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bBETA-CNRS, Université de Lorraine and Climate Economic Chair Paris associate

cLEM-CNRS, Université de Lille
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Abstract

This paper contributes to the climate-economy literature by analysing the role of weather patterns in influ-

encing the transmission of global climate cycles to economic growth. More specifically, we focus on El Niño

Southern Oscillation (ENSO) events and their interactions with local weather conditions, taking into account

the heterogeneous and cumulative effects of weather patterns on economic growth and the asymmetry and

nonlinearity in the global influence of ENSO on economic activity. Using data on 75 countries over the

period 1975-2014, we provide evidence for the negative growth effects of ENSO events and show that there

are substantial differences between its warm (El Niño) and cold (La Niña) phases and between climate zones.

These differences are due to the heterogeneity in weather responses to ENSO events, known as teleconnec-

tions, which has so far not been taken into account by economists, and which will become more important

in the climate-economy relationship given that climate change may substantially strengthen long-distance

relationships between weather patterns around the world. We also show that the negative growth effects

associated with these teleconnections are robust to the definition of ENSO events and more important over

shorter meteorological onsets.
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1. Introduction

The climate-economy literature has mainly focused on cross-country analysis in order to quantify the effects

of climate change and weather shocks on economic performance, such as agricultural output (Deschênes and

Greenstone, 2007), conflict (Hsiang et al., 2011), labour productivity and economic growth (Burke et al.,

2015; Kahn et al., 2019).1 While these cross-country studies are informative, they also have drawbacks as

they tend to average temperature and precipitation data at the country level (leading to a loss of informa-

tion, especially in geographically diverse countries), and more importantly they do not take into account

the effects of climate/weather events on local weather conditions. Modelling the latter is important given

that climate scientists argue that climate change may substantially strengthen long-distance relationships

between weather patterns around the world, commonly referred to as teleconnections (Power and Delage,

2018; IPCC, 2019). We contribute to the economic literature by analysing the role of weather patterns in

influencing the transmission of global climate cycles to economic growth. More specifically, we focus on El

Niño Southern Oscillation (ENSO) events and their interactions with local weather conditions, taking into

account the heterogeneous and cumulative effects of weather patterns on economic growth and the asymme-

try and nonlinearity in the global influence of ENSO on economic activity.

Among teleconnections, ENSO is the most important coupled ocean-atmosphere phenomena that alters

the weather conditions of distant parts of the globe. Its warm phase (El Niño) is associated with a band of

warm ocean water that develops in the central and east-central equatorial Pacific while its cold phase (La

Niña) is characterized by below-average Sea Surface Temperatures (SST) in the eastern Pacific. The ENSO

cycle, including both El Niño and La Niña, causes global changes in temperature and rainfall on average

every two to seven years which, in turn, substantially influence economic activity. Given that global warming

could play an important role in the rise of teleconnections’ strength and of extreme weather events related

to ENSO (Cai et al., 2015; Fasullo et al., 2018; IPCC, 2019),2 providing a well-identified understanding of

channels through which ENSO affects economic performance may be essential for assessing the potential

economic implications of climate change.

Although ENSO events have been observed throughout time and identified by historians as exacerbating

economic and social disasters (Parker, 2013), they have only recently been taken into account by economists.

As a consequence, the literature focusing on the economic impacts of ENSO is still developing. Some studies

1See also the recent surveys by Tol (2009) and Dell et al. (2014). Hsiang and Kopp (2018) have put forward the central role
that economists might play in the quest for tackling the effects of global warming and helping climate science advance.

2The relationship between changes in global temperatures and ENSO has also been highlighted by Parker (2013). In his
book, he documents that during the little ice age period (around 1550-1700), twice as many El Niño episodes were observed.
Moreover, he stresses the potential causal role of this period of prolonged cold in the higher occurrence of wars, civil wars and
rebellions compared to any previous or subsequent age.
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examine whether ENSO influences economies around the world,3 with the evidence generally suggesting that

it does. Estimating several vector autoregressive (VAR) models, Brunner (2002) found evidence of ENSO

effects on growth and inflation in the G7 countries. Since this seminal paper, only two studies have ex-

plored the relationship between ENSO and economic performances from a multi-country perspective (Cashin

et al., 2017; Smith and Ubilava, 2017). Cashin et al. (2017) estimate a Global VAR model covering 21 coun-

tries/regions over the period 1979Q2 to 2013Q1 and show that El Niño events have a direct effect on economic

activity for those countries that are at the epicenter of an El Niño event (Australia, Chile, Indonesia, New

Zealand, and Peru). The study also highlights important indirect effects on economic growth, inflation and

commodity prices through trade and financial channels for countries that are geographically more distant

from the phenomenon. Smith and Ubilava (2017) analyze the effect of this atmospheric phenomenon in

69 developing countries on growth rate and agricultural value-added using both linear and threshold panel

regressions. They show that El Niño events have negative impacts on economic growth while the effects of

La Niña events are much less significant. Their results also indicate that important regional heterogeneities

exist when it comes to ENSO shocks, with stronger evidence of El Niño growth effects in tropical countries.

While these studies have provided an understanding of channels through which ENSO can directly influ-

ence economic growth, including real prices of primary commodities (Brunner, 2002), trade (Cashin et al.,

2017), or agriculture share in total output (Smith and Ubilava, 2017), insights concerning the role of weather

patterns that are potentially correlated with ENSO events have not yet been integrated into econometric

studies. The climate literature has, however, shown that ENSO events have large scale and regional impacts

on weather patterns and seasonal climate averages (Poveda and Mesa, 1997; Vicente-Serrano et al., 2011).

Based on these findings, weather variables should be considered in the climate-growth nexus, for at least

three reasons. First, ENSO influences climate variability at a global scale with large differences in spatial

patterns while countries’ weather conditions have important effects on economic performances (Dell et al.,

2014). It is then likely that the most vulnerable countries to climate hazards will also be more affected by an

ENSO event. Second, ENSO signals may have localized impacts that cannot be reflected in economic growth

without explicitly taking into account their impacts on countries’ weather conditions. A third issue is that

each ENSO event is different and occurs in conjunction with other climatic events (Davey et al., 2014). The

corollary is that distinct ENSO episodes recording identical SST anomalies may be different in intensity at

the regional or country level. Such temporal asymmetries may then mask other important macroeconomic

implications of ENSO shocks (Smith and Ubilava, 2017).

3Most research has been conducted using data from a single country. See for example Berry and Okulicz-Kozaryn (2008)
who analyze the relationships between ENSO, U.S. inflation and economic growth over a long time span and studies focusing
on ENSO effects on domestic agricultural sector (Dilley, 1997; Naylor et al., 2001).
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In the light of this, in this paper we assess the impacts of ENSO on economic growth by distinguishing its

global effects from its specific effects channeled through countries’ hydro-meteorological conditions. The inclu-

sion of weather variables in panel estimation makes it possible to control for time-varying and country-specific

effects of ENSO, therefore illustrating its heterogeneous and delayed impact on GDP growth, as discussed

in the climate literature (Vicente-Serrano et al., 2011; Kumar and Hoerling, 2003; Poveda and Mesa, 1997).

Moreover, given that ENSO shocks are only slowly absorbed by the economy, we supplement our analysis by

considering their role in affecting total factor productivity. We use the usual ENSO regime categorization

that defines El Niño (La Niña) regimes by positive (negative) values of SST anomalies together with a finer

classification according to the duration and the magnitude of SST anomalies. To assess weather conditions,

we use the Standardized Precipitation and Evapotranspiration Index (SPEI) developed by Vicente-Serrano

et al. (2010). This indicator incorporates both precipitation and temperature data of current weather con-

ditions, plus their cumulative patterns of previous months. This multi-scalar feature captures medium to

long-run effects of changes in weather patterns, as discussed by Dell et al. (2014),4 and therefore allows us to

identify the persistent economic impacts of ENSO through the present and past weather conditions in each

country. As the weather response to ENSO events typically depends on climatic conditions, our empirical

model allows for a differential effect of ENSO shocks according to the type of climate regime that prevails in

each country of our sample.

Using data on 75 countries over the 1975-2014 period, we show that ENSO events have heterogeneous im-

pacts on economic activity depending on the type of climate. We also highlight that the observed disparities

are explained by the heteregeonous and persistent impacts of ENSO on weather patterns across countries.

In particular, El Niño phases have a persistent negative effect through drier conditions in already dry areas

located in the tropical sphere. In contrast, wet parts of the arid/temperate zone are negatively affected by La

Niña events, the year following their occurrence, through increased pluvial periods. These findings are highly

robust to the use of an alternative categorization of ENSO regimes and of weather conditions at different

time-scales as well as across estimation methodologies.

The rest of the paper is organized as follows. To set the stage, Section 2 begins by describing the data

set and presenting some stylized facts. Section 3 lays out the empirical methodology and benchmark results.

In Section 4 we provide evidence for the robustness of our results when accounting for ENSO extreme events

and the possible influence of the duration of weather patterns. Finally, Section 5 offers some concluding

remarks.

4Dell et al. (2014) stress that the intensification issue remains a challenge and could be addressed by using a statistical
approach where weather variables are interacted with their own lags or by using more advanced climate indices that reflect
cumulative effects of weather shocks.
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2. Data and stylized facts

Our sample consists of 75 countries listed in Table A.1 of the Appendix and is an unbalanced panel with

data spanning from 1975 to 2014.5 The sample includes low-income, lower-middle-income and upper-middle-

income economies as classified by the World Bank.

2.1. ENSO phases and weather conditions

One of our main variables of interest, the measure of ENSO events, is taken from the National Oceanic

and Atmospheric Administration (NOAA) of the United States dataset, which provides monthly data on

the Oceanic Niño Index (ONI) from 1950 to 2018.6 The underlying methodology used to derive these series

consists of three steps. The average SST is calculated for each month in the Niño 3.4 region, spanning from

170◦W - 120◦W longitude and 5◦N - 5◦S latitude, and then averaged with values from the previous and

following months. This running 3-month average is compared to a 30-year average of the three most recent

complete decades, updated in each new decade. The observed difference from the average SST in that region

corresponds to the ONI value for that 3-month season (i.e., the 3-month mean SST anomaly). Following

Hsiang et al. (2011) and Sarachik and Cane (2010), ENSO phases are identified by averaging ONI values

between the month of May of a given year and the month of February of the following year, i.e. the period

over which the El Niño and La Niña events are typically most active. Positive (negative) values of the ONI

reflect warming (cooling) SSTs prevailing during El Niño (La Niña) phases (Figure 1).7

Although annualized series reflecting SST anomalies are the most straightforward measures of ENSO,

they may fail to identify the different types and intensities of El Niño and La Niña events. Recent studies

have shown that the duration of and the intensity with which ENSO events propagate throughout the globe

are crucial to identify their teleconnection patterns.8 In particular, depending on their duration and their

intensities, El Niño and La Niña events may be moderate or strong and thus significantly different from the

neutral regime in which weak events prevail. Therefore, the real impacts of ENSO may not be adequately

detected through SST anomalies captured by positive and negative values of the ONI variable.

5The year 1975 is used as the starting date since the ENSO properties and dynamics have changed over time (Aiken et al.,
2013), with lower frequency and stronger amplitude since the late 1970s (An and Wang, 2000).

6We use this index because it corresponds to the operational definition used by the NOAA. Moreover, this index has a strong
correlation with both the Niño 3.4 index and the surface atmospheric pressure-based Southern Oscillation Index (SOI) (Bamston
et al., 1997), which also explains its widespread use in the literature. See Table A.2 of the Appendix.

7ONI series are taken from the R “rsoi” package : https://github.com/boshek/rsoi
8See Trenberth (1997) for a detailed discussion of the different definitions of ENSO.
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Figure 1: Evolution of the Oceanic Niño Index since 1975 (◦C)
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Note: The red (blue) line indicates the threshold SST of +1◦C (-1◦C) that categorizes the ENSO
phase as El Niño (La Niña). Source: monthly data from NOAA.

To deal with this issue, and for the sake of robustness, we define a categorical variable reflecting each

state of ENSO following the standard decision process in determining moderate to strong ENSO events as

proposed by the Climate Prediction Center.9 El Niño episodes are defined by an Oceanic Niño Index 1◦C

warmer than normal for at least five consecutive overlapping 3-month seasons. La Niña episodes arise when

the Oceanic Niño Index is 1◦C cooler than normal for at least five consecutive overlapping 3-month seasons

(Figure 1). Beyond these thresholds, ENSO events are seen as moderate or strong. ENSO episodes that do

not fall in these two categories correspond to weak events and are thus considered as neutral. El Niño and

La Niña episodes categorized as weak, moderate, or strong in our sample period (1975-2014) are reported in

Table 1.

Table 1: Years characterized by weak, moderate, and strong ENSO events

El Niño La Niña

Weak Moderate Strong Weak Moderate Strong

1977 1994a 1987 1983 1995a 1975

1979-80 2002a-2003a 1991 1984 1988

2004-05 2009 1992 2000-01 1998-1999

2006-07 1997 2005-06 2007

2014 2008-09 2010-2011

Note: a Years characterized by events of lower amplitude but reported
by NOAA as having significant repercussions.

The other variable of interest, a measure of weather conditions, is taken from the Global SPEI database10

9The Climate Prediction Center is a branch of the National Weather Service of the United States.
10We use version 2.5 of the Global SPEI database : http://spei.csic.es/database.html
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which provides monthly values of the Standardized Precipitation-Evapotranspiration Index (SPEI) at the

global scale, with a 0.5 degrees spatial resolution and for the period between January 1901 and December

2014. The main advantage of this index is that it captures the impact of both precipitation and temperature

variability and extremes on water demand. The SPEI is, therefore, particularly suited for detecting dry and

wet conditions in the context of global warming (Begueŕıa et al., 2014). It is also relevant for the analysis

and the assessment of time-varying economic risks at a large geographical scale since its standardization

makes it comparable in time and space. Positive (negative) SPEI indicates wetter (drier) hydro-climatic

conditions.11 Another advantage of the SPEI is that it can be calculated at various time scales (between

1 and 48 months) over which water deficits/surplus accumulate reflecting the different response times of

hydrological and agricultural systems to weather conditions. This multi-scalar feature allows us to take

into account the structural effects of ENSO that depend on the crops’ response, natural vegetation, and

hydrological systems. Furthermore, using time scales representing short to medium term dry or wet spells

helps us to identify the lags that commonly occur in the response of climatic conditions to ENSO events.

Indeed, El Niño and La Niña phases exert differing impacts depending on the hydrological cycle (Penalba and

Rivera, 2016), and in turn, their economic impact can be exacerbated by the climatic conditions prevailing

in previous months. The SPEI constitutes, therefore, an efficient way to address the intensification process

of climate effects by taking into account the time structure of weather shocks in the economic response to

ENSO events. We use as a benchmark indicator the 6-month SPEI, given its ability to capture seasonal

to medium-term trends in weather conditions that mainly affect agricultural systems; but also show the

robustness of our results using the 3-month and 12-month SPEI.

A key challenge of using weather indicators is to aggregate gridded SPEI observations in order to obtain

indexes consistent with economic data and reflecting adequately the climate variability experienced by each

country. The procedure of averaging gridded weather data at the country level leads to loss of relevant

information for two main reasons. First, changes in temperature, precipitation, and other climate parameters

usually vary within countries, with differential exposure and uneven consequences at the local level. Ignoring

this scale-dependency issue can be problematic as extreme conditions at the local level are likely to be obscured

by using averaged data at the country level, and lead to a biased assessment of weather conditions. Secondly,

this approach could fail to identify climate shocks affecting human activities especially if large areas where

little economic activity and sparse populations dominate, such as deserts or rain forests (Dell et al., 2014). To

deal with this problem and to derive consistent country-level series, we assign individual gridded SPEI values

11Different intensities in hydro-climatic conditions can be identified, according to threshold values reached by the SPEI, as
detailed in Table B.1 of the Appendix.
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over cropland areas to individual countries to arrive at country-wide time series. As the main channel linking

ENSO shocks and economic growth operates through shocks to agricultural incomes, restricting weather

conditions to cropland areas allows us to isolate the component of climate variability, which is relevant

for agriculture. Another advantage of this aggregation approach is that it provides a consistent measure

of climate variability within a country as cropland areas broadly share the same weather conditions. To

retrieve the climate variability in cropland areas, we rely on the Global Land Cover SHARE (GLC-SHARE)

prepared by FAO’s Land and Water Division (NRL). This database provides information on mainland use

and land cover shares, on each 1 by 1-kilometer plot of land covering the entire globe. We construct monthly

SPEI values at the country level by overlaying grid cells of SPEI over cropland distribution in each country

and averaging the SPEI values over each country’s arable and permanent croplands. See section B.2 of the

Appendix for an extensive discussion on how the average SPEI for each country is constructed.

2.2. Identifying climate groups

To capture the variability of ENSO impacts across countries, with some regions considered more “telecon-

nected” to ENSO (continental tropics) than others (mid-latitudes regions), we partition the globe into two

groups − tropical/humid and temperate/arid countries − based on how coupled their climates are to ENSO,

according to the Köppen-Geiger Climate Classification (Kottek et al., 2006). However, in order to have coun-

try groups consistent with SPEI values calculated at the country level, we identify climatic conditions which

only prevail in cropland areas within each country. Specifically, we define tropical/humid countries as those

with 50% or more of their total cropland areas falling into the four subtypes of tropical climates.12 Countries

having a temperate/arid climate refer to those with 50% or more of their total cropland area characterized

by one type of arid or mild temperate climates.13 The list of countries included in each of these two climate

groups is provided in Table A.1 of the Appendix.14

The widespread influence of ENSO events on local weather patterns is shown in Figure 2 which reports

SPEI anomalies, defined as the difference between the SPEI values prevailing during normal conditions and

those prevailing during an ENSO episode (Figure 2a). To illustrate the persistent impact of El Niño and La

Niña on weather patterns, we also report SPEI anomalies during the year following an ENSO episode (Figure

2b).

Figure 2 shows that most countries have less precipitation during an El Niño episode. In Central Amer-

ica, El Niño is associated with serious drought in Mexico, Guatemala, Honduras, and El Salvador. Some

12i.e. tropical rain forest, tropical monsoon, tropical savannah with dry summer, and tropical savannah with dry winter.
13Classes of arid climates refer to desert, steppe-hot arid and steppe-cold arid while subtypes of mild temperate climates

include mild temperate with dry summer, mild temperate with dry winter, mild temperate fully humid warm summer, mild
temperate fully humid cool summer.

14The classification is close to the one used in the literature except for large countries, such as India, and Mexico.
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Caribbean countries also suffer from drought. In addition, El Niño years lead to drought in Africa, as coun-

tries (such as Mali, Sudan, and Nigeria) tend to see lower SPEI during an El Niño event while droughts occur

in the already very dry south of the continent (Mozambique, and Botswana). Moreover, other notable dry

places include Indonesia, South and South-East Asia, and Australia. In general, La Niña effects on weather

patterns are the opposite of those induced by El Niño resulting in wetter-than-normal conditions in Southern

Africa and in the central Andes. Very heavy rain and flooding due to La Niña is also reported in the Philip-

pines, Malaysia, Indonesia, and Australia. In contrast, many droughts are reported in Argentina, Chile and

over East Africa following La Niña events. Finally, the surface extent and duration of the SPEI anomalies

show that large areas of the world have SPEI anomalies lasting several months, confirming that the effects of

El Niño and La Niña events on weather patterns can spread over many seasons (Vicente-Serrano et al., 2011;

Kumar and Hoerling, 2003; Poveda and Mesa, 1997). One year after the occurrence of ENSO events, El Niño

still affect most of Indonesia, the Indochina Peninsula, parts of Africa, and Australia whereas La Niña leads

to substantially more precipitation as compared to neutral ENSO regimes in Africa and South East Asia.

Figure 2: Difference between the SPEI average during El Niño (La Niña) years and neutral
years (1975 - 2014)

(a) Immediate effect (b) Persistent effect

Note: Map (a) shows, for each country, the difference between the average of SPEI during the El Niño (La Niña)
years and that during years characterized by a neutral ENSO regime. The persistent effect (map b) is calculated as
the average difference between the SPEI the year following an El Niño (La Niña) shock and the years characterized
by a neutral regime. Countries are color-coded on the basis of their SPEI anomalies: red (green) for countries
with drier (wetter) conditions than those prevailing during normal conditions. Deeper is the color, higher are the
SPEI anomalies.
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2.3. Real income growth and ENSO events

As the main purpose of this paper is to assess the growth effects of ENSO events, we obtain real GDP

per capita from the recent version of the Penn World Table database. In Table 2, we report the means,

standard deviations, and ranges for the 6-month SPEI and the real GDP per capita growth by climate areas

(tropical/humid and temperate/arid).15

Table 2: Summary statistics by climate areas

Countries
6-month SPEI Growth rates

n mean min max sd. mean min max sd.

All 75 -0.0292 -1.772 2.348 0.5212 0.0167 -0.5226 0.2833 0.0520

Tropical & humid 39 -0.0110 -1.772 2.348 0.5197 0.0165 -0.2983 0.2833 0.0165

Temperate & arid 36 -0.0516 -1.559 1.958 0.5265 0.0168 -0.5226 0.2571 0.0579

According to the mean value of SPEI and real GDP per capita growth, few differences are apparent

between the two climate areas. However, given the diverse geographic and economic conditions as well as

climatic variability within these two areas, it is unlikely that the means are completely homogeneous across

all countries and over time, as indicated by the high standard deviations. In order to investigate this further,

Figure 3 displays the distribution of economic growth according to ENSO episodes for tropical/humid and

temperate/arid countries.

As can be seen from Figure 3 the contemporaneous effects of El Niño phases suggest a lower average rate of

growth as compared to the neutral and La Niña phases, in line with what has been reported in the literature.

The delayed response of GDP growth to ENSO events remains, on the contrary, less clear. Indeed, no distinct

differences can be observed across growth averages when considering lagged ENSO events. Importantly,

there is a significant dispersion of real GDP growth across countries, illustrating the strong heterogeneity in

countries’ responses to ENSO events. This cross-country dispersion can be explained by many factors among

which weather conditions play a key role due to their heterogeneous responses to ENSO events and their

differentiated effects on countries’ economic growth. The following section aims to investigate this issue.

15Table A.3 in the Appendix provides a detailed overview of the variables included in our dataset.
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Figure 3: Real GDP per capita growth and ENSO events

(a) Tropical & humid countries
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(b) Arid & temperate countries

-0.10

-0.05

0.00

0.05

0.10

El Niño La Niña Neutral

G
D

P
 p

.c
. g

ro
w

th
 (

lo
g)

Contemporaneous Effect

-0.10

-0.05

0.00

0.05

0.10

El Niño La Niña Neutral

G
D

P
 p

.c
. g

ro
w

th
 (

lo
g)

Lagged Effect

Note: The figure shows the distribution of the economic growth according to ENSO cycles for
the current year (contemporaneous effect) and the year following any event (lagged effect).

3. Empirical results

3.1. Econometric methodology

Since ENSO impacts can extend beyond a calendar year and may also be temporally displaced, we estimate

the contemporaneous as well as the lagged growth effects of ENSO events. To test our central hypothesis,

we use interaction terms to assess how ENSO events influence growth under certain weather conditions. Our
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main specification is then given by:16

∆yi,t = λ+ αONIt + βSPEIi,t + γONIt−1 + δ (ONIt−1 × SPEIi,t) + µi + εi,t (1)

where yi,t is the log of real GDP per capita of country i in year t, ONIt is a vector of variables depicting

the effects of ENSO events captured by annualized ONI values in year t, SPEIi,t is a vector of weather

conditions measured by the 6-month SPEI, and the interaction term, (ONIt−1 × SPEIi,t), permits us to

assess whether ENSO events have a different influence on growth in countries where wet conditions prevail

in cropland areas than in countries where these areas are rather characterised by dry conditions.

Equation (1) imposes a monotonic relationship between ENSO events and economic growth by assuming

that climate anomalies related to La Niña events can be regarded as a mirror image of those associated with

El Niño events. However, the climatology literature has produced considerable evidence on the asymmetry

between El Niño and La Niña events (Burgers and Stephenson, 1999; Jin et al., 2003b; An and Jin, 2004;

An et al., 2005; Zhang et al., 2015) mainly due to nonlinear responses in the atmosphere to the underlying

SST anomalies (Hoerling et al., 1997; Jin et al., 2003a). To address this asymmetry issue, we follow Smith

and Ubilava (2017) and interact the variable ONI with a Heaviside indicator that partitions the variable ONI

into positive and negative values:

∆yi,t = [α1ONIt + β1SPEIi,t + γ1ONIt−1 + δ1 (ONIt−1 × SPEIi,t)] I (.)

+ [α2ONIt + β2SPEIi,t + γ2ONIt−1 + δ2 (ONIt−1 × SPEIi,t)] (1− I (.))

+ λ+ µi + εi,t

(2)

where I (.) is the Heaviside function such that:

I (.) =

 1 if ONIt ≥ 0 (El Niño)

0 if ONIt < 0 (La Niña)

The standard methods of estimating ENSO events with panel data rely usually on fixed-effects models.

The major drawback of these models is that they not directly address the important question of the spatial

and temporal correlation of climate and weather conditions across countries. As noted by Beck and Katz

(1995), coefficient estimates from standard panel estimators can be severely biased if cross-section depen-

dence is present. A preliminary analysis of the data using OLS reveals evidence of nonspherical errors because

16We restrict our set of explanatory variables to climate and weather variables in order to avoid an “over-controlling problem”
(Dell et al., 2014).
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of contemporaneous correlation across the units alongside heteroskedasticity and serial correlation.17 This

finding is not surprising given that economic activity may spill over into contiguous or economically related

countries and climate events, such as ENSO, cross countries’ borders (Auffhammer et al., 2013). Parks (1967)

proposed to improve inference and estimation efficiency using a feasible generalized least squares (FGLS) esti-

mator that has been popularized by Kmenta (1986). However, this estimator has been shown to exhibit poor

finite sample properties, with overconfident standard errors rendering hypothesis testing useless (Beck and

Katz, 1995).18 To address these problems, we use Prais-Winsten estimates with a sandwich-type estimator

of the covariance matrix developed by Beck and Katz (1995). The so-called panel-corrected standard errors

(PCSE) are robust to very general forms of cross-sectional dependence as well as autocorrelated errors of

type AR(1). Results from PCSE estimates are also compared with Driscoll and Kraay (1998) covariance

matrix estimator for fixed effects regression. Driscoll and Kraay’s methodology is consistent independently

of the cross-sectional dimension N and is robust to higher-order serial correlation.19

3.2. Growth effects of ENSO events

Tables 3 and 4 present the results of the regression analyses for tropical/humid and arid/temperate countries

respectively. Each table includes two sets of results from PCSE and DK estimations. We first estimate

equation (2) without any weather variable or interaction term between ONI and SPEI, as shown in columns

(1) and (4) of Tables 2 and 3. We find that increasing positive values of the ONI has a contemporaneous

negative effect on growth in countries located in tropical/humid areas, indicating that the El Niño regime

leads on average to lower growth rates in those countries. Its impact is, however, weakly significant in

arid/temperate areas. This first finding is consistent with the literature (Cashin et al., 2017; Smith and

Ubilava, 2017). In contrast, the growth response to La Niña events is not significant, regardless of the

climate type, confirming the asymmetric nature of ENSO.

When adding the SPEI variable, we note that the effect of weather conditions is positive and significant

only in arid/temperate countries, showing a high vulnerability of this climate zone to droughts. Moreover,

controlling for countries’ specific weather conditions does not modify the results obtained regarding the

ENSO’s contemporaneous effect on growth. Indeed, the negative growth effect of El Niño phases is still

17Results of this preliminary analysis are reported in Tables C.1 and C.2 of the Appendix. Results reported in Table C.2
show that, for all variables, there is strong evidence against the null hypothesis of no cross-section dependence in the model’s
variables.

18The Parks-Kmenta Feasible Generalized Least Squares estimator (FGLS) cannot be estimated when the time period (T ) is
less than the number of cross-sectional units (N) since the associated error variance-covariance matrix cannot be inverted. Even
when T ≥ N , Beck and Katz (1995) showed that the estimated standard errors using the Parks-Kmenta approach generate
confidence intervals that are significantly too small, often underestimating variability by 50% or more.

19We have also tested the unit root null hypothesis in our panel data setting using the Cross-sectionally Augmented IPS
(CIPS) panel unit root test advanced by Pesaran (2007), which allows for cross-sectional dependence. As is clear from Appendix
Table B.3, the null hypothesis of a unit root is rejected for the variable SPEI. The null hypothesis of a unit root is not rejected
for the level of y, while rejected for its first difference.
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significant only for tropical/humid countries, while la Niña has no significant impact in both climate areas.

The climate-literature provides insights into the mechanisms responsible for this asymmetric feature of ENSO.

First, there is evidence that the observed El Niño is larger than that of La Niña, especially since the climate

shift around the year 1975 (An and Jin, 2004). Furthermore, the overall effect of La Niña events is usually

the result of more localized tropical convection anomalies than those observed during El Niño phases (Mason

and Goddard, 2001), which could also account for this differentiated impact. Another explanation, well

documented by the climate literature, is due to the delays in hydrological responses to ENSO events (see,

e.g., Kumar and Hoerling (2003)). Accordingly, the impact of La Niña events is likely to propagate throughout

weather conditions only with some delays after their occurrence.

Table 3: Contemporaneous and lagged impacts of ENSO events
Tropical & humid countries

PCSE estimates DK estimates

(1) (2) (3) (4) (5) (6)

ONIt ≥ 0 -0.0132** -0.0121** -0.0159*** -0.0222** -0.0213** -0.0228***

(0.0059) (0.0059) (0.0061) (0.0088) (0.0091) (0.0080)

ONIt < 0 -0.0023 -0.0027 -0.0050 -0.0072 -0.0075 -0.0080

(0.0061) (0.0060) (0.0059) (0.0065) (0.0064) (0.0067)

SPEIt 0.0045** -0.0030 0.0037 -0.0040

(0.0022) (0.0037) (0.0033) (0.0048)

ONIt−1 ≥ 0 -0.0101* -0.0148*

(0.0060) (0.0075)

ONIt−1 < 0 -0.0058 -0.0073

(0.0057) (0.0083)

ONIt−1 ≥ 0 ×SPEIt 0.0194*** 0.0173***

(0.0070) (0.0058)

ONIt−1 < 0 ×SPEIt 0.0090 0.0126*

(0.0074) (0.0066)

Constant 0.0163 0.0154 0.0209 0.0233*** 0.0232*** 0.0291***

(0.0126) (0.0125) (0.0128) (0.0043) (0.0043) (0.0065)

Countries (N) 39 39 39 39 39 39

Observations (N × T ) 1521 1521 1521 1521 1521 1521

R2[within] 0.0778 0.0798 0.0889 [0.0200] [0.0218] [0.0330]

PSAR(1) Yes Yes Yes No No No

MA(3) No No No Yes Yes Yes

Note: Prais-Winsten (PSCE) estimates and fixed effects (within) regression models with Driscoll and Kraay
(DK) standard errors. ONI ≥ 0 and ONI < 0 stand respectively for El Niño and La Niña conditions.
Standard errors are in parentheses. ∗∗∗, ∗∗, and ∗ indicate respectively 1%, 5%, and 10% significance
levels. PSAR(1) stands for panel specific AR(1)-type autocorrelation. MA(3) denotes autocorrelation of
the moving average type with automatic lag length.
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As shown in columns (3) and (6), which report the results of our specification (2), the existence of such

delayed effects is confirmed. ENSO negatively affects GDP growth in both climate areas through its differing

impacts on weather conditions. As can be seen, in tropical/humid areas, while the contemporaneous negative

effect of ENSO remains unchanged, the coefficient on the interaction term between the positive lagged value

of ONI and the SPEI is significant. This lagged impact through weather conditions can be explained by the

role played by El Niño events on the occurrence of tropical droughts. Unlike other natural hazards, droughts

tend to develop very slowly over time and preferentially during El Niño events in this part of the world

with a linear relationship to the strength of El Niño (Vicente-Serrano et al., 2011; Lyon, 2004; Mason and

Goddard, 2001). The delayed effect of El Niño events on economic growth in tropical/humid countries is

thus channeled through a higher probability of drier than normal weather conditions. Accordingly, taking

into account the delayed effects of ENSO through weather conditions suggests that El Niño episodes have

a negative growth effect in dry areas of the tropical/humid zone. This effect is likely to be persistent as El

Niño tends to increase the exposure of those areas to drier conditions. As shown in the sixth column of Table

3, this result is robust to DK estimates.

Results for arid/temperate countries show that the coefficient on contemporaneous El Niño events is still

slightly significant (at only the 10% level) while the growth effect of SPEI remains positive and significant

(column (6) of Table 4). Importantly, La Niña events have a lagged effect on growth through their interaction

with weather patterns, which is essentially the reverse of the El Niño effect observed in tropical/humid

countries. Indeed, by bringing higher than average precipitation, La Niña causes rainfall to become more

intense and wet areas in arid/temperate countries to become wetter, which adversely affects GDP growth.

Again, this result is robust to the choice of estimator, confirming that ENSO events also significantly affect

the GDP growth of arid/temperate areas through their delayed impacts on weather conditions.

3.3. Explaining the growth’s response to ENSO events: the role of total factor productivity growth

As ENSO events have persistent effects through weather patterns, they are only slowly absorbed by the

economy and should therefore have long-lasting effects. We thus examine whether the previous results on

economic growth are driven through Total Factor Productivity (TFP) growth. In order to do this, we re-

estimate equation (2) with TFP per capita growth (instead of GDP per capita growth).20

The results in Table 5 indicate strong evidence that the ENSO events affect TFP growth through their

interaction with weather patterns. The predominance of TFP growth for explaining the delayed ENSO

effects on output growth is in line with other panel studies that find strong evidence of weather effects on

20For the definition of TFP see Table A.3 and for the panel unit root tests for annual TFP growth, see Table C.3 in the
Appendix.
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Table 4: Contemporaneous and lagged impacts of ENSO events
Arid & temperate countries

PCSE estimates DK estimates

(1) (2) (3) (4) (5) (6)

ONIt ≥ 0 -0.0143* -0.0112 -0.0123 -0.0241* -0.0212* -0.0204*

(0.0078) (0.0078) (0.0076) (0.0133) (0.0125) (0.0119)

ONIt < 0 0.0007 0.0031 0.0009 -0.0005 0.0019 0.0007

(0.0088) (0.0086) (0.0079) (0.0092) (0.0091) (0.0084)

SPEIt 0.0128*** 0.0150*** 0.0131** 0.0168***

(0.0031) (0.0056) (0.0056) (0.0060)

ONIt−1 ≥ 0 -0.0095 -0.0150

(0.0075) (0.0095)

ONIt−1 < 0 -0.0077 -0.0068

(0.0077) (0.0130)

ONIt−1 ≥ 0 ×SPEIt 0.0105 0.0092

(0.0093) (0.0077)

ONIt−1 < 0 ×SPEIt -0.0194* -0.0226**

(0.0103) (0.0097)

Constant 0.0202*** 0.0222*** 0.0268*** 0.0225*** 0.0221*** 0.0271***

(0.0054) (0.0054) (0.0063) (0.0072) (0.0070) (0.0091)

Countries (N) 36 36 36 36 36 36

Observations (N × T ) 1299 1299 1299 1299 1299 1299

R2[within] 0.0641 0.0825 0.0952 [0.0174] [0.0310] [0.0462]

PSAR(1) Yes Yes Yes No No No

MA(3) No No No Yes Yes Yes

Note: Prais-Winsten (PSCE) estimates and fixed effects (within) regression models with Driscoll and Kraay
(DK) standard errors. ONI ≥ 0 and ONI < 0 stand respectively for El Niño and La Niña conditions.
Standard errors are in parentheses. ∗∗∗, ∗∗, and ∗ indicate respectively 1%, 5%, and 10% significance
levels. PSAR(1) stands for panel specific AR(1)-type autocorrelation. MA(3) denotes autocorrelation of
the moving average type with automatic lag length.

TFP growth (Letta and Tol, 2018). Columns (1) and (4) show a less pronounced immediate impact of El

Niño on TFP growth in both climate areas. Adding lagged effects of ENSO yields, however, very similar

effects as the interaction terms with SPEI are still significant in both areas (columns (3) and (6)). As for

economic growth, the analysis by climate regions reveals different delayed growth effects of ENSO events

through their connection with weather conditions, with a predominance of negative effects of El Niño events

in tropical/humid countries and of La Niña episodes in arid/temperate countries. The negative response of

GDP growth to ENSO events is thus mainly driven by the decrease in productivity growth due to the delayed

effects of ENSO on weather patterns. This finding is important as it implies that the fall in productivity

growth driven by ENSO events is likely to have a persistent negative impact on output growth in subsequent

periods and possibly alter income trajectories in a permanent way, especially since it is expected that extreme

15



El Niño and La Niña events will become more frequent (IPCC, 2019).

Table 5: Contemporaneous and lagged impacts of ENSO events, TFP growth

Tropical & humid countries Arid & temperate countries

(1) (2) (3) (4) (5) (6)

ONIt ≥ 0 -0.0178*** -0.0162*** -0.0207* -0.0080 -0.0063 -0.0062

(0.0059) (0.0059) (0.0106) (0.0075) (0.0073) (0.0073)

ONIt < 0 -0.0096 -0.0104* -0.0138 -0.0030 -0.0018 -0.0033

(0.0059) (0.0058) (0.0102) (0.0081) (0.0079) (0.0076)

SPEIt 0.0068*** -0.0055 0.0107*** 0.0151**

(0.0022) (0.0066) (0.0033) (0.0059)

ONIt−1 ≥ 0 -0.0168 -0.0089

(0.0106) (0.0072)

ONIt−1 < 0 -0.0014 -0.0042

(0.0101) (0.0073)

ONIt−1 ≥ 0 ×SPEIt 0.0303** 0.0063

(0.0121) (0.0095)

ONIt−1 < 0 ×SPEIt 0.0222* -0.0226**

(0.0134) (0.0114)

Constant 0.0133 0.0121 0.0215 0.0057 0.0078 0.0109

(0.0122) (0.0120) (0.0176) (0.0059) (0.0060) (0.0067)

Countries (N) 30 30 30 30 30 30

Observations (N × T ) 1135 1135 1135 1058 1058 1058

R2 0.0463 0.0535 0.0460 0.0236 0.0359 0.0482

PSAR(1) Yes Yes Yes Yes Yes Yes

Note: Prais-Winsten (PSCE) estimates. ONI ≥ 0 and ONI < 0 stand respectively for El Niño and La
Niña conditions. Standard errors are in parentheses. ∗∗∗, ∗∗, and ∗ indicate respectively 1%, 5%, and 10%
significance levels. PSAR(1) stands for panel specific AR(1)-type autocorrelation.

4. ENSO extreme events and duration of weather patterns

In this section we provide evidence for the robustness of our results when accounting for ENSO extreme events

and the possible influence of the duration of weather patterns. But first we check the robustness of our results

to different measures of income and ENSO events. For example, as an alternate measure of income, we make

use of GDP per capita series from the World Bank’s World Development Indicators and as another measure

of ENSO, we use the Equatorial Southern Oscillation Index (SOI), calculated as the standardized anomaly of

the difference between the area-average monthly sea level pressure in an area of the eastern equatorial Pacific

(80◦W - 130◦W, 5◦N - 5◦S) and an area over Indonesia (90◦E - 140◦E, 5N - 5◦S). The results with these

alternative measures illustrate that no matter which measure is utilized, the interaction term between ENSO

events and weather conditions remains significant and has the same sign with the same order of magnitude
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for both climate areas. This finding is not surprising, given the high correlation between the two GDP per

capita growth series and the two ENSO indexes.21 For the sake of brevity, the results of these robustness

checks are not reported in the paper but are available from the authors upon request. Finally, consistent with

the estimation approach adopted in the growth literature, we estimated equation (2) using the system GMM

estimator. The results, reported in Table C.4 of the Appendix, provide clear evidence of delayed growth

impacts of ENSO through weather conditions.

4.1. Accounting for ENSO extreme events

As mentioned before, it is not clear whether the analysis of the asymmetric effects of the ENSO phases through

the introduction of a Heaviside indicator fully captures the occurrence of extreme events. For example, years

1988 and 2010 show average values of ONI equal to -0.56◦C and -0.19◦C, respectively. Despite these low

average negative values, these years are nevertheless characterized by the occurrence of La Niña events since

during these two years ONI values lower than -1◦C were observed during at least five consecutive months. By

contrast, other years exhibit larger negative values of ONI but are characterized by neutral ENSO conditions

due to the short duration of these anomalies. To address this issue, we use a specification that includes

categorical variables − instead of a Heaviside indicator − to account more adequately for the different phases

associated with ENSO (El Niño, La Niña or neutral phases):

∆yi,t = λ+ αENSOt + βSPEIi,t + γENSOt−1 + δ (ENSOt−1 × SPEIi,t) + µi + εi,t (3)

where ENSOt is a categorical variable defined by annualized ONI anomalies in year t such that:22

ENSOt =


1 if ONI < −1 during at least 5 months of the year t (El Niño)

2 if ONI > 1 during at least 5 months of the year t (La Niña)

0 otherwise (Neutral)

Neutral episodes are then the excluded episodes, so that the coefficients on La Niña and El Niño events

must be interpreted differently than those in Equation (2). Indeed, the coefficients now measure the growth

effect differential of La Niña and/or El Niño relative to neutral episodes, instead of analyzing the growth

effects of ENSO according to the positive or the negative values taken by the variable ONI.

The estimation results of Equation (3) are reported in Table 6. We first notice that taking into account the

21See Table A.2 and Figure A.2 in the Appendix.
22We have calculated the polychoric correlation coefficient between the ONI variable and dummy variables taking the value

1 in case of El Niño/La Niña events and 0 otherwise. The correlation between ONI and the dummy variable that captures El
Niño is high (0.91) while the correlation with La Niña events is smaller (-0.76).
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duration and magnitude in the definition of ENSO does significantly change its estimated contemporaneous

impact. Of particular importance is strong evidence of a more significant impact of El Niño in arid/temperate

countries, suggesting a high sensibility of this climate zone to the intensities of this ENSO regime. Thus,

compared to normal episodes, El Niño events seem to be now associated with lower growth rates in both

climate areas. In contrast, and consistent with our previous results, La Niña events are not significantly

different from normal ones for both climate areas. As can be seen, adding the delayed effects of ENSO on

weather conditions does not significantly change the coefficient of the interaction term in tropical/humid

countries (column (3)). Indeed estimates for this climate area show similar results to previous ones. El Niño

events are growth limiting by bringing unusual warmth in tropical/humid countries already experiencing

dry conditions. Similarly, the use of this new measure of ENSO events confirms that La Niña, by causing

increased rainfall, has a negative and lagged growth effect in arid/temperate areas with already wet conditions

(column (6)). Overall, these findings support our main hypothesis related to the importance of local weather

conditions when assessing the growth effects of ENSO cycles.

Table 6: Contemporaneous and lagged impacts of ENSO events (dummy variables)

Tropical & humid countries Arid & temperate countries

(1) (2) (3) (4) (5) (6)

El Niñot -0.0068* -0.0061 -0.0080** -0.0120** -0.0139** -0.0125***

(0.0039) (0.0038) (0.0040) (0.0053) (0.0058) (0.0048)

La Niñat 0.0019 0.0015 0.0014 0.0055 0.0037 0.0060

(0.0043) (0.0042) (0.0042) (0.0056) (0.0064) (0.0051)

SPEIt 0.0047** 0.0001 0.0136*** 0.0154***

(0.0021) (0.0030) (0.0035) (0.0045)

El Niñot−1 -0.0043 -0.0065

(0.0041) (0.0052)

La Niñat−1 -0.0043 -0.0059

(0.0041) (0.0050)

El Niñot−1 ×SPEIt 0.0117** 0.0069

(0.0049) (0.0071)

La Niñat−1 ×SPEIt 0.0042 -0.0175***

(0.0053) (0.0066)

Constant 0.0141 0.0133 0.0162 0.0188*** 0.0228*** 0.0254***

(0.0131) (0.0129) (0.0130) (0.0047) (0.0059) (0.0050)

Countries (N) 39 39 39 36 36 36

Observations (N × T ) 1521 1521 1521 1299 1299 1299

R2 0.0717 0.0742 0.0809 0.0744 0.0835 0.108

PSAR(1) Yes Yes Yes Yes Yes Yes

Note: Prais-Winsten (PSCE) estimates. Standard errors are in parentheses. ∗∗∗, ∗∗, and ∗ indicate respec-
tively 1%, 5%, and 10% significance levels. PSAR(1) stands for panel specific AR(1)-type autocorrelation.
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4.2. The influence of weather patterns

We have used so far, as benchmark variable, the 6-month SPEI as it is usually considered as the most

appropriate index when addressing events occurring at the agricultural season level (Vicente-Serrano et al.,

2010, 2011). As demonstrated by McKee et al. (1993), water surplus/deficits can accumulate over time and

impact differently usable water resources. Several studies have shown that the responses of soil moisture,

river discharge, reservoir storage, vegetation activity and crop production can vary markedly as a function

of the time scale (McKee et al., 1993; Vicente-Serrano et al., 2010; Begueŕıa et al., 2014). It is then essential

to control for the time scale over which weather conditions accumulate since the growth response to hydro-

climatic conditions, and thus indirectly to ENSO events, can also vary as a function of time.23 Accordingly,

we re-estimate Equations (2) and (3) using 3-month and 12-month SPEI. Using shorter time scales such as

the 3-month SPEI can better reflect the impacts of ENSO on economic growth through short bursts of heavy

rain or droughts. We also control for a longer time scale (12-month SPEI) since shorter extreme weather

events may in some instances only be visible over a longer period, and thus not be necessarily detected over a

3-month period.24 Tables 7 and 8 present the results of specifications (2) and (3) respectively incorporating

these new values of SPEI.

Several notable points emerge from these results. First, using the 3-month and 12-month SPEI does

not change our results, providing further evidence for the robustness of our results and the importance of

taking into account local weather conditions. However, the magnitude of this impact varies as a function

of the time scale over which weather conditions accumulate. In particular, it is more pronounced at shorter

time scales, i.e. for weather events that possibly begin and end rapidly. Using the 3-month SPEI leads to

stronger adverse effects of La Niña, the year following its occurrence, in wet areas of the arid/temperate

zone. Similarly, El Niño events are associated with a deeper persistent effect on the GDP growth of dry areas

with a tropical/arid climate when considering shorter time scales, suggesting that the influence of ENSO on

droughts is weakened at longer time scales in this climate area.

23Beside the time-scales over which weather patterns can be quantified, a number of studies have pointed out that the way
economies adjust to hydro-meteorological conditions depends on the intensity of weather events (Burke et al., 2015). To address
this issue, we have also estimated Equations (2) and (3) by adding a quadratic specification in the weather variable deemed to
reflect extreme weather conditions. Results suggest no change in our main conclusions. For the sake of brevity, we do not report
these results. They are available from the authors upon request.

24This happens, for example, when a short-term extreme event is bounded by relatively normal periods.
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Table 7: Accounting for the duration of weather conditions (heaviside variable)

12-month SPEI 3-month SPEI

Tropical & humid Arid & temperate Tropical & humid Arid & temperate

(1) (2) (3) (4) (5) (6) (7) (8)

ONIt ≥ 0 -0.0116** -0.0160*** -0.0157* -0.0183** -0.0121** -0.0143*** -0.0163* -0.0197**

(0.0054) (0.0056) (0.0084) (0.0089) (0.0059) (0.0055) (0.0086) (0.0089)

ONIt < 0 -0.0035 -0.0055 0.0028 0.0006 -0.0026 -0.0061 0.0036 0.0003

(0.0055) (0.0055) (0.0096) (0.0095) (0.0059) (0.0054) (0.0098) (0.0094)

SPEIt 0.0015 -0.0048* 0.0106*** 0.0138*** 0.0056** 0.0018 0.0128*** 0.0206***

(0.0017) (0.0028) (0.0028) (0.0043) (0.0027) (0.0032) (0.0043) (0.0054)

ONIt−1 ≥ 0 -0.0099* -0.0133 -0.0110** -0.0135

(0.0056) (0.0090) (0.0055) (0.0090)

ONIt−1 < 0 -0.0081 -0.0067 -0.0070 -0.0076

(0.0053) (0.0090) (0.0052) (0.0091)

ONIt−1 ≥ 0 ×SPEIt 0.0146*** 0.0025 0.0156** -0.0019

(0.0052) (0.0085) (0.0075) (0.0096)

ONIt−1 < 0 ×SPEIt 0.0090* -0.0139* 0.0056 -0.0282**

(0.0054) (0.0075) (0.0078) (0.0119)

Constant 0.0167 0.0227 0.0236*** 0.0281*** 0.0162 0.0221 0.0219*** 0.0283***

(0.0165) (0.0170) (0.0071) (0.0087) (0.0163) (0.0166) (0.0068) (0.0083)

Countries (N) 39 39 36 36 39 39 36 36

Observations (N × T ) 1521 1521 1299 1299 1521 1521 1299 1299

R2 0.0960 0.1050 0.0736 0.0863 0.0986 0.1060 0.0687 0.0807

PSAR(1) Yes Yes Yes Yes Yes Yes Yes Yes

Note: Prais-Winsten (PSCE) estimates. Standard errors are in parentheses. ∗∗∗, ∗∗, and ∗ indicate respectively 1%,
5%, and 10% significance levels. PSAR(1) stands for panel specific AR(1)-type autocorrelation.

In order to illustrate how the growth effects of ENSO propagate throughout the time scale and for dif-

ferent hydrological conditions, we estimate its marginal growth effects at different levels and time-scales of

SPEI. Figures 4 and 5 depict the marginal effect of ENSO phases at time t− 1 on GDP growth as estimated

from regressions (2) and (3) respectively.
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Table 8: Accounting for the duration of weather conditions (dummy variable)

12-month SPEI 3-month SPEI

Tropical & humid Arid & temperate Tropical & humid Arid & temperate

(1) (2) (3) (4) (5) (6) (7) (8)

El Niñot -0.0065* -0.0085** -0.0136** -0.0161*** -0.0062 -0.0081** -0.0117** -0.0130***

(0.0039) (0.0040) (0.0058) (0.0056) (0.0038) (0.0040) (0.0053) (0.0049)

La Niñat 0.0017 0.0017 0.0035 0.0053 0.0013 0.0011 0.0059 0.0062

(0.0043) (0.0043) (0.0063) (0.0061) (0.0042) (0.0042) (0.0056) (0.0052)

SPEIt 0.0022 -0.0024 0.0105*** 0.0125*** 0.0057** 0.0013 0.0127*** 0.0152***

(0.0018) (0.0025) (0.0028) (0.0039) (0.0026) (0.0032) (0.0039) (0.0055)

El Niñot−1 -0.0039 -0.0094 -0.0049 -0.0063

(0.0041) (0.0061) (0.0041) (0.0052)

La Niñat−1 -0.0042 -0.0046 -0.0041 -0.0056

(0.0041) (0.0059) (0.0040) (0.0051)

El Niñot−1 ×SPEIt 0.0120*** 0.0038 0.0142** 0.0108

(0.0038) (0.0063) (0.0060) (0.0095)

La Niñat−1 ×SPEIt 0.0041 -0.0091* 0.0063 -0.0197**

(0.0045) (0.0055) (0.0064) (0.0084)

Constant 0.0136 0.0158 0.0233*** 0.0264*** 0.0134 0.0166 0.0209*** 0.0247***

(0.0130) (0.0131) (0.0062) (0.0070) (0.0129) (0.0129) (0.0047) (0.0051)

Countries (N) 39 39 36 36 39 39 36 36

Observations (N × T ) 1521 1521 1299 1299 1521 1521 1299 1299

R2 0.0725 0.0816 0.0813 0.0927 0.0741 0.0826 0.0879 0.102

PSAR(1) Yes Yes Yes Yes Yes Yes Yes Yes

Note: Prais-Winsten (PSCE) estimates. Standard errors are in parentheses. ∗∗∗, ∗∗, and ∗ indicate respectively 1%,
5%, and 10% significance levels. PSAR(1) stands for panel specific AR(1)-type autocorrelation.

As can be seen, in tropical and humid countries, the marginal growth effect of the El Niño variable is

clearly different from zero at all negative SPEI (dry conditions) while for positive SPEI (wet conditions), it is

close to zero. When wet conditions prevail, El Niño has no effect on growth, while at drier temperatures, by

inducing, with some delay, deficits in rainfall, it leads to significantly lower growth rates. The effect becomes

weaker as the time scale of the SPEI gets progressively longer. In contrast, La Niña has no significant growth

effects regardless of different SPEI values. These findings hold for both specifications using the Heaviside

indicator or the dummy variable. For arid and temperate countries, the marginal growth effect of El Niño is

not significant. However, the marginal growth effect of La Niña is significantly negative when wet conditions

prevail (i.e. for positive values of the SPEI) and loses its significance as weather conditions become drier.

This last finding confirms that La Niña, by bringing heavier precipitation in arid/temperate countries, leads

to significantly lower growth when wet weather conditions prevail. Again this effect is less pronounced as the

time scale of the SPEI gets progressively longer.
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Figure 4: Marginal effect of lagged ONI

(a) Tropical & humid countries
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Note: Solid lines report derivatives of the growth response with respect to changes in ONIt−1I(ONIt−1 ≥ 0)
(El Niño phases) and ONIt−1I(ONIt−1 < 0) (La Niña phases). Shaded areas represent 95% confidence
intervals for the benchmark specification using the SPEI-6 month variable.
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Figure 5: Marginal effects of lagged ENSO shocks

(a) Tropical & humid countries

−0.025

0.000

0.025

−2 −1 0 1 2

SPEI

∂ y

∂ El Niño

El Niño

−0.02

0.00

0.02

−2 −1 0 1 2

SPEI

∂ y

∂ La Niña

La Niña

SPEI−12

SPEI−3

SPEI−6

(b) Arid & temperate countries

−0.025

0.000

0.025

0.050

−2 −1 0 1 2

SPEI

∂ y

∂ El Niño

El Niño

−0.075

−0.050

−0.025

0.000

0.025

0.050

−2 −1 0 1 2

SPEI

∂ y

∂ La Niña

La Niña

SPEI−12

SPEI−3

SPEI−6

Note: Solid lines report derivatives of the growth response with respect to discrete change from neutral
regime to El Niño (La Niña) regime. Shaded areas represent 95% confidence intervals for the benchmark
specification using the SPEI-6 month variable.
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5. Concluding remarks

In this paper, we investigated the economic consequences of ENSO events using a sample of 75 countries

over the period 1975-2014. We contributed to the existing literature in several respects. First, we analyzed

the role of weather patterns in influencing the transmission of global climate cycles to economic growth. We

addressed a number of empirical challenges that researchers face when studying the climate-growth nexus,

by taking into account the heterogeneous and cumulative effects of weather patterns on economic activity.

Second, we provided evidence for asymmetry and nonlinearity in the global influence of ENSO on economic

growth by distinguishing weak from moderate to strong El Niño and La Niña events. Third, by also focusing

on total factor productivity growth, our analysis shed some light on the long-lasting effects of ENSO events.

We showed that ENSO events have sizeable and persistent economic effects through their interactions

with weather patterns in both tropical/humid and arid/temperate countries. In particular, El Niño regimes

impact, with some delay, the GDP growth of dry areas in the tropical/humid zone by increasing their sensi-

bility to wet conditions through a higher probability of drier than normal weather conditions. This lagged

impact of El Niño on economic growth can be explained by its role in the occurrence of tropical droughts.

In contrast, wet areas with an arid/temperate climate are found to be particularly vulnerable to La Niña

events. Teleconnection patterns between La Niña and the weather in the arid/temperate zone favor higher

than average precipitation that adversely affects economic growth in wet parts of this climate area. Moreover,

we illustrated that there is a strong and monotonic relationship between the growth effects of ENSO and the

time scales of weather patterns, this relationship being more pronounced over shorter time scales.

These findings are independent of how the asymmetric effects of ENSO are calculated. Indeed, these

results hold if we consider two phases of the ENSO cycle measured by positive (El Niño) or negative (La

Niña) SSTs anomalies or if we consider a neutral regime and two extreme regimes (El Niño or La Niña)

defined according to their magnitude and duration. We also provided strong evidence that ENSO events

affect total factor productivity growth through their interaction with weather patterns. This last finding has

important implications. As productivity growth is reduced due to the delayed effects of ENSO on weather

patterns, this fall is likely to have a persistent negative impact on output growth in subsequent periods and

possibly permanently alter income trajectories.

Overall, our results provide new evidence about the growth effects of both El Niño and La Niña, and

suggest that a careful assessment of the complex linkages between climate shocks and growth is necessary.

Indeed, studies focusing exclusively on the direct impacts of ENSO are likely to mask other essential dimen-

sions of climate variability, such as the asymmetry in hydro-meteorological responses (predominance of wet

or humid conditions), or the duration of weather conditions which we showed had important consequences.
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Therefore, the relationship between ENSO events and economic growth is not only explained by the type of

climate, but local weather conditions matter too.

In this respect, this paper, by analyzing the weather channel through which ENSO events impact economic

growth, reproduced some of the stylized facts raised by the climate literature and in so doing, contributed

to a better understanding of the causal mechanisms that underlie the variations in the growth effects of

ENSO over time and across countries. By providing evidence for spatial heterogeneity, time persistence and

non-linearity in ENSO effects, our study can ultimately contribute to improve early warning systems against

extreme weather and make adaptation more efficient, particularly in developing countries whose economies

rely heavily on the agricultural sector. These concerns are becoming even more pressing since climate change

is expected to further increase the strength of teleconnection patterns associated with ENSO events.
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Appendix

Appendix A: Data and statistical information

Table A.1: ENSO country assignment

Country ISO3 Region Climate
% of croplands

Trop. Arid Temp.

Albania ALB Europe & Central Asia Arid & Temperate 0.00 0.00 1.00

Argentina ARG Latin America & Caribbean Arid & Temperate 0.00 0.02 0.98

Armenia ARM Europe & Central Asia Arid & Temperate 0.00 0.33 0.67

Australia AUS East Asia & Pacific Arid & Temperate 0.00 0.57 0.43

Burundi BDI Sub-Saharan Africa Tropical & Humid 0.80 0.00 0.20

Benin BEN Sub-Saharan Africa Tropical & Humid 0.75 0.25 0.00

Burkina Faso BFA Sub-Saharan Africa Arid & Temperate 0.25 0.75 0.00

Bangladesh BGD South Asia Tropical & Humid 0.87 0.00 0.13

Bulgaria BGR Europe & Central Asia Tropical & Humid 0.00 0.00 1.00

Belarus BLR Europe & Central Asia Arid & Temperate 0.00 0.00 1.00

Belize BLZ Latin America & Caribbean Tropical & Humid 1.00 0.00 0.00

Bolivia BOL Latin America & Caribbean Tropical & Humid 0.82 0.12 0.05

Brazil BRA Latin America & Caribbean Tropical & Humid 0.75 0.10 0.16

Botswana BWA Sub-Saharan Africa Arid & Temperate 0.00 1.00 0.00

Chile CHL Latin America & Caribbean Arid & Temperate 0.00 0.01 0.99

China CHN East Asia & Pacific Arid & Temperate 0.00 0.32 0.68

Cameroon CMR Sub-Saharan Africa Tropical & Humid 0.67 0.33 0.00

Congo, Democratic Republic COD Sub-Saharan Africa Tropical & Humid 0.95 0.00 0.05

Congo COG Sub-Saharan Africa Tropical & Humid 1.00 0.00 0.00

Colombia COL Latin America & Caribbean Tropical & Humid 0.85 0.00 0.15

Costa Rica CRI Latin America & Caribbean Tropical & Humid 0.99 0.00 0.01

Cyprus CYP Europe & Central Asia Arid & Temperate 0.00 0.52 0.48

Dominican Republic DOM Latin America & Caribbean Tropical & Humid 0.97 0.00 0.03

Algeria DZA Middle East & North Africa Arid & Temperate 0.00 0.31 0.69

Ecuador ECU Latin America & Caribbean Tropical & Humid 0.73 0.07 0.20

Egypt EGY Middle East & North Africa Arid & Temperate 0.00 1.00 0.00

Gabon GAB Sub-Saharan Africa Tropical & Humid 1.00 0.00 0.00

Gambia GMB Sub-Saharan Africa Arid & Temperate 0.10 0.90 0.00

Greece GRC Europe & Central Asia Arid & Temperate 0.00 0.11 0.89

Guatemala GTM Latin America & Caribbean Tropical & Humid 0.85 0.00 0.15

Honduras HND Latin America & Caribbean Tropical & Humid 0.90 0.00 0.10

Indonesia IDN East Asia & Pacific Tropical & Humid 1.00 0.00 0.00

India IND South Asia Tropical & Humid 0.36 0.36 0.28

Iran IRN Middle East & North Africa Arid & Temperate 0.00 0.61 0.39

Kenya KEN Sub-Saharan Africa Tropical & Humid 0.57 0.20 0.23

Cambodia KHM East Asia & Pacific Tropical & Humid 1.00 0.00 0.00

Lao People’s Democratic Republic LAO East Asia & Pacific Tropical & Humid 0.87 0.00 0.13

Sri Lanka LKA South Asia Tropical & Humid 1.00 0.00 0.00

Lesotho LSO Sub-Saharan Africa Arid & Temperate 0.00 0.00 1.00

Morocco MAR Middle East & North Africa Arid & Temperate 0.00 0.33 0.67

Moldova, Republic of MDA Europe & Central Asia Arid & Temperate 0.00 0.00 1.00

Madagascar MDG Sub-Saharan Africa Tropical & Humid 0.82 0.00 0.18

Mexico MEX Latin America & Caribbean Tropical & Humid 0.70 0.10 0.20

Mali MLI Sub-Saharan Africa Arid & Temperate 0.20 0.80 0.00

Mozambique MOZ Sub-Saharan Africa Arid & Temperate 0.33 0.57 0.10

Mauritania MRT Sub-Saharan Africa Arid & Temperate 0.00 1.00 0.00
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Mauritius MUS Sub-Saharan Africa Tropical & Humid 1.00 0.00 0.00

Malaysia MYS East Asia & Pacific Tropical & Humid 1.00 0.00 0.00

Namibia NAM Sub-Saharan Africa Arid & Temperate 0.00 1.00 0.00

Nigeria NGA Sub-Saharan Africa Tropical & Humid 0.72 0.28 0.00

New Zealand NZL East Asia & Pacific Arid & Temperate 0.00 0.00 1.00

Pakistan PAK South Asia Arid & Temperate 0.00 0.83 0.17

Peru PER Latin America & Caribbean Tropical & Humid 0.48 0.24 0.28

Philippines PHL East Asia & Pacific Tropical & Humid 0.99 0.00 0.01

Paraguay PRY Latin America & Caribbean Arid & Temperate 0.34 0.07 0.59

Romania ROU Europe & Central Asia Arid & Temperate 0.00 0.00 1.00

Russian Federation RUS Europe & Central Asia Arid & Temperate 0.00 0.19 0.81

Sudan SDN Sub-Saharan Africa Arid & Temperate 0.07 0.93 0.00

Senegal SEN Sub-Saharan Africa Arid & Temperate 0.02 0.98 0.00

Sierra Leone SLE Sub-Saharan Africa Tropical & Humid 1.00 0.00 0.00

El Salvador SLV Latin America & Caribbean Tropical & Humid 1.00 0.00 0.00

Serbia SRB Europe & Central Asia Arid & Temperate 0.00 0.00 1.00

Swaziland SWZ Sub-Saharan Africa Tropical & Humid 1.00 0.00 0.00

Togo TGO Sub-Saharan Africa Tropical & Humid 1.00 0.00 0.00

Thailand THA East Asia & Pacific Tropical & Humid 1.00 0.00 0.00

Tajikistan TJK Europe & Central Asia Arid & Temperate 0.00 0.68 0.32

Tunisia TUN Middle East & North Africa Arid & Temperate 0.00 0.04 0.96

Turkey TUR Middle East & North Africa Arid & Temperate 0.00 0.09 0.91

Tanzania TZA Sub-Saharan Africa Tropical & Humid 0.72 0.20 0.08

Uganda UGA Sub-Saharan Africa Tropical & Humid 0.94 0.04 0.02

Ukraine UKR Europe & Central Asia Arid & Temperate 0.00 0.00 1.00

Uruguay URY Latin America & Caribbean Arid & Temperate 0.00 0.00 1.00

Venezuela, Bolivarian Republic of VEN Latin America & Caribbean Tropical & Humid 1.00 0.00 0.00

Vietnam VNM East Asia & Pacific Tropical & Humid 0.67 0.00 0.33

South Africa ZAF Sub-Saharan Africa Arid & Temperate 0.02 0.58 0.40
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Table A.2: Correlation coefficients between ONI, the Niño 3.4 index and SOI

ONI SOI Niño 3.4 index

ONI 1.000

SOI -0.924 1.000

Niño 3.4 index 0.981 -0.882 1.000

Note: The Niño 3.4 index uses the same region as ONI, but
is based on a 5-month running mean. The Equatorial Southern
Oscillation Index (SOI) is a standardized index based on the
observed sea level pressure differences between eastern equatorial
Pacific and Indonesia.

Figure A.2: Evolution of the main ENSO indices (1975-2014)

−2

0

2

1980 1990 2000 2010

3−Month Average
ONI (black), Niño 3.4 (blue) & SOI (red)

Table A.3: Variables and data sources

Mnemonic Source Variable description

ONI NOAA database Oceanic Niño Index

SPEI Global SPEI database Standardised Precipitation-Evapotranspiration Index

y Penn World Table database Real GDP per capita (in 2011 US dollars)

TFP Penn World Table database Real Total Factor Productivity per capita

(Index 2011=1, Annual)
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Appendix B: Computation of weather series

B.1: The SPEI

The Standardized Precipitation and Evapotranspiration Index (SPEI) developed by Vicente-Serrano et al.

(2010) is calculated, for a month i, as the difference (Di) between precipitation (Pi) and potential evapo-

transpiration estimates based on the FAO-56 Penman-Monteith equation of water balance (PETi):
25

Di = Pi − PETi (4)

The Di series then reflect the water surplus or deficit for the current month. The calculated Di values

are then aggregated at various time scales k (3, 6 and 12 months). The aggregated water surplus or deficits

values (Dk
n) are obtained by the sum of the Di values from k − 1 months before the nth current month:

Dk
n =

k−1∑
l=0

(Pn−l − PETn−l) with n ≥ k (5)

Given the strong differences in climatic regimes within and between countries, the Dk
n series are fitted

to a probability distribution to transform the original values to standardized units that are comparable in

space and time and at different time scales. A density function of log-logistic probability is adjusted to

the distribution of the variable Dk
n since it allows a better behavior of the SPEI to extreme events. The

probability density function of a three parameter Log-logistic distributed variable is expressed as:

f(x) =
ω

θ

(
x− µ
ϑ

)ω−1(
1 +

(
x− µ
ϑ

)ω)−2

(6)

where θ, ω and µ are parameters of scale, shape and origin for Dk
n values in the range (µ > D < ∞). The

parameters are estimated using the L-moments procedure. f(x) is transformed into a random variable with

mean zero and a variance equals to one. Thus, the value of the SPEI is bounded between -3 and 3. Between

these two values, different intensities in hydro-climatic conditions can be identified, according threshold values

reached by the SPEI, as shown in Table B.1.

25Standardized indicators such as the SPEI are sensitive to the method of calculation of the potential evapotranspiration
(PET ). We use a PET estimate based on the Penman-Monteith equation of water balance rather than the Thornthwaite
method since Penman-type approach is considered to be more physically realistic.
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Table B.1: Hydro-climatic conditions according to threshold values of the SPEI

Values of SPEI Hydro-climatic conditions

SPEI > 2 Exceptionally moist

1.60 < SPEI < 1.99 Extremely moist

1.30 < SPEI < 1.59 Very moist

0.80 < SPEI < 1.29 Moderately moist

0.51 < SPEI < 0.79 Slightly moist

−0.50 < SPEI < 0.50 Near normal conditions

−0.79 < SPEI < −0.51 Slightly dry

−1.29 < SPEI < −0.80 Moderately dry

−1.59 < SPEI < −1.30 Very dry

−1.99 < SPEI < −1.60 Extremely dry

SPEI < −2 Exceptionally dry

Source: NOAA’s National Centers for Environmental Infor-
mation, 2015.

B.2: Deriving the average SPEI by country

Annual SPEI values are obtained by averaging the twelve monthly SPEI of each year included in the period

1975-2014. However, as these values are calculated for every single grid cell, they must be aggregated to

the country level to fit the purpose of our paper. We then calculate country-level indicators by taking the

average of SPEI across grid cells that overlap a country’s cropland areas. In this way, we are able to average

weather observations over land covers which are relevant for agriculture and share broadly the same climate,

for each country. The cropland areas are defined according to the Global Land Cover SHARE (GLC-SHARE)

classification.26 We illustrate the advantages of this averaging method by taking the example of Mali in 2010.

As can be seen in Figure B.1, Mali is a typical example of a country largely dominated by drylands where

little economic activity and sparse populations dominate. Aggregating climate data at the country level

without excluding these areas could bias the measurement of climate effects on economic growth and thus

fail to accurately identify ENSO impacts channeled through weather conditions prevailing in cropland areas.

26This Global Land Cover database, developed by the Land and Water Division of Food and Agriculture Organisation (FAO),
has a spatial resolution of 30 arc-seconds. This database compiles previously scattered and unharmonized land cover information
from around the globe into one centralized database. Eleven land covers types are then aggregated following the Land Cover
Classification System (LCCS): artificial surfaces (01), cropland (02), grassland (03), tree covered areas (04), shrubs covered areas
(05), herbaceous vegetation, aquatic or regularly flooded (06), mangroves (07), sparse vegetation (08), bare soil (09), snow and
glaciers (10), and water bodies (11).

34



Figure B.1: Land covers distribution, Mali (2010)

Note: Land covers types are those defined by the GLC-SHARE. For the sake of readability, the category
Other Vegetal regroups the following LCCS: shrubs covered areas (05), herbaceous vegetation, aquatic or
regularly flooded (06), mangroves (07) and sparse vegetation (08).

Indeed, as shown in Figure B.2, the shape of the SPEI distribution in Mali in 2010 differed considerably

depending on the type of land cover. Although 18.2% of the territory was affected by drier conditions during

2010, the desert areas located in the north of the country were the most challenged by drought. On the

contrary, the rest of the country − and particularly croplands − was characterized by wetter conditions.

This high spatial variability is therefore likely to smooth out the impact of extreme meteorological conditions

during the spatial aggregation process. By contrast, averaging SPEI across grid cells that overlap only

cropland areas leads to a value of the SPEI more consistent with weather-related risks in agriculture.
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Figure B.2: SPEI distribution and land cover types, Mali (2010)
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Appendix C: Data analysis

Table C.1: Test for residual

Tropical & humid countries Arid & temperate countries

FE RE FE RE

ONIt ≥ 0 -0.0228*** -0.0228*** -0.0204*** -0.0204***

(0.0042) (0.0042) (0.0059) (0.0059)

[0.0044] [0.0043] [0.0067] [0.0067]

ONIt < 0 -0.0080** -0.0081** 0.0007 0.0006

(0.0040) (0.0040) (0.0055) (0.0055)

[0.0034] [0.0034] [0.0040] [0.0040]

SPEIt -0.0040 -0.0040 0.0168*** 0.0152***

(0.0040) (0.0040) (0.0056) (0.0055)

[0.0038] [0.0038] [0.0044] [0.0040]

ONIt−1 ≥ 0 -0.0148*** -0.0148*** -0.0150** -0.0148**

(0.0042) (0.0042) (0.0059) (0.0059)

[0.0047] [0.0047] [0.0056] [0.0056]

ONIt−1 < 0 -0.0073* -0.0073* -0.0068 -0.0065

(0.0039) (0.0039) (0.0054) (0.0054)

[0.0050] [0.0050] [0.0050] [0.0051]

ONIt−1 ≥ 0 ×SPEIt 0.0173** 0.0172** 0.0092 0.0099

(0.0077) (0.0077) (0.0105) (0.0105)

[0.0091] [0.0092] [0.0093] [0.0098]

ONIt−1 < 0 ×SPEIt 0.0126 0.0129 -0.0226** -0.0207**

(0.0079) (0.0079) (0.0098) (0.0097)

[0.0061] [0.0059] [0.0071] [0.0068]

Constant 0.0291*** 0.0291*** 0.0271*** 0.0262***

(0.0027) (0.0036) (0.0036) (0.0042)

[0.0029] [0.0034] [0.0031] [0.0040]

Pesaran CSD 13.881*** 11.433***

Autocorrelation Test 31.809*** 9.384***

Modified Wald Test 1650.50*** 4657.73***

Sargan-Hansen Stat. 41.245*** 11.652**

Observations 1521 1299

Countries 39 36

R2 0.0330 0.0462

Note: FE stands for fixed effect model and RE for random effect model. Standard errors are in
parentheses and robust standard errors are in brackets. ∗∗∗, ∗∗, and ∗ indicate respectively 1%, 5%,
and 10% significance levels.
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Table C.2: Pesaran CD test for cross-section independence

Variable CD-test Correlation abs(correlation)

∆y 32.52∗∗∗ 0.100 0.189

∆TFP 18.84∗∗∗ 0.074 0.176

SPEI 16.91∗∗∗ 0.049 0.190

Note: The CD test of Pesaran (2004) is defined under the
null hypothesis of no cross-sectional dependence. ∗∗∗, ∗∗,
and ∗ indicate 1%, 5%, and 10% significance levels.

Table C.3: Cross-sectionally augmented Im, Pesaran and Shin (IPS) test for unit roots

Without Trend With Trend
Z̄t Z̄t

Variable lags Level 1st Diff Level 1st Diff

y 0 -1.303∗ -22.172∗∗∗ 1.582 -20.611∗∗∗

1 -4.597∗∗∗ -16.116∗∗∗ -1.006∗ -13.775∗∗∗

2 -1.862∗ -9.484∗∗∗ 0.029 -6.503∗∗∗

3 -0.043 -7.642∗∗∗ 1.193 -4.647∗∗∗

TFP 0 0.551 -25.898∗∗∗ -0.616 -23.710∗∗∗

1 -1.117 -18.277∗∗∗ -3.622∗∗∗ -15.081∗∗∗

2 0.319 -11.668∗∗∗ -1.342 -7.921∗∗∗

3 0.596 -8.316∗∗∗ -0.457 -4.695∗∗∗

SPEI 0 -27.432∗∗∗ . -25.218∗∗∗ .
1 -19.007∗∗∗ . -16.925∗∗∗ .
2 -12.899∗∗∗ . -10.686∗∗∗ .
3 -8.541∗∗∗ . -6.387∗∗∗ .

Note: ∗∗∗, ∗∗, and ∗ denote the rejection of the null hypothesis at the
10%, 5% and 1% level. The null hypothesis is the presence of unit root in
panel data with cross-sectional dependence in the form of common factor
dependence.
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Table C.4: Results from System-GMM estimates, Heaviside variable

Tropical & humid countries Arid & temperate countries

(1) (2) (3) (4) (5) (6)

∆yt−1 0.366*** 0.361*** 0.355*** 0.336*** 0.343*** 0.353***

(0.0619) (0.0619) (0.0606) (0.0745) (0.0705) (0.0695)

ONIt ≥ 0 -0.0094** -0.0085* -0.0099** -0.0164** -0.0136** -0.0146**

(0.0045) (0.0046) (0.0043) (0.0065) (0.0063) (0.0058)

ONIt < 0 -0.0014 -0.0018 -0.0022 0.0000 0.0020 0.0002

(0.0033) (0.0033) (0.0029) (0.0042) (0.0044) (0.0039)

SPEIt 0.0042** -0.0035 0.0135*** 0.0227***

(0.0020) (0.0028) (0.0040) (0.0064)

ONIt−1 ≥ 0 -0.0036 -0.0064

(0.0050) (0.0051)

ONIt−1 < 0 -0.0059 -0.0129***

(0.0050) (0.0045)

ONIt−1 ≥ 0 ×SPEIt 0.0206** -0.0064

(0.0089) (0.0095)

ONIt−1 < 0 ×SPEIt 0.0080* -0.0347***

(0.0047) (0.0102)

Constant 0.0128*** 0.0128*** 0.0156*** 0.0148*** 0.0146*** 0.0190***

(0.0019) (0.0020) (0.0037) (0.0030) (0.0031) (0.0035)

Observations (N × T ) 1482 1482 1482 1263 1263 1263

χ2 75.61*** 83.47*** 108.2*** 36.20*** 71.32*** 157.3***

Tests of over-identification restrictions

Sargan test: χ2(36) 86.70*** 85.28*** 87.77*** 109.4*** 109.9*** 106.4***

Hansen test: χ2(36) 35.15 34.90 33.32 33.95 35.01 30.84

Arellano-Bond test for AR(1) in first differences

z -4.624 -4.621 -4.600 -3.901 -3.956 -3.961

Pr > z 0.000 0.000 0.000 0.000 0.000 0.000

Arellano-Bond test for AR(2) in first differences

z -0.469 -0.396 -0.370 0.622 0.586 0.459

Pr > z 0.639 0.692 0.712 0.534 0.558 0.646

Note: ∗∗∗, ∗∗, and ∗ denote the rejection of the null hypothesis at the 10%, 5% and 1% level. Robust
standard errors are in parentheses. We restrict the maximum lag length of the lagged instruments to one
lag. Results are insensitive to the choice of alternative maximum lag lengths. Results using up to four lags
are available upon request.
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