>0 φ̃(L)(ε0 − εt).

In terms of x2t, we have

x2t = Q>2

 t∑
i=1

φ(1)εi + φ̃(L) (ε0 − εt)

 = Q>2 φ(1)

t∑
i=1

εi + ζt,

where ζt = Q>2 φ̃(L) (ε0 − εt) is a stationary process.

After simple algebra, we can show that

x1t =

t−1∑
i=0

−θ>0 φ̃iεt−i +

∞∑
i=t

θ>0

(
φ̃i−t − φ̃i

)
εt−i :=

∞∑
i=0

diεt−i

ζt =

t−1∑
i=0

−Q>2 φ̃iεt−i +

∞∑
i=t

Q>2

(
φ̃i−t − φ̃i

)
εt−i :=

∞∑
i=0

biεt−i.
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Then, we can show that

∞∑
i=0

‖di‖2 =

t−1∑
i=0

∥∥∥θ>0 φ̃i∥∥∥2

+

∞∑
i=t

∥∥∥∥θ>0 (φ̃i−t − φ̃i)∥∥∥∥2

≤ 5 ‖θ0‖2
∞∑
i=0

∥∥∥φ̃i∥∥∥2

= 5

∞∑
i=0

∥∥∥φ̃i∥∥∥2

<∞,

where di is a 1× d-dimensional matrix. Similarly, we can also show that
∑∞
i=0 ‖bi‖

2
<∞, where bi is a

(d− 1)× d-dimensional matrix.

We set d = 2 for all the following proofs in the supplementary material, this is just for notational

simplicity. The proof for the general case is essentially identical. For part (a), we have

E

∣∣∣∣∣∣ 1n
n∑
t=1

f(x1t)− E[f(x11)]

∣∣∣∣∣∣
2

=
1

n2

n∑
t=1

E
[
f(x1t)− E

[
f(x1t)

]]2
+

2

n2

n∑
t=2

t−1∑
s=1

E

[(
f(x1t)− E

[
f(x1t)

]) (
f(x1s)− E

[
f(x1s)

])]

≤O(n−1) +
2

n2

n∑
t=2

t−1∑
s=1

∣∣∣Cov (f(x1t), f(x1s)
)∣∣∣ = O(n−1) + o(1) = o(1)

For part (b), we consider the following expression

1

n
√
n

n∑
t=1

f(x1t)x2t

=E
[
f(x11)

] 1

n
√
n

n∑
t=1

x2t +
1

n
√
n

n∑
t=1

(
f(x1t)− E

[
f(x1t)

])
x2t

=E
[
f(x11)

] 1

n
√
n

n∑
t=1

Q>2 φ(1)

t∑
i=1

εi + E
[
f(x11)

] 1

n
√
n

n∑
t=1

ζt +
1

n
√
n

n∑
t=1

(
f(x1t)− E

[
f(x1t)

])
x2t

=C1 + C2 + C3

It is known that

C1 = E
[
f(x11)

] 1

n
√
n

n∑
t=1

Q>2 φ(1)

t∑
i=1

εi →D E[f(x11)]

∫ 1

0

V2(r)dr,

where V2 is Brownian motion with variance ΣV = Q>2 φ(1)Σεφ(1)>Q2.

For C2, consider

E

 1

n
√
n

n∑
t=1

ζt

2

≤ 1

n2

n∑
t=1

E [ζt]
2

=
1

n2

n∑
t=1

E
[
Q>2 φ̃(L)(ε0 − εt)

]2

≤ 2

n2

n∑
t=1

E

 ∞∑
i=0

biε−i

2

+
2

n2

n∑
t=1

E

 ∞∑
i=0

biεt−i

2

=
4

n

∞∑
i=0

biΣεb
>
i ≤ O(1)

1

n

∞∑
i=0

‖bi‖2 = o(1)

In terms of C3, we have

C2
3 =

 1

n
√
n

n∑
t=1

(
f(x1t)− E

[
f(x1t)

])
x2t

2

=
1

n3

n∑
t=1

[(
f(x1t)− E

[
f(x1t)

])
x2t

]2

+
2

n3

n∑
t=2

t−1∑
s=1

(
f(x1t)− E

[
f(x1t)

]) (
f(x1s)− E

[
f(x1s)

])
x2tx2s
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=
1

n3

an∑
t=1

[(
f(x1t)− E

[
f(x1t)

])
x2t

]2

+
1

n3

n∑
t=an+1

[(
f(x1t)− E

[
f(x1t)

])
x2t

]2

+
2

n3

bn∑
t=2

t−1∑
s=1

(
f(x1t)− E

[
f(x1t)

]) (
f(x1s)− E

[
f(x1s)

])
x2tx2s

+
2

n3

n∑
t=bn+1

bn∑
s=1

(
f(x1t)− E

[
f(x1t)

]) (
f(x1s)− E

[
f(x1s)

])
x2tx2s

+
2

n3

n∑
t=bn+2

t−1∑
s=bn+1

(
f(x1t)− E

[
f(x1t)

]) (
f(x1s)− E

[
f(x1s)

])
x2tx2s

=C3,1 + C3,2 + 2C3,3 + 2C3,4 + 2C3,5

where an/n
2 → 0, bn/n→ 0, and an →∞, bn →∞ as n→∞.

For C3,1, by the fact that sup1≤t≤n |x2t| /
√
n = OP (1), we have

C3,1 =
1

n3

an∑
t=1

[(
f(x1t)− E

[
f(x1t)

])
x2t

]2

=
1

n2

an∑
t=1

[(
f(x1t)− E

[
f(x1t)

]) x2t√
n

]2

=OP (1)
1

n2

an∑
t=1

[
f(x1t)− E

[
f(x1t)

]]2
= OP (n−2an) = oP (1).

For C3,2, since t is large enough, by Lemma 2, write

EC3,2 = E

 1

n3

n∑
t=an+1

[(
f(x1t)− E

[
f(x1t)

])
x2t

]2


=
1

n3

n∑
t=an+1

tE
[
f(x1t)− E

[
f(x1t)

]]2
E

[
x2t√
t

]2

(1 + o(1))

=O(1)
1

n3

n∑
t=an+1

t = O(n−1) = o(1).

For C3,3, note that

∣∣C3,3

∣∣ =

∣∣∣∣∣∣ 1

n3

bn∑
t=2

t−1∑
s=1

(
f(x1t)− E

[
f(x1t)

]) (
f(x1s)− E

[
f(x1s)

])
x2tx2s

∣∣∣∣∣∣
≤ 1

n2

bn∑
t=2

t−1∑
s=1

∣∣∣∣(f(x1t)− E
[
f(x1t)

]) (
f(x1s)− E

[
f(x1s)

])∣∣∣∣ ∣∣∣∣ x2t√
n

x2s√
n

∣∣∣∣
=OP (1)

1

n2

bn∑
t=2

t−1∑
s=1

∣∣∣∣(f(x1t)− E
[
f(x1t)

]) (
f(x1s)− E

[
f(x1s)

])∣∣∣∣
and

E

 1

n2

bn∑
t=2

t−1∑
s=1

∣∣∣∣(f(x1t)− E
[
f(x1t)

]) (
f(x1s)− E

[
f(x1s)

])∣∣∣∣


≤ 1

n2

bn∑
t=2

t−1∑
s=1

[
E
[
f(x1t)− E

[
f(x1t)

]]2
E
[
f(x1s)− E

[
f(x1s)

]]2]1/2

= O(n−2b2n) = o(1)

For C3,4, consider

∣∣C3,4

∣∣ =

∣∣∣∣∣∣ 1

n3

n∑
t=bn+1

bn∑
s=1

(
f(x1t)− E

[
f(x1t)

]) (
f(x1s)− E

[
f(x1s)

])
x2tx2s

∣∣∣∣∣∣
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≤ 1

n2

n∑
t=bn+1

bn∑
s=1

∣∣∣∣(f(x1t)− E
[
f(x1t)

]) (
f(x1s)− E

[
f(x1s)

]) x2t√
n

x2s√
n

∣∣∣∣
=OP (1)

1

n2

n∑
t=bn+1

bn∑
s=1

∣∣∣∣(f(x1t)− E
[
f(x1t)

]) (
f(x1s)− E

[
f(x1s)

])∣∣∣∣
and

E

 1

n2

n∑
t=bn+1

bn∑
s=1

∣∣∣∣(f(x1t)− E
[
f(x1t)

]) (
f(x1s)− E

[
f(x1s)

])∣∣∣∣


≤ 1

n2

n∑
t=bn+1

bn∑
s=1

[
E
[
f(x1t)− E

[
f(x1t)

]]2
E
[
f(x1s)− E

[
f(x1s)

]]2]1/2

= O(n−1bn) = o(1)

In terms of C3,5, since t and s are large enough, by Lemma 2, we have

∣∣EC3,5

∣∣ =

∣∣∣∣∣∣∣E
 1

n3

n∑
t=bn+2

t−1∑
s=bn+1

(
f(x1t)− E

[
f(x1t)

]) (
f(x1s)− E

[
f(x1s)

])
x2tx2s


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣ 1

n3

n∑
t=bn+2

t−1∑
s=bn+1

√
t
√
sE

[(
f(x1t)− E

[
f(x1t)

]) (
f(x1s)− E

[
f(x1s)

])]
E

[
x2t√
t

x2s√
s

]
(1 + o(1))

∣∣∣∣∣∣
≤ 1

n3

n∑
t=bn+2

t−1∑
s=bn+1

√
t
√
s
∣∣Cov(f(x1t), f(x1s))

∣∣ ∣∣∣∣∣E
[
x2t√
t

x2s√
s

]∣∣∣∣∣ (1 + o(1))

≤O(1)
1

n2

n∑
t=bn+2

t−1∑
s=bn+1

∣∣Cov(f(x1t), f(x1s))
∣∣ = o(1).

Without loss of generality, in what follows we abuse the density by neglecting the argument on an and

bn as we did before.

For part (c), we consider the following expression

1

n2

n∑
t=1

f(x1t) (x2t)
2

=E
[
f(x11)

] 1

n2

n∑
t=1

(x2t)
2

+
1

n2

n∑
t=1

(
f(x1t)− E

[
f(x1t)

])
(x2t)

2

=E
[
f(x11)

] 1

n2

n∑
t=1

 t∑
i=1

Q>2 φ(1)εi

2

+ E
[
f(x11)

] 1

n2

n∑
t=1

ζ2
t + E

[
f(x11)

] 2

n2

n∑
t=1

t∑
i=1

Q>2 φ(1)εiζt

+
1

n2

n∑
t=1

(
f(x1t)− E

[
f(x1t)

])
(x2t)

2

=C4 + C5 + C6 + C7

It is known that C4 = E
[
f(x11)

]
1
n2

∑n
t=1

(∑t
i=1Q

>
2 φ(1)εi

)2

→D E[f(x11)]
∫ 1

0
V2(r)2dr, where V2

is Brownian motion with variance ΣV = Q>2 φ(1)Σεφ(1)>Q2.

For C5, consider

E

 1

n2

n∑
t=1

ζ2
t

 =
1

n2

n∑
t=1

E
[
φ̃(L)(ε0 − εt)

]2
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≤ 2

n2

n∑
t=1

E

 ∞∑
i=0

biε−i

2

+
2

n2

n∑
t=1

E

 ∞∑
i=0

biεt−i

2

=
4

n

∞∑
i=0

biΣεb
>
i ≤ O(1)

1

n

∞∑
i=0

‖bi‖2 = o(1)

Then by Cauchy-Schwartz inequality, we can immediately obtain that C6 = oP (1).

In term of C7, we have

EC2
7 = E

 1

n2

n∑
t=1

(
f(x1t)− E

[
f(x1t)

])
(x2t)

2

2

=
1

n4

n∑
t=1

E

[(
f(x1t)− E

[
f(x1t)

])
(x2t)

2

]2

+
2

n4

n∑
t=2

t−1∑
s=1

E

[(
f(x1t)− E

[
f(x1t)

]) (
f(x1s)− E

[
f(x1s)

])
(x2t)

2
(x2s)

2

]

=
1

n4

n∑
t=1

t2E

[(
f(x1t)− E

[
f(x1t)

])]2

E

[
x2t√
t

]4

(1 + o(1))

+
2

n4

n∑
t=2

t−1∑
s=1

tsE

[(
f(x1t)− E

[
f(x1t)

]) (
f(x1s)− E

[
f(x1s)

])]
E

[
x2t√
t

x2s√
s

]2

(1 + o(1))

≤O(n−1) +O(1)
1

n2

n∑
t=2

t−1∑
s=1

∣∣Cov(f(x1t), f(x1s))
∣∣ = O(n−1) + o(1) = o(1)

For part (d), according to Lemma 3. (a), (b) and (c), we can immediately obtain that

1

n2

n∑
t=1

f(x1t) (x2t − x̄2)
2

=
1

n2

n∑
t=1

f(x1t)x
2
2t −

2

n2

n∑
t=1

f(x1t)x2tx̄2 +
1

n2

n∑
t=1

f(x1t)x̄
2
2

=
1

n2

n∑
t=1

f(x1t)x
2
2t −

2

n
√
n

n∑
t=1

f(x1t)x2t
1

n
√
n

n∑
s=1

x2s +
1

n

n∑
t=1

f(x1t)

 1

n
√
n

n∑
s=1

x2s

2

=
1

n2

n∑
t=1

f(x1t)x
2
2t − E

[
f(x11)

] 1

n
√
n

n∑
t=1

x2t

2

+ oP (1)

→D E
[
f(x11)

] ∫ 1

0

V2(r)2dr −

(∫ 1

0

V2(r)dr

)2
 .

Proof of Lemma 4: According to Lemma 3 (c), the conditional variance process is given by

n∑
t=1

E


 1

n
g

(1)
0 (x1t−1)

x2t−1 −
1

n

n∑
s=1

x2s−1

 et


2

|Fn,t−1


=σ2 1

n2

n∑
t=1

(
g

(1)
0 (x1t−1)

)2

x2t−1 −
1

n

n∑
s=1

x2s−1

2

→D σ2E
[
g

(1)
0 (x1t−1)

]2

∫ 1

0
V2(r)2dr −

(∫ 1

0
V2(r)dr

)2
 .
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To make the conditional Lindeberg’s condition fulfilled, we have

n∑
t=1

E


 1

n
g

(1)
0 (x1t−1)

x2t−1 −
1

n

n∑
s=1

x2s−1

 et


4

|Fn,t−1


=E

[
e4
t |Fn,t−1

] 1

n4

n∑
t=1

(
g

(1)
0 (x1t−1)

)4

x2t−1 −
1

n

n∑
s=1

x2s−1

4

≤8E
[
e4
t |Fn,t−1

] 1

n2

n∑
t=1

(
g

(1)
0 (x1t−1)

)4
(
x2t−1√
n

)4

+ 8E
[
e4
t |Fn,t−1

] 1

n2

n∑
t=1

(
g

(1)
0 (x1t−1)

)4

 1

n

n∑
s=1

x2s−1√
n

4

=OP (1)
1

n2

n∑
t=1

(
g

(1)
0 (x1t−1)

)4

= OP (n−1) = oP (1).

Then, the stated result follows from Corollary 3.1 of Hall and Heyde (1980).

Proof of Lemma 5:

To prove the the result (1), we consider

E

∥∥∥∥∥∥ 1

n

n∑
t=1

Hk(x1t)Hk(x1t)
> − E

[
Hk(x11)Hk(x11)>

]∥∥∥∥∥∥
2

=

k−1∑
i=0

k−1∑
j=0

E

 1

n

n∑
t=1

Hi(x1t)Hj(x1t)− E
[
Hi(x11)Hj(x11)

]2

=
1

n2

k−1∑
i=0

k−1∑
j=0

n∑
t=1

E
[
Hi(x1t)Hj(x1t)− E

[
Hi(x1t)Hj(x1t)

]]2
+

2

n2

k−1∑
i=0

k−1∑
j=0

n∑
t=2

t−1∑
s=1

E

[(
Hi(x1t)Hj(x1t)− E

[
Hi(x1t)Hj(x1t)

]) (
Hi(x1s)Hj(x1s)− E

[
Hi(x1s)Hj(x1s)

])]
=C8 + 2C9.

For the first term C8, according to Assumption 1.7 (b), we have

C8 =
1

n2

k−1∑
i=0

k−1∑
j=0

n∑
t=1

E
[
Hi(x1t)Hj(x1t)− E

[
Hi(x1t)Hj(x1t)

]]2
≤ 1

n2

k−1∑
i=0

k−1∑
j=0

n∑
t=1

E
[
Hi(x1t)Hj(x1t)

]2
= o(1).

In terms of C9, according to Assumption 1.7 (d), write

|C9| =

∣∣∣∣∣∣ 1

n2

k−1∑
i=0

k−1∑
j=0

n∑
t=2

t−1∑
s=1

E

[(
Hi(x1t)Hj(x1t)− E

[
Hi(x1t)Hj(x1t)

]) (
Hi(x1s)Hj(x1s)− E

[
Hi(x1s)Hj(x1s)

])]∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

n2

k−1∑
i=0

k−1∑
j=0

n∑
t=2

t−1∑
s=1

Cov
(
Hi(x1t)Hj(x1t), Hi(x1s)Hj(x1s)

)∣∣∣∣∣∣
≤ 1

n2

k−1∑
i=0

k−1∑
j=0

n∑
t=2

t−1∑
s=1

∣∣∣Cov (Hi(x1t)Hj(x1t), Hi(x1s)Hj(x1s)
)∣∣∣ = o(1).
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Therefore it is obvious that∥∥∥∥∥∥ 1

n

n∑
t=1

Hk(x1t)Hk(x1t)
> − E

[
Hk(x11)Hk(x11)>

]∥∥∥∥∥∥→P 0.

To prove the the result (2), given any ε > 0, define for any function f(x) ∈ L2(R, exp(−x2/2)),

f εsup(x) = sup
|α−1|<ε

sup
|b|<ε

∣∣f(ax+ b)
∣∣

f̃ εsup(x) = sup
|α−1|<ε

sup
|b|<ε

∣∣∣f(ax+ b)ρ1/2(ax+ b)
∣∣∣ ,

where ρ(u) is the density function for ut = θ>0 xt. And it is obvious that f εsup(x)ρ1/2(x) ≤ f̃ εsup(x).

Then it is easy to show that f(x)ρ1/2(x) ∈ L2(R):∫
f(x)2ρ(x)dx =

∫
f(x)2ρ(x) exp(x2/2) exp(−x2/2)dx ≤ O(1)

∫
f(x)2 exp(−x2/2)dx = O(1).

Similar to the proof of Lemma A1 in Park and Phillips (2000), we can show that f̃ εsup(x) ∈ L2(R).

Because of square integrability, we may assume without loss of generality that for sufficient large |x|, say

|x| > M , |f(x)ρ1/2(x)| is monotone. Therefore, we have f̃ εsup(x) =
∣∣∣f(x− ε)ρ1/2(x− ε)

∣∣∣ for x > M + ε

and f̃ εsup(x) =
∣∣∣f(x+ ε)ρ1/2(x+ ε)

∣∣∣ for x < −M − ε. Then we can obtain∫
|x|>M+ε

(
f̃ εsup(x)

)2

dx =

∫
|x|>M+ε

(
f(x± ε)ρ1/2(x± ε)

)2

dx =

∫
|x|>M

(
f(x)ρ1/2(x))

)2

dx.

Meanwhile, on the interval [−M − ε,M + ε], the function f̃ εsup(x) can be approximated by |f(x)ρ1/2(x)|

as accurate as we wish due to continuity as long as ε is sufficiently small. Therefore, we can conclude∫ (
f εsup(x)

)2

ρ(x)dx ≤
∫ (

f̃ εsup(x)
)2

dx =

∫ (
f(x)

)2
ρ(x)dx(1 + o(1)).

More details have been discussed in Park and Phillips (2000) and Dong et al. (2016).

Since sup1≤t≤n |x2t|/
√
n = OP (1), |α̂1 − α1

0| = OP (n−2), and |α̂2 − α2
0| = OP (n−1), we have for any

ε > 0 and large n, ∣∣f(η̂t)
∣∣ =

∣∣∣∣f (α̂1x1t + α̂2x2t

)∣∣∣∣ ≤ f εsup(x1t)(1 + oP (1)),

uniformly in t.

Then, by mean value theorem we have∥∥∥∥∥∥ 1

n

n∑
t=1

Hk(η̂t)Hk(η̂t)
> − 1

n

n∑
t=1

Hk(x1t)Hk(x1t)
>

∥∥∥∥∥∥
≤ 1

n

n∑
t=1

∥∥∥(Hk(η̂t)−Hk(x1t)
)
Hk(x1t)

>
∥∥∥+

1

n

n∑
t=1

∥∥∥Hk(x1t)
(
Hk(η̂t)−Hk(x1t)

)>∥∥∥
+

1

n

n∑
t=1

∥∥∥(Hk(η̂t)−Hk(x1t)
) (
Hk(η̂t)−Hk(x1t)

)>∥∥∥
=

1

n

n∑
t=1

∥∥∥∥∥H(1)
k (η̂∗t )Hk(x1t)

>
((

α̂1
n − α1

0

)
x1t +

(
α̂2
n − α2

0

)
x2t

)∥∥∥∥∥
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+
1

n

n∑
t=1

∥∥∥∥∥Hk(x1t)H(1)
k (η̂∗t )>

((
α̂1
n − α1

0

)
x1t +

(
α̂2
n − α2

0

)
x2t

)∥∥∥∥∥
+

1

n

n∑
t=1

∥∥∥∥∥H(1)
k (η̂∗t )H(1)

k (η̂∗t )>
((

α̂1
n − α1

0

)
x1t +

(
α̂2
n − α2

0

)
x2t

)2
∥∥∥∥∥

≤OP (1)
1

n3

n∑
t=1

(∥∥∥H(1)
k

∥∥∥ ‖Hkx‖)
sup

(x1t)(1 + oP (1)) +OP (1)
1

n3/2

n∑
t=1

(∥∥∥H(1)
k

∥∥∥ ‖Hk‖)
sup

(x1t)(1 + oP (1))

+OP (1)
1

n5

n∑
t=1

(∥∥∥H(1)
k

∥∥∥ ∥∥∥H(1)
k x2

∥∥∥)
sup

(x1t)(1 + oP (1)) +OP (1)
1

n2

n∑
t=1

(∥∥∥H(1)
k

∥∥∥2
)

sup

(x1t)(1 + oP (1))

=OP (1)C10 + · · ·+OP (1)C13

For C10, write

E

 1

n3

n∑
t=1

(∥∥∥H(1)
k

∥∥∥ ‖Hkx‖)
sup

(x1t)

 =
1

n3

n∑
t=1

E

[∥∥∥H(1)
k (x1t−1)

∥∥∥∥∥Hk(x1t−1)x1t−1

∥∥] (1 + o(1))

≤ 1

n3

n∑
t=1

[
E
∥∥∥H(1)

k (x1t−1)
∥∥∥2

E
∥∥Hk(x1t−1)x1t−1

∥∥2
]1/2

(1 + o(1)) = O(n−2k2)

Similarly, we can show that C11 = OP (n−1/2k3/2), C12 = OP (n−4k3), and C13 = OP (n−1k2). Therefore,∥∥ 1
n

∑n
t=1Hk(η̂t)Hk(η̂t)

> − 1
n

∑n
t=1Hk(x1t)Hk(x1t)

>
∥∥→P 0.

Proof of Lemma 6:

According to Hermite expansion, we have

C̄k(α0)− C0,k =
(
Z(α0)>Z(α0)

)−1

Z(α0)>γ(α0) +
(
Z(α0)>Z(α0)

)−1

Z(α0)>e

=C14 + C15

Regarding C14, it follows from Lemma 5 that

‖C14‖2 =
∥∥∥(Z(α0)>Z(α0))−1Z(α0)>γ(α0)

∥∥∥2

= γ(α0)>Z(α0)
(
Z(α0)>Z(α0)

)−1 (
Z(α0)>Z(α0)/n

)−1

Z(α0)>γ(α0)/n

= γ(α0)>Z(α0)
(
Z(α0)>Z(α0)

)−1

H−1
x Z(α0)>γ(α0)/n(1 + oP (1))

≤ λ−1
min (Hx) · γ(α0)>Z(α0)

(
Z(α0)>Z(α0)

)−1

Z(α0)>γ(α0)/n(1 + oP (1))

≤ λ−1
min (Hx) · λmax

(
Z(α0)(Z(α0)>Z(α0))−1Z(α0)>

)
·
∥∥γ(α0)

∥∥2
/n(1 + oP (1)),

where the first inequality is due to Magnus and Neudecker (2007, exercise 5 on P. 267). Since Z(α0)
(
Z(α0)>Z(α0)

)−1
Z(α0)>

is a symmetric and idempotent matrix, the max eigenvalue is λmax = 1. Also note that, according to

Lemma 1.(1), we have 1
n

∥∥γ(α0)
∥∥2

= oP (k−r).

Similarly, for C15, we consider

‖C15‖2 =
∥∥∥(Z(α0)>Z(α0))−1Z(α0)>e

∥∥∥2

= e>Z(α0)
(
Z(α0)>Z(α0)

)−1 (
Z(α0)>Z(α0)/n

)−1

Z(α0)>e/n
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= e>Z(α0)
(
Z(α0)>Z(α0)

)−1

H−1
x Z(α0)>e/n(1 + oP (1))

≤ λ−1
min (Hx) · e>Z(α0)/n

(
Z(α0)>Z(α0)/n

)−1

Z(α0)>e/n(1 + oP (1))

≤ λ−2
min (Hx) ·

∥∥∥∥ 1

n
Z(α0)>e

∥∥∥∥2

(1 + oP (1)),

where E
∥∥ 1
nZ(α0)>e

∥∥2
= 1

n2

∑k−1
i=0

∑n
t=1E

[
Hi(x1t−1)

]2
= O(n−1k).

According to the above derivations, we can obtain∥∥C̄k(α0)− C0,k

∥∥ = Op(n
−1/2k1/2) + oP (k−r/2).

Proof of Lemma 7: When i = j = 1, we have

∣∣∣T 1,1
∣∣∣ =

∣∣∣∣∣∣
n∑
t=1

f(x1t−1) (x1t−1)
2

[(
α1 − α1

0

)
x1t−1 +

(
α2 − α2

0

)
x2t−1

]∣∣∣∣∣∣
≤
∣∣∣α1 − α1

0

∣∣∣ n∑
t=1

∣∣∣f(x1t−1) (x1t−1)
3
∣∣∣+
∣∣∣α2 − α2

0

∣∣∣ n∑
t=1

∣∣∣f(x1t−1) (x1t−1)
2
x2t−1

∣∣∣
≤n−1/2+δ

n∑
t=1

∣∣∣f(x1t−1) (x1t−1)
3
∣∣∣+ n−1/2+δ

n∑
t=1

∣∣∣f(x1t−1) (x1t−1)
2
∣∣∣ ∣∣∣∣x2t−1√

n

∣∣∣∣
=n−1/2+δ

n∑
t=1

∣∣∣f(x1t−1) (x1t−1)
3
∣∣∣+OP (1)n−1/2+δ

n∑
t=1

∣∣∣f(x1t−1) (x1t−1)
2
∣∣∣ ,

where

E

 n∑
t=1

∣∣∣f(x1t−1) (x1t−1)
3
∣∣∣
 = nE

∣∣∣f(x1t−1) (x11)
3
∣∣∣

E

 n∑
t=1

∣∣∣f(x1t−1) (x1t−1)
2
∣∣∣
 = nE

∣∣∣f(x1t−1) (x11)
2
∣∣∣

Therefore, it follows that T 1,1 = OP (n1/2+δ)E
∣∣∣f(x11) (x11)

3
∣∣∣.

For i = 1, j = 2, write

∣∣∣T 1,2
∣∣∣ =

∣∣∣∣∣∣
n∑
t=1

f(x1t−1)x1t−1x2t−1

[(
α1 − α1

0

)
x1t−1 +

(
α2 − α2

0

)
x2t−1

]∣∣∣∣∣∣
≤
∣∣∣α1 − α1

0

∣∣∣ n∑
t=1

∣∣∣f(x1t−1) (x1t−1)
2
x2t−1

∣∣∣+
∣∣∣α2 − α2

0

∣∣∣ n∑
t=1

∣∣∣f(x1t−1)x1t−1 (x2t−1)
2
∣∣∣

≤n−1/2+δ
n∑
t=1

∣∣∣f(x1t−1) (x1t−1)
2
x2t−1

∣∣∣+ n−1+δ
n∑
t=1

∣∣∣f(x1t−1)x1t−1 (x2t−1)
2
∣∣∣

=OP (1)nδ
n∑
t=1

∣∣∣f(x1t−1) (x1t−1)
2
∣∣∣+OP (1)nδ

n∑
t=1

∣∣f(x1t−1)x1t−1

∣∣
=OP (n1+δ)E

∣∣∣f(x11) (x11)
2
∣∣∣ .

For i = 2, j = 2, notice that

∣∣∣T 2,2
∣∣∣ =

∣∣∣∣∣∣
n∑
t=1

f(x1t−1) (x2t−1)
2

[(
α1 − α1

0

)
x1t−1 +

(
α2 − α2

0

)
x2t−1

]∣∣∣∣∣∣
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≤
∣∣∣α1 − α1

0

∣∣∣ n∑
t=1

∣∣∣f(x1t−1)x1t−1 (x2t−1)
2
∣∣∣+
∣∣∣α2 − α2

0

∣∣∣
∣∣∣∣∣∣
n∑
t=1

f(x1t−1) (x2t−1)
3

∣∣∣∣∣∣
≤n−1/2+δ

n∑
t=1

∣∣∣f(x1t−1)x1t−1 (x2t−1)
2
∣∣∣+ n−1+δ

∣∣∣∣∣∣
n∑
t=1

f(x1t−1) (x2t−1)
3

∣∣∣∣∣∣
=OP (1)n1/2+δ

n∑
t=1

∣∣f(x1t−1)x1t−1

∣∣+OP (1)n1/2+δ
n∑
t=1

∣∣f(x1t−1)
∣∣

=OP (n3/2+δ)E
∣∣f(x11)x11

∣∣
Proof of Lemma 8:

By definition of (2.10), we have

0 =
∂

∂θ
Wn,λ̂(θ̂n, C̄k), 0 =

∂

∂λ
Wn,λ̂(θ̂n, C̄k).

The condition 0 = ∂
∂λWn,λ̂(θ̂n, C̄k) gives that ‖θ̂n‖2−1 = 0, which satisfies the identification condition for

the single-index model. Given θ such that θ>θ 6= 0, multiplying θ> on both sides of 0 = ∂
∂θWn,λ̂(θ, C̄k(θ))

gives

λ̂(θ) = (θ>θ)−1θ>
n∑
t=1

(
yt − ĝn(θ>xt−1)

) ∂ĝn(θ>xt−1)

∂θ
. (D.3)

For θ = θ0, we have θ>0 θ0 = 1 and

λ̂(θ0) = θ>0

n∑
t=1

(
yt − ĝn(θ>0 xt−1)

) ∂ĝn(θ>xt−1)

∂θ

∣∣∣∣∣
θ=θ0

.

DenoteDn = diag(n1/2, n), ξn,t−1 = D−1
n Q>xt−1 = ( 1√

n
x1t−1,

1
nx2t−1)>, andHn,x =

∑n
t=1Hk(θ>0 xt−1)Hk(θ>0 xt−1)>

for brevity. It follows that

(a). The score:

D−1
n

∂

∂α
Wn,λ̂(α0))

∣∣∣∣
(α,Ck)=(α0,C̄k(α0))

= D−1
n Q>

∂

∂θ
Wn,λ̂(θ0)

∣∣∣∣
(θ,Ck)=(θ0,C̄k(θ0))

=− 2D−1
n Q>

n∑
t=1

(
yt − ĝn(θ>0 xt−1)

) ∂ĝn(θ>xt−1)

∂θ

∣∣∣∣∣
θ=θ0

+ 2D−1
n Q>θ0λ̂(θ0)

=2(−I + α0α
>
0 )

n∑
t=1

(
yt − ĝn(x1t−1)

)ĝ(1)
n (x1t−1)ξn,t−1 −Hk(x1t−1)>H−1

n,x

n∑
s=1

Hk(x1s−1)ĝ(1)
n (x1s−1)ξn,s−1


+ 2(−I + α0α

>
0 )

n∑
t=1

(
yt − ĝn(x1t−1)

)Hk(x1t−1)>H−1
n,x

n∑
s=1

H(1)
k (x1s−1)

(
ys − ĝn(x1s−1)

)
ξn,s−1


=2(−I + α0α

>
0 )

n∑
t=1

et

ĝ(1)
n (x1t−1)ξn,t−1 −Hk(x1t−1)>H−1

n,x

n∑
s=1

Hk(x1s−1)ĝ(1)
n (x1s−1)ξn,s−1


− 2(−I + α0α

>
0 )

n∑
t=1

(
ĝn(x1t−1)− g0(x1t−1)

)
×

ĝ(1)
n (x1t−1)ξn,t−1 −Hk(x1t−1)>H−1

n,x

n∑
s=1

Hk(x1s−1)ĝ(1)
n (x1s−1)ξn,s−1
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+ 2(−I + α0α
>
0 )

n∑
t=1

etHk(x1t−1)>H−1
n,x

n∑
s=1

H(1)
k (x1s−1)

(
ys − ĝn(x1s−1)

)
ξn,s−1

− 2(−I + α0α
>
0 )

n∑
t=1

(
ĝn(x1t−1)− g0(x1t−1)

)
Hk(x1t−1)>H−1

n,x

n∑
s=1

H(1)
k (x1s−1)

(
ys − ĝn(x1s−1)

)
ξn,s−1

=2(−I + α0α
>
0 ) (S1 − S2 + S3 − S4) ,

It follows from Lemma 4 and the proofs in the online Appendix E that

S1 =

n∑
t=1

et

ĝ(1)
n (x1t−1)ξn,t−1 −Hk(x1t−1)>H−1

n,x

n∑
s=1

Hk(x1s−1)ĝ(1)
n (x1s−1)ξn,s−1



=

 0

1
n

∑n
t=1 g

(1)
0 (x1t−1)

(
x2t−1 − 1

n

∑n
s=1 x2s−1

)
et

+ oP (1)→D

 0

σr
1/2
0 W (1)

 ,

and therefore,

(−I + α0α
>
0 )S1 →D

 0

−σr1/2
0 W (1)

 .

Denote Pα0
= Id−α0α

>
0 and it has eigenvalues 0, 1, ..., 1, where 0 corresponds to the eigenvector α0.

Thus, to make sure the asymptotic covariance matrix non-singular, we need to rotate the Score function.

Let P1 = (p1, ..., pd−1), where p1, ..., pd−1 are the eigenvectors associated with the eigenvalues 1 of Pα0

and they are orthogonal to α0. Therefore, we have Pα0
= P1P

>
1 and P>1 P1 = Id−1. In addition, the

detailed proofs of S2, S3, and S4 to be oP (1) are given in the online Appendix E. Then, we can obtain

that

P>1 D
−1
n Sn(α0)→D −2σr

1/2
0 W (1),

for κ ∈ [1/r, 1/4).

(b). The hessian:

D−1
n

∂2

∂α∂α>
Wn,λ̂(α0)D

−1
n

∣∣∣∣∣
(α,Ck)=(α0,C̄k(α0))

= D−1
n Q>

∂2

∂θ∂θ>
Wn,λ̂(θ0)QD

−1
n

∣∣∣∣∣
(θ,Ck)=(θ0,C̄k(θ0))

=2D−1
n Q>

n∑
t=1

∂ĝn(θ>xt−1)

∂θ

∣∣∣∣∣
θ=θ0

∂ĝn(θ>xt−1)

∂θ>

∣∣∣∣∣
θ=θ0

QD−1
n

− 2D−1
n Q>

n∑
t=1

(
yt − ĝn(θ>0 xt−1)

) ∂2ĝn(θ>xt−1)

∂θ∂θ>

∣∣∣∣∣
θ=θ0

QD−1
n + 2D−1

n Q>λ̂(θ0)QD−1
n

=2

n∑
t=1

ĝ(1)
n (x1t−1)ξn,t−1 −Hk(x1t−1)>H−1

n,x

n∑
s=1

Hk(x1s−1)ĝ(1)
n (x1s−1)ξn,s−1


×

ĝ(1)
n (x1t−1)ξ>n,t−1 −Hk(x1t−1)>H−1

n,x

n∑
s=1

Hk(x1s−1)ĝ(1)
n (x1s−1)ξ>n,s−1
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+ 4

n∑
t=1

ĝ(1)
n (x1t−1)ξn,t−1 −Hk(x1t−1)>H−1

n,x

n∑
s=1

Hk(x1s−1)ĝ(1)
n (x1s−1)ξn,s−1


×

Hk(x1t−1)>H−1
n,x

n∑
s=1

H(1)
k (x1s−1)

(
ys − ĝn(x1s−1)

)
ξ>n,s−1


+ 2

n∑
t=1

Hk(x1t−1)>H−1
n,x

n∑
s=1

H(1)
k (x1s−1)

(
ys − ĝn(x1s−1)

)
ξn,s−1


×

Hk(x1t−1)>H−1
n,x

n∑
s=1

H(1)
k (x1s−1)

(
ys − ĝn(x1s−1)

)
ξ>n,s−1


− 2

n∑
t=1

(
yt − ĝn(x1t−1)

)
ĝ(2)
n (x1t−1)ξn,t−1ξ

>
n,t−1

− 2

n∑
t=1

(
yt − ĝn(x1t−1)

)
H(1)
k (x1t−1)>H−1

n,x

n∑
s=1

H(1)
k (x1s−1)

(
ys − ĝn(x1s−1)

) (
ξn,t−1ξ

>
n,s−1 + ξn,s−1ξ

>
n,t−1

)
+ 2

n∑
t=1

(
yt − ĝn(x1t−1)

)
H(1)
k (x1t−1)>H−1

n,x

n∑
s=1

Hk(x1s−1)ĝ(1)
n (x1s−1)

(
ξn,t−1ξ

>
n,s−1 + ξn,s−1ξ

>
n,t−1

)
− 2

n∑
t=1

(
yt − ĝn(x1t−1)

)
Hk(x1t−1)>H−1

n,x

n∑
s=1

H(2)
k (x1s−1)

(
ys − ĝn(x1s−1)

)
ξn,s−1ξ

>
n,s−1

+ 2

n∑
t=1

(
yt − ĝn(x1t−1)

)
Hk(x1t−1)>H−1

n,x

n∑
l=1

H(1)
k (x1l−1)Hk(x1l−1)>H−1

n,x

×
n∑
s=1

H(1)
k (x1s−1)

(
ys − ĝn(x1s−1)

) (
ξn,s−1ξ

>
n,l−1 + ξn,l−1ξ

>
n,s−1

)
+ 2

n∑
t=1

(
yt − ĝn(x1t−1)

)
Hk(x1t−1)>H−1

n,x

n∑
l=1

Hk(x1l−1)H(1)
k (x1l−1)>H−1

n,x

×
n∑
s=1

H(1)
k (x1s−1)

(
ys − ĝn(x1s−1)

) (
ξn,s−1ξ

>
n,l−1 + ξn,l−1ξ

>
n,s−1

)
− 2

n∑
t=1

(
yt − ĝn(x1t−1)

)
Hk(x1t−1)>H−1

n,x

n∑
l=1

H(1)
k (x1l−1)Hk(x1l−1)>H−1

n,x

×
n∑
s=1

Hk(x1s−1)ĝ(1)
n (x1s−1)

(
ξn,s−1ξ

>
n,l−1 + ξn,l−1ξ

>
n,s−1

)
− 2

n∑
t=1

(
yt − ĝn(x1t−1)

)
Hk(x1t−1)>H−1

n,x

n∑
l=1

Hk(x1l−1)H(1)
k (x1l−1)>H−1

n,x

×
n∑
s=1

Hk(x1s−1)ĝ(1)
n (x1s−1)

(
ξn,s−1ξ

>
n,l−1 + ξn,l−1ξ

>
n,s−1

)
+ 4

n∑
t=1

(
yt − ĝn(x1t−1)

)
Hk(x1t−1)>H−1

n,x

n∑
s=1

H(1)
k (x1s−1)ĝ(1)

n (x1s−1)ξn,s−1ξ
>
n,s−1

+ 2

n∑
t=1

(
yt − ĝn(x1t−1)

)
Hk(x1t−1)>H−1

n,x

n∑
s=1

Hk(x1s−1)ĝ(2)
n (x1s−1)ξn,s−1ξ

>
n,s−1

+ 2D−1
n Q>λ̂(θ0)QD−1

n

:=2J1 + · · ·+ 2J14
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It follows from Lemma 3 and the proofs in the online Appendix E that

J1 =
n∑
t=1

ĝ(1)
n (x1t−1)ξn,t−1 −Hk(x1t−1)>H−1

n,x

n∑
s=1

Hk(x1s−1)ĝ(1)
n (x1s−1)ξn,s−1


×

ĝ(1)
n (x1t−1)ξ>n,t−1 −Hk(x1t−1)>H−1

n,x

n∑
s=1

Hk(x1s−1)ĝ(1)
n (x1s−1)ξ>n,s−1



=

0 0

0 1
n

∑n
t=1

[
g

(1)
0 (x1t−1)

(
x2t−1 − 1

n

∑n
s=1 x2s−1

)]2

+ oP (1)→D

0 0

0 r0

 .

The detailed proofs of all the other terms to be oP (1) are given in the online Appendix E. Then, we

can obatin that P>1 D
−1
n Jn(α0)D−1

n P1 →D 2r0 for κ ∈ [1/r, 1/4).

Proof of Lemma 9:

We use Theorem 10.1 of Wooldridge (1994) to show the asymptotic normality in this paper. The

first condition of this theorem is satisfied according to the assumption that θ0 ∈ int(Θ), and hence,

α0 ∈ int(Φ). The second condition is achieved by the Assumption 1.4 on the smoothness of g0(.)

function. To verify the third condition, rewrite (3.3) as

Sn(α̂0) + Jn(α0) (α̂n − α0) +
[
Jn(αn)− Jn(α0)

]
(α̂n − α0) = 0

Define Cn = n−δDn for some δ > 0 such that CnD
−1
n = o(1) as n→∞. Then we have

0 = D−1
n Sn(α0) +D−1

n Jn(α0)D−1
n Dn (α̂n − α0) +D−1

n

[
Jn(αn)− Jn(α0)

]
D−1
n Dn (α̂n − α0)

= D−1
n Sn(α0) +D−1

n Jn(α0)D−1
n Dn (α̂n − α0) + n−2δC−1

n

[
Jn(αn)− Jn(α0)

]
C−1
n Dn (α̂n − α0) .

The condition (iii) of Theorem 10.1 in Wooldridge (1994) will be satisfied if we can show

sup
{α:‖Cn(α−α0)‖≤1}

∥∥∥C−1
n

[
Jn(α)− Jn(α0)

]
C−1
n

∥∥∥ = oP (1)

According to the previous calculation, the hessian matrix with α = (α1, α2)> is given by

Jn(α) = 2

J1,1
n (α) J1,2

n (α)

J2,1
n (α) J2,2

n (α)

+ 2Jn,λ(α),

whereJ1,1
n (α) J1,2

n (α)

J2,1
n (α) J2,2

n (α)

 = Q>
n∑
t=1

∂ĝn(θ>xt−1)

∂θ

∂ĝn(θ>xt−1)

∂θ>
Q−Q>

n∑
t=1

(
yt − ĝn(θ>xt−1)

) ∂2ĝn(θ>xt−1)

∂θ∂θ>
Q

Jn,λ(α) = Q>λ̂(θ)Q
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Then we need to show that

n−1+2δ
∣∣∣J1,1
n (α)− J1,1

n (α0)
∣∣∣ = oP (1)

n−3/2+2δ
∣∣∣J1,2
n (α)− J1,2

n (α0)
∣∣∣ = oP (1) (D.4)

n−2+2δ
∣∣∣J2,2
n (α)− J2,2

n (α0)
∣∣∣ = oP (1)

n−1+2δ
∣∣Jn,λ(α)− Jn,λ(α0)

∣∣ = oP (1)

uniformly in α1 and α2 satisfying∣∣∣α1 − α1
0

∣∣∣ < n−1/2+δ and
∣∣∣α2 − α2

0

∣∣∣ < n−1+δ

for some δ > 0, α>α 6= 0, α1
0 = 1, and α2

0 = 0.

Then we have shown in the online Appendix E that∣∣∣J1,1
n (α)− J1,1

n (α0)
∣∣∣ = OP (max(n1/2+δ+5κ/2, n−1/2+δ+7κ)),

∣∣∣J1,2
n (α)− J1,2

n (α0)
∣∣∣ = OP (n1+δ+5κ/2),∣∣∣J2,2

n (α)− J2,2
n (α0)

∣∣∣ = OP (n3/2+δ+2κ),
∣∣Jn,λ(α)− Jn,λ(α0)

∣∣ = OP (n1/2+δk2).

To fulfill (D.4), we may choose δ : 0 < δ < min(1/6 − 5κ/6, κ/2) with 1/r ≤ κ < 1/5 stipulated in

Assumption 1.5.

Now, we have proved that D−1
n

[
Jn(α)− Jn(α0)

]
D−1
n = oP (1) uniformly in α1 and α2 satisfying∣∣∣α1 − α1

0

∣∣∣ < n−1/2+δ and
∣∣∣α2 − α2

0

∣∣∣ < n−1+δ.

Using the same argument in the proof of Theorem 8.1 in Wooldridge (1994), we can show that Dn(α̂n−

α0) = OP (1). Then, we can write

0 = Sn(α0) + Jn(α0)(α̂n − α0) +
(
Jn(αn)− Jn(α0)

)
(α̂n − α0)

0 = D−1
n Sn(α0) +D−1

n Jn(α0)D−1
n Dn(α̂n − α0) + n−2δC−1

n

[
Jn(αn)− Jn(α0)

]
C−1
n Dn (α̂n − α0)

0 = P>1 D
−1
n Sn(α0) + P>1 D

−1
n Jn(α0)D−1

n

(
P1P

>
1 + α0α

>
0

)
Dn(α̂n − α0) + oP (1)

0 = P>1 D
−1
n Sn(α0) + P>1 D

−1
n Jn(α0)D−1

n P1P
>
1 Dn(α̂n − α0) + P>1 D

−1
n Jn(α0)D−1

n α0α
>
0 Dn(α̂n − α0) + oP (1)

0 = P>1 D
−1
n Sn(α0) + P>1 D

−1
n Jn(α0)D−1

n P1P
>
1 Dn(α̂n − α0) + oP (1), (D.5)

Then we can immediately obtain from (D.5) that

P>1 Dn(α̂n − α0) = −
(
P>1 D

−1
n Jn(α0)D−1

n P1

)−1

P>1 D
−1
n Sn(α0) + oP (1). (D.6)

In Lemma 8, we have already shown that

P>1 D
−1
n Sn(α0)→D −2σr

1/2
0 W (1) and P>1 D

−1
n Jn(α0)D−1

n P1 →D 2r0,
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where r0 is given in Lemma 8 and it is positive definite with probability one, which indicates the condition

(iv) of Theorem 10.1 of Wooldridge (1994) holds. Then the limit distribution follows from (D.6) and

Lemma 8 that

P>1 Dn(α̂n − α0)→D σr
−1/2
0 W (1).
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