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 Introduction 

China is the world's largest building energy consumer. In 2017, total energy consumption in 
Chinese buildings was estimated at 963 million tonnes of coal equivalent (Mtoe) (THUBERC, 
2019), equivalent to 28.2 EJ. Of this total, urban residential buildings accounted for more than 
one third. Whilst the size of the urban residential stock is critical to the evaluation of stock-
level energy consumption, official statistics only exist up to 2006 and so the trajectory of the 
stock from 2007 onwards is unknown. To fill this critical gap requires estimating how the urban 
residential stock has been developing. The stock evolution and expansion are characterised 
by a turnover process driven by the dynamic interplay between new construction, meeting 
incremental demand growth as a result of economic growth and rising living standards, 
existing buildings remaining in use but undergoing an ageing process, and old buildings, which 
are eventually demolished. As Chinese urban buildings are generally short-lived due to various 
factors (Huang, 2006; Yang and Kohler, 2008; Hu et al., 2010; Fawley and Wen, 2013; Cai et 
al., 2015), building lifetime is one of the key determining factors underlying the dynamics of 
stock turnover. The short lifetime suggests a high turnover rate, the complexity and uncertainty 
of which have to be understood when estimating total stock and associated energy and carbon 
impacts. However, no official statistics on Chinese building lifetime exist and empirical data is 
extremely limited. 
 
A review by Zhou et al. (2019) identified three main methodological concerns associated with 
most previous models estimating Chinese building stock: (i) normal distribution representing 
building lifetime distribution with arbitrary choices of mean and standard deviation parameters; 
(ii) ambiguity associated with existing building stock size and age profile in the initial year of 
modelling; and (iii) use of per capita floor area data as proxy leading to inflated estimates. 
Whilst Cai et al. (2015) and Zhou et al. (2019) partially addressed these issues by calibrating 
building lifetime distribution parameters using statistics on floor area, fundamentally they took 
a frequentist approach and produced single point estimates of distribution parameters leading 
to a single profile of building lifetime without characterisation of uncertainty. In this context, 
model parameters are treated as being fixed. And the calibration is conditional upon the model 
structure as given, thereby neglecting the model uncertainty. 
 
By contrast, a Bayesian approach, adopted in our study, treats parameters as random 
variables and derives posterior distributions of parameters by taking account of both prior 
knowledge about parameter values and the likelihood of observing empirical data given certain 
parameter values. For a given model, this presents a full picture of the likely parameter space, 
thus enabling a good understanding of the global shape of the distribution. Such a distribution 
allows parameter uncertainties to be propagated through to emergent behaviours of model 
outputs. Moreover, a Bayesian approach allows model uncertainty to be estimated. Through 
Bayesian Model Averaging (BMA), predictions made by individual models are combined in 
proportion to posterior model probabilities. 
 
From a policy-making perspective, a probabilistic model offers the ability to generate 
probability distributions over outcomes of policy scenarios. This is important in the context of 
analysing the decarbonisation of the generally short-lived Chinese buildings, where there is 
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likely to be a strategic trade-off between operational and embodied energy. Taking a Bayesian 
approach, a probabilistic model incorporating building stock turnover, energy and carbon will 
enable future research into the probability that one policy, e.g., extending building lifetime to 
avoid embodied energy, would yield a more favourable outcome of stock-level decarbonisation 
as compared to another policy, e.g. accelerating stringency of new building design standards. 
Improving our understanding of these trade-offs is the overarching objective that motivates 
this study as an integral part of future research involving a fully-fledged building energy model. 
 
Based on the above considerations, our study applies BMA to develop a probabilistic dynamic 
model to predict Chinese urban residential stock for the recent historical period of 2006 to 
2017. The rest of this paper is organised as follows. Section 2 develops the dynamic model 
for stock turnover and explains the concepts and implementation of BMA. Section 3 presents 
key results, including posterior model probabilities and posterior predictive distribution of 
building stock, and discusses further model applications and policy implications. Section 4 
summarises the paper. 
 

 Methodology 

 Building stock turnover model 

Estimating total building stock size requires understanding and modelling the stock turnover, 
which is characterised by the stock-level dynamics of construction of new buildings as inflow 
into the stock and demolition of old buildings as outflows from the stock. By the end of a year 
t, the total volume of demolition is the sum of all existing buildings constructed in previous 
years that have reached the end of their lifetimes in year t. The building stock is composed of 
new buildings constructed in year t and those buildings which were previously constructed but 
have not reached the end of their lifetimes6.  
 
Critical to the turn-over dynamics of building stock is building lifetime. Despite design lifetime 
required by building design regulations, often there is a lack of authoritative statistics relating 
to actual building lifetime data, particularly in developing countries. At a city or even country 
level, given the huge volume of buildings and significant heterogeneity in terms of their 
physical characteristics and socio-economic contexts, it is necessary to consider the 
uncertainties associated with building lifetime. It is unrealistic to assume that a cohort of 
buildings, i.e. those constructed in a given year, would be in service for exactly the same period 
and then demolished simultaneously. In the Chinese urban context, buildings are generally 
short-lived due to various factors, including quality of building materials, design standards, 
construction techniques and practices, maintenance and renovation, inappropriately 
accelerated demolition as a result of rapid urbanisation and city rebuilding, etc. (Yang and 

 
6 We acknowledge that a building may be disused functionally but still not demolished physically. Since 
the ultimate interest of modelling building stock turnover is in energy consumed by buildings, a 
functionally disused building does not consume energy anymore and therefore is considered equivalent 
to a physically demolished building from an energy perspective. Hence, in the rest of this study, 
demolition is used to refer to either physical demolition or functional disuse of buildings. 
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Kohler, 2008; Fawley and Wen, 2013). While the degrees to which different factors play out 
are context-specific and time variant and therefore may differ significantly, the explicit direct 
outcome is a fast turn-over of building stock and therefore generally short lifetimes of the 
buildings thereof. Thus, building age can be used as a proxy variable to represent the impact 
collectively made by these underlying factors on demolition probability.  
 
This paper proposes to apply the concept of survival analysis (Allison, 2010; Liu, 2012). It uses 
the probability density function (PDF) of a parametric survival model to approximate the likely 
lifetime distribution profile of a cohort of buildings, so as to recognise and represent the 
uncertainties associated with factors collectively influencing lifetime of buildings. Thus, in a 
given year, the proportion of demolished buildings in this cohort of buildings is modelled based 
on a hazard function. Conceptually, the hazard function represents the conditional probability 
that a building will expire in year t, provided that it has successfully survived to year t-1. 
Mathematically, the hazard function is the ratio of the lifetime PDF to the complement of 
lifetime cumulative distribution function (CDF). 
 
Applying the above concept, the total stock in year t consists of a series of substocks of 
different ages: 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 = � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡[𝑆𝑆 − 𝑗𝑗]
𝑡𝑡

𝑗𝑗=𝑡𝑡0

�1� 

 
Where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡[𝑆𝑆 − 𝑗𝑗] represents buildings surviving in year t that are (t-j) years old. For new 
buildings constructed in year t, they are 0 years old and therefore denoted by 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡[0].  
 
The aging process undergone by any cohort of buildings is accompanied with annual 
demolition determined by age-specific hazard rates, H(age). Therefore, the annual total 
amount of demolition in year t is the sum of age-specific demolition of substocks at all ages. 
 
 

𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑆𝑆𝐷𝐷𝑡𝑡 = �𝐻𝐻(𝑆𝑆 − 𝑗𝑗)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡[𝑆𝑆 − 𝑗𝑗]
𝑡𝑡

𝑗𝑗=𝑡𝑡0

�2� 

 
 
For a (t-j)-year-old substock in year t, its volume is determined by the aging process that it has 
undergone since it was constructed in year j. 
 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆[𝑆𝑆 − 𝑗𝑗] = ���1 − 𝐻𝐻(𝑆𝑆)�
𝑆𝑆−𝑗𝑗

𝑆𝑆=0

� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗[0] �3� 

 
 
Therefore, equation (1) can be re-written as: 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 = � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡[𝑆𝑆 − 𝑗𝑗]
𝑡𝑡

𝑗𝑗=𝑡𝑡0

 

= � ����1 −𝐻𝐻(𝑆𝑆)�
𝑡𝑡−𝑗𝑗

𝑘𝑘=0

� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗[0]�
𝑡𝑡

𝑗𝑗=𝑡𝑡0

�4� 

 
 
 
In above equation (4), the age-specific hazard rate H(k) is determined by the parametric 
survival model chosen. Depending upon the specification, the hazard function of a survival 
model may or may not have a closed form expression.  
 
The aging process described by the above equations can be visually represented by Figure 1. 
As shown, a series of cascading sub-stocks of buildings form an aging chain, with each sub-
stock representing a particular age group of buildings. The age group duration represents the 
time length that buildings in use reside in a sub-stock before shifting to the immediately next 
substock in the chain. With age group duration set to be 1 year, the chronological aging 
process is discretized, i.e. each sub-stock represents buildings within a one-year age group. 
This level of granularity offers a detailed representation of substocks characterised by 
heterogeneity with respect to age (and energy-related properties, provided that additional 
layers are added to the model). This therefore enables separately tracking the aging process 
and experimenting with policy interventions targeting buildings of specific age groups.  
 

 

 
 

Figure 1: Aging chain with explicit modelling of sub-stock specific demolition 
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 Bayesian modelling  

 Statistical model 

As described by equation (4), the deterministic component of the overall statistical model is 
the total building stock as the function of unknown parameters 𝜃𝜃  of a chosen parametric 
survival model, e.g. Weibull distribution, and the known annual new cohort of buildings 
constructed over the historical period. This can be denoted by a function 𝑓𝑓(𝜃𝜃, 𝑆𝑆) . The 
probabilistic component of the model is represented by an error term 𝜀𝜀𝑡𝑡, which is assumed to 
be normally distributed with mean zero and unknown variance 𝜎𝜎2, i.e. 𝜀𝜀𝑡𝑡  ~ 𝑁𝑁(0,𝜎𝜎2). 𝑓𝑓(𝜃𝜃, 𝑆𝑆) 
describes the expectation of modelled building stock. Therefore, in the Bayesian framework, 
the total stock can be described by the overall probabilistic model as follows: 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 = 𝑓𝑓(𝜃𝜃, 𝑆𝑆) + 𝜀𝜀𝑡𝑡 �5� 
 

 Bayesian model inference 

In the context of the statistical model, let D represent empirically observed data of total stock, 
𝑦𝑦 , and annual new buildings, 𝑥𝑥 , for the period of 1978 to 2006, i.e. 𝐷𝐷 = {(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖), 𝐷𝐷 =
1978,1979, … ,2006}. According to Bayes’ theorem, the posterior probability density 𝑝𝑝(𝜃𝜃|𝐷𝐷), 
given the data D, is calculated as follows: 
 

𝑝𝑝(𝜃𝜃|𝐷𝐷) =
𝑝𝑝(𝐷𝐷|𝜃𝜃)𝑝𝑝(𝜃𝜃)

𝑝𝑝(𝐷𝐷) =
𝑝𝑝(𝐷𝐷|𝜃𝜃)𝑝𝑝(𝜃𝜃)

∫𝑝𝑝(𝐷𝐷|𝜃𝜃)𝑝𝑝(𝜃𝜃)𝑑𝑑𝜃𝜃
�6� 

 
where 𝑝𝑝(𝜃𝜃)  is the prior distribution of θ, representing subjective prior knowledge about θ. 
𝑝𝑝(𝐷𝐷|𝜃𝜃) is the likelihood function, which can be viewed as a function of θ given the empirically 
observed data D which is considered fixed. It represents the likelihood that the given set of 
empirically observed data D is explained by the model with possible parameter values. 𝑝𝑝(𝐷𝐷) 
is the marginal likelihood, which is an integration of 𝑝𝑝(𝐷𝐷|𝜃𝜃) over all possible values of θ across 
its space and therefore is not a function of θ, but a constant. This proportionality constant plays 
the role of normalizing the posterior density to ensure it integrates to 1. 𝑝𝑝(𝐷𝐷) is also known as 
model evidence, because it provides evidence for a candidate model, which is critical in 
selecting and averaging models as discussed later.  
 
The posterior distribution 𝑝𝑝(𝜃𝜃|𝐷𝐷)  fully describes the uncertainty associated with the 
parameters. Essentially it updates the prior knowledge about the parameters in light of the 
empirical data. Generally, it is difficult or not possible to analytically express the posterior 
distribution. The solution is to instead simulate sample draws from the posterior distribution, 
such that the values of these samples are distributed approximately according to the posterior 
distribution of the parameters of interest. The samples enable calculation of point estimates of 
the parameters, such as mean, median, or mode. More importantly, the samples of parameters 
enable drawing samples from predictive distributions associated with model outputs, e.g. the 
annual total building stock as the high-level emergent behavior of the dynamic building stock 
model, thus facilitating policy scenario analysis. Methodologically, this is realised using Markov 



6 
 

chain Monte Carlo (MCMC) algorithm, as introduced later. 
 

 Posterior predictive distribution 

With the posterior distribution 𝑝𝑝(𝜃𝜃|𝐷𝐷), it is possible to make inferences about the total stock 
for a given year during the period of 2007 to 2017, an unknown observable denoted as 𝑦𝑦�, 
given the known annual new buildings for the same year, denoted as 𝑥𝑥∗ . This leads to the 
posterior predictive distribution of 𝑦𝑦�: 
 

p(𝑦𝑦�|𝑥𝑥∗,𝐷𝐷) = �𝑝𝑝(𝑦𝑦�|𝑥𝑥∗,𝜃𝜃)𝑝𝑝(𝜃𝜃|𝐷𝐷)𝑑𝑑𝜃𝜃 �7� 

 
This equation suggests that the posterior predictive distribution is derived by marginilising the 
likelihood function 𝑝𝑝(𝑦𝑦�|𝑥𝑥∗,𝜃𝜃) over the entire set of parameters, with each point in the space of 
parameters weighted according to its posterior probability given the empirically observed data. 
 

 Bayesian Model Averaging 

The above posterior predictive distribution is conditional upon a choice of model M, i.e. a 
building stock model employing a particular parametric survival model, e.g. Weibull distribution. 
The equation can be written more explicitly as: 
 
  

𝑝𝑝(𝑦𝑦�|𝑥𝑥∗,𝑀𝑀,𝐷𝐷) = �𝑝𝑝(𝑦𝑦�|𝑥𝑥∗,𝜃𝜃,𝑀𝑀)𝑝𝑝(𝜃𝜃|𝐷𝐷,𝑀𝑀)𝑑𝑑𝜃𝜃 �8� 

 
 
There are multiple choices of parametric survival model, each of which may characterise the 
dynamics of building stock turnover. Candidates include Weibull, Lognormal, Gamma, etc. Let 
𝑀𝑀𝑘𝑘 denote a building stock turnover model using a plausible survival model k specified by 
parameter vector 𝜃𝜃𝑘𝑘, and let M = {M1, M2, …., Mk} denote the model space under consideration. 
This creates a model ensemble, which, when making predictions, takes into account the 
uncertainties associated with not only model-specific parameters but also the models per se. 
Now, the posterior predictive distribution of total building stock for the period of 2007 to 2017, 
𝑦𝑦�, is calculated as: 
 

𝑝𝑝(𝑦𝑦�|𝑥𝑥∗,𝐷𝐷) = �𝑝𝑝(𝑦𝑦�|𝑥𝑥∗,𝑀𝑀𝑘𝑘 ,𝐷𝐷)𝑝𝑝(𝑀𝑀𝑘𝑘|𝐷𝐷)
𝐾𝐾

𝑘𝑘=1

�9� 

 
Where 𝑝𝑝(𝑦𝑦�|𝑥𝑥∗,𝑀𝑀𝑘𝑘 ,𝐷𝐷) is the posterior predictive distribution under model Mk given data D, and 
𝑝𝑝(𝑀𝑀𝑘𝑘|𝐷𝐷) is the posterior model probability (PMP), which is also referred to as model weight. 
Hence, the posterior distribution of 𝑦𝑦�  predicted by the model ensemble, 𝑝𝑝(𝑦𝑦�|𝑥𝑥∗,𝐷𝐷) , is 
effectively the average of the posterior predictive distribution under each of the candidate 
models in the model space, weighted by their respective PMPs. 
 



7 
 

The PMP of model Mk can be interpreted as the probability of model Mk being the true model 
predicting 𝑦𝑦� , given the observed data D, thus reflecting the extent to which Mk fits the 
observations as compared to other candidate models in the model space. PMP is given by: 
 

𝑝𝑝(𝑀𝑀𝑘𝑘|𝐷𝐷) =
𝑝𝑝(𝐷𝐷|𝑀𝑀𝑘𝑘)𝑝𝑝(𝑀𝑀𝑘𝑘)

∑ 𝑝𝑝�𝐷𝐷�𝑀𝑀𝑗𝑗�𝑝𝑝�𝑀𝑀𝑗𝑗�𝐾𝐾
𝑗𝑗=1

�10� 

 
 
Where 𝑝𝑝(𝑀𝑀𝑘𝑘) is the prior probability of model Mk being the true model, allowing the existing 
prior knowledge about the plausibility of model Mk  to be specified explicitly, and 𝑝𝑝(𝐷𝐷|𝑀𝑀𝑘𝑘) is 
the marginal likelihood (or model evidence) of model Mk , which is given by 
 

𝑝𝑝(𝐷𝐷|𝑀𝑀𝑘𝑘) = �𝑝𝑝(𝐷𝐷|𝜃𝜃𝑘𝑘 ,𝑀𝑀𝑘𝑘)𝑝𝑝(𝜃𝜃𝑘𝑘|𝑀𝑀𝑘𝑘)d𝜃𝜃𝑘𝑘 �11� 

 
  
Where 𝑝𝑝(𝐷𝐷|𝜃𝜃𝑘𝑘,𝑀𝑀𝑘𝑘) is the likelihood of model Mk given observed data D, and 𝑝𝑝(𝜃𝜃𝑘𝑘|𝑀𝑀𝑘𝑘) is the 
prior probability density of the parameters 𝜃𝜃𝑘𝑘  under model Mk. In fact, 𝑝𝑝(𝐷𝐷|𝑀𝑀𝑘𝑘)  is the 
denominator in the above equation (6) for calculating the posterior probability density of 
parameters 𝜃𝜃𝑘𝑘 under model Mk, as given by 
 

𝑝𝑝(𝜃𝜃𝑘𝑘|𝐷𝐷,𝑀𝑀𝑘𝑘) =
𝑝𝑝(𝐷𝐷|𝜃𝜃𝑘𝑘 ,𝑀𝑀𝑘𝑘)𝑝𝑝(𝜃𝜃𝑘𝑘|𝑀𝑀𝑘𝑘)

∫𝑝𝑝(𝐷𝐷|𝜃𝜃𝑘𝑘 ,𝑀𝑀𝑘𝑘)𝑝𝑝(𝜃𝜃𝑘𝑘|𝑀𝑀𝑘𝑘)d𝜃𝜃𝑘𝑘
=  
𝑝𝑝(𝐷𝐷|𝜃𝜃𝑘𝑘 ,𝑀𝑀𝑘𝑘)𝑝𝑝(𝜃𝜃𝑘𝑘|𝑀𝑀𝑘𝑘)

𝑝𝑝(𝐷𝐷|𝑀𝑀𝑘𝑘) �12� 

 
 
Compared with equation (6), the above equation (12) explicitly applies subscript k to reflect 
that both the priors of model-specific parameters 𝜃𝜃𝑘𝑘 and the likelihood function of the observed 
data D are conditional on the particular model Mk in the model space. 
 
Based on the above, the posterior mean of 𝑦𝑦�, as predicted by the model ensemble, can be 
calculated as follows: 
 

𝐸𝐸[𝑦𝑦�|𝑥𝑥∗,𝐷𝐷] = �𝐸𝐸[𝑦𝑦�|𝑥𝑥∗,𝑀𝑀𝑘𝑘 ,𝐷𝐷]𝑝𝑝(𝑀𝑀𝑘𝑘|𝐷𝐷)
𝐾𝐾

𝑘𝑘=1

�13� 

 
 
Clearly the BMA model ensemble prediction is essentially the average of individual predictions 
weighted by the probability that an individual candidate model is true given the observed data. 
BMA model ensemble leads to a more spread posterior distribution of y than an individual 
candidate model does. This avoids the situation where inferences made based on an 
individual candidate model are overstated and decision-making based on predictions is more 
risky than expected (Hoeting et al., 1999; Hoeting, 2002; Li and Shi, 2010; Fragoso, Bertoli 
and Louzada, 2018). 
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 Model space 

In general, a range of parametric survival distribution functions are available to describe the 
survival process in various fields (Forbes et al., 2011; Liu, 2012; Palisade, 2016). However, 
literature on survival analysis or lifetime data analysis on buildings is limited. A survey on 
buildings in the Netherlands found that empirical survival probabilities of buildings were well 
approximated by Weibull distribution (OECD 2009). Miatto et al. (2017) tested various PDFs 
and found that the lognormal distribution offered the best fit to  lifespans of buildings in Nagoya 
and Wakayama, Japan, where buildings were short-lived, with average lifespans shorter than 
30 years. Zhou et al. (2019) applied the Weibull distribution to approximate lifetime 
uncertainties of Chinese urban residential buildings. From an economic perspective, buildings 
can be regarded as a type of capital asset, and accordingly building stock can be regarded as 
capital stock (OECD, 2001, 2009). Hence, a range of PDFs that have been used as a proxy 
for service lives and retirement/discard patterns of capital stocks may be applied to buildings, 
such as log-normal, Weibull, Gamma, and so on (Johnstone, 2001; OECD, 2001, 2009; Bohne 
et al., 2006; Müller, 2006; McLaren and Stapenhurst, 2015; Aksözen et al., 2016).  
 
In this paper, the distribution functions used for approximating the lifetime distribution of 
Chinese urban residential buildings are Weibull, Lognormal, Loglogistic, Gamma and Gumbel 
distributions. Each distribution can characterise the turnover dynamics of the building stock, 
thereby representing a candidate model 𝑀𝑀𝑘𝑘  in the model space M. The PDFs of these 
distributions are given in Table 1. Specifying the PDF of a distribution allows the CDF, survival 
function and hazard function of the distribution to be ascertained. 
 

Table 1: Candidate survival distribution functions 

Distribution Probability density function Parameters Priors 

Weibull 

 

𝑓𝑓(𝑥𝑥) = �
𝛼𝛼𝑥𝑥𝛼𝛼−1

𝜆𝜆𝛼𝛼 � 𝐷𝐷(−�𝑥𝑥𝜆𝜆�
𝛼𝛼

) 

 

Shape α > 0 
Scale λ > 0 

α ∼ uniform(1,10) 
λ ∼ uniform(1,100) 

Lognormal 

 

𝑓𝑓(𝑥𝑥) =
1

𝑥𝑥√2𝜋𝜋𝜎𝜎′
𝐷𝐷−

1
2�
𝑙𝑙𝑙𝑙𝑥𝑥−𝜇𝜇′
𝜎𝜎′ �

2

 

 

𝜇𝜇′ = 𝐷𝐷𝐷𝐷 � 𝜇𝜇2

�𝜎𝜎2+𝜇𝜇2
� ,  

 𝜎𝜎′ = �ln �1 + �𝜎𝜎
𝜇𝜇
�
2
� 

 

Mean μ > 0 
Standard 
deviation σ > 0 

μ ∼ uniform(1,100) 
σ ∼ uniform(1,100) 

Loglogistic 

 

𝑓𝑓(𝑥𝑥) =
𝐷𝐷
ln(𝑥𝑥)−𝜇𝜇

𝜎𝜎

𝜎𝜎𝑥𝑥(1 + 𝐷𝐷
ln(𝑥𝑥)−𝜇𝜇

𝜎𝜎 )2
 

 

Scale μ > 0 
Shape σ > 0 

μ ∼ uniform(1,100) 
σ ∼ uniform(1,100) 
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Gamma 

 

𝑓𝑓(𝑥𝑥) =
1

𝜆𝜆Γ(𝛼𝛼) (
𝑥𝑥
𝜆𝜆

)𝛼𝛼−1𝐷𝐷−
𝑥𝑥
𝜆𝜆 

 

Scale λ > 0 
Shape α > 0 

λ ∼ uniform(1,100) 
σ ∼ uniform(1,100) 

Gumbel 

 

𝑓𝑓(𝑥𝑥) =
1
𝜎𝜎
𝐷𝐷−(𝑥𝑥−𝜇𝜇𝜎𝜎 )𝐷𝐷−𝑒𝑒

−(𝑥𝑥−𝜇𝜇𝜎𝜎 )
 

 

Scale μ > 0 
Shape σ > 0 

μ ∼ uniform(1,100) 
σ ∼ uniform(1,100) 

 
  

 Model priors and model parameter priors  

Prior probabilities of models reflect the prior knowledge, or belief, that a specific model is the 
true model in the domain concerned. Eliciting an appropriate prior is a non-trivial task in any 
Bayesian setting, and such difficulties are compounded in BMA because a probability measure 
for the model space, which is a more abstract parametric space, is not obvious in principle 
(Fragoso, Bertoli and Louzada, 2018). 
 
Whilst informative priors are expected to benefit model development and improve predictive 
performance, often non-informative priors have to be used due to little prior knowledge about 
the relative plausibility of the models considered. As a simple but reasonable neutral choice, 
it can be assumed that all candidate models in the model space are equally likely a priori 
(Hoeting et al., 1999; Li and Shi, 2010). This means applying an uniform distribution over the 
model space, so that 𝑝𝑝�𝑀𝑀𝑗𝑗� = 1

𝐾𝐾
,𝑓𝑓𝑆𝑆𝑓𝑓 𝑗𝑗 = 1,2, … ,𝐾𝐾. No model is considered more likely a priori 

than any other one. The consideration is to let the observed data carry all the information. This 
is the most commonly adopted practice in defining model priors in BMA settings (Fragoso, 
Bertoli and Louzada, 2018). On this basis, the afore-mentioned five distributions of this study 
are assumed to have the equal prior probability equal to 0.2. This leads to the prior model 
probabilities being cancelled out and the PMP of a candidate model being proportional to its 
evidence, namely, marginal likelihood. 
 
The same consideration is applied to defining prior distributions of model-specific parameters. 
For any of the five candidate models, there is little prior information about its model-specific 
parameters. Hence it is straightforward to specify non-informative priors so as to allow the 
posteriors to be informed by data. As shown in Table 1, the priors of the model-specific 
parameters are all assumed to be uniformly distributed over their reasonable ranges in the 
context of generally short lifetimes of urban residential buildings in China. 
 

 MCMC sampling and posterior distribution calculation 

MCMC is used to simulate the posterior distribution of a model-specific parameters. The 
principle is to draw values of a parameter vector 𝜃𝜃 from approximate distribution and then 
correct those draws to better approximate the target posterior distribution. Sampling is 
performed iteratively in such a way that at each step of the process it is expected that draws 
are made from a distribution that becomes closer to the target posterior distribution (Gelman 
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et al., 2014). The sampling process is sequential and the draws create an ergodic Markov 
chain, which, after a large number of iteration steps, evolves through the parameter space,  
becomes stationary and converges to the target posterior distribution. Subsequent model 
inference can be made based on samples from this process much as based on samples from 
the target posterior distribution (Hamada et al., 2008). 
 
This study uses the Metropolis-Hastings algorithm, which is well established amongst 
available MCMC algorithms. At the start of iteration t, a candidate vector θ* is generated from 
θ(t-1) through a proposal distribution 𝑓𝑓�𝜃𝜃∗�𝜃𝜃(𝑡𝑡−1)�, which is also known as a jumping distribution. 
The probability of θ* being accepted to become θ(t) is: 
 
 

𝑓𝑓 = 𝐷𝐷𝐷𝐷𝐷𝐷

⎩
⎪
⎨

⎪
⎧

1,

𝑝𝑝(𝜃𝜃∗|𝑑𝑑𝑑𝑑𝑆𝑆𝑑𝑑)
𝑓𝑓�𝜃𝜃∗�𝜃𝜃(𝑡𝑡−1)��  

𝑝𝑝�𝜃𝜃(𝑡𝑡−1)�𝑑𝑑𝑑𝑑𝑆𝑆𝑑𝑑�
𝑓𝑓�𝜃𝜃(𝑡𝑡−1)�𝜃𝜃∗��

⎭
⎪
⎬

⎪
⎫

�14� 

 
 
The acceptance probability r means that if the result is higher than 1, r is set to 1, the candidate 
θ* is accepted and the transition from θ* to θt

 is made. Otherwise, if the result is lower than 1, 
the candidate θ* is accepted with probability equal to r and rejected with probability equal to 1-
r. When accepted, the transition from 𝜃𝜃∗ to 𝜃𝜃(𝑡𝑡) is made. When rejected, no move at iteration 
t is made, hence 𝜃𝜃(𝑡𝑡) =  𝜃𝜃(𝑡𝑡−1), meaning that the chain is updated using the current value. 
 
The proposal distribution 𝑓𝑓(∙) is chosen to be a random walk proposal, where θ* is selected by 
taking a random perturbation ε around the current value θ(t), i.e. 𝜃𝜃∗ = 𝜃𝜃(𝑡𝑡) + 𝜀𝜀. The random 
vector ε is drawn independently of θ(t) and centered on zero. As a common setting, ε is a 
normal distribution with mean zero and variance set to obtain efficient jumping algorithm 
(Jackman, 2009; Gelman et al., 2014). In this regard, this study tunes the algorithm by using 
adaptive sampling, which generates new candidate parameters with a proposal covariance 
matrix that is estimated from the covariance matrix of the parameters generated so far, with a 
scaling factor of 2.42/d, where d is the number of parameters (Soetaert and Petzoldt, 2010; 
Hartig, Minunno and Paul, 2018). 
 

 Marginal likelihood calculation 

Generally, the marginal likelihood is not analytically tractable and therefore has to be 
approximated using numerical methods. Typical Monte Carlo sampling methods include naïve 
Monte Carlo, Importance Sampling (IS), Harmonic Mean (HM), Generalised HM, and Bridge 
Sampling. The Naïve Monte Carlo is straightforward and in principle unbiased, but numerically 
inefficient and unstable if the posterior distribution is peaked relative to the prior method 
(Schöniger et al., 2014; Gronau et al., 2017; Fragoso, Bertoli and Louzada, 2018). IS may 
overcome these issues by having an importance density with fatter tails than the posterior 
distribution (Ionides, 2008; Gronau et al., 2017). HM uses the posterior distribution as the 
importance density. This results in the marginal likelihood being equal to the posterior 
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harmonic mean of the likelihood. Despite its convenience and popularity, HM has been 
criticised extensively due to numerical instabilities and overestimation of the marginal 
likelihood (Xie et al., 2011; Schöniger et al., 2014; Pajor, 2017). Generalised HM, a more stable 
version of HM, can be viewed as the reciprocal IS (Frühwirth-Schnatter, 2004). Thus, for the 
reason analogous to IS, this method also requires the importance density to be finetuned to 
avoid unbounded variance. Specifically, it requires importance density to have thinner tails 
than the posterior distribution (Gronau et al., 2017; Fragoso, Bertoli and Louzada, 2018; Wang 
et al., 2018). Bridge Sampling is a general case of the afore-mentioned methods. Compared 
to IS and Generalised HM, it is more robust to tail behaviours of the proposal distribution 
(conceptually similar to importance density) relative to posterior distribution and thus avoids 
large or even infinite variances of estimators (Meng and Wong, 1996; Frühwirth-Schnatter, 
2004; Gronau et al., 2017; Gronau, Singmann and Wagenmakers, 2018). This study uses 
Bridge Sampling to approximate the marginal likelihood of each of the five candidate models. 
 

 Results and discussion 

 
Based on the methodology elucidated above, the posterior distributions of model-specific 
parameters of each candidate model, 𝑝𝑝(𝜃𝜃𝑘𝑘|𝐷𝐷,𝑀𝑀𝑘𝑘), were obtained using official statistics on 
total stock of urban residential buildings up to 2006. The primary data sources included China 
Statistical Yearbook and MOHURD’s Statistical Communique on Urban Housing. Then, the 
evidence of each candidate model, i.e. the marginal likelihood, was numerically estimated 
using bridge sampling technique, and the PMP was calculated (Table 2). 

 
Table 2: Prior and posterior probabilities of models 

 
Model Prior PMP 
Weibull 0.2 0.219 

Lognormal 0.2 0.25 
Loglogistic 0.2 0.096 

Gamma 0.2 0.42 
Gumbel 0.2 0.015 

 
 

With each candidate model, the posterior predictive distribution of total stock over the period 
of 2007 to 2017, 𝑦𝑦�, was obtained through running the probabilistic stock turnover model using 
the posterior distributions of model-specific parameters, i.e. 𝑝𝑝(𝜃𝜃𝑘𝑘|𝐷𝐷,𝑀𝑀𝑘𝑘), and official statistics 
on annual new construction from 2007 to 2017. The posterior distribution of 𝑦𝑦� predicted by the 
BMA model ensemble is the PMP-weighted average of the posterior predictive distribution of 
𝑦𝑦� under each candidate model in the model space. Operationally this was obtained by drawing 
samples from model-specific predictions with probabilities equal to the PMPs and then 
combining the samples. Figure 2 shows the 95% credible interval of posterior prediction of 
total stock by the BMA model ensemble. As expected, the total stock size was characterised 
by a continuously ascending pattern over time. The mean of the credible interval increased by 
33% over eight years from 17.7 billion m2 in 2010 to 23.6 billion m2 in 2017. Clearly the line 
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representing the mean of credible interval exhibits a good fit with the estimate by the Annual 
Report on China Building Energy Efficiency (THUBERC, 2019), which was developed by 
Tsinghua University Building Energy Research Centre (THUBERC) and is widely recognised 
as an authoritative report on the overall situation of building energy in China.   

 

 
Figure 2: 95% Credible interval of BMA ensemble’s posterior prediction of total building stock 

 
Due to the lack of official statistics on annual demolition, it is not possible to directly cross-
validate the modelling result using historical annual demolition data. In an indirect way, though, 
comparing the demolition estimated in this study with previous studies provides an alternative 
basis for evaluating the robustness of the modelling approach and results. According to 
THUBERC (2012), the ratio of aggregated demolished buildings to aggregated newly 
constructed buildings over China’s 11th Five-Year Plan Period (2006 to 2010) was 
approximately 34%. In this study, using the mean of the posterior predictive distribution of the 
aggregated demolished buildings modelled over this period, this ratio is calculated to be 32%, 
very close to the THUBERC (2012) estimate. In absolute terms, the mean of posterior 
predictive distribution of annual demolition of this study is of the same order of magnitude as 
previous studies. For example, for 2010, the annual demolition was estimated by this study to 
be 1.47 billion m2, approximately 1.3 billion m2 by (Hu et al., 2010), and approximately 1.7 
billion m2 by (Huang et al., 2013). 
 
Compared with a single point, deterministic estimate of annual stock size, the BMA approach 
taken by this study produces a profile for annual stock size, i.e. the posterior predictive 
distribution (Figure 3). This probabilistic estimate of annual stock size captures both models’ 
and the model-specific parameters’ uncertainties. Having depicted all possible pathways of 
stock evolution, it provides a full distribution of existing stock size per year and therefore helps 
to improve the reliability and robustness of not only the estimate of existing stock, but also the 
forecasting of future total stock which is a function of the existing stock and the underlying 
survival models and parameters. 
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Figure 3: Posterior predictive distribution of size of total stock (unit: 100 million m2) 

 
Furthermore, the dynamic building stock turnover model developed by this study offers 
additional insights into the composition of building stock through explicitly modelled building 
aging process. For each parameter vector in the parameter space of a candidate model in the 
mode space, the annual total stock is disaggregated into age-specific substocks, each of 
which goes through an aging process subject to age-specific demolition rate determined by 
the hazard function specified by this particular parameter vector of this particular candidate 
model. For each year, the substock of new buildings constructed in this year and the substocks 
of existing buildings at various ages that remain in use collectively create the age profile of the 
entire stock. For the year after, the stock’s age profile is updated due to new construction, 
aging and demolition. These on-going dynamics, which result in the turnover of the overall 
stock and detailed representation of age-specific substocks, are fully captured in the dynamic 
model and, more importantly, are further characterised probabilistically by the BMA model 
ensemble through the posterior distributions of model-specific parameters and PMPs of 
candidate models. This allows to obtain the full distribution of each age-specific substock in 
any given year. Figure 4 shows the posterior predictive distributions of substocks aged 10, 15, 
20 and 25 within the total stock in 2017. 
 



14 
 

 
Figure 4: Posterior predictive distribution of sizes of substocks at various ages in 2017 (unit: 

100 million m2) 

 
The BMA model ensemble and its results have significant implications for further modelling 
and analysis of building energy consumption and carbon emissions at stock level. Firstly, the 
possible lifetime distribution profile specified by a parameter vector in the parameter space of 
a candidate model enables explicit estimate of annual new construction and demolition, which 
are fundamental to quantifying the initial and demolition embodied energy and carbon per year. 
The impact of potentially varying lifetime distribution on embodied energy and carbon, as a 
result of planning policy or economic and environmental factors, can be examined. Secondly, 
model granularity at the level of age-specific sub-stocks offers a detailed representation of the 
building substocks heterogeneity with respect to operational energy performance, which is 
expected to improve due to increasingly stringent design codes and technological advances. 
Separately tracking the aging process of different cohorts of buildings enables understanding 
the dynamics of the stock composition of buildings with different operational performance and 
evaluating the trajectories of stock-wide average operational energy intensity per m2. Thirdly, 
more importantly, the ability to model the temporal stock dynamics integrates embodied and 
operational dimensions of building energy and carbon. By simultaneously investigating both 
dimensions, it is possible to explore their relative importance in the context of future building 
sectoral developments in green building materials, strengthening design codes for new 
buildings, and scaling up energy-related retrofits of existing buildings. In so doing, a fuller 
understanding of stock-level lifecycle energy and carbon of urban residential buildings can be 
reached. 
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Across the three dimensions, the uncertainties associated with model-specific parameter 
vectors and candidate models, as fully captured by the BMA model ensemble, along with 
uncertainties of other parameters and input variables needed for modelling energy and carbon, 
can be propagated into the emergent stock-level outputs, such as annual total embodied 
energy and annual total operational energy of total stock. The full Bayesian approach and the 
resultant probabilistic distributions of stock-level outputs can mitigate the risk of potential over- 
or under-estimate that would otherwise be more likely to be produced by deterministic models. 
This creates a powerful modelling framework with enhanced robustness and reliability, thereby 
allowing for more effectively experimenting and analysing policies aiming to decarbonise 
buildings in the broader context of peaking China’s economy-wide emissions by 2030. 
 

 Conclusions 

This paper presents a Bayesian statistical model to estimate total stock size of urban 
residential buildings in China, for which official data only exists up to 2006. We develop a 
probabilistic dynamic model characterising the building aging and demolition process and 
overall stock turnover, then operationalises the model by separately using various candidate 
parametric survival models (Weibull, Lognormal, Loglogistic, Gamma, Gumbel) as an integral 
part of the overall model. Finally, we apply BMA to create a model ensemble to combine 
predictions of the stock evolution pathway made by each candidate survival model based on 
their respective posterior model probabilities.  
 
In so doing, we provide a first attempt to take a full Bayesian approach to investigate model 
and parameter uncertainties that were not taken account of by limited existing models 
targeting Chinese building stock, which is a strategically important but under-researched area. 
The modelling approach and the results can serve as a baseline for further studies on 
forecasting building stock development trajectory and analysing energy and carbon impacts. 
In particular, the model’s ability of explicitly tracking aging process of substocks and fully 
representing the predictive distributions at both stock and substock levels is critical to 
modelling and analysing policy trade-offs across embodied-versus-operational energy 
consumption and carbon emissions facing Chinese residential buildings in the context of 
sector-wide decarbonisation. 

 
 
 
 
 
  
 



16 
 

 References 

Aksözen, M., Hassler, U., Rivallain, M. and Kohler, N. (2016) ‘Mortality analysis of an urban 
building stock’, Building Research & Information, 45(3), pp. 1–19. doi: 
10.1080/09613218.2016.1152531. 

Allison, P. (2010) Survival Analysis Using SAS: A Practical Guide. SAS Institute. 

Bohne, R. A., Brattebø, H., Bergsdal, H. and Hovde, P. J. (2006) ‘Estimation of the Service 
Life of Residential Buildings, and Building Components, in Norway.’, in Towards The City 
Surface Of Tomorrow, pp. 29–33. Available at: 
https://www.academia.edu/27632589/Estimation_of_the_Service_Life_of_Residential_Buildi
ngs_and_Building_Components_in_Norway. 

Cai, W., Wan, L., Jiang, Y., Wang, C. and Lin, L. (2015) ‘Short-Lived Buildings in China: 
Impacts on Water, Energy, and Carbon Emissions’, Environmental Science and Technology, 
49(24), pp. 13921–13928. doi: 10.1021/acs.est.5b02333. 

Fawley, B. W. and Wen, Y. (2013) ‘The Great Chinese Housing Boom’, Economic Synopses, 
(13). Available at: http://research.stlouisfed.org/publications/es/article/9774. 

Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011) Statistical Distributions (Fourth 
Edition). John Wiley & Sons, Inc., Hoboken, New Jersey. 

Fragoso, T. M., Bertoli, W. and Louzada, F. (2018) ‘Bayesian Model Averaging: A Systematic 
Review and Conceptual Classification’, International Statistical Review, 86(1), pp. 1–28. doi: 
10.1111/insr.12243. 

Frühwirth-Schnatter, S. (2004) ‘Estimating marginal likelihoods for mixture and Markov 
switching models using bridge sampling techniques’, The Econometrics Journal, 7(1), pp. 
143–167. doi: 10.1111/j.1368-423X.2004.00125.x. 

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. and Rubin, D. B. (2014) 
Bayesian Data Analysis, Third Edition, Nervenheilkunde. Chapman and Hall/CRC. doi: 
10.1007/s13398-014-0173-7.2. 

Gronau, Q. F., Sarafoglou, A., Matzke, D., Ly, A., Boehm, U., Marsman, M., Leslie, D. S., 
Forster, J. J., Wagenmakers, E. J. and Steingroever, H. (2017) ‘A tutorial on bridge sampling’, 
Journal of Mathematical Psychology, 81, pp. 80–97. doi: 10.1016/j.jmp.2017.09.005. 

Gronau, Q. F., Singmann, H. and Wagenmakers, E.-J. (2018) ‘bridgesampling: An R Package 
for Estimating Normalizing Constants’. doi: 10.1108/nfs.2003.01733cab.009. 

Hamada, M. S., Wilson, A. G., Reese, C. S. and Martz, H. F. (2008) Bayesian Reliability. 
Springer-Verlag New York. doi: 10.1007/978-0-387-77950-8. 

Hartig, F., Minunno, F. and Paul, S. (2018) BayesianTools: General-Purpose MCMC and SMC 
Samplers and Tools for Bayesian Statistics. Available at: 
https://github.com/florianhartig/BayesianTools. 

Hoeting, J. A. (2002) Methodology for Bayesian model averaging: an update, Proceedings-
Manuscripts of Invited Paper …. doi: 10.1016/s0093-691x(99)00089-8. 

Hoeting, J. A., Madigan, D., Raftery, A. E. and Volinsky, C. T. (1999) ‘Bayesian Model 



17 
 

Averaging: A Tutorial’, Statistical Science, 14(4), pp. 382–417. Available at: 
https://projecteuclid.org/euclid.ss/1009212519. 

Hu, M., Bergsdal, H., Van Der Voet, E., Huppes, G. and Muller, D. B. (2010) ‘Dynamics of 
urban and rural housing stocks in China’, Building Research and Information, 38(3), pp. 301–
317. doi: 10.1080/09613211003729988. 

Huang, T., Shi, F., Tanikawa, H., Fei, J. and Han, J. (2013) ‘Materials demand and 
environmental impact of buildings construction and demolition in China based on dynamic 
material flow analysis’, Resources, Conservation and Recycling, 72, pp. 91–101. doi: 
10.1016/j.resconrec.2012.12.013. 

Huang, W. (2006) Speech at the meeting of ‘She Hui Zhu Yi Xin Nong Cun Jian She’ [‘Building 
new countryside of the socialist society’]. Available at: 
http://www.mohurd.gov.cn/jsbfld/200612/t20061225_165486.html (Accessed: 16 March 2019). 

Ionides, E. L. (2008) ‘Truncated importance sampling’, Journal of Computational and 
Graphical Statistics, 17(2), pp. 295–311. doi: 10.1198/106186008X320456. 

Jackman, S. (2009) Bayesian Analysis for the Social Sciences, Bayesian Analysis for the 
Social Sciences. Wiley. doi: 10.1002/9780470686621. 

Johnstone, I. M. (2001) ‘Energy and mass flows of housing: Estimating mortality’, Building and 
Environment, 36(1), pp. 43–51. doi: 10.1016/S0360-1323(99)00066-9. 

Li, G. and Shi, J. (2010) ‘Application of Bayesian model averaging in modeling long-term wind 
speed distributions’, Renewable Energy, 35(6), pp. 1192–1202. doi: 
10.1016/j.renene.2009.09.003. 

Liu, X. (2012) Survival Analysis: Models and Applications, Survival Analysis: Models and 
Applications. Wiley. doi: 10.1002/9781118307656. 

McLaren, C. and Stapenhurst, C. (2015) ONS Methodology Working Paper Series No 3: A 
note on distributions used when calculating estimates of consumption of fixed capital. 
Available at: 
http://webarchive.nationalarchives.gov.uk/20160111030849/http://www.ons.gov.uk/ons/guide-
method/method-quality/specific/gss-methodology-series/ons-working-paper-
series/index.html. 

Meng, X.-L. and Wong, H. W. (1996) ‘Simulating ratios of normalizing constants via a simple 
identity: A theoretical exploration’, Statistica Sinica, 6(4), pp. 831–860. Available at: 
https://pdfs.semanticscholar.org/6a40/18c9c2927d702d85257c34130b1204fa7584.pdf. 

Miatto, A., Schandl, H. and Tanikawa, H. (2017) ‘How important are realistic building lifespan 
assumptions for material stock and demolition waste accounts?’, Resources, Conservation 
and Recycling, 122, pp. 143–154. doi: 10.1016/j.resconrec.2017.01.015. 

Müller, D. B. (2006) ‘Stock dynamics for forecasting material flows — Case study for housing 
in The Netherlands’, Ecological Economics, 59(1). doi: 10.1016/j.eco. 

OECD (2001) Measuring capital: OECD manual: measurement of capital stocks, consumption 
of fixed capital and capital services. Available at: https://www.oecd.org/std/na/1876369.pdf. 

OECD (2009) Measuring Capital: OECD manual 2009. Available at: 
https://www.oecd.org/std/productivity-stats/43734711.pdf. 



18 
 

Pajor, A. (2017) ‘Estimating the marginal likelihood using the arithmetic mean identity’, 
Bayesian Analysis, 12(1), pp. 261–287. doi: 10.1007/s11406-013-9487-5. 

Palisade (2016) Risk Analysis and Simulation Add-In for Microsoft® Excel. Available at: 
https://www.palisade.com/downloads/documentation/75/EN/RISK7_EN.pdf. 

Schöniger, A., Wöhling, T., Samaniego, L. and Nowak, W. (2014) ‘Model selection on solid 
ground: Rigorous comparison of nine ways to evaluate Bayesian model evidence’, Water 
Resources Research, 50(12), pp. 9484–9513. doi: 10.1002/2014WR016062. 

Soetaert, K. and Petzoldt, T. (2010) ‘Inverse Modelling, Sensitivity and Monte Carlo Analysis 
in R Using Package FME’, Journal of Statistical Software, 33(3), pp. 1–28. Available at: 
https://www.jstatsoft.org/article/view/v033i03. 

THUBERC (2012) 2012 Annual Report on China Building Energy Efficiency. China 
Architecture & Building Press. 

THUBERC (2019) 2019 Annual Report on China Building Energy Efficiency. Beijing: China 
Architecture & Building Press. 

Wang, Y. B., Chen, M. H., Kuo, L. and Lewis, P. O. (2018) ‘A new Monte Carlo method for 
estimating marginal likelihoods’, Bayesian Analysis, 13(2), pp. 311–333. doi: 10.1214/17-
BA1049. 

Xie, W., Lewis, P. O., Fan, Y., Kuo, L. and Chen, M. H. (2011) ‘Improving marginal likelihood 
estimation for bayesian phylogenetic model selection’, Systematic Biology, 60(2), pp. 150–
160. doi: 10.1093/sysbio/syq085. 

Yang, W. and Kohler, N. (2008) ‘Simulation of the evolution of the Chinese building and 
infrastructure stock’, Building Research & Information, 36(1), pp. 1–19. doi: 
10.1080/09613210701702883. 

Zhou, W., Moncaster, A., Reiner, D. M. and Guthrie, P. (2019) ‘Estimating lifetimes and stock 
turnover dynamics of urban residential buildings in China’, Sustainability (Switzerland), 11(13). 
doi: 10.3390/su11133720. 

 

 


	CWPE1986 Coversheet
	1933-Text
	1 Introduction
	2 Methodology
	2.1 Building stock turnover model
	2.2 Bayesian modelling
	2.2.1 Statistical model
	2.2.2 Bayesian model inference
	2.2.3 Posterior predictive distribution
	2.2.4 Bayesian Model Averaging
	2.2.5 Model space
	2.2.6 Model priors and model parameter priors
	2.2.7 MCMC sampling and posterior distribution calculation
	2.2.8 Marginal likelihood calculation


	3 Results and discussion
	4 Conclusions
	5 References


