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Abstract

This paper draws parallels between the Principal Components Analysis of

factorless high-dimensional nonstationary data and the classical spurious re-

gression. We show that a few of the principal components of such data absorb

nearly all the data variation. The corresponding scree plot suggests that the

data contain a few factors, which is collaborated by the standard panel informa-

tion criteria. Furthermore, the Dickey-Fuller tests of the unit root hypothesis

applied to the estimated “idiosyncratic terms” often reject, creating an impres-

sion that a few factors are responsible for most of the non-stationarity in the

data. We warn empirical researchers of these peculiar effects and suggest to

always compare the analysis in levels with that in differences.

Key words: Spurious regression, principal components, factor models, Karhunen-

Loève expansion.

1 Introduction

Researchers applying factor analysis to nonstationary macroeconomic panels face a

choice: keep the data in levels or first-difference them. If all the nonstationarity is

due to factors, no differencing is necessary. A simple principal components estimator

of the factors is consistent and more efficient than that based on the differenced data

(e.g. Bai, 2004). Otherwise, the standard advice is to extract the factors from the
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first-differenced data, and then, accumulate them to obtain estimates of the factors

in levels (e.g. Bai and Ng, 2004).

Both strategies are used in practice. For example, Moon and Perron (2007),

Eickmeier (2009), Wang and Wu (2015), von Borstel et al. (2016), and Barigozzi et

al. (2018) fit factor models to non-stationary data after first-differencing them. Stock

and Watson (2016) not only first-difference most of the series entering their dynamic

factor model of the US economy, but also locally demean the variables to minimize

problems associated with low-frequency variability. On the other hand, Bai (2004),

Corielli and Marcellino (2006), Ghate and Wright (2012), West and Wong (2014),

and Engel et al. (2015) estimate factor models on non-stationary data in levels.

Factor estimation in levels relies on the assumption of stationary errors. Banerjee

et al. (2017, section 4.1) give “several reasons for making the hypothesis of I(0)

idiosyncratic errors” in macroeconomic applications. One of their reasons is a very

high rejection rate of the hypothesis of a unit root in the estimated idiosyncratic

components of the 114 nonstationary monthly US macroeconomic series for the 1959-

2014 period (see their Footnote 5).

This paper is intended as a warning to the empirical researchers tempted by argu-

ments advocating factor estimation in levels. We show theoretically that a few princi-

pal components of a factorless nonstationary panel must “explain” an extremely high

portion of the data variation. Moreover, the Dickey-Fuller tests on the estimated idio-

syncratic terms are strongly oversized, supporting the stationarity hypothesis where,

in fact, the null of nonstationarity is true.

We are not the first to point out the high explanatory power of a few of the

principal components of factorless persistent data. Uhlig (2009), discussing Boivin

et al. (2009), generates artificial cross-sectionally independent AR(1) data with the

autoregressive coefficients matching the first-order autocorrelations of the 243 macro-

economic series used in Boivin et al. (2009). Then he plots the fraction of variation

explained against the number of factors for both actual and artificial data (see Fig-

ure 1), and notes that the two plots “look surprisingly and uncomfortably alike”.

In particular, five estimated factors explain about 75% of the actual data variation,

but at the same time, five estimated factors, that must be spurious by construction,

“explain” about 60% of the simulated data variation.

Uhlig (2009) attributes the high explanatory power of the spurious factors to the

fact that the simulated data are considerably autocorrelated. Many of the simulated
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Figure 1: Factor contribution to the overall variance. Left panel: actual Boivin et

al.’s (2009) data. Right panel: factorless simulated data with similar autocorrelation

properties.

series’ first-order autocorrelation coefficients are close to unity. In a finite sample (in

his setting, 83 observations), the series may appear to be correlated, which will be

picked up by the principal components. Although this explanation is intuitive, Uhlig

admits that it is “perhaps tricky to formalize”.

In this paper, we do such a formalization at different levels of generality. In

our basic setting, the data are generated by a high-dimensional integrated system

with an increasing number of common stochastic trends, none of which is dominating

the rest asymptotically. An extreme example would be a panel of cross-sectionally

independent difference-stationary processes. The setting also covers more empirically

relevant situations with any types of cross-sectional dependence except those caused

by the presence of a fixed number of genuine strong nonstationary factors in the data.

We prove that in such a setting the fraction of the data variation explained by the

first principal component converges in probability to 62 ≈ 061 even when the data
do not contain any common factors. The first three principal components together

asymptotically explain 100%
X3

=1
6 ()

2 ≈ 83% of the variation in the factorless

nonstationary data. The corresponding “factor estimates” converge to deterministic

cosine waves that resemble linear, quadratic, and cubic time trends.

The flavour of these results is preserved in a more general setting of a local level
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model, where the data are represented by a weighted sum of I(1) and I(0) processes

with the weights on the former possibly decaying to zero as the sample size increases.

Furthermore, our conclusions do not change qualitatively when data contain local-to-

unit roots, and when data are not only demeaned but also standardized before the

principal components analysis (PCA) is applied.

We show from a theoretical standpoint that, in our basic setting, the standard

panel information criteria (e.g. Bai, 2004) are very sensitive to the choice of the a

priori maximum number of factors. For empirically relevant choices and data sizes,

the criteria will often detect two or three “factors”. We provide Monte Carlo evidence

supporting this claim.

The peculiar results of the PCA of factorless nonstationary data are relatively

easy to explain in the extreme case where the data are given by cross-sectionally

i.i.d. random walks. In such a case, the sample covariance matrix used by the PCA

to extract “factors” can be interpreted as a discrete time approximation for the covari-

ance operator of a demeaned Wiener process. As the data dimensions grow, the PCA

estimates of the “factors” converge to the eigenfunctions of the covariance operator,

which happen to be the cosine waves. The explanatory power of the estimated “-

th factor” converges to the -th largest eigenvalue of the covariance operator, which

equals 6 ()
2
.

A somewhat different explanation relates to the Karhunen-Loève expansion of the

demeanedWiener process (e.g. Shorack andWellner, 1986). The expansion represents

the process in the form of an infinite sum of trigonometric functions with uncorrelated

random coefficients whose variances are quickly decaying. Since difference-stationary

series can be approximated by Wiener processes, much of the variation in a nonsta-

tionary panel can be captured by a few of the trigonometric functions corresponding

to the first terms in the Karhunen-Loève expansion.

Phillips (1998) points out that the “prototypical spurious regressions, in which unit

root nonstationary time series are regressed on deterministic functions,” reproduces

the underlying Karhunen-Loève representation of the Wiener process. In the similar

spirit, the spurious factor analysis, i.e. the principal components analysis of factorless

difference-stationary data, picks up the common Karhunen-Loève structure of the
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cross-sectional units.1

This intuition immediately suggests that the Dickey-Fuller tests of the hypothesis

of a unit root in the estimated spurious idiosyncratic terms must be oversized. Indeed,

when researchers apply the test to an estimated idiosyncratic term, they ignore the

fact that the estimate is, essentially, the residual from a regression of a nonstationary

series on a few slowly varying trigonometric functions.

These functions are similar to the deterministic polynomial trends. Hence, the

intercept-only Dickey-Fuller statistic computed on the basis of estimated idiosyncratic

terms asymptotically behaves similarly to the intercept-only Dickey-Fuller statistic for

the regression that includes several deterministic polynomial time trends. This leads

to a substantial size distortion2 and a potentially confused conclusion that the factors

soak up all or most of the nonstationarity in the data.

All in all, the results of the principal components analysis of the levels of non-

stationary data may be very misleading. We recommend to always compare the first

differences of factors estimated from the levels with factors estimated from the first-

differenced data. A mismatch indicates a spurious factor analysis in levels. In Section

5, we derive a theory-based threshold for the amount of the mismatch which must

raise the alarm.

The remainder of the paper is structured as follows. In Section 2, we formally

introduce our setting and present our main results. Section 3 discusses various exten-

sions to the basic setting. Section 4 studies the workings of the information criteria for

the determination of the number of factors in the context of spurious factor analysis.

Section 5 discusses ways to detect spurious results. Section 6 concludes. Monte Carlo

results are reported in the Appendix while all proofs are given in the Supplementary

Material (SM).

2 Basic setup and main results

Consider an -dimensional integrated system

 = −1 +Ψ ()  (1)

1The notion of spurious factors considered in this paper is not directly related to the spurious

factors in asset returns that received much recent research attention (see Bryzgalova (2018) and

references therein).
2We confirm this claim using Monte Carlo analysis reported in the Appendix.
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where  is -dimensional, and matrix Ψ (1) may be of deficient rank so that coin-

tegration is allowed. Suppose that data are summarized by the  ×  matrix

 = [1  ]  Our goal is to study the workings of the PCA of these data as

both  and  go to infinity, without any constraints on the relative speed of growth.

In contemporary economic applications, the PCA is often used to estimate factors

 and loadings Λ in the factor model for the temporarily demeaned data3

 − ̄ = Λ 0 +  (2)

The common factors are often interpreted as a few important latent variables affecting

a vast number of economic indicators (rows of ). See Stock and Watson (2016) for

a review of the related literature. Of course, in general, data generated from (1) do

not have a factor structure. For example, if Ψ () is diagonal, then the data are

cross-sectionally independent and there are clearly no common factors.

Suppose that a researcher, nevertheless, models the data by (2). The PCA esti-

mates of the first  factors are then defined as the  principal eigenvectors, ̂1  ̂,

of

Σ̂ =
¡
 − ̄

¢0 ¡
 − ̄

¢
 (3)

The corresponding principal eigenvalues ̂1 ≥  ≥ ̂ estimate the explanatory power

of the factors. Precisely, ̂ tr Σ̂ is interpreted as the fraction of the data variation

explained by the -th factor.

Below, we show that such a principal components analysis may be spurious in

the sense that Σ̂ has a few eigenvalues that dominate the rest, but the corresponding

eigenvectors do not represent any latent economic factors driving the dynamics of

the data. Instead, they capture deterministic trends that explain a large share of

variation in any time series that are integrated of order one.

Denote the -th component of the vector  as  and let Ψ be the coefficients of

the matrix lag polynomial Ψ () =
X∞

=0
Ψ

. We make the following assumptions.

Assumption A1. Random variables  with  ∈ N and  ∈ Z are independent and
such that E = 0 E2 = 1 and κ4 = sup∈N∈Z E

4
 ∞

Note that  may have different distributions, although they have to be indepen-

dent. Further, the normalization E2 = 1 is not restrictive as it may be accommo-

3We consider the case of demeaned and standardized data in the next section.
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dated by the lag polynomial Ψ ().

Assumption A2. As  →∞
X∞

=0
(1 + ) kΨk = () for some  ≥ 0, where

k·k denotes the spectral norm of a matrix.

This assumption mildly restricts the form of temporal and cross-sectional depen-

dence in the data. Although our setting does not imply the existence of common

factors in the data, it does allow for them when   0. For a simple example,

consider a basic factor model

 = Λ +  (4)

where the  factors follow independent random walks, the loadings are normal-

ized so that Λ0Λ = 
, and the idiosyncratic component is white noise. Such

 satisfies (1) with 0 =
¡
 0
 −  0

−1 
0


¢
and Ψ () = [Λ  ] − [0  ] We haveX∞

=0
(1 + ) kΨk =

√
 + 1 + 2 and therefore A2 is satisfied with  = 12

Assumption A3. The so-called effective rank4 of the long-run covariance matrix

Ω = Ψ (1)Ψ (1)
0
, defined as trΩ kΩk  diverges to infinity as  →∞

If the effective rank diverges, the rank, defined in the standard way, must diverge

too. Hence, an immediate consequence of A3 is that the rank of Ψ (1) diverges to

infinity as  → ∞ In other words, the number of stochastic trends in the data is

increasing with the dimensionality.

The assumption does not allow a finite number of such trends to dominate the

rest, so that kΩk is not allowed to dominate trΩ asymptotically. In particular, A3

precludes the existence of a fixed number of strong nonstationary factors in the data.

However, the existence of a growing number of such factors as well as the total absence

of any factors is allowed.

To illustrate this, consider example (4) again. There we have Ψ(1) = [Λ 0] 

trΩ =  and kΩk =  Hence, the effective rank of Ω equals   and A3 is

satisfied if the number of strong factors grows with  The rate of the growth may

be arbitrarily slow. For another example, let the data consist of  independent pure

random walks, so there are no common factors whatsoever. Then Ψ(1) =   the

effective rank of Ω equals  and A3 is satisfied again.

We would like to stress that A3 fails in situations where data contain a fixed

number of strong factors. Moreover, this failure does not depend on whether the idio-

4The concept of the effective rank, or effective dimension, has been used in several recent studies

of high-dimensional problems (e.g. Vershynin (2012), Koltchinskii and Lounici (2016)).
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syncratic terms are stationary or not. For example, if  in (4) consists of independent

random walks instead of white noises,  satisfies (1) with 
0
 =

¡
 0
 −  0

−1 
0
 − 0−1

¢
and Ψ () = [Λ  ]  Hence, Ω = ΛΛ0 +  and the effective rank of Ω equals

 ( + 1)  ( + 1)  which remains bounded with fixed   so that A3 is violated.

On the other hand, A3 still holds when the data contain a fixed number of weaker

factors (such that kΛΛ0k =  ()). Then, the effective rank of Ω = ΛΛ0 +  is no

smaller than  (1 +  ()), which obviously diverges as required by A3.

Theorem 1 Let “
P→” denote convergence in probability. Suppose A1-A3 hold. If

2 ( +) 
¡
 2 trΩ

¢→ 0 (5)

as   →∞ then for any fixed positive integer 

(i)
¯̄̄
̂ 0


¯̄̄
P→ 1, where  = (1   )

0
with  =

p
2 cos ( ) 

(ii) ̂ (
2)

P→ ()
−2
, where  = trΩ

If min {}2 ( +) 
¡
 2 trΩ

¢→ 0 then (6)

(iii) ̂ tr Σ̂
P→ 6 ()

2


Let us first interpret the theorem’s results, and then discuss conditions (5) and

(6) that link  ,   and trΩ.

Part (i) of the theorem reveals that the “factor” estimates converge in probability

to deterministic cosine functions in the sense that the angle between the vector of

estimates and the vector of uniform grid values of the corresponding cosine function

converges in probability to zero. Figure 2 plots the cosine functions corresponding to

the first three “factors”. They may be interpreted as the trigonometric versions of

the linear, quadratic, and cubic trends.

As mentioned in the Introduction, the functions can be linked to the Karhunen-

Loève expansion of the demeaned Wiener process ̃ () =  () − R 1
0
 () d

Its covariance kernel has eigenfunctions
√
2 cos ()   = 1 2  corresponding

to eigenvalues ()
−2
(e.g. Müller and Watson (2008, Thm. 1)). Therefore, the

Karhunen-Loève expansion of ̃ () has the following form

̃ () =
√
2

∞X
=1

()
−1
cos ()  (7)
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Figure 2: The probability “limits” of the first three spurious factor estimates.

where  are i.i.d. standard normal random variables.

For each of the data series  that are difference-stationary, define  () =

( (0) )
−12

[ ] where  (0) is the spectral density of  −−1 at frequency

zero. As is well-known (e.g. Phillips, 1986), functions  () weakly converge to

 () and thus,

 ()− ̄ = ( (0) )
−12 ¡

[ ] − ̄

¢
weakly converge to ̃ () Therefore, the demeaned series divided by ( (0) )

12
,

can asymptotically be represented by the Karhunen-Loève expansion of ̃ ()  In par-

ticular, functions cos ( ) with  = 1 2  capture much of the variation in each

of  − ̄, which agrees with the theorem’s first result intuitively.

The above arguments suggest that we should expect a flavour of spurious factor

analysis to be present even in the PCA of the nonstationary data of fixed dimension

 . The cosines would still be capturing much of the common variation in the data

(regressing the data on them would produce high 2), although the PCA estimators

of the “factors” would no longer converge to these cosines.

Figure 3 illustrates statement (ii) of the theorem by showing the asymptotic scree

plot for data satisfying the theorem’s assumptions. The height of the plot is scaled so

that the largest eigenvalue equals one. A typical interpretation of such a plot would

be that the data “obviously” contain at least one strong factor, but perhaps two, or
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Figure 3: The asymptotic scree plot for possibly factorless persistent data (the first 20

normalized eigenvalues only). The horizontal axis shows the order  of the eigenvalue

. The vertical axis shows the probability limit of 1

even three of them. Theorem 1 (ii) shows that such an interpretation may potentially

be very misleading as the data may be totally factorless.

Part (iii) of the theorem describes the portion of data variation attributed to the

-th principal component. A naive but standard interpretation of this result would

be that the first  factors explain
X

=1
6 ()

2× 100% of the variation in the data.
This “explanatory power” is amazingly strong. The first three spurious factors absorb

more than 80% of the data variation.

Let us now discuss conditions of the theorem that link  ,   and trΩ For an

extreme example where Ψ() =   so the data consist of independent pure random

walks, we have  = 0  =  and trΩ =  Hence, conditions (5) and (6) are

trivially satisfied. It is easy to see that the conditions continue to hold for non-

diagonal Ψ() (so the data consist of cross-sectionally dependent I(1) processes) as

long as Ψ() satisfies A2 with  = 0 kΨ(1)k and kΨ(1)−1k remain bounded, and
 =  .

For example, let the first differenced data follow an autoregression∆ = ∆−1+

 with ||  1 where  = (1  )
0
are generated by “cross-sectional autoregres-

sions”  = −1 +  with ||  1 and 0 = 0 Then Ψ () = (1− )
−1

Γ 

where Γ is an -dimensional lower triangular Toeplitz matrix with ones on the
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main diagonal and  on the -th sub-diagonal. As is well known (e.g. Böttcher and

Silbermann (1999, Corollary 4.19)),

lim
→∞

kΓk = (1− )
−1
and lim

→∞

°°Γ−1 °° = (1 + )
−1



Therefore, Ψ () satisfies A2 with  = 0 whereas kΨ (1)k and
°°Ψ (1)−1°° converge to

finite positive numbers.

Note that the conditions of the theorem do not require all data to be integrated.

Suppose, for example, that Ψ () is diagonal with first  diagonal elements equal one,

and the rest equal 1− Then, the first  data series are random walks whereas the

last  −  series are white noise. Obviously,  =  A2 holds with  = 0 and A3

holds when trΩ = →∞ Condition (5) becomes equivalent to ( +)  ( 2)→ 0

Hence, for any →∞ it holds with  =  ( 2)  whereas (6) holds with  =  ( ).

The fact that a relatively small number  of I(1) series so strongly influence the

PCA results can be partially blamed on the different scale of I(1) and I(0) series. The

effect of such a scale difference would be eliminated by standardizing the data. We

study consequences of the standardization in the next section.

Here, we point out that the effect of the scale difference can also be eliminated by

dividing I(1) series by
√
  Such an adjustment transforms (5) to ( +)  ()→ 0

For  = ( ) this constraint is not binding under the maintained assumption that

 → ∞. In particular, if the data contain any increasing number of I(1) series, the
PCA estimate of the first “factor” would converge to a deterministic cosine wave,

even after dividing the I(1) series by
√
 .

Finally, consider the basic factor model example (4) with the number of factors

 →∞ In that example, sufficient condition (5) for statements (i-ii) of the theorem

to hold becomes ( + + )  (
2 )→ 0 In particular, if  =  ( 2), the PCA

estimates of a few of the strongest factors converge to deterministic cosine waves even

though the data do contain an increasing number of genuine strong factors,5 which

may be different from the cosine waves.

5As discussed above, A3 is violated and our theorem does not hold when the number of factors

 is fixed.
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3 Extensions

In this section, we consider three extensions to our basic setting.

3.1 Local level model

Suppose that data   = 1   are weighted sum of (1) and (0) components

 =  +  (8)

where  6= 0 is possibly decreasing with the sample size   is generated by the

integrated system (1) as in the previous section, and  is an -dimensional linear

stationary process. Specifically,  = Π() where Π() =
X∞

=0
Π

 and 

is an -dimensional random vector with components  We make the following

assumption.

Assumption A4. Random variables  with  ∈ N and  ∈ Z are indepen-

dent and such that E = 0 E2 = 1 and  4 = sup∈N∈Z E
4
  ∞ Further,X∞

=0
(1 + ) kΠk = 

¡

¢
for some  ≥ 0 as  →∞.

The part of the assumption describing properties of  parallels assumption A1

for . We do not assume that  and  are mutually independent so  and 

may depend on each other. The second part of A4 parallels A2. The constant 

is introduced to allow component  of the data to contain some genuine common

factors.

Let  = [1   ] be the  ×  data matrix. Let ̌1 ≥  ≥ ̌ and ̌1  ̌

be the eigenvalues and corresponding eigenvectors of Σ̌ =
¡
 − ̄

¢0 ¡
 − ̄

¢
 .

Theorem 2 Under A1-A4, if (5) holds and

2 ( +) 
¡
2

2 trΩ
¢→ 0 (9)

as   →∞ then for any fixed positive integer 

(i)
¯̄
̌ 0

¯̄ P→ 1, where  = (1   )

0
with  =

p
2 cos ( ) 

(ii) ̌ (
2


2)
P→ ()

−2
, where  = trΩ

(iii) If (6) holds and

min {}2 ( +) 
¡
2

2 trΩ
¢→ 0 (10)
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then ̌ tr Σ̌
P→ 6 ()

2


As an illustration, consider a simple situation where the components of  and 

are independent random walks and white noises, respectively. Then A2 holds with

 = 0 and A4 holds with  = 0 Furthermore, trΩ =  =  =  . Therefore, (5)

trivially holds, whereas (9) holds if ( +)  (2
2) → 0 If  and  diverge to

infinity proportionally, the latter convergence holds as long as  goes to zero slower
6

than 1 .

For another example, suppose that the components of  are independent random

walks, as in the previous example. However,  now contains a strong stationary

factor so that  = Γ +  where Γ
0Γ =  while the factor  and the components

of  are independent white noises. Then  = 12 and  =  + 1 Hence, for (9) to

hold we need  ( + + 1)  (2
2)→ 0 If  and  are proportional, the latter

convergence holds as long as  goes to zero slower than 1
√
 .

Condition (10) is harder to satisfy than (9). In the first of the above examples,

it requires that  goes to zero slower than 1
√
 (assuming that  and  are

proportional). For the second example, it fails for  that converges to zero at any

rate when  and  are proportional, but holds for  going to zero slower thanp
 when  grows faster than  .

3.2 Local-to-unit roots

Now consider data having local-to-unit roots,

 −  =  (−1 − ) +Ψ ()  (11)

with initial values 0, where  = diag {1  } and  = exp
©−ª   ≥ 0

are local to unity. As above, we do allow Ψ (1) to be of deficient rank, which may be

interpreted as an analogue of the standard cointegration setting. We do not put any

restrictions on the -dimensional vector  .

Literature on near integrated systems (e.g. Phillips (1988), Elliott (1998)) usually

considers a triangular form of the system, where the data generating process for

6When  =  with fixed   0 the eigenvalues of the sample covariance matrix still decay

very fast, although the probability limits described by Theorem 2 (ii) should be altered. Similarly,

the eigenvectors become imperfectly collinear with the cosine waves described by (i). The interested

reader can find a partial analysis of the situation  =  with fixed   0 in the SM’s Section

3.1.2.
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near integrated stochastic trends and the “cointegrating” relationships are modelled

explicitly as two sub-systems. We work with (11) because this form is amenable to

the analysis similar to that of (1).

As is well known (e.g. Phillips (1988), Stock (1994)), as  →∞ the step functions

corresponding to normalized components of (11) weakly converge to the Ornstein-

Uhlenbeck (OU) processes with decay rates  Had these decay rates been the same

for all  the situation would have been analogous to the unit root case with the

Wiener process replaced by the OU process. Then we would have expected that

the PCA “factors” correspond to the eigenfunctions of the covariance kernel of the

demeaned OU process. As we show below, when  are different, the spurious factors

correspond to eigenfunctions of a weighted average of the covariance kernels of the

demeaned OU processes with different decay rates.

Without loss of generality, we assume that  = 0 for  ≤ 1 and   0 for

  1 That is, the first 1 ≤  components of  are unit root processes. Let

us denote the subvector of  that consists of these components as 
(1)
 and the

complementary subvector as 
(2)
  Conformably to this partition, let us partition 

into 
(1)

 and 
(2)

 . We impose no constraints on the initial values 
(1)
0 of the unit

root components, and set 
(2)
0 so that the process 

(2)
 is stationary (albeit with

local-to-unity roots). Precisely,


(2)
0 − 

(2)

 =
X∞

=0

¡
(2)
¢
Ψ(2) () −

where (2) = diag
©
1+1  

ª
and Ψ(2) () is the matrix lag polynomial that

consists of the last  −1 rows of Ψ ()  A similar assumption on the initial values

of local-to-unity processes is made in Elliott (1999).

Let  ( ) be the covariance kernel of the demeaned stationary OU process with

decay rate  Precisely,

 ( ) =  ( )−
Z 1

0

 ( ) d−
Z 1

0

 ( ) d+

Z 1

0

Z 1

0

 ( ) dd

where  ( ) = −|−| (2) is the covariance kernel of the stationary OU process

before the demeaning (e.g. Karatzas and Shreve (1991, p. 358)). Further, let 0 ( )

be the covariance kernel of the demeaned standard Wiener process. Define the
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weighted average kernel as

F ( ) =
Z Z

 ( )F (d d) 

where F is a probability distribution on [0∞)2  Let F be the integral operator,

acting in the space  [0 1] of continuous functions on [0 1]  with kernel F ( ).

Let F be the empirical joint distribution of Ω and   = 1   where

Ω is the -th diagonal element of Ω = Ψ (1)Ψ (1)
0
 We will make the following

assumptions.

Assumption A5. F weakly converges to F as  →∞ The supports of F

and F belong to [0 ̄]× £0 ̄¤ for some 0  ̄ ̄ ∞ The eigenvalues 1  2  

of F are simple.

The weak convergence of F to F would happen almost surely if pairs
¡
Ω 

¢
were drawn at random from the distribution F . However, such a random sampling

is not necessary for the convergence, and we leave its underlying mechanism unspec-

ified. The assumption of simple eigenvalues sharpens our results and makes them

easier to interpret. Furthermore, cases of multiple eigenvalues are not stable under

perturbations. Therefore, the potential loss of generality due to the exclusion of such

cases seems relatively minor to us.

The restriction on the supports of F and F implies that Ω ≤ ̄ for all  Note

that Ω (2) equals the spectral density at frequency zero of the quasi-difference

 − −1. Hence, A5 requires that such spectral densities are bounded. Fur-

thermore, the assumption 1  2   implies that the distribution F cannot be

concentrated at  = 0 In other words, a nontrivial fraction of the series have spectral

densities at frequency zero that are bounded away from zero, and hence, trΩ diverges

to infinity at the same rate as  .

Assumption A2a. In addition to A2, as  →∞
X∞

=0
(1 + ) kΨk = (+

min
n
12 

12


o
) where k·k denotes the Frobenius norm of a matrix.

This assumption adds the Frobenius norm constraint to the constraint imposed

on the spectral norm by A2. In cases where  = 0 A2a is equivalent to A2 because

kΨk ≤ min
n
12 

12


o
kΨk for all  ≥ 0. For   0, a sufficient condition

for A2a to hold is the existence of a decomposition Ψ = Ψ1 + Ψ2 where Ψ1 has

a fixed rank and satisfies
X∞

=0
(1 + ) kΨ1k = () whereas Ψ2 may have an
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unbounded rank, but satisfies
X∞

=0
(1 + ) kΨ2k = (1). Such a decomposition

would arise, for example, in situations where the data contain a fixed number of

factors, represented by linear combinations  =
X∞

=0
0− with bounded kk 

and Ψ1 = Λ0 with kΛk = .

Theorem 3 Under A1, A2a, A3, and A5, if ( +)
2−1 2 =  (1), then for

any fixed positive integer 

(i)
¯̄̄
̂ 0


¯̄̄
P→ 1, where  = ((1 )  ( )) 

√
 and () is the -th princi-

pal eigenfunction of F 

(ii) ̂
2 P→  where  is the -th principal eigenvalue of F 

(iii) If min { } ( +)
2−1 2 =  (1)  then ̂ tr Σ̂

P→ 
X∞

=1


Although Theorem 3 does not give us closed form expressions for the limits of

the normalized principal eigenvalues and eigenvectors of Σ̂, its message is similar

to that of previous theorems. First, the PCA may be spurious in the sense that

the estimated factors do not reflect cross-sectional linkages in the data. Second, the

principal eigenvalues of the sample covariance matrix decay fast (  = 1 2  being

summable and thus, fast decreasing), creating an impression of high “explanatory”

content of the “factors”.

To illustrate Theorem 3, consider a simple scenario where Ψ () =  so that

F is concentrated at  = 1 and where F is uniform on
£
0 ̄
¤
with respect to the

local-to-unity parameter . Figure 4 plots the principal eigenfunctions 1 2 and

3 which we compute numerically for the case, where ̄ = 10 It can be interpreted

as an analogue of Figure 2 for the local-to-unity case and is qualitatively similar to

that figure.

Figure 5 shows the proportions of variation “explained” by the first three spu-

rious factors as functions of 0 ≤ ̄ ≤ 10 For ̄ = 0 (the unit root case), these

proportions equal 6 ()
2
  = 1 2 3 as in Theorem 2 (iii). As ̄ increases so that

the local-to-unity roots may deviate from the unity further, the proportion of varia-

tion “explained” by the first factor decreases. For ̄ = 10 it equals 38%, which brings

it closer to the explanatory power of Uhlig’s first “factor” (see Figure 1) extracted

from factorless persistent, but stationary, data.
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Figure 4: The probability “limits” of the first three spurious factor estimates. Local-

to-unity parameter uniformly distributed on [0 10].
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Figure 5: Proportions of the data variation “explained” by the first three spurious

factors as functions of ̄.
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3.3 Demeaned and standardized data

In PCA applications, the data are often not only demeaned, but also standardized.

As we show below, the spurious factor phenomenon is still present after the standard-

ization.

We consider data generated by equation  = −1 + Ψ ()  as in our basic

setting. However, this time matrix Σ̂ is defined as

Σ̂ =
¡
 − ̄

¢0
−1 ¡ − ̄

¢


where  = diag
n¡

 − ̄
¢ ¡

 − ̄
¢0

o
. This change substantially complicates

our technical analysis. It requires us working with high-dimensional matrices whose

entries are ratios of quadratic forms instead of just quadratic forms. As a result, our

proofs for the demeaned case do not go through.

To overcome the technical challenge we simplify our setting.

Assumption A2b. Matrix lag polynomial Ψ () is diagonal. There exist ab-

solute constants   0 and   0 such that max
X∞

=0
(1 + ) |(Ψ)| ≤  and

min

¯̄̄X∞
=0
(Ψ)

¯̄̄
≥  for all 

Most important, we now requireΨ () be diagonal, so our data are cross-sectionally

independent. Although cross-sectionally independent data are rare in PCA applica-

tions, they are clearly factorless. Our point is to show that the PCA of such factorless

data yields spurious factors even after the data are standardized. We leave analysis

of cross-sectionally dependent standardized data for future research.

The existence of  described in A2b, would follow from the diagonality of Ψ ()

and A2 with  = 0 The existence of  described in A2b, is assumed to further

simplify our proofs. It implies that all data series are integrated, so that no series,

when first differenced, have zero spectral density at zero frequency.

Theorem 4 Suppose that assumptions A1, A2b, and A3 hold. In addition, suppose

that  are identically distributed. Then, for any fixed positive integer 

(i)
¯̄̄
̂ 0


¯̄̄
P→ 1, where  = (1   )

0
with  =

p
2 cos ( ) 

(ii) ̂
P→  where  = E

³
2

X∞
=1
()

2
´
with   = 1 2 3  being i.i.d.

standard normal random variables.

(iii) ̂ tr Σ̂
P→ 
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Part (i) of the theorem shows that the standardization does not affect the as-

ymptotic behavior of the spurious factors. They still converge to the cosine waves.

However, the standardization does affect the form of the normalization of ̂ in (ii),

as well as the form of the limits in (ii) and (iii).

The standardization removes the need for normalizing ̂ by the average long run

variance parameter  = trΩ as in Theorem 1 (ii). Further, since the conditional

variance of an integrated process is of order  the standardization leads to the sit-

uation where ̂ in Theorem 4 (ii) is divided by  as opposed to  2 in Theorem 1

(ii).

Note that the limit 6 ()
2
in Theorem 1 (iii) can be written in the form

1
X∞

=1
()

2
 Therefore, this limit can be obtained from the limit  in Theo-

rem 4 (iii) by replacing the chi-square variables 2 by their expectation (unity).

Values of  for different  can be obtained numerically. Our calculations show

that 1 ≈ 044 2 ≈ 018 and 3 ≈ 0095 Hence, the “explanatory power” of the
first spurious factor in the standardized setting is substantially lower than that in

the non-standardized one, 62 ≈ 061 However, the “explanatory power” of the

second and third spurious factors somewhat increase relative to the non-standardized

6 (2)
2 ≈ 015 and 6 (3)

2 ≈ 0068 Overall, the first three spurious factors still

“explain” an amazing 715% portion of variation in the factorless standardized data.

4 The “number of factors”

Now we return to the basic setup of Section 2 and ask the following question. What is

the number of “factors” in factorless persistent data detected by information criteria?

Bai (2004) proposes to estimate the number of factors in nonstationary panels by

minimizing function

() =  () + ̂2 ( )
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over  = 0 1  max where  () = tr Σ̂ −
X

=1
̂ ̂

2 =  (max)  and

 (  ) is one of the following three penalty functions

1 ( ) = 

 + 


log



 + 


2 ( ) = 

 + 


log   or

3 ( ) = 

 +  − 


log

Here  = (4 log log ) and  = min {} 
Let us denote the value  that delivers the minimum of () based on penalty

 (  ) as ̂ Bai’s (2004) Theorem 1 gives conditions under which ̂ is consis-

tent for the true number of factors. One of the theorem’s assumptions is the weak

temporary dependence of the idiosyncratic terms. Of course, it does not generally

hold for data generated by -dimensional integrated system (1). However, in actual

empirical research, one would not know the validity of the assumptions. If the data

are nonstationary, it would be natural to apply an  criterion.

As the following proposition shows, the asymptotic behavior of ̂ is sensitive to

the choice of maxWe consider the following two rules for choosing max. One rule is

fixing max independent of the data size. The other sets max at some small fraction

of  = min {}  say max = [ ] 

Proposition 5 Suppose A1-A3 and condition (6) of Theorem 1 hold. Further, let

 =
1



+
( +)

2

 2 trΩ


(i) if max is fixed, then ̂
P→ 0 as  →∞ for  = 1 2 3;

(ii) if max = [ ] with fixed   0 and  ( ) → 0 then ̂
P→ ∞ as

  →∞ for  = 1 2 3

For cases where  and  are of the same order of magnitude and  = 0,

the convergence  ( ) → 0 required by Proposition 5 (ii) is guaranteed if

 (  )  trΩ → 0 The latter convergence holds whenever log is asymptotically

dominated by trΩ log log This would happen, for example, for data that con-

sist of i.i.d. random walks. Moreover, log would be asymptotically dominated by
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trΩ log log even if the number of the random walks is log while the rest −log
series are white noises.

The strong sensitivity of  to the choice of max can be circumvented by the

use of the logarithmic criteria of the form

log  () + (  )

In contrast to  the logarithmic criteria do not have the scaling factor ̂2 in the

penalty, which therefore does not depend on max. Bai (2004) shows the consistency

of the corresponding ̂log under his assumptions (not holding in our setting) and

when ( ) → ∞ while (  ) log  → 0 Unfortunately, since for any fixed

 log  () = P
¡
log  trΩ



¢
 we immediately see that penalties satisfying the latter

requirement yield ̂log
P→∞ as long as trΩ remains bounded away from zero.

In the Appendix we perform a Monte Carlo analysis of the finite sample behavior

of ̂ when data do not have any factors in them. We find that for empirically

relevant data sizes and standard choices of max, the estimated number of “factors”

often equals two or three.

5 Problem detection

As we have seen above, factor analysis applied directly to large nonstationary panels

may be spurious. This raises a question: how to detect spurious results? A simple,

although inexact, check is to compare the time series plots of the estimated factors

to the cosine functions. A similarity should raise the alarm.

As an example, consider Bai’s (2004) analysis of sectoral employment in the US.

Figure 6 replicates Figure 3 in Bai (2004). It shows the Bureau of Economic Analysis

data (NIPA, Tables 6.5b and 6.5c) for the logarithm of employment across 58 sectors7

in the US for the period from 1948 to 2000. The series are very persistent, and Bai

(2004) identifies two nonstationary and one stationary factors in the data.

Figure 7 shows the time series plots of the PCA estimates of the three factors.

Their resemblance to cosine functions is striking. It suggests that an extra caution

should be exercised before structural interpretation of these factor estimates is at-

7Bai (2004) has data on 60 sectors. However, the data on two out of 60 sectors in the current

versions of NIPA tables is incomplete. Therefore, we use 58 sectors.
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Figure 6: The number of full-time equivalent employees across 58 sectors. The sectors

are arranged in ascending order according to their 1948 values.

tempted.

A more formal problem detection strategy consists of comparing factor estimates

from the data in levels to those from the differenced data. If all the nonstationarity in

the data comes from factors, then under assumptions of Bai (2004) the PCA estimates

̂ are consistent (up to a non-degenerate linear transformation) for the true factors

 . Similarly, under assumptions of Bai and Ng (2004), the estimates ̂ of the factors

in the differenced data are consistent for ∆ . In such a case, ∆̂ should be well

aligned with ̂  In contrast, a poor alignment would signal spurious results.

This strategy can be implemented as follows. Let  be the projection on the

space spanned by the columns of matrix  . The quality of alignment between spaces

spanned by the columns of ∆̂ and of ̂ can be measured by the eigenvalues of

∆̂̂  which we denote as 21 ≥  ≥ 2 They may be interpreted as squared

cosines of the principal angles between the spaces, or alternatively, as the squared

sample canonical correlations between ∆̂ and ̂ (e.g. Hotelling, 1936). Observing
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Figure 7: The principal components estimates of three factors in the employment

data. The estimates are normalized to have unit Euclidean norms.

the squared canonical correlations substantially below unity indicates a problem.8

Below, we derive a theory-based asymptotic threshold for  =
X

=1
2 

Suppose that the -dimensional data   = 0 1   are truly generated by a

factor model

 = Λ +  (12)

with  nonstationary factors and stationary idiosyncratic terms.

Assumption B1 (i) The reciprocal of the smallest eigenvalue of
X

=0


0


2

remains bounded in probability as  →∞;
(ii)  k0k4   for some positive constant ;

(iii) Let  =  − −1 Then
X

=1


0


P→ Σ  0 and  =
X∞

=0
Θ−

where the components of   are i.i.d.,  = 0 2 = 1 4   andX∞
=0
(1 + ) kΘk  .

Assumption B2. Loadings Λ are either deterministic or random, such that Λ0Λ
P→

8The squared canonical correlations as a measure of discrepancy between subspaces related to

factor estimates are used in recent work by Stock and Watson (2016) and Andreou et al (2019).
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ΣΛ  0

Assumption B3. The matrix of idiosyncratic terms  = [0   ] satisfy kk =
P

³√
 +

√

´


Assumption B4. Λ {}  and {} are mutually independent.
These assumptions are similar to those used in Bai (2004). The requirement in

B1 that  follows a linear process provides a convenient structure for our proofs.

Assumption B3 puts mild restrictions on the serial and cross-sectional dependence of

the idiosyncratic terms. For example, B3 holds if  = Ψ ()  where  satisfy A1

and Ψ () satisfy A2 with  = 0 (see Lemma 4 in the SM).

Slightly abusing previous notation, let  = [0   ] and  = [0   ]
0


Further let ̂ =
h
̂0  ̂

i0
be the ( + 1) ×  matrix whose -th column equals

the normalized -th principal eigenvector of  0 and let ∆ be the  × ( + 1)
“differencing matrix” with all elements zero except the diagonal ones ∆ = −1 and
the super-diagonal ones ∆+1 = 1. Let ̂ be the  ×  matrix whose columns are the

normalized principal eigenvectors of ∆ 0∆0

Note that
∆ 0∆0


= Ω0 + Ω1 

where  = min { }  Ω0 = ∆̃Λ0Λ̃ 0∆0 with ̃ =  + 0Λ (Λ0Λ)−1  and

Ω1 = ∆0Λ∆
0 with Λ =  − Λ

Lemma 6 Under assumptions B1-B4,

 =  − S2 +P
¡
−3

¢


with S =
°°Ω+0 Ω1∆̃

°°2

 where Ω+0 is the Moore-Penrose pseudoinverse of Ω0 and

k·k denotes the Frobenius norm.
An immediate consequence of Lemma 6 is that  approaches  at the rate at

least as fast as −2 . Indeed, B1-B3 imply that the eigenvalues of Ω0 converge to

those of ΣΛΣ  Hence
°°Ω+0 °° = P (1)  On the other hand, B3 yields kΩ1k = P (1) 

Therefore S = P (1)  which implies the claimed convergence rate.

Of course, designing a practical threshold on  would require knowledge of the

“scale” S, which is a latent population parameter. The following lemma provides a
consistent estimate of the scale, which is then used in Theorem 8 to construct the

threshold.
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Let ̂ be the  ×  diagonal matrix with  principal eigenvalues of  0 2 on

the diagonal. We estimate ∆̃  Ω0 and Ω1 by ∆̂ 

Ω̂0 = ∆̂ ̂̂ 0∆0 and

Ω̂1 = ∆ 0∆0 −  Ω̂0

Combining these estimates yield

bS = °°°Ω̂+0 Ω̂1∆̂

°°°2



Lemma 7 Under assumptions B1-B4, S − bS = P
¡
−1

¢
. As a consequence,

 =  − bS2 +P
¡
−3

¢


Lemmas 6 and 7 imply that 2 ( −)− bS converges in probability to zero as
  →∞. This allows us to use  −  bS2 with any   1 as an asymptotically

conservative threshold for  To further ensure the conservativeness of the threshold

one may use 
³ bS + 

´
with   0 instead of  bS This adjustment takes care of a

possibility that bS converges to zero, which may, theoretically, arise under assumptions
B1-B4. For example, such a convergence would happen in a degenerate situation

where the idiosyncratic components of the data,  identically equal zero.

Theorem 8 Under assumptions B1-B4, 2 ( −) − bS P→ 0 and, for any con-

stants   1 and   0

Pr
³
   − 

³ bS + 
´
2

´
→ 1

A simple concrete choice of   would be  = 2 and  = 1. Then, the spurious

results are flagged as soon as  is smaller than − 2
³ bS + 1´ 2  or equivalently,

as soon as 2 ( −) is larger than 2
³ bS + 1´. In the Appendix, we perform a

Monte Carlo analysis that provides some evidence in support of this choice of  and .

The value of 2 ( −) with  = 3 for the sectoral employment data discussed

above is 3,233.1. Assuming that data satisfy factor model (12) with three nonstation-

ary factors, we would expect this value to be smaller than the threshold 2
³ bS3 + 1´ 

However, the value of this threshold is only 5.1, which indicates a potential spurious
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factor problem.

On the other hand, according to Bai (2004), there are both nonstationary and

stationary factors in the sectoral employment data. Such a situation is not covered

by our Theorem 8. It would be interesting and important to extend the theorem to

cases where both nonstationary and stationary factors are present. We leave such an

extension for future research.

6 Conclusion

This paper warns empirical researchers that a very high explanatory power of a few

principal components of nonstationary data does not necessarily indicate the presence

of factors. Even if such data are cross-sectionally independent, the first  principal

components must explain
X

=1
6 ()

2×100% of the variation, asymptotically. The
extracted spurious factors correspond to the eigenfunctions of the auto-covariance

kernel of the Wiener process and do not represent any cross-sectional common shocks

driving the data’s dynamics.

Unfortunately, the standard criteria for the determination of the number of factors

are sensitive to the choice of the maximum number of factors max. For empirically

relevant data sizes and standard choices of max, such criteria would often suggest two

or three factors, when in fact, none are present. Moreover, checking the stationarity of

the PCA residuals using the Dickey-Fuller tests may spuriously favour the stationarity

hypothesis. This may mislead a researcher to conclude that all the non-stationarity

in the data is captured by a few common factors, which are consistently estimated

by the PCA.

To detect these potential problems, we propose to always look at the time series

plots of the extracted factors. Their resemblance to cosine waves should raise the

alarm. A more formal detection strategy would compare the factor estimates obtained

from the data in levels and in first differences. We derive a theory-based threshold

for the sum of the squared canonical correlations between the spaces spanned by

the differenced factors extracted from the level data and the factors extracted from

the differenced data. The sum of the squared canonical correlations going below the

threshold signals a problem that necessitates a further analysis.

Mis-interpreting spurious factors as common shocks driving economic data may

be devastating for structural economic analysis. Less obvious, using such factors in
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forecasting exercises may lead to forecast sub-optimality.9 This can be clearly seen

in the extreme situation where all data are independent random walks. For such

data, optimal forecasts equal the most recent observations. They would be different

from the forecasts based on the cosine waves that represent the spurious factors

asymptotically.

In conclusion, we would like to stress that our critique does not apply to all PC

analysis in economics. Most of this analysis is careful with respect to the assumptions

made and is, therefore, immune to our critique. Furthermore, we would be very

disappointed if some readers conclude from our analysis that there are no common

economic forces affecting various economic data series. In the literature, there is ample

evidence that such common forces are often present, which gives an indisputable value

to careful economic research based on high-dimensional factor analysis.

7 Appendix

This Appendix uses Monte Carlo (MC) analysis to address three questions. First,

what is the “number of factors” in factorless persistent data detected by information

criteria proposed in Bai (2004)? Second, how oversized are the standard Dickey-

Fuller tests of unit root in the “idiosyncratic” component of the factorless persistent

data? Third, how conservative is the threshold for the squared canonical correlations

proposed in Section 5?

7.1 The “number of factors” MC

We simulate data on  i.i.d. Gaussian random walks of length  where the (  )-

pairs correspond to the dimensions of four actual datasets described in Table 1. The

number of MC replications is set to 10,000.

Table 2 reports the obtained MC distributions of ̂ = ̂1 the estimate of the

number of factors produced by  with penalty 1 (  ). Results for ̂2 and ̂3 are

similar and not reported. The columns of the table correspond to different choices of

max = 6  15. The entries of the table are the empirical probabilities (in percent

rounded to the nearest integer) of observing a particular value of ̂ which is given in

the first column.

9We are grateful to James Stock for pointing out this fact to us.
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(  ) Content Source

(60 52) US annual industry-level employment. Bai (2004)

(243 83)
European quarterly

macroeconomic data
Boivin et al. (2009)

(128 710)
Current version of FRED-MD

monthly macroeconomic dataset
McCracken and Ng (2015)

(58 220) US quarterly “real activity dataset” Stock and Watson (2016)

Table 1: The dimensionalities of datasets used in the analysis below.

We see that the MC distributions of ̂ concentrate at ̂ = 2 or ̂ = 3 for most of the

settings. For example, when max = 10 and (  ) = (60 52)  the MC probability

of observing ̂ = 3 equals 91%. For the same max and ( ) = (243 83)  this

probability becomes 100%. For ( ) = (128 710) and ( ) = (58 220)  the

mode of the MC distributions of ̂ shifts to ̂ = 1 (probability 100%) and ̂ = 2

(probability 86%), respectively. Overall we see that, for empirically relevant data

sizes,  criteria would typically estimate a small non-zero number of factors in the

factorless persistent data.

7.2 Dickey-Fuller tests for the “idiosyncratic” series

One of the arguments in favour of doing factor analysis in levels discussed in Baner-

jee et al. (2017) is that the estimated idiosyncratic part of typical macroeconomic

data looks stationary in applications. The hypothesis of a unit root in the estimated

idiosyncratic components can often be easily rejected. As pointed out in the Intro-

duction, such a rejection may be due to the standard unit root tests being seriously

oversized.

To support this claim, we perform the following MC experiment. For each of

the empirically relevant sample sizes ( ) reported in Table 1, we simulate 

i.i.d. Gaussian random walks of length  Then, we extract 0 1  6 “factors” from

the simulated data and run the Dickey-Fuller regression (intercept only) on the re-

maining “idiosyncratic” series.

Table 3 reports the actual size of the Dickey-Fuller test. When no factors are

extracted, the actual size equals the nominal one, which is set to 5%. However,

when some factors are extracted, the tests become substantially over-sized. The

size distortion becomes extreme when 6 factors are extracted, with the actual size
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 6 7 8 9 10 11 12 13 14 15

(  ) = (60 52) as in Bai (2004)

̂ = 0 0 0 0 0 0 0 0 0 0 0

̂ = 1 0 0 0 0 0 0 0 0 0 0

̂ = 2 96 75 43 15 4 1 0 0 0 0

̂ = 3 4 25 57 84 91 79 54 27 9 2

̂ = 4 0 0 0 1 5 20 46 72 85 77

̂ = 5 0 0 0 0 0 0 0 1 6 21

( ) = (243 83) as in Boivin et al. (2009)

̂ = 0 0 0 0 0 0 0 0 0 0 0

̂ = 1 0 0 0 0 0 0 0 0 0 0

̂ = 2 99 76 23 2 0 0 0 0 0 0

̂ = 3 1 24 77 98 100 98 84 50 19 4

̂ = 4 0 0 0 0 0 2 16 50 81 96

( ) = (128 710) as in FRED-MD dataset,

McCracken and Ng (2015)

̂ = 0 0 0 0 0 0 0 0 0 0 0

̂ = 1 100 100 100 100 100 97 88 67 41 20

̂ = 2 0 0 0 0 0 3 12 33 59 80

(  ) = (58 220) as in “real activity dataset”,

Stock and Watson (2016)

̂ = 0 0 0 0 0 0 0 0 0 0 0

̂ = 1 98 87 62 33 14 4 1 0 0 0

̂ = 2 2 13 38 67 86 96 98 95 84 67

̂ = 3 0 0 0 0 0 0 1 5 16 33

Table 2: The Monte Carlo distribution of the number of factors estimated using

IPC1 criterion. The probabilities in columns are measured in percent rounded to the

nearest integer. The data are  independent random walks of length  each. The

number of MC replications is 10,000.

becoming close to 100%.
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Number of “factors” extracted

(  ) 0 1 2 3 4 5 6

(60 52) 5 18.9 43.0 68.4 87.0 95.9 99.1

(243 83) 5 17.9 40.7 65.3 84.5 94.8 98.6

(128 710) 5 18.1 40.7 65.0 83.8 93.9 97.9

(58 220) 5 18.7 41.1 66.2 85.1 94.7 98.5

Table 3: The actual size of the 5% size Dickey-Fuller test (intercept only) based on

the t-statistic, applied to the first component (in the cross-sectional order) of the

“idiosyncratic” series. The series are obtained by subtracting a few “factors” from

the pure random walk data of dimensions  and  . The number of MC replications

is 10,000.

7.3 Threshold for squared canonical correlations

In this subsection, we perform an MC analysis to assess the quality of the choice

 = 2 and  = 1 in the threshold 
³ bS + 

´
proposed in Section 5. We would like

to know how often this choice leads to the false and correct alarms for the spurious

factor analysis.

To investigate the rate of the false alarms, we use the MC setting in Bai (2004),

equations (21-23). That is, the data contain two genuine strong factors represented by

two independent random walks with  (0 1) increments. The entries of the loadings

matrix Λ are i.i.d. (0 1). The idiosyncratic terms are generated by ARMA(1,1) so

that

 = 05−1 +  + 05−1

where  are i.i.d.(0 1) The factors, loadings, and idiosyncratic terms are mutually

independent. Thirteen different choices of (  )-pairs are the same as in Bai (2004).

To investigate the rate of the correct alarms, we simulate i.i.d. Gaussian random

walk data with the same dimensionality. The extracted factors for such data must be

spurious, which ideally should be detected by the proposed method.

Table 4 reports the MCmean of  (with  = 2); the 1, 5, 95, and 99-th percentiles

of the MC distribution of the ratio of 2 ( −) to bS; and the percent of MC cases
where 2 ( −) is larger than 2

³ bS + 1´  so that the spurious PCA alarm is

triggered. The upper panel of the table correspond to MC settings where the alarm is

undesirable, whereas the lower panel correspond to the MC settings where the alarm

is wanted.

For the upper panel, the MC average value of 2 is extremely close to 2 for all
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  MC mean of  Percentiles of
2 (−)S 2 (−)

2( S+1)  1

1 5 95 99 (% of MC cases)

Two genuine factors in the data,  = 2

100 40 1.9969 0.90 0.95 1.07 1.11 0

100 60 1.9985 0.97 0.99 1.06 1.09 0

200 60 1.9990 0.96 0.98 1.03 1.04 0

500 60 1.9993 0.94 0.96 1.01 1.02 0

1000 60 1.9994 0.93 0.95 1.00 1.01 0

40 100 1.9984 1.04 1.05 1.15 1.19 0

60 100 1.9989 1.02 1.03 1.09 1.12 0

60 200 1.9996 1.03 1.04 1.08 1.10 0

60 500 1.9999 1.04 1.04 1.07 1.08 0

60 1000 1.9999 1.04 1.04 1.07 1.08 0

50 50 1.9964 0.97 1.00 1.14 1.21 0

100 100 1.9993 1.01 1.02 1.06 1.07 0

200 200 1.9999 1.01 1.01 1.02 1.03 0

Spurious factors,  = 2 The data are i.i.d. random walks.

100 40 0.3731 2.42 2.96 8.06 10.0 99.83

100 60 0.3185 2.45 2.97 7.28 8.80 99.89

200 60 0.2383 3.42 4.04 8.64 10.0 100

500 60 0.1699 6.57 7.50 14.1 16.1 100

1000 60 0.1375 12.0 13.5 23.8 26.5 100

40 100 0.3734 2.55 3.20 8.59 10.6 99.94

60 100 0.3172 2.56 3.08 7.49 9.07 99.92

60 200 0.2389 3.63 4.24 9.15 10.8 100

60 500 0.1716 7.10 8.05 15.1 17.1 100

60 1000 0.1368 12.8 14.5 25.2 28.4 100

50 50 0.4454 1.82 2.37 7.26 9.16 98.23

100 100 0.2556 2.65 3.15 6.92 8.16 99.98

200 200 0.1378 3.38 3.80 6.52 7.34 100

Table 4: Results of the MC experiment that compares factors extracted from the

differenced data with differenced factors extracted from the level data. Upper panel:

MC setting is as in Bai (2004, eqs. (21-23)). Lower panel: i.i.d. random walk data.

The number of MC replications is 10,000. Third column: MC mean of the sum of

the two squared sample canonical correlations. Columns 4-7: Percentiles of the MC

distribution of the ratio 2 ( − )Ŝ. Last column: percent of MC replications
where the proposed threshold is violated.

31



considered combinations of  and  . This accords well with our Lemma 7, which

shows that 2−2 must converge to zero at the rate max {−2 −2} 
The reported percentiles of the ratio of 2 ( −) to bS accord well with another

corollary of Lemma 7 that the difference 2 ( −) − bS is of asymptotic order
max {−1 −1}  All the percentiles are close to unity, although for relatively small
 bS tends to be slightly smaller than 2 ( −)  Finally, as shown in the last

column of the table, none of our MC replications resulted in the false alarm for

spurious PCA.

For the lower panel, the MC average value of 2 is an order of magnitude smaller

than 2. The distribution of the ratio 2 ( −) to bS has all mass substantially
above unity. Practically all MC replications resulted in the spurious factor analysis

alarm triggered correctly.
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Abstract

This note contains supplementary material for Onatski and Wang (2019) (OW in what

follows). It is lined up with sections in the main text to make it easy to locate the required
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1 Introduction

1.1 There is no supplementary material for this section of OW.

2 Basic setup and main results

2.1 Proof of Theorem OW1

Consider the multivariate Beveridge-Nelson decomposition of the demeaned 

 − ̄ = Ψ (1)
¡
 − ̄

¢
+Ψ∗ () ( − ̄) 

where Ψ∗ () =
X∞

=0
Ψ∗

 with Ψ∗ = −
X∞

=+1
Ψ and  =

X

=1
  In matrix notations,

 = Ψ (1)  +Ψ∗ ()  (1)

where  is the projection matrix on the space orthogonal to the  -dimensional vector of ones, 

is the  ×  matrix with columns  and  is the upper triangular matrix with ones above and

on the main diagonal.

Recall that Σ̂ is the sample covariance matrix of the demeaned data  . Let Σ̃ be the sample

covariance of the I(1) term in the Beveridge-Nelson decomposition (1) of  , that is

Σ̃ = 00 (2)

where  = Ψ (1)0Ψ (1)  Denote the eigenvalues of Σ̃ as ̃1 ≥  ≥ ̃ and corresponding eigen-

vectors as ̃1  ̃ . Since variation of I(1) series dominates that of I(0) series, it is reasonable
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to expect that Σ̂ and Σ̃ are close in some sense. Therefore our proof strategy is, first, show that

statements (i)-(iii) of Theorem OW1 hold when ̂ ̂ Σ̂ are replaced by ̃ ̃ Σ̃ and then, prove

that replacing back “tildes” by “hats” does not affect the theorem’s validity.

2.1.1 Proof of Theorem OW1 for ̃ ̃ Σ̃

First, we will prove the theorem for  = 1 Then, we handle general  by mathematical induction.

The following lemma is established in Subsection 2.2 of this note.

Lemma 1 Matrix  0 has the following singular value decomposition  0 =
X

=1


0


where for     = (2 sin ((2 )))
−1 and the -th coordinates of vectors  and  equal

 = −
p
2 cos ((− 12) ) and  =

p
2 sin ((− 1) ) 

For  =  we have  = 0  = 
√
  and  = 1 where  is the  -dimensional vector of

ones and 1 is the first coordinate vector of R .

Since   = 1   − 1 form an orthonormal basis in the space orthogonal to  and ̃1

belongs to this space, we have a representation

̃1 =
X−1

=1
 (3)

Let us show that 21
P→ 1 This would establish part (i) of the theorem because (011)

2 → 1.

Representation (3) and Lemma 1 yield

̃1 = 
X−1

=1


0
Σ̃ = 0

where  =
X−1

=1
. The idea of the proof consists of, first, showing that the sum in the

latter display is dominated by the terms 2
0
Σ̃ and, then, demonstrating that 

0
Σ̃ is quickly

decreasing in  so that the maximum of the sum with respect to ’s is achieved when 21 is close

to unity whereas 2 with   1 are close to zero.

The following lemma is established in Subsection 2.3 of this note.

Lemma 2 Suppose assumption A1 of OW holds. Let     and  be any deterministic  -

dimensional vectors and  × matrices, respectively. Then

E
¡
00

¢
= 0 tr and (4)¯̄


¡
00 00

¢− ¡0¢ ¡0¢ tr ¡0¢− ¡0¢ ¡0¢ tr ()¯̄
≤ 2κ4

X

=1

X

=1
||  (5)

where    and  are the -th components of vectors    and .
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Corollary 3 Suppose assumptions A1 and A3 of OW hold. Then, for any positive integers  

such that  ≤  ≤  ,

0
0 = tr ( + P(1))  (6)

where  is the Kronecker delta, andX

=
2

0

0 = tr

X

=
2 (1 + P(1)) (7)

= tr
X

=
2 + trP(

2)

Proof: Since  is positive semi-definite, we have

(kk  tr )2 ≤ tr ¡ 2
¢
 (tr )2 ≤ kk  tr

Further, kk = kΩk and tr = trΩ. Therefore, assumption A3 of OW is equivalent to the

requirement

tr
¡
 2

¢
= (1) (tr )2  (8)

The first and second equalities of the corollary follows from Lemma 2, Chebyshev’s inequality, and

(8). The last equality follows from the fact that
X−1

=1
2 = ( 2). ¤

Let  be a fixed non-negative integer. Consider a decomposition  = 1 + 2 where

1 =
X

=1
 and 2 =

X−1
=+1



We have, by the Cauchy-Schwarz inequality,

0 ≤
³¡
011

¢12
+
¡
022

¢12´2
 (9)

Since  is fixed and 2 = 
¡
 2
¢
, equation (6) of Corollary 3 yields

011 = tr
X

=1
2

2
 + tr P

¡
 2
¢

≤ tr
X−1

=1
2

2
 + tr P

¡
 2
¢
 (10)

Further, we have

022 =
X

=1

µX−1
=+1



h
 12

i


¶2


where
£
 12

¤

is the -th component of vector  12 By the Cauchy-Schwarz inequality,

µX−1
=+1



h
 12

i


¶2
≤
X−1

=+1
2

X−1
=+1

µ


h
 12

i


¶2


4



But
X

=1
2 = 1 Therefore,

022 ≤
X

=1

X−1
=+1

µ


h
 12

i


¶2
=
X−1

=+1
2

0

0

This inequality and equations (7) of Corollary 3 yield

022 ≤ tr
X−1

=+1
2 + trP(

2) (11)

Using (10) and (11) in (9), we obtain

0 ≤ tr

µX−1
=1

2
2
 +

X−1
=+1

2 (12)

+2

µX−1
=1

2
2


X−1
=+1

2

¶12
+ P

¡
 2
¢!



Note that X−1
=1

2
2
 ≤ 21 =

¡
4 sin2 ( (2 ))

¢−1


Since sin ≥ 2 for  ∈ [0 2]  we have
X−1

=1
2

2
 ≤  24

Similarly, X−1
=1

2 =
X−1

=1

¡
4 sin2 ( (2 ))

¢−1 ≤ ( 24)X−1
=1

−2

Let us choose  so that
X−1

=+1
2 ≤ 2 24, where   1 is an arbitrarily small positive number.

Then, from (12),

0 ≤ tr

µX−1
=1

2
2
 +

µ
1

4
2 +

1

2


¶
 2 + P

¡
 2
¢¶

≤ tr

µX−1
=1

2
2
 +  2 + P

¡
 2
¢¶



Since  can be made arbitrarily small,

0 ≤ tr
µX−1

=1
2

2
 + P

¡
 2
¢¶



Now recall that 0 = ̃1 SinceX−1
=1

2
2
 tr ≤ 21

2
1 tr + (1− 21)

2
2 tr

we have

̃1 ≤ 21
2
1 tr + (1− 21)

2
2 tr + P (1)

2 tr (13)
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On the other hand, ̃1 must be no smaller than 01Σ̃1 = 21
0
1
01 By Corollary 3,

21
0
1
01 = 21 tr + P (1)

2 tr (14)

Therefore,

̃1 ≥ 21 tr + P (1)
2 tr (15)

Combining this with (13), we obtain

21 tr + P (1)
2 tr ≤ 21

2
1 tr + (1− 21)

2
2 tr + P (1)

2 tr

which implies

1− 21 ≤ P (1)
2
¡
21 − 22

¢
= P (1)  (16)

Hence,

21 =
³
̃ 011

´2 P→ 1 (17)

which completes our proof of statement (i) for  = 1.

To establish (ii), note that inequalities (13) and (15) yield¯̄̄
̃1 − 21 tr

¯̄̄
≤
¯̄
1− 21

¯̄ ¡
21 + 22

¢
tr + P (1)

2 tr

Combining this with the facts that 21 = 1 + P (1) and 21 =  22 + ( 2) we obtain

̃1 =
 2 tr

2
(1 + P(1)) =

 2 trΩ

2
(1 + P(1))  (18)

as claimed by statement (ii).

Further, by Lemma 1,

 tr Σ̃ = tr

µX

=1


0

0

X

=1


0


¶
=
X

=1
2

0

0

where the last equality follows from the orthonormality of the basis {  = 1  }  Hence, by
Corollary 3,

 tr Σ̃ = tr

X
=1

2 (1 + P (1))  (19)

On the other hand, for any fixed 

X
=1

2
2 =

X
=1

1
¡
4 2 sin2 ( (2 ))

¢→ X
=1

1 ()2

as  → ∞ Furthermore,
X

=+1
2

2 can be made arbitrarily small by choosing sufficiently
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large  Hence, the Euler formula
X∞

=1
−2 = 26 yields

X

=1
2

2 → 16.

The latter convergence and (19) give us

tr Σ̃ =
 2

6
tr (1 + P (1)) =

 2

6
trΩ (1 + P (1)) 

Combining this with (18), we obtain

̃1 tr Σ̃ = (6
2) (1 + P(1))  (20)

which concludes the proof of the theorem for  = 1.

For  =   1 the theorem follows by mathematical induction. Indeed, suppose it holds for

   Consider a representation ̃ =
X−1

=1
 Since ̃

0
̃ = 0 for all    and since¯̄̄

̃ 0

¯̄̄
= 1 + P (1) by the induction hypothesis, we must have  = P (1) for all    In

particular,

̃ 0Σ̃̃ =
X−1

=


0

0 + P

¡
 2
¢
tr (21)

To see that (21) holds, it is sufficient to establish equalities 
0
Σ̃
X−1

=
 = P

¡
 2
¢
tr

for any    and equalities 
0
Σ̃ = P

¡
 2
¢
tr for any     Such equalities easily

follow from the facts that  = P (1) for all    and 
°°°Σ̃°°° = ̃1 =

¡
 22

¢
tr (1 + P(1)) 

In addition to (21), we must have



−1X
=1

̃ +̃ 0Σ̃̃ ≥
X
=1

0 00 =

Ã
X
=1

2 + P
¡
 2
¢!
tr

where the latter equality is obtained similarly to (14). Combining the above two displays, and using

the induction hypothesis, this time regarding the validity of the identities̃ =
¡
2 + P

¡
 2
¢¢
tr

for all    we obtain

−1X
=


0

0 ≥ 2 tr + P

¡
 2
¢
tr (22)

Statements (i), (ii), and (iii) for  =  now follow by arguments that are very similar to those used

above for the case  = 1

That is, we represent the sum on the left hand side of (22) in the form 0 where  =X−1
=

 Then proceed along the lines of the above proof to obtain an upper bound on

0 similar to the right hand side of (13). Then, combining this upper bound with the lower

bound (22), we prove the convergence 2
P→ 1 Finally, we proceed to establishing parts (ii) and

(iii) using part (i). We omit details to save space.
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2.1.2 Proof of Theorem OW1 for ̂ ̂ Σ̂

We need to show that the theorem’s validity for ̃ ̃ and Σ̃ implies its validity for ̂ ̂ and Σ̂.

By standard perturbation theory (e.g. Kato (1980), ch.2), such an implication for statements (i)

and (ii) would follow if we are able to show that
°°°Σ̂− Σ̃°°° = 2


tr P (1)  That is, the norm of

Σ̂− Σ̃ is asymptotically dominated by the sizes of the gaps between adjacent eigenvalues, ̃− ̃+1
and ̃−1 − ̃ The Beveridge-Nelson decomposition (1) implies that it is sufficient to show that

kΨ∗ () k2 =  2 tr P (1)  To establish this equality, we need the following lemma.

Lemma 4 Suppose that assumption A1 of OW holds. Let  = Π() and  = [1   ]  where

Π() =
X∞

=0
Π

 is an  ×  matrix lag polynomial that may depend on   and  IfX

=0
kΠk =  () and 

X∞
=+1

kΠk2 = 
¡


2
¢
for an  ≥ 0 where k·k denotes the

Frobenius norm, then

kk = P

³
 12 +12

 
´
 (23)

Proof: This is a modification of Proposition 1 from Onatski (2015), where a proportional as-

ymptotic regime with  converging to a nonzero constant is considered. The triangle inequality

yields

kk ≤
X

=0
kΠk k−k+ k k 

where − = [1−  −] and  =
X∞

=+1
Π−. Obviously, for any  = 0   , k−k ≤

k+k, where + = [1−    ]  Latala’s (2004, Thm. 2) inequality implies that

k+k = P

³
 12 +

12


´
. Therefore,

kk ≤ P

³
 12 +12



´X

=0
kΠk+ k k = P

³
 12 +12

 
´
+ kk  (24)

On the other hand,

E kk2 ≤
X

=1

X

=1
E
h
( )

2


i
=
X

=1

X

=1
E
∙X∞

=+1

X

=1
(Π) −

¸2
≤ 

X∞
=+1

kΠk2 = 
¡


2
¢


Hence, kk = P

³

12
 

´
 Combining this with (24) yields (23). ¤

Remark 5 The lemma holds under following simple but stronger assumptions:
X∞

=0
kΠk =

 () and
X∞

=0
 kΠk2 = 

¡
2

¢
 This follows from the inequalities kΠk2 ≤ min{} kΠk2

and 
X∞

=+1
kΠk2 ≤

X∞
=0

 kΠk2 

By definition of Ψ∗ we haveX∞
=0

kΨ∗k ≤
X∞

=0
 kΨk =  () 

8



where the latter equality holds by A2. Further,

 kΨ∗k ≤ 
X∞

=+1
kΨk ≤

X∞
=+1

 kΨk =  () 

Therefore,
X∞

=0
 kΨ∗k2 = 

¡
2

¢
 Hence, by Remark 5,

kΨ∗ () k2 ≤ kΨ∗ () k2 = P
¡
2 +

2
¢
 (25)

By assumption of Theorem OW1, the right hand side of (25) is dominated by  2 tr =  2 trΩ

which implies that statements (i) and (ii) of the theorem remain valid when ̃ and ̃ are replaced

by ̂ and ̂.

To show that (iii) holds for ̂ and Σ̂ if it holds for ̃ and Σ̃ we need to establish asymptotic

equivalence of tr Σ̂ =
X

=1
̂ and tr Σ̃ =

X

=1
̃ From (1),

¯̄̄
̂
12

 − ̃
12



¯̄̄
≤ kΨ∗ () k 

√
 and ̂ = ̃ = 0 for   min {} 

Therefore, by Minkowski’s inequality,¯̄̄̄³
tr Σ̂

´12
−
³
tr Σ̃

´12 ¯̄̄̄
≤ kΨ∗ () kmin

n
1
p


o
 (26)

and ¯̄̄
tr Σ̂− tr Σ̃

¯̄̄
≤ 2 kΨ∗ () kmin

n
1
p


o³
tr Σ̃

´12
+ kΨ∗ () k2min {1 } 

Using (19) and (25), we conclude that¯̄̄
tr Σ̂− tr Σ̃

¯̄̄
≤  min

n
1
p


o
P

³
 12 +12

 
´
(tr)12

+P
¡
2 +

2
¢
min {1 } 

It remains to show that, under the assumption made in (iii), the right hand side of the latter

equality is asymptotically dominated by tr Σ̃ By (19), such an asymptotic domination takes place

if

(tr )−1 = 

µ
 2

min {} ( +)2

¶
.

But this is equivalent to the assumption made in (iii) because tr = trΩ.

9



2.2 Proof of Lemma 1

Note that

 0 =

Ã
0 0

0 −1

!


Ã
0 0

0  0−1

!


where −1 is the −1-dimensional upper triangular matrix of ones. Denoting the −1-dimensional
vector of ones as −1 we obtain

 0 =

Ã
0 0

0 −1
¡
−1 − −10−1

¢
 0−1

!
=

Ã
0 0

0 

!


We have

−1 =
¡
 0−1

¢−1 ¡
−1 + −10−1

¢
(−1)

−1 

On the other hand, (−1)
−1 is a two-diagonal matrix with 1 on the main diagonal and −1

on the super-diagonal. Therefore, −1 is a three-diagonal matrix with 2 on the main diag-
onal, and −1 on the sub- and super-diagonals. As is well known, e.g. Sargan and Bhargava

(1983), the eigenvalues of such a three-diagonal matrix, indexed in the increasing order, are

 = 2 − 2 cos (2)   = 1   − 1 where  = 2 The corresponding (normalized)

eigenvectors are ̄ = (̄1  ̄−1)
0 with ̄ =

p
2 sin (2)  This implies that the singular

values of  0 (in decreasing order) are

 =

q
−1 = (2 sin (4))

−1

for  = 1   −1 and  = 0 and the components of the corresponding normalized right singular
vectors are

 =
p
2 sin((− 1)2)  = 1  

for  = 1   − 1; and  = 1 for  = 1 and  = 0 for   1 Notice that   = 1  

are proportional to the values at (− 1)  of the -th principal eigenfunction of the covariance

operator of the Brownian bridge process (e.g. Shorack and Wellner, 1986, pp. 213—214).

To find the -th left singular vectors  with    , we multiply  0 by −1  We have

 = 2 sin (4) 0 On the other hand, the -th element of  0 equals

p
2 Im

−1X
=0

i2 =
p
2 Im

i2 − 1
i2 − 1 

Therefore,
p
2 times the -th element of  0 equals

Im
i2 − 1
i2 − 1 −

1


Im

X
=1

i2 − 1
i2 − 1 = Im

i2

i2 − 1 = −
cos((2 − 1)4)

2 sin (4)
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Hence,

 = −
p
2 cos((− 12)2)  = 1  

for    Clearly, the left singular vector of  0 corresponding to zero singular value equals
 =

p
1  .

Remark. From (OW7), we see that  with  = 1   and    are proportional to the

values at (− 12)  of the -th principal eigenfunction of the covariance operator of the demeaned
Wiener process.

2.3 Proof of Lemma 2

We have

E
¡
00

¢
=

X

=1

X

=1
E ()

=
X

=1

X

=1
 = 0 tr

Further, denoting the -th row of  as ·, we have

E
¡
0000

¢
=

X

=1

X

=1
E (····)

=
X

=1

X

 6= E ((·) (·) (·) (·))

+
X

=1

X

 6= E ((·) (·) (·) (·))

+
X

=1

X

 6= E ((·) (·) (·) (·))

+
X

=1
E ((·) (·) (·) (·)) 

We have, first, X

=1

X

 6= E ((·) (·) (·) (·))

=
X

=1

X

 6=
¡
0
¢ ¡
0
¢


=
¡
0
¢ ¡
0
¢ ∙
(tr) (tr)−

X

=1


¸


second,

11



X

=1

X

 6= E ((·) (·) (·) (·))

=
X

=1

X

 6=
¡
0
¢ ¡
0
¢


=
¡
0
¢ ¡
0
¢ ∙
tr
¡
0

¢−X

=1


¸


third, X

=1

X

 6= E ((·) (·) (·) (·))

=
X

=1

X

 6=
¡
0
¢ ¡
0
¢


=
¡
0
¢ ¡
0
¢ ∙
tr ()−

X

=1


¸


and finally, X

=1
E ((·) (·) (·) (·))

=
X

=1
E
µX

=1


X

=1


X

=1


X

=1


¶
=

X

=1


µX

:6=  +
X

:6=  +
X

:6= 

+
X

=1
E4

¶
=

X

=1


¡¡
0
¢ ¡
0
¢
+
¡
0
¢ ¡
0
¢
+
¡
0
¢ ¡
0
¢

+
X

=1

¡
E4 − 3

¢


¶
Summing up,

E
¡
0000

¢
=

¡
0
¢ ¡
0
¢
(tr) (tr) +

¡
0
¢ ¡
0
¢
tr
¡
0

¢
+
¡
0
¢ ¡
0
¢
tr ()

+
X

=1


X

=1

¡
E4 − 3

¢


Recall that E (00) = 0 tr and E (00) = 0 tr These equalities and the last display
yield


¡
00 00

¢
=

¡
0
¢ ¡
0
¢
tr
¡
0

¢
+
¡
0
¢ ¡
0
¢
tr ()

+
X

=1


X

=1

¡
E4 − 3

¢
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The inequality (5) follows because
¯̄
E4 − 3

¯̄
is bounded by 2κ4 uniformly over  and  Indeed, by

assumption A1, E4 ≤ κ4 and E4 − 3 ≤ κ4 On the other hand, E4 ≥
¡
E2

¢2
= 1 and thus,

κ4 ≥ 1 and E4 − 3 ≥ −2 ≥ −2κ4.

3 Extensions

3.1 Local level model

3.1.1 Proof of Theorem OW2

Consider the decomposition

 =  +  (27)

where  = [1  ] and  = [1   ]  Note that the principal eigenvalues and eigenvectors

of  0 satisfy Theorem OW1 (i-ii) as long as condition (OW5) of that theorem holds.

Statements (i) and (ii) of Theorem OW2 would follow from this fact and the standard perturbation

theory (e.g. Kato (1980), ch.2) if we are able to show that k 0k = 2
2 trΩ P (1) 

Assumption A4 of OW yields
X∞

=0
kΠk = 

¡

¢
and  kΠk ≤

X∞
=0

(1 + ) kΠk =

¡

¢
 Therefore,

X∞
=0

 kΠk2 = 
¡
2

¢
and, as explained in Remark 5, we can apply Lemma

4 to obtain

kk ≤ kk = P

³
 12 +12

 
´


Hence, Theorem OW2 (i-ii) holds as long as (OW5) and (OW9) hold. But these are the assumptions

of Theorem OW2 (i-ii).

For (iii) to hold, it is sufficient that (OW6) is satisfied and
¯̄
tr Σ̌− 2 tr ( 0) 

¯̄
is

asymptotically dominated by 2 tr ( 0)  Using arguments very similar to those employed

in the proof of Theorem OW1 (iii) after equation (25), we see that such an asymptotic domination

takes place if 2
2 trΩ asymptotically dominates 2 ( +)min {1 }  which is implied

by the assumptions of Theorem OW2 (iii).

3.1.2 The case of the I(1) weight proportional to 1/T

In this subsection we would like to revisit the example given in the main text immediately after the

formulation of Theorem OW2. We would like to show how, in that example, the theorem would be

violated if  converges to zero faster than allowed by condition (OW9).

Consider  and  that follow a pure multivariate random walk and white noise processes,

respectively. For simplicity, we assume that  and  are independent and Gaussian, and that

 =  ∈ (0∞). In this setting, A1-A4 are satisfied with  =  = 0 and trΩ =  =  = 

so that condition (OW5) of Theorem OW1 is trivially satisfied while condition (OW9) of Theorem

OW2 is violated if and only if  converges to zero as fast or faster than 1 . We will assume that

 =  for some positive fixed .
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Consider a singular value decomposition 
√
 =  . Here  and  are orthonormal

matrices and  is a diagonal matrix of the singular values of 
√
 . By Theorem OW1 (i-ii),

the -th row of  becomes asymptotically collinear with a cosine wave (represented by vector ),

and the -th diagonal element of  converges to  () as  →∞We would like to know whether

and how the principal eigenvectors of Σ̌ = 0 differ from the cosine waves.

From (27), we have

 0 0
√
 =  +  0 0

√


Note that the last diagonal element of  is zero (because  has deficient rank), and the last row

of  belongs to the null space of  Denote matrix  0 0 with the last (zero) column removed
as ̃ . Similarly, denote matrices  and  0 0 with last (zero) columns removed as ̃ and ̃,

respectively. With this notation,we have ̃ 
√
 = ̃ + ̃

√


By definition, the entries of the -th principal eigenvector of ̃ 0̃  equal the scalar products

of the -th principal eigenvector of Σ̌ with the rows of  (which become asymptotically collinear

with the cosine waves). Further, since we have assumed that  and  are independent Gaussian,

̃ has i.i.d. (standard) Gaussian entries.

Now, let ̄ be an ×( − 1)matrix with all elements zero, except the first diagonal elements.

For  ≤  let ̄ =  ()  Obviously,

̃ 
√
 = ̄ + ̃

√
 +

³
̃ − ̄

´


For arbitrarily small   0 we can choose so large that
°°°̃ − ̄

°°°   with probability at least 1−
for all sufficiently large  . Therefore, the asymptotic behavior of the -th principal eigenvectors

(and eigenvalues) of ̃ 0̃  and of
³√

̄ + ̃
´0 ³√

̄ + ̃
´
 is the same. In particular, the

-th components of these two principal eigenvectors converge to the same limit.

By Theorem 1 of Onatski (2018), if 2  ()2
√
 the -th component of the -th principal

eigenvector of
³√

̄ + ̃
´0 ³√

̄ + ̃
´
 converges to

 :=

vuut 4 −  ()4

2
³
2 + ()2

´ 
If 2 ≤ ()2

√
 then the -th component converges to zero. Furthermore, by Theorem 5 of

Onatski (2018), if 2  ()2
√
 the -th principal eigenvalue of

³√
̄ + ̃

´0 ³√
̄ + ̃

´


converges to

 :=
³
2 ()2 + 

´³
1 + ()2 2

´


If 2 ≤ ()2√ then the -th eigenvalue converges to (1 +√)2 
In our setting, these results show that Theorem OW2 does not hold when  =  Specifically,

the scalar product of the -th principal eigenvector of Σ̌ with the “-th cosine wave” does not

converge to one, and the -th principal eigenvalue of Σ̌ does not converge to 2 ()2  Instead,
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if 2  ()2
√
 the scalar product converges to   1 and the eigenvalue converge to  

2 ()2  If 2 ≤ ()2√ the -th principal eigenvector of Σ̌ is asymptotically orthogonal to
the “-th cosine wave”, and the -th eigenvalue asymptotically depend only on  but not on  or

.

Interestingly, even though Theorem OW2 becomes violated, the principal eigenvalues of Σ̌ still

decay very fast, for relatively large  Hence, the scree plot for matrix Σ̌ still can be wrongfully

interpreted as showing the existence of factors in the data. This phenomenon gradually disapperas

as  becomes smaller and smaller. Similarly, for large , the -th principal eigenvector of Σ̌ is

“almost collinear” with the “-th cosine wave”, but the quality of the alignment deteriorates as 

decreases.

3.2 Local-to-unit roots

Similarly to the proof of Theorem OW1 in Section 2, we analyze the eigenvalues and eigenvectors of

Σ̂ = 0 in two steps. First, we study a matrix Σ̃ with simpler structure, and then show

that the results still hold when Σ̃ is replaced by Σ̂. To define Σ̃ consider the following extension

of the Beveridge-Nelson (BN) decomposition to nearly integrated series (OW11),

 =  +Ψ
∗∗() (28)

where

 −  =  (−1 − ) +Ψ (1)  (29)

with

0 = 0 −Ψ∗∗()0 (30)

and Ψ∗∗() =
X∞

=0
Ψ∗∗  with

Ψ∗∗ =

X
=1

³
− − 

´
Ψ − 

∞X
=+1

Ψ 

The series  can be interpreted as the “long run component” of . When  =  Ψ∗∗ = Ψ∗ and
the decomposition reduces to the standard BN one.

To see the validity of (28), use a standard recursive substitution in (OW11) and (29) to obtain

 −  =
X−1

=0
Ψ()− +  (0 − ) and (31)

 −  =
X−1

=0
Ψ(1)− +  (0 − )  (32)

Subtract (32) from (31), substitute  (0 − 0) by 
Ψ∗∗()0 and verify that the right hand side

of the so obtained equality has form Ψ∗∗() by matching the coefficients on different lags of .
We will show that the first-order asymptotic behavior of principal eigenvalues and eigenvectors
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of Σ̂ = 0 is not affected when  is replaced by its long run component  = [1   ] 

This is similar to the unit root case. In contrast to the unit root case,  0 is not invariant

with respect to the initial values 0 which are not eliminated by time avearging  7−→ 

To handle the effect of the initial values, we will treat components of  having unit root (first

1 components) and local-to-unity roots with positive local parameters (last  −1 components)

separately. Denote the -th rows of Ψ () and  as Ψ· () and · respectively. By assumption,
for any   1 we have 0 −  =

X∞
=0

Ψ· () − Using this in (30) yields 0 −  =X∞
=0

Ψ· (1) −. Combining this with (32), we see that for any   1  is a stationary

process with the initial value 0 distributed according to its unconditional distribution.

The recursive substitution in the equation  −  = 
¡
−1 − 

¢
+Ψ· (1)  yields

 −  = Ψ· (1)
X+−1

=0
− + +

¡
− − 

¢
 (33)

for any  ≥ 0 and   1 For  ≥ 0 and  ≤ 1 let us define − as 0 − Ψ· (1)
X−1

=0
−

With this definition, representation (33) holds for any  ≥ 0 and all  = 1   not only for

  1.

Let us set  =  3 and let  = [1− 3  2− 3    ]  Finally, let  be a 
¡
 2 + 1

¢×  matrix

such that

 0 =

⎛⎜⎜⎜⎜⎝


3

  1 0 0  0


3+1

  2 1 0  0
...

...
...

...
. . .

...


3+−1

   −1 −2  0

⎞⎟⎟⎟⎟⎠ 

With this notation, we have

· = Ψ· (1)  + 
3



£
1  

2
   




¤ ¡
− 3 − 

¢
+ 

for all  = 1  Using this representation together with (28), we obtain

 =

⎡⎢⎢⎣
Ψ1· (1) 1

...

Ψ · (1) 

⎤⎥⎥⎦ +ini +Ψ∗∗ ()  (34)

where

ini = 
3 £
1 (−3 − )   

 (− 3 − )
¤
+  

Similarly to the unit root case, we will show that, under the assumptions of Theorem OW3, the

behavior of a few of the largest eigenvalues and the corresponding eigenvectors of Σ̂ is asymptotically
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equivalent to that of a few of the largest eigenvalues and corresponding eigenvectors of

Σ̃ =
1




⎡⎢⎢⎣
Ψ1· (1) 1

...

Ψ · (1) 

⎤⎥⎥⎦
0 ⎡⎢⎢⎣

Ψ1· (1) 1
...

Ψ · (1) 

⎤⎥⎥⎦ (35)

Therefore our proof strategy is as follows. First, establish statements (i)-(iii) of Theorem OW3

for ̃ ̃ Σ̃ instead of ̂ ̂ Σ̂ and then, prove that replacing “tildes” by “hats” does not affect

the theorem’s validity. Here, ̃ and ̃ denote the -th principal eigenvalue and eigenvector of Σ̃

defined by (35).

3.2.1 Proof of Theorem OW3 for ̃ ̃ Σ̃

Write Σ̃ in the following form

Σ̃ =
1



X
=1

 0
0Ψ0· (1)Ψ· (1)  (36)

Taking expectation of the left- and right-hand sides yields

EΣ̃ =
1



X
=1

Ψ· (1)Ψ0· (1) 0 =
1



X
=1

Ω 0

where Ω = Ψ (1)Ψ0 (1). As will be seen below, the asymptotic behavior of a few of the largest

eigenvalues and corresponding eigenvectors of Σ̃ and EΣ̃ coincide.

Let us denote the -th principal eigenvalue and eigenvector of EΣ̃ as ̃ and ̃ respectively.

In Section 3.2.4, we prove that under OW’s assumptions A1, A2 (which is weaker than A2a), A3

and A5, for any fixed positive integer  ̃
2 →  where  is the -th principal eigenvalue

of the integral operator F  defined in the main text. Furthermore, |̃0| → 1, where  =

((1 )  ( )) 
√
 and () is the -th principal eigenfunction of F , and ̃ trEΣ̃→


X∞

=1
 . In other words, statements (i), (ii), and (iii) of Theorem OW3 hold when ̂, ̂,

and Σ̂ are replaced by ̃, ̃, and EΣ̃, respectively. The convergences after replacement are the

usual ones rather than in probability because EΣ̃ is a nonrandom matrix.

Given the results announced in the previous paragraph, showing that¯̄̄
̃ 0̃

¯̄̄
P→ 1 ̃̃ − 1 P→ 0 and ̃ tr Σ̃− ̃ trEΣ̃

P→ 0 (37)

would establish Theorem OW3 with ̂, ̂, and Σ̂ replaced by ̃, ̃, and Σ̃. Let us now prove

the convergencies in (37).
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We start from the case  = 1 Let us represent ̃1 in the form

̃1 =
X

=1
̃ =

X−1
=1

̃

where the latter equality holds because ̃1 must be orthogonal to 
√
 = ̃  which is an

eigenvector of Σ̃ and of EΣ̃ corresponding to the zero eigenvalue (we remind the reader that 
denotes the  -dimensional vector of ones). The above representation and the definition (36) of Σ̃

yield

̃1 =
X−1

=1


1



X

=1
̃0

()̃ (38)

where

() = 0
0Ψ0· (1)Ψ· (1) 

Let  be a fixed positive integer. Represent ̃1 in the form ̃11 + ̃12 + ̃13 where

̃11 =
X

=1


1



X

=1
̃0

()̃ (39)

̃12 =
X−1

=+1


1



X

=1
̃0

()̃ (40)

and

̃13 = 2
X

=1

X−1
=+1


1



X

=1
̃0

()̃ (41)

Note that

̃1 ≤
³
̃
12

11 + ̃
12

12

´2
 (42)

Consider the inner sum in the expression (39) for ̃11 Equation (4) of Lemma 2 yields

E
1



X

=1
̃0

()̃ =
1



X

=1
̃0 0̃ tr

¡
Ψ0· (1)Ψ· (1)

¢
= ̃0

µ
1



X

=1
Ω 0

¶
̃

= ̃0EΣ̃̃ = ̃

Further,

 

µ
1



X

=1
̃0

()̃

¶
=

1

2

X

=1

X

=1


³
̃0

()̃ ̃
0


()̃

´
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Equation (5) of Lemma 2 yields


³
̃0

()̃ ̃
0


()̃

´
≤ ̃0 0̃̃

0
 0̃ tr

¡
Ψ0· (1)Ψ· (1)Ψ0· (1)Ψ· (1)

¢
+̃0 0̃̃

0
 0̃ tr

¡
Ψ0· (1)Ψ· (1)Ψ0· (1)Ψ· (1)

¢
+2κ4 k̃k

°°̃
°° k̃k

°°̃
°°X

=1
(Ψ (1)Ψ (1))

2 

Section 3.2.3 below proves the following inequality

sup
∈[01]

kk ≤
√
2 (43)

This inequality and the above bound for 
¡
̃0()̃ ̃

0


()̃
¢
yield


³
̃0

()̃ ̃
0


()̃

´
≤ 8 4

µ¡
Ψ· (1)Ψ0· (1)

¢2
+ κ4

X

=1
(Ψ (1)Ψ (1))

2

¶
and

 

µ
1



X

=1
̃0

()̃

¶
≤ 8

4

2

X

=1

X

=1

∙¡
Ψ· (1)Ψ0· (1)

¢2
+ κ4

X

=1
(Ψ (1)Ψ (1))

2

¸


We haveX

=1

X

=1

X

=1
(Ψ (1)Ψ (1))

2 =
X

=1

X

=1
(Ψ (1))

2
X

=1
(Ψ (1))

2

=
X

=1

¡¡
Ψ0 (1)Ψ (1)

¢


¢2 ≤ tr h¡Ψ0 (1)Ψ (1)¢2i = tr h¡Ψ (1)Ψ0 (1)¢2i 
Therefore,

 

µ
1



X

=1
̃0

()̃

¶
≤ 8 4

2
(1 + κ4) tr

h¡
Ψ (1)Ψ0 (1)

¢2i
(44)

=
8 4

2
(1 + κ4) tr

£
Ω2
¤
= (1)

 4

2
(trΩ)2 

where the last equality follows from A3 (as explained in the proof of Corollary 3 above). By

Chebyshev’s inequality,

̃11 =
X

=1
2̃ + P(1)

2 trΩ (45)

Next, consider ̃12 The definition of 
() yields

̃12 =
1



X

=1

µX−1
=+1

Ψ· (1) ̃

¶2
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By the Cauchy-Schwarz inequality,

̃12 ≤ 1



X

=1

X−1
=+1

2

X−1
=+1

(Ψ· (1) ̃)
2

≤ 1



X

=1

X−1
=+1

(Ψ· (1) ̃)
2 

Lemma 2 yields

E
1



X

=1

X−1
=+1

(Ψ· (1) ̃)
2 =

X−1
=+1

̃ (46)

and

 

µ
1



X

=1

X−1
=+1

(Ψ· (1) ̃)
2

¶
=

1

2

X

=1

X−1
=+1


³
(Ψ· (1) ̃)

2 
¡
Ψ· (1) ̃

¢2´
≤ 2

2

X

=1

X−1
=+1

k̃k2
°°̃

°°2 ∙¡Ψ· (1)Ψ0· (1)
¢2
+ κ4

X

=1
Ψ2 (1)Ψ

2
 (1)

¸


Note that X−1
=+1

k̃k2
°°̃

°°2 ≤ tr ¡ 0
¢
tr
¡
 0

¢ ≤ 4 4
where the latter inequality follows from the fact, established in Section 3.2.3, that tr ( 0) ≤
2 2 for any .

Therefore,

 

µ
1



X

=1

X−1
=+1

(Ψ· (1) ̃)
2

¶
≤ 8 4

2

X

=1

∙¡
Ψ· (1)Ψ0· (1)

¢2
+ κ4

X

=1
Ψ2 (1)Ψ

2
 (1)

¸


Following the steps of the above analysis leading to (44), we obtain

 

µ
1



X

=1

X−1
=+1

(Ψ· (1) ̃)
2

¶
≤ (1)

 4

2
(trΩ)2  (47)

Chebyshev’s inequality together with (46) and (47) yields

̃12 ≤
X−1

=+1
̃ + P(1)

2 trΩ (48)

The following lemma is proven in Section 3.2.5.

Lemma 6 For any fixed positive integer X

=+1
̃ ≤  2 trΩ (9)
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for all sufficiently large  . Furthermore, for any fixed positive integer  there exists a constant

  0 such that

̃ ≥ 
2 trΩ (49)

for all sufficiently large  .

Using the first inequality of the lemma in (48), we obtain

̃12 ≤ (1 + P(1))
 2

9
trΩ (50)

Now, use (50) and (45) in (42), noting the following two facts. First, by Lemma 6,
X

=1
̃ (trΩ)

is of order  2 for large  Second, 1 in (50) can be chosen arbitrarily close to zero. Hence, (42)

yields

̃1 ≤
X

=1
2̃ + P(1)

2 trΩ

≤ 21̃1 + (1− 21)̃2 + P(1)
2 trΩ (51)

On the other hand, ̃1 must be no smaller than ̃01Σ̃̃1 Since

Ẽ01Σ̃̃1 = ̃01
³
EΣ̃
´
̃1 = ̃1

and, by (44),

 (̃01Σ̃̃1) = (1)
 4

2
(trΩ)2 

we have by Chebyshev’s inequality

̃01Σ̃̃1 = ̃1 + P(1)
2 trΩ (52)

Therefore,

̃1 ≥ ̃1 + P(1)
2 trΩ (53)

Combining this with (51) we obtain

̃1 + P(1)
2 trΩ ≤ 21̃1 + (1− 21)̃2 + P(

2) trΩ

which implies

1− 21 ≤ P (1)
 2

̃1 − ̃2


But, as is proven in Section 3.2.4, ̃1
2 → 1 and ̃2

2 → 2 Since by A5, 1  2 we have³
̃ 01̃1

´2
= 21

P→ 1 (54)
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This establishes the first convergence in (37) for  = 1.

Next, inequalities (51) and (53) yield¯̄̄
̃1 − ̃1

¯̄̄
≤
¯̄
1− 21

¯̄
(̃1 + ̃2) + P(1)

2 trΩ

Combining this with the facts that 21 = 1 + P (1) and, by Lemma 6, ̃1 ≥  2 trΩ for some

  0 we obtain

̃1 = ̃1 (1 + P(1))  (55)

which gives us the second convergence in (37) for  = 1.

Further,

tr Σ̃ =
1



X
=1

X
=1

̃0
()̃ 

Hence,

E tr Σ̃ = tr
³
EΣ̃
´
=

X
=1

̃

and, by (47) which holds for all fixed  including  = 0

 
³
tr Σ̃

´
= (1)

 4

2
(trΩ)2 

Hence, by Chebyshev’s inequality

tr Σ̃ =

X
=1

̃ + P(1)
2 trΩ

and
̃1

tr Σ̃
=

̃1 (1 + P(1))X

=1
̃ + P(1) 2 trΩ

=
̃1X

=1
̃

+ P(1)

where the latter equality is a consequence of Lemma 6. Thus,

̃1 tr Σ̃− ̃1 trEΣ̃
P→ 0

which establishes the last convergence in (37) for  = 1. Note that, by Lemma 6, ̃1 trEΣ̃ remains

bounded away from zero as  →∞

For  =   1 the statements of (37) follow by mathematical induction. Indeed, suppose they

hold for    Consider a representation ̃ =
X−1

=1
̃ Since ̃

0
̃ = 0 for all    and

since
¯̄̄
̃ 0̃

¯̄̄
= 1 + P (1) by the induction hypothesis, we must have  = P (1) for all    In
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particular,

̃ 0Σ̃̃ =
−1X
=


1



X

=1
̃0

()̃ + P (1)
2 trΩ (56)

Indeed, to see that (56) holds, it is sufficient to establish equalities

̃
0
Σ̃

−1X
=

̃ = P (1)
2 trΩ

for any    and equalities

̃
0
Σ̃̃ = P (1)

2 trΩ

for any     Such equalities easily follow from the facts that  = P (1) for all    and°°°Σ̃°°° = ̃1 = P (1)
2 trΩ

In addition to (56), we must have

−1X
=1

̃ + ̃ 0Σ̃̃ ≥
X
=1

1



X

=1
̃0

()̃ =

X
=1

̃ + P (1)
2 trΩ

where the latter equality is obtained similarly to (52). Combining the above two displays, and

using the induction hypothesis, this time regarding the validity of the identities

̃̃ − 1 = P (1)

for all    we obtain

−1X
=


1



X

=1
̃0

()̃ ≥ ̃ + P (1)
2 trΩ (57)

Statements of (37) for  =  now follow by arguments that are very similar to those used above

for the case  = 1

That is, we represent the sum on the left hand side of (57) in the form ̃1+ ̃2+ ̃3 defined

similarly to (39-41). Then proceed along the lines of the above proof to obtain an upper bound on

̃1 + ̃2 + ̃3 similar to the right hand side of (51). Then, combining this upper bound with

the lower bound (57), we prove the convergence 2
P→ 1 Finally, we proceed to establishing the

other statements of (37) using this convergence.

3.2.2 Proof of Theorem OW3 for ̂ ̂ Σ̂

We need to show that the theorem’s validity for ̃ ̃ and Σ̃ implies its validity for ̂ ̂ and

Σ̂. By standard perturbation theory (e.g. Kato (1980), ch. 2), such an implication for statements

(i) and (ii) would follow if we are able to show that
°°°Σ̂− Σ̃°°° = 2


trΩ P (1)  Equation (34)
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implies that it is sufficient to establish two facts. First, kinik2 =  2 trΩ P (1)  and second,

kΨ∗∗ () k2 =  2 trΩ P (1).

We have kinik2 ≤ kinik2  where k·k denotes the Frobenius norm. A direct calculation
yields

kinik2 =
X

=1+1
2

3+2


Ã
1− 2
1− 2

− 1



µ
1− 
1− 

¶2!¡
−3 − 

¢2


and

E kinik2 =
X

=1+1

2
3+2



1− 2

Ã
1− 2
1− 2

− 1



µ
1− 
1− 

¶2!
Ψ· (1)Ψ0· (1)

=
X

=1+1

2
3+2



1− 2

1− 
1− 

µ
1 + 
1 + 

− 1



1− 
1− 

¶
Ψ· (1)Ψ0· (1)

≤ 
X

=1+1

2
3+2



1− 2

µ
1 + 
1 + 

− 1



1− 
1− 

¶
Ψ· (1)Ψ0· (1)

=  2
X

=1+1
2

3+2
  ()Ψ· (1)Ψ0· (1) 

where  () is as defined in (67) below. As shown there,  () is non-negative, continuous, | ()| ≤
1 for all  , and (1−  ) ≤ 4 for  ∈ [0 1)  This implies that

max
∈[01−1 ]

2
3+2

  () ≤ (1− 1 )2
3+2 ≤ −2

2



and

max
∈[1−11]

2
3+2

  () ≤ max
∈[1−11]

2
3+2



 (1− )

4

=

µ
1− 1

2 3 + 3

¶2 3+2


4 (2 3 + 3)
≤ 1

8 2


Since −2
2 ≤ 1 ¡2 2¢  we have overall, max∈[01] 23+2  () ≤ 1(2 2) and

E kinik2 ≤
1

2

X

=1+1
Ψ· (1)Ψ0· (1) ≤

1

2
trΩ (58)

By Markov’s inequality, kinik2 = trΩP (1)  so that

kinik2 = trΩP (1) =  2 trΩ P (1)  (59)

as required.

It remains to show that kΨ∗∗ () k2 =  2 trΩ P (1). Note that

kΨ∗∗ () k2 ≤ kΨ∗∗ () k2 ≤ 2 kΘ∗∗ () k2 + 2 kΠ∗∗ () k2
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where Θ∗∗ () =
X∞

=1
Θ∗∗  and Π∗∗ () =

X∞
=0
Π∗∗  with

Θ∗∗ =

X
=1

³
− − 

´
Ψ and Π

∗∗
 = −

∞X
=+1

Ψ 

We have

X∞
=0

kΠ∗∗ k =
X∞

=0

°°°X∞
=+1

Ψ

°°° ≤X∞
=0

∞X
=+1

kΨk

≤
∞X
=1

 kΨk =  () 

Further,

kΠ∗∗ k ≤
∞X

=+1

kΨk ≤ 1

 + 1

∞X
=+1

 kΨk = 1

 + 1
 () 

Combining the latter two displays, we obtainX∞
=0

 kΠ∗∗ k2 ≤  ()
X∞

=0
kΠ∗∗ k = 

¡
2

¢


Hence, by Lemma 4 and Remark 5,

kΠ∗∗ () k2 = P
¡
2 +

2
¢
 (60)

This equality, the assumption of the theorem that ( +)
2−1 2 =  (1), and the fact that,

under A5,  trΩ = (1) yield

kΠ∗∗ () k2 =  2 trΩ P (1) 

Next, recall that Θ∗∗ =
X

=1

¡
− − 

¢
Ψ  For any  ≥ 1

°°°°− − 



°°°° =

°°°°( − )
− + + −1



°°°°
≤

°°°°( − )
 + + −1



°°°° = °°°° − 



°°°° 
Therefore,

 kΘ∗∗ k ≤ 

X
=1

°°°°− − 



°°°°  kΨk

≤
°°° − 

°°° X
=1

 kΨk = 
³
 +min

n
12 12



o´
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where the last equality follows by assumption A2a. Therefore,


X∞

=+1
kΘ∗∗ k2 ≤ 

¡
2 +min {}

¢

X∞

=+1

1

2

= 
¡
2 +min {}

¢


Further, Θ∗∗0 = 0 and

X

=1
kΘ∗∗ k ≤

X

=1

X
=1

°°°− − 
°°° kΨk (61)

=

X
=1

kΨk
X

=

°°°− − 
°°° 

By assumption A5, there exists ̄  0 such that  ≤ ̄ for all  ∈ N Note that the maximum of

− −  on  ∈ [0 1] is achieved at  = (1− )1  On the other hand, the smallest possible

diagonal element of  equals −̄  and

−̄ ≥ (1− )1

for  ≤ ̄ Therefore, for such °°°− − 
°°° ≤ −̄

³
̄ − 1

´
and

X[̄]

=

°°°− − 
°°° ≤

³
̄ − 1

´³
−̄ − −1

´
1− −̄

≤

³
̄ − 1

´ ¡
1− −1

¢
1− −̄

But for  ∈ [0 1]   − 1 ≤ (− 1) and 1− − 
¡
1− −1

¢
 Therefore, for all  = 1 

£
̄

¤


̄ − 1 ≤ (− 1) ¡̄ ¢
and for all sufficiently large 

1− −̄ ≥ ¡1− −1
¢ ¡
̄

¢
Hence, X[̄]

=

°°°− − 
°°° ≤ (− 1) ¡̄ ¢ ¡1− −1

¢
(1− −1)

¡
̄

¢ ≤ 2
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Next, for   ̄ we have

°°°− − 
°°° ≤ µ − 



¶−1



≤ 


(62)

and X

=[̄]+1

°°°− − 
°°° ≤ 

X

=[̄]+1

1


≤ 

¡
ln − ln ¡2̄¢¢

=  ln
¡
2̄
¢


Hence, overall, X

=

°°°− − 
°°° ≤ 

¡
ln
¡
2̄
¢
+ 2
¢

and thus, X

=1
kΘ∗∗ k ≤

X
=1

kΨk 
¡
ln
¡
2̄
¢
+ 2
¢
=  () 

In particular, the assumptions of statement (ii) of lemma 4 are satisfied and

kΘ∗∗ () k = P

³
 12 +12



´
 (63)

Since by assumption ( +)
2−1 2 = (1) we have

kΘ∗∗ () k2 =  2 trΩ P (1) 

which concludes our proof of parts (i) and (ii) of the theorem.

Part (iii) of the theorem can be established similarly to part (iii) of Theorem OW1, using the

fact that, by Lemma 6, there exist positive constants 1 and 2 such that

1
 2


trΩ ≤ tr Σ̃ ≤ 2

 2


trΩ (64)

Specifically, we need to show that
¯̄̄
tr Σ̂− tr Σ̃

¯̄̄
is asymptotically dominated by tr Σ̃ The above

inequalities and the fact that  trΩ = (1) imply that it is sufficient to establish the asymptotic

dominance of
¯̄̄
tr Σ̂− tr Σ̃

¯̄̄
by  2.

From (34), ¯̄̄
̂
12

 − ̃
12



¯̄̄
≤ kΨ∗∗ () k 

√
 + kinik 

√


and ̂ = ̃ = 0 for   min {}  Therefore, by Minkowski’s inequality,¯̄̄̄³
tr Σ̂

´12
−
³
tr Σ̃

´12 ¯̄̄̄
≤ (kΨ∗∗ () k+ kinik)min

n
1
p


o
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and ¯̄̄
tr Σ̂− tr Σ̃

¯̄̄
≤ 2 (kΨ∗∗ () k+ kinik)min

n
1
p


o³
tr Σ̃

´12
+2 kΨ∗∗ () k2min {1 }
+2 kinik2min {1 } 

By (64),
³
tr Σ̃

´12
= P ( )  Therefore, to establish the asymptotic dominance of

¯̄̄
tr Σ̂− tr Σ̃

¯̄̄
by

 2 it is sufficient to show that

kΨ∗∗ () k2min {1 } = P
¡
 2
¢
and (65)

kinik2min {1 } = P
¡
 2
¢
 (66)

Since kΨ∗∗ () k ≤ kΘ∗∗ () k+ kΠ∗∗ () k  equalities (60) and (63) yield

kΨ∗∗ () k =
³
 12 +12



´
P(1)

Hence,

kΨ∗∗ () k2min {1 } =  ( +)
2

max {} P(1)

But, by assumption of (iii), ( +)
2 ( max {})→ 0 Therefore (65) holds.

Finally, by (59),

kinik2 = trΩP (1) 

Therefore,

kinik2min {1 } =  trΩ

max {}P (1) 

Since trΩ = (1) we have

kinik2min {1 } = P (1) =  2P(1)

and (66) holds.

3.2.3 Bound on the norm of 

Since kk2 ≤ tr ( 0)  it is sufficient to prove that sup∈[01] tr ( 0) ≤ 2 2 Let

(1)
 be the upper  3 ×  block of  and 

(2)
 be the lower  ×  block. Then,

tr
¡
 0

¢
= tr

³


(1)0
 

(1)
 

´
+ tr

³


(2)0
 

(2)
 

´
≤ tr

³


(1)0
 

(1)
 

´
+ tr

³

(2)0
 

(2)


´
≤ tr

³


(1)0
 

(1)
 

´
+  2
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where the last inequality follows from the fact that tr
³

(2)0
 

(2)


´
equals the sum of squared elements

of the  × matrix 
(2)
 and all these elements are non-negative and no larger than 1 Hence, it is

sufficient to prove that sup∈[01] tr
³


(1)0
 

(1)
 

´
≤  2

Note that


(1)
 =

³


3

 
3−1

 · · · 

´0 ³
1  · · · −1

´


Therefore, for  = 1 
(1)
  = 0 and tr

³


(1)0
 

(1)
 

´
≤  2 trivially holds. For   1 an

elementary calculation yields

tr
³


(1)0
 

(1)
 

´
= 2

1− 2
3



1− 2

Ã
1− 2
1− 2

− 1



µ
1− 
1− 

¶2!

≤ 1

1− 

Ã
1− 2
1− 2

− 1



µ
1− 
1− 

¶2!

=
1− 

(1− )
2

µ
1 + 
1 + 

− 1



1− 
1− 

¶
≤ 

1− 

µ
1 + 
1 + 

− 1



1− 
1− 

¶


Since the term in the final bracket is no larger than unity, the obtained bound on tr
³


(1)0
 

(1)
 

´
is no larger than  2 for all non-negative  ≤ 1− 1 Hence, it is sufficient to show that

sup
∈(1−11)

1

1− 

µ
1 + 
1 + 

− 1



1− 
1− 

¶
≤ 

Let us reparametrize the problem using  = 1−  where  ∈ (0 1)  It is sufficient to show
that

sup
∈(01)

1



Ã
1 + (1−  )

2− 
− 1− (1−  )



!
≤ 1

The Taylor expansion of (1−  ) at zero yields

(1−  ) = 1− +
 − 1
2

µ
1− ∗



¶−2
2

where ∗ ∈ [0 ]  Therefore, for all  ≥ 2 and  ∈ (0 1) we have

(1−  ) = 1− +
2 with | | ≤ 12

This yields

1



Ã
1 + (1−  )

2− 
− 1− (1−  )



!
=
1



µ
 − +

2

2− 
+

¶
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But for  ≥ 2 and  ∈ (0 1), we have  − +
2 ≤ 0. Therefore, the right hand side of the

displayed equality is no larger than  . Thus,

sup
∈(01)

1



Ã
1 + (1−  )

2− 
− 1− (1−  )



!
≤ 12  1

This completes the proof of inequality (43) for all  ≥ 2. A direct verification shows that the

inequality also holds for  = 1

As a bi-product, we established the fact that function

() =

⎧⎨⎩ 1


1
1−2

³
1+
1+

− 1


1−
1−

´
for  ∈ [0 1)

0 for  = 1
(67)

is non-negative, continuous, uniformly in  bounded, and such that, for all  () ≤ 1 and

(1−  ) ≤ 4 for  ∈ [0 1)  We refer to equation (67) in Section 3.2.2 above.

3.2.4 Asymptotic analysis of the eigenstructure of EΣ̃

The final goal of this section is to establish the results claimed in the paragraph immediately

preceding equation (37), which formed the basis of our proof of Theorem OW3 in Section 3.2.1.

Recall that the results are formulated as follows. Under A1, A2, A3 and A5, for any fixed positive

integer 

̃
2 →  (68)¯̄

̃0
¯̄
→ 1 and (69)

̃ trEΣ̃ → 
X∞

=1
  (70)

Here ̃ and ̃ are the -th principal eigenvalue and eigenvector of EΣ̃  is the -th principal

eigenvalue of F , and  = ((1 )  ( )) 
√
 , where  is the -th principal eigenfunc-

tion of F .
To establish (68-70), we will prove that there exist approximating integral operators acting

on the space of continuous functions on [0 1] equipped with the supremum norm, k·ksup, such that,
on one hand, their principal eigenvalues and eigenfunctions converge to those of F , and on the
other hand, the nonzero eigenvalues of  coincide with those of EΣ̃ 2, and the corresponding

eigenfunctions evaluated on the grid 1 2   are eigenvectors of EΣ̃ 2. Convergences

(68-69) immediately follow from the existence of such approximating operators. Convergence (70)

follows from such an existence, Lemma 6, and the fact that, by assumption A5, trΩ ≤ ̄ ∞.
In the rest of this section, we establish the existence of  with the above described proper-

ties. Consider the stationary Ornstein-Uhlenbeck process () generated by stochastic differential
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equation

d() = −()d+ d ()

with the standard Wiener process  () and   0 The initial observation (0) is drawn from the

unconditional distribution of (). As is well known (e.g. Karatzas and Shreve (1998, p. 358)),

the covariance kernel of () is given by −|−| (2)  It is straightforward to verify that the
covariance kernel of the demeaned Ornstein-Uhlenbeck process equals

 ( ) =  ( )−
Z 1

0

 ( ) d−
Z 1

0

 ( ) d+

Z 1

0

Z 1

0

 ( ) dd

=  ( )− ()− () + ,

where

 ( ) =
³
−|−| − 1

´
 (2) 

() =
³
2− − − − −(1−)

´

¡
22

¢
 and

 = (− − 1 + − 22)3

The Taylor expansion of the numerators of  ( )  () () and  at  = 0 reveals that

as → 0  ( ) converges to

0 ( ) = − |− |
2

+

Z 1

0

|− |
2

d+

Z 1

0

|− |
2

d−
Z 1

0

Z 1

0

|− |
2

dd

= min { }+ 22− + 22− + 13

which is the covariance kernel of the demeaned Wiener process. We have

0 ( ) = 0 ( )− 0()− 0() + 0

with

0 ( ) = − |− | 2
0() = −22 + 2− 14 and 0 = −16
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Let

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
2 −(

2+1)  −(
2+1−1)

...
...

...

− −2  −

1 −  −(−1)

0 1  −(−2)
...

...
. . .

...

0 0  1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


A direct derivation yields, for   0

1



¡
 0

¢


=
1



¡
 0

¢

− 1

 2

¡
 0

¢

− 1

 2

¡
 0

¢

+
1

 3
0 0

=
−|−| − −2

2
−(+)


¡
1− −2

¢
−


¡
1− −

¢
+ 1− − − −2

2
−

¡
1− −

¢
 2
¡
1− −2

¢ ¡
 − 1¢

−


¡
1− −

¢
+ 1− − − −2

2
−

¡
1− −

¢
 2
¡
1− −2

¢ ¡
 − 1¢

+
2

¡
− − 1¢+ 

¡
2 − 1¢− −2

2 ¡
1− −

¢2
 3
¡
1− −2

¢ ¡
 − 1¢2 

For  = 0 we have

1



¡
 000

¢


= min { }+ ( )
2

2
−  − ( )  (2 )

+
( )2

2
−  − ( )  (2 ) +  ( + 1) (2 + 1) 

¡
6 3

¢
= − | −  | 2 + ( )

2

2
− 

2
+
1

4
+
( )2

2
− 

2
+
1

4

− ( )  (2 )− ( )  (2 ) +  ( + 1) (2 + 1) 
¡
6 3

¢− 12
For  ≥ 0 we have the following representation

1



¡
 0

¢

= 1 ( )− 2 (() + ()) +  −  ( ) 

where  =  ,  =   and  are as defined above, whereas 1  2    and  ( )

are as follows. For   0

1 =
2


¡
1− −2

¢ and 2 =
22

 2
¡
1− −2

¢ ¡
 − 1¢ 
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 =
2−

¡
− − 1¢+ 

¡
1− −2

¢−  2
¡
1− −

¢2
 3
¡
1− −2

¢ ¡
1− −

¢2 

and

 ( ) =
2− − − −

 2
¡
1− −2

¢ + −2
2

Ã
−(+)


¡
1− −2

¢
−
¡
− + −

¢ ¡
1− −

¢
 2
¡
1− −2

¢ ¡
 − 1¢ +

¡
1− −

¢2
 3
¡
1− −2

¢ ¡
 − 1¢2

!


For  = 0

01 = 02 = 1

0 = ( + 1) (2 + 1) 
¡
6 2

¢− 12 and
0 ( ) = ( + )  (2 ) .

For  ≥ 0 define

 ( ) = 1 ( )− 2 (() + ()) +  −  ( ) 

Then ¡
 0

¢

 =  ( )  (71)

Now, consider integrated kernels

 ( ) =

Z
 ( ) dF ( ) and

F ( ) =

Z
 ( ) dF ( ) 

where F ( ) is the empirical distribution function of the pairs (Ω )   = 1  and F ( )
is its weak limit as  →∞ By definition, F ( ) is the kernel of the operator F .

Let  be approximating operators, acting on  ∈  [0 1] as follows

() () =
1



X

=1
 ( )()

=
1



X

=1

Z
 ( )()dF ( ) 

Identity (71) implies that the eigenvalues of EΣ̃ 2 are also eigenvalues of  . Moreover, if

() is an eigenfunction of   then ( (1)    ( ))
0 is an eigenvector of EΣ̃ 2. Vice versa, if

(1   )
0 is an eigenvector of EΣ̃ 2 then there exists  ∈  [0 1] with  () =  such that  is

an eigenfunction of   In other words, the spectral properties of  and EΣ̃ 2 are essentially

the same, even though the first is an operator in  [0 1] while the second is a × matrix. Anselone
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(1967) traces the technique of approximating integral operator by matrices back to Fredholm, and

the idea of mapping matrices to operators with essentially same spectral properties to Nystrom.

It remains to prove that the principal eigenvalues and eigenfunctions of  converge to

those of F . Our proof is based on the ideas of Anselone (1967). The key facts to establish
are: the pointwise convergence  → F and the collective compactness of the sequence of

operators { :  = 1 2 } (see Anselone (1967) and the discussion below for the definition
of collective compactness). After establishing these facts, we show how they imply the convergence

of the principal eigenvalues and eigenfunctions.

Pointwise convergence Let  be an arbitrary function from  [0 1]  In this subsection, we show

that k−Fksup → 0 as  → ∞ In other words, ∀  0 ∃0 0 s.t. ∀  0 and

  0 k−Fksup  . Without loss of generality, we assume that kksup ≤ 1.
Let   0 and 2  0 be such thatZ

1 { ≥ }dF ( )   (3̄) and

Z
1 { ≥ }dF ( )   (21̄)

for all   2 where 1 {·} denotes the indicator function. For any   0 the displayed inequali-

ties can be satisfied by choosing  sufficiently large because F ( ) is a cumulative distribution
function of a proper probability distribution and F weakly converges to F as  → ∞. In fact,
by A5, any  from the supports of F ( ) and F ( ) satisfies  ≤ ̄ In particular, we can set

 = ̄ However, in this subsection, we do not need to (and will not) assume the boundedness of

the supports of F ( ) and F ( ) with respect to 

Let  () be a continuously differentiable function of  ≥ 0 such that | ()| ≤ 1  () = 1
for  ≤  and  () = 0 for  ≥ 2. We split the difference  − F into three parts,
1 + 2 + 3 where

1 = −
Z 1

0

Z
 (1−  ())  ( )()dF ( ) d

2 =
1



X

=1

Z
 (1−  ())  ( )()dF ( ) 

and 3 = −F− 1 − 2 is the remainder. To analyze 1 and 2 we need the following

lemma.

Lemma 7 Kernels  ( ) and  ( ) are bounded by absolute value uniformly in  ≥ 0 Specif-
ically,

sup
≥0

max
∈[01]2

| ( )| ≤ 1 and sup
≥0

sup
≥1

max
∈[01]2

| ( )| ≤ 7

Proof: The uniform boundedness of | ( )| follows from that of | ( )| = − ( ) and
the definitions () =

R 1
0
 ( ) d and  =

R 1
0

R 1
0
 ( ) dd The uniform boundedness of
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| ( )| follows from the inequality − ≥ 1 −  This inequality implies that the maximum of

| ( )| over   ∈ [0 1]2 is no larger than 12. The uniform bound on | ( )| equals 1 because
 ( ) ≤ −()− () ≤ 1 and − ( ) ≤ − ( )−  ≤ 1.

To establish the uniform boundedness of | ( )|  we will prove that |1 ( )|,
|2 (() + ())|, | |, and | ( )| are uniformly bounded. For   0 we have

|1 ( )| = 1− −|−|


¡
1− −2

¢ = 1−  |−|

 (1− 2)


where  = −  This yields

|1 ( )| ≤ 1− 

 (1− 2)
≤ 1

Clearly, |010 ( )| = |− | 2  1 Hence, |1 ( )| ≤ 1 for all  ≥ 0 and all positive
integers 

Note that

2 () =


 − 11 ()

for   0 and 02 0() = 01 0() Since 1 () =
R 1
0
1 ( ) d and |1 ( )| ≤ 1

for all  ≥ 0 and  we have |1 ()| ≤ 1 But
¯̄̄



−1

¯̄̄
≤ 1 Therefore, |2 ()| ≤ 1 for all

 ≥ 0 and  Hence, |2 ( () +  ())| ≤ 2 for all  ≥ 0 and 

Next, by definition, for   0

 =
2
¡
 − 1¢+ 

¡
1− 2

¢−  2 (1− )2

 3 (1− 2) (1− )2


where  = −  This yields, after some algebra,

 = −
X−2

=0
( − ) ( −  − 1) 

 3 (1 + )


Therefore, | | ≤ 1 for all   0 and  . For  = 0 0 = ( + 1) (2 + 1) 
¡
6 2

¢ − 12 and
hence, |0 | ≤ 12 for all  To summarize, | | ≤ 1 for all  ≥ 0 and  .

Finally, for   0 we have

 ( ) = 1 ( ) + −2
2

2 ( )
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with

1 ( ) =
2− − − −

 2
¡
1− −2

¢ and (72)

2 ( ) =
−(+) − 1


¡
1− −2

¢ + ¡2− − − −
¢
−

¡
1− −

¢
 2
¡
1− −2

¢ ¡
1− −

¢ (73)

+

¡

¡
1− −

¢− ¡1− −
¢
−

¢2
 3
¡
1− −2

¢ ¡
1− −

¢2 

For term 1 ( )  we have

1 ( ) =
2−  − 

 2 (1− 2)
≤ 2

¡
1− 

¢
 2 (1− 2)

≤ 2


 (74)

For term 2 ( )  we have, after some algebra,

2 ( ) = −1−  (+)

 (1− 2)
+

¡
2−  − 

¢

¡
1− 

¢
 2 (1− 2) (1− )

(75)

−
X−1

=0
( − ) 

 3 (1 + )


On the other hand,

1−  (+)

 (1− 2)
≤ 1− 2

 (1− 2)
≤ 1 + + 2−1

 (1 + )
≤ 2 (76)

¡
2−  − 

¢

¡
1− 

¢
 2 (1− 2) (1− )

≤ 2
¡
1 + + −1

¢2
 2 (1 + )

≤ 2 (77)

and X−1
=0

( − ) 

 3 (1 + )
≤ 1


≤ 1 (78)

These bounds yield 2 ( ) ≤ 2 and −2 ( ) ≤ 3 Combining this with the above bound for
1 ( ) yields  ( ) ≤ 3 and − ( ) ≤ 3 so that

| ( )| ≤ 3

for all   0 and all  For  = 0 we obviously have |0 ( )| = |+ |  (2 ) ≤ 1 Summing up
the above results, we obtain

sup
≥0

sup
≥1

max
∈[01]2

| ( )| ≤ 1 + 2 + 1 + 3 = 7¤
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Lemma 7 implies that, for all   2

|1| ≤
Z 1

0

Z
| (1−  ())  ( )()|dF ( ) d

≤
Z

̄1 { ≥ }dF ( )  ̄ (3̄) = 3 (79)

Similarly, for all   2

|2| ≤ 1



X

=1

Z
| (1−  ())  ( )()|dF ( )

≤
Z
7̄1 { ≥ }dF ( )  7̄ (21̄) = 3 (80)

To establish the pointwise convergence of  to F  it remains to prove that |3|  3 for all

sufficiently large  and  .

Consider the following decomposition

3 = 1() + 2() + 3()

where

1() =

Z 1

0

Z
 ()  ( )()d (F ( )−F ( )) d

2() =

Z 1

0

Z
 () ( ( )−  ( ))()dF ( ) d

and

3() =
1



X

=1

Z
 ()  ( )()dF ( )

−
Z 1

0

Z
 ()  ( )()dF ( ) d

Note that  ()  ( )  viewed as a function of  is Lipschitz with the Lipschitz constant that

depends on  but not on  and . Therefore, function 1() is Lipschitz on  ∈ [0 1] with the
Lipschitz constant that does not depend on  Furthermore, for each fixed  ∈ [0 1] it converges
to 0 as  → ∞ because F weakly converges to F and

R 1
0
 ()  ( )()d is a bounded

continuous function on ( ) ∈ [0 ̄] × [0∞)  Therefore, 1() converges to zero uniformly on
[0 1] 

Next, the uniform convergence of 2() to zero would follow from the convergence

sup
≥0

sup
∈[01]2

| () ( ( )−  ( ))|→ 0 (81)
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as  →∞ To see that (81) holds, consider the decomposition

 () ( ( )−  ( ))

=  () (1− 1 )  ( )−  () (1− 2 ) (() + ())

+ () ( −  ) +  ()  ( ) 

As follows from the proof of Lemma 7, | ( )| and |() + ()| are bounded uniformly in  ≥ 0
On the other hand, 1−1 → 0, 1−2 → 0, and −  → 0 uniformly on  ∈ [0 2] (the
support of ). Hence, the first three terms on the right hand side of the above display converge to

zero uniformly in   and 

For the last term, we have

| ()  ( )| ≤ |1 ( )|+
¯̄̄
−2

2

2 ( )
¯̄̄

≤ 3


+ 2

3

¯̄̄̄
¯
¡
2−  − 

¢

¡
1− 

¢
 2 (1− 2) (1− )

− 1−  (+)

 (1− 2)

¯̄̄̄
¯ 

where  = − , 1 ( ) and 2 ( ) are as defined in (72) and (73), and we used (72), (75)

and (78) for the last inequality. From (76) and (77), we see that the second term on the right hand

side of the latter inequality is no larger than 22
3
 Therefore,

| ()  ( )| ≤ 3


+ 22

3 ≤ 3


+ 2−2

for  ∈ £0 1− 1 2¤  On the other hand,¯̄̄̄
¯
¡
2−  − 

¢

¡
1− 

¢
 2 (1− 2) (1− )

− 1−  (+)

 (1− 2)

¯̄̄̄
¯

=

¯̄̄̄
¯̄̄ ¡1− 

¢ ¡
1− 

¢
 (1− 2)

−
¡
2−  − 

¢X

=0
( − ) 

 2 (1 + )

¯̄̄̄
¯̄̄

≤
¡
1− 

¢2
 (1− 2)

+
2
¡
1− 

¢
1 + 

≤ 2 (1− ) 

Therefore, for  ∈ ¡1− 1 2 1¤ 
| ()  ( )| ≤ 3


+ 2 (1− ) 2

3 ≤ 5




Hence, | ()  ( )|→ 0 uniformly over   ∈ [0 1]2 and  ≥ 0
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Turning to the analysis of 3() let us define bounded linear functionals

 =

Z 1

0

 () d and  =
1



X

=1
 ( )

similar to Anselone (1967, p.9). Functionals  converge to  uniformly on totally bounded subsets

of  [0 1]  We have

3() =

Z
 (( −  ) ) dF ( ) 

where

() =  ()  ( )()

The family of functions {() :  ∈ [0 1]   ≥ 0} is bounded and equicontinuous. Hence, by
Arzela-Ascoli lemma, this family forms a totally bounded set in  [0 1]  Therefore, ( −  ) 

converges to zero uniformly over ( ) ∈ [0 1] × [0∞)  This yields the uniform convergence of

3() to zero.

To summarize, functions 1 2 3 converge to zero as  → ∞ Hence, there exists 3 0

such that for all   3 and   0 k3ksup  3 Combining this with (79) and (80), and

setting 0 = max {2 3}  we see that, for all   0 and   0 k−Fksup  

which finishes the proof of the pointwise convergence  → F .

Collective compactness The set of operators { :  = 1 2 } is called collectively com-
pact if the subset

n
 :  = 1 2  kksup ≤ 1

o
of  [0 1] is totally bounded. Recall that a

set  is totally bounded if and only if for any   0 there exists a finite set {1  }  such that
for any  ∈  min1≤≤ k− k  .

We have  = 
(1)
+ 2 where³


(1)


´
() =

1



X

=1

Z
 ()  ( )()dF ( ) 

with  () and 2 defined in the previous sub-section. As we have seen above, k2ksup  3

Therefore, to establish the collective compactness of   it is sufficient to show that ∀ the setn

(1)
 :  = 1 2  kksup ≤ 1

o
is totally bounded. But such total boundedness follows from

the Arzela-Ascoli lemma and the fact that functions () =  ()  ( )() are bounded and

equicontinuous for  ≥ 0 and  ∈ [0 1] 

Convergence of the principal eigenvalues and eigenfunctions Recall that we denote the

eigenvalues of F as 1 2  and corresponding eigenfucntions as 1 2  By assumption A5,
these eigenvalues are simple so that 1  2   Denote the eigenvalues of  as 1 ≥
2 ≥  and corresponding eigenfunctions as 1  2   Let us show that, for any fixed 

 →  and  →  the latter convergence being in  [0 1] 1

1The eigenfunctions are defined up to sign, and we assume that it is chosen so that

 ()()d  0.
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Take  = 1 Since 1    = 1 2 3  forms a bounded sequence, there exists a converging

sub-sequence 1
→ 1 By Lemmas 2.5 and 2.6 of Anselone (1967), 1

→ 1 and 1 1

is an eigenvalue-eigefunction pair for F . On the other hand, it must be the case that 1 = 1

Indeed, if 1  1 then by Theorem 2.2 of Anselone (1967), 1 must belong to the resolvent set of

F  which is not true. Hence, any convergent sub-sequence of 1    = 1 2 3  converges to

1 and the sub-sequence of corresponding eigenfunctions converges to 1 Therefore, 1 → 1

and 1 → 1. Similar convergences for any positive integer  follow by mathematical induction.

3.2.5 Proof of Lemma 6

First, let us prove the following lemma. Let w be the  ×  orthogonal matrix with -th column

 where  are as defined in Lemma 1. Namely, for     is a vector with -th coordinate

 = −
p
2 cos ((− 12) )  while  = 

√
 . Here  is the  -dimensional vector of ones.

Let  be a 
¡
 2 + 1

¢×  matrix such that

 0 =

⎛⎜⎜⎜⎜⎝
−

2
 − 1 0  0

−(
2+1 )  −2 − 1  0
...

...
...

...
. . .

...

−(
2+1−1 )  − −(1−1 ) −(1−2 )  1

⎞⎟⎟⎟⎟⎠ 

Lemma 8 For any  ≥ 0
w0 0w =  −∆

where  is a diagonal matrix with -th diagonal element equal to |1− exp {(i− ) }|−2 if
   and zero if  =  ; and ∆ is a positive semi-definite matrix of rank two with  -th entry

∆ =
2


−

³
1− −

´ cos (2 )¯̄
(−+i) − 1

¯̄2 cos (2 )¯̄
(−+i) − 1

¯̄2
×
Ã
1 + − −2

2

1 + −

³
1− (−1) −

´³
1− (−1) −

´
+ (−1)+ 1− −2

1 + −

!


Proof: Let us partition  into the upper 
3 ×  submatrix 

(1)

 and the lower  ×  matrix


(2)

 . We have


(1)

 =
³
−

2

  −2  −
´0
01

where 1 is the  -dimensional vector with -th coordinate 1 = −(−1)  Obviously,

w0
(1)0
 

(1)

 w = 0 for  = 0 (82)

For   0

w0
(1)0
 

(1)

 w =
1− −2

2

2 − 1 1
0
1 (83)
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where 1 = w
01

Next, note that

³

(2)



´−1
=

⎛⎜⎜⎜⎜⎜⎝
1 −− 0

1
. . .

. . . −−
0 1

⎞⎟⎟⎟⎟⎟⎠
and therefore,

³

(2)0
 

(2)



´−1
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 + −2 −− 0  0

−− 1 + −2 −−  0
...

. . .
. . .

. . .
...

0
...

. . . 1 + −2 −−
0 0  −− 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠


It is straightforward to verify that   = 1   are eigenvectors of³

(2)0
 

(2)



´−1
− − 101 − −

³
1− −

´
 

0
 − 1=00

with corresponding eigenvalues equal to −1 = |1− exp {(−+ i) }|2 for    and −1 =
|1− exp {−}|2 − 1=0 Here  denotes the -th column of the  -dimensional identity matrix,
and 1=0 is the indicator of the event  = 0.

Let ̄ = diag {1   }  Thenµ³

(2)0
 

(2)



´−1
− − 101 − −

³
1− −

´
 

0
 − 1=00

¶−1
= w̄w

0

Applying the Sherman-Morrison formula for the inverse of a low rank perturbation of an invertible

matrix to the left hand side of the above equality yields, for   0

w̄w
0 = 

(2)0
 

(2)

 +
−

1− −
1

0
1 +

−2¡
1− −2

¢
(1− −2)

2
0
2 (84)

where 1 is as defined above, and 2 is the  -dimensional vector with -th coordinate

2 = 2 (−1) + −2 −(−1) 

Similarly, for  = 0 the Sherman-Morrison formula yields

w̄w
0 = 

(2)0
 

(2)

 + +0 (85)

where  and  are some matrices, exact form of which is of no consequence to what follows.
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Mutiplying both sides of equation (84) byw0 from left and byw from right and rearranging,

we obtain

w0
(2)0
 

(2)

 w = w0w̄w
0w− −

1− −
1

0
1

− −2¡
1− −2

¢
(1− −2)

2
0
2

where 2 = w
02 Summing up with (83) yields

w0 0w = w0w̄w
0w−

−2( 2+1 ) + −

1− −2
1

0
1 (86)

− −2¡
1− −2

¢
(1− −2)

2
0
2

for   0.

Note that w0w =  −  
0
  where  denotes the last column of the  -dimensional identity

matrix, so thatw0w̄w
0w =  Further, a direct calculation shows that the -th coordinates

of 1 and 2 equal

1 = −
r
2



¡
1− −

¢ ¡
1− (−1) −¢ cos (2 )¯̄

(−+i) − 1
¯̄2 

2 = −
r
2



¡
1− −

¢
(−1) ¡ − −

¢
−2 cos (2 )¯̄

(−+i) − 1
¯̄2 

For   0 the lemma now follows from (86) by verifying that

−2(
2+1 ) + −

1− −2
1

0
1 +

−2¡
1− −2

¢
(1− −2)

2
0
2 = ∆

For  = 0 mutiplying both sides of equation (85) by w0 from left and byw from right and

rearranging, we obtain w0
(2)0
 

(2)

 w = w0w̄w
0w Summing this up with (82) yields

w0 0w = w
0w̄w

0w = 

This establishes the lemma for  = 0 because, as is easy to see, ∆ = 0 for  = 0. ¤
Let us now turn to the proof of Lemma 6. By definition of EΣ̃ and Lemma 8,X

=+1
̃ ≤

1



X

=1

X

=+1


Ω
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On the other hand,X

=+1


=
X−1

=+1
|1− exp {(− + i) }|−2

≤
X∞

=+1

 2

2 + 22
+ 

¡
 2
¢

≤
X∞

=+1

 2

22
+ 

¡
 2
¢

≤  2

2
+ 

¡
 2
¢ ≤  2

9

for all sufficiently large  uniformly over  ≥ 0 Therefore,X

=+1
̃ ≤

 2



X

=1

1

9
Ω =

 2

9
trΩ

The lemma’s second inequality is a straightforward consequence of the convergence ̃
2 →   0

and the fact that, as implied by A5, trΩ is converging to a positive value as  →∞

3.3 Demeaned and standardized data

3.3.1 Proof of Theorem OW4

First, we prove the theorem for  = 1 and then establish it for general  using mathematical

induction. For the demeaned and standardized case, ̂1 is defined as a normalized eigenvector of

Σ̂ = 0−1

corresponding to its largest eigenvalue ̂1. Here  = diag { 0} and  is the projector on

the space orthogonal to the  -dimensional vector of ones.

In contrast to the proof of Theorem OW1, we will not approximate Σ̂ by Σ̃ where the latter

matrix is derived from the Beveridge-Nelson decomposition

 = Ψ(1) +Ψ∗ () 

In fact, we will not be using the BN decomposition at all. There are two reasons for this. First,

Lemma 4 cannot be applied to the standardized version of Ψ∗ ()  that is, −12Ψ∗ () 

Second, even if we manage to reduce the analysis of −12 to that of −12Ψ(1) our

method of handling Ψ(1) would not extend to −12Ψ(1) , because  and  are not

independent. To summarize, we are not going to use the BN decomposition, and will work directly

with the demeaned and standardized data −12 = −12 , where  = [1   ] with

 = Ψ () 

Recall that by Lemma 1,  =
X

=1


0
 Consider a representation of ̂1 in the basis
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1  

̂1 =

−1X
=1

 (87)

Vector ̂1 is orthogonal to   hence summation runs up to  =  − 1. Representation (87) yields

̂1 =

−1X
=1


0
Σ̂ =

−1X
=1


0

0−1 (88)

It is convenient to represent ̂1 in the form ̂1 = 0 where

 =
1√


X
=1


−12 +

1√


−1X
=+1


−12 = 1 +2

with  being a fixed positive integer. Let · denote the -th row of . Then, we have the following
explicit expressions for k1k2 and k2k2.

k1k2 = 

X
=1


1



X

=1

 (·) (·)X−1
=1

2 (·)
2
and (89)

k2k2 =




X
=1

µX−1
=+1

·

¶2
X−1

=1
2 (·)

2
 (90)

Let

 =  (·) (·) 
X−1

=1
2 (·)

2 

Then

k1k2 = 

X
=1


1



X

=1


and by A2b,  are independent for different  = 1  Moreover, since

¯̄


0

0
··

¯̄
≤ 2

0

0
·· + 2

0

0
··

2


we have || ≤ 12 Therefore, the variance of 1


X

=1
 is no larger than 1 (4)  and

thus, the asymptotic behavior of k1k2 is, to a large extent, determined by that of 1
X

=1
E

Consider the finite Fourier transform of · (e.g. Brillinger (2001, ch. 3.1))

 () =
X

=1
 exp {−i(− 1)}  ∈ [0 2] 

Let us denote  (2) as  and  (−2) as − where  = 2 . By definition (see Lemma
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1), the -th entry of  for  = 1   − 1 equals

 =
p
2 (exp {i (− 1)2}− exp {−i (− 1)2})  (2i) 

Therefore,

· =
p
2 (− − )  (2i)  (91)

Theorem 13, ch.4 of Hannan (1970) (one of the assumptions of this theorem requires that the

spectral density of · at zero is positive, which is ensured by A2b), identity (91), and the definition
of  imply that, for any fixed   and  as  →∞ 

→M where

M = ()
−1 

X∞
=1
()−2 2 

and {}∞=1 is a sequence of i.i.d. (0 1) random variables. Since  is bounded, the conver-

gence in disitribution implies the convergence of the moments of  In particular, as  →∞

E = EM + (1) (92)

To proceed further, we need to establish the uniformity of (1) in  = 1   .

In preparation for the proof of the uniformity, we establish some bounds on the spectral density

of the series   ∈ Z at frequency 

 () =
1

2

¯̄̄X∞
=0

(Ψ) exp {i}
¯̄̄2
 (93)

By assumption A2b, for all 

max

| ()| ≤ 2 (2)  (94)

Furthermore, differentiating both sides of (93) with respect to , we obtain

 ()
0 =

1

2

X∞
=0

i ( − ) (Ψ) (Ψ) exp {i − i} 

Since | − | ≤ ( + 1) ( + 1)  we conclude, using A2b, that for all 

max


¯̄
 0 ()

¯̄
≤ 2 (2)  (95)

Finally, A2b also implies that, for all 

 (0) ≥ 2 (2)  (96)

We will need the following two lemmas. Their proofs can be found in Sections 3.3.2 and 3.3.3.

Lemma 9 Under the assumptions of Theorem OW4, there exists an absolute constant  such that,

for any  = 1  and any     = 1   − 1 we have

45



(i)
¯̄̄
E
³
00··

´
− 2 (2) 

¯̄̄
≤ 2 where  is the Kronecker delta and  = 2 ;

(ii)
¯̄̄


³
00·· 

0

0
··

´¯̄̄
≤  ( +  + (1 + κ4)  )4 where κ4 is as defined in

A1.

Lemma 10 Let X be an -dimensional vector with the -th coordinate · and let Y be an -

dimensional vector with i.i.d. normal coordinates with mean zero and variance 2 (0). Further, let

 : R → R be a thrice continuously differentiable function with all derivatives up to and including

the third order are bounded by absolute value by a constant  Then, under assumptions A1 and

A2b, we have, for all sufficiently large  ,

|E (X)− E (Y)| ≤
√


where  depends only on  and κ4 with κ4 and  as defined in A1 and A2b.

Now we are ready to prove the uniformity of (1) in (92). By definition,

 =
XXX

=1
2X

2
 + Z



where Z =
X−1

=+1
2 

0

0
·· For max{ } ≤  denote XX

X

=1
2X

2
 as ̄

Consider the event E = ©X21 ≤ 
ª
and let 1E and 1E be the indicators of this event and of its

complement, respectively. Since || ≤ 12 and
¯̄
̄

¯̄
≤ 12 we have

E
£¯̄
 − ̄

¯̄
× 1E

¤ ≤  = Pr (E) 

By setting function  in Lemma 10 so that it approximates 1E , we see that  can be made arbitrarily
small for all sufficiently large  unifomly in  by choosing  sufficiently small. On the other hand,

E
£¯̄
 − ̄

¯̄
× 1E

¤
= E

⎡⎣ ||Z1EX

=1
2X

2


⎤⎦ ≤ EZ
221



By Lemma 9 (i) and by (94),

EZ ≤
X−1

=+1
2
¡
 + 2

¢ ≤ ̃21

for some absolute constant ̃ where the latter inequality follows from the definition of 2  Therefore,

E
£¯̄
 − ̄

¯̄
× 1E

¤ ≤ ̃ (2) 
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and

E
¯̄
 − ̄

¯̄
= E

£¯̄
 − ̄

¯̄
× 1E

¤
+ E

£¯̄
 − ̄

¯̄
× 1E

¤
≤  + ̃ (2) 

which can be made arbitrarily small for all sufficiently large  uniformly in  by choosing sufficiently

small  and sufficiently large .

Further, let M̄ = 
X

=1
2 

2
  By choosing  sufficiently large, we can make

E
¯̄
M̄ −M

¯̄
arbitrarily small for all sufficiently large  .

Now consider Ē − EM̄ To bound this expression uniformly in  we would like to use

Lemma 10 again. Unfortunately, ̄ does not have bounded derivatives as a function of X =

(X1 X)
0  The derivatives are unbounded in a neighborhood of X = 0

To overcome this difficulty, let us introduce  : [0∞) → R, a thrice continuously differential

function such that

() =  for   

()  2 for  ≥ 0

and the first three derivatives of () bounded for  ∈ [0 ]  Further, let

̃ =
XX

21
¡
X21
¢
+
X

=2
2X

2


=  (X) 

Similarly, let M̃ =  ()  where  = (1  )
0  Note that the derivatives  () for  = 1 2 3

are bounded, with a bound that depends only  but not on .

We have

̄ = ̄1E + ̄1E = ̄1E + ̃1E

=
³
̄ − ̃

´
1E + ̃

Therefore ¯̄̄
Ē − Ẽ

¯̄̄
=
¯̄̄
E
h³
̄ − ̃

´
1E
i¯̄̄
≤ 

so that
¯̄̄
Ē − Ẽ

¯̄̄
can be made arbitrarily small, uniformly over , by choosing sufficiently

small  By similar arguments, we can show that
¯̄̄
EM̃ − EM̄

¯̄̄
can be made arbitrarily small

by choosing sufficiently small  Finally,
¯̄̄
Ẽ − EM̃

¯̄̄
can be made arbitrarily small uniformly

over  for all sufficiently large  by Lemma 10. Summing up the above arguments, we conclude

that (1) in (92) is uniform in .
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By (92) and Chebyshev’s inequality,

1



X

=1
 = EM + (1) +P

³
−12

´


Furthermore, by a conditioning argument, it is easy to show that EM = 0 for  6=  Now recall

k1k2 = 

X
=1


1



X

=1


Therefore, we have

1


k1k2 =

X
=1

2EM + (1) +P

³
−12

´


For 2 the Cauchy-Schwarz inequality and the identity
X

2 = 1 yield

k2k2  =
1



X
=1

µX−1
=+1

·

¶2
X−1

=1
2 

0

0
··

≤
µ
1−

X

=1
2

¶
1



X
=1

X−1
=+1

2 (·)
2X−1

=1
2 (·)

2


Note that

E

X−1
=+1

2 (·)
2X−1

=1
2 (·)

2
= 1− E

X

=1
2 (·)

2X−1
=1

2 (·)
2
= 1−

X
=1

EM + (1)

=  + (1)

where  can be made arbitrarily small by choosing sufficiently large  and (1) is uniform in 

but may depend on . Therefore,

k2k2  ≤
µ
1−

X

=1
2

¶³
 + (1) +P

³
−12

´´


For ̂1, we have

̂1 = kk2 ≤ k1k2 + 2 k1k k2k+ k2k2 

This inequality and the above bounds on k1k2  and k2k2  yield

̂1 ≤
X
=1

2EM +∆ + P (1) 
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where ∆ can be made arbitrarily small by choosing sufficiently large  and the convergence of

P (1) to 0 as  →∞ may depend on the choice of . This implies that

̂1 ≤
−1X
=1

2EM + P (1) 

It is easy to see that EM  EM for    Indeed, consider functions HH : [0∞)2→ R

H( ) =
2X

≥16= ()
−2 2 + 2 + 2



H( ) =
2X

≥16= ()
−2 2 + 2 + 2

Functions H and H are increasing in  and decreasing in  and this monotonicity is strict (unless

2 = 0 or 
2
 = 0 which is a zero probability event). Therefore, with probability one, for    we

have

EM = EH(
−2 −2)  EH

µ
−2 + −2

2

−2 + −2

2

¶
and

EM = EH(
−2 −2)  EH

µ
−2 + −2

2

−2 + −2

2

¶


On the other hand,

EH

µ
−2 + −2

2

−2 + −2

2

¶
= EH

µ
−2 + −2

2

−2 + −2

2

¶
Therefore, EM  EM This implies that

−1X
=1

2EM ≤ 21EM11 +
¡
1− 21

¢
EM22

and thus,

̂1 ≤ 21EM11 +
¡
1− 21

¢
EM22 + P (1)  (97)

On the other hand, ̂1 must be no smaller than 01Σ̂1 which yields

̂1 ≥ EM11 + P(1) (98)

Thus, ¡
1− 21

¢
EM11 ≤

¡
1− 21

¢
EM22 + P(1)

which only holds if

21
P→ 1 (99)
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This yields statement (i) of the theorem.

To establish statement (ii), note that (97) and (98) imply¯̄̄
̂1 − EM11

¯̄̄
≤
¯̄
1− 21

¯̄
(EM11 + EM22) + P(1)

Combining this with (99), we conclude that

̂1 = EM11 + P(1)

This yields (ii) because EM11 = 1 (the latter being defined in the statement of Theorem OW4).

Further,

tr Σ̂ = tr
¡
 0−1

¢
= tr

¡
−1 0

¢


But, by definition,  = diag { 0}  Therefore, tr Σ̂ =  and

̂1 = ̂1 tr Σ̂

which yields statement (iii) of the theorem.

For  =   1 the theorem follows by mathematical induction. Indeed, suppose it holds for

   Consider a representation ̂ =
X−1

=1
 Since ̂

0
̂ = 0 for all    and since¯̄̄

̂ 0

¯̄̄
= 1 + P (1) by the induction hypothesis, we must have  = P (1) for all    In

particular,

̂ 0Σ̂̂ =
X−1

=


0

0−1 + P ( ) 

In addition to this equality, we must have

−1X
=1

̂ + ̂ 0Σ̂̂ ≥
X
=1

0 00−1 = 

X
=1

EM + P ( ) 

Combining the above two displays, and using the induction hypothesis, this time regarding the

validity of the identities ̂ = EM + P ( ) for all    we obtain

−1X
=


0

0−1 ≥ EM + P ( )  (100)

Statements (i), (ii), and (iii) for  =  now follow by arguments that are very similar to those used

above for the case  = 1

That is, we represent the sum on the left hand side of (100) in the form 0 where  =

1√


X−1
=1


−12 Then proceed along the lines of the above proof to obtain an upper

bound on 0 similar to the right hand side of (97). Then, combining this upper bound with the
lower bound (100), we prove the convergence 2

P→ 1 Finally, we proceed to establishing parts (ii)

and (iii) using part (i). We omit further details to save space.
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3.3.2 Proof of Lemma 9

Identity (91) yields

E
¡
0

0
··

¢
= −E [(− − ) (− − )]  (2 ) 

and


¡
0

0
·· 

0

0
··

¢
=

1

4 2
 ((− − ) (− − )  (− − ) (− − )) 

To evaluate the latter expectation and covariance, we use Theorem 4.3.2 of Brillinger (2001)

(B01), which describes joint cumulants of finite Fourier transforms. First, we need to represent the

expectation and covariance in terms of the joint cumulants. By their definition, and by Theorem

2.3.1 (B01, p.19),

E
¡
0

0
··

¢
= − 1

2

X
12∈{−1+1}

12 cum (1 2)  (101)

Similarly, 
³
00·· 

0

0
··

´
equals

1

4 2

X
1234∈{−1+1}

1234 cum(12 34) 

By Theorem 2.3.2 of B01, the joint cumulant of the two products of  as in the latter display,

can be represented in the form of a sum of the products of the cumulants of order two and the

fourth-order cumulant. Precisely, we have


¡
0

0
·· 

0

0
··

¢
=

1

4 2

X
1234∈{−1+1}

1234

×{cum (1 3) cum (2 4) + cum (1 4) cum(2 3) (102)

+cum(1 2 3 4)} 

Lemma 11 Under assumptions of Theorem OW4, there exists an absolute constant  such that,

for any     = 1   − 1 and any 1 2 3 4 ∈ {−1+1} 

|cum (1 2)− 212 (2)| ≤ 2 (103)

where 12 =
X−1

=0
−i(1+2)2 and

¯̄̄
cum (1 2 3 4)− (2)312344

¯̄̄
≤ κ44 (104)

where 1234 =
X−1

=0
−i(1+2+3+4)2 and 4 is the 4-th order cumulant spec-

trum of the series   ∈ Z at frequencies 12 22 32
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Proof: The proof of Theorem 4.3.2 in B01 implies that the left hand side of (103) can be bounded

by 
X∞

=0
(1 + ) |Γ ()|  where  is an absolute constant and

Γ () = E− =
∞X

=−∞
−

Here  = (Ψ) for  ≥ 0 and  = 0 for   0. On the other hand,

∞X
=0

(1 + ) |Γ ()| ≤
∞X
=0

(1 + )

∞X
=−∞

|| |−| (105)

≤
∞X
=0

∞X
=−∞

(1 + |− |) || |−|+
∞X
=0

∞X
=−∞

(1 + ||) || |−| ≤ 22

where the last inequality follows from assumption A2b. This yields (103).

Similarly, from the proof of Theorem 4.3.2 in B01, we know that the left hand side of (104) can

be bounded by


X∞

123=−∞
(1 + |1|+ |2|+ |3|) |4 (1 2 3)|  (106)

where  is an absolute constant and 4 (1 2 3) is the joint 4-th order cumulant of  −1 
−2 , and −3 By Theorem 2.3.1 (i,iii) of B01, this cumulant equalsX∞

1234=−∞
1−12−23−34 cum (−1  −2  −3  −4)

=
X∞

=−∞ −1−2−3
¡
E4− − 3

¢
≤

X∞
=−∞ |−1−2−3|κ4

where the last line follows from A1. By an argument similar to (105), expression (106) can be

bounded by κ44 where  is an absolute constant. This yields (104). ¤
Returning to the proof of Lemma 9, consider (101). Inequality (103) implies that¯̄̄̄

E
¡
0

0
··

¢
+
1

2

X
12∈{−1+1}

12122 (2)

¯̄̄̄
≤ 22


 (107)

Further, for  = X
12∈{−1+1}

1212 =
X

12∈{−1+1}
12

X−1
=0

−i(1+2) = −2 (108)

For  6=  and such that 1 + 2 is even for all 1 2 ∈ {−1+1},X
12∈{−1+1}

1212 =
X

12∈{−1+1}
12

X−1
=0

−i(1+2) = 0 (109)

Here, the latter equality holds because 1+ 2 is an even nonzero integer, such that |1 + 2| 
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2 (recall that 1 ≤   ≤  −1). For  6=  and such that 1+2 is odd for all 1 2 ∈ {−1+1} 
we have X−1

=0
−i(1+2) =

−2
−i(1+2) − 1 

Nevertheless,
X

12∈{−1+1}
1212 still equals zero because

−2
−i(+) − 1 +

−2
i(+) − 1 +

2

−i(−) − 1 +
2

i(−) − 1 = 2− 2

Therefore, (109) still holds. Using identities (108) and (109) in (107), we obtain statement (i) of

Lemma 9.

Next, consider (102). By (103) and (104), the difference between³


´2X
1234∈{−1+1}

1234 {212344

+(1324 +1423)  (2)  (2)}

and 
³
00·· 

0

0
··

´
is no larger by absolute value than

1

4 2

X
1234∈{−1+1}

©
κ44 + 224 + 22 (|13 (2)|

+ |24 (2)|+ |14 (2)|+ |23 (2)|)} 

which, in its turn, is bounded from above by  (1 + κ4)4 where  is an absolute constant (we

remind the reader that throughout the paper, the value of the absolute constant  may change from

one appearance to another). Indeed, such a bound follows from (94) and the fact that || ≤ 

Further, from the above analysis of E
³
00··

´


X
1234∈{−1+1}

1234 (1324 +1423) = 4
2 ( + ) 

Therefore, from (94),¯̄̄̄X
1234∈{−1+1}

1234 (1324 +1423)  (2)  (2)

¯̄̄̄
is no larger than 4 24 ( + )  (2)

2  Next, by Theorem 2.8.1 of B01,

4 (1 2 3) = Θ (1)Θ (2)Θ (3)Θ (−1 − 2 − 3)
E4 − 3
(2)3



where Θ () =
X∞

=0


−i and since || ≤  ,

¯̄̄̄X
1234∈{−1+1}

1234212344

¯̄̄̄
≤ 4κ4

(2)2
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Overall, we conclude that
¯̄̄


³
00·· 

0

0
··

´¯̄̄
is no larger than

³


´2µ4κ4
(2)2

+
4 24 ( + )

(2)2

¶
+

 (1 + 4)
4




which yields statement (ii) of Lemma 9.

3.3.3 Proof of Lemma 10

Our proof is based on the following theorem, established in Chatterjee (2006).

Theorem 12 (Chatterjee, 2006) Suppose  and  are random vectors in R with  having inde-

pendent components. For 1 ≤  ≤ , let

 : = E |E ( |1  −1 )− E ()| 
 : = E

¯̄
E
¡
2 |1  −1

¢− E ¡2 ¢¯̄ 
Let 3 be a bound on max

³
E ||3 + E ||3

´
 Suppose  : R → R is a thrice continuously

differentiable function, and for  = 1 2 3 let () be a finite constant such that | ()| ≤  ()

for each  and  where  denotes the -fold derivative in the -th coordinate. Then

|E ()− E ()| ≤
X

=1

µ
1() +

1

2
2()

¶
+
1

6
3()3

Let us denote (Ψ) as  as in the previous section. With this notation, we have

 =
X∞

=0
−

Let

 =

(
+1− for  = 1  2X∞

=2+1− +2 +1−− for  = 2 + 1  3

and  = 3 Then, for  = 1   we have

 =
X+−1

=0
+−+1 + 3−+1

so that the -dimensional vector X with the -th coordinate · can be thought of as a function
X() : R → R Further, let

 =

(
i.i.d. (0 1) for  = 1  2

0 for  = 2 + 1  3
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Since   = 1  2 are independent, we have

 =  = 0 for  = 1  2 (110)

For   2 we have

 = E |E ( |1  −1 )|
≤ ¡

E
£
E
¡
2 |1  −1

¢¤¢12
=
£
E
¡
2
¢¤12

and

 = E
£
E
¡
2 |1  −1

¢¤
= E

¡
2
¢


On the other hand, for   2 ,

E
¡
2
¢
=
X∞

=2+1− 
2
+2 

By assumption A2b,
X∞

=0
(1 + ) || ≤  Therefore, || ≤  (1 + ) and, for 2   ≤ 3

E
¡
2
¢ ≤ 

4 + 1− 

X∞
=2+1− |+2 | ≤

2

(4 + 1− )2
≤ 2

 2


Hence,

|| ≤  and || ≤ 2 2 for  = 2 + 1  3 (111)

Further, for  = 1  2

E ||3 + E ||3 = E |+1−|3 + 2
p
2 

³
E |+1−|4

´34
+ 2 (112)

≤ (κ4 + 3)
34 + 2 ≤ κ4 + 5

Here the second to the last inequality follows from A1. For 2   ≤ 3 we have

E ||3 + E ||3 = E ||3 = E
¯̄̄X∞

=2+1− +2 +1−−
¯̄̄3

≤
µ
E
³X∞

=2+1− +2 +1−−
´4¶34

≤
µ³X∞

=2+1− 
2
+2

´2
+ κ4

X∞
=2+1− 

4
+2

¶34
≤ (1 + κ4)

343 3 ≤ (1 + κ4)3 3 ≤ κ4 + 5

for all sufficiently large 
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Next, let  () =  (X ())  We have

¯̄
1 ()

¯̄
≤
X

=1

¯̄
1  (X)

¯̄ ¯̄
1X ()

¯̄
≤

X

=1

¯̄
1X ()

¯̄


On the other hand,

1X () = 1 (·) =
X

=1


1


µX+−1
=0

+−+1 + 3−+1

¶

=

⎧⎨⎩
X

=+1− +−−1 for  = 1  2

3+1− for  = 2 + 1  3


Since || ≤
p
2 and

X∞
=0

(1 + ) || ≤  we have

¯̄
1X ()

¯̄
≤ ( + 1)

p
2 

Here, we use +1 instead of  to take into account a possibility that   1 Combining the latter

display with the above inequality for
¯̄
1 ()

¯̄
 we obtain¯̄

1 ()
¯̄
≤1

12 (113)

where 1 =
√
2 ( + 1) 

Further, ¯̄
2 ()

¯̄
≤

X

12=1

¯̄
212 (X)

¯̄ ¯̄
1X1 ()

¯̄ ¯̄
1X2 ()

¯̄
+
X

=1

¯̄
1  (X)

¯̄ ¯̄
2X ()

¯̄
=

X

12=1

¯̄
212 (X)

¯̄ ¯̄
1X1 ()

¯̄ ¯̄
1X2 ()

¯̄
≤ 

X

12=1

¯̄
1X1 ()

¯̄ ¯̄
1X2 ()

¯̄
so that ¯̄

2 ()
¯̄
≤2 (114)

where 2 = 21  Similarly,¯̄
3 ()

¯̄
≤
X

123=1

¯̄
3123 (X)

¯̄ ¯̄
1X1 ()

¯̄ ¯̄
1X2 ()

¯̄ ¯̄
1X3 ()

¯̄
so that ¯̄

3 ()
¯̄
≤3

32 (115)

where 3 = 31 
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Using inequalities established above in Theorem 12, we obtain

|E ()− E ()| ≤ 1

 12
+

2
2

2 2
+

3 (κ4 + 5)
2 12



On the other hand,

|E (X)− E (Y)| = |E (X())− E (X()) + E (X())− E (Y)|
= |E ()− E () + E (X())− E (Y)|
≤ |E ()− E ()|+ |E (X())− E (Y)| 

Note thatX() andY are normally distributed vectors with zero means but different covariance

matrices, which we denote Σ and ΣY respectively. By definition,

ΣY = 2 (0) 

Define +1−  = 1 2  as  for  = 1  2 and as i.i.d. (0 1) random variables independent

from 1  2 for   2 Then,

X() =
X

=1

X+−1
=0

+−+1

=
X

=1

X+−1
=0

−

=
X

=1

X∞
=0

− −
X

=1

X∞
=+

−

= X()−
X

=1

X∞
=+

−

= X()−
X∞

=
−

X

=1
+

By Lemma 9,

|E (X1()X2())− 2 (12) 12 | ≤ 2

Further,

E
µY2

=1

X∞
=

−
X

=1
+

¶
=
X∞

=

µY2

=1

X

=1
+

¶
≤

X∞
=

X

=1
2+ ≤

X

=1

2

( + )2


2
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and

E
µ
X1()

X∞
=

−
X

=1
+2

¶
= E

µX

1=1

X∞
1=−1

−11+111
X∞

2=
−2

X

2=1
2+222

¶
=

X∞
=

X

1=1
+111

X

2=1
+222 

2




This yields

|E (X1()X2())− 2 (12) 12 | ≤ ̃

for some constant ̃ that depends on  This and inequality (95), yield

|E (X1()X2())− 2 (0) 12 | ≤ ̂ (116)

for any positive integers 1 2 ≤  where ̂ depends on  and .

Further,

| (X())−  (Y)| ≤ kX()−Yk 

Therefore,

|E (X())− E (Y)| ≤ E kX()−Yk
≤ 

³
E kX()−Yk2

´12
On the other hand, we may assume that  and Y are independent, and thus

E kX()−Yk2 = tr (Σ −ΣY) ≤ ̂

where the last inequality follows from (116). Hence, finally,

|E (X)− E (Y)| ≤ 1

 12
+

2
2

2 2

+
3 (κ4 + 5)

2 12
+


12̂12

 12


This yields the statement of Lemma 10.
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4 The “number of factors”

4.1 Proof of Proposition OW5

Let us denote  () + ̂2 ( ) as  ()  For positive integers  ()  (− 1) if
and only if ̂  ̂2 ( )  The latter inequality is equivalent to

̂ tr Σ̂ 

µ
1−

Xmax

=1
̂ tr Σ̂

¶
 ( )  (117)

On the other hand, by Theorem OW1 (iii), for any fixed positive integer  ̂ tr Σ̂
P→ 6 ()2 

Since  ( ) → ∞ as  → ∞ for  = 1 2 3 inequality (117) is satisfied with probability

arbitrarily close to one for all sufficiently large  This yields statement (i) of Proposition OW5.

To establish part (ii), we need the following lemma.

Lemma 13 Under assumptions of Proposition OW5, for max = [ ]  we have

̂2 = P

µ
 trΩ


+
( +)

2



¶


Proof: We rely on notations and definitions from the proof of Theorem OW1 in Section 2.1. Let

̃ () = tr Σ̃ −
X

=1
̃ Then,

 ̃ (max) =
X−1

=max+1
̃ ≤

X−1
=max+1

0Σ̃ =
X−1

=max+1

1


2

0

0

Denote
X−1

=max+1
2 as max  Then Corollary 3 and the fact that tr = trΩ yield

−1X
=max+1

2
0

0 = max trΩ+ P(max trΩ)

Since  = (2 sin ((2 )))
−1 ≤  (2) for  = 1   − 1 we have

max ≤
X−1

=max+1
 2

¡
42
¢ ≤  2 (4max) 

and therefore,

̃ (max) ≤  trΩ

4max
+ P

µ
 trΩ

max

¶
 (118)

Next, similarly to (26), we have the following inequality¯̄̄̄
( (max))

12 −
³
 ̃ (max)

´12 ¯̄̄̄
≤ kΨ∗ () kmin

n
1
p


o
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Hence,

̂2 =  (max) ≤ 2̃ (max) + 2


kΨ∗ () k2min {1 } 

This inequality together with (25) and (118) yield the statement of the lemma. ¤
By Theorem OW1 (ii), for any fixed 

³
̂

´−1
= P (( trΩ)). Therefore, by Lemma

13,
³
̂

´−1
̂2 = P ( ) and

³
̂

´−1
̂2 ( ) = P ( ( ))

P→ 0

Hence, for any fixed  ̂  ̂2 ( ) with probability arbitrarily close to one for all sufficiently

large  . This implies that ()  ( − 1) with probability arbitrarily close to one for
all sufficiently large  , and thus, ̂

P→∞.

5 Problem detection

5.1 Proof of Lemma OW6

Recall that  = tr
∆̂


̂
. Below, we obtain the required expansion of , by first, expanding


∆̂

and 
̂
, and then combining these results. In the next two subsections we use the perturbation

theory (e.g. Kato (1980)) to obtain expansions for 
∆̂

and 
̂
.

5.1.1 Perturbation analysis in levels

Consider the following identity

 0 = ̃Λ0Λ̃ 0 + 0Λ

where ̃ =  + 0Λ (Λ0Λ)−1  Let  = diag {1  } be the diagonal matrix of the  largest eigen-
values of matrix ̃Λ0Λ̃ 0

¡
 2

¢
and let ̄ be the ( + 1)×  matrix of corresponding normalized

eigenvectors. We have

 0
¡
 2

¢
= ̄̄ 0 + 0Λ

¡
 2

¢
 (119)

or equivalently,

Φ = Φ0 +Φ1 ( )  (120)

where Φ =  0
¡
 2

¢
 Φ0 = ̃Λ0Λ̃ 0

¡
 2

¢
= ̄ ̄ 0 and Φ1 =  

0Λ ( ) 

Note that
p
 2 kΦ0k equals kΛ 0 + Λk  By assumptions B1, B2, and B3, the latter norm

is P

³√
 2

´
 Hence, kΦ0k = P (1)  Further by B3, kΦ1k = P (1) and therefore, Φ can be

interpreted as a small perturbation of Φ0, and the perturbation theory can be used to link the

eigenstructure of Φ to that of Φ0. Specifically, (see Kato’s (1980, p. 75-77) formulae (2.3) and

(2.14))


̂
= ̄ +

1



X

=1

(1)
 +  (121)
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where kk = P
¡
−2

−2¢ and

(1)
 = −Φ1 − Φ1

with  being the projection on the -th column of ̄ , and  being the so-called reduced resolvent

of Φ0 evaluated at  Precisely,

 =
X

=1 6=
1

 − 
 − 1


̄ 

Remark 14 We assume that the eigenvalues 1   are distinct. If they are not and only 1  

of the eigenvalues are distinct, the sum in the representation (121) should run only up to  = 1

with  denoting the so-called total eigenprojection on the space spanned by all the eigenvectors

corresponding to the -th distinct eigenvalue among 1  . The analysis below should then be

changed in a relatively straightforward manner, without affecting the final result.

Multiplying both sides of (121) by ̄ yields

̂
³
̂ 0̄

´
= ̄ − 1



X

=1

X

=1 6=
1

 − 

£
Φ1̄

0
 + Φ1̄

0


¤
(122)

+
1



X

=1

1


̄Φ1̄

0
 + ̄ 

where  is the -th column of  matrix and ̄ is the -th column of ̄ . Further, multiplying both

sides of (122) by ∆ from the left yields

∆̂
³
̂ 0̄

´
= ∆̄ + 

where

 = − 1



X

=1

X

=1 6=
1

 − 
∆
£
Φ1̄

0
 + Φ1̄

0


¤
(123)

+
1



X

=1

1


∆̄Φ1̄

0
 +∆̄ 

Therefore,


∆̂

=
¡
∆̄ + 

¢ ¡
̄ 0∆0∆̄ + ̄ 0∆0+ 0∆̄ + 0

¢−1 ¡
∆̄ + 

¢0


It will be convenient to write this equation in the following form


∆̂

= ∆̄ + 1 + 2 (124)

where

1 = 
¡
̄ 0∆0∆̄

¢−1
̄ 0∆0 +∆̄

¡
̄ 0∆0∆̄

¢−1
0 (125)

−∆̄
¡
̄ 0∆0∆̄

¢−1
̄ 0∆0 −∆̄ ¡̄ 0∆0∆̄¢−1 0∆̄ 
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and

2 = 
¡
̄ 0∆0∆̄ + ̄ 0∆0+ 0∆̄ + 0

¢−1
0

+̄ 0∆0 +∆̄0 +∆̄̄ 0∆0

with

 =
¡
̄ 0∆0∆̄ + ̄ 0∆0+ 0∆̄ + 0

¢−1 − ¡̄ 0∆0∆̄ ¢−1 and
 = +

¡
̄ 0∆0∆̄

¢−1 ¡
̄ 0∆0+ 0∆̄

¢ ¡
̄ 0∆0∆̄

¢−1


5.1.2 Perturbation analysis in differences

Multiplying both sides of (120) by ∆ from the left and by ∆0 from the right yields

Ω = Ω0 +Ω1 

where Ω = ∆ 0∆0 ()  Ω0 = ∆̃Λ0Λ̃ 0∆0 () and Ω1 = ∆
0Λ∆

0 ()  By B1,
B2 and B3, kΩ0k = P(1) and kΩ1k = P(1) so that Ω can be viewed as a small perturbation of

Ω0

Let ̂ and ̄ be the  ×  matrices of the normalized  principal eigenvectors of Ω and Ω0

respectively. We will denote the corresponding eigenvalues as ̂1  ̂ and 1   respectively.

Then, a higher order perturbation analysis than that used in (121) yields (see Kato’s (1980, p.

75-77))


̂
= ̄ + −1

X

=1

(1)
 + −2

X

=1

(2)
 + () (126)

where
°°()°° = P

¡
−3

¢



(1)
 = −Ω1 −Ω1 and


(2)
 = Ω1Ω1 +Ω1Ω1 +Ω1Ω1

−Ω1Ω1
2
 −Ω1

2
Ω1 −2Ω1Ω1

with  being the projection on the -th column of ̄ and

 =
X

 6=
1

 − 
 − 1


̄ 

It follows from equations (126) and (124) that

tr
h

∆̂


̂

i
= 1 + 2 + 3
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where

1 = tr
h
∆̄

³
̄ + −1

X

=1

(1)
 + −2

X

=1

(2)


´i


2 = tr
h
1

³
̄ + −1

X

=1

(1)


´i


3 = tr
h

∆̂

()
i
+ tr

h
1

−2


X

=1

(2)


i
+tr

h
2

³
̄ + −1

X

=1

(1)
 + −2

X

=1

(2)


´i


The remaining part of the proof consists of an asymptotic analysis of elements 1, 2, and 3.

5.1.3 Analysis of 1

Note that ∆̄ and ̄ span the same subspaces. Therefore, ∆̄ = ̄ and tr∆̄̄ = tr∆̄ = 

Further, by definition of 
(1)


tr
h
∆̄

(1)


i
= − tr [∆̄Ω1]− tr [∆̄Ω1]

= −
X

 6=
1

 − 
(tr [Ω1 ] + tr [Ω1]) 

Therefore,
X

=1
tr
h
∆̄

(1)


i
equals

−
X

:6=
1

 − 
(tr [Ω1 ] + tr [Ω1]) 

which is a sum of all elements of an anti-symmetric matrix. Hence,X

=1
tr
h
∆̄

(1)


i
= 0

Next,

∆̄
(2)
 = ∆̄Ω1Ω1 + ∆̄Ω1Ω1

+∆̄Ω1Ω1 − ∆̄Ω1Ω1
2


−∆̄Ω1
2
Ω1 − ∆̄

2
Ω1Ω1

Since ∆̄ = ̄  we have ∆̄̄ = 0 Therefore, as trace is invariant with respect to the inter-

change of the order in a product of two matrices, we have for the first term on the right hand
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side

tr [∆̄Ω1Ω1]

=
X

: 6= and 6=
1

 − 

1

 − 
tr [Ω1Ω1 ] (127)

−
X

: 6=
1

 − 

1


tr
£
Ω1̄Ω1

¤
;

for the second term

tr [∆̄Ω1Ω1]

=
X

: 6= and 6=
1

 − 

1

 − 
tr [Ω1Ω1] ; (128)

for the third term

tr [∆̄Ω1Ω1]

=
X

: 6= and 6=
1

 − 

1

 − 
tr [Ω1Ω1] (129)

−
X

: 6=
1

 − 

1


tr
£
Ω1̄Ω1

¤


To similarly expand the rest of the terms, note that

2 =
X

 6=
1¡

 − 
¢2 +

1

2
̄ 

Therefore, for the fourth term

− tr £∆̄Ω1Ω1
2


¤
= −

X

: 6=
1¡

 − 
¢2 tr [Ω1Ω1 ] ; (130)

for the fifth term

− tr £∆̄Ω1
2
Ω1

¤
= −

X

: 6=
1¡

 − 
¢2 tr [Ω1Ω1]− 1

2
tr
£
Ω1̄Ω1

¤
; (131)

and for the final, sixth, term

− tr £∆̄
2
Ω1Ω1

¤
= −

X

: 6=
1¡

 − 
¢2 tr [Ω1Ω1]  (132)
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Combining (127) and (132) yieldsX

=1
tr
£
∆̄Ω1Ω1 − ∆̄

2
Ω1Ω1

¤
=

X

: 6=6=6=
1

 − 

1

 − 
tr [Ω1Ω1 ]

+
X

: 6=
1¡

 − 
¢2 tr [Ω1Ω1 −Ω1Ω1]

−
X

: 6=
1

 − 

1


tr
£
Ω1̄Ω1

¤
=

X

: 6=6=6=
1

 − 

1

 − 
tr [Ω1Ω1 ]

−
X

: 6=
1

 − 

1


tr
£
Ω1̄Ω1

¤


Combining (128) and (131) yieldsX

=1
tr
£
∆̄Ω1Ω1 − ∆̄Ω1

2
Ω1

¤
=

X

: 6=6=6=
1

 − 

1

 − 
tr [Ω1Ω1]

+
X

: 6=
1¡

 − 
¢2 tr [Ω1Ω1 −Ω1Ω1]

−
X

=1

1

2
tr
£
Ω1̄Ω1

¤
=

X

: 6=6=6=
1

 − 

1

 − 
tr [Ω1Ω1]

−
X

=1

1

2
tr
£
Ω1̄Ω1

¤


Combining (129) and (130) yieldsX

=1
tr
£
∆̄Ω1Ω1 − ∆̄Ω1Ω1

2


¤
=

X

: 6=6=6=
1

 − 

1

 − 
tr [Ω1Ω1]

+
X

: 6=
1¡

 − 
¢2 tr [Ω1Ω1 −Ω1Ω1 ]

−
X

: 6=
1

 − 

1


tr
£
Ω1̄Ω1

¤
=

X

: 6=6=6=
1

 − 

1

 − 
tr [Ω1Ω1]

−
X

: 6=
1

 − 

1


tr
£
Ω1̄Ω1

¤
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Summing up the results of the last three displays, we obtainX

=1
tr
h
∆̄

(2)


i
=

X

: 6=6=6=
1

 − 

1

 − 
tr [Ω1Ω1 ]

−
X

: 6=
1

 − 

1


tr
£
Ω1̄Ω1

¤
+
X

: 6=6=6=
1

 − 

1

 − 
tr [Ω1Ω1]

−
X

=1

1

2
tr
£
Ω1̄Ω1

¤
+
X

: 6=6=6=
1

 − 

1

 − 
tr [Ω1Ω1]

−
X

: 6=
1

 − 

1


tr
£
Ω1̄Ω1

¤


The sum of the third and last lines of the latter display can be interpreted as a sum of all elements

of an anti-symmetric matrix. Hence, it equals zero, and the expression for
X

=1
tr
h
∆̄

(2)


i
simplifies as follows X

=1
tr
h
∆̄

(2)


i
=

X

: 6=6=6=
1

 − 

1

 − 
tr [Ω1Ω1 ]

+
X

: 6=6=6=
1

 − 

1

 − 
tr [Ω1Ω1]

+
X

: 6=6=6=
1

 − 

1

 − 
tr [Ω1Ω1]

−
X

=1

1

2
tr
£
Ω1̄Ω1

¤


Renaming indices in the second and the third sums on the right hand side using rules (  ) 7−→
(  ) and (  ) 7−→ (  )  respectively, we represent the sum of the first three sums as a single

sum over    s.t.  6=  6=  6=  of tr [Ω1Ω1 ] multiplied by

1

 − 

1

 − 
+

1

 − 

1

 − 
+

1

 − 

1

 − 

=

¡
 − 

¢− ¡ − 
¢
+
¡
 − 

¢¡
 − 

¢ ¡
 − 

¢ ¡
 − 

¢ = 0

Hence, finally, X

=1
tr
h
∆̄

(2)


i
= −

X

=1

1

2
tr
£
Ω1̄Ω1

¤
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and overall,

1 =  − −2

X

=1

1

2
tr
£
Ω1̄Ω1

¤


Finally, note that
X

=1
−2  =

¡
Ω+0
¢2
 where Ω+0 is the Moore-Penrose pseudoinverse of

Ω0 = ∆̃Λ
0Λ̃ 0∆0 ( )  Further, the space spanned by the columns of ̄ is the same as that

spanned by the columns of ∆̃  Therefore, we have

1 =  − −2 tr
£
Ω+0 Ω1∆̃Ω1Ω

+
0

¤
=  − −2

°°Ω+0 Ω1∆̃

°°2



where k·k denotes the Frobenius norm.

5.1.4 Analysis of 2

By definition (125) of 1

tr
£
1̄

¤
= tr

h

¡
̄ 0∆0∆̄

¢−1
̄ 0∆0̄

i
+ tr

h
∆̄

¡
̄ 0∆0∆̄

¢−1
0̄

i
− tr

h
∆̄

¡
̄ 0∆0∆̄

¢−1
̄ 0∆0̄

i
− tr

h
∆̄

¡
̄ 0∆0∆̄

¢−1
0∆̄̄

i
= 0

where for the last equality we used the fact that ̄ = ∆̄ and that trace is invariant with respect

to the interchange of the order in a product of two matrices.

Further, using the same fact and the definition of , we obtain after some algebra

tr
h
1

(1)


i
= −

X

: 6=
1

 − 
tr
h

¡
̄ 0∆0∆̄

¢−1
̄ 0∆0 (Ω1 +Ω1)

i
−
X

: 6=
1

 − 
tr
h
∆̄

¡
̄ 0∆0∆̄

¢−1
0 (Ω1 +Ω1)

i
+
X

: 6=
1

 − 
tr
h
∆̄

¡
̄ 0∆0∆̄

¢−1
̄ 0∆0 (Ω1 +Ω1)

i
+
X

: 6=
1

 − 
tr
h
∆̄

¡
̄ 0∆0∆̄

¢−1
0∆̄ (Ω1 +Ω1)

i
+
1


tr
h

¡
̄ 0∆0∆̄

¢−1
̄ 0∆0Ω1̄

i
+
1


tr
h
∆̄

¡
̄ 0∆0∆̄

¢−1
0̄Ω1

i


Summing the first four sums on the right hand side over  going from 1 to  we obtain zero because

the result can be interpreted as a sum of all elements of an anti-symmetric matrix. Therefore,X

=1
tr
h
1

(1)


i
=
X

=1

2


tr
h

¡
̄ 0∆0∆̄

¢−1
̄ 0∆0Ω1̄

i
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By definition (123) of  and since ∆̄̄ = 0 we have

̄ =
1



X

=1

1


̄∆̄Φ1̄

0
 +̄∆̄

=
1



X

=1

1


̄∆Φ1̄

0
 +̄∆̄ 

This yields

1



X

=1
tr
h
1

(1)


i
=

2

2

X

=1

X

=1

1



1


tr
h¡
̄ 0∆0∆̄

¢−1
̄ 0∆0Ω1̄∆Φ1̄

0


i
+

1



X

=1

2


tr
h¡
̄ 0∆0∆̄

¢−1
̄ 0∆0Ω1̄∆̄

i


Now recall that 1   are the principal eigenvalues of ̃Λ
0Λ̃ 0

¡
 2

¢
 Therefore, their

square roots are the principal singular values of (Λ 0 + Λ) 
³√


´
 In particular, 

12
 must

be no smaller than the -th largest singular value of Λ 0
³√


´
minus

°°°Λ³√
´°°° =

P
¡
1
√


¢
 On the other hand, the -th largest singular value of Λ 0

³√


´
equals the

square root from the smallest eigenvalue of
¡
 0 2

¢
(Λ0Λ)  By B1-B2, such smallest eigen-

value must be bounded away from zero in probability. Therefore, −1 = P (1) and hence,

−1 = P (1) for  ≤  (133)

Further, 1   are the principal eigenvalues of Ω0 = ∆ (Λ
0 + Λ)

0
(Λ 0 + Λ)∆

0 () 
By arguments similar to those just used, −1 is of the same order as the inverse of the smallest

eigenvalue of  0∆0∆Λ0Λ ()  Therefore, by B1 and B2, −1 = P (1) and hence,

−1 = P (1) for  ≤  (134)

Next, the identity

(Λ 0 + Λ)
0
(Λ 0 + Λ)

 2
= ̄̄ 0

yields the following representation³
 + 0Λ

¡
Λ0Λ

¢−1´ ¡
Λ0Λ

¢12

³

√

´
= ̄12

where  is a -dimensional orthonormal matrix. Therefore,

̄ =
1



³
 + 0Λ

¡
Λ0Λ

¢−1´µΛ0Λ


¶12
 0−12 (135)
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and

∆̄ =
1



³
∆ +∆0Λ

¡
Λ0Λ

¢−1´µΛ0Λ


¶12
 0−12

It follows that °°∆̄°° = P

³°°°∆ +∆0Λ ¡Λ0Λ¢−1°°° ´ 
and hence, by B1-B3, °°∆̄°° = P

³
−12

´
and

°°°¡̄ 0∆0∆̄¢−1°°° = P ( )  (136)

Using (134) and (136), and recalling that kk = P
¡
−2

−2¢  we obtain
1



X

=1

2


tr
h¡
̄ 0∆0∆̄

¢−1
̄ 0∆0Ω1̄∆̄

i
= P

³
−3

−12
´

Therefore,

1



X

=1
tr
h
1

(1)


i
=

2

2

X

=1

X

=1

1



1


tr
h¡
̄ 0∆0∆̄

¢−1
̄ 0∆0Ω1̄∆Φ1̄

0


i
+P

³
−3

−12
´


Let us now analyze the trace on the right hand side of the above equation. The absolute value

of that trace equals ¯̄̄
0
¡
̄ 0∆0∆̄

¢−1
̄ 0∆0Ω1̄∆Φ1̄

¯̄̄
=

¯̄̄
0
¡
̄ 0∆0∆̄

¢−1
̄ 0∆0̄

¯̄̄ ¯̄
̄ 0Ω1̄∆Φ1̄

¯̄
(137)

= P

³
 12

´ ¯̄
̄ 0Ω1̄∆Φ1̄

¯̄


Since ̄ =  − ̄ ̄ 0 we have¯̄
̄ 0Ω1̄∆Φ1̄

¯̄
≤

¯̄
̄ 0Ω1∆Φ1̄

¯̄
+
°°̄ 0Ω1̄°°°°̄ 0∆Φ1̄°°

≤
°°̄ 0Ω1∆Φ1̄°°+ kΩ1k°°̄ 0∆Φ1̄°° 

We point out that ̄ can be thought of as the matrix of left singular vectors of

−12∆
³
 + 0Λ

¡
Λ0Λ

¢−1´µΛ0Λ


¶12


and 12 can be thought of as the diagional matrix of the corresponding singular values. Hence,
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there exists an orthogonal matrix  such that

̄12 = −12∆̃
¡
Λ0Λ

¢12


where ̃ =  + 0Λ (Λ0Λ)−1  and therefore,

̄ = −12∆̃
¡
Λ0Λ

¢12
 0−12

Using this together with (135), we obtain

°°̄ 0Ω1∆Φ1̄°° ≤ −32
°°°̃ 0∆0Ω1∆Φ1̃°°°°°°°Λ0Λ

°°°°°°°−12°°°°°°−12°°°
=

°°°̃ 0∆0Ω1∆Φ1̃°°°P ³−32´ 
where we used B2, (133), and (134).

Further, °°°̃ 0∆0Ω1∆Φ1̃°°° ≤
°° 0∆0Ω1∆Φ1°°+ °°°̃ 0∆0Ω1∆Φ10Λ ¡Λ0Λ¢−1°°°
+
°°°¡Λ0Λ¢−1Λ0∆0Ω1∆Φ1°°° 

Since
°°°(Λ0Λ)−1Λ0°°°2 = P ( )  kk2 = P

¡
 2
¢
=
°°°̃°°°2 and k∆0Ω1∆Φ1k = P (1)  we have°°°̃ 0∆0Ω1∆Φ1̃°°° ≤ °° 0∆0Ω1∆Φ1°°+P

³

−12
  32

´
and °°̄ 0Ω1∆Φ1̄°° ≤ °° 0∆0Ω1∆Φ1°°P ³−32´+P

³

−12


´


Similarly, °°̄ 0∆Φ1̄°° ≤
°°°̃ 0∆0∆Φ1̃°°°P ³−32´

≤
°° 0∆0∆Φ1°°P ³−32´+P

³

−12


´


Therefore, ¯̄
̄ 0Ω1̄∆Φ1̄

¯̄
≤

°° 0∆0Ω1∆Φ1°°P ³−32´
+
°° 0∆0∆Φ1°°P ³−32´+P

³

−12


´


The lemma below implies that k 0∆0Ω1∆Φ1k = P ( ) and k 0∆0∆Φ1k = P ( )  Hence,¯̄
̄ 0Ω1̄∆Φ1̄

¯̄
= P

³

−12


´
 (138)
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and, by (137), ¯̄̄
0
¡
̄ 0∆0∆̄

¢−1
̄ 0∆0Ω1̄∆Φ1̄

¯̄̄
= P

³
( )

12
´


Therefore, overall,
1



X

=1
tr
h
1

(1)


i
= P

³

−52
 −12

´
and

2 = P

³

−52
 −12

´


as well.

Lemma 15 Let +1 =  + +1 be an -dimensional process with E k0k4  ∞ and  =X∞
=0
Π− where  = (1  )

0 are such that  are i.i.d., E = 0 E2 = 1 E
4
 ∞

and
X∞

=0
(1 + ) kΠk  ∞. Denote (0 1   )

0 as  and (1   ) as  Let ∆ be a

 × ( + 1) matrix with elements ∆ = −1∆+1 = 1 and all other elements zero. Finally, let 

be a random ( + 1)× ( + 1) matrix, independent from  and such that kk = P(1) as  →∞.
Then °° 0∆°° = P ( ) 

Proof: Let  be a ( + 1)×  matrix with elements  = 1 if    and all the other elements

zero. Denote a ( + 1)-vector of ones as  We have  =  00 +  and

 0∆ =  0∆ 00 +  0∆

For the first term, we have °° 0∆ 00°° ≤ kk k∆k kk kk k0k 
Since kk = √ + 1, kk = P

³√

´
 kk = P (1)  k∆k =  (1)  and k0k = P (1)  the above

inequality yields °° 0∆0°° = P ( ) 

Hence, it remains to show that k 0∆k = P ( ) 

Let  =
X

=0
Π−,  =  −  and  = (1   )

0   = (1   )
0  We have°° 0∆°° ≤

°°0∆°°+ °°0∆°°+ °°0∆°°+ °°0∆°° (139)

≤
°°0∆°°+ k∆k (kk kk+ kk kk+ kk kk) 

Note that

E kk2 ≤ E kk2 = trE
¡
0

¢
= 

X∞
=+1

kΠk2 ≤ 
X∞

=+1
kΠk2 

71



On the other hand, kΠk   (1 + )  where  =
X∞

=0
(1 + ) kΠk  and

X∞
=+1

2 (1 + )2 

2 ( + 1)  Therefore, E kk2  2 and, as a consequence,

kk = P (1)  (140)

Further,

E kk2 ≤ E kk2
=

X

=1
E (1 + +)

0 (1 + +)

=
X

=1

£
E0 + 2 ( − 1)E0−1 + + 2E0+1−

¤
≤  2

X∞
=0

¯̄
E0

0
−
¯̄


But ¯̄
E0−

¯̄
=

¯̄̄X∞
=+1

tr
¡
Π0Π+

¢¯̄̄ ≤ ¯̄̄X∞
=+1

kΠk kΠ+k
¯̄̄

≤ 

2 + 

X∞
=+1

kΠ+k 

Therefore,

E kk2 ≤ 
X∞

=0

X∞
=+1

kΠ+k ≤ 2 (kΠ+1k+ 2 kΠ+2k+ )

≤ 2
X∞

=0
(1 + ) kΠk ≤ 22

This yields

kk = P

³√

´
 (141)

Using (140) and (141) in (139), and noting that k∆k = P (1)  kk = P

³√

´
 and kk =

P ( )  we obtain °° 0∆°° ≤ °°0∆°°+P ( ) 

Hence, it remains to show that k0∆k = P ( ) 

Let · be the -th column of  Represent · in the form Π̄ where Π̄ is a  × 2 matrix

Π̄ =

⎛⎜⎜⎜⎜⎝
Π·   Π1· Π0·

Π·   Π1· Π0·
. . .

. . .
. . .

Π·   Π1· Π0·

⎞⎟⎟⎟⎟⎠ 
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where Π· is the -th row of Π, and 0 =
¡
01−   

0


¢
 With this notation, we have

0·∆· = 0Π̄0∆Π̄

Let E denote the expectation conditional on  We have

E
¡
0Π̄0∆Π̄

¢2
=

X


h¡
Π̄0∆Π̄

¢2

+
¡
Π̄0∆Π̄

¢


¡
Π̄0∆Π̄

¢


i
+
X



¡
Π̄0∆Π̄

¢2


¡
E4 − 3

¢
+
X



¡
Π̄0∆Π̄

¢


¡
Π̄0∆Π̄

¢



Since

¡
Π̄0∆Π̄

¢


¡
Π̄0∆Π̄

¢

≤

³¡
Π̄0∆Π̄

¢2

+
¡
Π̄0∆Π̄

¢2


´
2 andX



¡
Π̄0∆Π̄

¢2


=
°°Π̄0∆Π̄°°2 

we have

E
¡
0Π̄0∆Π̄

¢2 ≤ ¡E4 + 2¢ °°Π̄0∆Π̄°°2 + ¡tr Π̄0∆Π̄¢2  (142)

For the first term on the right hand side, we have°°Π̄0∆Π̄°°2 ≤ °°Π̄°°2 °°Π̄°°2 k∆k2 kk2 kk2 

On the other hand, °°Π̄°° ≤X

=0

X

=1
|Π| ≤ 

X

=0
kΠk ≤ 

Similarly,
°°Π̄°° ≤  Furthermore, kk2 = ( + 1)2 This yields¡

E4 + 2
¢ °°Π̄0∆Π̄°°2   2

¡
E4 + 2

¢
44 k∆k2 kk2  (143)

Let us consider tr Π̄0∆Π̄ We have

tr Π̄0∆Π̄ = trΠ̄Π̄
0
∆ = tr (Γ∆) 

where Γ = Γ− =
X−|−|

=0
Π·Π0+|−|·

Let us decompose matrix Γ∆ as

Γ∆ =
X−1

=1− Γ∆ (144)

where  is a matrix with elements () = 1 if −  =  and zero elements otherwise. A direct

calculation reveals that

∆ =  − 
0
1∨(1−) + +1+

0
+1
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where  is a ( + 1)-vector with () = 0 for  ≤  and () = 1 for     is the -th column of

+1, and 1 ∨ (1− ) denotes max{1 1− }. Of course, for   0  is just a ( + 1)-vector with

all elements equal one, and for  ≥ 0 +1+ is just a zero vector.
Decomposition (144) yields

tr (Γ∆) =
X−1

=1− Γ
h
tr ()− 01∨(1−) + 0+1+1+

i
so that

|tr (Γ∆)| ≤
X−1

=1− |Γ|
h
|tr ()|+

¯̄̄
01∨(1−)

¯̄̄
+
¯̄
0+1+1+

¯̄i


On the other hand,

|tr ()| ≤ ( + 1) kk ≤ ( + 1) kk ¯̄̄
01∨(1−)

¯̄̄
≤
√
 + 1 kk  and¯̄

0+
¯̄
≤
√
 + 1 kk 

Therefore,

|tr (Γ∆)| ≤ 3 ( + 1) kk
X−1

=1− |Γ| 

Recall that  =
X∞

=0
(1 + ) kΠk  and note that

X−1
=1− |Γ| ≤ 2

X−1
=0

|Γ| ≤ 2
X−1

=0

X−
=0

(kΠk kΠ+k )

≤ 2
X−1

=0

X

=0
(kΠk kΠ+k )

≤ 22
X−1

=0

X

=0
(kΠk kΠ+k) ≤ 222

Therefore, X−1
=1− |Γ| ≤ 2

22

and thus, ¯̄
tr Π̄0∆Π̄

¯̄
= |tr (Γ∆)| ≤ 622 ( + 1) kk 

Using this and (143) in (142), yields

E
¡
0Π̄0∆Π̄

¢2 ≤ ( + 1)2 kk2 

where

 =
¡
E4 + 2

¢
44 k∆k2 + 3644  ̄

74



for some finite ̄ for all  Therefore, we have

¡
0Π̄0∆Π̄

¢2
= P

¡
 2
¢
 (145)

But °°0∆°° ≤ °°0∆°°

=
³X

=1

¡
0Π̄0∆Π̄

¢2´12


Therefore, °°0∆°° = P ( ) 

This concludes the proof of the lemma. ¤

Remark 16 It is easy to show that under the assumptions of the lemma, k 0k = P ( ln ) 

For this, the above proof goes through with ∆ omitted up to the point where we need to find a bound

on |tr (Γ)|  Note that tr (Γ) = tr (Γ) = 0 (Γ)()  with  equal the vector of ones and

(Γ)() being the upper triangular part of Γ Hence,

|tr (Γ)| ≤ ( + 1)
°°°(Γ)()°°° 

Mathias (1993) shows that
°° ()

°° ≤  (ln ( + 1)) kk for any ( + 1) × ( + 1) matrix 

Hence,

|tr (Γ)| ≤ ( ln ) kΓk 

and the rest of the proof proceeds as above.

5.1.5 Analysis of 3

By definition,

3 = tr
h

∆̂

()
i
+ tr

h
1

−2


X

=1

(2)


i
+ tr

h
2

³

̂
− ()

´i


Since
°°()°° = P

¡
−3

¢
 we have

tr
h

∆̂

()
i
= P

¡
−3

¢


Next, recall that

1 = 
¡
̄ 0∆0∆̄

¢−1
̄ 0∆0 +∆̄

¡
̄ 0∆0∆̄

¢−1
0

−∆̄
¡
̄ 0∆0∆̄

¢−1
̄ 0∆0 −∆̄ ¡̄ 0∆0∆̄¢−1 0∆̄ 

But
°°∆̄°° = P

¡
−12

¢

°°°¡̄ 0∆0∆̄ ¢−1°°° = P ( )  and kk = P

¡
−1

−1¢  Therefore,
k1k = P

³
−1

−12
´
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Since
°°°−2

X

=1

(2)


°°° = P
¡
−2

¢
 we have

tr
h
1

−2


X

=1

(2)


i
= P

³
−3

−12
´


Further, recall that

2 = 
³¡
∆̄ + 

¢0 ¡
∆̄ + 

¢´−1
0

+̄ 0∆0 +∆̄0 +∆̄̄ 0∆0

with

 =
³¡
∆̄ + 

¢0 ¡
∆̄ + 

¢´−1 − ¡̄ 0∆0∆̄¢−1 and
 = +

¡
̄ 0∆0∆̄

¢−1 ¡
̄ 0∆0+ 0∆̄

¢ ¡
̄ 0∆0∆̄

¢−1


We have °°°°³¡∆̄ + 
¢0 ¡
∆̄ + 

¢´−1°°°° = P ( )

and hence, °°°°³¡∆̄ + 
¢0 ¡
∆̄ + 

¢´−1
0
°°°° = P

¡
−2

−1¢ 
Further,

 =
³¡
∆̄ + 

¢0 ¡
∆̄ + 

¢´−1 ³
̄ 0∆0∆̄ − ¡∆̄ + 

¢0 ¡
∆̄ + 

¢´ ¡
̄ 0∆0∆̄

¢−1
= −

³¡
∆̄ + 

¢0 ¡
∆̄ + 

¢´−1 ¡
0∆̄ + ̄ 0∆0+ 0

¢ ¡
̄ 0∆0∆̄

¢−1
so that kk = P

¡
 12−1

¢
and°°̄ 0∆0 +∆̄0°° = P

¡
−2

−1¢ 
Finally, we can represent  as

 =
³
+

¡
̄ 0∆0∆̄

¢−1´ ¡−0∆̄ − ̄ 0∆0− 0
¢ ¡
̄ 0∆0∆̄

¢−1
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so that, by definition,

 =
³
+

¡
̄ 0∆0∆̄

¢−1´ ¡−0∆̄ − ̄ 0∆0− 0
¢ ¡
̄ 0∆0∆̄

¢−1
+
¡
̄ 0∆0∆̄

¢−1 ¡
̄ 0∆0+ 0∆̄

¢ ¡
̄ 0∆0∆̄

¢−1
= 

¡−0∆̄ − ̄ 0∆0− 0
¢ ¡
̄ 0∆0∆̄

¢−1
− ¡̄ 0∆0∆̄ ¢−1 0 ¡̄ 0∆0∆̄ ¢−1 

Since kk = P
¡
 12−1

¢
,
°°°¡̄ 0∆0∆̄¢−1°°° = P ( ),

°°∆̄°° = P
¡
−12

¢
, and

kk = P
¡
−1

−1¢, we have
kk = P

¡
−2

¢


Therefore, °°∆̄̄ 0∆0°° = P
¡
−2

−1¢ 
and overall,

2 = P
¡
−2

−1¢ 
Since

°°°̂ − ()
°°° = P(1) this implies that

tr
h
2

³

̂
− ()

´i
= P

¡
−2

−1¢ 
Thus,

3 = P
¡
−3

¢


Combining the above results for 1 2 and 3 we conclude that

 = tr
h

∆̂


̂

i
=  − −2

°°Ω+0 Ω1∆̃

°°2

+P

¡
−3

¢


5.2 Proof of Lemma OW7

We will use perturbation analysis to study the asymptotic behavior of bS Let
Φ (κ) = Φ0 + κΦ1

where Φ0 = ̄̄ 0 and Φ1 =  
0Λ ( ), as in (120), and κ is a complex-valued variable. Let

 (κ) = (Φ (κ)−  )
−1 be the resolvent of Φ(κ). Finally, let () = ( 0) be the resolvent of

Φ0.

Kato (1980, p.67) shows that

 (κ) = ()
X∞

=0
(− (Φ (κ)−Φ0)())  (146)
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where the series on the right hand side converges for

k(Φ (κ)−Φ0)()k  1

which is satisfied for any  where  () is defined, for sufficiently small κ. The series also can be

written as

 (κ) = () +
X∞

=1
κ() ()  (147)

where

() () =
X

1++=≥1
(−1) ()Φ1()Φ2()Φ() (148)

Note that ̂ is the matrix of the  principal eigenvectors of Φ
¡
−1

−1¢ and ̄ is the matrix of

the  principal eigenvectors of Φ0. As explained in Kato (1980, p.68), the projections ̂ and ̄

on the spaces spanned by the columns of ̂ and ̄ , respectively, equal


̂

= ̂ ̂ 0 = − 1

2

I
Γ


¡
 −1

−1¢d and (149)

̄ = ̄ ̄ 0 = − 1

2

I
Γ

 () d (150)

where Γ is a contour in the complex plane that encircles counterclockwise the  of the largest

eigenvalues of Φ
¡
−1

−1¢ and Φ0 (but not the rest of the eigenvalues of these matrices). Similarly,
̂ ̂̂ 0 = − 1

2

I
Γ


¡
 −1

−1¢d and (151)

̄̄ 0 = − 1

2

I
Γ

 () d (152)

Equations (151-152) and (147) lead to the representation (compare to Kato’s (1980) formulae

(2.3) and (2.14) on pp. 75-77)

̂ ̂̂ 0 = ̄̄ 0 +
1



X

=1
̃
(1)
 + ̃ (153)

where

̃
(1)
 = −Φ1 − Φ1 + Φ1

with  being the projection on the -th column of ̄ and  =
X

=1 6=
1

− −
1

̄ being

the reduced resolvent of Φ0 evaluated at  Furthermore,

̃ = − 1

2

X∞
=2

µ
− 1



¶ I
Γ

() (Φ1())
 d

which yields k̃k = P
¡
−2

−2¢ 
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We have X

=1
 (Φ1 + Φ1)

=
X

=1
Φ1

µX
 6=



 − 
− 1


̄

¶
+
X

=1


µX
 6=



 − 
− 1


̄

¶
Φ1

= −
X

=1

X
 6= Φ1 − ̄Φ1̄ −̄Φ1̄

= −̄Φ1̄ − ̄Φ1̄ −̄Φ1̄ +
X

=1
Φ1

= −̄Φ1 −̄Φ1̄ +
X

=1
Φ1

Therefore,
X

=1
̃
(1)
 = ̄Φ1 +̄Φ1̄ , and from (153),

̂ ̂̂ 0 = ̄̄ 0 +
1


(̄Φ1 +̄Φ1̄ ) + ̃

= ̄̄ 0 +
1


(Φ1 −̄Φ1̄ ) + ̃

This yields

∆̂ ̂̂ 0∆0 −∆̄̄ 0∆0 = 1


∆ (Φ1 −̄Φ1̄ )∆

0 + ̂ (154)

where k̂k = P
¡
−2

−2¢ 
Note that°°∆ (Φ1 −̄Φ1̄ )∆

0°° ≤ °°∆̄Φ1∆0°°+ °°∆Φ1̄∆0°°+ °°∆̄Φ1̄∆0°° 
But (see (136))

k∆̄k =
°°∆̄ ̄ 0°° ≤ °°∆̄°°°°̄°° = P

³
−12

´


Therefore, °°∆ (Φ1 −̄Φ1̄ )∆
0°° = P

³
−12

´


and °°°∆̂ ̂̂ 0∆0 −∆̄̄ 0∆0°°° = P

³
−1

−32
´
 (155)

Let  and ̄ be the -th largest eigenvalue and the corresponding normalized eigenvector of

∆̄̄ 0∆0, and let ̃ and ̃ be the -th largest eigenvalue and the corresponding eigenvector of

∆̂ ̂̂ 0∆0 2 Equation (155) implies that

max
≤

°°°̄ − ̃

°°° = P

³
−1

−12
´


2We assume that 1   are distinct. If they are not, the analysis below needs some relatively straightforward

modification, but the results do not change (see Remark 14).
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so that °°̄ −
∆̂

°° = °°°X

=1

³
̃ − ̄

´°°° = P

³
−1

−12
´
 (156)

Furthermore,

max
≤

| − ̃| = P

³
−1

−12
´


and thus, °°°°X

=1

µ
1


̄ −

1

̃

̃

¶°°°° = P

³
−1

−12
´


But X

=1

µ
1


̄ −

1

̃

̃

¶
= Ω+0 − Ω̂+0 

Therefore, °°°Ω+0 − Ω̂+0 °°° = P

³
−1

−12
´
 (157)

Equations (156) and (157) yield°°°Ω+0 Ω1̄ − Ω̂+0 Ω̂1∆̂

°°° = °°°Ω+0 Ω1̄ −Ω+0 Ω̂1̄

°°°+P

³
−1

−12
´

so that°°Ω+0 Ω1̄

°°2

−
°°°Ω̂+0 Ω̂1∆̂

°°°2

=
°°Ω+0 Ω1̄

°°2

−
°°°Ω+0 Ω̂1̄

°°°2

+P

³
−1

−12
´
 (158)

Next, the definitions of Ω1 and Ω̂1 yield

∆̂ ̂Ω1 − Ω̂1 = 
³
̂ 0∆0 −∆̄̄ 0∆0

´
 (159)

This identity and equation (155) imply that°°°Ω1 − Ω̂1°°° = P

³
−12

´


Therefore,

°°Ω+0 Ω1̄

°°2

−
°°°Ω+0 Ω̂1̄

°°°2


= trΩ+0 Ω1̄Ω1Ω
+
0 − trΩ+0 Ω̂1̄ Ω̂1Ω

+
0

= 2 trΩ+0

³
Ω1 − Ω̂1

´
̄Ω1Ω

+
0

− trΩ+0
³
Ω1 − Ω̂1

´
̄

³
Ω1 − Ω̂1

´
Ω+0

= 2 trΩ+0

³
Ω1 − Ω̂1

´
̄Ω1Ω

+
0 +P

¡
−1

¢


Further, by definition of Ω+0 ,

trΩ+0

³
Ω1 − Ω̂1

´
̄Ω1Ω

+
0 =

X

=1

1

2
̄ 0
³
Ω1 − Ω̂1

´
̄Ω1̄
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and, from (154) and (159),

Ω1 − Ω̂1 = ∆̄Φ1∆0 +∆Φ1̄∆0 −∆̄Φ1̄∆0 +  ̂

Since ̄∆
0̄ = 0 and since k ̂k = P

¡
−1

−1¢  we have
trΩ+0

³
Ω1 − Ω̂1

´
̄Ω1Ω

+
0 =

X

=1

1

2
̄ 0∆̄Φ1∆

0̄Ω1̄ +P
¡
−1

−1¢
=

X

=1

1

2
̄ 0∆̄ ̄

0Φ1∆0̄Ω1̄ +P
¡
−1

−1¢  (160)

Finally, recall equation (138):¯̄
̄ 0Ω1̄∆Φ1̄

¯̄
= P

³

−12


´


This implies that °°̄ 0Φ1∆0̄Ω1̄
°° = P

³

−12


´


Further, similarly to (138), we have°°̄ 0∆̄ 2°° = P

³

−12


´


Using the latter two displays in (160), we obtain

trΩ+0

³
Ω1 − Ω̂1

´
̄Ω1Ω

+
0 = P

¡
−1

¢


and thus, °°Ω+0 Ω1̄

°°2

−
°°°Ω̂+0 Ω̂1∆̂

°°°2

= P

¡
−1

¢
¤
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