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Abstract

Estimation of a sample selection model with a spatial lag of a latent dependent variable or a spatial error

in both the selection and outcome equations is considered in the presence of cross-sectional dependence.

Since there is no estimation framework for the spatial lag model and the existing estimators for the spatial

error model are either computationally demanding or have poor small sample properties, we suggest

to estimate these models by the partial maximum likelihood estimator, following Wang et al. (2013)’s

framework for a spatial error probit model. We show that the estimator is consistent and asymptotically

normally distributed. To facilitate easy and precise estimation of the variance matrix without requiring

the spatial stationarity of errors, we propose the parametric bootstrap method. Monte Carlo simulations

demonstrate the advantages of the estimators.
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1 Introduction

The assumption about independent observations is often not met even in the analysis of cross-sectional data.

Since cross-sectional dependence can be captured by a certain spatial or economic ordering in many economic

applications, spatial models have become an extensively used tool in applied econometrics. In this paper,

we propose spatial extensions of sample selection models. We introduce spatial dependence into a sample

selection model via a spatial lag of a latent dependent variable or a spatial error in both the selection and

outcome equations. To our best knowledge, this is the first paper which analyzes a sample selection model

with a spatial lag of a latent dependent variable, facilitating easy estimation in applications such as peer

effects in education with non-randomly missing data (see Section 2 for more details). A spatial sample

selection model with a spatial error, which can be used, for instance, in agricultural yield studies, has been

analyzed before, but the proposed estimators are either computationally demanding or they do not have

desirable small sample performance.

The computational difficulties in the spatial sample selection models stem from the (spatially) correlated

errors: their joint density function cannot be expressed as a product of the density functions for each obser-

vation, and the full maximum likelihood estimator (MLE) becomes computationally very demanding as it

involves high dimensional integration. It is possible to overcome this obstacle by using the heteroskedastic

maximum likelihood estimator (HMLE), which takes into account only heteroskedasticity stemming from spa-

tial correlation while neglecting the corresponding spatial autocorrelation to obtain consistent but inefficient

estimates.1 Based on this idea, Flores-Lagunes and Schnier (2012) in the context of a sample selection model

with a spatial error in both the selection and outcome equations proposed to use the generalized method of

moments (GMM) estimator.2 The estimator however has poor small sample properties (see Section 4 in their

paper and Section 5). Doğan and Taşpınar (2018) suggest to estimate the same model using the Markov

chain Monte Carlo approach in the context of Bayesian estimation, whereas earlier McMillen (1995) sug-

gested to use the Expectation Maximization algorithm. Both of these methods are however computationally

demanding in larger samples due to the necessity to invert the spatial weight matrices numerous times, and

moreover, a rigorous theory is not developed for either of them.

In the closely related context of binary choice models with spatial errors, Wang et al. (2013) therefore

suggested an intermediate approach between the full MLE and HMLE that is based on the idea that all

1Poirier and Ruud (1988) developed the result under fairly general conditions for a probit model with serial correlation in a
time series setting, whereas Robinson (1982) established the same result for a Tobit model.

2For empirical studies that use the estimator suggested by Flores-Lagunes and Schnier (2012), see Section 5 of Flores-Lagunes
and Schnier (2012), Mukherjee and Singer (2010), and Ward et al. (2014).
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observations are divided into clusters of two observations and the dependence within clusters is taken into

account, whereas the dependence between clusters is not employed in the estimation. This approach avoids

the computationally demanding full MLE (at the cost of losing efficiency), while it facilitates the estimation

of the spatial error structure by taking the correlation within clusters into account. Wang et al. (2013) apply

the partial maximum likelihood estimator (PMLE) to a spatial error probit model. In this paper, the PMLE

approach is generalized to sample selection models with a spatial lag of a latent dependent variable or a

spatial error and their special cases.

Since the special cases of the considered sample selection models include probit and Tobit models (see

Section 2), this paper also extends Wang et al. (2013)’s results to the probit and Tobit models with a spatial

lag of the latent dependent variable and to the Tobit model with a spatial error.3 We analyze the asymptotic

properties of the proposed PMLE using the near epoch dependent random fields framework introduced by

Jenish and Prucha (2012). Note that the asymptotic results derived for a spatial error probit model in Wang

et al. (2013) cannot be directly applied to our models because the structure of the spatial sample selection

models is more complicated and requires additional treatment. For example, the uniform Lp-boundedness of

the (bivariate) likelihood scores cannot be established by simply assuming that the support of exogeneous

regressors is bounded since the observed dependent variables also enter the cumulative distribution function

of the bivariate normal distribution. Moreover, Wang et al. (2013) base their analysis on α-mixing processes

and make assumptions about dependence based on the observed responses instead of deriving more primitive

conditions.4 They also impose a strong assumption on the expansion speed of the sampling region5 and

suggest to estimate the variance matrix of the proposed estimator based on the approach proposed by Conley

(1999), who explicitly models the sampling process from a regular lattice and assumes that the data generating

process is strongly spatially stationary. This assumption is in general not satisfied, for example, for the Cliff-

Ord type models (see Kelejian and Prucha, 2007, for a further discussion). We relax these assumptions and

suggest to estimate the asymptotic variance matrix using parametric bootstrap.

The paper is organized as follows. In Section 2, the sample selection models are defined, whereas the

PMLE is introduced in Section 3. In Section 4, its consistency and asymptotic normality are established,

and the estimator of the asymptotic variance matrix is discussed. In Section 5, we study the finite sample

properties, while Section 6 concludes. Proofs are provided in Appendices.

It proves helpful to introduce the following notation. Let An, n ∈ N, be some matrix indexed by n; we

3The Tobit model with a spatial lag of the observed dependent variable has been recently analyzed by Xu and Lee (2015a).
4See conditions (vii) and (i) of Theorems 1 and 2 by Wang et al. (2013), respectively.
5See condition (ii) of Theorem 2 by Wang et al. (2013).
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denote the ijth element, the ith row, and the jth column of An by Aij,n, Ai·,n, and A·j,n, respectively.

Similarly, if vn is a vector, then vi,n denotes the ith element of vn. (The same notation applies for

vectors and matrices that are not indexed by n.) If A is a 2 × 2 matrix, then A = [A11 A12; A21 A22]

is a matrix with the vectors (A11, A12)′ and (A21, A22)′ in the first and second row, respectively. Further,

let g = (i, j)′ and ġ = (k, l)′. Then Ag·,n = (A′i·,n, A
′
j·,n)′ with its qmth element, qth row, and mth column

denoted by Agqm,n, Agq·,n, and Ag·m,n, respectively; Agġ,n = [Aik,n Ail,n; Ajk,n Ajl,n] and Ag,n = Agg,n with

Ag,n = [Ag11,n Ag12,n; Ag21,n Ag22,n]. Similarly, vg,n = (vi,n, vj,n)′ with its qth element denoted by vgq,n.

Furthermore, for any random vector Y , let ‖Y ‖p = [E‖Y ‖p]1/p, p ≥ 1, denote its Lp-norm, where ‖ · ‖ is the

Euclidean norm. For an n×n matrix A, the Euclidean, row sum, and column sum matrix norms are defined

as ‖A‖ =
(∑n

i=1

∑n
j=1 |Aij |2

)1/2

, ‖A‖∞ = maxi=1,...,n

∑n
j=1 |Aij |, and ‖A‖1 = maxj=1,...,n

∑n
i=1 |Aij |,

respectively.6 Note that these norms are sub-multiplicative: ‖AB‖a ≤ ‖A‖a‖B‖a, where ‖ · ‖a denotes one

of the mentioned norms.

2 Model

To define the sample selection model, consider first the following latent selection (s) and outcome (o) equations

with spatial lags of the latent dependent variable:

y∗si,n = λs0W
s
i·,ny

∗s
n +Xs

i·,nβ
s
0 + usi,n

y∗oi,n = λo0W
o
i·,ny

∗o
n +Xo

i·,nβ
o
0 + uoi,n

(1)

for i = 1, . . . , 2n,7 where 2n represents the actual sample size and n serves as the sample-size index, y∗si,n and

y∗oi,n are latent variables, Xs
i·,n and Xo

i·,n are 1 × Ls and 1 × Lo dimensional vectors of exogenous variables,

and usi,n and uoi,n are the error terms for the selection and outcome equations, respectively; the corresponding

vectors and matrices of all observations are denoted by y∗sn = (y∗si,n)2n
i=1, W s

n = (W s
i·,n)2n

i=1, Xs
n = (Xs

i·,n)2n
i=1,

usn = (usi,n)2n
i=1 and analogously for the outcome equation. The spatial nonstochastic weight matrices W s

n and

W o
n are assumed to be known, contain nonnegative elements, and have zero elements on the main diagonal.

For example, the elements of W s
n and W o

n can be indirectly proportional to the strength of an economic

relationship or distance between two observations, or they can be equal to 0 or 1, indicating unrelated or

related (neighboring) observations (e.g., see LeSage and Pace, 2009). If the ijth element of the spatial weight

matrix is nonzero, there is a direct dependence between the latent variables of observations i and j. If the

6See Horn and Johnson (1985, pp. 291, 294-295) for more details.
7For notational convenience, we assume that the number of observations is even.
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ijth element of the spatial weight matrix is zero, it does not mean that observations i and j are independent

because there might exist an observation k that has an effect on the latent variables of both observations i

and j.

The relation between the observed outcomes and latent variables in (1) is defined as ysi,n = 1(y∗si,n > 0)

and yoi,n = ysi,ny
∗o
i,n, so that the selection equation determines which cases are observed, while the outcome

equation determines the magnitude of the observed responses. (In general, yoi,n is missing for observation i

rather than being zero if ysi,n = 0, but the definition is made for the simplicity of notation similarly to Chen

and Zhou, 2010, among others and does not affect the likelihood function.) This version of a sample selection

model is chosen because it is used in many empirical applications and includes other important models. For

example, under normality of errors, modelling just ysi,n leads to probit, and taking equations in (1) identical

results in Tobit. Generalizations to other sample selection models might also be considered. For instance, a

binary sample selection model with ysi,n = 1(y∗si,n > 0) and yoi,n = ysi,n1(y∗oi,n > 0) or a model with a Tobit

selection equation defined as ysi,n = max{0, y∗si,n} and yoi,n = 1(ysi,n > 0)y∗oi,n. Finally, the latent model (1) can

be easily adapted to include spatial errors instead of spatial lags:

y∗si,n = Xs
i·,nβ

s
0 + εsi,n(λs0)

y∗oi,n = Xo
i·,nβ

o
0 + εoi,n(λo0),

(2)

where εsi,n(λs0) = λs0W
s
i·,nε

s
n(λs0) + usi,n and εoi,n(λo0) = λo0W

o
i·,nε

o
n(λo0) + uoi,n similarly to y∗si,n and y∗oi,n in (1)

with εsn(λs0) = (εsi,n(λs0))2n
i=1 and εon(λo0) = (εoi,n(λo0))2n

i=1; the observed variables are defined in the same way

as before. The results presented in the paper are also derived and hold for this sample selection model

with spatial errors. Adjusting for different spatial error structures such as εsi,n(λs0) = λs0W
s
i·,nu

s
n + usi,n with

usn = (usi,n)2n
i=1 is straightforward.

An important feature of the latent model in (1) is that spatial lags of the latent instead of observed

variables are included in both the selection and outcome equations. For the outcome equation, it is true

that yoj,n = y∗oj,n if ysj,n = 1. Thus, the outcome equations with a lag of the latent variable and a lag of the

observed variable differ primarily by the presence of y∗oj,n with ysj,n = 0 on the right hand side of the equation.

Note also that εoi,n(λo0) in (2) in general depends on uoj,n with ysj,n = 0. For the selection equation, ysj,n and

y∗sj,n differ though, and the choice of the model depends on whether only individuals’ decisions or also their

motives are observable to others. By means of two empirical examples we will illustrate where models (1)

and (2) are plausible specifications; see also a related discussion in Qu and Lee (2012) for the censored model.

Example 1 (Peer effects in education with non-randomly missing data). The peers effects in education
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literature investigates whether students are affected by behaviours of their peers. For example, students

could increase their effort level if their peers study hard. In such situations, typically test scores are used to

measure the unobserved effort level and, if test scores are observed for all students, the second equation in (1)

is employed with y∗oi,n being replaced with yoi,n (e.g., see Lin, 2010). Unfortunately, in some cases test scores

are missing for some students. For example, Booij et al. (2016) found that, in the department of economics

and business of the University of Amsterdam, only 46% of the students take all the first-year exams during

the first year of their study. The sample selection problem arises if a student’s decision to attend the exam

and his score depend on the student’s ability to succeed in the subject. Such a situation can be handled

using the model in (1) with ysi,n and y∗oi,n being a student’s decision to take an exam and his (potential) score

from that exam, respectively.

This model does not only allow for the effort level of students to be affected by their peers but also

incorporates peer interactions in the decision to attend the exam. These interactions could be modelled

either by a spatial lag of the latent dependent variable or a spatial lag of the observed dependent variable.

Since students decide whether to attend the exam simultaneously, their decisions are likely to be affected

by their beliefs about their peers’ attendance rather than actual choices. Therefore, this situation might

be better approximated by a spatial lag of the latent dependent variable as in equation (1) rather than

the observed one. Likewise, we also include a lag of the latent rather than observed dependent variable in

the outcome equation. Students who did not attend the exam could had influenced their peers by solving

assignments together and attending the same tutorial classes. Therefore, the outcome equation should also

capture these interactions.

Model (1) can also be used to study cases when a missing data problem arises due to non-responsiveness

to a survey. Consider, for example, the National Longitudinal Study of Adolescent Health data, which has

been extensively used to study peer effects in education (e.g., Calvò-Armengol et al., 2009; Lin, 2010). In this

data, Hoshino (2019) found that information on GPA is missing for 11% of the respondents (after taking into

account missing data on the exogeneous variables used in his study). It might be the case that unobserved

abilities of a student affect both his decision to reveal his GPA and his GPA itself. Model (1) can thus

be used to account for this kind of sample selection, where a lag of the latent variable is included in the

outcome equation and is not included in the selection equation as the students filled-in the questionnaire

independently.

Example 2 (Agricultural yield). Ward et al. (2014) apply the GMM estimator proposed by Flores-Lagunes

and Schnier (2012) to estimate a cereal yield response function taking into account potential sample selection
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bias due to farmers’ endogenous decision about whether to plant cereals. Flores-Lagunes and Schnier (2012)

consider the latent model in (2) with spatially correlated errors and W s
n = W o

n (see, for instance, equations (1)

and (2) in their paper), but for the estimation, observations with ysi,n = 0 are omitted from the weight matrix

in the outcome equation (see footnote 16 of their paper). The estimator is thus inconsistent with the model.

Ward et al. (2014) overcame this issue by choosing W o
n 6= W s

n in such a way that W o
ij,n can have positive

values only if ysi,n = ysj,n = 1. In this case, the weight matrix depends on potentially endogenous farmers’

decisions whether to plant cereals. This approach however requires further research as neither PMLE nor the

GMM estimator proposed by Flores-Lagunes and Schnier (2012) are designed for the cases when the weight

matrix in the outcome equation depends on the outcomes in the selection equation. On the one hand, if the

correlation among unobservables in the outcome equation is driven by production technology or knowledge

spillovers, then the farmers who decided not to plant a field do not likely have a lot of influence on those who

decided to plant a field, and the weight matrix W o
n 6= W s

n considered in Ward et al. (2014) should be chosen.

On the other hand, if the correlation among unobservables is mainly driven by unobserved geographical and

meteorological characteristics, then both planted and not planted fields are affected similarly if they are

close to each other. Since the unobserved geographical and meteorological characteristics affect both the

decision to plant a field and a cereal yield response function, a nonstochastic weight matrix which captures

the closeness of fields can be used, and the specification in (2) with W o
n = W s

n should be considered.

Model (1) can be written in a reduced form, provided that the respective inverses exist, as

y∗sn = Ssn(λs0)Xs
nβ

s
0 + εsn(λs0)

y∗on = Son(λo0)Xo
nβ

o
0 + εon(λo0),

(3)

where the observed responses ysi,n = 1(y∗si,n > 0) and yoi,n = ysi,ny
∗o
i,n, and for b ∈ {s, o}, matrices Sbn(λ) =

(I2n − λW b
n)−1 and errors εbn(λ) = Sbn(λ)ubn. These definitions of εsn(λs0) and εon(λo0) are equivalent to those

in the spatial error model (2), and models (2) and (3) thus differ only by the presence of Ssn(λs0) and Son(λo0)

in the latter model.8

The spatial weight matrices in the original and reduced form models have to satisfy the following assump-

tion.

Assumption 1. (i) The matrices I2n − λsW s
n and I2n − λoW o

n are nonsingular for all (λs, λo)′ ∈ Λ, where

Λ is the space of the spatial parameters. (ii) The row and column sum matrix norms of matrices W s
n, W o

n,

8For the simplicity of notation, we do not consider models with both spatial lags and spatial errors in both the selection and
outcome equations. These models can however be analyzed in a similar way as the spatial lag model.
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Ssn(λs), and Son(λo) are bounded uniformly in n ∈ N and (λs, λo)′ ∈ Λ.

The first condition implies that there is a unique solution to y∗sn and y∗on in (1) as well as to εsn(λs0)

and εon(λo0) in (2). Since there is no natural parameter space for spatial parameters, this condition is usually

ensured by normalizing spatial weight matrices and bounding the parameter space. In applications, the weight

matrices are typically normalized in such a way that the sum of each row is equal to 1 and the parameter

space of (λs, λo) is chosen to be (−1, 1) × (−1, 1). However, if there is no theoretical reason for the row

normalization, this might lead to misspecification. Kelejian and Prucha (2010) instead suggest to normalize

the weight matrices by their largest absolute eigenvalues. The second condition restricts dependence to a

manageable degree. This is a classical assumption in the spatial econometrics literature (e.g., see Kelejian

and Prucha, 1998, 1999, 2010).

3 Partial Maximum Likelihood Estimator

The (partial) maximum likelihood estimator requires a parametric specification of the distribution of the error

terms. Although we could consider a general elliptically contoured distribution of (usi,n, u
o
i,n)′, we restrict

our attention to the Gaussian case as it turns out to be not only the most frequently used one, but also the

most complicated one (relative to heavier-tailed distributions) due to the necessity to study and bound the

moments of the logarithm of the bivariate normal cumulate distribution function and their derivatives. Let

θ = (βs
′
, βo

′
, λs, λo, ρ, σ2)′.

Assumption 2. (i) The error terms (usi,n, u
o
i,n)′

iid∼ N (0,Σ(θ0)), where Σ(θ0) = [1 ρ0σ0; ρ0σ0 σ2
0 ] is a

positive definite matrix. (ii) (Xs
n, X

o
n) and (usn, u

o
n) are independent. (iii) Xs

i·,n, X
o
i·,n,W

s
i·,n, and W o

i·,n are

always observed.

Assumption 2(i) is strong but standard in the literature that analyzes parametric sample selection models

(see Heckman, 1974, 1979). The variance of usi,n is normalized to 1 in order to ensure identification. The

correlation coefficient ρ0 controls the selection bias; if ρ0 is zero, the outcome equation can be estimated

independently of the selection equation. Even in that case, standard estimators for spatial linear models,

for example, MLE (see Lee, 2004) or GMM (see Kelejian and Prucha, 1998), cannot be applied in order

to estimate the outcome equation in (1) for a subsample of observations with ysi,n = 1 because y∗oj,n on the

right hand side of the outcome equation is missing if ysj,n = 0. If data are missing at random, the methods

developed by Wang and Lee (2013) for estimation of spatial autoregressive models are applicable to model
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(1) and a version of the MLE estimator9 can be applied to the outcome equation in (2) for a subsample of

observations with ysi,n = 1. Neither method is applicable if ρ0 6= 0 though.

Further, in the standard sample selection model, it is assumed that (Xs
i·,n, X

o
i·,n) and (usi,n, u

o
i,n) are

independent. Due to spatially correlated errors εsi,n(λs) and εoi,n(λo), which are present in both the spatial

lag and spatial error models in (3) and (2), respectively, we need to make an assumption that the exogenous

variables and the error terms are mutually independent as in Assumption 2(ii). Finally, Assumption 2(iii)

states that the exogenous variables and spatial weights have to be observed even for missing observations.

The observability of the exogenous variables in the outcome equation for missing observations is not required

neither in the standard parametric sample selection model nor in model (2) with spatial errors. If the model

contains a spatial lag, the partial maximum likelihood estimator is however based on the reduced form in (3),

which requires full observability. This assumption is not too strong since Xs
i·,n contains variables in Xo

i·,n in

many empirical applications (e.g., Buchinsky, 1998; Vella, 1998; Sharma et al., 2013).

The assumption about observability of spatial weights is not very restrictive either, at least if the spatial

weights are based on distances between observations, which are typically not difficult to obtain even for

missing observations. For example, both exogenous variables and spatial weights are available for missing

observations in Examples 1 and 2. In studies on peer effects in education, weight matrices are typically

constructed by assigning value 1 to the ijth element of the weight matrix if students i and j are in the same

classroom and value zero otherwise. As studies on peer effects in education usually use educational registers,

both classroom compositions and background variables are also available for students who skipped a few

exams. Likewise, in agricultural yield studies, spatial weight matrices are usually constructed based on the

proximity of fields, hence also available for missing observations. The meteorological variables considered in

Ward et al. (2014) are also available for fields that were not planted.

Due to the spatial dependence, the error terms εsi,n(λs) and εoi,n(λo) in latent models (3) and (2) are

heteroskedastic and cross-correlated. Hence, the full MLE is computationally demanding in this setting.

Based on the idea introduced by Wang et al. (2013), we therefore suggest to estimate the models by applying

the partial maximum likelihood estimator. Specifically, we divide 2n observations into n mutually disjoint

pairs based on the idea that the internal correlation between two observations in a pair is more important

than the external correlation with observations in the other pairs, at least if observations within a pair are

“close” to each other. If only very weakly correlated observations are paired, the estimator will be similar

to HMLE and there will be no gains from forming the pairs. The way how the observations are paired

9If uoi,n|Xo
i·,n ∼ N (0, σ2

0), then y∗oi,n|Xo
i·,n ∼ N (Xo

i·,nβ
o
0 , S

o
i·,n(λo0)So

·i,n(λo0)σ2
0). If the dependent variable is missing randomly,

yoi,n|Xo
i·,n follows the same distribution.
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thus has an effect on the estimation precision, and it is desirable to group observations in such a way that

the variance of the estimator is minimized. Given that the asymptotic variance is a function of unknown

parameters, a two-step procedure might be considered, where the initial estimates based on some primitive

grouping are used to construct an optimal grouping. It is unfortunately very difficult, if not impossible,

to construct the asymptotic distribution of such a two-step estimator because the grouping becomes data

dependent. Moreover, it is not clear how to obtain an optimal grouping practically as it would involve huge

computational costs unless very rough approximations of the asymptotic variance are used. For these reasons,

we suggest to group observations based on deterministic variables that potentially capture the strength of

dependence between observations, for example, the Euclidean distance between observations (see Section 5.1

for details). As discussed in Wang et al. (2013), it is also possible to try a finite number of different grouping

schemes and to choose the one which delivers the smallest standard errors.

Let a grouping of observations be described by an index set Gn containing n pairs g = (i, j)′ of observations

i and j; ∪g∈Gn{g1, g2} = {1, . . . , 2n}. Let y∗sg,n = (y∗sg1,n, y
∗s
g2,n)′ and y∗og,n = (y∗og1,n, y

∗o
g2,n)′ be 2-dimensional

vectors of latent variables in a group g ∈ Gn. The latent processes for a group g from the reduced form in

(3) can be then written as

y∗sg,n = Ssg·,n(λs0)Xs
nβ

s
0 + εsg,n(λs0)

y∗og,n = Sog·,n(λo0)Xo
nβ

o
0 + εog,n(λo0)

with observed responses ysg,n and yog,n, where all variables are defined in the same way as in Section 2 except

that now they are defined for a group g instead of an individual i; that is, Ssg·,n(λs0) = (Ss
′

g1·,n(λs0), Ss
′

g2·,n(λs0))′,

εsg,n(λs0) = (εsg1,n(λs0), εsg2,n(λs0))′, ysg,n = (ysg1,n, y
s
g2,n)′, and so on. The grouped spatial error model can be

defined analogously.

Before constructing the log-likelihood function Qn(θ) and its population counterpart in the limit Q0(θ),

note that the log-likelihood function will be composed of four parts because there are four scenarios: one

observation in a pair is missing (ysg1,n = 1 and ysg2,n = 0 or vice versa), no observations are missing (ysg1,n =

ysg2,n = 1), and two observations are missing (ysg1,n = ysg2,n = 0). To simplify notation, we therefore define an

index set A = {10, 01, 11, 00} based on the values that ysg1,n and ysg2,n take and the corresponding indicator

functions dag,n = 1(10ysg1,n + ysg2,n = a). In order to construct the likelihood function, we also need to

introduce some additional notation. Let ζg,n = 2ysg,n − ι2, where ι2 is the 2-dimensional vector of ones,
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S̃sg·,n(λ) =
(
ζg1,nS

s′

g1·,n(λ), ζg2,nS
s′

g2·,n(λ)
)′

, and

Ω̃ssg,n(θ) =

 Ωssg11,n(θ) ζg1,nζg2,nΩssg12,n(θ)

ζg1,nζg2,nΩssg21,n(θ) Ωssg22,n(θ)

 , Ω̃sog,n(θ) = −

ζg1,nΩsog11,n(θ) ζg1,nΩsog12,n(θ)

ζg2,nΩsog21,n(θ) ζg2,nΩsog22,n(θ)


with Ωssn (θ) = Ssn(λs)Ss

′

n (λs), Ωson (θ) = Ssn(λs)So
′

n (λo)ρσ, and Ωoon (θ) = Son(λo)So
′

n (λo)σ2. Further, let

zg,n(θ) = yog,n − Sog·,n(λo)Xo
nβ

o, and for any a ∈ A, Rag,n(θ) be the correlation matrix obtained from Σag,n(θ),

vag,n(θ) = (Diag(Σag,n(θ)))−1/2
(
qg,n(θ)− µag,n(θ)

)
with qg,n(θ) = S̃sg·,n(λs)Xs

nβ
s, and

µ10
g,n(θ) = Ω̃sog·1,n(θ)zg1,n(θ)/Ωoog11,n(θ),

µ01
g,n(θ) = Ω̃sog·2,n(θ)zg2,n(θ)/Ωoog22,n(θ),

µ11
g,n(θ) = Ω̃sog,n(θ)Ωoo−1

g,n (θ)zg,n(θ),

µ00
g,n(θ) = 0,

Σ10
g,n(θ) = Ω̃ssg,n(θ)− Ω̃sog·1,n(θ)Ω̃so

′

g·1,n(θ)/Ωoog11,n(θ),

Σ01
g,n(θ) = Ω̃ssg,n(θ)− Ω̃sog·2,n(θ)Ω̃so

′

g·2,n(θ)/Ωoog22,n(θ),

Σ11
g,n(θ) = Ω̃ssg,n(θ)− Ω̃sog,n(θ)Ωoo−1

g,n (θ)Ω̃so
′

g,n(θ),

Σ00
g,n(θ) = Ω̃ssg,n(θ).

Then the log-likelihood function based on a grouping Gn is defined by (see the derivation in Appendix

G.1)

Qn(θ) =
1

n

∑
g∈Gn

{
1(ysg1,n = 1, ysg2,n = 0) ln

 1√
Ωoog11,n(θ)

φ

 zg1,n(θ)√
Ωoog11,n(θ)

Φ2

(
v10
g,n(θ), R10

g,n(θ)
)

+ 1(ysg1,n = 0, ysg2,n = 1) ln

 1√
Ωoog22,n(θ)

φ

 zg2,n(θ)√
Ωoog22,n(θ)

Φ2

(
v01
g,n(θ), R01

g,n(θ)
)

+ 1(ysg1,n = 1, ysg2,n = 1) ln
[
φ2

(
zg,n(θ),Ωoog,n(θ)

)
Φ2

(
v11
g,n(θ), R11

g,n(θ)
)]

+ 1(ysg1,n = 0, ysg2,n = 0) ln
[
Φ2

(
v00
g,n(θ), R00

g,n(θ)
)]}

=
1

n

∑
g∈Gn

∑
a∈A

dag,nf
a
g,n(θ),

(4)

where fag,n(θ), a ∈ A, represent the log-density functions, φ(·) is the standard normal density function, and

φ2(·,Σ) and Φ2(·,Σ) are the bivariate normal density and distribution functions, respectively, with zero mean

and variance matrix Σ.

Although the log-likelihood function looks complicated, it is not difficult to implement and to maximize.

If there is the spatial error instead of the spatial lag in the selection or outcome equations, zg,n(θ) and

qg,n(θ) have to be replaced with zeg,n(θ) = yog,n −Xo
g·,nβ

o and qeg,n(θ) = X̃s
g·,nβ

s, respectively, where X̃s
g·,n is

11



constructed in the same way as S̃sg·,n(λ).

4 Asymptotic Properties of Partial Maximum Likelihood Estima-

tor

The main difficulty in proving asymptotic properties of PMLE stems from analyzing the nonlinear objective

function based on heterogeneous and spatially dependent processes. Hence, this dependence has to be

restricted to a manageable degree. We do so by employing the near epoch dependent (NED) random fields

framework developed by Jenish and Prucha (2012). We consider a topological structure proposed in their

paper. Let the location of an observation i be defined by li ∈ D̃n, where D̃n is a finite sample region of

a d̃-dimensional lattice D̃ ⊂ Rd̃, d̃ > 1, equipped with the Euclidean metric. Since the likelihood function

in (4) is in terms of likelihood contributions for pairs, let a group g = (i, j)′ be assigned a location lg =

(l′g1 , l
′
g2)′ = (l′i, l

′
j)
′ ∈ D̃n × D̃n = Dn, which is a finite sample region of a 2d̃-dimensional lattice D =

D̃ × D̃ ⊂ R2d̃. Given this definition, the distance between two groups g and ġ depends on configurations

of four points in Rd̃. We consider a distance metric between two points in R2d̃ defined by d(lg, lġ) =

min{‖(l′g1 , l
′
g2)′ − (l′ġ1 , l

′
ġ2

)′‖, ‖(l′g1 , l
′
g2)′ − (l′ġ2 , l

′
ġ1

)′‖}. The distance between any two subsets A,B ⊆ D is

defined as d(A,B) = inf{d(g, ġ) : lg ∈ A, lġ ∈ B}, where the fact that the observations are indexed by

natural numbers allows us to write d(g, ġ) ≡ d(lg, lġ) for two groups g and ġ with locations lg, lġ ∈ R2d̃.

Assumption 3. Individual units in the economy are located or living in a region D̃n ⊂ D̃ ⊂ Rd̃. The

cardinality of Dn = D̃n × D̃n satisfies limn→∞ |Dn| = ∞. The distance d(g, ġ) between any two different

groups g and ġ is larger than or equal to a specific positive constant, which we normalize to 1.

Region D corresponds to a space of economic or geographic characteristics or a mixture of them. In

Example 2, a geographical space can simply be used. Although there is no natural location for an observation

i in Example 1, a location can be constructed. Assume that there are t = 1, . . . , T tutorial groups with at

most S̄ students in each group. Let ti be the tutorial group of student i and ai be his rank in tutorial group

ti based on the alphabetical ordering. Then student i’s location can be given by li = (tiS̄, ai)
′. Assumption

3 implies that the increasing domain asymptotics is used (as an alternative to the infill domain asymptotics):

the distance restriction in Assumption 3 implies that there is a finite number of units in any bounded region

and that the sample region Dn has to expand when the sample grows.

For reference, the definitions of α-mixing and NED properties presented in Jenish and Prucha (2009,

2012) are reviewed first.

12



Definition 1. Let {ηg,n}g∈Gn be a triangular array of real random variables defined on a probability space

(Ω,F , P ). Moreover, let A and B be two σ-algebras of F and

α(A,B) = sup(|P (A ∩B)− P (A)P (B)|, A ∈ A, B ∈ B).

For A ⊆ Dn and B ⊆ Dn, let σn(A) = σ(ηg,n : lg ∈ A) and αn(A,B) = α(σn(A), σn(B)). Then the α-mixing

coefficients for the random fields {ηg,n}g∈Gn are defined as

ᾱ(k,m, s) = sup
n

sup
A,B

(αn(A,B), |A| ≤ k, |B| ≤ m, d(A,B) ≥ s),

where | · | denotes the cardinality of a set.

This definition is similar to the time series literature. The major difference is that, in the random fields

setting, the α-mixing coefficients do not only depend on the distance between two sets but also on the sizes

of the sets. The definition of the NED property follows.

Definition 2. Let {Zg,n}g∈Gn and {ηg,n}g∈Gn be random fields located on Dn, and additionally, {Zg,n}g∈Gn

satisfy ‖Zg,n‖p < ∞, p ≥ 1. Moreover, let {tg,n}g∈Gn be an array of positive constants. Then the random

field {Zg,n}g∈Gn is said to be Lp-near epoch dependent on the random field {ηg,n}g∈Gn if

‖Zg,n − E[Zg,n|Fg,n(s)]‖p ≤ tg,nψ(s)

for some sequence ψ(s) ≥ 0 with lims→∞ ψ(s) = 0, where Fg,n(s) = σ(ηġ,n : d(g, ġ) ≤ s), s ∈ N. The NED

random field is uniform if and only if sup
n,g

tg,n <∞.

In Definition 2, the term Zg,n − E[Zg,n|Fg,n(s)] measures the prediction error of Zg,n based on the

information contained in {ηġ,n : d(g, ġ) ≤ s}. The NED property then states that the prediction error

converges to zero as s increases. Note that NED is not a property of a random variable itself as α-mixing is,

but it is a property of a mapping.

4.1 Consistency

To prove consistency, we need to introduce additional assumptions.

Assumption 4. (i) {(Xs
g·,n, X

o
g·,n)}g∈Gn is an α-mixing random field with α-mixing coefficients ᾱ(k,m, s) ≤

(k +m)τ α̂(s), τ ≥ 0, for some α̂(s)→ 0 as s→∞ such that
∑∞
s=1 s

2d̃−1α̂(s) <∞. (ii) sup
n,i

E‖Xb
i·,n‖p <∞
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and sup
n,i

E
[
‖Xb

i·,n‖p|ysi,n = 1
]
<∞ for any 1 ≤ p ≤ p̄, where p̄ > 18 and b ∈ {s, o}.

Assumption 4(i) states that the exogenous variables may be cross-sectionally dependent under some

restrictions. Assumption 4(ii) implies that p̄ moments, p̄ > 18, of the exogenous variables exist. This is

less restrictive than the assumption that the support of the exogenous variables is bounded, which is usual

in the (spatial) literature studying discrete choice or limited dependent variable models.10 Moreover, the

large number p of finite moments is related to the assumed normality of the errors and the need to bound

the moments of the logarithm of the bivariate normal cumulative distribution function and their derivatives

(cf. Lemma C.5). It is likely that for heavier-tailed error distributions (e.g., the Laplace distribution), a

substantially smaller number of moments would have to exist. The derivatives of the log-likelihood function

are inversely proportional to the values of the distribution function, and therefore, are likely to be increasing

slower for heavier-tailed distributions. Thus less moments of the explanatory variables could potentially be

required.

The elements of the spatial weight matrices determine the strength of dependence between observations.

An important question is under which structures of spatial weight matrices the limit laws based on the NED

framework hold. Given that the likelihood function is specified in terms of (the inverses Ssn(λs) and Son(λo)

of) I2n − λsW s
n and I2n − λoW o

n and the grouping is determined by the user of the method, we impose

restrictions on the weight matrices indirectly by the following assumption.

Assumption 5. lim
s→∞

ψ(s) = 0 with ψ(s) = max{ψs(s), ψo(s)}, where ψb(s) = sup
n,g

sup
θ∈Θ

∑
ġ:d(g,ġ)>s ‖Sbgġ,n(λb)‖/

sup
n,g

sup
θ∈Θ

∑
ġ∈Gn ‖S

b
gġ,n(λb)‖, b ∈ {s, o}.

As shown in the proof of Theorem 1, Assumption 5 is needed to show that {
∑
a∈A d

a
g,nf

a
g,n(θ)}g∈Gn is a

NED random field on the α-mixing random field {ηg,n = (Xs
g·,n, X

o
g·,n, u

s
g,n, u

o
g,n)}g∈Gn . The main implication

of Assumption 5 is that dependence between pairs should decrease to zero with an increasing distance between

the pairs. Given the Euclidean norm used in Assumption 5, this means that the weights |Sbij,n(λ)| between

observations i ∈ g and j ∈ ġ have to decrease with their distance. For example, it follows similarly to Qu and

Lee (2015) that Assumption 5 and also Assumption 1(ii) hold if the spatial weights W b
ij,n, b ∈ {s, o}, can be

bounded by Cc‖li− lj‖−Cpd̃ for some Cc > 0 and Cp > 2, and additionally in the case of an asymmetric W b
n,

if the number of columns with their absolute sums exceeding the row norm ‖W b
n‖∞ is bounded uniformly in

n (see Appendix H). Assumption 5 is also satisfied if the observations with their distance above a certain

threshold have zero spatial weights. For instance, if tutorial groups are analyzed in Example 1, it is typically

assumed that the ijth element of the weight matrix is equal to zero if students i and j are from different

10E.g., see condition (v) of Theorem 1 by Pinkse and Slade (1998) and condition (vi) of Theorem 1 by Wang et al. (2013).
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tutorial groups. Thus assuming that the number of students in each tutorial group is even, it is beneficial to

form only pairs of students who are in the same tutorial group. Given the definition of locations for Example

1 presented below Assumption 3, if d(g, ġ) ≥ S̄, students in pairs g and ġ are from different tutorial groups

implying that ‖Sbgġ,n(λb)‖ = 0 and Assumption 5 is trivially satisfied.

Next, we make an assumption about 2×2 submatrices of matrices Ωssn (θ) and Ωoon (θ) and Σag,n(θ), a ∈ A,

defined in Section 3.

Assumption 6. The minimum eigenvalues of matrices Ωssg,n(θ), Ωoog,n(θ), and Σag,n(θ), a ∈ A, are bounded

away from zero uniformly in n ∈ N, g ∈ Gn, and θ ∈ Θ, where Θ is the parameter space of θ.

Assumption 6 ensures that the above mentioned 2×2 (sub)matrices are invertible for each pair. Thus, the

observations should be grouped in such a way that this assumption is not violated. Its validity can be checked

using a grid covering possible values of the spatial parameters and the correlation coefficient since matrices

Ωssg,n(θ), Ωoog,n(θ)/σ2, and Σag,n(θ), a ∈ A, do not depend on regression parameters βs, βo, and variance σ2.

Assumption 7. The parameter space Θ is a compact subset of RL.

Assumption 8. The population log-likelihood functions E[Qn(θ)] are uniquely maximized at θ0 for n ≥ n0

and some n0 ∈ N: lim infn→∞(E[Qn(θ0)]− sup‖θ−θ0‖>εE[Qn(θ)]) > 0 for any ε > 0.

Whereas Assumption 7 is a standard assumption for nonlinear extremum estimators, Assumption 8 is

the identification condition for PMLE, allowing the non-existence of the limit of E[Qn(θ)].11 If Q0(θ) =

limn→∞E[Qn(θ)] exists, Q0(θ) is simply required to have a unique maximum at θ0. This PMLE likelihood

is based on the correctly specified distribution for each pair of observations, and therefore, it attains its

maximum at the true parameter values by the Kullback-Leibler information inequality (see also Appendix G

for the validity of the population first-order conditions). We assume rather than prove identification because

it is a very challenging task. Wooldridge (1994) claims that usually some additional knowledge about the

distribution of conditioning variables is needed to establish identification, and therefore, it is assumed rather

than proved in many cases. For this reason, many other papers analyzing nonlinear spatial models make

assumptions similar to Assumption 8, for example, see Wang et al. (2013) and Xu and Lee (2015a,b, 2018).

Finally, the consistency of the proposed PMLE follows.

Theorem 1. Under Assumptions 1–8, θ̂n − θ0 = op(1) as n→∞.

11We thank an anonymous referee for suggesting this generalization allowing for very general forms of heterogeneity defined
by the spatial weight matrices.
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4.2 Asymptotic Normality

In order to establish asymptotic normality, we need to strengthen the assumptions regarding the dependence

structure. In particular, the NED coefficients of random field {
∑
a∈A d

a
g,n∂f

a
g,n(θ0)/∂θ}g∈Gn have to decrease

to zero at a certain relatively fast rate, see Assumption 10 below, because the likelihood function is not only

nonlinear but contains indicator functions as well. Additionally, some standard regularity conditions are

required.

Assumption 9. (i) {(Xs
g·,n, X

o
g·,n)}g∈Gn is an α-mixing random field with α-mixing coefficients ᾱ(k,m, s) ≤

(k + m)τ α̂(s) with some α̂(s) → 0 as s → ∞ such that for some δ > 0,
∑∞
s=1 s

2d̃(τ∗+1)−1α̂δ/(4+2δ)(s) < ∞,

where τ∗ = δτ/(2 + δ), τ ≥ 0. (ii) sup
n,i

E‖Xb
i·,n‖p <∞ and sup

n,i
E
[
‖Xb

i·,n‖p|ysi,n = 1
]
<∞ for any p ≥ 1.

Assumption 10. The maximum ψ(s) of the NED coefficients ψs(s) and ψo(s) defined in Assumption 5

satisfies
∑∞
s=1 s

2d̃−1ψ(r−2)/(12r−12)(s) <∞ for some r > 2.

Assumption 11. θ0 is in the interior of the parameter space Θ.

Assumption 12. Let min eigA represents the smallest eigenvalue of matrix A and assume for some n0 ∈ N

that (i) Hn(θ0) = E
[
∂2Qn(θ0)
∂θ∂θ′

]
exists, is finite, and non-singular; (ii) Jn(θ0) = E

[
n∂Qn(θ0)

∂θ
∂Qn(θ0)
∂θ′

]
exists,

is finite, and infn≥n0 min eig Jn(θ0) > 0.

Assumption 9(ii) implies that infinitely many moments of the exogenous variables exist. The proof of

asymptotic normality requires only finitely many moments but finding the exact p, which is much larger than

18 imposed in Assumption 4(ii) and thus practically irrelevant, would require a lot of effort such as calculating

the third order derivatives of the bivariate normal distribution functions in (4). Some sufficient conditions on

the spatial weight matrices for Assumption 10 are provided in Appendix H. Assumption 12 admits again that

the limits H(θ0) = limn→∞Hn(θ0) and J(θ0) = limn→∞ Jn(θ0) do not necessarily exist due to practically

unrestricted heterogeneity defined by the spatial weight matrices. If these limits are well defined, Assumption

12 becomes the standard requirement that the Jacobian and Hessian matrices corresponding to the limit of

the population partial maximum likelihood function exist and are non-singular. Note that the non-singular

Hessian matrix is not necessary for the asymptotic normality formulated in the following theorem, but for

its use in real data analysis.

Theorem 2. Under Assumptions 1–3, 5–12,
√
nJ
−1/2
n (θ0)Hn(θ0)(θ̂n − θ0)

d−→ N (0, IL) as n→∞.

Finally, since the likelihood function does not account for the dependence between groups, the variance
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matrix of PMLE is not equal to the inverse of the Fisher information matrix. Thus, PMLE is in general not

efficient as the full MLE is.

4.3 Estimation of the Variance Matrix

Although we do not model the dependence between pairs in the likelihood function, it has to be accounted for

when the variance matrix is estimated. On the one hand, it is relatively easy to estimate the Hessian matrix

Hn(θ0) = E[∂2Qn(θ0)/∂θ∂θ′] as it can be obtained using its sample analog and a consistent estimate of θ:

Ĥn(θ̂n) = ∂2Qn(θ̂n)/∂θ∂θ′. On the other hand, estimation of the variance matrix Jn(θ0) and its limit J(θ0)

is complicated due to the dependence between groups. It is theoretically possible to consider a spatial analog

of a heteroskedasticity and autocorrelation consistent (HAC) estimator of the variance matrix that has been

extensively analyzed in the time series literature (i.e., Newey and West, 1987, and Andrews, 1991). Conley

(1999) adapted the HAC estimator for the spatially stationary observations. Noting that the Cliff-Ord type

models are in general not spatially stationary, Kelejian and Prucha (2007) and Kim and Sun (2011) relaxed

the stationarity assumption, but considered only processes linear in error terms. This is not the case for

∂Qn(θ0)/∂θ here, and therefore, the HAC estimator is not easily applicable in the present setting.

On the other hand, it is not uncommon to estimate the variance of an estimator of a spatial model using the

bootstrap when it is very difficult or practically impossible to obtain a closed form expression of the variance

matrix (e.g., a residual based bootstrap method is used by Su and Yang, 2015, in spatial dynamic panel data

models). The bootstrap standard errors are also often recommended in the linear regression models with

clustered errors (Cameron et al., 2008), which are closely related to model (2), although stronger dependence

(larger clusters) can adversely affect traditional boostrap procedures such as the wild bootstrap (MacKinnon

and Webb, 2017). However given that the considered sample selection models are completely parametrically

specified, it is possible to use the parametric bootstrap to estimate Jn(θ0). Note that we suggest to bootstrap

Jn(θ0) instead of the complete variance matrix of the estimator to guarantee good computational speed. The

bootstrap procedure for estimating Jn(θ0) can be described for the spatial lag model as follows (the spatial

error model can be dealt with analogously).

1. Obtain the partial maximum likelihood estimate θ̂n = (β̂s
′

n , β̂
o′

n , λ̂
s
n, λ̂

o
n, ρ̂n, σ̂

2
n)′.

2. For every b = 1, . . . , B, generate a random sample (u
s(b)
i,n , u

o(b)
i,n )′ of size 2n from the distribution

N (0,Σ(θ̂n)), where Σ(θ̂n) = [1 ρ̂nσ̂n; ρ̂nσ̂n σ̂
2
n].
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3. Given W s
n, W o

n , Xs
n, Xo

n, and θ̂n, generate the bootstrap data (indexed by b) according to

y∗s(b)n = Ssn(λ̂sn)Xs
nβ̂

s
n + εs(b)n (λ̂sn)

y∗o(b)n = Son(λ̂on)Xo
nβ̂

o
n + εo(b)n (λ̂on)

with observed responses y
s(b)
i,n = 1(y

∗s(b)
i,n > 0) and y

o(b)
i,n = y

s(b)
i,n y

∗o(b)
i,n , where ε

s(b)
n (λ̂sn) = Ssn(λ̂sn)u

s(b)
n

and ε
o(b)
n (λ̂on) = Son(λ̂on)u

o(b)
n .

4. Compute the score Γ
(b)
n (θ̂n) = ∂Q

(b)
n (θ̂n)/∂θ for B bootstrap samples; Q

(b)
n (θ̂n) is thus obtained using

y
s(b)
i,n , y

o(b)
i,n , W s

n, W o
n , Xs

n, and Xo
n, where b = 1, . . . , B.

5. Finally, the bootstrap estimate of Jn(θ0) is given by

Ĵn(θ̂n) =
n

B − 1

B∑
b=1

(
Γ(b)
n (θ̂n)− 1

B

B∑
b=1

Γ(b)
n (θ̂n)

)(
Γ(b)
n (θ̂n)− 1

B

B∑
b=1

Γ(b)
n (θ̂n)

)′
.

Since the functional form of the derivatives of the likelihood function is rather complicated, we suggest

to use numerical differentiation to evaluate Γ
(b)
n in step 4. To achieve consistent estimation, the step size of

the numerical derivatives has to decrease to zero as the sample size increases (Hong et al., 2015), although

no particular rate is required as just averages of the numerically differentiated functions are evaluated. In

practice, the step size should not be too small because this might yield large rounding errors. In our simulation

study (see Section 5), we used a widely adopted rule of thumb and calculated the first-order derivatives using

the step size
√
eps · sgn(θj) · ‖θ‖∞, j = 1, . . . L, where eps is a machine epsilon and sgn(θj) is equal to -1 if θj

is negative and is equal to 1 otherwise.12 Additionally, the bootstrapped first-order conditions are now shown

to consistently approximate the asymptotic distribution, and due to their uniform integrability verified in the

proof of Theorem 3, also the moments of the first-order conditions. The result however requires an analog of

Assumption 10 for a product of the spatial matrices.

Assumption 13. lim
s→∞

ψ̃s(s) = 0, where ψ̃s(s) = sup
n,g

sup
θ∈Θ

∑
ġ:d(g,ġ)>s ‖Ss3gġ,n(λs)‖/ sup

n,g
sup
θ∈Θ

∑
ġ∈Gn ‖S

s3
gġ,n(λs)‖,

Ss3n (λ) = Ssn(λ)W s
nS

s
n(λ), and additionally, the maximum ψ(s) of NED coefficients ψs(s), ψo(s), and ψ̃s(s)

satisfies
∑∞
s=1 s

2d̃−1ψ(r−2)/(24r−24)(s) <∞, for some r > 2.

Theorem 3. Under Assumptions 1–13, supc∈R |P b(
√
nJ
−1/2
n (θ0)Γ

(b)
n (θ̂n) ≤ c)−P (N (0, IL) ≤ c)| = op(1) as

n→∞, and

sup
c∈R
|P b(
√
nΓ(b)

n (θ̂n) ≤ c)− P (
√
nΓn(θ0) ≤ c)| p→ 0,

12For the second-order derivatives, we used 4
√
eps · sgn(θj) · ‖θ‖∞.
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as n→∞, where P b denotes the probability measure induced by the parametric bootstrap.

5 Monte Carlo Simulations

5.1 Experimental Design

We consider the following data generating process:

y∗sn = (I2n − λsW s
n)−1(Xs

nβ
s + usn)

y∗on = (I2n − λoW o
n)−1(Xo

nβ
o + uon)

for the spatial lag model and

y∗sn = Xs
nβ

s + (I2n − λsW s
n)−1usn

y∗on = Xo
nβ

o + (I2n − λoW o
n)−1uon

for the spatial error model, where Xs
i·,n = (Xs

i1,n, X
s
i2,n, X

s
i3,n) and Xo

i·,n = (Xo
i1,n, X

o
i2,n, X

o
i3,n) with Xs

i1,n =

Xo
i1,n = 1, Xs

i2,n = Xo
i2,n

iid∼ N (0, 1), Xs
i3,n

iid∼ χ2(1), and Xo
i3,n

iid∼ χ2(1). The error terms (usi,n, u
o
i,n)′

iid∼

N (0,Σ), where Σ = [1 0.5; 0.5 1]. The parameters (βs2, β
s
3, β

o
1 , β

o
2 , β

o
3) = (1,−1, 1, 1,−1), while βs1 is chosen

such that P [ysi,n = 1|W s
n;λs] = 2/3. We analyze all the possible combinations of the spatial parameters λs

and λo taking values from the set {0, 0.4, 0.85}.

Let Dn represent great-cycle distances in miles between counties in the US.13 Similarly to Xu and Lee

(2015a), we use counties in the 10 Upper Great Plains States for 2n = 760.14 For 2n = 344, counties in

Nebraska, South Dakota, Minessota, and Iowa are used, whereas only the first two states are utilized for

2n = 158.15 The weight matrices are generated as follows: W̃ s
ij,n = W̃ o

ij,n = 1(Dij,n ≤ 50) · 1/Dij,n. We

row-normalize W̃ s
n and W̃ o

n in order to get W s
n and W o

n . Wang et al. (2013) propose to group adjacent

observations, for instance, using the Euclidean distance. Based on this idea, we formulate the following

13The data is available at http://data.nber.org/data/county-distance-database.html.
14The ten states include Nebraska, South Dakota, Minnesota, Iowa, Colorado, Kansas, Missouri, Montana, North Dakota,

and Wyoming.
15To obtain a sample size that is an even number, Adams county in Nebraska is excluded for 2n ∈ {158, 344}.
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integer linear programing (ILP) problem:16

min
eij,n:i=1,...,2n,j=1,...,2n

2n∑
i=1

2n∑
j=1

eij,nD̃ij,n

s.t.

2n∑
j=1

eij,n = 1, eii,n = 0, eij,n = eji,n,

where eij,n is a binary variable, which is equal to 1 if observations i and j form a pair and to zero otherwise;

D̃ij,n = 1(Dij,n ≤ 50)Dij,n. We use D̃n instead of Dn in the ILP problem in order to reduce the burden of

computation. The effect on the grouping is small since the algorithm groups nearby observations.

The partial maximum likelihood estimator (PMLE) is compared to the heteroskedastic maximum likeli-

hood estimator (HMLE), which has a likelihood function of a form similar to (4) but for univariate rather

than bivariate observations. The model with the spatial error is also estimated by the GMM estimator pro-

posed by Flores-Lagunes and Schnier (2012). Two versions of the GMM estimator are explored: with the

identity weight matrix (GMM) and with the optimal weight matrix (GMM2).

Given that βs and βo are 3-dimensional vectors, bias, standard deviation, and root mean squared error

(RMSE) are calculated for each element of βs and βo separately. In Tables 1, 2, 4, 6, 7, 10, and 11 in

Appendix A, however, only the Euclidean norms of the vectors of the corresponding statistics are reported,

i.e. stat(β̂bn) = ‖(stat(β̂b1n), stat(β̂b2n), stat(β̂b3n))‖, where b ∈ {s, o} and stat ∈ {bias, s.d., rmse}.

In many empirical applications, marginal effects play a crucial role. For this reason, we also consider

the following marginal effects: mfx1 = ∂P (ysi,n = 1|Xs
n)/∂Xs

j2,n, mfx2 = ∂P (ysi,n = 1|Xs
n)/∂Xs

j3,n,

mfx3 = ∂E
[
y∗oi,n|ysi,n = 1, Xs

n, X
o
n

]
/∂Xo

j2,n, and mfx4 = ∂E
[
y∗oi,n|ysi,n = 1, Xs

n, X
o
n

]
/∂Xo

j3,n; the formulas

are presented in Appendix G.3. (In the spatial error model, the marginal effects are conditional on Xs
i·,n and

Xo
i·,n instead of Xs

n and Xo
n.) For spatial lag models, three types of marginal effects might be considered –

total, direct, and indirect – as discussed by LeSage and Pace (2009). In this paper, we discuss only total

marginal effects. Since the marginal effects are different for each individual, we use the average marginal

effects to calculate bias, standard deviation, and RMSE, e.g.,

bias = H−1
H∑
h=1

(
mfx(h)(θ̂(h)

n )−mfx(h)(θ
(h)
0 )
)
,

where mfx(h)(θ) = (2n)−1
∑2n
i=1 mfx

(h)(i, θ) with mfx(h)(i, θ) being one of the four marginal effects evalu-

ated for an individual i using parameter θ at iteration h = 1, . . . ,H. The true marginal effects in Tables 3

16We solve this problem in Matlab using the IBM ILOG CPLEX optimizer, which is free of charge for academics.
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and 5 (Appendix A) are obtained as follows:

mfx(θ0) = H−1
H∑
h=1

mfx(h)(θ
(h)
0 ).

Knowing that the estimator presented in this paper is based on parametric assumptions, we examine its

robustness to distributional misspecification. In particular, we consider the spatial lag model with the error

terms being drawn from t- and Wishart distributions with 10 degrees of freedom. For the t-distribution, we

draw bivariate random numbers from t10(0,Σ) and normalize them to have unit variance. For the Wishart

distribution, we draw 2× 2 matrices from the Wishart distribution with 10 degrees of freedom and variance

matrix Σ, take the two diagonal elements and normalize them to have zero mean and unit variance. In both

distributions, the resulting correlation parameter is equal to 0.5. It is interesting to compare the performance

of PMLE under these two designs with the design where the error terms are obtained from the normal

distribution because the t-distribution has heavier tails whereas the Wishart distribution generates errors

that are asymmetric and not elliptically contoured.

To investigate the finite sample performance of standard errors estimates obtained by the parametric

bootstrap method defined in Section 4.3, we compare these estimates with the corresponding standard devi-

ations obtained from the Monte Carlo experiments. Moreover, we perform z-tests of the nominal significance

level of 5% for the null hypotheses that the respective parameters are equal to their true values and report

the empirical sizes of the tests.

The PMLE estimator does not take the entire structure of the variance matrix of the error terms into

account. Therefore, PMLE is not efficient. To investigate the efficiency loss, we would like to compare

PMLE with the full maximum likelihood estimator (FMLE). Given the structure of our weight matrices, the

computation of FMLE would require us to reliably compute 2n-dimensional integrals. Since this computation

is very demanding – perhaps even not feasible at all – we overcome this difficulty by using block diagonal

weight matrices with blocks of size 4 and 8 instead of the weight matrix based on distances between counties

discussed above. To compute the integrals of the normal probability distribution functions needed for FMLE,

we use the Geweke-Hajivassiliou-Keane (GHK) recursive algorithm with 500 draws.

Finally, note that the empirical means, standard deviations, and RMSEs are based on 1000 replications

of each experiment. For bootstrapping standard errors, the number of bootstrap samples is chosen to be

B = 100.
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5.2 Monte Carlo Results

Spatial lag model. First of all, let us discuss the sample selection model with the spatial lag in both the

selection and outcome equations. Tables 1 and 2 in Appendix A report biases, standard deviations, and

RMSEs of HMLE and PMLE for sample sizes 158, 344, and 760. In general, the results show superiority of

the former estimator.

Even though the estimates of βs when λs = 0.85 and 2n = 158 obtained using both HMLE and PMLE are

severely biased, the bias is smaller when the latter estimator is used. Specifically, the bias of HMLE is 19%,

18%, and 39% larger compared to PMLE when λo is equal to 0, 0.40, and 0.85, respectively. Additionally,

when λo = 0.85, the bias of the estimates of σ2 obtained by HMLE is on average 103%, 70%, and 78% higher

when the sample size is equal to 158, 344, and 760, respectively. Furthermore, in almost all the cases, the

standard deviation of HMLE is higher than the standard deviation of PMLE. The difference is especially

pronounced when λo = 0.85 with the standard deviations of the HMLE estimates for λo, ρ, and σ2 being

on average 147%, 35%, and 69% higher than the ones obtained using PMLE. Likewise, in terms of RMSE,

PMLE outperforms HMLE in the great majority of the cases.

Note that the biases, standard deviations, and RMSEs of β̂s1 obtained using both estimators for the sample

size equal to 158 and λs = λo = 0.85 are very high. This result is driven by one Monte Carlo iteration: Figure

1 in Appendix I reports the estimates of βs1 obtained in all the iterations, whereas Figure 2 in Appendix I

reports the same estimates excluding the Monte Carlo iteration prominent in the former figure. After the

exclusion of the prominent iteration, the bias, standard deviation, and RMSE of HMLE and PMLE are equal

to, respectively, 0.545, 1.045, 1.178 and 0.408, 0.771, 0.872 implying that the qualitative implications about

the superiority of PMLE remain.

Further, as the sample size increases, the bias, standard deviation, and RMSE of both estimators decrease.

Despite this fact, PMLE still outperforms HMLE even in the largest sample. For the rest of our analysis, we

consider only samples with 344 observations.

Regarding the marginal effects, the magnitude of the bias obtained by PMLE is in the great majority of

the cases lower than the one of HMLE, whereas the standard deviation and RMSE are always lower. The

difference for the bias is especially pronounced for mfx3 and mfx4 when λo = 0.85, whereas the difference

for the standard deviation and RMSE is especially noticeable for mfx1 and mfx2 when λs = 0.85 and for

mfx3 and mfx4 when λo = 0.85. This result is consistent with our findings above about the parameter

estimates. Note that both mfx1 and mfx2 depend only on the parameters of the selection equation and that

the relative difference in the performance of HMLE and PMLE in the estimation of the selection equation
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parameters is especially pronounced when λs = 0.85. Furthermore, both mfx3 and mfx4 depend on λo,

which is noticeably better estimated by PMLE than HMLE.

Spatial error model. Next, we discuss the spatial error sample selection model (Tables 4–5 in Appendix

A). The HMLE estimator in the spatial error case performs much worse compared to the spatial lag case:

there are large biases in the estimates of βs, λs, and λo when the spatial parameters in the respective equations

are not equal to zero, although severe biases are not present in the estimates of the correlation coefficient.

The estimates of βs and λs obtained by GMM and GMM2 are in most of the cases severely biased. These

results are consistent with the simulation results in Flores-Lagunes and Schnier (2012). Finally, there are

biases in the estimates of βs obtained by PMLE, which increase with the magnitude of λs, whereas the other

parameters are estimated well.

In most of the cases, PMLE outperforms HMLE with respect to both standard deviation and RMSE.

Although the estimates of λo (and in some cases σ2) obtained by the GMM estimators have lower standard

deviations and RMSEs than the ones obtained by PMLE when λo ∈ {0, 0.40}, the rest of the parameters are

estimated noticeably better by PMLE.

Table 5 in Appendix A shows that the bias in the parameter estimates does not have a substantial

influence on the marginal effects: for all the estimators, the bias is very small. The PMLE estimator, however,

outperforms the remaining estimators in terms of both standard deviation and RMSE. When λo = 0.85, the

standard deviation (and RMSE) of the estimates of mfx3 and mfx4 obtained by HMLE is on average 15%

and 22% higher compared to PMLE. The superiority of PMLE compared to the GMM estimator is especially

pronounced for mfx3 and mfx4 when λs = 0.85, where the standard deviation (and RMSE) obtained by

the GMM estimator is, respectively, on average 11 and 4 times higher than the ones obtained by PMLE.

Although the marginal effects are estimated better when the GMM2 estimator is employed, the standard

deviation (RMSE) obtained by the GMM2 estimator is on average 55% (56%), 61% (61%), 21% (24%), and

12% (12%) higher than the ones obtained by PMLE for, respectively, mfx1, mfx2, mfx3, and mfx4.

Distributional misspecification. Tables 6 and 7 in Appendix A report the performance of PMLE and

HMLE under distributional misspecification in the context of the spatial lag model. Similarly to the case of

the normally distributed errors, PMLE outperforms HMLE in terms of bias when the errors are obtained from

the t-distribution, whereas the performance of the two estimators under the Weibull distribution is similar.

The standard deviations and RMSEs of HMLE are almost always higher than the ones obtained by PMLE in

all the three cases. The largest relative advantage is observed for the estimate of λo when λo = 0.85, where

the standard deviation (RMSE) obtained by HMLE is on average 2.8 (2.7), 1.8 (1.8), and 2.2 (2.1) higher
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than the ones obtained by HMLE when the errors are drawn from the normal, t-, and Weibull distributions,

respectively.

Estimates of standard errors. The performance of the parametric bootstrap is investigated in the

context of the spatial lag model. First, the standard errors (SEs) obtained using the parametric bootstrap are

very close to the corresponding standard deviations obtained from the Monte Carlo simulation, see Table 8

in Appendix A. Next, Table 9 in Appendix A reports the empirical sizes of the z-tests for the null hypotheses

that the parameters are equal to the true values. Although the empirical sizes of most of the tests are close

to the nominal 5% level, there are a few exceptions. The empirical size of the test that ρ = 0.5 is on average

4.7pp higher than the nominal 5% level, and the empirical size of the test that σ2 = 1 is on average 4.9pp

higher when λo = 0.85. Nevertheless, the Monte Carlo study shows that the parametric bootstrap works

reasonably well in finite samples.

Comparison with FMLE. Tables 10 and 11 report the performance of PMLE and FMLE in the context

of the spatial lag model with a block diagonal weight matrix. In terms of bias, PMLE and FMLE perform

similarly except for the estimates of βs when λs = 0.85 where FMLE clearly outperforms PMLE. In almost

all the cases, the standard deviation and RMSE of PMLE are higher compared with FMLE. The difference

is the largest when at least one of the spatial parameters is equal to 0.85. For example, when λs = 0.85

and block size is 4, the standard deviation obtained by PMLE of β̂sn, λ̂sn, and ρ̂n is 6.7 – 13.4% higher than

the one obtained by FMLE. When λo = 0.85 and block size is 4, the standard deviation obtained by PMLE

of β̂on, λ̂on, ρ̂n, and σ̂2
n is 6.7 – 27.7% higher than the one obtained by FMLE. The disadvantage of PMLE

relative to FMLE is more pronounced when block size is equal to 8: the respective ratios are equal to 12.0 –

31.3% and 9.4 – 53.6%. The results in terms of RMSE are similar.

Hence, implementing PMLE instead of FMLE can lead to quite substantial efficiency losses, especially

when weight matrices are composed of larger blocks. However, FMLE is often unfeasible when more realistic

weight matrices are considered, for instance, the one in our main Monte Carlo design. In these cases, PMLE

seems to be a good alternative.

6 Conclusion

This paper examines the sample selection model with a spatial lag of a latent dependent variable or a spatial

error in both the selection and outcome equations. We propose to estimate this model by the partial maximum

likelihood estimator which is based on the idea that all observations are divided into pairs in such a way

that dependence within a pair is more important than dependence between pairs; the likelihood function is
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constructed as a product of marginal likelihood contributions for these pairs. Since the likelihood function

does not capture the dependence between pairs, complexity is reduced and the model can be easily estimated.

Using the limit laws for the NED random fields, we establish consistency and asymptotic normality of the

PMLE. Our simulation study shows that the proposed estimator performs quite well in small samples, and

in most cases, outperforms HMLE and the GMM estimator proposed by Flores-Lagunes and Schnier (2012).

Moreover, PMLE and the developed asymptotic theory can be easily applied to other limited dependent

variable models, that is, probit and Tobit models, because the sample selection model has all the components

of the former models and they are thus special cases of the sample selection model.

The studied model can be extended in several ways. The asymptotic distribution of the proposed estimator

depends on the way how the observations are divided into groups. It is desirable to find an optimal grouping

scheme based on some criterion, for example, such that the sum of variances of parameters of interest is

minimized. Given the complexity of the variance matrix of PMLE, this is a very difficult task. Nevertheless,

as our simulation shows, PMLE performs quite well even with a non-optimal grouping.

Appendix A Results of the Monte Carlo Experiments
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Table 1: Biases and standard deviations of parameter estimates in the context of the sample selection model with a spatial lag
in both the selection and outcome equations.

bias s.d.

λs λo 2n = 158 2n = 344 2n = 760 2n = 158 2n = 344 2n = 760

HMLE PMLE HMLE PMLE HMLE PMLE HMLE PMLE HMLE PMLE HMLE PMLE

0.00 0.00 β̂s 0.123 0.123 0.044 0.043 0.019 0.019 0.721 0.719 0.449 0.446 0.281 0.281

β̂o 0.001 0.000 0.006 0.005 0.002 0.002 0.411 0.412 0.255 0.255 0.165 0.165

λ̂s -0.010 -0.012 -0.012 -0.014 -0.006 -0.006 0.200 0.190 0.147 0.141 0.084 0.080

λ̂o -0.009 -0.010 -0.002 -0.004 -0.005 -0.005 0.140 0.125 0.099 0.092 0.060 0.055
ρ̂ -0.035 -0.040 -0.004 -0.005 0.001 0.000 0.367 0.370 0.204 0.204 0.128 0.128
σ̂2 -0.020 -0.017 -0.006 -0.005 -0.004 -0.003 0.174 0.175 0.111 0.111 0.072 0.072

0.00 0.40 β̂s 0.080 0.082 0.041 0.040 0.024 0.024 0.736 0.734 0.442 0.441 0.283 0.281

β̂o 0.008 0.006 0.002 0.001 0.000 0.001 0.387 0.376 0.234 0.230 0.152 0.148

λ̂s -0.004 -0.008 -0.012 -0.012 -0.004 -0.005 0.200 0.187 0.141 0.135 0.079 0.076

λ̂o -0.009 -0.011 -0.008 -0.008 -0.001 -0.002 0.109 0.097 0.078 0.070 0.046 0.042
ρ̂ -0.025 -0.023 -0.014 -0.011 0.002 0.002 0.373 0.358 0.224 0.217 0.135 0.131
σ̂2 -0.020 -0.012 -0.012 -0.008 -0.007 -0.005 0.194 0.183 0.123 0.119 0.080 0.076

0.00 0.85 β̂s 0.093 0.098 0.045 0.044 0.018 0.019 0.709 0.700 0.459 0.452 0.289 0.285

β̂o 0.021 0.008 0.009 0.005 0.003 0.005 0.517 0.428 0.368 0.284 0.234 0.190

λ̂s -0.007 -0.014 -0.004 -0.003 0.001 0.000 0.208 0.191 0.142 0.131 0.084 0.080

λ̂o -0.005 -0.012 -0.004 -0.005 -0.003 -0.003 0.081 0.044 0.086 0.030 0.061 0.019
ρ̂ -0.037 -0.032 -0.012 -0.011 0.001 0.003 0.482 0.372 0.305 0.230 0.190 0.147
σ̂2 -0.182 -0.101 -0.109 -0.064 -0.040 -0.024 0.411 0.260 0.280 0.174 0.238 0.128

0.40 0.00 β̂s 0.101 0.099 0.048 0.047 0.016 0.016 0.719 0.712 0.413 0.411 0.284 0.283

β̂o 0.004 0.005 0.003 0.003 0.001 0.001 0.394 0.397 0.252 0.252 0.162 0.162

λ̂s -0.011 -0.013 -0.008 -0.010 -0.002 -0.002 0.146 0.138 0.102 0.097 0.065 0.063

λ̂o -0.002 -0.006 -0.007 -0.007 -0.002 -0.002 0.134 0.126 0.095 0.089 0.058 0.053
ρ̂ -0.027 -0.024 -0.002 -0.001 0.001 0.001 0.357 0.355 0.209 0.208 0.133 0.132
σ̂2 -0.023 -0.020 -0.012 -0.010 -0.005 -0.004 0.158 0.157 0.105 0.104 0.068 0.068

0.40 0.40 β̂s 0.097 0.099 0.034 0.034 0.024 0.023 0.713 0.714 0.426 0.424 0.273 0.270

β̂o 0.004 0.002 0.004 0.006 0.001 0.001 0.364 0.352 0.237 0.231 0.158 0.155

λ̂s -0.007 -0.012 -0.004 -0.005 -0.004 -0.004 0.151 0.146 0.099 0.092 0.062 0.059

λ̂o -0.003 -0.007 -0.003 -0.004 -0.003 -0.003 0.108 0.097 0.074 0.068 0.045 0.042
ρ̂ -0.026 -0.019 -0.004 -0.002 -0.002 -0.001 0.372 0.355 0.204 0.197 0.133 0.129
σ̂2 -0.039 -0.030 -0.018 -0.014 -0.010 -0.008 0.184 0.173 0.123 0.116 0.081 0.077

0.40 0.85 β̂s 0.100 0.101 0.036 0.038 0.023 0.023 0.702 0.695 0.422 0.415 0.279 0.277

β̂o 0.007 0.023 0.012 0.004 0.009 0.000 0.543 0.415 0.357 0.282 0.237 0.191

λ̂s 0.004 -0.005 -0.000 -0.004 -0.001 -0.003 0.157 0.145 0.105 0.097 0.064 0.060

λ̂o -0.006 -0.013 -0.005 -0.005 0.001 -0.002 0.080 0.041 0.101 0.029 0.022 0.018
ρ̂ -0.040 0.009 -0.020 -0.001 -0.020 -0.003 0.453 0.337 0.292 0.207 0.183 0.134
σ̂2 -0.161 -0.076 -0.101 -0.061 -0.060 -0.032 0.395 0.252 0.327 0.171 0.174 0.116

0.85 0.00 β̂s 0.384 0.322 0.125 0.111 0.049 0.045 1.797 1.570 0.693 0.641 0.407 0.389

β̂o 0.014 0.013 0.003 0.002 0.000 0.000 0.376 0.376 0.229 0.227 0.154 0.152

λ̂s -0.004 -0.008 -0.002 -0.004 -0.001 -0.001 0.078 0.068 0.053 0.047 0.032 0.029

λ̂o -0.005 -0.009 -0.005 -0.005 -0.000 -0.001 0.152 0.137 0.106 0.097 0.060 0.055
ρ̂ 0.017 0.011 0.037 0.027 0.004 0.003 0.423 0.402 0.242 0.226 0.155 0.147
σ̂2 -0.037 -0.033 -0.012 -0.011 -0.008 -0.007 0.153 0.153 0.099 0.100 0.068 0.068

0.85 0.40 β̂s 0.356 0.303 0.121 0.108 0.047 0.044 1.938 1.463 0.697 0.646 0.410 0.387

β̂o 0.002 0.004 0.001 0.000 0.001 0.001 0.352 0.340 0.238 0.229 0.154 0.149

λ̂s -0.010 -0.012 -0.002 -0.004 0.001 0.001 0.098 0.088 0.051 0.045 0.032 0.029

λ̂o -0.008 -0.010 -0.006 -0.005 -0.004 -0.004 0.114 0.098 0.081 0.072 0.048 0.042
ρ̂ -0.009 -0.010 0.009 0.006 0.001 -0.001 0.434 0.398 0.252 0.231 0.161 0.146
σ̂2 -0.044 -0.035 -0.021 -0.019 -0.009 -0.009 0.178 0.166 0.116 0.109 0.078 0.072

0.85 0.85 β̂s 14.816 10.665 0.117 0.102 0.050 0.046 1367.749 1357.736 0.706 0.625 0.413 0.389

β̂o 0.027 0.009 0.013 0.004 0.002 0.005 0.551 0.411 0.418 0.273 0.241 0.185

λ̂s 0.003 -0.007 0.002 -0.003 0.001 -0.000 0.074 0.068 0.049 0.044 0.030 0.027

λ̂o 0.003 -0.009 -0.012 -0.007 -0.001 -0.003 0.053 0.039 0.140 0.028 0.023 0.018
ρ̂ -0.102 -0.004 -0.075 -0.014 -0.031 -0.007 0.510 0.375 0.322 0.232 0.214 0.151
σ̂2 -0.222 -0.102 -0.111 -0.065 -0.049 -0.027 0.364 0.230 0.323 0.155 0.179 0.115
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Table 2: RMSEs of parameter estimates in the context of the sample selection model with a spatial lag in both the selection
and outcome equations.

λs λo 2n = 158 2n = 344 2n = 760

HMLE PMLE HMLE PMLE HMLE PMLE

0.00 0.00 β̂s 0.764 0.761 0.459 0.456 0.286 0.285

β̂o 0.411 0.412 0.255 0.255 0.165 0.165

λ̂s 0.200 0.190 0.147 0.141 0.085 0.080

λ̂o 0.140 0.126 0.099 0.092 0.060 0.055
ρ̂ 0.369 0.373 0.204 0.204 0.128 0.128
σ̂2 0.176 0.176 0.112 0.111 0.072 0.072

0.00 0.40 β̂s 0.764 0.762 0.451 0.449 0.288 0.286

β̂o 0.387 0.376 0.234 0.230 0.152 0.148

λ̂s 0.200 0.187 0.141 0.135 0.079 0.076

λ̂o 0.109 0.098 0.078 0.071 0.046 0.042
ρ̂ 0.374 0.359 0.224 0.217 0.135 0.131
σ̂2 0.195 0.184 0.123 0.119 0.080 0.076

0.00 0.85 β̂s 0.744 0.740 0.469 0.462 0.292 0.288

β̂o 0.521 0.429 0.370 0.284 0.234 0.190

λ̂s 0.209 0.192 0.142 0.131 0.084 0.080

λ̂o 0.081 0.045 0.086 0.031 0.061 0.019
ρ̂ 0.484 0.374 0.305 0.230 0.190 0.147
σ̂2 0.450 0.278 0.300 0.185 0.241 0.131

0.40 0.00 β̂s 0.764 0.755 0.427 0.425 0.287 0.286

β̂o 0.394 0.397 0.252 0.252 0.162 0.162

λ̂s 0.147 0.139 0.102 0.098 0.065 0.063

λ̂o 0.134 0.127 0.095 0.089 0.058 0.053
ρ̂ 0.358 0.355 0.209 0.208 0.133 0.132
σ̂2 0.159 0.158 0.105 0.105 0.068 0.068

0.40 0.40 β̂s 0.754 0.755 0.436 0.433 0.278 0.275

β̂o 0.365 0.352 0.238 0.231 0.158 0.155

λ̂s 0.151 0.146 0.099 0.092 0.062 0.059

λ̂o 0.108 0.097 0.074 0.068 0.045 0.042
ρ̂ 0.373 0.355 0.204 0.197 0.133 0.129
σ̂2 0.188 0.176 0.124 0.117 0.081 0.077

0.40 0.85 β̂s 0.744 0.737 0.436 0.431 0.283 0.281

β̂o 0.545 0.417 0.358 0.283 0.238 0.191

λ̂s 0.157 0.145 0.105 0.097 0.064 0.060

λ̂o 0.081 0.043 0.101 0.029 0.022 0.018
ρ̂ 0.455 0.337 0.292 0.207 0.184 0.134
σ̂2 0.427 0.263 0.342 0.181 0.184 0.120

0.85 0.00 β̂s 2.090 1.800 0.788 0.723 0.432 0.412

β̂o 0.376 0.376 0.229 0.227 0.154 0.152

λ̂s 0.078 0.068 0.053 0.047 0.032 0.029

λ̂o 0.152 0.137 0.106 0.097 0.060 0.055
ρ̂ 0.424 0.402 0.244 0.227 0.155 0.147
σ̂2 0.158 0.156 0.100 0.100 0.068 0.068

0.85 0.40 β̂s 2.184 1.681 0.783 0.721 0.434 0.409

β̂o 0.353 0.340 0.238 0.230 0.154 0.149

λ̂s 0.098 0.089 0.051 0.045 0.032 0.029

λ̂o 0.114 0.099 0.081 0.072 0.048 0.042
ρ̂ 0.434 0.398 0.252 0.231 0.161 0.146
σ̂2 0.183 0.169 0.117 0.111 0.078 0.073

0.85 0.85 β̂s 1368.463 1358.438 0.788 0.692 0.433 0.407

β̂o 0.555 0.411 0.420 0.274 0.241 0.185

λ̂s 0.074 0.068 0.050 0.044 0.030 0.027

λ̂o 0.053 0.040 0.141 0.029 0.023 0.019
ρ̂ 0.520 0.375 0.331 0.232 0.216 0.151
σ̂2 0.426 0.252 0.342 0.168 0.186 0.118
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Table 3: Biases, standard deviations, and RMSEs of total marginal effects estimates in the context of
the sample selection model with a spatial lag in both the selection and outcome equations (2n = 344).

λs λo mfx(θ0) HMLE PMLE

bias s.d. rmse bias s.d. rmse

0.00 0.00 mfx1 0.193 0.002 0.032 0.032 0.001 0.031 0.031
mfx2 -0.193 -0.001 0.030 0.030 -0.000 0.029 0.029
mfx3 0.782 -0.002 0.131 0.131 -0.004 0.126 0.126
mfx4 -1.000 -0.006 0.112 0.112 -0.003 0.104 0.104

0.00 0.40 mfx1 0.193 0.002 0.032 0.032 0.001 0.031 0.031
mfx2 -0.193 -0.001 0.031 0.031 -0.001 0.029 0.029
mfx3 1.433 -0.000 0.229 0.229 -0.005 0.210 0.210
mfx4 -1.657 -0.006 0.209 0.209 -0.001 0.189 0.189

0.00 0.85 mfx1 0.193 0.004 0.033 0.033 0.004 0.031 0.031
mfx2 -0.193 -0.002 0.032 0.032 -0.002 0.030 0.030
mfx3 6.306 0.241 1.771 1.787 0.009 1.345 1.344
mfx4 -6.584 -0.295 1.666 1.691 -0.030 1.236 1.236

0.40 0.00 mfx1 0.303 0.005 0.054 0.054 0.004 0.052 0.052
mfx2 -0.303 -0.002 0.048 0.048 -0.001 0.047 0.047
mfx3 0.663 -0.010 0.162 0.162 -0.009 0.158 0.158
mfx4 -1.000 0.000 0.101 0.101 0.001 0.096 0.096

0.40 0.40 mfx1 0.303 0.003 0.052 0.052 0.002 0.049 0.049
mfx2 -0.303 -0.004 0.047 0.048 -0.003 0.045 0.045
mfx3 1.298 0.011 0.236 0.236 0.006 0.221 0.221
mfx4 -1.657 -0.014 0.202 0.202 -0.008 0.188 0.188

0.40 0.85 mfx1 0.303 0.005 0.054 0.054 0.003 0.050 0.050
mfx2 -0.303 -0.007 0.049 0.049 -0.005 0.046 0.046
mfx3 6.093 0.232 1.666 1.681 0.016 1.291 1.290
mfx4 -6.584 -0.287 1.604 1.629 -0.035 1.179 1.179

0.85 0.00 mfx1 0.757 0.052 0.282 0.287 0.028 0.231 0.232
mfx2 -0.757 -0.056 0.273 0.279 -0.034 0.204 0.207
mfx3 0.304 -0.130 0.469 0.486 -0.093 0.404 0.415
mfx4 -1.000 -0.005 0.117 0.117 -0.004 0.108 0.108

0.85 0.40 mfx1 0.757 0.057 0.278 0.283 0.033 0.221 0.223
mfx2 -0.757 -0.060 0.260 0.267 -0.036 0.196 0.199
mfx3 0.849 -0.105 0.543 0.552 -0.078 0.471 0.477
mfx4 -1.657 -0.012 0.226 0.226 -0.009 0.208 0.208

0.85 0.85 mfx1 0.757 0.061 0.312 0.318 0.027 0.210 0.212
mfx2 -0.757 -0.070 0.363 0.370 -0.032 0.218 0.220
mfx3 5.196 0.299 1.829 1.852 -0.059 1.298 1.298
mfx4 -6.584 -0.222 1.619 1.633 0.017 1.183 1.182

28



Table 4: Biases, standard deviations, and RMSEs of parameter estimates in the context of the sample selection model with a
spatial error in both the selection and outcome equations (2n = 344).

λs λo HMLE GMM GMM2 PMLE

bias s.d. rmse bias s.d. rmse bias s.d. rmse bias s.d. rmse

0.00 0.00 β̂s 0.286 2.617 2.698 0.824 3.580 4.044 0.728 3.234 3.649 0.100 0.511 0.559

β̂o 0.006 0.254 0.254 0.001 0.284 0.285 0.003 0.271 0.272 0.005 0.254 0.254

λ̂s 0.029 0.418 0.419 -0.038 0.593 0.594 -0.079 0.592 0.597 -0.041 0.396 0.398

λ̂o 0.006 0.323 0.323 0.023 0.113 0.115 0.027 0.113 0.116 -0.020 0.241 0.242
ρ̂ 0.026 0.218 0.219 0.040 0.320 0.323 0.010 0.269 0.269 0.004 0.202 0.202
σ̂2 -0.053 0.137 0.147 -0.082 0.090 0.122 -0.019 0.100 0.102 -0.024 0.112 0.114

0.00 0.40 β̂s 0.299 2.854 2.939 0.749 2.960 3.419 0.787 3.223 3.707 0.108 1.108 1.138

β̂o 0.000 0.279 0.280 0.009 0.303 0.304 0.011 0.299 0.301 0.001 0.276 0.276

λ̂s 0.038 0.434 0.436 -0.151 0.641 0.659 -0.091 0.655 0.661 -0.039 0.395 0.397

λ̂o -0.366 0.417 0.555 -0.075 0.094 0.120 -0.068 0.096 0.118 -0.045 0.192 0.198
ρ̂ 0.016 0.229 0.229 0.023 0.307 0.308 -0.005 0.273 0.273 -0.001 0.208 0.208
σ̂2 -0.014 0.170 0.171 -0.058 0.094 0.110 0.002 0.102 0.102 -0.015 0.132 0.132

0.00 0.85 β̂s 0.547 4.552 4.726 0.836 3.303 3.806 0.920 3.630 4.196 0.088 0.491 0.535

β̂o 0.020 0.623 0.623 0.050 0.622 0.635 0.061 0.628 0.638 0.020 0.555 0.555

λ̂s 0.068 0.491 0.496 -0.253 0.684 0.729 -0.206 0.706 0.735 -0.048 0.382 0.385

λ̂o -0.484 0.733 0.879 -0.089 0.054 0.104 -0.087 0.058 0.104 -0.017 0.046 0.049
ρ̂ 0.014 0.339 0.339 -0.129 0.321 0.346 -0.142 0.296 0.328 0.003 0.241 0.241
σ̂2 0.206 0.677 0.707 0.156 0.177 0.236 0.216 0.199 0.294 -0.010 0.180 0.180

0.40 0.00 β̂s 0.264 2.847 2.913 0.767 3.550 3.969 0.733 3.516 3.926 0.084 0.626 0.660

β̂o 0.002 0.246 0.247 0.007 0.272 0.273 0.011 0.267 0.269 0.002 0.248 0.248

λ̂s -0.394 0.474 0.616 -0.441 0.621 0.762 -0.434 0.623 0.759 -0.103 0.357 0.372

λ̂o 0.018 0.308 0.308 0.005 0.115 0.115 0.008 0.116 0.117 -0.008 0.233 0.233
ρ̂ 0.017 0.229 0.230 0.048 0.330 0.334 0.005 0.289 0.289 -0.002 0.211 0.211
σ̂2 -0.051 0.135 0.144 -0.084 0.085 0.119 -0.021 0.094 0.096 -0.025 0.113 0.115

0.40 0.40 β̂s 0.322 2.968 3.058 0.739 3.219 3.633 0.876 3.733 4.244 0.100 0.617 0.659

β̂o 0.006 0.286 0.287 0.014 0.309 0.311 0.021 0.305 0.310 0.006 0.281 0.281

λ̂s -0.352 0.512 0.622 -0.577 0.656 0.874 -0.489 0.682 0.839 -0.110 0.368 0.384

λ̂o -0.367 0.420 0.558 -0.088 0.100 0.133 -0.083 0.098 0.129 -0.046 0.188 0.194
ρ̂ 0.028 0.238 0.240 0.039 0.312 0.314 -0.007 0.288 0.288 -0.000 0.208 0.208
σ̂2 -0.022 0.171 0.173 -0.063 0.095 0.114 -0.001 0.101 0.101 -0.018 0.130 0.131

0.40 0.85 β̂s 0.608 4.673 4.875 0.883 3.550 4.075 0.874 3.332 3.877 0.093 0.624 0.658

β̂o 0.007 0.626 0.626 0.035 0.643 0.657 0.051 0.636 0.646 0.005 0.551 0.551

λ̂s -0.308 0.559 0.638 -0.667 0.715 0.978 -0.638 0.720 0.962 -0.081 0.342 0.352

λ̂o -0.458 0.705 0.841 -0.090 0.052 0.104 -0.085 0.052 0.100 -0.018 0.047 0.050
ρ̂ 0.086 0.320 0.332 -0.110 0.323 0.341 -0.125 0.301 0.326 0.014 0.210 0.211
σ̂2 0.256 0.719 0.763 0.147 0.160 0.217 0.203 0.188 0.277 0.008 0.184 0.184

0.85 0.00 β̂s 0.545 4.112 4.275 0.041 2.987 2.989 0.061 3.352 3.358 0.227 1.859 1.921

β̂o 0.001 0.277 0.277 0.012 0.538 0.539 0.000 0.354 0.355 0.000 0.271 0.271

λ̂s -0.648 0.747 0.989 -0.903 0.645 1.110 -0.903 0.653 1.114 -0.026 0.112 0.115

λ̂o 0.014 0.330 0.330 -0.017 0.120 0.121 -0.011 0.119 0.120 -0.001 0.239 0.239
ρ̂ 0.010 0.363 0.363 -0.050 0.439 0.441 -0.041 0.366 0.368 -0.004 0.294 0.294
σ̂2 -0.051 0.142 0.151 9.925 316.227 316.383 -0.011 0.142 0.142 -0.021 0.120 0.122

0.85 0.40 β̂s 0.482 4.006 4.145 0.034 2.880 2.880 0.022 2.899 2.900 0.232 1.925 1.988

β̂o 0.002 0.305 0.305 0.005 0.572 0.572 0.004 0.446 0.447 0.002 0.286 0.286

λ̂s -0.691 0.767 1.033 -1.040 0.672 1.238 -0.951 0.692 1.176 -0.024 0.101 0.104

λ̂o -0.355 0.442 0.567 -0.102 0.105 0.147 -0.096 0.107 0.143 -0.028 0.177 0.179
ρ̂ 0.053 0.339 0.343 -0.009 0.437 0.437 -0.014 0.380 0.380 0.002 0.253 0.253
σ̂2 -0.018 0.179 0.180 5.337 169.987 170.071 0.022 0.441 0.442 -0.016 0.127 0.128

0.85 0.85 β̂s 0.470 4.158 4.276 0.002 2.997 2.997 0.046 2.933 2.934 0.171 1.574 1.617

β̂o 0.014 0.639 0.639 0.093 0.976 1.010 0.105 0.671 0.703 0.011 0.554 0.554

λ̂s -0.709 0.785 1.058 -1.182 0.698 1.373 -1.130 0.709 1.334 -0.024 0.091 0.094

λ̂o -0.517 0.723 0.888 -0.092 0.062 0.111 -0.083 0.054 0.099 -0.016 0.047 0.050
ρ̂ 0.132 0.355 0.379 -0.088 0.424 0.433 -0.117 0.407 0.424 -0.001 0.208 0.208
σ̂2 0.311 0.720 0.784 0.574 14.469 14.480 0.162 0.153 0.223 -0.012 0.167 0.167
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Table 5: Biases, standard deviations, and RMSEs of marginal effects estimates in the context of the sample selection model
with a spatial error in both the selection and outcome equations (2n = 344).

λs λo mfx(θ0) HMLE GMM GMM2 PMLE

bias sd rmse bias sd rmse bias sd rmse bias sd rmse

0.00 0.00 mfx1 0.193 0.001 0.016 0.016 0.004 0.020 0.021 0.005 0.022 0.022 0.001 0.016 0.016
mfx2 -0.193 0.000 0.014 0.014 -0.001 0.019 0.019 -0.002 0.021 0.021 0.000 0.014 0.014
mfx3 0.782 -0.010 0.086 0.087 -0.013 0.099 0.100 -0.011 0.097 0.098 -0.008 0.087 0.087
mfx4 -1.000 -0.000 0.047 0.047 0.000 0.047 0.047 -0.000 0.048 0.048 0.000 0.047 0.047

0.00 0.40 mfx1 0.193 -0.001 0.016 0.016 0.002 0.023 0.023 0.004 0.024 0.025 -0.001 0.016 0.016
mfx2 -0.193 -0.000 0.014 0.014 -0.001 0.018 0.018 -0.003 0.019 0.020 -0.000 0.014 0.014
mfx3 0.776 -0.002 0.092 0.092 -0.002 0.193 0.193 -0.004 0.109 0.109 -0.001 0.089 0.089
mfx4 -1.000 -0.001 0.048 0.048 -0.001 0.048 0.048 -0.001 0.049 0.049 -0.001 0.047 0.047

0.00 0.85 mfx1 0.193 0.001 0.017 0.017 0.003 0.025 0.025 0.004 0.028 0.028 0.001 0.017 0.017
mfx2 -0.193 -0.000 0.014 0.014 -0.001 0.025 0.025 -0.002 0.026 0.026 -0.000 0.014 0.014
mfx3 0.722 0.006 0.140 0.140 0.038 0.145 0.149 0.053 0.164 0.172 0.006 0.118 0.118
mfx4 -1.000 -0.001 0.072 0.072 -0.001 0.077 0.077 0.000 0.087 0.087 0.000 0.059 0.059

0.40 0.00 mfx1 0.190 -0.001 0.017 0.017 0.001 0.023 0.023 0.002 0.024 0.024 -0.001 0.017 0.017
mfx2 -0.190 -0.000 0.016 0.016 -0.002 0.021 0.021 -0.003 0.023 0.023 -0.000 0.016 0.016
mfx3 0.794 -0.002 0.083 0.083 -0.005 0.109 0.109 -0.002 0.091 0.091 -0.000 0.083 0.083
mfx4 -1.000 -0.000 0.046 0.046 -0.000 0.047 0.047 -0.000 0.048 0.048 -0.000 0.047 0.047

0.40 0.40 mfx1 0.190 -0.001 0.018 0.018 0.002 0.026 0.026 0.004 0.027 0.027 -0.000 0.018 0.018
mfx2 -0.190 -0.000 0.015 0.015 -0.001 0.025 0.025 -0.002 0.027 0.027 -0.000 0.015 0.015
mfx3 0.780 -0.002 0.088 0.088 -0.008 0.097 0.098 -0.003 0.096 0.096 -0.001 0.088 0.088
mfx4 -1.000 -0.001 0.047 0.047 -0.001 0.048 0.048 -0.001 0.048 0.048 -0.001 0.046 0.046

0.40 0.85 mfx1 0.190 -0.001 0.018 0.018 0.004 0.029 0.029 0.004 0.028 0.029 -0.001 0.018 0.018
mfx2 -0.190 0.001 0.016 0.016 -0.000 0.026 0.026 -0.001 0.025 0.025 0.001 0.015 0.015
mfx3 0.700 0.009 0.139 0.140 0.043 0.212 0.216 0.067 0.132 0.148 0.009 0.122 0.122
mfx4 -1.000 -0.000 0.070 0.070 -0.001 0.074 0.074 -0.001 0.068 0.068 -0.001 0.058 0.058

0.85 0.00 mfx1 0.158 0.001 0.024 0.024 0.001 0.034 0.034 0.001 0.037 0.037 0.001 0.024 0.024
mfx2 -0.158 -0.001 0.023 0.023 0.000 0.033 0.033 -0.000 0.034 0.034 -0.001 0.022 0.022
mfx3 0.881 -0.007 0.076 0.077 -0.052 1.551 1.551 -0.003 0.105 0.105 -0.006 0.076 0.076
mfx4 -1.000 -0.002 0.047 0.047 0.005 0.240 0.240 -0.002 0.051 0.051 -0.002 0.047 0.047

0.85 0.40 mfx1 0.158 -0.001 0.025 0.025 -0.000 0.039 0.039 0.002 0.038 0.038 -0.001 0.024 0.024
mfx2 -0.158 -0.000 0.023 0.023 0.002 0.035 0.035 -0.000 0.034 0.034 -0.000 0.023 0.023
mfx3 0.862 -0.004 0.079 0.079 -0.030 0.855 0.856 -0.005 0.111 0.111 -0.003 0.076 0.076
mfx4 -1.000 0.002 0.047 0.047 0.007 0.178 0.178 0.001 0.048 0.048 0.002 0.046 0.046

0.85 0.85 mfx1 0.158 0.001 0.025 0.025 0.001 0.041 0.041 0.002 0.042 0.042 0.001 0.024 0.024
mfx2 -0.158 -0.000 0.022 0.022 0.002 0.045 0.045 0.001 0.039 0.039 -0.001 0.022 0.022
mfx3 0.764 0.002 0.126 0.126 0.045 0.494 0.496 0.046 0.118 0.127 -0.002 0.112 0.112
mfx4 -1.000 0.002 0.073 0.073 0.013 0.369 0.369 0.001 0.070 0.070 0.001 0.060 0.060
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Table 6: Biases and standard deviations of parameter estimates in the context of the sample selection model with a spatial lag
in both the selection and outcome equations under misspecification of the distribution of the error terms (2n = 344).

normal t Weibull

λs λo bias s.d. bias s.d. bias s.d.

HMLE PMLE HMLE PMLE HMLE PMLE HMLE PMLE HMLE PMLE HMLE PMLE

0.00 0.00 β̂s 0.044 0.043 0.449 0.446 0.061 0.061 0.458 0.458 0.196 0.196 0.545 0.543

β̂o 0.006 0.005 0.255 0.255 0.003 0.003 0.251 0.251 0.026 0.026 0.292 0.291

λ̂s -0.012 -0.014 0.147 0.141 -0.006 -0.006 0.137 0.134 -0.008 -0.010 0.134 0.129

λ̂o -0.002 -0.004 0.099 0.092 -0.001 -0.002 0.098 0.091 -0.006 -0.007 0.104 0.096
ρ̂ -0.004 -0.005 0.204 0.204 -0.013 -0.012 0.214 0.213 0.114 0.114 0.232 0.230
σ̂2 -0.006 -0.005 0.111 0.111 -0.023 -0.022 0.125 0.125 0.128 0.129 0.156 0.155

0.00 0.40 β̂s 0.041 0.040 0.442 0.441 0.063 0.063 0.465 0.462 0.189 0.188 0.523 0.521

β̂o 0.002 0.001 0.234 0.230 0.001 0.002 0.237 0.232 0.007 0.006 0.272 0.270

λ̂s -0.012 -0.012 0.141 0.135 -0.009 -0.009 0.141 0.133 -0.006 -0.006 0.126 0.122

λ̂o -0.008 -0.008 0.078 0.070 -0.000 -0.002 0.075 0.069 -0.012 -0.013 0.079 0.070
ρ̂ -0.014 -0.011 0.224 0.217 -0.010 -0.010 0.220 0.218 0.106 0.104 0.238 0.236
σ̂2 -0.012 -0.008 0.123 0.119 -0.029 -0.025 0.136 0.132 0.117 0.120 0.170 0.166

0.00 0.85 β̂s 0.045 0.044 0.459 0.452 0.089 0.093 0.475 0.470 0.214 0.215 0.520 0.518

β̂o 0.009 0.005 0.368 0.284 0.006 0.008 0.417 0.286 0.009 0.004 0.396 0.302

λ̂s -0.004 -0.003 0.142 0.131 -0.008 -0.010 0.139 0.133 -0.003 -0.006 0.135 0.128

λ̂o -0.004 -0.005 0.086 0.030 -0.008 -0.006 0.127 0.057 -0.007 -0.008 0.088 0.031
ρ̂ -0.012 -0.011 0.305 0.230 0.001 -0.002 0.301 0.238 0.043 0.035 0.298 0.256
σ̂2 -0.109 -0.064 0.280 0.174 -0.106 -0.073 0.343 0.232 -0.019 0.027 0.335 0.210

0.40 0.00 β̂s 0.048 0.047 0.413 0.411 0.064 0.062 0.426 0.425 0.159 0.159 0.502 0.500

β̂o 0.003 0.003 0.252 0.252 0.002 0.002 0.243 0.243 0.021 0.020 0.290 0.287

λ̂s -0.008 -0.010 0.102 0.097 -0.009 -0.009 0.105 0.100 0.002 0.001 0.097 0.092

λ̂o -0.007 -0.007 0.095 0.089 -0.004 -0.003 0.098 0.090 0.006 0.005 0.103 0.096
ρ̂ -0.002 -0.001 0.209 0.208 -0.004 -0.004 0.217 0.216 0.118 0.117 0.236 0.233
σ̂2 -0.012 -0.010 0.105 0.104 -0.025 -0.024 0.124 0.124 0.123 0.123 0.158 0.158

0.40 0.40 β̂s 0.034 0.034 0.426 0.424 0.071 0.071 0.451 0.447 0.165 0.165 0.505 0.503

β̂o 0.004 0.006 0.237 0.231 0.003 0.003 0.234 0.227 0.003 0.003 0.269 0.263

λ̂s -0.004 -0.005 0.099 0.092 -0.006 -0.008 0.099 0.096 0.001 -0.000 0.090 0.087

λ̂o -0.003 -0.004 0.074 0.068 -0.002 -0.003 0.073 0.065 -0.004 -0.005 0.077 0.069
ρ̂ -0.004 -0.002 0.204 0.197 -0.008 -0.003 0.212 0.200 0.105 0.104 0.220 0.214
σ̂2 -0.018 -0.014 0.123 0.116 -0.034 -0.031 0.130 0.124 0.100 0.104 0.157 0.150

0.40 0.85 β̂s 0.036 0.038 0.422 0.415 0.062 0.064 0.436 0.428 0.183 0.182 0.499 0.492

β̂o 0.012 0.004 0.357 0.282 0.004 0.015 0.374 0.288 0.007 0.016 0.397 0.304

λ̂s -0.000 -0.004 0.105 0.097 -0.004 -0.009 0.099 0.094 0.007 0.003 0.093 0.089

λ̂o -0.005 -0.005 0.101 0.029 -0.002 -0.004 0.086 0.029 -0.007 -0.008 0.102 0.031
ρ̂ -0.020 -0.001 0.292 0.207 -0.029 0.002 0.314 0.228 0.050 0.062 0.285 0.222
σ̂2 -0.101 -0.061 0.327 0.171 -0.114 -0.065 0.316 0.175 -0.024 0.033 0.368 0.203

0.85 0.00 β̂s 0.125 0.111 0.693 0.641 0.141 0.128 0.671 0.634 0.176 0.168 0.724 0.685

β̂o 0.003 0.002 0.229 0.227 0.004 0.004 0.228 0.226 0.019 0.017 0.264 0.259

λ̂s -0.002 -0.004 0.053 0.047 -0.002 -0.005 0.051 0.045 -0.004 -0.005 0.050 0.045

λ̂o -0.005 -0.005 0.106 0.097 -0.006 -0.006 0.104 0.094 0.004 0.002 0.110 0.097
ρ̂ 0.037 0.027 0.242 0.226 0.025 0.020 0.256 0.239 0.100 0.090 0.275 0.255
σ̂2 -0.012 -0.011 0.099 0.100 -0.016 -0.015 0.123 0.122 0.082 0.083 0.143 0.142

0.85 0.40 β̂s 0.121 0.108 0.697 0.646 0.142 0.128 0.707 0.668 0.189 0.183 0.759 0.722

β̂o 0.001 0.000 0.238 0.229 0.002 0.003 0.225 0.219 0.008 0.007 0.256 0.244

λ̂s -0.002 -0.004 0.051 0.045 -0.000 -0.003 0.051 0.046 -0.002 -0.004 0.050 0.045

λ̂o -0.006 -0.005 0.081 0.072 -0.002 -0.003 0.075 0.067 -0.000 -0.001 0.082 0.071
ρ̂ 0.009 0.006 0.252 0.231 0.009 0.006 0.252 0.232 0.077 0.073 0.277 0.250
σ̂2 -0.021 -0.019 0.116 0.109 -0.030 -0.027 0.135 0.129 0.075 0.077 0.149 0.142

0.85 0.85 β̂s 0.117 0.102 0.706 0.625 0.137 0.121 0.701 0.655 0.190 0.181 0.741 0.693

β̂o 0.013 0.004 0.418 0.273 0.000 0.014 0.399 0.269 0.011 0.010 0.372 0.281

λ̂s 0.002 -0.003 0.049 0.044 -0.001 -0.005 0.051 0.045 0.004 -0.000 0.048 0.044

λ̂o -0.012 -0.007 0.140 0.028 -0.008 -0.006 0.101 0.031 -0.006 -0.006 0.103 0.030
ρ̂ -0.075 -0.014 0.322 0.232 -0.053 -0.002 0.320 0.227 -0.000 0.041 0.325 0.240
σ̂2 -0.111 -0.065 0.323 0.155 -0.095 -0.057 0.356 0.173 -0.055 0.002 0.329 0.187

31



Table 7: RMSEs of parameter estimates in the context of the sample selection model with a spatial lag in both the selection
and outcome equations under misspecification of the distribution of the error terms (2n = 344).

λs λo normal t Weibull

HMLE PMLE HMLE PMLE HMLE PMLE

0.00 0.00 β̂s 0.459 0.456 0.483 0.482 0.658 0.656

β̂o 0.255 0.255 0.251 0.251 0.313 0.312

λ̂s 0.147 0.141 0.137 0.135 0.134 0.130

λ̂o 0.099 0.092 0.098 0.091 0.104 0.097
ρ̂ 0.204 0.204 0.214 0.213 0.259 0.257
σ̂2 0.112 0.111 0.127 0.127 0.202 0.202

0.00 0.40 β̂s 0.451 0.449 0.494 0.491 0.632 0.630

β̂o 0.234 0.230 0.237 0.232 0.285 0.281

λ̂s 0.141 0.135 0.141 0.133 0.126 0.122

λ̂o 0.078 0.071 0.075 0.069 0.080 0.072
ρ̂ 0.224 0.217 0.221 0.219 0.260 0.258
σ̂2 0.123 0.119 0.139 0.135 0.206 0.205

0.00 0.85 β̂s 0.469 0.462 0.510 0.509 0.679 0.677

β̂o 0.370 0.284 0.418 0.286 0.397 0.303

λ̂s 0.142 0.131 0.139 0.133 0.135 0.128

λ̂o 0.086 0.031 0.127 0.057 0.088 0.032
ρ̂ 0.305 0.230 0.301 0.238 0.301 0.258
σ̂2 0.300 0.185 0.359 0.243 0.335 0.212

0.40 0.00 β̂s 0.427 0.425 0.460 0.457 0.598 0.595

β̂o 0.252 0.252 0.243 0.244 0.312 0.310

λ̂s 0.102 0.098 0.105 0.100 0.097 0.092

λ̂o 0.095 0.089 0.098 0.090 0.103 0.097
ρ̂ 0.209 0.208 0.217 0.216 0.264 0.261
σ̂2 0.105 0.105 0.126 0.126 0.200 0.200

0.40 0.40 β̂s 0.436 0.433 0.482 0.479 0.614 0.612

β̂o 0.238 0.231 0.234 0.227 0.283 0.277

λ̂s 0.099 0.092 0.099 0.096 0.090 0.087

λ̂o 0.074 0.068 0.073 0.065 0.077 0.069
ρ̂ 0.204 0.197 0.213 0.200 0.243 0.237
σ̂2 0.124 0.117 0.134 0.128 0.186 0.183

0.40 0.85 β̂s 0.436 0.431 0.466 0.459 0.643 0.637

β̂o 0.358 0.283 0.375 0.289 0.398 0.307

λ̂s 0.105 0.097 0.099 0.094 0.093 0.089

λ̂o 0.101 0.029 0.086 0.029 0.102 0.031
ρ̂ 0.292 0.207 0.316 0.228 0.289 0.231
σ̂2 0.342 0.181 0.336 0.187 0.368 0.206

0.85 0.00 β̂s 0.788 0.723 0.768 0.717 0.873 0.825

β̂o 0.229 0.227 0.228 0.226 0.271 0.265

λ̂s 0.053 0.047 0.051 0.045 0.050 0.045

λ̂o 0.106 0.097 0.104 0.094 0.110 0.097
ρ̂ 0.244 0.227 0.257 0.240 0.292 0.270
σ̂2 0.100 0.100 0.124 0.123 0.165 0.165

0.85 0.40 β̂s 0.783 0.721 0.802 0.750 0.905 0.863

β̂o 0.238 0.230 0.225 0.219 0.258 0.247

λ̂s 0.051 0.045 0.051 0.046 0.050 0.046

λ̂o 0.081 0.072 0.075 0.067 0.082 0.071
ρ̂ 0.252 0.231 0.252 0.232 0.287 0.260
σ̂2 0.117 0.111 0.138 0.131 0.167 0.162

0.85 0.85 β̂s 0.788 0.692 0.791 0.729 0.905 0.846

β̂o 0.420 0.274 0.400 0.270 0.373 0.282

λ̂s 0.050 0.044 0.051 0.046 0.048 0.044

λ̂o 0.141 0.029 0.101 0.031 0.104 0.031
ρ̂ 0.331 0.232 0.324 0.227 0.325 0.244
σ̂2 0.342 0.168 0.369 0.182 0.333 0.187
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Table 8: Standard deviations and standard errors of parameter estimates in the context of the sample selection
model with a spatial lag in both the selection and outcome equations (2n = 344).

λs λo β̂s1 β̂s2 β̂s3 β̂o1 β̂o2 β̂o3 λ̂s λ̂o ρ̂ σ̂2

0.00 0.00 SD 0.190 0.131 0.125 0.116 0.091 0.047 0.141 0.092 0.204 0.111
SE 0.181 0.129 0.123 0.118 0.091 0.047 0.132 0.091 0.205 0.111

0.00 0.40 SD 0.186 0.129 0.125 0.091 0.090 0.049 0.135 0.070 0.217 0.119
SE 0.181 0.129 0.124 0.094 0.093 0.048 0.132 0.068 0.207 0.119

0.00 0.85 SD 0.190 0.132 0.130 0.092 0.127 0.065 0.131 0.030 0.230 0.174
SE 0.182 0.130 0.124 0.088 0.124 0.063 0.134 0.028 0.232 0.179

0.40 0.00 SD 0.155 0.133 0.123 0.116 0.089 0.047 0.097 0.089 0.208 0.104
SE 0.158 0.132 0.125 0.117 0.089 0.047 0.095 0.092 0.205 0.110

0.40 0.40 SD 0.161 0.137 0.125 0.091 0.091 0.050 0.092 0.068 0.197 0.116
SE 0.157 0.132 0.125 0.094 0.090 0.048 0.095 0.067 0.201 0.115

0.40 0.85 SD 0.159 0.133 0.123 0.093 0.121 0.068 0.097 0.029 0.207 0.171
SE 0.161 0.134 0.127 0.090 0.120 0.064 0.095 0.027 0.219 0.176

0.85 0.00 SD 0.215 0.229 0.197 0.105 0.074 0.048 0.047 0.097 0.226 0.100
SE 0.216 0.221 0.198 0.107 0.077 0.048 0.043 0.094 0.242 0.103

0.85 0.40 SD 0.221 0.225 0.200 0.098 0.081 0.051 0.045 0.072 0.231 0.109
SE 0.216 0.221 0.198 0.096 0.081 0.049 0.043 0.070 0.241 0.109

0.85 0.85 SD 0.215 0.214 0.196 0.096 0.109 0.068 0.044 0.028 0.232 0.155
SE 0.219 0.220 0.198 0.092 0.107 0.064 0.043 0.028 0.255 0.164

Table 9: Empirical sizes of the z-tests with the null hypotheses that the parameters are equal to the corresponding
true values in the context of the sample selection model with a spatial lag in both the selection and outcome
equations (2n = 344).

λs λo β̂s1 β̂s2 β̂s3 β̂o1 β̂o2 β̂o3 λ̂s λ̂o ρ̂ σ̂2

0.00 0.00 5.00 5.30 3.80 5.30 6.30 4.80 7.10 5.40 10.30 6.50
0.00 0.40 5.20 5.70 5.50 5.10 5.40 5.30 5.10 5.90 11.00 7.00
0.00 0.85 5.20 6.20 5.60 5.50 5.60 5.30 5.50 7.70 9.50 10.40
0.40 0.00 3.80 4.00 4.50 5.10 6.10 5.60 6.50 4.70 11.20 6.40
0.40 0.40 4.50 5.10 4.90 4.90 5.70 5.60 3.90 5.60 10.30 7.00
0.40 0.85 4.70 4.60 4.10 6.50 6.50 7.40 5.70 6.00 8.10 10.00
0.85 0.00 6.80 5.80 5.70 5.00 4.10 5.40 9.40 5.10 8.00 5.10
0.85 0.40 5.70 4.80 6.00 5.60 4.90 5.80 7.10 5.70 10.50 6.30
0.85 0.85 4.30 4.30 4.10 6.40 5.70 6.60 6.30 5.40 8.30 9.30
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Table 10: Biases and standard deviations of parameter estimates in the context of the sample selection model with a spatial
lag in both the selection and outcome equations and a block diagonal weight matrix (2n = 344).

Block size = 4 Block size = 8

λs λo bias s.d. bias s.d.

PMLE FMLE PMLE FMLE ratio PMLE FMLE PMLE FMLE ratio

0.00 0.00 β̂s 0.051 0.051 0.437 0.437 1.000 0.059 0.061 0.451 0.449 1.005

β̂o 0.006 0.005 0.250 0.250 1.003 0.005 0.004 0.252 0.251 1.003

λ̂s -0.007 -0.008 0.090 0.083 1.085 -0.019 -0.023 0.151 0.136 1.106

λ̂o -0.007 -0.008 0.063 0.056 1.128 -0.014 -0.019 0.105 0.089 1.179
ρ̂ 0.002 0.001 0.214 0.212 1.008 0.001 0.001 0.210 0.208 1.008
σ̂2 -0.007 -0.006 0.111 0.111 1.000 -0.009 -0.007 0.111 0.111 1.000

0.00 0.40 β̂s 0.027 0.027 0.435 0.436 0.998 0.055 0.058 0.449 0.443 1.012

β̂o 0.005 0.004 0.235 0.217 1.078 0.000 0.000 0.230 0.221 1.041

λ̂s -0.008 -0.010 0.092 0.088 1.046 -0.021 -0.028 0.152 0.140 1.086

λ̂o -0.005 -0.005 0.038 0.034 1.105 -0.005 -0.007 0.056 0.048 1.185
ρ̂ -0.001 0.002 0.207 0.187 1.112 -0.004 -0.002 0.209 0.195 1.074
σ̂2 -0.006 -0.006 0.125 0.112 1.119 -0.014 -0.006 0.114 0.105 1.084

0.00 0.85 β̂s 0.057 0.059 0.430 0.429 1.002 0.051 0.049 0.449 0.445 1.009

β̂o 0.007 0.009 0.253 0.209 1.212 0.009 0.004 0.283 0.197 1.434

λ̂s -0.008 -0.010 0.089 0.084 1.054 -0.027 -0.026 0.156 0.145 1.076

λ̂o -0.001 -0.001 0.011 0.009 1.162 -0.002 -0.002 0.013 0.011 1.148
ρ̂ 0.004 0.008 0.190 0.152 1.253 -0.002 0.013 0.238 0.167 1.431
σ̂2 -0.010 -0.003 0.140 0.111 1.263 -0.025 -0.006 0.166 0.108 1.536

0.40 0.00 β̂s 0.043 0.041 0.432 0.427 1.012 0.052 0.045 0.430 0.421 1.021

β̂o 0.007 0.007 0.242 0.239 1.012 0.002 0.003 0.249 0.250 0.997

λ̂s -0.005 -0.007 0.055 0.051 1.073 -0.010 -0.013 0.078 0.067 1.151

λ̂o -0.004 -0.004 0.062 0.055 1.124 -0.010 -0.013 0.104 0.089 1.172
ρ̂ -0.002 -0.004 0.210 0.202 1.040 0.002 -0.000 0.205 0.202 1.014
σ̂2 -0.009 -0.009 0.106 0.106 1.007 -0.010 -0.008 0.108 0.108 0.996

0.40 0.40 β̂s 0.038 0.035 0.436 0.428 1.019 0.039 0.034 0.437 0.427 1.025

β̂o 0.002 0.002 0.233 0.215 1.081 0.001 0.000 0.235 0.221 1.062

λ̂s -0.004 -0.004 0.054 0.050 1.078 -0.006 -0.010 0.070 0.063 1.112

λ̂o -0.003 -0.003 0.039 0.036 1.093 -0.005 -0.007 0.056 0.049 1.146
ρ̂ -0.004 0.005 0.195 0.175 1.115 -0.014 -0.005 0.208 0.193 1.076
σ̂2 -0.010 -0.008 0.115 0.104 1.108 -0.017 -0.008 0.115 0.104 1.106

0.40 0.85 β̂s 0.038 0.035 0.422 0.413 1.021 0.045 0.041 0.433 0.420 1.032

β̂o 0.002 0.003 0.248 0.201 1.234 0.003 0.000 0.278 0.197 1.411

λ̂s -0.004 -0.006 0.055 0.052 1.058 -0.005 -0.010 0.075 0.067 1.120

λ̂o -0.001 -0.001 0.010 0.009 1.144 -0.002 -0.002 0.013 0.011 1.153
ρ̂ 0.004 0.007 0.166 0.138 1.201 -0.007 0.000 0.211 0.155 1.366
σ̂2 -0.009 -0.007 0.139 0.109 1.277 -0.026 -0.011 0.150 0.103 1.458

0.85 0.00 β̂s 0.068 0.056 0.646 0.606 1.067 0.142 0.080 0.812 0.618 1.313

β̂o 0.005 0.003 0.222 0.219 1.013 0.003 0.001 0.217 0.209 1.038

λ̂s -0.001 -0.002 0.036 0.034 1.074 -0.001 -0.003 0.032 0.028 1.120

λ̂o -0.005 -0.006 0.064 0.055 1.175 -0.012 -0.013 0.105 0.084 1.244
ρ̂ -0.016 -0.009 0.275 0.243 1.134 0.003 0.010 0.278 0.216 1.285
σ̂2 -0.020 -0.018 0.100 0.100 0.997 -0.015 -0.013 0.096 0.095 1.004

0.85 0.40 β̂s 0.077 0.064 0.680 0.628 1.084 0.122 0.071 0.788 0.621 1.268

β̂o 0.000 0.003 0.224 0.214 1.047 0.000 0.002 0.224 0.212 1.056

λ̂s -0.002 -0.002 0.037 0.034 1.092 0.000 -0.001 0.032 0.028 1.136

λ̂o -0.002 -0.002 0.040 0.037 1.084 -0.007 -0.007 0.059 0.052 1.129
ρ̂ 0.000 0.015 0.247 0.219 1.125 -0.001 0.016 0.271 0.229 1.186
σ̂2 -0.018 -0.015 0.107 0.095 1.124 -0.014 -0.007 0.104 0.095 1.102

0.85 0.85 β̂s 0.063 0.052 0.648 0.598 1.083 0.094 0.055 0.755 0.614 1.230

β̂o 0.007 0.003 0.246 0.211 1.166 0.001 0.001 0.280 0.206 1.364

λ̂s -0.003 -0.003 0.036 0.032 1.097 -0.000 -0.002 0.031 0.027 1.129

λ̂o -0.002 -0.002 0.011 0.010 1.067 -0.003 -0.002 0.014 0.013 1.094
ρ̂ 0.006 0.010 0.213 0.189 1.127 -0.006 0.012 0.251 0.202 1.244
σ̂2 -0.016 -0.011 0.120 0.099 1.215 -0.020 -0.006 0.140 0.099 1.421

Note. The columns with the label ratio provide ratios of the standard deviations of PMLE and FMLE.
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Table 11: RMSEs of parameter estimates in the context of the sample selection model with a spatial
lag in both the selection and outcome equations and a block diagonal weight matrix (2n = 344).

λs λo Block size = 4 Block size = 8

PMLE FMLE ratio PMLE FMLE ratio

0.00 0.00 β̂s 0.452 0.451 1.001 0.467 0.465 1.004

β̂o 0.250 0.250 1.003 0.252 0.251 1.004

λ̂s 0.091 0.084 1.084 0.152 0.138 1.099

λ̂o 0.063 0.056 1.124 0.106 0.091 1.164
ρ̂ 0.214 0.212 1.008 0.210 0.208 1.008
σ̂2 0.111 0.111 1.001 0.111 0.111 1.001

0.00 0.40 β̂s 0.442 0.443 0.998 0.465 0.460 1.010

β̂o 0.235 0.218 1.078 0.230 0.221 1.041

λ̂s 0.092 0.088 1.043 0.154 0.143 1.074

λ̂o 0.038 0.034 1.104 0.057 0.048 1.175
ρ̂ 0.207 0.187 1.112 0.209 0.195 1.074
σ̂2 0.125 0.112 1.119 0.115 0.105 1.090

0.00 0.85 β̂s 0.445 0.445 1.001 0.461 0.456 1.011

β̂o 0.254 0.209 1.212 0.284 0.198 1.438

λ̂s 0.089 0.085 1.051 0.158 0.147 1.074

λ̂o 0.011 0.009 1.158 0.013 0.011 1.143
ρ̂ 0.190 0.152 1.251 0.238 0.167 1.427
σ̂2 0.141 0.111 1.265 0.168 0.108 1.552

0.40 0.00 β̂s 0.446 0.440 1.013 0.450 0.437 1.029

β̂o 0.242 0.239 1.012 0.250 0.250 0.998

λ̂s 0.055 0.052 1.069 0.078 0.069 1.140

λ̂o 0.062 0.056 1.124 0.104 0.090 1.165
ρ̂ 0.210 0.202 1.040 0.205 0.202 1.014
σ̂2 0.107 0.106 1.008 0.108 0.109 0.998

0.40 0.40 β̂s 0.450 0.440 1.023 0.450 0.436 1.032

β̂o 0.233 0.216 1.082 0.236 0.222 1.063

λ̂s 0.054 0.051 1.077 0.071 0.064 1.102

λ̂o 0.039 0.036 1.093 0.056 0.049 1.138
ρ̂ 0.195 0.175 1.115 0.208 0.193 1.078
σ̂2 0.115 0.104 1.109 0.117 0.105 1.114

0.40 0.85 β̂s 0.432 0.422 1.025 0.448 0.432 1.035

β̂o 0.248 0.201 1.234 0.278 0.197 1.412

λ̂s 0.055 0.052 1.054 0.075 0.068 1.111

λ̂o 0.010 0.009 1.142 0.013 0.012 1.149
ρ̂ 0.166 0.138 1.200 0.211 0.155 1.366
σ̂2 0.140 0.109 1.277 0.152 0.104 1.470

0.85 0.00 β̂s 0.674 0.626 1.075 0.885 0.651 1.361

β̂o 0.222 0.219 1.013 0.218 0.210 1.038

λ̂s 0.036 0.034 1.073 0.032 0.029 1.116

λ̂o 0.065 0.055 1.172 0.106 0.085 1.237
ρ̂ 0.276 0.243 1.135 0.278 0.217 1.283
σ̂2 0.102 0.102 1.001 0.097 0.096 1.008

0.85 0.40 β̂s 0.712 0.651 1.093 0.844 0.646 1.308

β̂o 0.224 0.214 1.047 0.224 0.212 1.055

λ̂s 0.037 0.034 1.092 0.032 0.028 1.135

λ̂o 0.040 0.037 1.085 0.059 0.053 1.127
ρ̂ 0.247 0.220 1.123 0.271 0.229 1.183
σ̂2 0.109 0.096 1.125 0.105 0.095 1.110

0.85 0.85 β̂s 0.672 0.615 1.092 0.803 0.637 1.260

β̂o 0.247 0.212 1.167 0.281 0.206 1.367

λ̂s 0.036 0.033 1.097 0.031 0.027 1.127

λ̂o 0.011 0.010 1.068 0.015 0.013 1.096
ρ̂ 0.213 0.189 1.126 0.251 0.202 1.242
σ̂2 0.121 0.099 1.218 0.142 0.099 1.432

Note. The columns with the label ratio provide ratios of the RMSEs of PMLE and FMLE.
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Appendix B Some Additional Notation

If A is a matrix, Diag(A) indicates a square diagonal matrix with the diagonal elements of A on the main

diagonal of Diag(A), while diag(A) denotes a vector of the diagonal elements in A. If a is a vector, then

Diag(a) indicates a square diagonal matrix with the elements of vector a on the main diagonal. If τ1 and

τ2 are scalars, then Diag{τ1, τ2} denotes a diagonal matrix with τ1, τ2 on the main diagonal. For some

constant k, Diag(·)k := (Diag(·))k. For some matrix A, maxeig(A) and mineig(A) denote the maximum

and minimum eigenvalue of A, respectively. If R and R11
g,n(θ) are correlation matrices, then for notational

convenience ρ := R12 and ρ11
g,n(θ) := R11

g12,n(θ). For any function f(θ), ∂f(θ)/∂θ
∣∣
θ=θ0

denotes the derivative

of f(θ) evaluated at θ = θ0. We use constants C1, C2, . . . , which can be different in different places.

Appendix C Some Theorems and Technical Lemmas

The appendix contains important theorems as well as several technical lemmas, which will be used later

to prove lemmas and theorems in Appendices D and E. The proofs of Lemmas C.4–C.9 are provided in

supplementary Appendix K.

Theorem C.1 (Follows from Theorem 1 of Jenish and Prucha, 2012). Under Assumption 3, if

(i) {Zg,n}g∈Gn is uniformly L1-NED on an α-mixing random field {ηg,n}g∈Gn ,

(ii) Zg,n is Lp-bounded uniformly in n ∈ N and g ∈ Gn, for some p > 1,

(iii) the α-mixing coefficients of the input process {ηg,n}g∈Gn satisfy ᾱ(k,m, s) ≤ (k+m)τ α̂(s), τ ≥ 0, with

some α̂(s)→ 0 as s→∞, such that
∑∞
s=1 s

2d̃−1α̂(s) <∞,

then n−1
∑
g∈Gn(Zg,n − E[Zg,n])

L1−−→ 0.

Theorem C.2 (Follows from Proposition 3 of Jenish and Prucha, 2012). Consider an α-mixing random

field {ηg,n}g∈Gn , Fg,n(s) = σ({ηġ,n}ġ∈Gn : d(g, ġ) ≤ s) for s ∈ N, and random vectors Zg,n and their

transformations given by a family of functions hg,n : RKZ → RKh . Suppose that, for all (z, z•) ∈ RKZ ×RKZ

and all g ∈ Gn and n ∈ N,

(i) ‖hg,n(z)− hg,n(z•)‖ ≤ Bg,n(z, z•)‖z − z•‖, where Bg,n(z, z•) : RKZ × RKZ → R+,

(ii) sup
s
‖B(s)

g,n‖2 <∞, where B
(s)
g,n = Bg,n(Zg,n, Z

(s)
g,n) and Z

(s)
g,n = E[Zg,n|Fg,n(s)],

(iii) sup
s

∥∥∥B(s)
g,n‖Zg,n − Z(s)

g,n‖
∥∥∥
r
<∞ for some r > 2,

(iv) ‖hg,n(Zg,n)‖2 <∞,
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(v) {Zg,n}g∈Gn is L2-NED of size −λ on {ηg,n}g∈Gn with scaling factors {tg,n}g∈Gn .

Then hg,n(Zg,n) is L2-NED of size −λ(r − 2)/(2r − 2) on {ηg,n}g∈Gn with scaling factors

t(r−2)/(2r−2)
g,n sup

s
‖B(s)

g,n‖
(r−2)/(2r−2)
2

∥∥∥B(s)
g,n‖Zg,n − Z(s)

g,n‖
∥∥∥r/(2r−2)

r
.

Theorem C.3 (Follows from Corollary 1 of Jenish and Prucha, 2012). For KZ-dimensional random vectors

Zg,n, g ∈ Gn, let Sn =
∑
g∈Gn Zg,n and Ψn = Var

(∑
g∈Gn Zg,n

)
. Under Assumption 3, if

(i) {Zg,n}g∈Gn is a zero mean random field,

(ii) Zg,n is uniformly L2+δ-bounded, for some δ > 0,

(iii) {Zg,n}g∈Gn is L2-NED random field on an α-mixing random field {ηg,n}g∈Gn with NED coefficients

ψ(s) and NED scaling factors {tg,n}g∈Gn ,

(iv) NED coefficients satisfy
∑∞
s=1 s

2d̃−1ψ(s) <∞,

(v) NED scaling factors satisfy sup
n,g

tg,n <∞,

(vi) the α-mixing coefficients of {ηg,n}g∈Gn satisfy ᾱ(k,m, s) ≤ (k+m)τ α̂(s), for some τ ≥ 0 and α̂(s)→ 0

as s→∞, such that for some δ > 0,
∑∞
s=1 s

2d̃(τ∗+1)−1α̂δ/(4+2δ)(s) <∞, where τ∗ = δτ/(2 + δ),

(vii) infn
1
nmineig(Ψn) > 0,

then Ψ
−1/2
n Sn

d−→ N (0, IKZ ) as n→∞.

Lemma C.4. Let v := v(θ) be a 2-dimensional vector, R := R(θ) be a 2× 2 dimensional correlation matrix

with the off-diagonal element ρ := ρ(θ), |ρ| < 1, and P (z,R) = z′R−1(θ)z, where z is a 2-dimensional vector.

Then

∂ ln Φ2(v,R)

∂v
= ξ(v,R),

∂ ln Φ2(v,R)

∂θ
= ξ1(v,R)

∂v1

∂θ
+ ξ2(v,R)

∂v2

∂θ
− 1

2

(
∂ ln |R|
∂θ

+ EV

[
∂P (V,R)

∂θ

∣∣∣V ≤ v]) ,
∂2 ln Φ2(v,R)

∂θ∂θ′
= ξ1(v,R)

∂2v1

∂θ∂θ′
+ ξ2(v,R)

∂2v2

∂θ∂θ′
+ κ(v,R)

(
∂v1

∂θ

∂v2

∂θ′
+
∂v2

∂θ

∂v1

∂θ′

)
− 1

2
(A(v,R) +B(v,R) +A′(v,R) +B′(v,R) + EV [G(V,R)|V ≤ v])

− 1

Φ2
2(v,R)

∂Φ2(v,R)

∂θ

∂Φ2(v,R)

∂θ′
,

where EV denotes expectation taken only with respect to the variable V in its subscript and (keeping the
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dependence on θ implicit)

ξ(v,R) = (ξ1(v,R), ξ2(v,R))′ =

φ(v1)Φ

(
v2−ρv1√

1−ρ2

)
Φ2(v,R)

,

φ(v2)Φ

(
v1−ρv2√

1−ρ2

)
Φ2(v,R)


′

, (C.1)

κ(v,R) =
φ2(v,R)

Φ2(v,R)
, (C.2)

A(v,R) = ξ1(v,R)
∂v1

∂θ

(
∂ ln |R|
∂θ′

+ EṼ2

[
∂P ((v1, Ṽ2)′, R)

∂θ′

∣∣∣Ṽ2 ≤ v2

])
,

B(v,R) = ξ2(v,R)
∂v2

∂θ

(
∂ ln |R|
∂θ′

+ EṼ1

[
∂P ((Ṽ1, v2)′, R)

∂θ′

∣∣∣Ṽ1 ≤ v1

])
,

G(z,R) =
∂2 ln |R|
∂θ∂θ′

+
∂2P (z,R)

∂θ∂θ′
− 1

2

(
∂ ln |R|
∂θ

+
∂P (z,R)

∂θ

)(
∂ ln |R|
∂θ′

+
∂P (z,R)

∂θ′

)
and (C.3)

V ∼ N (0, R), Ṽ1 ∼ N (ρv2, 1− ρ2), Ṽ2 ∼ N (ρv1, 1− ρ2).

Lemma C.5. Let v and R be a 2-dimensional vector and a 2 × 2 dimensional correlation matrix with the

off-diagonal element ρ, |ρ| < 1, respectively. Then for some constants C1, C2, C3 > 0,

φ(v1)Φ

(
v2−ρv1√

1−ρ2

)
Φ2(v,R)

≤ C1(1− |ρ|)−7

(
(|v1|+ |v2|+ C2)8 +

(
1− Φ

(
(1− |ρ|)−1/2

))−2
)
,

φ2(v,R)

Φ2(v,R)
≤ C1(1− |ρ|)−3

(
(|v1|+ |v2|+ C2)2 +

(
1− Φ

(
(1− |ρ|)−1/2

))−2
)
,

Φ2(0, R) ≥ C3(1− |ρ|)1/2.

Lemma C.6. Let θ be a p× 1 vector, f(θ) an n× 1 vector, and F (θ) an n× n symmetric matrix. Then

∂|F (θ)|
∂θ

= |F (θ)|K(θ) vecF−1(θ),

∂2|F (θ)|
∂θ∂θ′

= K(θ) vecF−1(θ)
∂|F (θ)|
∂θ′

+ |F (θ)|
(
(vecF−1(θ))′ ⊗ Ip

) ∂ vecK(θ)

∂θ′

+ |F (θ)|K(θ)
∂ vecF−1(θ)

∂θ′
,

∂(f ′(θ)F−1(θ)f(θ))

∂θ
= 2L(θ)F−1(θ)f(θ) +M(θ)(f(θ)⊗ f(θ)),

∂2(f ′(θ)F−1(θ)f(θ))

∂θ∂θ′
= 2(f ′(θ)F−1(θ)⊗ Ip)

∂ vecL(θ)

∂θ′
+ 2(f ′(θ)⊗ L(θ))

∂ vecF−1(θ)

∂θ′

+ (f ′(θ)⊗ f ′(θ)⊗ Ip)
∂ vecM(θ)

∂θ′

+ (2L(θ)F−1(θ) +M(θ)(K1n ⊗ In)[(In ⊗ f(θ)) + (f(θ)⊗ In)])
∂f(θ)

∂θ′
,
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where

K(θ) =

(
∂ vecF (θ)

∂θ′

)′
, L(θ) =

(
∂f(θ)

∂θ′

)′
, M(θ) =

(
∂ vecF−1(θ)

∂θ′

)′
,

and K1n is the commutation matrix.17

Lemma C.7. Let A and B be m× n and p× q matrices. Then ‖A⊗B‖ = ‖A‖‖B‖.

Lemma C.8. Let X ∼ N (0, R), where R is a 2 × 2 dimensional correlation matrix with the off-diagonal

element ρ, |ρ| < 1. Then for a 2-dimensional vector of constants v = (v1, v2)′,

E[XX ′|X ≤ v] = R− v1ξ1(v,R)A1(R)− v2ξ2(v,R)A2(R) + (1− ρ2)κ(v,R)A3(R),

where ξ(v,R) and κ(v,R) are defined in (C.1) and (C.2), respectively, and

A1(R) =

1 ρ

ρ ρ2

 , A2(R) =

ρ2 ρ

ρ 1

 , A3(R) =

ρ 1

1 ρ

 . (C.4)

Lemma C.9. If for some p ≥ 1, ‖Xi,n − E[Xi,n|Fi,n(s)]‖2p ≤ tXi,nψ
X(s) and ‖Yi,n − E[Yi,n|Fi,n(s)]‖2p ≤

tYi,nψ
Y (s), then ‖Xi,nYi,n−E[Xi,nYi,n|Fi,n(s)]‖p ≤ ti,nψ(s), where ti,n = max{‖Xi,n‖2ptYi,n, ‖Yi,n‖2ptXi,n, tXi,ntYi,n}

and ψ(s) = ψX(s) + ψY (s) + ψX(s)ψY (s). Specifically, if {Xi,n}ni=1 and {Yi,n}ni=1 are uniformly L2p-NED,

then {Xi,nYi,n}ni=1 is uniformly Lp-NED.

Appendix D Some Useful Lemmas

The appendix contains several lemmas that establish the uniform (Lp-) bounds and the NED property of

the random variables in the studied sample selection models. The proofs of Lemmas D.1–D.6 are provided

in supplementary Appendix L.

Lemma D.1.

(i) Under Assumptions 1(ii), 2(i), 6, and 7, inf
n,g

inf
θ∈Θ
|Ωbg,n(θ)| > 0 and inf

n,i
inf
θ∈Θ

Ωbii,n(θ) > 0, where b ∈

{ss, oo}.

(ii) Under Assumptions 1(ii) and 7, ‖Ωcg,n(θ)‖ and
∥∥∂ vec Ωcg,n(θ)/∂θ′

∥∥ are uniformly bounded in n ∈ N,

g ∈ Gn, and θ ∈ Θ, where c ∈ {ss, so, oo}.
17Let A be an m × n matrix. Then there exists a unique mn ×mn permutation matrix which transforms vecA into vecA′,

i.e. Kmn vecA = vecA′.
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(iii) Under Assumptions 1(ii), 6, and 7, ‖Ωb−1
g,n (θ)‖,

∥∥∂ vec Ωb−1
g,n (θ)/∂θ′

∥∥, and
∥∥∂|Ωbg,n(θ)|/∂θ

∥∥ are uniformly

bounded in n ∈ N, g ∈ Gn, and θ ∈ Θ, where b ∈ {ss, oo}.

Lemma D.2.

(i) Under Assumption 6, inf
n,g

inf
θ∈Θ

min
j=1,2

Σ11
gjj,n(θ) > 0 and sup

n,g
sup
θ∈Θ
|ρ11
g,n(θ)| < 1.

(ii) Under Assumptions 1(ii), 6, and 7, ‖R11
g,n(θ)‖,

∥∥∂|R11
g,n(θ)|/∂θ

∥∥, and
∥∥∥∂ vecR11−1

g,n (θ)/∂θ′
∥∥∥ are uniformly

bounded in n ∈ N, g ∈ Gn, and θ ∈ Θ.

Lemma D.3. Under Assumptions 1(ii), 2(i), 4(ii) or 9(ii), 6, and 7, sup
θ∈Θ
‖Sbg·,n(λb)Xb

nβ
b‖, b ∈ {s, o},

sup
θ∈Θ
‖zg,n(θ)‖, sup

θ∈Θ
‖µ11

g,n(θ)‖, and sup
θ∈Θ
‖v11
g,n(θ)‖ are Lp-bounded uniformly in n ∈ N and g ∈ Gn for any p in

Assumption 4(ii) or 9(ii).

Lemma D.4. Under Assumptions 1(ii), 2(i), 4(ii) or 9(ii), 6, and 7, sup
θ∈Θ
‖∂zg,n(θ)/∂θ′‖ and sup

θ∈Θ

∥∥∂v11
g,n(θ)/∂θ′

∥∥
are Lp-bounded uniformly in n ∈ N and g ∈ Gn for any p in Assumption 4(ii) or 9(ii).

Lemma D.5. Under Assumptions 1(ii), 2(i), 4(ii), 5, and 7, {d11
g,n}g∈Gn , {zg,n(θn)}g∈Gn , and {v11

g,n(θn)}g∈Gn

are uniformly L2-NED on random field {ηg,n = (Xs
g·,n, X

o
g·,n, u

s
g,n, u

o
g,n)}g∈Gn with NED coefficients bounded

by ψ1/6(s), where ψ(s) is defined in Assumption 5 and θn → θ, θn, θ ∈ Θ.

Lemma D.6. Let sequence θn ∈ {θ : ‖θ − θ0‖ < n−1/2M} for some M > 0 and n ≥ n0, n0 ∈ N. If

responses y∗sg,n and ŷ∗sg,n follow the data generating process (1) with the parameter vector θ0 and with the

parameter vector θn, respectively, then under Assumptions 1(ii), 2(i), 4(ii), 5, 7, 11, and 13 it holds that

‖ŷ∗sg,n − y∗sg,n‖2 = O(n−1/2) as n → ∞ and {n1/2(ŷ∗sg,n − y∗sg,n)}g∈Gn is L2-NED on random field {ηg,n =

(Xs
g·,n, X

o
g·,n, u

s
g,n, u

o
g,n)}g∈Gn with NED coefficients bounded by max{ψs(s), ψ̃s(s)}, where ψs(s) and ψ̃s(s)

are defined in Assumptions 5 and 13, respectively.

Appendix E Proofs of the Asymptotic Results

In the following proofs of the main theorems, we verify various regularity conditions such as Lp-boundedness

of the likelihood function
∑
a∈A d

a
g,nf

a
g,n(θ) and its derivatives only for the terms corresponding to a = 11.

The terms corresponding to the other values of a can be verified analogously since they are special cases of

a = 11: the inspection of the likelihood function (4) as well as the verification of the first-order conditions in

Appendix G reveal that the forms of terms with a = 10, a = 01, or a = 00 correspond to the form of a = 11

with the bivariate density function replaced by the corresponding marginal densities or one.
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Proof of Theorem 1: General consistency results are given, for example, in Theorem 2.1 of Newey and

McFadden (1994) or Lemma 3.1 of Pötscher and Prucha (1997) in the case when Q0(θ) = limn→∞E[Qn(θ)]

exists or not, respectively. By the latter result, it is sufficient to verify that (i) E[Qn(θ)] is uniquely maximized

at θ0 (at least for a sufficiently large n) and (ii) Qn(θ) converges uniformly in probability to E[Qn(θ)] to

prove the claim of the theorem. Since we have already assumed the first condition in Assumption 8, it thus

remains to show that the last condition is satisfied. In order to prove uniform convergence in (ii), we apply

Theorem 2 of Jenish and Prucha (2009), which requires the uniform Lp-boundedness (LB), p > 1, and L0-

stochastic equicontinuity (SE) of the individual likelihood terms as well as the pointwise convergence (PC) in

probability; see the following paragraphs. As the bounds constructed to verify the uniform Lp-boundedness

and L0-stochastic equicontinuity are uniform in g ∈ Gn, n ∈ N, and θ ∈ Θ, it follows that the whole likelihood

function Qn(θ) also satisfies these conditions (once they are verified) and that PMLE is consistent.

LB: proof of sup
n,g

E

[
sup
θ∈Θ
|
∑
a∈A d

a
g,nf

a
g,n(θ)|

]p
<∞, for some p > 1

E

[
sup
θ∈Θ
|
∑
a∈A

dag,nf
a
g,n(θ)|

]p
≤ E

[∑
a∈A

sup
θ∈Θ
|dag,nfag,n(θ)|

]p
≤ 4p−1

∑
a∈A

E

[
sup
θ∈Θ
|dag,nfag,n(θ)|

]p
≤ 4p−1

∑
a∈A

E

[
sup
θ∈Θ
|fag,n(θ)|

]p (E.1)

uniformly in n ∈ N and g ∈ Gn, where the first and second inequalities follow by the triangle and Loève’s

cr-inequalities, respectively, whereas the last inequality follows by noting that dag,n ∈ {0, 1}.

We will show that sup
n,g

E[supθ∈Θ |f11
g,n(θ)|]p <∞, while the boundedness of the other terms can be proven

in a similar way. By the definitions of f11
g,n(θ) in (4) and of the multivariate normal density function,

E

[
sup
θ∈Θ
|f11
g,n(θ)|

]p
≤ 4p−1

(
| ln 2π|p + sup

θ∈Θ
| ln |Ωoog,n(θ)||p + sup

θ∈Θ
‖Ωoo−1

g,n (θ)‖pE
[
sup
θ∈Θ
‖zg,n(θ)‖

]2p

+E

[
sup
θ∈Θ
| ln Φ2(v11

g,n(θ), R11
g,n(θ))|

]p)
,

(E.2)

where the result follows by the triangle and Loève’s cr-inequalities. The second and third terms are uniformly

bounded by Lemmas D.1 and D.3. Hence, only the last term has to be shown to be uniformly bounded. Let

ξ(·) be defined in the same way as in (C.1), Lemma C.4, with correlation matrix R11
g,n(θ) and correlation

coefficient ρ11
g,n(θ), which is the off-diagonal element of R11

g,n(θ). Then by the elementwise mean value theorem,

there exists ṽ11
g,n(θ) with elements between 0 and v11

g,n(θ) and constants C1, . . . , C8 > 0 with C3, C6 ≥ 1 such
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that

| ln Φ2(v11
g,n(θ), R11

g,n(θ))|

≤ | ln Φ2(0, R11
g,n(θ))|+

∣∣∣∂ ln Φ2(ṽ11
g,n(θ), R11

g,n(θ))

∂v′
v11
g,n(θ)

∣∣∣ = | ln Φ2(0, R11
g,n(θ))|+ |ξ

′
(ṽ11
g,n(θ), R11

g,n(θ))v11
g,n(θ)|

≤ | ln Φ2(0, R11
g,n(θ))|+

2∑
j=1

ξj(ṽ
11
g,n(θ), R11

g,n(θ))|v11
gj,n(θ)| (E.3)

≤ | ln(C1(1− |ρ11
g,n(θ)|)1/2)|

+ C2(1− |ρ11
g,n(θ)|)−7

(
(|ṽ11

g1,n(θ)|+ |ṽ11
g2,n(θ)|+ C3)8 +

(
1− Φ

(
(1− |ρ11

g,n(θ)|)−1/2
))−2

) 2∑
j=1

|v11
gj,n(θ)|

≤ C4 + C5

(
(|ṽ11

g1,n(θ)|+ |ṽ11
g2,n(θ)|+ C3)8 + C6

) 2∑
j=1

|v11
gj,n(θ)|

≤ C4 + C5

(
(|v11

g1,n(θ)|+ |v11
g2,n(θ)|+ C3)8 + C6

) 2∑
j=1

|v11
gj,n(θ)|

≤ C4 + 2C5C6(|v11
g1,n(θ)|+ |v11

g2,n(θ)|+ C3)9 = C4 + 2C5C6(‖v11
g,n(θ)‖1 + C3)9

≤ C4 + 29C5C6(‖v11
g,n(θ)‖91 + C9

3 ) ≤ C7 + C8‖v11
g,n(θ)‖9,

where Lemma C.4 implies the first equality, the third inequality is implied by Lemma C.5, whereas the

fourth inequality follows from Lemma D.2. The conclusion follows by the equivalence of vector norms on

finite dimensional vector spaces. Given this result,

E

[
sup
θ∈Θ
| ln Φ2(v11

g,n(θ), R11
g,n(θ))|

]p
≤ E

[
sup
θ∈Θ

(
C7 + C8‖v11

g,n(θ)‖9
)]p
≤ 2p−1

(
Cp7 + Cp8E

[
sup
θ∈Θ
‖v11
g,n(θ)‖

]9p
)
<∞

(E.4)

uniformly in n ∈ N and g ∈ Gn by Lemma D.3.

SE: proof that
∑
a∈A d

a
g,nf

a
g,n(θ) is L0-stochastically equicontinuous

The L0-stochastic equicontinuity will be verified using Proposition 1 of Jenish and Prucha (2009). To apply it,

we have to show that the individual likelihood terms are Lipschitz functions in parameters: for any θ, θ• ∈ Θ,

∣∣∣∣∣∑
a∈A

dag,nf
a
g,n(θ)−

∑
a∈A

dag,nf
a
g,n(θ•)

∣∣∣∣∣ ≤∑
a∈A

dag,n|fag,n(θ)− fag,n(θ•)| ≤
∑
a∈A
|fag,n(θ)− fag,n(θ•)|

≤
∑
a∈A

∥∥∥∥∥∂fag,n(θ̃)

∂θ

∥∥∥∥∥ ‖θ − θ•‖ ≤∑
a∈A

sup
θ∈Θ

∥∥∥∥∂fag,n(θ)

∂θ

∥∥∥∥ · ‖θ − θ•‖,
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where we used the elementwise mean value theorem with elements of θ̃ being between elements of θ and

θ•. It thus suffices to show that supn,g E

[∑
a∈A sup

θ∈Θ
‖∂fag,n(θ)/∂θ‖

]p
< ∞ for some p ≥ 1. Similarly to

(E.1), Loève’s cr-inequality implies that it is enough to prove that all individual terms are bounded, that is,

supn,g E

[
sup
θ∈Θ
‖∂fag,n(θ)/∂θ‖

]p
< ∞ for all a ∈ A. As before, we establish this result for ∂f11

g,n(θ)/∂θ, while

the boundedness of the other terms can be proven in a similar way:

E

[
sup
θ∈Θ

∥∥∥∥∥∂f11
g,n(θ)

∂θ

∥∥∥∥∥
]p

= E

[
sup
θ∈Θ

∥∥∥∥∥−1

2

(
1

|Ωoog,n(θ)|
∂|Ωoog,n(θ)|

∂θ
+
∂(z′g,n(θ)Ωoo−1

g,n (θ)zg,n(θ))

∂θ

)
+
∂ ln Φ2(v11

g,n(θ), R11
g,n(θ))

∂θ

∥∥∥∥∥
]p

≤ 3p−1

(
sup
θ∈Θ

(
1

|Ωoog,n(θ)|

∥∥∥∥∂|Ωoog,n(θ)|
∂θ

∥∥∥∥)p + E

[
sup
θ∈Θ

∥∥∥∥∥∂(z′g,n(θ)Ωoo−1
g,n (θ)zg,n(θ))

∂θ

∥∥∥∥∥
]p

+ E

[
sup
θ∈Θ

∥∥∥∥∥∂ ln Φ2(v11
g,n(θ), R11

g,n(θ))

∂θ

∥∥∥∥∥
]p)

. (E.5)

The first term on the right hand side is uniformly bounded by Lemma D.1. To bound the second term on

the right hand side of (E.5), we apply Lemma C.6:

E

[
sup
θ∈Θ

∥∥∥∥∥∂(z′g,n(θ)Ωoo−1
g,n (θ)zg,n(θ))

∂θ

∥∥∥∥∥
]p

= E

[
sup
θ∈Θ

∥∥∥∥∥2

(
∂zg,n(θ)

∂θ′

)′
Ωoo−1
g,n (θ)zg,n(θ)

+

(
∂ vec Ωoo−1

g,n (θ)

∂θ′

)′
(zg,n(θ)⊗ zg,n(θ))

∥∥∥∥∥
]p

≤ 22p−1

(
sup
θ∈Θ
‖Ωoo−1

g,n (θ)‖pE
[
sup
θ∈Θ

(∥∥∥∥∂zg,n(θ)

∂θ′

∥∥∥∥ ‖zg,n(θ)‖
)]p

+ sup
θ∈Θ

∥∥∥∥∥∂ vec Ωoo−1
g,n (θ)

∂θ′

∥∥∥∥∥
p

E

[
sup
θ∈Θ
‖zg,n(θ)‖

]2p
)
<∞

(E.6)

uniformly in n ∈ N and g ∈ Gn, where the first inequality is implied by Lemma C.7 and Loève’s cr-inequality.

The conclusion follows by applying the Cauchy-Schwartz inequality to E [supθ∈Θ(‖∂zg,n(θ)/∂θ′‖‖zg,n(θ)‖)]p

and observing that E [supθ∈Θ ‖∂zg,n(θ)/∂θ′‖]2p and E [supθ∈Θ ‖zg,n(θ)‖]2p are uniformly bounded by Lemmas

D.4 and D.3, respectively, while the norms of Ωoo−1
g,n (θ) and ∂ vec Ωoo−1

g,n (θ)/∂θ′ are uniformly bounded by

Lemma D.1.

Finally, by Lemma C.4, the last term in (E.5) can be bounded (all symbols defined in Lemma C.4 are
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again indexed by the subscripts g and n and superscript 11):

E

[
sup
θ∈Θ

∥∥∥∥∥∂ ln Φ2(v11
g,n(θ), R11

g,n(θ))

∂θ

∥∥∥∥∥
]p

= E

sup
θ∈Θ

∥∥∥∥∥∥
2∑
j=1

ξj(v
11
g,n(θ), R11

g,n(θ))
∂v11

gj,n(θ)

∂θ

−1

2

(
∂ ln |R11

g,n(θ)|
∂θ

+ EV

[
∂P (V,R11

g,n(θ))

∂θ

∣∣V ≤ v11
g,n(θ)

])∥∥∥∥∥
]p

≤ 4p−1

 2∑
j=1

E

[
sup
θ∈Θ

∥∥∥∥∥ξj(v11
g,n(θ), R11

g,n(θ))
∂v11

gj,n(θ)

∂θ

∥∥∥∥∥
]p

+ sup
θ∈Θ

∥∥∥∥∥ 1

|R11
g,n(θ)|

∂|R11
g,n(θ)|
∂θ

∥∥∥∥∥
p

+ E

[
sup
θ∈Θ

∥∥∥∥∥EV
[
∂P (V,R11

g,n(θ))

∂θ

∣∣V ≤ v11
g,n(θ)

]∥∥∥∥∥
]p)

(E.7)

uniformly in n ∈ N and g ∈ Gn, where P (v,R11
g,n(θ)) = v′R11−1

g,n (θ)v and V ∼ N (0, R11
g,n(θ)).18

Now we will prove that each term in (E.7) is uniformly bounded. By the Cauchy-Schwartz inequality,

E

[
sup
θ∈Θ

∥∥∥∥∥ξj(v11
g,n(θ), R11

g,n(θ))
∂v11

gj,n(θ)

∂θ

∥∥∥∥∥
]p
≤

√√√√E

[
sup
θ∈Θ

ξj(v11
g,n(θ), R11

g,n(θ))

]2p

E

[
sup
θ∈Θ

∥∥∥∥∥∂v11
gj,n(θ)

∂θ′

∥∥∥∥∥
]2p

≤

√
E

[
sup
θ∈Θ

ξj(v11
g,n(θ), R11

g,n(θ))

]2p

E

[
sup
θ∈Θ

∥∥∥∥∂v11
g,n(θ)

∂θ′

∥∥∥∥]2p

,

(E.8)

for j = 1, 2. In the same way as in (E.3), ξj(v
11
g,n(θ), R11

g,n(θ)) ≤ C1 + C2‖v11
g,n(θ)‖8 for some constants

C1, C2 > 0.19 Thus for (E.8) to be uniformly bounded, it is enough to show that E[supθ∈Θ ‖v11
g,n(θ)‖]16p and

E[supθ∈Θ ‖∂v11
g,n(θ)/∂θ′‖]2p are uniformly bounded, which is the case by Lemmas D.3 and D.4, respectively.

The second term on the right hand side of (E.7) is uniformly bounded because infn,g |R11
g,n(θ)| = infn,g(1 −

ρ112

g,n(θ)) > 0 and supn,g supθ∈Θ ‖∂|R11
g,n(θ)|/∂θ‖ <∞ by Lemma D.2. Regarding the last term in (E.7), it is

not difficult to see from Lemma C.6 on the first order derivative of a quadratic form and from Lemma D.2

18We use V instead of V 11
g,n(θ) in order to simplify the notation.

19Note that the numbering of constants is renewed for each part of the proof.
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uniformly bounding ∂ vecR11−1

g,n (θ)/∂θ′ that

∥∥∥∥∥EV
[
∂P (V,R11

g,n(θ))

∂θ

∣∣V ≤ v11
g,n(θ)

]∥∥∥∥∥ =

∥∥∥∥∥EV
[(

∂ vecR11−1

g,n (θ)

∂θ′

)′
(V ⊗ V )

∣∣V ≤ v11
g,n(θ)

]∥∥∥∥∥
≤

∥∥∥∥∥∂ vecR11−1

g,n (θ)

∂θ′

∥∥∥∥∥∥∥EV [V ⊗ V |V ≤ v11
g,n(θ)]

∥∥ =

∥∥∥∥∥∂ vecR11−1

g,n (θ)

∂θ′

∥∥∥∥∥∥∥EV [V V ′|V ≤ v11
g,n(θ)]

∥∥
≤ C3

∥∥EV [V V ′|V ≤ v11
g,n(θ)]

∥∥
= C3‖R11

g,n(θ)− v11
g1,n(θ)ξ1(v11

g,n(θ), R11
g,n(θ))A1(R11

g,n(θ))− v11
g2,n(θ)ξ2(v11

g,n(θ), R11
g,n(θ))A2(R11

g,n(θ))

+ (1− ρ112

g,n(θ))κ(v11
g,n(θ), R11

g,n(θ))A3(R11
g,n(θ))‖

≤ C4

[
C5 + |v11

g1,n(θ)ξ1(v11
g,n(θ), R11

g,n(θ))|+ |v11
g2,n(θ)ξ2(v11

g,n(θ), R11
g,n(θ))|+ κ(v11

g,n(θ), R11
g,n(θ))

]

(E.9)

for some constants C3, C4, C5 > 0, where the last equality follows by Lemma C.8 and its notation: recall that

V ∼ N (0, R11
g,n(θ)) and 2 × 2 matrices A1(R11

g,n(θ)), A2(R11
g,n(θ)), and A3(R11

g,n(θ)) are functions of ρ11
g,n(θ)

defined in the same way as in (C.4) and κ(v11
g,n(θ), R11

g,n(θ)) = φ2(v11
g,n(θ), R11

g,n(θ))/Φ2(v11
g,n(θ), R11

g,n(θ)). It

remains to show that the supremum of the last expression in (E.9) with respect to θ ∈ Θ is uniformly Lp-

bounded. By Loève’s cr-inequality, it suffices to show that supn,g E
[
supθ∈Θ |v11

gj,n(θ)ξj(v
11
g,n(θ), R11

g,n(θ))|
]p
<

∞, j = 1, 2, which is however implied by results in (E.3) and (E.4), and supn,g E
[
supθ∈Θ κ(v11

g,n(θ), R11
g,n(θ))

]p
<

∞. For this last term, Lemmas C.5 and D.2 imply there are constants C6, . . . , C9 > 0 such that

E

[
sup
θ∈Θ

κ(v11
g,n(θ), R11

g,n(θ))

]p
≤ E

[
sup
θ∈Θ

(
C6(1− |ρ11

g,n(θ)|)−3

(
(|v11

g1,n(θ)|+ |v11
g2,n(θ)|+ C7)2 +

(
1− Φ

(
(1− |ρ11

g,n(θ)|)−1/2
))−2

))]p
≤ C8E

[
sup
θ∈Θ

(|v11
g1,n(θ)|+ |v11

g2,n(θ)|+ C7)2 + C9

]p
<∞

uniformly in n ∈ N and g ∈ Gn, where the conclusion follows from Lemma D.3 in the same way as in (E.3).

This concludes the proof that (E.7) and thus (E.5) are uniformly bounded. The SE property thus follows

from Proposition 1 of Jenish and Prucha (2009).

PC: proof of 1
n

∑
g∈Gn

(∑
a∈A[dag,nf

a
g,n(θ)− E[dag,nf

a
g,n(θ)]]

) p−→ 0 as n→∞ for θ ∈ Θ

In order to establish the pointwise convergence, we apply Theorem C.1. As before, we will establish the

result only for d11
g,nf

11
g,n(θ); the remaining terms can be analyzed analogously. We start by proving that the
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individual likelihood terms are L1-NED on {ηg,n}g∈Gn with ηg,n = (Xs
g·,n, X

o
g·,n, u

s
g,n, u

o
g,n). Note that

d11
g,nf

11
g,n(θ) = d11

g,n

(
− ln 2π − 1

2

(
ln |Ωoog,n(θ)|+ z′g,n(θ)Ωoo−1

g,n (θ)zg,n(θ)
)

+ ln Φ2(v11
g,n(θ), R11

g,n(θ))

)
.

Given that Ωoog,n(θ) is non-stochastic and its determinant is uniformly bounded away from zero by Lemma D.1,

it suffices to establish the L2-NED property for {d11
g,n}g∈Gn , {z′g,n(θ)Ωoo−1

g,n (θ)zg,n(θ)}g∈Gn , and {ln Φ2(v11
g,n(θ),

R11
g,n(θ))}g∈Gn and apply Lemma C.9. In Lemma D.5, we have shown that {d11

g,n}g∈Gn is a uniform L2-NED

random field. Now we will apply Theorem C.2 to the remaining two random fields.

Let z
(s)
g,n(θ) = E[zg,n(θ)|Fg,n(s)]. Then by the elementwise mean value theorem, there exists z̃

(s)
g,n(θ) with

elements between zg,n(θ) and z
(s)
g,n(θ) such that

|z′g,n(θ)Ωoo−1
g,n (θ)zg,n(θ)− z(s)′

g,n (θ)Ωoo−1
g,n (θ)z(s)

g,n(θ)| ≤ ‖2Ωoo−1
g,n (θ)z̃(s)

g,n(θ)‖‖zg,n(θ)− z(s)
g,n(θ)‖.

In order to verify conditions (ii) and (iii) of Theorem C.2, we have to show that sup
s
‖2Ωoo−1

g,n (θ)z̃
(s)
g,n(θ)‖2 and

sup
s
‖2Ωoo−1

g,n (θ)z̃
(s)
g,n(θ)‖zg,n(θ) − z(s)

g,n(θ)‖‖r are uniformly bounded, for some r > 2. Since the elements of

z̃
(s)
g,n(θ) lie between the elements of zg,n(θ) and z

(s)
g,n(θ), let C

(s)
1g,n(θ) and C

(s)
2g,n(θ) be 2× 2 diagonal matrices

with elements in [0, 1] such that z̃
(s)
g,n(θ) = C

(s)
1g,n(θ)zg,n(θ)+C

(s)
2g,n(θ)z

(s)
g,n(θ). Given that C

(s)
1g,n(θ) and C

(s)
2g,n(θ)

have all elements in [0, 1] irrespectively of s, g, n, and θ, it holds that

sup
s
E‖2Ωoo−1

g,n (θ)z̃(s)
g,n(θ)‖2 ≤ 4‖Ωoo−1

g,n (θ)‖2 sup
s
E‖C(s)

1g,n(θ)zg,n(θ) + C
(s)
2g,n(θ)z(s)

g,n(θ)‖2

≤ C3‖Ωoo−1
g,n (θ)‖2

(
E‖zg,n(θ)‖2 + sup

s
E‖z(s)

g,n(θ)‖2
)

≤ 2C3‖Ωoo−1
g,n (θ)‖2E‖zg,n(θ)‖2 ≤ 2C3 sup

θ∈Θ
‖Ωoo−1

g,n (θ)‖2E
[
sup
θ∈Θ
‖zg,n(θ)‖

]2

<∞

for some constant C3 > 0 uniformly in n ∈ N and g ∈ Gn by Lemmas D.1 and D.3, where the third inequality

follows from the conditional Jensen’s inequality. Next,

sup
s
E‖2Ωoo−1

g,n (θ)z̃(s)
g,n(θ)‖zg,n(θ)− z(s)

g,n(θ)‖‖r

≤ 2r‖Ωoo−1
g,n (θ)‖r sup

s
E‖(C(s)

1g,n(θ)zg,n(θ) + C
(s)
2g,n(θ)z(s)

g,n(θ))‖zg,n(θ)− z(s)
g,n(θ)‖‖r

≤ C4‖Ωoo−1
g,n (θ)‖r sup

s
E
[
‖zg,n(θ)‖+ ‖z(s)

g,n(θ)‖
]2r
≤ 22r−1C4‖Ωoo−1

g,n (θ)‖r
(
E‖zg,n(θ)‖2r + sup

s
E‖z(s)

g,n(θ)‖2r
)

≤ 22rC4‖Ωoo−1
g,n (θ)‖rE‖zg,n(θ)‖2r ≤ 22rC4 sup

θ∈Θ
‖Ωoo−1

g,n (θ)‖rE
[
sup
θ∈Θ
‖zg,n(θ)‖

]2r

<∞
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for some constant C4 > 0. Since E‖z′g,n(θ)Ωoo−1
g,n (θ)zg,n(θ)‖2 ≤ supθ∈Θ ‖Ωoo−1

g,n (θ)‖2E
[
sup
θ∈Θ
‖zg,n(θ)‖

]4

< ∞

uniformly in n ∈ N and g ∈ Gn by Lemmas D.1 and D.3, condition (iv) of Theorem C.2 is fulfilled. As

{zg,n(θ)}g∈Gn is a uniform L2-NED random field by Lemma D.5, it follows that {z′g,n(θ)Ωoo−1
g,n (θ)zg,n(θ)}g∈Gn

is a uniform L2-NED random field as well.

Similarly, let v
11(s)
g,n (θ) = E[v11

g,n(θ)|Fg,n(s)] and verify the conditions of Theorem C.2 again. By the

elementwise mean value theorem, there exists ṽ
11(s)
g,n (θ) between v11

g,n(θ) and v
11(s)
g,n (θ) such that

| ln Φ2(v11
g,n(θ), R11

g,n(θ))− ln Φ2(v11(s)
g,n (θ), R11

g,n(θ))| ≤

∣∣∣∣∣∂ ln Φ2(ṽ
11(s)
g,n (θ), R11

g,n(θ))

∂v′
(v11
g,n(θ)− v11(s)

g,n (θ))

∣∣∣∣∣
≤ C5

(
‖ṽ11(s)
g,n (θ)‖8 + C6

)
‖v11
g,n(θ)− v11(s)

g,n (θ)‖

for some constants C5, C6 > 0, where the last inequality follows from Lemmas C.4, C.5, and D.2 by the

same argument as in (E.3). To bound ‖ṽ11(s)
g,n (θ)‖8 to verify condition (ii) of Theorem C.2, denote C

(s)
7g,n(θ)

and C
(s)
8g,n(θ) the 2 × 2 diagonal matrices with elements in [0, 1] such that ṽ

11(s)
g,n (θ) = C

(s)
7g,n(θ)v11

g,n(θ) +

C
(s)
8g,n(θ)v

11(s)
g,n (θ). Since C

(s)
7g,n(θ) and C

(s)
8g,n(θ) have all elements in [0, 1] irrespectively of s, n, g, and θ, it

holds that

sup
s
E‖ṽ11(s)

g,n (θ)‖16 = sup
s
E‖C(s)

7g,n(θ)v11
g,n(θ) + C

(s)
8g,n(θ)v11(s)

g,n (θ)‖16

≤ sup
s
C9

(
E‖v11

g,n(θ)‖16 + E‖v11(s)
g,n (θ)‖16

)
≤ 2C9E‖v11

g,n(θ)‖16 ≤ 2C9E

[
sup
θ∈Θ
‖v11
g,n(θ)‖

]16

is bounded uniformly in n ∈ N and g ∈ Gn for some constant C9 > 0 by Lemma D.3. Next, condition (iii) of

Theorem C.2 can be verified for some r > 2 and some constant C10 > 0 by

sup
s
E
[(
‖ṽ11(s)
g,n (θ)‖8 + C6

)
‖v11
g,n(θ)− v11(s)

g,n (θ)‖
]r

= sup
s
E
[(
‖C(s)

7g,n(θ)v11
g,n(θ) + C

(s)
8g,n(θ)v11(s)

g,n (θ)‖8 + C6

)
‖v11
g,n(θ)− v11(s)

g,n (θ)‖
]r

≤ sup
s
E

[(
C10

(
‖v11
g,n(θ)‖+ ‖v11(s)

g,n (θ)‖
)8

+ C6

)(
‖v11
g,n(θ)‖+ ‖v11(s)

g,n (θ)‖
)]r

≤ sup
s

2r−1

(
Cr10E

[
‖v11
g,n(θ)‖+ ‖v11(s)

g,n (θ)‖
]9r

+ Cr6E
[
‖v11
g,n(θ)‖+ ‖v11(s)

g,n (θ)‖
]r)

≤ sup
s

210r−2Cr10

(
E‖v11

g,n(θ)‖9r + E‖v11(s)
g,n (θ)‖9r

)
+ sup

s
22r−2Cr6

(
E‖v11

g,n(θ)‖r + E‖v11(s)
g,n (θ)‖r

)
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≤ 210r−1Cr10E‖v11
g,n(θ)‖9r + 22r−1Cr6E‖v11

g,n(θ)‖r

≤ 210r−1Cr10E

[
sup
θ∈Θ
‖v11
g,n(θ)‖

]9r

+ 22r−1Cr6E

[
sup
θ∈Θ
‖v11
g,n(θ)‖

]r
<∞

uniformly in n ∈ N and g ∈ Gn by Lemma D.3, where the second and third inequalities are implied by Loève’s

cr-inequality, while the fourth inequality follows by the conditional Jensen’s inequality. Finally, condition (iv)

of Theorem C.2 can be verified in the same way as in (E.4) with the requirement that E
[
supθ∈Θ ‖v11

g,n(θ)‖
]18

<

∞, which is the case by Lemma D.3. As we have shown in Lemma D.5 that {v11
g,n(θ)}g∈Gn is a uniform L2-

NED random field, {ln Φ2(v11
g,n(θ), R11

g,n(θ))}g∈Gn is a uniform L2-NED random field as well. Thus, by Lemma

C.9, it follows that {d11
g,nf

11
g,n(θ)}g∈Gn is a uniform L1-NED random field.

Hence, condition (i) of Theorem C.1 is satisfied, whereas condition (ii) is already verified in the beginning

of the proof; condition (iii) is implied by Assumptions 2(i), 2(ii), and 4(i). Since convergence in probability

follows from convergence in L1-norm, Theorem C.1 thus implies the pointwise convergence result.

Proof of Theorem 2: By the elementwise mean value theorem, there exists θ̃n with elements between

elements of θ0 and θ̂n such that

0 =
∂Qn(θ̂n)

∂θ
=
∂Qn(θ0)

∂θ
+
∂2Qn(θ̃n)

∂θ∂θ′
(θ̂n − θ0).

Assumption 12 now implies that matrices Jn(θ0) are non-singular for a sufficiently large n and it holds that

√
n
∂2Qn(θ̃n)

∂θ∂θ′
(θ̂n − θ0) = −

√
n
∂Qn(θ0)

∂θ

and
√
nJ−1/2

n (θ0)
∂2Qn(θ̃n)

∂θ∂θ′
(θ̂n − θ0) = −

√
nJ−1/2

n (θ0)
∂Qn(θ0)

∂θ
.

To prove the claim of the theorem, we first establish that the term
√
nJ
−1/2
n (θ0)∂Qn(θ0)/∂θ converges in

distribution to N (0, IL) as n→∞, and we show later that ∂2Qn(θ̃n)/∂θ∂θ′ −Hn(θ0)
p−→ 0 as n→∞.

Proof of
√
nJ
−1/2
n (θ0)∂Qn(θ0)

∂θ = 1√
n
J
−1/2
n (θ0)

∑
g∈Gn

∑
a∈A d

a
g,n

∂fag,n(θ0)

∂θ

d−→ N (0, IL) as n→∞

We apply Theorem C.3. The individual score components have mean zero because the marginal likelihood

contributions for each group are correctly specified. The remaining assumptions of Theorem C.3 concerning

L2+δ-boundedness (δ > 0) and NED properties are verified at a general θ ∈ Θ, but they are applied at θ = θ0.
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By Loève’s cr-inequality and dag,n, a ∈ A, being an indicator function, the individual score contributions

are uniformly L2+δ-bounded if supn,g E
[
‖∂fag,n(θ)/∂θ‖

]2+δ ≤ supn,g E
[
supθ∈Θ ‖∂fag,n(θ)/∂θ‖

]2+δ
< ∞ for

some δ > 0. The result for a = 11 is a special case of the uniform boundedness of (E.5) verified in the proof

of Theorem 1, property SE; the boundedness of the other terms can be proven in a similar way.

Now we establish that {d11
g,n∂f

11
g,n(θ)/∂θ}g∈Gn is a uniform L2-NED random field on the α-mixing random

field {ηg,n = (Xs
g·,n, X

o
g·,n, u

s
g,n, u

o
g,n)}g∈Gn . Recall that

d11
g,n

∂f11
g,n(θ)

∂θ
= −1

2
d11
g,n

1

|Ωoog,n(θ)|
∂|Ωoog,n(θ)|

∂θ
− 1

2
d11
g,n

∂(z′g,n(θ)Ωoo−1
g,n (θ)zg,n(θ))

∂θ
+ d11

g,n

∂ ln Φ2(v11
g,n(θ), R11

g,n(θ))

∂θ
.

(E.10)

It thus suffices to show that each term of the summation is uniformly L2-NED and to find their NED

coefficients. We have already established in Lemma D.5 that {d11
g,n}g∈Gn is a uniform L2-NED random field

with NED coefficients bounded by ψ1/6(s), where ψ(s) is defined in Assumption 5. Since |Ωoog,n(θ)| is uniformly

bounded away from zero and the norm of ∂|Ωoog,n(θ)|/∂θ is uniformly bounded by Lemma D.1, the first term

in (E.10) is uniformly L2-NED with NED coefficients bounded by ψ1/6(s). For the second and third terms

in (E.10), we apply Theorem C.2. Let d
11(s)
g,n = E[d11

g,n|Fg,n(s)] and z
(s)
g,n(θ) = E[zg,n(θ)|Fg,n(s)]. Then

∥∥∥∥∥d11
g,n

∂(z′g,n(θ)Ωoo−1
g,n (θ)zg,n(θ))

∂θ
− d11(s)

g,n

∂(z
(s)′

g,n (θ)Ωoo−1
g,n (θ)z

(s)
g,n(θ))

∂θ

∥∥∥∥∥
≤

(
d11
g,n +

∥∥∥∥∥∂z
(s)′

g,n (θ)Ωoo−1
g,n (θ)z

(s)
g,n(θ)

∂θ

∥∥∥∥∥
)(
|d11
g,n − d11(s)

g,n |+

∥∥∥∥∥∂z′g,n(θ)Ωoo−1
g,n (θ)zg,n(θ)

∂θ
−
∂z

(s)′

g,n (θ)Ωoo−1
g,n (θ)z

(s)
g,n(θ)

∂θ

∥∥∥∥∥
)

≤

(
1 +

∥∥∥∥∥∂(z
(s)′

g,n (θ)Ωoo−1
g,n (θ)z

(s)
g,n(θ))

∂θ

∥∥∥∥∥
)(
|d11
g,n − d11(s)

g,n |+

∥∥∥∥∥∂2(z̃
(s)′

g,n (θ)Ωoo−1
g,n (θ)z̃

(s)
g,n(θ))

∂θ∂z′

∥∥∥∥∥ ‖zg,n(θ)− z(s)
g,n(θ)‖

)

≤

(
1 +

∥∥∥∥∥∂(z
(s)′

g,n (θ)Ωoo−1
g,n (θ)z

(s)
g,n(θ))

∂θ

∥∥∥∥∥
)(

1 +

∥∥∥∥∥∂2(z̃
(s)′

g,n (θ)Ωoo−1
g,n (θ)z̃

(s)
g,n(θ))

∂θ∂z′

∥∥∥∥∥
)(
|d11
g,n − d11(s)

g,n |+ ‖zg,n(θ)− z(s)
g,n(θ)‖

)
,

where the second inequality follows by the elementwise mean value theorem with elements of z̃
(s)
g,n(θ) being

between elements of zg,n(θ) and z
(s)
g,n(θ).

By the Cauchy-Schwartz, Minkowski’s, and Liapunov’s inequalities, conditions (ii) and (iii) of Theorem

C.2 are fulfilled if ‖∂(z
(s)′

g,n (θ)Ωoo−1
g,n (θ)z

(s)
g,n(θ))/∂θ‖4r, ‖∂2(z̃

(s)′

g,n (θ)Ωoo−1
g,n (θ)z̃

(s)
g,n(θ))/∂θ∂z′‖4r, ‖d11

g,n−d
11(s)
g,n ‖2r,

and ‖zg,n(θ) − z(s)
g,n(θ)‖2r are uniformly bounded for some r > 2. The boundedness of the first term can be

proven in the same way as in (E.6) with an additional application of the conditional Jensen’s inequal-

ity. Given the second order derivative of a quadratic form in Lemma C.6, it is not difficult to prove that
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∂2(z̃
(s)′

g,n (θ)Ωoo−1
g,n (θ)z̃

(s)
g,n(θ))/∂θ∂z′ is uniformly L4r-bounded. Trivially, d11

g,n−d
11(s)
g,n is uniformly L2r-bounded

as well, while the L2r-boundedness of zg,n(θ)− z(s)
g,n(θ) follows from Minkowski’s and the conditional Jensen’s

inequalities and Lemma D.3. Since the uniform L2-boundedness of ∂(z′g,n(θ)Ωoo−1
g,n (θ)zg,n(θ))/∂θ follows in

the same way as in (E.6), condition (iv) of Theorem C.2 is fulfilled. Furthermore, since {d11
g,n}g∈Gn and

{zg,n(θ)}g∈Gn are uniform L2-NED random fields with NED coefficients bounded by ψ1/6(s) by Lemma D.5,

Theorem C.2 implies that the second term in (E.10) is uniformly L2-NED with NED coefficients bounded by

ψ(r−2)/(12r−12)(s) for some r > 2.

Regarding the last term in (E.10), it follows similarly with v
11(s)
g,n (θ) = E[v11

g,n(θ)|Fg,n(s)] that

∥∥∥∥∥d11
g,n

∂ ln Φ2(v11
g,n(θ), R11

g,n(θ))

∂θ
− d11(s)

g,n

∂ ln Φ2(v
11(s)
g,n (θ), R11

g,n(θ))

∂θ

∥∥∥∥∥
≤

(
1 +

∥∥∥∥∥∂ ln Φ2(v
11(s)
g,n (θ), R11

g,n(θ))

∂θ

∥∥∥∥∥
)(

1 +

∥∥∥∥∥∂2 ln Φ2(ṽ
11(s)
g,n (θ), R11

g,n(θ))

∂θ∂v′

∥∥∥∥∥
)

(|d11
g,n − d11(s)

g,n |+ ‖v11
g,n(θ)− v11(s)

g,n (θ)‖)

with elements of ṽ
11(s)
g,n (θ) lying between elements of v11

g,n(θ) and v
11(s)
g,n (θ). Analogously to the previous case,

applying Theorem C.2 requires us to check that ∂ ln Φ2(v
11(s)
g,n (θ), R11

g,n(θ))/∂θ, ∂2 ln Φ2(ṽ
11(s)
g,n (θ), R11

g,n(θ))/∂θ∂v′

and d11
g,n − d

11(s)
g,n , v11

g,n(θ) − v11(s)
g,n (θ) are uniformly L4r- and L2r-bounded, respectively. Given Lemmas C.4

and C.5, the boundedness of the first term has been established in the proof of Theorem 1, property SE, and

the boundedness of the second term can be established analogously. The third term is obviously uniformly

L2r-bounded, while the uniform L2r-boundedness of the fourth term again follows from Minkowski’s and the

conditional Jensen’s inequalities and Lemma D.3. Given that {dg,n}g∈Gn and {v11
g,n(θ)}g∈Gn are uniformly

L2-NED with NED coefficients bounded by ψ1/6(s) by Lemma D.5, {d11
g,n∂ ln Φ2(v11

g,n(θ), R11
g,n(θ))/∂θ}g∈Gn

is a uniform L2-NED random field with NED coefficients bounded by ψ(r−2)/(12r−12)(s) by Theorem C.2 for

some r > 2, and consequently, {d11
g,n∂f

11
g,n(θ)/∂θ}g∈Gn is a uniform L2-NED random field with NED coeffi-

cients bounded by ψ(r−2)/(12r−12)(s). Hence, conditions (iii) and (v) of Theorem C.3 are fulfilled, whereas

conditions (iv) and (vi) are satisfied by Assumptions 10 and 2(i), 2(ii), and 9(i), respectively; condition (vii)

is assumed in Assumption 12(ii). The asymptotic normality result follows from Theorem C.3.

Proof of ∂2Qn(θ̃n)
∂θ∂θ′ −Hn(θ0) = 1

n

∑
g∈Gn

∑
a∈A d

a
g,n

∂2fag,n(θ̃n)

∂θ∂θ′ −Hn(θ0)
p−→ 0 as n→∞

We can establish this result by showing that, for n→∞,

∂2Qn(θ0)

∂θ∂θ′
− E

[
∂2Qn(θ0)

∂θ∂θ′

]
p−→ 0 and

∂2Qn(θ̃n)

∂θ∂θ′
− ∂2Qn(θ0)

∂θ∂θ′
p−→ 0.
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For the first claim, we apply Theorem C.1. As before, we establish the results for the part of the objective

function term corresponding to index a = 11 and a general θ ∈ Θ and apply it at θ = θ0; the results for the

other terms can be proven in a similar way.

Note that

d11
g,n

∂2f11
g,n(θ)

∂θ∂θ′
= d11

g,n

[
−1

2

(
− 1

|Ωoog,n(θ)|2
∂|Ωoog,n(θ)|

∂θ

∂|Ωoog,n(θ)|
∂θ′

+
1

|Ωoog,n(θ)|
∂2|Ωoog,n(θ)|
∂θ∂θ′

+
∂2(z′g,n(θ)Ωoo−1

g,n (θ)zg,n(θ))

∂θ∂θ′

)
+
∂2 ln Φ2(v11

g,n(θ), R11
g,n(θ))

∂θ∂θ′

]
.

We start by showing that d11
g,n∂

2f11
g,n(θ)/∂θ∂θ′ is uniformly Lp-bounded for some p > 1. Note that d11

g,n is

an indicator function, whereas |Ωoog,n(θ)| is uniformly bounded away from zero and the norm of ∂|Ωoog,n(θ)|/∂θ

is uniformly bounded by Lemma D.1. It can be shown using the second order derivative of a determinant

in Lemma C.6 that the norm of ∂2|Ωoog,n(θ)|/∂θ∂θ′ is uniformly bounded as well. Given the second order

derivative of a quadratic form calculated in Lemma C.6, it is not difficult to see that the uniform Lp-

boundedness of ∂2(z′g,n(θ)Ωoo−1
g,n (θ)zg,n(θ))/∂θ∂θ′ can be easily established with the help of Lemmas D.1,

D.3, and D.4 (analogously to the Lp-boundedness of the first derivative in (E.6)). Given the third result of

Lemma C.4 and Lemma C.5, it can be also shown that ∂2 ln Φ2(v11
g,n(θ), R11

g,n(θ))/∂θ∂θ′ is Lp-bounded in a

similar way as it was done for the first order derivative in the proof of Theorem 1, property SE.

In order to show that {d11
g,n∂

2f11
g,n(θ)/∂θ∂θ′}g∈Gn is a uniform L1-NED random field on the α-mixing

random field {ηg,n = (Xs
g·,n, X

o
g·,n, u

s
g,n, u

o
g,n)}g∈Gn , we have to establish the uniform L2-NED property for

{d11
g,n}g∈Gn , as is already done in Lemma D.5, and for the second order derivatives {∂2(z′g,n(θ)Ωoo−1

g,n (θ)zg,n(θ))/

∂θ∂θ′}g∈Gn and {∂2 ln Φ2(v11
g,n(θ), R11

g,n(θ))/∂θ∂θ′}g∈Gn and apply Lemma C.9. It can be done in a similar

way as is done for {z′g,n(θ)Ωoo−1
g,n (θ)zg,n(θ)}g∈Gn and {ln Φ2(v11

g,n(θ), R11
g,n(θ))}g∈Gn in the proof of Theorem 1.

Finally, condition (iii) of Theorem C.1 is fulfilled by Assumptions 2(i), 2(ii), and 9(i). The convergence

of the second order derivative of Qn(θ) at θ0 to H(θ0) follows from Theorem C.1 and Assumption 12(i) and

the fact that convergence in L1-norm implies convergence in probability.

We continue by proving that, for n→∞,

∂2Qn(θ̃n)

∂θ∂θ′
− ∂2Qn(θ0)

∂θ∂θ′
p−→ 0.

We apply the strategy used in the proof of Theorem 2 by Xu and Lee (2015a) and show that {∂2Qn(θ)/∂θ∂θ′}g∈Gn

is L0-stochastically equicontinuous because the claim then follows directly from the proposition concerning
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the L0-stochastic equicontinuity given in Andrews (1994). Since the objective function Qn(θ) as well as its

second order derivative are continuously differentiable, the stochastic equicontinuity of ∂2Qn(θ)/∂θ∂θ′ at

θ = θ0 can however be established in a similar way as we have verified it for Qn(θ) in the proof of Theorem

1, property SE, which thus concludes the proof.

Proof of Theorem 3: Let us recall and define the following notation. For each bootstrap sample b =

1, . . . , B, Γ
(b,θ′)
n (θ) = ∂Q

(b,θ′)
n (θ)/∂θ and Γ̄

(b,θ′)
n (θ) = ∂Q

(b,θ′)
n (θ)/∂θ − E

[
∂Q

(b,θ′)
n (θ)/∂θ

]
, where θ in the

parentheses denotes the parameter vector at which the objective function Qn and its derivatives are evalu-

ated and where θ′ in the superscripts indicates the parameter vector used to generate the bootstrap sam-

ple data. Next, P b denotes the probability measure induced by the bootstrap conditional on the orig-

inal sample and thus conditional on the estimates θ̂n. Since it was shown in the proof of Theorem 2

that
√
nJn(θ0)−1/2Γn(θ0)

d→ N (0, IL) and
√
n(θ̂n − θ0) = Op(1) as n → ∞, the claims of the theo-

rem follow for example by the Cramer-Wold device and Cavaliere and Georgiev (2017, Theorem 1) once

we prove
√
nJn(θ0)−1/2Γ

(b,θ̂n)
n (θ̂n)

d→ N (0, IL) conditional on Xs
n, Xo

n, and any sequence of estimates

θ̂n = θn = θ0 + ∆nn
−1/2 such that ‖∆n‖ < M if n > n0, ∆n ∈ RL, for any large M > 0 and n0 ∈ N.20

Furthermore, consider a particular bootstrap sample based on the n draws (us0i,n, u
o0
i,n)′ from N (0, I2),

that is, (u
s(b,θn)
i,n , u

o(b,θn)
i,n )′ = Σ(θn)1/2(us0i,n, u

o0
i,n)′ and y

s(b,θn)
i,n and y

o(b,θn)
i,n defined as in Section 4.3. If the

bootstrap sample is based on the same n draws (us0i,n, u
o0
i,n)′ but relies on the true parameter θ0 instead of

θn, the bootstrap data y
s(b,θ0)
i,n and y

o(b,θ0)
i,n follow the same data generating process as the original data,

Γ
(b,θ0)
n (θ0) = Γn(θ0) = ∂Qn(θ0)/∂θ, and Γ̄

(b,θ0)
n (θ0) = Γ̄n(θ0) = ∂Qn(θ0)/∂θ − E [∂Qn(θ0)/∂θ]. Then by the

proof of Theorem 2,
√
nJn(θ0)−1/2Γ

(b,θ0)
n (θ0) =

√
nJn(θ0)−1/2Γn(θ0) converges in distribution to N (0, IL) as

n→∞. By Assumption 12, the claims of the theorem thus follow if we prove for n→∞ that
√
n{Γ(b,θn)

n (θn)−

Γ
(b,θ0)
n (θ0)} =

√
n{Γ̄(b,θn)

n (θn) − Γ̄
(b,θ0)
n (θ0)} p−→ 0. To verify this claim, the following decomposition is used

(noting Γ̄
(b,θ0)
n (θ) ≡ Γ̄n(θ)):

√
n{Γ̄(b,θn)

n (θn)− Γ̄(b,θ0)
n (θ0)} =

√
n{Γ̄(b,θn)

n (θn)− Γ̄(b,θ0)
n (θn)} (E.11)

+
√
n{Γ̄n(θn)− Γ̄n(θ0)}. (E.12)

The last term (E.12) can be shown to be asymptotically negligible in probability by proving that the

20To simplify the notation, we will keep this conditioning implicit.
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difference

√
n{Γ̄n(θn)−Γ̄n(θ0)} =

1√
n

∑
g∈Gn

∑
a∈A

{
dag,n

∂fag,n(θn)

∂θ
− dag,n

∂fag,n(θ0)

∂θ
− E

[
dag,n

∂fag,n(θn)

∂θ
− dag,n

∂fag,n(θ0)

∂θ

]}

converges to zero for any sequence θn ∈ U(θ0, n
−1/2M), where U(θ0, δ) = {θ : ‖θ − θ0‖ < δ}. Since the

log-likelihood scores are differentiable, the (1 + δ) moments of the scores as well as their derivatives are

bounded (see the proof of Theorem 2), and even have the integrable majorants (see the proof of Theorem 1,

part SE), the mean value theorem implies for some convex combination ξn of θn and θ0 that

√
n{Γ̄n(θn)− Γ̄n(θ0)} =

1√
n

∑
g∈Gn

∑
a∈A

{
dag,n

∂2fag,n(ξn)

∂θ∂θ′
(θn − θ0)− E

[
dag,n

∂2fag,n(ξn)

∂θ∂θ′
(θn − θ0)

]}

=

√
n(θn − θ0)

n

∑
g∈Gn

∑
a∈A

{
dag,n

∂2fag,n(ξn)

∂θ∂θ′
− E

[
dag,n

∂2fag,n(ξn)

∂θ∂θ′

]}

=
√
n(θn − θ0)

(
∂2Qn(ξn)

∂θ∂θ′
− E

[
∂2Qn(ξn)

∂θ∂θ′

])
≤ n1/2 · n−1/2M · op(1) = op(1),

where the inequality follows by the definition of θn and the last part of the proof of Theorem 2 showing that

∂2Qn(θ)/∂θ∂θ′ − E[∂2Qn(θ)/∂θ∂θ′]
p−→ 0 for any θ ∈ Θ.

To analyze the other term (E.11), we decompose (E.11) futher as

√
n{Γ̄(b,θn)

n (θn)− Γ̄(b,θ0)
n (θn)}

=
1√
n

∑
g∈Gn

∑
a∈A

{
da(b,θn)
g,n

∂f
a(b,θn)
g,n (θn)

∂θ
− da(b,θ0)

g,n

∂f
a(b,θ0)
g,n (θn)

∂θ
−E

[
da(b,θn)
g,n

∂f
a(b,θn)
g,n (θn)

∂θ
− da(b,θ0)

g,n

∂f
a(b,θ0)
g,n (θn)

∂θ

]}

=
1

nαn1/2

∑
g∈Gn

∑
a∈A

{
nα1(da(b,θn)

g,n 6= da(b,θ0)
g,n )

(
da(b,θn)
g,n

∂f
a(b,θn)
g,n (θn)

∂θ
− da(b,θ0)

g,n

∂f
a(b,θ0)
g,n (θn)

∂θ

)
(E.13)

−E

[
nα1(da(b,θn)

g,n 6= da(b,θ0)
g,n )

(
da(b,θn)
g,n

∂f
a(b,θn)
g,n (θn)

∂θ
− da(b,θ0)

g,n

∂f
a(b,θ0)
g,n (θn)

∂θ

)]}

+
1√
n

∑
g∈Gn

∑
a∈A

{
1(da(b,θn)

g,n = da(b,θ0)
g,n )da(b,θ0)

g,n

(
∂f

a(b,θn)
g,n (θn)

∂θ
− ∂f

a(b,θ0)
g,n (θn)

∂θ

)
(E.14)

−E

[
1(da(b,θn)

g,n = da(b,θ0)
g,n )da(b,θ0)

g,n

(
∂f

a(b,θn)
g,n (θn)

∂θ
− ∂f

a(b,θ0)
g,n (θn)

∂θ

)]}
.

To show that (E.13) is asymptotically negligible in probability, we will first verify that the triangular

array of elements in (E.13) satisfies the assumptions of the central limit Theorem C.3. Then we can employ

the Chebyshev inequality along with the result shown in the proof of Theorem C.3 that variance of the sum
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in (E.13) is bounded by C1 ·n, C1 > 0, under Assumptions (i)–(vi) of Theorem C.3 (see the proof of Theorem

2, part 3, of Jenish and Prucha (2012)). To prove the convergence of (E.13) to zero in probability, we thus

have to make sure that the elements of the sum (E.13) are L2-NED on {ηg,n = (Xs
g·,n, X

o
g·,n, u

s
g,n, u

o
g,n)}g∈Gn

with some NED coefficients ψ(s) satisfying
∑∞
s=1 s

2d̃−1ψ(s) <∞ and uniformly bounded scaling coefficients,

sup
n,g

tg,n < ∞. We also have to prove that the elements of the sum (E.13) are uniformly L2+δ-bounded for

some δ > 0. The remaining assumptions (i) and (vi) follow by definition and by Assumption 4(i). Before

verifying these conditions, let us recall that data following the sample-selection data generating process with

some parameter θ ∈ U(θ0, δ) satisfy Assumptions 1–11 for a sufficiently small δ, and therefore, the previously

derived results assuming that θ0 represents the true parameter vector apply to the data generating process

based on the parameter vector θ 6= θ0, θ ∈ U(θ0, δ), as well. Therefore, we will assume from now on that n0

is sufficiently large so that n
−1/2
0 M < δ and θn ∈ U(θ0, n

−1/2M).

Similarly to the previous analysis, we will establish the L2-NED property for a = 11; the remaining terms

can be analyzed similarly. Let ψ̃(s) = max{ψs(s), ψ̃s(s), ψo(s)} and note that we have already verified in the

proof of Theorem 2 the L2-NED property of {d11
g,n∂f

11
g,n(θ)/∂θ}g∈Gn . The L2-NED property for (E.13) can be

verified analogously once we show that {nα1(d
11(b,θn)
g,n 6= d

11(b,θ0)
g,n )d

11(b,θ)
g,n }g∈Gn , θ ∈ {θ0, θn}, is uniform L2-

NED and find its NED coefficients. As d
11(b,θ)
g,n , θ ∈ {θn, θ0}, is L4-NED with the NED coefficients bounded

by ψ̃1/6(s) by the proof of Lemma D.5 for any θn ∈ U(θ0, n
−1/2M), the product rule in Lemma C.9 implies we

only have to show that the indicator functions in (E.13) are L4-NED on {ηg,n = (Xs
g·,n, X

o
g·,n, u

s
g,n, u

o
g,n)}g∈Gn

with the NED scaling factors tg,n = O(n−α) to compensate the multiplication by nα in (E.13). To analyze

the indicators, we split them first as

1(d11(b,θn)
g,n 6= d11(b,θ0)

g,n ) = 1(d
11(b,θn)
g1,n 6= d

11(b,θ0)
g1,n )+1(d

11(b,θn)
g2,n 6= d

11(b,θ0)
g2,n )−1(d

11(b,θn)
g1,n 6= d

11(b,θ0)
g1,n )1(d

11(b,θn)
g2,n 6= d

11(b,θ0)
g2,n ).

(E.15)

We will establish the L4-NED property for {1(d
11(b,θn)
g,n 6= d

11(b,θ0)
g,n )}g∈Gn by showing that {1(d

11(b,θn)
gi,n 6=

d
11(b,θ0)
gi,n )}g∈Gn , i ∈ {1, 2}, is L8-NED, applying the triangle inequality and the product rule in Lemma C.9,

and noting that the L8-NED property implies the L4-NED property. Note that each indicator equals to the

sum of two indicators:

1(d
11(b,θn)
g1,n 6= d

11(b,θ0)
g1,n ) = 1(y

∗s(b,θn)
g1,n > 0 > y

∗s(b,θ0)
g1,n ) + 1(y

∗s(b,θn)
g1,n < 0 < y

∗s(b,θ0)
g1,n ). (E.16)

We will thus verify the L8-NED property for {1(y
∗s(b,θn)
g1,n > 0 > y

∗s(b,θ0)
g1,n )}g∈Gn , noting that the other term

can be analyzed analogously. Since |1(X) − E[1(X)|F ]|8 ≤ |1(X) − E[1(X)|F ]|2, ‖1(X) − E[1(X)|F ]‖8 ≤
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‖1(X) − E[1(X)|F ]‖1/42 . Therefore, it is sufficient to establish that {1(y
∗s(b,θn)
g1,n > 0 > y

∗s(b,θ0)
g1,n )}g∈Gn is

L2-NED.

We now proceed similarly to the proof of Proposition 2 by Xu and Lee (2015a). Due to the uniform

boundedness of the indicator functions, the triangle inequality implies that

‖1(y
∗s(b,θn)
g1,n > 0 > y

∗s(b,θ0)
g1,n )− E[1(y

∗s(b,θn)
g1,n > 0 > y

∗s(b,θ0)
g1,n )|Fg,n(s)]‖2

≤ ‖1(y
∗s(b,θn)
g1,n > ε > −ε > y

∗s(b,θ0)
g1,n )− E[1(y

∗s(b,θn)
g1,n > ε > −ε > y

∗s(b,θ0)
g1,n )|Fg,n(s)]‖2

+‖1(0 ≤ y∗s(b,θn)
g1,n ≤ ε)− E[1(0 ≤ y∗s(b,θn)

g1,n ≤ ε)|Fg,n(s)]‖2

+‖1(0 ≥ y∗s(b,θ0)
g1,n ≥ −ε)− E[1(0 ≥ y∗s(b,θ0)

g1,n ≥ −ε)|Fg,n(s)]‖2

≤ ‖1(y
∗s(b,θn)
g1,n > ε > −ε > y

∗s(b,θ0)
g1,n )− E[1(y

∗s(b,θn)
g1,n > ε > −ε > y

∗s(b,θ0)
g1,n )|Fg,n(s)]‖2

+2

(√
P (0 ≤ y∗s(b,θn)

g1,n ≤ ε) +

√
P (0 ≥ y∗s(b,θ0)

g1,n ≥ −ε)
)

≤ ‖1(y
∗s(b,θn)
g1,n > ε > −ε > y

∗s(b,θ0)
g1,n )− E[1(y

∗s(b,θn)
g1,n > ε > −ε > y

∗s(b,θ0)
g1,n )|Fg,n(s)]‖2 + (C2 + C3)

√
ε,

where the second inequality follows by the conditional Jensen’s and Minkowski’s inequalities. The existence

of finite constants C2 > 0 and C3 > 0 follows from the uniform boundedness of the density function of

y
∗s(b,θ)
g1,n , θ ∈ {θn, θ0}: Lemma D.1 guarantees the uniform lower and upper bounds of the variances of the

latent variables. Considering ε > 0 and a sufficiently large n such that lim sups̃→∞E[1(y
∗s(b,θn)
g1,n > ε > −ε >

y
∗s(b,θ0)
g1,n )|F(s̃)] < lim sups̃→∞E[1(y

∗s(b,θn)
g1,n − y∗s(b,θ0)

g1,n > 2ε)|F(s̃)] < 1/2, the last expression can be bounded

by

‖1(y
∗s(b,θn)
g1,n > ε > −ε > y

∗s(b,θ0)
g1,n )− E[1(y

∗s(b,θn)
g1,n > ε > −ε > y

∗s(b,θ0)
g1,n )|Fg,n(s)]‖2 + (C2 + C3)

√
ε,

≤ ‖1(y
∗s(b,θn)
g1,n − y∗s(b,θ0)

g1,n > 2ε)− E[1(y
∗s(b,θn)
g1,n − y∗s(b,θ0)

g1,n > 2ε)|Fg,n(s)]‖2 + (C2 + C3)
√
ε,

where the inequality follows by noting that ‖1(X) − E[1(X)|F ]‖2 = E[Var(1(X)|F)] = E[1(X)|F ](1 −

E[1(X)|F ]) is monotonically increasing in E[1(X)|F ] on the interval (0, 1/2). Let us now denote events Bε =

{y∗s(b,θn)
g1,n − y∗s(b,θ0)

g1,n ∈ (ε, 3ε), E[y
∗s(b,θn)
g1,n − y∗s(b,θ0)

g1,n |Fg,n(s)] ∈ (ε, 3ε)} for any ε > 0 and BCε its complement.

By Theorem 10.12 in Davidson (1994), the last expression can be further bounded as in Proposition 2 in Xu
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and Lee (2015a) by

‖1(y
∗s(b,θn)
g1,n − y∗s(b,θ0)

g1,n > 2ε)− 1(E[y
∗s(b,θn)
g1,n − y∗s(b,θ0)

g1,n |Fg,n(s)] > 2ε)‖2 + (C2 + C3)
√
ε

≤

{∫
BCε

(y
∗s(b,θn)
g1,n − y∗s(b,θ0)

g1,n − E[y
∗s(b,θn)
g1,n − y∗s(b,θ0)

g1,n |Fg,n(s)])2dP/ε2 + P (Bε)

}1/2

+ (C2 + C3)
√
ε

≤
∥∥∥y∗s(b,θn)
g1,n − y∗s(b,θ0)

g1,n − E[y
∗s(b,θn)
g1,n − y∗s(b,θ0)

g1,n |Fg,n(s)]
∥∥∥

2
/ε+ (C2 + C3 + C4)

√
ε

for some constant C4 > 0, where the first inequality follows from |1(y1 > 2ε)−1(y2 > 2ε)| ≤ |y1−y2|/ε1(y1 6∈

(ε, 3ε) or y2 6∈ (ε, 3ε)) +1(y1 ∈ (ε, 3ε) and y2 ∈ (ε, 3ε)) and the second inequality from
√
a+ b ≤

√
a+
√
b and

from P (Bε) ≤ P (y
∗s(b,θn)
g1,n − y∗s(b,θ0)

g1,n ∈ (ε, 3ε)) ≤ C4ε, which follows again as above from Lemma D.1.

Finally, setting ε =
∥∥∥y∗s(b,θn)
g1,n − y∗s(b,θ0)

g1,n − E[y
∗s(b,θn)
g1,n − y∗s(b,θ0)

g1,n |Fg,n(s)]
∥∥∥2/3

2
and Lemma D.6 imply for

uniformly bounded NED scaling factors

tg,n = 2 sup
n,g

sup
θ∈Θ

∑
ġ∈Gn

[∥∥∥∥∂Ssgġ,n(λs)

∂λ

∥∥∥∥+ ‖Ssgġ,n(λs)‖
](

sup
n,g
‖Xs

g·,n‖2(1 + ‖βs0‖) + sup
n,g
‖usg,n‖2

)

(derived in the proof of Lemma D.6) that

‖1(y
∗s(b,θn)
g1,n > 0 > y

∗s(b,θ0)
g1,n )− E[1(y

∗s(b,θn)
g1,n > 0 > y

∗s(b,θ0)
g1,n )|Fg,n(s)]‖2

≤
∥∥∥y∗s(b,θn)
g1,n − y∗s(b,θ0)

g1,n − E[y
∗s(b,θn)
g1,n − y∗s(b,θ0)

g1,n |Fg,n(s)]
∥∥∥1/3

2
· (1 + C2 + C3 + C4)

≤ O(n−1/6)t1/3g,n ψ̃
1/3(s)

for any s ∈ N. It follows that {1(y
∗s(b,θn)
g1,n > 0 > y

∗s(b,θ0)
g1,n )}g∈Gn is L8-NED with the NED coefficients

bounded by ψ̃1/12(s) and the scaling factors O(n−1/24)t
1/12
g,n . The product rule in Lemma C.9 then im-

plies that {nα1(d
11(b,θn)
g,n 6= d

11(b,θ0)
g,n )}g∈Gn is L4-NED with NED coefficients bounded by ψ̃1/12(s) and uni-

formly bounded NED scaling factors provided that α ≤ 1/24. Given that {d11(b,θ)
g,n }g∈Gn , θ ∈ {θ0, θn},

is uniformly L4-NED with NED coefficients bounded by ψ̃1/6(s) as is shown in the proof of Theorem 2,

{nα1(d
11(b,θn)
g,n 6= d

11(b,θ0)
g,n )d

11(b,θ)
g,n }g∈Gn , θ ∈ {θ0, θn}, is uniformly L2-NED with NED coefficients bounded

by ψ̃1/12(s). Similarly to the verification of the NED property in the proof of Theorem 2, we can show

that {nα1(d
11(b,θn)
g,n 6= d

11(b,θ0)
g,n )d

11(b,θ)
g,n ∂f

11(b,θ)
g,n (θn)/∂θ}g∈Gn is uniformly L2-NED with NED coefficients

ψ̃(r−2)/(24r−24)(s). The result then follows by the triangle inequality.

To verify the L2+δ-boundedness, δ > 0, of the elements of (E.13) with a = 11, note that the likelihood

scores have been shown to have finite pth moments in the proof of Theorem 1 (property SE) for p > 4. By the
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Cauchy-Schwartz and Loève’s cr-inequalities, it is thus sufficient to verify that nαpE[1(d
11(b,θn)
g,n 6= d

11(b,θ0)
g,n )]

is bounded uniformly in g and n for some α > 0 and p > 4. The decomposition in (E.15) and the Cauchy-

Schwartz inequality imply that

E[1(d11(b,θn)
g,n 6= d11(b,θ0)

g,n )] ≤ E[1(d
11(b,θn)
g1,n 6= d

11(b,θ0)
g1,n )] + E[1(d

11(b,θn)
g2,n 6= d

11(b,θ0)
g2,n )]

+

√
E[1(d

11(b,θn)
g1,n 6= d

11(b,θ0)
g1,n )]E[1(d

11(b,θn)
g2,n 6= d

11(b,θ0)
g2,n )].

Similarly to (E.16), we can decompose 1(d
11(b,θn)
gj,n 6= d

11(b,θ0)
gj,n ), j ∈ {1, 2}, into a summation of two terms and

calculate the expectation for each of them separately. For example for 1(y
∗s(b,θn)
g1,n > 0 > y

∗s(b,θ0)
g1,n ), we can

again write for any ε > 0 that

E[1(y
∗s(b,θn)
g1,n > 0 > y

∗s(b,θ0)
g1,n )]

≤ E[1(y
∗s(b,θn)
g1,n > ε > −ε > y

∗s(b,θ0)
g1,n )] + E[1(0 ≤ y∗s(b,θn)

g1,n ≤ ε)] + E[1(0 ≥ y∗s(b,θ0)
g1,n ≥ −ε)]

= E[1(y
∗s(b,θn)
g1,n > ε > −ε > y

∗s(b,θ0)
g1,n )] + P (0 ≤ y∗s(b,θn)

g1,n ≤ ε) + P (0 ≥ y∗s(b,θ0)
g1,n ≥ −ε)

≤ E[1(y
∗s(b,θn)
g1,n > ε > −ε > y

∗s(b,θ0)
g1,n )] + (C5 + C6)ε

≤ E[|y∗s(b,θn)
g1,n − y∗s(b,θ0)

g1,n |/ε] + (C5 + C6)ε,

where the existence of finite constants C5 > 0 and C6 > 0 follows from Lemma D.1, which guarantees the

uniform lower and upper bounds of the variances of the latent variables. After setting ε = {E|y∗s(b,θn)
g1,n −

y
∗s(b,θ0)
g1,n |}1/2, the last term is bounded by {E|y∗s(b,θn)

g1,n − y∗s(b,θ0)
g1,n |}1/2(1 + C5 + C6). Lemma D.6 along with

Liapunov’s inequality implies that E|y∗s(b,θn)
g1,n −y∗s(b,θ0)

g1,n | = O(n−1/2) and thus E[1(y
∗s(b,θn)
g1,n > 0 > y

∗s(b,θ0)
g1,n )] =

O(n−1/4). It can be shown that nαpE[1(d
11(b,θn)
g,n 6= d

11(b,θ0)
g,n )] = nαpO(n−1/4) = O(1) as n→∞ if αp ≤ 1/4

and thus α ≤ 1/(4p).

For p > 4, we have thus verified that (E.13) satisfies the L2-NED property and the Lp/2-boundedness con-

ditions in Theorem C.3 if 0 < α ≤ min{1/24, 1/(4p)}. The proof of Theorem C.3, that is, of Corrolary 1 and

Theorem 2 of Jenish and Prucha (2012) thus implies that the variance of (E.13) behaves as n−2αn−1O(n) =

O(n−2α) as n → ∞. By the Chebyshev inequality, P (|(E.13)| > ε) ≤ var((E.13))/ε2 = O(n−2α)/ε2 for any

ε > 0, and therefore, (E.13) in asymptotically negligible in probability.

Finally, the second term (E.14) is a difference of two score functions continuous and differentiable in data

y∗si,n and y∗oi,n generated using θn ∈ U(θ0, n
−1/2M) and θ0 (see the proof of Lemma D.6), and it can therefore

be shown to be asymptotically negligible in probability similarly to (E.12).
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Hence, it follows that J(θ0)−1/2Γ
(b,θ̂n)
n (θ̂n) converges in distribution to N (0, IL) as n → ∞, which con-

cludes the proof.
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This supplementary material provides the derivations of the likelihood function and marginal effects, the ver-

ification of the first-order conditions, an example of sufficient conditions for Assumptions 1(ii), 5, and 10, two

additional graphs, two additional technical lemmas and their proofs as well as proofs of Lemmas C.4–C.9 and

D.1–D.6 in Appendices C and D, respectively.

Appendix G The Likelihood Function, First-order Conditions, and

Marginal Effects

G.1 The likelihood function

There are four scenarios: ysg1,n = 1 and ysg2,n = 0, ysg1,n = 0 and ysg2,n = 1, ysg1,n = ysg2,n = 1, and ysg1,n =

ysg2,n = 0. We derive the log-likelihood contribution based on the third scenario, while for the other scenarios

it can be done in a similar way. Let f(·) without any index denote a generic density function. Then the Bayes

rule and Assumption 2(ii) imply that d11
g,nf(ysg,n = ι2, y

o
g,n|Xs

n, X
o
n) = d11

g,nf(ysg,n = ι2, y
∗o
g,n|Xs

n, X
o
n) = P [ysg,n =

ι2|y∗og,n, Xs
n, X

o
n] · d11

g,nf(y∗og,n|Xo
n). By Assumption 2, y∗og,n|Xo

n ∼ N (Sog·,n(λo)Xo
nβ

o,Ωoog,n(θ)), thus d11
g,nf(y∗og,n|Xo

n) =
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d11
g,nφ2(y∗og,n − Sog·,n(λo)Xo

nβ
o,Ωoog,n(θ)) = d11

g,nφ2(yog,n − Sog·,n(λo)Xo
nβ

o,Ωoog,n(θ)). Next,

P [ysg,n = ι2|y∗og,n, Xs
n, X

o
n] = P [y∗sg,n > 0|y∗og,n, Xs

n, X
o
n]

= P [Ssg·,n(λs)Xs
nβ

s + εsg,n(λs) > 0|y∗og,n, Xs
n, X

o
n]

= P [−εsg,n(λs) < Ssg·,n(λs)Xs
nβ

s|εog,n(λo), Xs
n, X

o
n]

= P [−εsg,n(λs) < S̃sg·,n(λs)Xs
nβ

s|εog,n(λo), Xs
n, X

o
n],

where S̃sg·,n(λ) is defined in Section 3 with ζg,n = ι2 in this case. Given the definitions of Ω̃ssg,n(θ), Ω̃sog,n(θ), and

Ωoog,n(θ) in Section 3 with ζg,n = ι2, note that

−εsg,n(λs)

εog,n(λo)

∣∣∣∣∣∣∣Xs
n, X

o
n

 ∼ N
0,

Ω̃ssg,n(θ) Ω̃sog,n(θ)

Ω̃so
′

g,n(θ) Ωoog,n(θ)


 .

Thus, −εsg,n(λs)|εog,n(λo), Xs
n, X

o
n ∼ N (Ω̃sog,n(θ)Ωoo−1

g,n (θ)εog,n(λo),Σ11
g,n(θ)), where Σ11

g,n(θ) = Ω̃ssg,n(θ)−Ω̃sog,n(θ) Ωoo−1
g,n (θ)Ω̃so

′

g,n(θ).

Substituting for εog,n(λo) from model (3) and interchanging y∗og,n and yog,n as before, the likelihood contribution equals

d11
g,nP [ysg,n = ι2|y∗og,n, Xs

n, X
o
n]·f(y∗og,n|Xo

n) = d11
g,nΦ2(S̃sg·,n(λs)Xs

nβ
s−µ11

g,n(θ),Σ11
g,n(θ)) φ2

(
yog,n − Sog·,n(λo)Xo

nβ
o,Ωoog,n(θ)

)
,

where µ11
g,n(θ) = Ω̃sog,n(θ)Ωoo−1

g,n (θ)(yog,n − Sog·,n(λo)Xo
nβ

o). The result in (4) follows by noting that zg,n(θ) =

yog,n − Sog·,n(λo)Xo
nβ

o and v11
g,n(θ) = Diag(Σ11

g,n(θ))−1/2(S̃sg·,n(λs)Xs
nβ

s− µ11
g,n(θ)). The log-likelihood contributions

based on the other scenarios can be obtained similarly, see (4).

It is interesting to note that this likelihood function becomes identical to the HMLE likelihood function if the

pairs g of observations are selected in such a way that the observations in the pair are independent of each other,

that is, Ωssg12,n = Ωsog12,n = Ωsog21,n = Ωoog12,n = 0. Then the bivariate density and distribution functions φ2 and Φ2 are

just the products of the corresponding marginal density and distribution functions such as Φ2

(
v00
g,n(θ), R00

g,n(θ)
)

=

Φ(v00
g1,n(θ)) · Φ(v00

g2,n(θ)), and the logarithms of these products are just sums of the logarithms of the univariate

density and distribution functions.

G.2 First-order conditions

Although (4) does not represent the full MLE, the likelihood function is correctly specified for each grouped pair

of observations, and therefore, is maximized at the true value of the parameters θ0 by the information inequality.

Therefore, we can show that the population first-order conditions hold at θ0 for any pair g ∈ Gn. For a given g,

2



consider first the conditional expectation of the first-order conditions

E

{
∂

∂θ

(
1(ysg1,n = 1, ysg2,n = 0) ln

 1√
Ωoog11,n(θ)

φ

 zg1,n(θ)√
Ωoog11,n(θ)

Φ2

(
v10
g,n(θ), R10

g,n(θ)
)

+ 1(ysg1,n = 0, ysg2,n = 1) ln

 1√
Ωoog22,n(θ)

φ

 zg2,n(θ)√
Ωoog22,n(θ)

Φ2

(
v01
g,n(θ), R01

g,n(θ)
)

+ 1(ysg1,n = 1, ysg2,n = 1) ln
[
φ2

(
zg,n(θ),Ωoog,n(θ)

)
Φ2

(
v11
g,n(θ), R11

g,n(θ)
)]

+ 1(ysg1,n = 0, ysg2,n = 0) ln
[
Φ2

(
v00
g,n(θ), R00

g,n(θ)
)])∣∣∣∣∣Xs

n, X
o
n

}
,

(G.1)

which should equal to zero at the true parameter values. Since E[1(ysg,n = a)∂ ln(·)/∂θ|Xs
n, X

o
n] = E[∂ ln(·)/∂θ|ysg,n =

a,Xs
n, X

o
n] P [ysg,n = a|Xs

n, X
o
n], where a = (a1, a2)′, we can rewrite this first-order derivative using notation

E10a1+a2 [·] = E[·|ysg,n = a,Xs
n, X

o
n] as

E10


φ
(

zg1,n(θ)√
Ωoog11,n(θ)

)
√

Ωoog11,n(θ)


−1

∂

∂θ

 1√
Ωoog11,n(θ)

φ

 zg1,n(θ)√
Ωoog11,n(θ)

Φ2

(
v10
g,n(θ), R10

g,n(θ)
)P [ysg,n = (1, 0)′|Xs

n, X
o
n]

Φ2

(
v10
g,n(θ), R10

g,n(θ)
)


+E01


φ
(

zg2,n(θ)√
Ωoog22,n(θ)

)
√

Ωoog22,n(θ)


−1

∂

∂θ

 1√
Ωoog22,n(θ)

φ

 zg2,n(θ)√
Ωoog22,n(θ)

Φ2

(
v01
g,n(θ), R01

g,n(θ)
)P [ysg,n = (0, 1)′|Xs

n, X
o
n]

Φ2

(
v01
g,n(θ), R01

g,n(θ)
)


+E11

{[
φ2

(
zg,n(θ),Ωoog,n(θ)

)]−1 ∂

∂θ

[
φ2

(
zg,n(θ),Ωoog,n(θ)

)
Φ2

(
v11
g,n(θ), R11

g,n(θ)
)] P [ysg,n = (1, 1)′|Xs

n, X
o
n]

Φ2

(
v11
g,n(θ), R11

g,n(θ)
) }

+E00

{
∂

∂θ

[
Φ2

(
v00
g,n(θ), R00

g,n(θ)
)] P [ysg,n = (0, 0)′|Xs

n, X
o
n]

Φ2

(
v00
g,n(θ), R00

g,n(θ)
) }

.

Next, the product rule applied to the partial derivatives in the above expression results in a sum of two parts. The

first part contains the derivatives of the logarithm of the bivariate normal distribution functions:

E10

{
∂Φ2

(
v10
g,n(θ), R10

g,n(θ)
)

∂θ

P [ysg,n = (1, 0)′|Xs
n, X

o
n]

Φ2

(
v10
g,n(θ), R10

g,n(θ)
) }

(G.2)

+E01

{
∂Φ2

(
v01
g,n(θ), R01

g,n(θ)
)

∂θ

P [ysg,n = (0, 1)′|Xs
n, X

o
n]

Φ2

(
v01
g,n(θ), R01

g,n(θ)
) }

(G.3)

+E11

{
∂Φ2

(
v11
g,n(θ), R11

g,n(θ)
)

∂θ

P [ysg,n = (1, 1)′|Xs
n, X

o
n]

Φ2

(
v11
g,n(θ), R11

g,n(θ)
) }

(G.4)
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+E00

{
∂Φ2

(
v00
g,n(θ), R00

g,n(θ)
)

∂θ

P [ysg,n = (0, 0)′|Xs
n, X

o
n]

Φ2

(
v00
g,n(θ), R00

g,n(θ)
) }

, (G.5)

see Lemma C.4 for the form of the derivatives in the above expression. The second part contains the partial

derivatives of the univariate and bivariate normal densities:

E10


φ
(

zg1,n(θ)√
Ωoog11,n(θ)

)
√

Ωoog11,n(θ)


−1

∂

∂θ

 1√
Ωoog11,n(θ)

φ

 zg1,n(θ)√
Ωoog11,n(θ)

P [ysg,n = (1, 0)′|Xs
n, X

o
n]

 (G.6)

+E01


φ
(

zg2,n(θ)√
Ωoog22,n(θ)

)
√

Ωoog22,n(θ)


−1

∂

∂θ

 1√
Ωoog22,n(θ)

φ

 zg2,n(θ)√
Ωoog22,n(θ)

P [ysg,n = (0, 1)′|Xs
n, X

o
n]

 (G.7)

+E11

{[
φ2

(
zg,n(θ),Ωoog,n(θ)

)]−1 ∂

∂θ

[
φ2

(
zg,n(θ),Ωoog,n(θ)

)]
P [ysg,n = (1, 1)′|Xs

n, X
o
n]

}
. (G.8)

We have to show now that the sum of the two parts, that is the sum of (G.2)–(G.8), equals zero. Given that

the verification can be done in a similar though not identical way for each parameter in θ and that the proof is

analogous in the univariate and bivariate cases, we verify the conditions first in a simple case of parameters βo

in (G.2) and (G.6) and then provide a more general example of σ in (G.4) and (G.8); the remaining terms and

parameters can be handled analogously to show the validity of the first-order conditions.

First, consider the sum of (G.2) and (G.6) and its derivatives with respect to βo evaluated at θ0:

E10


∂Φ2(v10g,n(θ),R10

g,n(θ))
∂βo

∣∣
θ=θ0

Φ2

(
v10
g,n(θ0), R10

g,n(θ0)
) +

φ
(

zg1,n(θ0)√
Ωoog11,n(θ0)

)
√

Ωoog11,n(θ0)


−1

∂zg1,n(θ)
∂βo

∣∣
θ=θ0

Ωoog11,n(θ0)
φ(1)

 zg1,n(θ0)√
Ωoog11,n(θ0)


P [ysg,n = (1, 0)′|Xs

n, X
o
n],

where φ(1) is the first-order derivative of the standard normal density function. This conditional expectation can

be expressed as an integral with respect to the dependent variable yog1,n using its conditional density f(ysg,n =

(1, 0)′, yog1,n|Xs
n, X

o
n)/P [ysg,n = (1, 0)′|Xs

n, X
o
n], where the denominator was derived earlier in this appendix (see also

Section 3):

∫ +∞

−∞


∂Φ2

(
v10
g,n(θ), R10

g,n(θ)
)

∂βo

∣∣∣∣∣
θ=θ0

φ

(
zg1,n(θ0)√
Ωoog11,n(θ0)

)
√

Ωoog11,n(θ0)
+

∂zg1,n(θ)
∂βo

∣∣
θ=θ0

Ωoog11,n(θ0)
φ(1)

 zg1,n(θ0)√
Ωoog11,n(θ0)

Φ2

(
v10
g,n(θ0), R10

g,n(θ0)
) dy.

Let u(θ) = zg1,n(θ)/
√

Ωoog11,n(θ) with u = u(θ0). Then v10
g,n(θ0) = (Diag(Σ10

g,n(θ0)))−1/2[qg,n(θ0)−Ω̃sog·1,n(θ0)u/
√

Ωoog11,n(θ0)]
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and

∂Φ2

(
v10
g,n(θ), R10

g,n(θ)
)

∂βo

∣∣∣∣∣
θ=θ0

=
1√

Ωoog11,n(θ0)

∂Φ2

(
v10
g,n(θ0), R10

g,n(θ0)
)

∂u

∂zg1,n(θ)

∂βo

∣∣∣∣∣
θ=θ0

.

Substituting u = zg1,n(θ0)/
√

Ωoog11,n(θ0) , the integral above can be rewritten as

∫ +∞

−∞

 ∂

∂u
Φ2

(
v10
g,n(θ0), R10

g,n(θ0)
) ∂zg1,n(θ)

∂βo

∣∣
θ=θ0√

Ωoog11,n(θ0)
φ (u) +

∂zg1,n(θ)
∂βo

∣∣
θ=θ0√

Ωoog11,n(θ0)
φ(1) (u) Φ2

(
v10
g,n(θ0), R10

g,n(θ0)
) du = 0,

where the result is obtained by applying integration by parts.

Next, we can apply a similar argument to the parameter σ in the sum of (G.4) and (G.8):

E11


∂Φ2(v11g,n(θ),R11

g,n(θ))
∂σ

∣∣
θ=θ0

Φ2

(
v11
g,n(θ0), R11

g,n(θ0)
) +

∂φ2(zg,n(θ),Ωoog,n(θ))
∂σ

∣∣
θ=θ0

φ2

(
zg,n(θ0),Ωoog,n(θ0)

)
P [ysg,n = (1, 1)′|Xs

n, X
o
n].

We can again write this conditional expectation as an integral with respect to the dependent variable yog,n using its

conditional density f(ysg,n = (1, 1)′, yog,n|Xs
n, X

o
n)/P [ysg,n = (1, 1)′|Xs

n, X
o
n], where the denominator was derived in

the beginning of this appendix:

+∞∫∫
−∞

{
∂Φ2

(
v11
g,n(θ), R11

g,n(θ)
)

∂σ

∣∣∣∣∣
θ=θ0

φ2

(
zg,n(θ0),Ωoog,n(θ0)

)
+
∂φ2

(
zg,n(θ),Ωoog,n(θ)

)
∂σ

∣∣∣∣∣
θ=θ0

Φ2

(
v11
g,n(θ0), R11

g,n(θ0)
)}

dy1dy2.

(G.9)

Let us first note that Ω̃sog,n(θ) and Ωoog,n(θ) are linearly and quadratically proportional to σ, respectively, and zg,n(θ)

does not depend on σ. Using w(θ) = [Ωoog,n(θ)]−1/2zg,n(θ) with w = w(θ0), ∂w(θ)/∂σ = −w(θ)/σ. Then the

derivative

∂

∂σ

[
φ2

(
zg,n(θ),Ωoog,n(θ)

)]
=

∂

∂σ
[|Ωoog,n(θ)|−1/2φ2

(
[Ωoog,n(θ)]−1/2zg,n(θ)

)
] =

∂

∂σ

[
|Ωoog,n(θ)|−1/2φ2 (w(θ))

]

evaluated at θ0 can be written as

[
−2 · φ2 (w)

σ0|Ωoog,n(θ0)|1/2

]
+ |Ωoog,n(θ0)|−1/2 ∂φ2(w)

w′
∂w(θ)

∂σ

∣∣∣∣∣
θ=θ0

=

[
−2 · φ2 (w)

σ0|Ωoog,n(θ0)|1/2

]
− |Ωoog,n(θ0)|−1/2 ∂φ2(w)

∂w′
w

σ0
.

Similarly, the fact that qg,n(θ), Σ11
g,n(θ), and Ω̃sog·1,n(θ)[Ωoog,n(θ)]−1/2 do not depend on σ and v11

g,n(θ) = (Diag(Σ11
g,n(θ)))−1/2×

5



[qg,n(θ)− Ω̃sog,n(θ)[Ωoog,n(θ)]−1/2w(θ)] imply that

∂Φ2

(
v11
g,n(θ), R11

g,n(θ)
)

∂σ

∣∣∣∣∣
θ=θ0

=

[
∂Φ2

(
v11
g,n(θ), R11

g,n(θ)
)

∂w(θ)′
∂w(θ)

∂σ

] ∣∣∣∣∣
θ=θ0

= −
∂Φ2

(
v11
g,n(θ0), R11

g,n(θ0)
)

∂w′
w

σ0
.

The integral (G.9) can be thus rewritten using φ2

(
zg,n(θ),Ωoog,n(θ)

)
= |Ωoog,n(θ)|−1/2φ2

(
[Ωoog,n(θ)]−1/2zg,n(θ)

)
and

substitution w = [Ωoog,n(θ0)]−1/2zg,n(θ0) as the sum of two integrals, one for each partial derivative with respect to

wk, k = 1, 2:

−1

σ0|Ωoog,n(θ0)|

+∞∫∫
−∞

{
∂Φ2

(
v11
g,n(θ0), R11

g,n(θ0)
)

∂wk
wkφ2(w) +

∂[φ2(w)wk]

∂wk
Φ2

(
v11
g,n(θ0), R11

g,n(θ0)
)}

dw1dw2.

Using Fubini’s theorem and integration by parts, this integral is again equal to zero for k = 1, 2 and thus the

first-order condition is satisfied.

The above expressions demonstrate that the first-order conditions can be verified for the parameters of the

sample selection model. It is also interesting to note that the above strategy would be also applicable under other

elliptically contoured distributions.

G.3 Marginal effects

Spatial lag model. Let P [ys = 1|Xs
n] =

(
P [ys1,n = 1|Xs

n], . . . , P [ys2n,n = 1|Xs
n]
)′

. Then ∂P [ys = 1|Xs
n]/∂Xs′

·l,n =

Diag(χn(θ0))Ssn(λs0)βs0l is a matrix of marginal effects associated with a regressor l, where

χn(θ0) =

 φ(b1,n(θ0))√
Ωss11,n(θ0)

, . . . ,
φ(b2n,n(θ0))√

Ωss2n2n,n(θ0)

′

with

bn(θ0) =

Ss1·,n(λs0)Xs
nβ

s
0√

Ωss11,n(θ0)
, . . . ,

Ss2n·,n(λs0)Xs
nβ

s
0√

Ωss2n2n,n(θ0)

′ .
LeSage and Pace (2009) propose to use three types of marginal effects for a spatial lag model: total ((∂P [ys =

1|Xs
n]/∂Xs′

·l,n)ι2n), direct (diag(∂P [ys = 1|Xs
n]/∂Xs′

·l,n)), and indirect that is equal to the difference of the first two

marginal effects; ι2n denotes here the 2n-dimensional vector of ones. The average total, average direct, and average

indirect effects are obtained by calculating the averages of these vectors.
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Next, note that

E[y∗oi,n|ysi,n = 1, Xs
n, X

o
n] = E[Soi·,n(λo0)Xo

nβ
o
0 + εoi,n(λo0)|ysi,n = 1, Xs

n, X
o
n]

= Soi·,n(λo0)Xo
nβ

o
0 + E[εoi,n(λo0)|εsi,n(λs0) > −Ssi·,n(λs0)Xs

nβ
s
0, X

s
n]

= Soi·,n(λo0)Xo
nβ

o
0 +

Ωsoii,n(θ0)√
Ωssii,n(θ0)Ωooii,n(θ0)

√
Ωooii,n(θ0)

φ

(
−S

s
i·,n(λs0)Xsnβ

s
0√

Ωssii,n(θ0)

)
1− Φ

(
−S

s
i·,n(λs0)Xsnβ

s
0√

Ωssii,n(θ0)

)

= Soi·,n(λo0)Xo
nβ

o
0 +

Ωsoii,n(θ0)√
Ωssii,n(θ0)

φ

(
Ssi·,n(λs0)Xsnβ

s
0√

Ωssii,n(θ0)

)
Φ

(
Ssi·,n(λs0)Xsnβ

s
0√

Ωssii,n(θ0)

) ,

where the third equality follows by Theorem 24.5 of Greene (2008), which states that if y and z have a bivariate

normal distribution with means µy and µz, standard deviations σy and σz, and correlation coefficient ρ, then

E[y|z > a] = µy+ρσyφ(αz)/(1−Φ(αz)) with αz = (a−µz)/σz. Thus, the marginal effect of E[y∗oi,n|ysi,n = 1, Xs
n, X

o
n]

with respect to Xo
·l,n depends on whether the explanatory variable is present in both the selection and outcome

equations or only in one. Without loss of generality, let the first L1 explanatory variables be the same in both the

selection and outcome equations and ordered in the same way, while the remaining L − L1 variables be different.

Moreover, denote E[y∗o|ys = 1, Xs
n, X

o
n] =

(
E[y∗o1,n|ys1,n = 1, Xs

n, X
o
n], . . . , E[y∗o2n,n|ys2n,n = 1, Xs

n, X
o
n]
)′

.

Case 1. l ≤ L1:

Let πn(θ0) = (φ(b1,n(θ0))/Φ(b1,n(θ0)), . . . , φ(b2n,n(θ0))/Φ(b2n,n(θ0)))
′

and γn(θ0) =
(
Ωso11,n(θ0)/Ωss11,n(θ0), . . . ,

Ωso2n2n,n(θ0)/ Ωss2n2n,n(θ0)
)′

. Then

∂E[y∗o|ys = 1, Xs
n, X

o
n]

∂Xo′
·l,n

= Son(λo0)βo0l −Diag(γn(θ0))
(
Diag(bn(θ0))Diag(πn(θ0)) + Diag(πn(θ0))2

)
Ssn(λs0)βs0l.

Case 2. l > L1:

Now the exogenous variable is present only in the outcome equation, thus the formula simplifies:

∂E[y∗o|ys = 1, Xs
n, X

o
n]

∂Xo′
·l,n

= Son(λo0)βo0l.

The total, direct, and indirect marginal effects for both cases are obtained analogously to ∂P [ys = 1|Xs
n]/∂Xs′

·l,n.

Spatial error model. In the spatial error case, the indirect marginal effects are equal to zero. It is thus enough
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to consider the marginal effects with respect to “own” exogenous variables:

∂P [ysi,n = 1|Xs
i·,n]

∂Xs
il,n

= φ(bei,n(θ0))
βs0l√

Ωssii,n(θ0)

for i = 1, . . . , 2n, where bei,n(θ0) = Xs
i·,nβ

s
0/
√

Ωssii,n(θ0). As before, the marginal effect of E[y∗oi,n|ysi,n = 1, Xs
i·,n, X

o
i·,n]

with respect to Xo
il,n depends on whether the explanatory variable is in both equations or only in one.

Case 1. l ≤ L1:

∂E[y∗oi,n|ysi,n = 1, Xs
i·,n, X

o
i·,n]

∂Xo
il,n

= βo0l − γi,n(θ0)
(
bei,n(θ0)πei,n(θ0) + πe

2

i,n(θ0)
)
βs0l

with πei,n(θ0) = φ(bei,n(θ0))/Φ(bei,n(θ0)).

Case 2. l > L1:

∂E[y∗oi,n|ysi,n = 1, Xs
i·,n, X

o
i·,n]

∂Xo
il,n

= βo0l.

Appendix H Example of sufficient conditions for Assumptions 1(ii),

5, and 10

Let us provide an example of sufficient conditions for Assumptions 1(ii), 5, and 10 based on the distances between

the locations li and lj of observations i and j: d(i, j) = ‖li − lj‖. Note that this distance between two observations

is closely connected to the distance between two pairs of observations g = {g1, g2} and ġ = {ġ1, ġ2} since d(g, ġ) =

min{‖(l′g1 , l
′
g2)′ − (l′ġ1 , l

′
ġ2

)′‖, ‖(l′g1 , l
′
g2)′ − (l′ġ2 , l

′
ġ1

)′‖} and thus d2(g, ġ) = min{d2(g1, ġ1) + d2(g2, ġ2), d2(g1, ġ2) +

d2(g2, ġ1)}.

As in Qu and Lee (2015), let us now assume that the spatial weight matrix W b
n, b ∈ {s, o}, satisfies Assumption 3

and the following constraint: 0 ≤W b
ij,n ≤ Ccd(i, j)−Cpd̃ for some Cc ≥ 0, Cp > 2, and i 6= j. Moreover, the number

of columns with their column sums exceeding CbW = supn ‖W b
n‖∞ <∞ is assumed to be bounded. Furthermore, let

supλ |λ|CbW < 1. This assumption guarantees that I2n− λW b
n is invertible for all values of λ satisfying |λ| < 1/CbW .

This is not a restrictive assumption because in empirical applications the weight matrices are typically normalized

in such a way that the sum of each row is equal to 1 – implying that CbW = 1 – and the parameter space is chosen

to be (−1, 1). Finally, it has to hold that d(g, ġ) > s ⇒ min{d(g1, ġ1), d(g1, ġ2), d(g2, ġ1), d(g2, ġ2)} > Cds for any
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s > s0, any two pairs g ∈ Gn and ġ ∈ Gn, and some Cd > 0 and s0 > 0. For example, this condition holds if

d(g1, g2) < ḡ < ∞ for each pair g = {g1, g2} ∈ Gn. Given that the pairs are chosen by the user, this is not a

restrictive assumption.

We will show that these assumptions imply Assumptions 1(ii), 5, and 10. We have already assumed above that

the row sum matrix norm of W b
n is bounded. Claim C.1.1 of Qu and Lee (2015) implies that the column sum matrix

norm is also bounded. Under the above stated assumptions, Qu and Lee (2015) proved in their Lemma C.1.6,

equation (C.1), that for any m,n, s ∈ N and i = 1, . . . , 2n,

∑
j:d(i,j)>s

([W b
n]m)ij ≤ C1(CbW )mmCpd̃+2s(1−Cp)d̃, (H.1)

where C1 > 0.

Using this result, let us now consider all |λ| ≤ Cbλ for some 0 < Cbλ < 1/CbW and analyze Sbn(λ) = (I2n−λW b
n)−1.

Since Sbn(λ) =
∑∞
l=0 λ

l[W b
n]l, it follows that ‖Sbn(λ)‖∞ ≤

∑∞
l=0(CbλC

b
W )l < ∞ uniformly in n and λ and thus

supn,i sup|λ|≤Cbλ |S
b
ij,n(λ)| < ∞. Hence, Assumption 1(ii) holds. Similarly for any i = 1, . . . , 2n and n, s ∈ N, it

follows from (H.1) that

∑
j:d(i,j)>s

|Sbij,n(λ)| =
∞∑
l=0

∑
j:d(i,j)>s

|λ|l([W b
n]l)ij ≤

∞∑
l=0

|λ|lC1(CbW )llCpd̃+2s(1−Cp)d̃ ≤
∞∑
l=0

C1(CbλC
b
W )llCpd̃+2s(1−Cp)d̃,

and given the independence of the right-hand side on n and λ, that

sup
n,i

sup
|λ|≤Cbλ

∑
j:d(i,j)>s

|Sbij,n(λ)| ≤ C0s
(1−Cp)d̃

for some C0 > 0.

Proceeding now to Assumption 5, the equivalence of the matrix norms – ‖Sgġ,n‖ ≤ 2‖Sgġ,n‖∞ – implies that

1/
√

2 < sup
n,g

sup
|λ|≤Cbλ

∑
ġ∈Gn

‖Sbgġ,n(λ)‖ < sup
n,g

sup
|λ|<Cbλ

∑
ġ∈Gn

2‖Sbgġ,n(λ)‖∞ <∞,

where the lower bound is obtained for λ = 0, and for all |λ| ≤ Cbλ and s > s0, that

sup
n,g

∑
ġ:d(g,ġ)>s

‖Sbgġ,n(λ)‖ ≤ 2

sup
n,g

∑
j:d(g1,j)>Cds

|Sbg1j,n(λ)|+ sup
n,g

∑
j:d(g2,j)>Cds

|Sbg2j,n(λ)|

 ≤ 4C0(Cds)
(1−Cp)d̃.

Hence, Assumption 5 is satisfied since Cp > 2.
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Finally, let us note that the above result implies that ψ(s) = max{ψs(s), ψo(s)} ≤ Cψ(Cds)
(1−Cp)d̃. Assumption

10 requires that
∑∞
s=1 s

2d̃−1[ψ(s)]Cr <∞, where Cr = (r−2)/(12r−12) for some r > 2. This sum can be bounded

by
∞∑
s=1

s2d̃−1[ψ(s)]Cr ≤
∞∑
s=1

s2d̃−1[Cψ(Cds)
(1−Cp)d̃]Cr ,

which is finite if Cp > 1 + 2/Cr.

Appendix I Some Additional Graphs

In Tables 1 and 2 (Appendix A), the bias, standard deviation, and RMSE of β̂sn obtained by both HMLE and

PMLE when λs = λo = 0.85 and 2n = 158 are very high. Figures 1 and 2 show that these results are mainly driven

by one Monte Carlo iteration: Figure 1 reports the estimates of βs obtained in all the iterations, whereas Figure 2

shows exactly the same estimates but after excluding the Monte Carlo iteration with the most prominent estimates

in Figure 1.
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Monte Carlo iteration
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Figure 1: The estimates of βs obtained in all the Monte Carlo iterations used to construct the bias, standard deviation, and RMSE
in Tables 1 and 2 in Appendix A when λs = λo = 0.85 and 2n = 158.
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Monte Carlo iteration
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Figure 2: The estimates of βs obtained in all the Monte Carlo iterations used to construct the bias, standard deviation, and RMSE
in Tables 1 and 2 in Appendix A when λs = λo = 0.85 and 2n = 158 excluding the most prominent iteration in Figure 1.
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Appendix J Some Additional Technical Lemmas

Lemma J.1. Let X ∼ N (0, 1). Then for any given r ∈ N, there is some constant C1 > 0 such that for any c ∈ R,

E[|X|r|X ≤ c] ≤ |c|r−1φ(c)/Φ(c) + (r − 1)E[|X|r−2|X ≤ c] for r ≥ 2 with E[|X||X ≤ c] ≤ φ(c)/Φ(c) + C1 and

E[|X|0|X ≤ c] = 1.

Proof.

Case 1. c ≤ 0:

Consider r = 0. Then E[|X|0|X ≤ c] =
∫ c
−∞ φ(x)/Φ(c)dx = Φ(c)/Φ(c) = 1. If r = 1, then E[|X||X ≤ c] =∫ c

−∞(−x)φ(x)/Φ(c)dx =
∫ c
−∞ φ′(x)/Φ(c)dx = φ(c)/Φ(c), where the second equality follows by observing that

φ′(x) = −xφ(x). If r ≥ 2, then by integration by parts,

E[|X|r|X ≤ c] =

∫ c

−∞
|x|r φ(x)

Φ(c)
dx =

∫ c

−∞
(−x)r

φ(x)

Φ(c)
dx = (−1)r−1

∫ c

−∞
xr−1φ

′(x)

Φ(c)
dx

= (−1)r−1

(
cr−1 φ(c)

Φ(c)
− (r − 1)

∫ c

−∞
xr−2φ(x)

Φ(c)
dx

)
= |c|r−1 φ(c)

Φ(c)
+ (r − 1)

∫ c

−∞
(−x)r−2φ(x)

Φ(c)
dx = |c|r−1 φ(c)

Φ(c)
+ (r − 1)E[|X|r−2|X ≤ c].

Case 2. c > 0:

As in Case 1, E[|X|0|X ≤ c] = 1. If r = 1, then

E[|X||X ≤ c] =

∫ c

−∞
|x|φ(x)

Φ(c)
dx =

∫ 0

−∞
(−x)

φ(x)

Φ(c)
dx+

∫ c

0

x
φ(x)

Φ(c)
dx =

∫ 0

−∞

φ′(x)

Φ(c)
dx−

∫ c

0

φ′(x)

Φ(c)
dx

= − φ(c)

Φ(c)
+

2φ(0)

Φ(c)
≤ φ(c)

Φ(c)
+

2φ(0)

Φ(0)
≤ φ(c)

Φ(c)
+ C1.

Consider r ≥ 2. Then by integration by parts, it holds that

E[|X|r|X ≤ c] =

∫ c

−∞
|x|r φ(x)

Φ(c)
dx =

∫ 0

−∞
(−x)r

φ(x)

Φ(c)
dx+

∫ c

0

xr
φ(x)

Φ(c)
dx

= (−1)r−1

∫ 0

−∞
xr−1φ

′(x)

Φ(c)
dx−

∫ c

0

xr−1φ
′(x)

Φ(c)
dx

= (−1)r−2(r − 1)

∫ 0

−∞
xr−2φ(x)

Φ(c)
dx− cr−1 φ(c)

Φ(c)
+ (r − 1)

∫ c

0

xr−2φ(x)

Φ(c)
dx

= −cr−1 φ(c)

Φ(c)
+ (r − 1)

∫ c

−∞
|x|r−2φ(x)

Φ(c)
dx ≤ |c|r−1 φ(c)

Φ(c)
+ (r − 1)E[|X|r−2|X ≤ c].
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Lemma J.2. Let Yg,n = (Ygk,n)Kk=1 be a K-dimensional random vector. Then for some p ≥ 1, {Yg,n}g∈Gn is a

uniform Lp-NED random field with NED coefficients ψ(s) if and only if for each k = 1, . . . ,K, {Ygk,n}g∈Gn is a

uniform Lp-NED random field with NED coefficients ψ(s).

Proof. We start with the ‘if’ part. By Loève’s cr-inequality, it follows that

‖Yg,n − E[Yg,n|Fg,n(s)]‖p = (E‖Yg,n − E[Yg,n|Fg,n(s)]‖p)1/p

=

E [ K∑
k=1

|Ygk,n − E[Ygk,n|Fg,n(s)]|2
]p/21/p

≤ C1

(
K∑
k=1

E|Ygk,n − E[Ygk,n|Fg,n(s)]|p
)1/p

≤ C1

K∑
k=1

‖Ygk,n − E[Ygk,n|Fg,n(s)]‖p

≤ ψ(s)C1

K∑
k=1

tkg,n,

where {tkg,n}g∈Gn is the NED scaling factor for an element k with sup
n,g

∑K
k=1 t

k
g,n <∞ because for each k = 1, . . . ,K,

{Ygk,n}g∈Gn is a uniform random field.

We continue with the ‘only if’ part:

‖Ygk,n − E[Ygk,n|Fg,n(s)]‖p ≤ ‖Yg,n − E[Yg,n|Fg,n(s)]‖p ≤ tg,nψ(s),

where {tg,n}g∈Gn is the NED scaling factor for random field {Yg,n}g∈Gn with sup
n,g

tg,n <∞ because {Yg,n}g∈Gn is a

uniform random field.

Appendix K Proof of Technical Lemmas in Appendix C

Proof of Lemma C.4. Noting that ∂ ln Φ2(v,R)/∂v = Φ2(v,R)−1∂Φ2(v,R)/∂v and ∂ ln Φ2(v,R)/∂θ = Φ2(v,R)−1

∂Φ2(v,R)/∂θ, we apply differentiation under the integral sign twice to compute ∂Φ2(v,R)/∂v and ∂Φ2(v,R)/∂θ:

∂Φ2(v,R)

∂v
=

∫ v2

−∞
φ2((v1, z2)′, R)dz2

∂v1

∂v
+

∫ v1

−∞
φ2((z1, v2)′, R)dz1

∂v2

∂v

=

(∫ v2

−∞
φ2((v1, z2)′, R)dz2,

∫ v1

−∞
φ2((z1, v2)′, R)dz1

)′ (K.1)
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and

∂Φ2(v,R)

∂θ
=

∫ v2

−∞
φ2((v1, z2)′, R)dz2

∂v1

∂θ
+

∫ v1

−∞
φ2((z1, v2)′, R)dz1

∂v2

∂θ
+

∫ v1

−∞

∫ v2

−∞

∂φ2(z,R)

∂θ
dz2dz1. (K.2)

Note that

φ2((v1, z2)′, R) =
1√

1− ρ2
φ(v1)φ

(
z2 − ρv1√

1− ρ2

)
.

Thus, ∫ v2

−∞
φ2((v1, z2)′, R)dz2 = φ(v1)Φ

(
v2 − ρv1√

1− ρ2

)
. (K.3)

Similarly, ∫ v1

−∞
φ2((z1, v2)′, R)dz1 = φ(v2)Φ

(
v1 − ρv2√

1− ρ2

)
. (K.4)

The first claim now follows from (K.1), (K.3), and (K.4). Further, it is easy to show that

∂φ2(z,R)

∂θ
= −1

2
φ2(z,R)

(
∂ ln |R|
∂θ

+
∂P (z,R)

∂θ

)
. (K.5)

Hence, ∫ v1

−∞

∫ v2

−∞

∂φ2(z,R)

∂θ
dz2dz1 = −1

2
Φ2(v,R)

(
∂ ln |R|
∂θ

+ EV

[
∂P (V,R)

∂θ

∣∣∣V ≤ v]) , (K.6)

where V ∼ N (0, R). The second conclusion follows by combining (K.2) with (K.3), (K.4), and (K.6). For the last

claim of the lemma, note that

∂2 ln Φ2(v,R)

∂θ∂θ′
=

1

Φ2(v,R)

∂2Φ2(v,R)

∂θ∂θ′
− 1

Φ2
2(v,R)

∂Φ2(v,R)

∂θ

∂Φ2(v,R)

∂θ′
. (K.7)

Based on the results (K.2)–(K.4) and the definition of ξ(v,R), it follows

1

Φ2(v,R)

∂2Φ2(v,R)

∂θ∂θ′
=

1

Φ2(v,R)

∂v1

∂θ

∂
∫ v2
−∞ φ2((v1, z2)′, R)dz2

∂θ′
+ ξ1(v,R)

∂2v1

∂θ∂θ′

+
1

Φ2(v,R)

∂v2

∂θ

∂
∫ v1
−∞ φ2((z1, v2)′, R)dz1

∂θ′
+ ξ2(v,R)

∂2v2

∂θ∂θ′

+
1

Φ2(v,R)

∂
∫ v1
−∞

∫ v2
−∞

∂φ2(z,R)
∂θ dz2dz1

∂θ′
.

(K.8)
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By applying differentiation under the integral sign, it follows as in (K.5)–(K.6) that

∂
∫ v2
−∞ φ2((v1, z2)′, R)dz2

∂θ′
= φ2(v,R)

∂v2

∂θ′
+

∫ v2

−∞

∂φ2((v1, z2)′, R)

∂θ′
dz2

= φ2(v,R)
∂v2

∂θ′
− 1

2
φ(v1)Φ

(
v2 − ρv1√

1− ρ2

)(
∂ ln |R|
∂θ′

+ EṼ2

[
∂P ((v1, Ṽ2)′, R)

∂θ′

∣∣∣Ṽ2 ≤ v2

])
.

(K.9)

Then by definition of κ(v,R), ξ(v,R), and A(v,R),

1

Φ2(v,R)

∂v1

∂θ

∂
∫ v2
−∞ φ2((v1, z2)′, R)dz2

∂θ′
= κ(v,R)

∂v1

∂θ

∂v2

∂θ′
− 1

2
A(v,R). (K.10)

Symmetrically,

1

Φ2(v,R)

∂v2

∂θ

∂
∫ v1
−∞ φ2((z1, v2)′, R)dz1

∂θ′
= κ(v,R)

∂v2

∂θ

∂v1

∂θ′
− 1

2
B(v,R). (K.11)

We proceed with the last term in (K.8). By applying differentiation under the integral sign twice,

1

Φ2(v,R)

∂
∫ v1
−∞

∫ v2
−∞

∂φ2(z,R)
∂θ dz2dz1

∂θ′

=
1

Φ2(v,R)

(∫ v2

−∞

∂φ2((v1, z2)′, R)

∂θ
dz2

∂v1

∂θ′
+

∫ v1

−∞

∂φ2((z1, v2)′, R)

∂θ
dz1

∂v2

∂θ′
+

∫ v1

−∞

∫ v2

−∞

∂2φ2(z,R)

∂θ∂θ′
dz2dz1

)
= −1

2
ξ1(v,R)

(
∂ ln |R|
∂θ

+ EṼ2

[
∂P ((v1, Ṽ2)′, R)

∂θ

∣∣∣Ṽ2 ≤ v2

])
∂v1

∂θ′

− 1

2
ξ2(v,R)

(
∂ ln |R|
∂θ

+ EṼ1

[
∂P ((Ṽ1, v2)′, R)

∂θ

∣∣∣Ṽ1 ≤ v1

])
∂v2

∂θ′
+

1

Φ2(v,R)

∫ v1

−∞

∫ v2

−∞

∂2φ2(z,R)

∂θ∂θ′
dz2dz1

= −1

2
A′(v,R)− 1

2
B′(v,R) +

1

Φ2(v,R)

∫ v1

−∞

∫ v2

−∞

∂2φ2(z,R)

∂θ∂θ′
dz2dz1,

(K.12)

where the second equality follows in the same way as in (K.9). It can easily be shown that

∂2φ2(z,R)

∂θ∂θ′
= −1

2
φ2(z,R)G(z,R),

where G is defined (C.3). Thus,

1

Φ2(v,R)

∫ v1

−∞

∫ v2

−∞

∂2φ2(z,R)

∂θ∂θ′
dz2dz1 = −1

2
EV [G(V,R)|V ≤ v]. (K.13)

The conclusion follows by combining (K.7) with (K.8), (K.10), (K.11), (K.12), and (K.13).

Proof of Lemma C.5. We will start with the first claim by deriving the bounds when (v1, v2) ∈ (−1,+∞) ×
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(−1,+∞) and (v1, v2) /∈ (−1,+∞)× (−1,+∞) and afterwards we will combine the results.

Case 1. (v1, v2) ∈ (−1,+∞)× (−1,+∞):

φ(v1)Φ

(
v2−ρv1√

1−ρ2

)
Φ2(v,R)

≤ 1√
2πΦ2(−ι2, R)

,

where ι2 is a 2-dimensional vector of ones. Thus, we need to derive the lower bound for Φ2(−ι2, R). Since R is

a symmetric matrix, there exists an orthogonal matrix O such that R = ODiag{τ1, τ2}O′, where τ1 ≤ τ2 are the

eigenvalues of R. Thus, R−1 = ODiag{τ−1
1 , τ−1

2 }O′. From Exercise 12.39 of Abadir and Magnus (2005), it holds

for any symmetric matrix A that z′Az ≤ maxeig(A)z′z. Hence,

z′R−1z = z′ODiag{τ−1
1 , τ−1

2 }O′z ≤
1

τ1
z′OO′z =

1

τ1
z′z =

(
z1√
τ1

)2

+

(
z2√
τ1

)2

(K.14)

and

Φ2(−ι2, R) =

∫ −1

−∞

∫ −1

−∞

1

2π|R|1/2
exp

(
−1

2
z′R−1z

)
dz2dz1

=

∫ −1

−∞

∫ −1

−∞

1

2π
√
τ1τ2

exp

(
−1

2
z′R−1z

)
dz2dz1

≥
∫ −1

−∞

∫ −1

−∞

1

2π
√
τ1τ2

exp

(
−1

2

((
z1√
τ1

)2

+

(
z2√
τ1

)2
))

dz2dz1

=

√
τ1
τ2

∫ −1

−∞

∫ −1

−∞

1

τ1
φ

(
z1√
τ1

)
φ

(
z2√
τ1

)
dz2dz1

=

√
τ1
τ2

Φ2

(
−1
√
τ1

)
≥
√

1− |ρ|
2

Φ2

(
−1√
1− |ρ|

)

=

(
1− |ρ|

2

)1/2 (
1− Φ

(
(1− |ρ|)−1/2

))2

,

(K.15)

where the last inequality follows by noticing that τ1 = min{1− ρ, 1 + ρ} = 1− |ρ| and τ2 = max{1− ρ, 1 + ρ} < 2.

Hence,

φ(v1)Φ

(
v2−ρv1√

1−ρ2

)
Φ2(v,R)

≤ C1(1−|ρ|)−1/2
(

1− Φ
(

(1− |ρ|)−1/2
))−2

≤ C1(1−|ρ|)−7
(

1− Φ
(

(1− |ρ|)−1/2
))−2

. (K.16)

Case 2. (v1, v2) /∈ (−1,+∞)× (−1,+∞):

First of all, we will derive the bound for φ(v1)Φ

(
v2−ρv1√

1−ρ2

)
; afterwards we will derive the bound for the entire
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expression. Let α = z?
′
R−1z? with z∗ = (z∗1 , z

∗
2)′ = arg min

z
z′R−1z, such that z ≤ v. Then

φ(v1)Φ

(
v2 − ρv1√

1− ρ2

)
=

v2∫
−∞

φ2((v1, z2)′, R)dz2

=

∫ v2

−∞

∫ v1

−∞
φ2(z,R) · ρz2 − z1

1− ρ2
dz1dz2

=

∫ v2

−∞

∫ v1

−∞

exp(−z′R−1z/2)

2π(1− ρ2)1/2
· ρz2 − z1

1− ρ2
dz1dz2

≤ 1

2π(1− ρ2)3/2

∫ v2

−∞

∫ v1

−∞
exp

(
−1

2
z′R−1z

)
(|z1|+ |z2|)dz1dz2

≤ 1

2π(1− ρ2)3/2

∫ v2

−∞

∫ v1

−∞
exp

(
−1

2
α

)
max{6, α}3

(z′R−1z)3
(|z1|+ |z2|)dz1dz2

≤ exp(−α/2) max{6, α}3

2π(1− |ρ|)3/2

∫ v2

−∞

∫ v1

−∞

|z1|+ |z2|
(z′R−1z)3

dz1dz2,

where the second inequality follows from the following observation: the derivative of exp(−α/2)(max{6, α}/t)3/

exp(−t/2) indicates that the minimum of this function for t ≥ α is attained at t = max{6, α}; the minimum of this

function is at least 1. The double integral will be now proved to be bounded by a constant.

Case (i). v1 ≤ −1 and v2 ≤ −1:

If z1 ≤ −1 and z2 ≤ −1, then z′R−1z = ((z1−z2)2 +2(1−ρ)z1z2)/(1−ρ2) ≥ 2(1−ρ)z1z2/(1−ρ2) = 2z1z2/(1+ρ) >

z1z2 > 0. Hence,

∫ v2

−∞

∫ v1

−∞

|z1|+ |z2|
(z′R−1z)3

dz1dz2 ≤
∫ v2

−∞

∫ v1

−∞

|z1|+ |z2|
(z1z2)3

dz1dz2 =

∫ v2

−∞

∫ v1

−∞

(
−1

z2
1z

3
2

+
−1

z3
1z

2
2

)
dz1dz2

=

∫ v2

−∞

(
1

v1z3
2

+
1

2v2
1z

2
2

)
dz2 =

1

2

(
−1

v1v2
2

+
−1

v2
1v2

)
≤ 1.

Case (ii). −1 < v1 ≤ 1 and v2 ≤ −1:

∫ v2

−∞

∫ v1

−∞

|z1|+ |z2|
(z′R−1z)3

dz1dz2 =

∫ v2

−∞

∫ −1

−∞

|z1|+ |z2|
(z′R−1z)3

dz1dz2 +

∫ v2

−∞

∫ v1

−1

|z1|+ |z2|
(z′R−1z)3

dz1dz2 (K.17)
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The first double integral is bounded by a constant as it is shown in Case (i). Note that if −1 < z1 ≤ 1 and z2 ≤ −1,

then z′R−1z = ((z1 − ρz2)2 + (1− ρ2)z2
2)/(1− ρ2) ≥ z2

2 > 0. Thus,

∫ v2

−∞

∫ v1

−1

|z1|+ |z2|
(z′R−1z)3

dz1dz2 ≤
∫ v2

−∞

∫ v1

−1

1 + |z2|
(z′R−1z)3

dz1dz2 ≤
∫ v2

−∞

∫ v1

−1

1 + |z2|
z6

2

dz1dz2

= (v1 + 1)

∫ v2

−∞

(
1

z6
2

+
−1

z5
2

)
dz2 ≤ 2

∫ v2

−∞

(
1

z6
2

+
−1

z5
2

)
dz2

= 2

(
−1

5v5
2

+
1

4v4
2

)
≤ 2

(
1

5
+

1

4

)
< 1.

It concludes the proof that the integral in (K.17) is bounded by a constant.

Case (iii). v1 > 1 and v2 ≤ −1:

∫ v2

−∞

∫ v1

−∞

|z1|+ |z2|
(z′R−1z)3

dz1dz2 =

∫ v2

−∞

∫ 1

−∞

|z1|+ |z2|
(z′R−1z)3

dz1dz2 +

∫ v2

−∞

∫ v1

1

|z1|+ |z2|
(z′R−1z)3

dz1dz2 (K.18)

We have already shown in Case (ii) that the first double integral is bounded by a constant. For the second integral,

note that, if z1 > 1 and z2 ≤ −1, then z′R−1z = ((z1 + z2)2 − 2(1 + ρ)z1z2)/(1− ρ2) ≥ −2(1 + ρ)z1z2/(1− ρ2) =

−2z1z2/(1− ρ) > −z1z2 > 0. Hence,

∫ v2

−∞

∫ v1

1

|z1|+ |z2|
(z′R−1z)3

dz1dz2 ≤
∫ v2

−∞

∫ v1

1

|z1|+ |z2|
(−z1z2)3

dz1dz2 =

∫ v2

−∞

∫ v1

1

(
−1

z2
1z

3
2

+
1

z3
1z

2
2

)
dz1dz2

=

∫ v2

−∞

1

z3
2

(
1

v1
− 1

)
+
−1

2z2
2

(
1

v2
1

− 1

)
dz2 =

1

2

(
−1

v2
2

(
1

v1
− 1

)
+

1

v2

(
1

v2
1

− 1

))
≤ 1.

It concludes the proof that the integral in (K.18) is bounded by a constant. Cases when v1 ≤ −1 and −1 < v2 ≤ 1

or v2 > 1 can be proven analogously. Thus for some constant C4 > 0,

φ(v1)Φ

(
v2−ρv1√

1−ρ2

)
Φ2(v,R)

≤ C4(1− |ρ|)−3/2 exp(−α/2) max{6, α}3

Φ2(v,R)
, (K.19)
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if (v1, v2) /∈ (−1,+∞)× (−1,+∞). First, we will establish the bound for exp(−α/2)/Φ2(v,R). The proof is similar

to the proof of Proposition 3.2 of Hashorva and Hüsler (2003). Let t = (t1, t2)′ = R−1z?. Then

(z + z?)′R−1(z + z?) = z′R−1z + 2z′R−1z? + z?
′
R−1z?

≤ 1

τ1
z′OO′z + 2z′R−1z? + z?

′
R−1z?

=
1

τ1
z′z + 2z′R−1z? + α

=
1

τ1
z′z + 2z′t+ α

=

(
z1√
τ1

+
√
τ1t1

)2

+

(
z2√
τ1

+
√
τ1t2

)2

− (
√
τ1t1)

2 − (
√
τ1t2)

2
+ α,

where the inequality follows in the same way as in (K.14). Thus,

Φ2(v,R)

exp(−α/2)
=

∫ v1

−∞

∫ v2

−∞

1

2π|R|1/2
exp

(
−1

2
(z′R−1z − α)

)
dz2dz1

=

∫ v1−z?1

−∞

∫ v2−z?2

−∞

1

2π
√
τ1τ2

exp

(
−1

2

(
(z + z?)′R−1(z + z?)− α

))
dz2dz1

≥
∫ v1−z?1

−∞

∫ v2−z?2

−∞

1

2π
√
τ1τ2

exp

(
−1

2

((
z1√
τ1

+
√
τ1t1

)2

+

(
z2√
τ1

+
√
τ1t2

)2

− (
√
τ1t1)

2− (
√
τ1t2)

2

))
dz2dz1

≥
∫ 0

−∞

∫ 0

−∞

1

2π
√
τ1τ2

exp

(
−1

2

((
z1√
τ1

+
√
τ1t1

)2

+

(
z2√
τ1

+
√
τ1t2

)2

− (
√
τ1t1)

2 − (
√
τ1t2)

2

))
dz2dz1

=
1

2π

√
τ1
τ2

Φ
(√
τ1t1

)
φ
(√
τ1t1

) Φ
(√
τ1t2

)
φ
(√
τ1t2

)
≥ 1

2π

√
1− |ρ|

2

Φ
(√
τ1t1

)
φ
(√
τ1t1

) Φ
(√
τ1t2

)
φ
(√
τ1t2

) .
It follows from the proof of Lemma A.9 by Xu and Lee (2015) that φ(x)/Φ(x) ≤ 2(|x|+ C2). Thus,

exp(−α/2)

Φ2(v,R)
≤ 8
√

2π(1− |ρ|)−1/2 (|
√
τ1t1|+ C2) (|

√
τ1t2|+ C2) ≤ C5(1− |ρ|)−1/2 (|t1|+ C2) (|t2|+ C2) ,

for some constant C5 > 0, since |τ1| ≤ 1.

It is not difficult to see that the solution to min
z
z′R−1z s.t. z ≤ v with (v1, v2) /∈ (−1,+∞) × (−1,+∞) is

unique and takes one of the three values (v1, v2)′, (v1, ρv1)′, or (ρv2, v2)′ depending on the values of v1, v2, and ρ

(similarly to Example 1 in Hashorva and Hüsler, 2003). If z? = (v1, v2)′, then t = (v1−ρv2, v2−ρv1)′/(1−ρ2) and

exp(−α/2)

Φ2(v,R)
≤ C5(1− |ρ|)−1/2

(∣∣∣∣v1 − ρv2

1− ρ2

∣∣∣∣+ C2

)(∣∣∣∣v2 − ρv1

1− ρ2

∣∣∣∣+ C2

)
≤ C5(1− |ρ|)−5/2(|v1|+ |v2|+ C2)2. (K.20)
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If z? = (v1, ρv1)′, then t = (v1, 0)′ and

exp(−α/2)

Φ2(v,R)
≤ C5(1− |ρ|)−1/2(|v1|+ C2)C2 ≤ C5(1− |ρ|)−5/2(|v1|+ |v2|+ C2)2. (K.21)

The bound when z? = (ρv2, v2)′ can be derived analogously. Next, we calculate the bound for α3:

α3 ≤ (1− ρ2)−3(v2
1 − 2ρv1v2 + v2

2)3 ≤ (1− ρ2)−3(|v1|2 + 2|v1||v2|+ |v2|2)3

= (1− ρ2)−3(|v1|+ |v2|)6 ≤ (1− |ρ|)−3(|v1|+ |v2|)6.

Hence,

max{6, α}3 ≤ (1− |ρ|)−3(|v1|+ |v2|+ C2)6. (K.22)

It follows from combining (K.19), (K.20), (K.21), and (K.22) that

φ(v1)Φ

(
v2−ρv1√

1−ρ2

)
Φ2(v,R)

≤ C1(1− |ρ|)−7(|v1|+ |v2|+ C2)8, (K.23)

if (v1, v2) /∈ (−1,+∞)× (−1,+∞). The conclusion is obtained by combining (K.16) with (K.23).

We continue with the second claim of the lemma. If (v1, v2) ∈ (−1,+∞)× (−1,+∞), then clearly

φ2(v,R)

Φ2(v,R)
≤ 1

2π(1− ρ2)1/2Φ2(−ι2, R)
≤ 1

2π(1− |ρ|)1/2Φ2(−ι2, R)
≤ C1(1− |ρ|)−1

(
1− Φ

(
(1− |ρ|)−1/2

))−2

≤ C1(1− |ρ|)−3
(

1− Φ
(

(1− |ρ|)−1/2
))−2

,

(K.24)

where the second inequality follows from (K.15). If (v1, v2) 6∈ (−1,+∞)× (−1,+∞),

φ2(v,R)

Φ2(v,R)
=

exp(−v′R−1v/2)

2π(1− ρ2)1/2Φ2(v,R)
≤ exp(−α/2)

2π(1− |ρ|)1/2Φ2(v,R)
≤ C1(1− |ρ|)−3(|v1|+ |v2|+ C2)2, (K.25)

where the result follows from (K.20) and (K.21). The conclusion is obtained by combining (K.24) and (K.25).

The third claim follows in the same way as in (K.15) with −ι2 replaced with the 2-dimensional vector of zeros.

Thus,

Φ2(0, R) ≥ (1− |ρ|)1/2

25/2
≥ C3(1− |ρ|)1/2.

Proof of Lemma C.6. Given a matrix function F and a matrix X, we proceed as follows: (i) compute the differ-
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ential of F (X), (ii) vectorize to obtain d vecF (X) = A(X)d vecX, and (iii) conclude that ∂ vecF (X)/∂(vecX)′ =

A(X) (see Magnus and Neudecker, 1999, for more details). The differential of the first function is given by d|F (θ)| =

|F (θ)|Tr
(
F−1(θ)dF (θ)

)
= |F (θ)|

(
vecF−1(θ)

)′
d vecF (θ) = |F (θ)|(vecF−1(θ))′(∂ vecF (θ)/∂θ′)dθ, where we used

that Tr(A′B) = (vecA)′ vecB and F (θ) is symmetric implying that F−1(θ) is symmetric as well. Hence,

∂|F (θ)|
∂θ′

= |F (θ)|
(
vecF−1(θ)

)′ ∂ vecF (θ)

∂θ′
.

Thus given the definition of K(θ),

∂|F (θ)|
∂θ

= |F (θ)|K(θ) vecF−1(θ).

In order to obtain the second order derivative, we calculate the differential once more:

d

(
∂|F (θ)|
∂θ

)
= d|F (θ)|K(θ) vecF−1(θ) + |F (θ)|dK(θ) vecF−1(θ) + |F (θ)|K(θ)d vecF−1(θ)

= K(θ) vecF−1(θ)d|F (θ)|+ |F (θ)|
(
(vecF−1(θ))′ ⊗ Ip

)
d vecK(θ) + |F (θ)|K(θ)d vecF−1(θ)

=

(
K(θ) vecF−1(θ)

∂|F (θ)|
∂θ′

+ |F (θ)|
(
(vecF−1(θ))′ ⊗ Ip

) ∂ vecK(θ)

∂θ′
+ |F (θ)|K(θ)

∂ vecF−1(θ)

∂θ′

)
dθ,

where the second equality follows from vec(ABC) = (C ′ ⊗A) vecB. The result follows.

Next,

d(f ′(θ)F−1(θ)f(θ)) = 2f ′(θ)F−1(θ)df(θ) + f ′(θ)dF−1(θ)f(θ)

= 2f ′(θ)F−1(θ)df(θ) + (f ′(θ)⊗ f ′(θ)) d vecF−1(θ)

=
(
2f ′(θ)F−1(θ)∂f(θ)/∂θ′ + (f ′(θ)⊗ f ′(θ)) ∂ vecF−1(θ)/∂θ′

)
dθ,

where the second equality follows from vec(ABC) = (C ′ ⊗A) vecB. Thus,

∂(f ′(θ)F−1(θ)f(θ))

∂θ′
= 2f ′(θ)F−1(θ)

∂f(θ)

∂θ′
+ (f ′(θ)⊗ f ′(θ)) ∂ vecF−1(θ)

∂θ′
.
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The result is obtained by taking a transpose of this expression. We continue with the second differential:

d

(
∂(f ′(θ)F−1(θ)f(θ))

∂θ

)
= 2dL(θ)F−1(θ)f(θ) + 2L(θ)dF−1(θ)f(θ) + 2L(θ)F−1(θ)df(θ)

+ dM(θ) (f(θ)⊗ f(θ)) +M(θ)d (f(θ)⊗ f(θ))

= 2
(
f ′(θ)F−1(θ)⊗ Ip

)
d vecL(θ) + 2 (f ′(θ)⊗ L(θ)) d vecF−1(θ) + 2L(θ)F−1(θ)df(θ)

+ (f ′(θ)⊗ f ′(θ)⊗ Ip) d vecM(θ) +M(θ)(K1n ⊗ In) [(In ⊗ f(θ))df(θ) + (f(θ)⊗ In)df(θ)]

= 2
(
f ′(θ)F−1(θ)⊗ Ip

)
d vecL(θ) + 2 (f ′(θ)⊗ L(θ)) d vecF−1(θ) + (f ′(θ)⊗ f ′(θ)⊗ Ip) d vecM(θ)

+
(
2L(θ)F−1(θ) +M(θ)(K1n ⊗ In) [(In ⊗ f(θ)) + (f(θ)⊗ In)]

)
df(θ)

=

(
2
(
f ′(θ)F−1(θ)⊗ Ip

) ∂ vecL(θ)

∂θ′
+ 2 (f ′(θ)⊗ L(θ))

∂ vecF−1(θ)

∂θ′
+ (f ′(θ)⊗ f ′(θ)⊗ Ip)

∂ vecM(θ)

∂θ′

+
(
2L(θ)F−1(θ) +M(θ)(K1n ⊗ In) [(In ⊗ f(θ)) + (f(θ)⊗ In)]

) ∂f(θ)

∂θ′

)
dθ,

where the second equality follows from vec(ABC) = (C ′⊗A) vecB and for X and Y being n×q and p×r matrices,

d vec(X ⊗ Y ) = (Iq ⊗Krn ⊗ Ip) [(Inq ⊗ vecY )d vecX + (vecX ⊗ Ipr)d vecY ] as derived in Magnus and Neudecker

(1999, p. 185). The conclusion follows.

Proof of Lemma C.7.

‖A⊗B‖ =

√√√√ m∑
i=1

n∑
j=1

p∑
l=1

q∑
k=1

(AijBlk)2 =

√√√√ m∑
i=1

n∑
j=1

A2
ij

p∑
l=1

q∑
k=1

B2
lk

=

√√√√ m∑
i=1

n∑
j=1

A2
ij‖B‖2 =

√
‖A‖2‖B‖2 = ‖A‖‖B‖.

Proof of Lemma C.8. Based on equation (9) in Muthén (1990),

E[X2
1 |X ≤ v] = 1− v1

φ(v1)Φ

(
v2−ρv1√

1−ρ2

)
Φ2(v,R)

− ρ2v2

φ(v2)Φ

(
v1−ρv2√

1−ρ2

)
Φ2(v,R)

+ ρ
√

1− ρ2

φ(v2)φ

(
v1−ρv2√

1−ρ2

)
Φ2(v,R)

= 1− v1

φ(v1)Φ

(
v2−ρv1√

1−ρ2

)
Φ2(v,R)

− ρ2v2

φ(v2)Φ

(
v1−ρv2√

1−ρ2

)
Φ2(v,R)

+ ρ(1− ρ2)
φ2(v,R)

Φ2(v,R)

= 1− v1ξ1(v,R)− ρ2v2ξ2(v,R) + ρ(1− ρ2)κ(v,R),

where the second equality follows by observing that φ(v2)φ((v1 − ρv2)/
√

1− ρ2)/
√

1− ρ2 = φ2(v,R), whereas the
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last equality follows by the definitions of ξ(v,R) and κ(v,R) in (C.1) and (C.2), respectively. Symmetrically,

E[X2
2 |X ≤ v] = 1− v2ξ2(v,R)− ρ2v1ξ1(v,R) + ρ(1− ρ2)κ(v,R).

From equation (11) in Muthén (1990),

E[X1X2|X ≤ v] = ρ− ρv1

φ(v1)Φ

(
v2−ρv1√

1−ρ2

)
Φ2(v,R)

− ρv2

φ(v2)Φ

(
v1−ρv2√

1−ρ2

)
Φ2(v,R)

+
√

1− ρ2

φ(v2)φ

(
v1−ρv2√

1−ρ2

)
Φ2(v,R)

= ρ− ρv1ξ1(v,R)− ρv2ξ2(v,R) + (1− ρ2)κ(v,R).

The conclusion follows by noticing that E[XX ′|X ≤ v] = (E[X2
1 |X ≤ v] E[X1X2|X ≤ v]; E[X1X2|X ≤

v] E[X2
2 |X ≤ v]).

Proof of Lemma C.9. The proof closely follows the proof of Theorem 17.9 of Davidson (1994). Let X
(s)
i,n =

E[Xi,n|Fi,n(s)] and Y
(s)
i,n = E[Yi,n|Fi,n(s)]. Then

‖Xi,nYi,n − E[Xi,nYi,n|Fi,n(s)]‖p

= ‖(Xi,nYi,n −Xi,nY
(s)
i,n ) + (Xi,nY

(s)
i,n −X

(s)
i,nY

(s)
i,n )− E[(Xi,n −X(s)

i,n)(Yi,n − Y (s)
i,n )|Fi,n(s)]‖p

≤ ‖Xi,n(Yi,n − Y (s)
i,n )‖p + ‖Y (s)

i,n (Xi,n −X(s)
i,n)‖p + ‖E[(Xi,n −X(s)

i,n)(Yi,n − Y (s)
i,n )|Fi,n(s)]‖p

≤ ‖Xi,n‖2p‖Yi,n − Y (s)
i,n ‖2p + ‖Y (s)

i,n ‖2p‖Xi,n −X(s)
i,n‖2p + ‖E[(Xi,n −X(s)

i,n)(Yi,n − Y (s)
i,n )|Fi,n(s)]‖p

≤ ‖Xi,n‖2p‖Yi,n − Y (s)
i,n ‖2p + ‖Yi,n‖2p‖Xi,n −X(s)

i,n‖2p + ‖(Xi,n −X(s)
i,n)(Yi,n − Y (s)

i,n )‖p

≤ ‖Xi,n‖2p‖Yi,n − Y (s)
i,n ‖2p + ‖Yi,n‖2p‖Xi,n −X(s)

i,n‖2p + ‖Xi,n −X(s)
i,n‖2p‖Yi,n − Y

(s)
i,n ‖2p

≤ ‖Xi,n‖2ptYi,nψY (s) + ‖Yi,n‖2ptXi,nψX(s) + tXi,nψ
X(s)tYi,nψ

Y (s)

≤ ti,nψ(s),

where the first and second inequalities are implied by the Minkowski’s and Cauchy-Schwartz inequalities, respec-

tively, whereas the third inequality follows by the conditional Jensen’s inequality and law of iterated expectations;

the fourth inequality again follows by the Cauchy-Schwartz inequality. The final claim of the lemma follows from

Definition 2.

24



Appendix L Proof of Lemmas in Appendix D

Proof of Lemma D.1. (i) Let τ b1g,n(θ) ≤ τ b2g,n(θ) be the eigenvalues of Ωbg,n(θ). Then

inf
n,g

inf
θ∈Θ
|Ωbg,n(θ)| = inf

n,g
inf
θ∈Θ

(τ b1g,n(θ)τ b2g,n(θ)) ≥ inf
n,g

inf
θ∈Θ

τ b
2

1g,n(θ) > 0

by Assumption 6.

In the same way as in the proof of Lemma 2 by Xu and Lee (2015), it follows that inf
n,i

inf
θ∈Θ

Ωbii,n(θ) ≥ inf
n

(‖I2n −

λbW b
n‖∞‖I2n − λbW b

n‖1 ·min{1, σ2})−1 > 0 by Assumptions 1(ii), 2(i), and 7.

(ii) Next, let d, e ∈ {s, o}. Then uniformly in n ∈ N, g ∈ Gn, and θ ∈ Θ, ‖Ωcg,n(θ)‖ ≤ C1‖Ωcg,n(θ)‖∞ ≤

C1‖Ωcn(θ)‖∞ ≤ C1C2‖(I2n − λdW d
n)−1(I2n − λeW e′

n )−1‖∞ ≤ C1C2‖(I2n − λdW d
n)−1‖∞‖(I2n − λeW e

n)−1‖1 <∞ for

some constants C1, C2 > 0. The first inequality is implied by the equivalence of matrix norms on finite dimensional

matrix spaces, whereas the third inequality follows by compactness of the parameter space. The conclusion is

implied by Assumption 1(ii).

Next, note that

∥∥∥∥∂ vec Ωcg,n(θ)

∂θ′

∥∥∥∥ =

√∥∥∥∥∂Ωcg,n(θ)

∂λs

∥∥∥∥2

+

∥∥∥∥∂Ωcg,n(θ)

∂λo

∥∥∥∥2

+

∥∥∥∥∂Ωcg,n(θ)

∂ρ

∥∥∥∥2

+

∥∥∥∥∂Ωcg,n(θ)

∂σ2

∥∥∥∥2

.

We will show that ‖∂Ωcg,n(θ)/∂λs‖ is uniformly bounded, while the boundedness of the other terms can be established

in a similar way. For some constant C3 > 0, uniformly in n ∈ N, g ∈ Gn, and θ ∈ Θ

∥∥∥∥∂Ωcg,n(θ)

∂λs

∥∥∥∥ ≤ C3

∥∥∥∥∂Ωcg,n(θ)

∂λs

∥∥∥∥
∞

≤ C3

∥∥∥∥∂Ωcn(θ)

∂λs

∥∥∥∥
∞

≤ C2C3

∥∥∥∥∥∂((I2n − λdW d
n)−1(I2n − λeW e′

n )−1)

∂λs

∥∥∥∥∥
∞

≤ C2C3

(
‖(I2n − λdW d

n)−1W d
n(I2n − λdW d

n)−1(I2n − λeW e′

n )−1‖∞

+‖(I2n − λdW d
n)−1(I2n − λeW e′

n )−1W e′

n (I2n − λeW e′

n )−1‖∞
)
<∞.

The first inequality follows by the equivalence of matrix norms on finite dimensional matrix spaces. The result is

implied by sub-multiplicity of matrix norms and Assumption 1(ii).

(iii) Note that ‖Ωb−1
g,n (θ)‖ = |Ωbg,n(θ)|−1‖Ωbg,n(θ)‖ <∞ uniformly in n ∈ N, g ∈ Gn, and θ ∈ Θ by parts (i) and
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(ii).

Consequently, by Lemma C.7,

∥∥∥∥∥∂ vec Ωb−1
g,n (θ)

∂θ′

∥∥∥∥∥ =

∥∥∥∥∥(Ωb−1
g,n (θ)⊗ Ωb−1

g,n (θ))
∂ vec Ωbg,n(θ)

∂θ′

∥∥∥∥∥
≤ ‖Ωb−1

g,n (θ)‖2
∥∥∥∥∥∂ vec Ωbg,n(θ)

∂θ′

∥∥∥∥∥ <∞.
Lemma C.6 implies that

∥∥∥∥∥∂|Ωbg,n(θ)|
∂θ

∥∥∥∥∥ =

∥∥∥∥∥|Ωbg,n(θ)|

(
∂ vec Ωbg,n(θ)

∂θ′

)′
vec Ωb−1

g,n (θ)

∥∥∥∥∥
≤ |Ωbg,n(θ)|

∥∥∥∥∥∂ vec Ωbg,n(θ)

∂θ′

∥∥∥∥∥ ‖Ωb−1
g,n (θ)‖ <∞

uniformly in n ∈ N, g ∈ Gn, and θ ∈ Θ, where the boundedness of |Ωbg,n(θ)| is implied by the boundedness of

‖Ωbg,n(θ)‖.

Proof of Lemma D.2. (i) From Exercise 12.39 in Abadir and Magnus (2005), for any symmetric matrix A and

compatible vector x, x′Ax ≥ mineig(A)x′x, where mineig(A) is the minimum eigenvalue of A. Let τ11
1g,n(θ) ≤ τ11

2g,n(θ)

be the eigenvalues of Σ11
g,n(θ) and consider vectors x = (1, 0)′ and x = (0, 1)′ for j = 1 and j = 2, respectively. Then

inf
n,g

inf
θ∈Θ

Σ11
gjj,n(θ) ≥ inf

n,g
inf
θ∈Θ

τ11
1g,n(θ) > 0 by Assumption 6.

Next, note that

|Σ11
g,n(θ)| = Σ11

g11,n(θ)Σ11
g22,n(θ)− Σ112

g12,n(θ) = Σ11
g11,n(θ)Σ11

g22,n(θ)(1− ρ112

g,n(θ)).

Thus,

|ρ11
g,n(θ)| =

√
1−

|Σ11
g,n(θ)|

Σ11
g11,n(θ)Σ11

g22,n(θ)
=

√
1−

τ11
1g,n(θ)τ11

2g,n(θ)

Σ11
g11,n(θ)Σ11

g22,n(θ)
≤

√
1−

τ112

1g,n(θ)

Σ11
g11,n(θ)Σ11

g22,n(θ)
< 1

uniformly in g ∈ Gn, n ∈ N, and θ ∈ Θ by Assumption 6 and the fact that inf
n,g

inf
θ∈Θ

min
j=1,2

Σ11
gjj,n(θ) > 0.
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(ii) Let M11
g,n(θ) = Diag(Σ11

g,n(θ))−1/2. Then

‖R11
g,n(θ)‖ = ‖M11

g,n(θ)Σ11
g,n(θ)M11

g,n(θ)‖

≤ ‖M11
g,n(θ)‖2‖Σ11

g,n(θ)‖

= ‖M11
g,n(θ)‖2‖Ω̃ssg,n(θ)− Ω̃sog,n(θ)Ωoo−1

g,n (θ)Ω̃so
′

g,n(θ)‖

≤ ‖M11
g,n(θ)‖2

(
‖Ωssg,n(θ)‖+ ‖Ωsog,n(θ)‖2‖Ωoo−1

g,n (θ)‖
)

<∞

(L.1)

uniformly in n ∈ N, g ∈ Gn, and θ ∈ Θ because of Lemma D.1 and the first part of this lemma, which guarantees

that ‖M11
g,n(θ)‖ is uniformly bounded. By Lemma C.6,

∥∥∥∥∥∂|R11
g,n(θ)|
∂θ

∥∥∥∥∥ =

∥∥∥∥∥|R11
g,n(θ)|

(
∂ vecR11

g,n(θ)

∂θ′

)′
vecR11−1

g,n (θ)

∥∥∥∥∥
≤ |R11

g,n(θ)|

∥∥∥∥∥∂ vecR11
g,n(θ)

∂θ′

∥∥∥∥∥ ‖R11−1

g,n (θ)‖.

(L.2)

The uniform boundedness of ‖R11
g,n(θ)‖ implies that |R11

g,n(θ)| is uniformly bounded as well. By the first part of the

proof, infn,g infθ∈Θ |R11
g,n(θ)| = infn,g infθ∈Θ(1− ρ112

g,n(θ)) > 0. Thus, the last term in (L.2) is uniformly bounded by

noticing that ‖R11−1

g,n (θ)‖ = |R11
g,n(θ)|−1‖R11

g,n(θ)‖.

It remains to show that the second term in (L.2) is uniformly bounded:

∥∥∥∥∥∂ vecR11
g,n(θ)

∂θ′

∥∥∥∥∥ =

∥∥∥∥∥∂ vec(M11
g,n(θ)Σ11

g,n(θ)M11
g,n(θ))

∂θ′

∥∥∥∥∥
=

∥∥∥∥∥[(M11
g,n(θ)Σ11

g,n(θ)⊗ I2
)

+
(
I2 ⊗M11

g,n(θ)Σ11
g,n(θ)

)] ∂ vecM11
g,n(θ)

∂θ′
+
(
M11
g,n(θ)⊗M11

g,n(θ)
) ∂ vec Σ11

g,n(θ)

∂θ′

∥∥∥∥∥
≤
(
‖M11

g,n(θ)Σ11
g,n(θ)⊗ I2‖+ ‖I2 ⊗M11

g,n(θ)Σ11
g,n(θ)‖

) ∥∥∥∥∥∂ vecM11
g,n(θ)

∂θ′

∥∥∥∥∥
+ ‖M11

g,n(θ)⊗M11
g,n(θ)‖

∥∥∥∥∥∂ vec Σ11
g,n(θ)

∂θ′

∥∥∥∥∥
≤ 2
√

2‖M11
g,n(θ)‖‖Σ11

g,n(θ)‖

∥∥∥∥∥∂ vecM11
g,n(θ)

∂θ′

∥∥∥∥∥+ ‖M11
g,n(θ)‖2

∥∥∥∥∥∂ vec Σ11
g,n(θ)

∂θ′

∥∥∥∥∥ .
The norm of M11

g,n(θ) is uniformly bounded due to the first part of this lemma, whereas the boundedness of ‖Σ11
g,n(θ)‖
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is implied by the proof of the boundedness of ‖R11
g,n(θ)‖ in (L.1). Note that

∥∥∥∥∥∂ vecM11
g,n(θ)

∂θ′

∥∥∥∥∥ =

√∥∥∥∥∂M11
g,n(θ)

∂λs

∥∥∥∥2

+

∥∥∥∥∂M11
g,n(θ)

∂λo

∥∥∥∥2

+

∥∥∥∥∂M11
g,n(θ)

∂ρ

∥∥∥∥2

+

∥∥∥∥∂M11
g,n(θ)

∂σ2

∥∥∥∥2

.

We will show that the first term is uniformly bounded, while the uniform boundedness of the other terms can be

established in a similar way:

∥∥∥∥∥∂M11
g,n(θ)

∂λs

∥∥∥∥∥ =

∥∥∥∥∥−1

2
Diag(Σ11

g,n(θ))−3/2Diag

(
∂Σ11

g,n(θ)

∂λs

)∥∥∥∥∥ ≤ ‖Diag(Σ11
g,n(θ))−3/2‖

∥∥∥∥∥∂Σ11
g,n(θ)

∂λs

∥∥∥∥∥ .
The first term on the right hand side is uniformly bounded due to the first part of the lemma. Regarding the

second term, note that ‖∂Σ11
g,n(θ)/∂λs‖ = ‖∂(Ω̃ssg,n(θ)− Ω̃sog,n(θ)Ωoo−1

g,n (θ)Ω̃so
′

g,n(θ))/∂λs‖; it is uniformly bounded by

the triangle inequality, the product rule, sub-multiplicity of matrix norms, and Lemma D.1. The boundedness of

‖∂ vec Σ11
g,n(θ)/∂θ′‖ can be established similarly. It concludes the proof that the second term in (L.2) is uniformly

bounded.

Finally,

∥∥∥∥∥∂ vecR11−1

g,n (θ)

∂θ′

∥∥∥∥∥ =

∥∥∥∥∥(R11−1

g,n (θ)⊗R11−1

g,n (θ)
) ∂ vecR11

g,n(θ)

∂θ′

∥∥∥∥∥ ≤ ‖R11−1

g,n (θ)‖2
∥∥∥∥∥∂ vecR11

g,n(θ)

∂θ′

∥∥∥∥∥
is uniformly bounded in n ∈ N, g ∈ Gn, and θ ∈ Θ by the previous results of this proof.

Proof of Lemma D.3. The proof holds under Assumption 4(ii) or Assumption 9(ii). For the sake of simplicity,

we will refer to Assumption 4(ii) only.

Employing the equivalence of vector norms on finite dimensional vector spaces and Loève’s cr-inequality, it

follows for some constant C1 > 0 that uniformly in n ∈ N and g ∈ Gn

E

[
sup
θ∈Θ
‖Sbg·,n(λb)Xb

nβ
b‖
]p
≤ C1E

[
sup
θ∈Θ
|Sbg1·,n(λb)Xb

nβ
b|+ sup

θ∈Θ
|Sbg2·,n(λb)Xb

nβ
b|
]p

≤ 2p−1C1

(
E

[
sup
θ∈Θ
|Sbg1·,n(λb)Xb

nβ
b|
]p

+ E

[
sup
θ∈Θ
|Sbg2·,n(λb)Xb

nβ
b|
]p)

≤ 2pC1 sup
n,i

E

[
sup
θ∈Θ
|Sbi·,n(λb)Xb

nβ
b|
]p
.

(L.3)
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We proceed with the last term in (L.3): uniformly in n ∈ N and i ∈ {1, 2, . . . , 2n},

E

[
sup
θ∈Θ
|Sbi·,n(λb)Xb

nβ
b|
]p

= E

sup
θ∈Θ
|

2n∑
j=1

Sbij,n(λb)Xb
j·,nβ

b|

p

≤ E

sup
θ∈Θ

2n∑
j=1

|Sbij,n(λb)|‖Xb
j·,n‖‖βb‖

p

≤ sup
θ∈Θ
‖βb‖p sup

θ∈Θ

 2n∑
j=1

|Sbij,n(λb)|

p

E

[
sup
θ∈Θ

∑2n
j=1 |Sbij,n(λb)|‖Xb

j·,n‖∑2n
j=1 |Sbij,n(λb)|

]p

≤ sup
θ∈Θ
‖βb‖p sup

θ∈Θ

 2n∑
j=1

|Sbij,n(λb)|

p

sup
θ∈Θ

∑2n
j=1 |Sbij,n(λb)|E‖Xb

j·,n‖p∑2n
j=1 |Sbij,n(λb)|

≤ sup
θ∈Θ
‖βb‖p sup

n
sup
θ∈Θ
‖Sbn(λb)‖p∞ sup

n,i
E‖Xb

i·,n‖p

<∞,

(L.4)

where the third inequality follows by Jensen’s inequality for convex functions. The conclusion is implied by As-

sumptions 1(ii), 4(ii), and 7.

Next,

E

[
sup
θ∈Θ
‖zg,n(θ)‖

]p
= E

[
sup
θ∈Θ
‖yog,n − Sog·,n(λo)Xo

nβ
o‖
]p

≤ 2p−1

(
E‖yog,n‖p + E

[
sup
θ∈Θ
‖Sog·,n(λo)Xo

nβ
o‖
]p)

,

(L.5)

where the inequality follows by the triangle and Loève’s cr-inequalities. Given that we have already shown that the

second term in (L.5) is uniformly bounded, it is enough to establish that supn,iE|yoi,n|p <∞:

E|yoi,n|p ≤ E
[
|y∗oi,n|p

∣∣ysi,n = 1
]

= E
[
|Soi·,n(λo0)Xo

nβ
o
0 + εoi,n(λo0)|p

∣∣ysi,n = 1
]

≤ 2p−1
(
E
[
|Soi·,n(λo0)Xo

nβ
o
0 |p
∣∣ysi,n = 1

]
+ E

[
|εoi,n(λo0)|p

∣∣ysi,n = 1
])
.

Now we show that each term is bounded. In a similar way as in (L.4),

E
[
|Soi·,n(λo0)Xo

nβ
o
0 |p
∣∣ysi,n = 1

]
≤ ‖βo0‖p sup

n
‖Son(λo0)‖p∞ sup

n,i
E
[
‖Xo

i·,n‖p
∣∣ysi,n = 1

]
<∞

by Assumptions 1(ii), 4(ii), and 7. By the law of iterated expectations,

E
[
|εoi,n(λo0)|p

∣∣ysi,n = 1
]

= E
[
E
[
|εoi,n(λo0)|p

∣∣ysi,n = 1, Xs
n

] ∣∣ysi,n = 1
]
. (L.6)
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Firstly, we will find the inner expectation by applying the law of iterated expectations once more:

E
[
|εoi,n(λo0)|p

∣∣ysi,n = 1, Xs
n

]
= E[E[|εoi,n(λo0)|p|εsi,n(λs0), Xs

n]|ysi,n = 1, Xs
n] = E

[
E
[
|εoi,n(λo0)|p

∣∣εsi,n(λs0)
] ∣∣ysi,n = 1, Xs

n

]
,

(L.7)

where the last equality follows by Assumption 2(ii).

Note that (εoi,n(λo0), εsi,n(λs0))′ ∼ N (0, [Ωooii,n(θ0) Ωsoii,n(θ0); Ωsoii,n(θ0) Ωssii,n(θ0)]). Thus, εoi,n(λo0)|εsi,n(λs0) ∼ N (µ̃i,n(θ0),

σ̃2
i,n(θ0)) with µ̃i,n(θ0) =

√
Ωooii,n(θ0)/Ωssii,n(θ0)ρsoi,n(θ0)εsi,n(λs0) and σ̃2

i,n(θ0) = (1− ρso2i,n (θ0))Ωooii,n(θ0), where ρsoi,n(θ0)

is the correlation coefficient of εsi,n(λs0) and εoi,n(λo0). Hence, the inner expectation in (L.7) can be bounded by

E
[
|εoi,n(λo0)|p

∣∣εsi,n(λs0)
]

= E
[
|εoi,n(λo0)− µ̃i,n(θ0) + µ̃i,n(θ0)|p

∣∣εsi,n(λs0)
]

≤ 2p−1
(
E
[
|εoi,n(λo0)− µ̃i,n(θ0)|p

∣∣εsi,n(λs0)
]

+ E
[
|µ̃i,n(θ0)|p

∣∣εsi,n(λs0)
])

= 2p−1

(
σ̃pi,n(θ0)2p/2Γ

(
p+ 1

2

)
/
√
π + |µ̃i,n(θ0)|p

)
≤ C2 + C3|εsi,n(λs0)|p

for some constants C2, C3 > 0, where Γ(·) is the Gamma function. The second equality is implied by the following

fact: if X ∼ N (0, σ2), then for any p ∈ (−1,+∞), E[|X|p] = σp2p/2Γ((p + 1)/2)/
√
π (Kamat, 1953). The

conclusion follows by noticing that Lemma D.1 implies the uniform boundedness from zero of Ωssii,n(θ0) and the

uniform boundedness of Ωooii,n(θ0) which is implied by the uniform boundedness of ‖Ωoog,n(θ0)‖. Thus, the expectation

in (L.7) becomes

E[|εoi,n(λo0)|p|ysi,n = 1, Xs
n] ≤ C2 + C3E[|εsi,n(λs0)|p| − εsi,n(λs0) < Ssi·,n(λs0)Xs

nβ
s
0, X

s
n]

= C2 + C3(Ωssii,n(θ0))p/2E

∣∣∣∣∣∣ εsi,n(λs0)√
Ωssii,n(θ0)

∣∣∣∣∣∣
p ∣∣∣∣∣− εsi,n(λs0)√

Ωssii,n(θ0)
<
Ssi·,n(λs0)Xs

nβ
s
0√

Ωssii,n(θ0)
, Xs

n



≤ C2 + C3(Ωssii,n(θ0))p/2

E
∣∣∣∣∣∣ εsi,n(λs0)√

Ωssii,n(θ0)

∣∣∣∣∣∣
r ∣∣∣∣∣− εsi,n(λs0)√

Ωssii,n(θ0)
<
Ssi·,n(λs0)Xs

nβ
s
0√

Ωssii,n(θ0)
, Xs

n

p/r

= C2 + C3(Ωssii,n(θ0))p/2ϑp/rr (mi,n(θ0))

≤ C2 + C4ϑ
p/r
r (mi,n(θ0))

for some constant C4 > 0, where r is the smallest integer at least as large as p, mi,n(θ0) = Ssi·,n(λs0)Xs
nβ

s
0/
√

Ωssii,n(θ0),

and ϑr(mi,n(θ0)) ≤ |mi,n(θ0)|r−1φ(mi,n(θ0))/Φ(mi,n(θ0)) + (r − 1)ϑr−2(mi,n(θ0)) for r ≥ 2 with ϑ1(mi,n(θ0)) ≤

φ(mi,n(θ0))/Φ(mi,n(θ0)) + C5 and ϑ0 = 1, for some constant C5 > 0. The second inequality is implied by Hölder’s
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inequality, the second equality follows by Lemma J.1, whereas the last inequality follows from the uniform bound-

edness of Ωssii,n(θ0), which is implied by the uniform boundedness of ‖Ωssg,n(θ)‖ established in Lemma D.1. Consider

r ≥ 2. It follows from (L.6) that

E[|εoi,n(λo0)|p|ysi,n = 1] ≤ C2 + C4E[ϑp/rr (mi,n(θ0))|ysi,n = 1]

≤ C2 + C4E

[
|mi,n(θ0)|r−1 φ(mi,n(θ0))

Φ(mi,n(θ0))
+ (r − 1)ϑr−2(mi,n(θ0))

∣∣∣ysi,n = 1

]p/r
≤ C2 + C4

(
E

[
|mi,n(θ0)|r−1 φ(mi,n(θ0))

Φ(mi,n(θ0))

∣∣∣ysi,n = 1

]p/r
+ (r − 1)p/rE[ϑr−2(mi,n(θ0))|ysi,n = 1]p/r

)
.

(L.8)

From the proof of Lemma A.9 by Xu and Lee (2015), it follows that φ(x)/Φ(x) ≤ 2(|x| + C6), for some constant

C6 > 0. Hence,

E

[
|mi,n(θ0)|r−1 φ(mi,n(θ0))

Φ(mi,n(θ0))

∣∣∣ysi,n = 1

]p/r
≤ 2p/rE

[
|mi,n(θ0)|r−1(|mi,n(θ0)|+ C6)|ysi,n = 1

]p/r
≤ 2p/r

(
E[|mi,n(θ0)|p|ysi,n = 1] + C

p/r
6 E[|mi,n(θ0)|p(r−1)/r|ysi,n = 1]

)
,

where the last inequality follows by Loève’s cr-inequality. In order to show that the first term in (L.8) is uniformly

bounded, by Hölder’s inequality it is enough to establish that E[|mi,n(θ0)|p|ysi,n = 1] is uniformly bounded. In the

same way as in (L.4),

E
[
|mi,n(θ0)|p

∣∣ysi,n = 1
]

= E

∣∣∣∣∣∣S
s
i·,n(λs0)Xs

nβ
s
0√

Ωssii,n(θ0)

∣∣∣∣∣∣
p ∣∣ysi,n = 1


≤ sup

n,i
Ωss

−p/2

ii,n (θ0)‖βs0‖p sup
n
‖Ssn(λs0)‖p∞ sup

n,i
E
[
‖Xs

i·,n‖p
∣∣ysi,n = 1

]
<∞,

where the conclusion is implied by Assumptions 1(ii), 4(ii), and 7 and Lemma D.1.

It is easy to show using recursion and Hölder’s inequality that the second term in (L.8) is uniformly bounded

if E[|mi,n(θ0)|p|ysi,n = 1] is uniformly bounded. This condition is sufficient for the case when r = 1 as well. It

completes the proof that supθ∈Θ ‖zg,n(θ)‖ is uniformly Lp-bounded.

We continue by showing that supθ∈Θ ‖µ11
g,n(θ)‖ is uniformly Lp-bounded:

E

[
sup
θ∈Θ
‖µ11

g,n(θ)‖
]p

= E

[
sup
θ∈Θ
‖Ω̃sog,n(θ)Ωoo−1

g,n (θ)zg,n(θ)‖
]p

≤ sup
θ∈Θ

(‖Ωsog,n(θ)‖‖Ωoo−1
g,n (θ)‖)pE

[
sup
θ∈Θ
‖zg,n(θ)‖

]p
<∞
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uniformly in n ∈ N and g ∈ Gn, where the conclusion is implied by Lemma D.1 and the previous results of this

proof.

In the same way as in (L.3), sup
θ∈Θ
‖v11
g,n(θ)‖ is uniformly Lp-bounded if sup

θ∈Θ
|v11
gj,n(θ)| is uniformly bounded for

j = 1, 2:

E

[
sup
θ∈Θ
|v11
gj,n(θ)|

]p
= E

sup
θ∈Θ

∣∣∣ S̃sgj·,n(λs)Xs
nβ

s − µ11
gj,n(θ)√

Σ11
gjj,n(θ)

∣∣∣
p

≤ 2p−1 sup
θ∈Θ

Σ11−p/2

gjj,n (θ)

(
E

[
sup
θ∈Θ
|Ssgj·,n(λs)Xs

nβ
s|
]p

+ E

[
sup
θ∈Θ
|µ11
gj,n(θ)|

]p)
<∞

uniformly in n ∈ N and g ∈ Gn, where the conclusion follows by the previous results of this proof and Lemma

D.2.

Proof of Lemma D.4. The proof holds under Assumption 4(ii) or Assumption 9(ii). For the sake of simplicity,

we will refer to Assumption 4(ii) only.

Applying Loève’s cr-inequality twice leads to the following bound:

E

[
sup
θ∈Θ

∥∥∥∥∂zg,n(θ)

∂θ′

∥∥∥∥]p = E

[
sup
θ∈Θ

∥∥∥∥∂(yog,n − Sog·,n(λo)Xo
nβ

o)

∂θ′

∥∥∥∥]p
= E

[
sup
θ∈Θ

∥∥∥∥∂(Sog·,n(λo)Xo
nβ

o)

∂θ′

∥∥∥∥]p

= E

sup
θ∈Θ

√∥∥∥∥∂(Sog·,n(λo)Xo
nβ

o)

∂λo

∥∥∥∥2

+

∥∥∥∥∂(Sog·,n(λo)Xo
nβ

o)

∂βo′

∥∥∥∥2
p

≤ 2p−1

(
E

[
sup
θ∈Θ

∥∥∥∥∂(Sog·,n(λo)Xo
nβ

o)

∂λo

∥∥∥∥]p + E

[
sup
θ∈Θ

∥∥∥∥∂(Sog·,n(λo)Xo
nβ

o)

∂βo′

∥∥∥∥]p)
= 2p−1

(
E

[
sup
θ∈Θ

∥∥∥∥∂Sog·,n(λo)

∂λo
Xo
nβ

o

∥∥∥∥]p + E

[
sup
θ∈Θ

∥∥Sog·,n(λo)Xo
n

∥∥]p) .

(L.9)

The uniform boundedness of the second term can be proven in the same way as the uniform boundedness of

E[sup
θ∈Θ
‖Sbg·,n(λb)Xb

nβ
b‖]p in Lemma D.3. In the same way as in (L.3) and (L.4), we can show that the first term is

uniformly bounded if

sup
θ∈Θ
‖βo‖p sup

n
sup
θ∈Θ

∥∥∥∥∂Son(λo)

∂λo

∥∥∥∥p
∞

sup
n,i

E‖Xo
i·,n‖p <∞. (L.10)

The first and the last terms in (L.10) are bounded by Assumptions 7 and 4(ii), respectively. The second term in

(L.10) is uniformly bounded because

∥∥∥∥∂Son(λo)

∂λo

∥∥∥∥
∞

=

∥∥∥∥∂(I2n − λoW o
n)−1

∂λo

∥∥∥∥
∞

= ‖(I2n − λoW o
n)−1W o

n(I2n − λoW o
n)−1‖∞ <∞, (L.11)
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where the result follows from the sub-multiplicativity of matrix norms and Assumption 1(ii).

Next, let M11
g,n(θ) = Diag(Σ11

g,n(θ))−1/2. Then

E

[
sup
θ∈Θ

∥∥∥∥∥∂v11
g,n(θ)

∂θ′

∥∥∥∥∥
]p

= E

[
sup
θ∈Θ

∥∥∥∥∥∂(M11
g,n(θ)(qg,n(θ)− µ11

g,n(θ)))

∂θ′

∥∥∥∥∥
]p

= E

[
sup
θ∈Θ

∥∥∥∥∥((qg,n(θ)− µ11
g,n(θ))′ ⊗ I2)

∂ vecM11
g,n(θ)

∂θ′
+M11

g,n(θ)

(
∂qg,n(θ)

∂θ′
−
∂µ11

g,n(θ)

∂θ′

)∥∥∥∥∥
]p

≤ 2p−1

(
sup
θ∈Θ

∥∥∥∥∥∂ vecM11
g,n(θ)

∂θ′

∥∥∥∥∥
p

E

[
sup
θ∈Θ
‖(qg,n(θ)− µ11

g,n(θ))′ ⊗ I2)‖
]p

(L.12)

+ sup
θ∈Θ
‖M11

g,n(θ)‖pE

[
sup
θ∈Θ

(∥∥∥∥∂qg,n(θ)

∂θ′

∥∥∥∥+

∥∥∥∥∥∂µ11
g,n(θ)

∂θ′

∥∥∥∥∥
)]p)

uniformly in n ∈ N and g ∈ Gn. We have already shown in the proof of Lemma D.2 that the norms of

∂ vecM11
g,n(θ)/∂θ′ and M11

g,n(θ) are uniformly bounded. By Lemma C.7,

E

[
sup
θ∈Θ
‖(qg,n(θ)− µ11

g,n(θ))′ ⊗ I2‖
]p

= E

[
sup
θ∈Θ
‖qg,n(θ)− µ11

g,n(θ)‖‖I2‖
]p

≤ 23p/2−1

(
E

[
sup
θ∈Θ
‖qg,n(θ)‖

]p
+ E

[
sup
θ∈Θ
‖µ11

g,n(θ)‖
]p)

<∞

uniformly in n ∈ N and g ∈ Gn by Lemma D.3 because ‖qg,n(θ)‖ = ‖S̃sg·,n(λs)Xs
nβ

s‖ = ‖Ssg·,n(λs)Xs
nβ

s‖. It remains

to show that the last term in (L.12) is uniformly bounded. By Loève’s cr-inequality,

E

[
sup
θ∈Θ

(∥∥∥∥∂qg,n(θ)

∂θ′

∥∥∥∥+

∥∥∥∥∥∂µ11
g,n(θ)

∂θ′

∥∥∥∥∥
)]p

≤ 2p−1

(
E

[
sup
θ∈Θ

∥∥∥∥∂qg,n(θ)

∂θ′

∥∥∥∥]p + E

[
sup
θ∈Θ

∥∥∥∥∥∂µ11
g,n(θ)

∂θ′

∥∥∥∥∥
]p)

.

We can show that the first term is uniformly bounded in the same way as we proved earlier in this proof that

supn,g E[supθ∈Θ ‖∂(Sog·,n(λo)Xo
nβ

o)/∂θ′‖]p <∞. For the second term, note that

E

[
sup
θ∈Θ

∥∥∥∥∥∂µ11
g,n(θ)

∂θ′

∥∥∥∥∥
]p

= E

[
sup
θ∈Θ

∥∥∥∥∥∂(Ω̃sog,n(θ)Ωoo−1
g,n (θ)zg,n(θ))

∂θ′

∥∥∥∥∥
]p

= E

[
sup
θ∈Θ

∥∥∥∥∥(z′g,n(θ)⊗ I2)
∂ vec(Ω̃sog,n(θ)Ωoo−1

g,n (θ))

∂θ′
+ Ω̃sog,n(θ)Ωoo−1

g,n (θ)
∂zg,n(θ)

∂θ′

∥∥∥∥∥
]p

≤ 2p−1

(
sup
θ∈Θ

∥∥∥∥∥∂ vec(Ω̃sog,n(θ)Ωoo−1
g,n (θ))

∂θ′

∥∥∥∥∥
p

2p/2E

[
sup
θ∈Θ
‖zg,n(θ)‖

]p
+ sup
θ∈Θ

(‖Ωsog,n(θ)‖‖Ωoo−1
g,n (θ)‖)pE

[
sup
θ∈Θ

∥∥∥∥∂zg,n(θ)

∂θ′

∥∥∥∥]p)
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is uniformly bounded. The conclusion then follows by Lemmas D.1 and D.3, the previous results of this lemma,

and by noticing that

∥∥∥∥∥∂ vec(Ω̃sog,n(θ)Ωoo−1
g,n (θ))

∂θ′

∥∥∥∥∥ =

∥∥∥∥∥(Ωoo−1
g,n (θ)⊗ I2)

∂ vec Ω̃sog,n(θ)

∂θ′
+ (I2 ⊗ Ω̃sog,n(θ))

∂ vec Ωoo−1
g,n (θ)

∂θ′

∥∥∥∥∥
≤
√

2

(
‖Ωoo−1

g,n (θ)‖
∥∥∥∥∂ vec Ωsog,n(θ)

∂θ′

∥∥∥∥+ ‖Ωsog,n(θ)‖

∥∥∥∥∥∂ vec Ωoo−1
g,n (θ)

∂θ′

∥∥∥∥∥
)

<∞

uniformly in n ∈ N and g ∈ Gn by Lemma D.1.

Proof of Lemma D.5. We start with establishing the uniform Lp-NED, p ∈ {2, 4}, property for {y∗bg,n}g∈Gn ,

b ∈ {s, o}, which will be needed later in the proof. Since the bounds derived in this proof are uniform on Θ, we

write for the sake of simplicity θ instead of θn. Using now the definition of NED and the conditional Jensen’s

inequality, it follows

‖y∗bg,n − E[y∗bg,n|Fg,n(s)]‖p = ‖Sbg·,n(λb0)
(
Xb
nβ

b
0 + ubn − E[Xb

nβ
b
0 + ubn|Fg,n(s)]

)
‖p

= ‖
∑
ġ∈Gn

Sbgġ,n(λb0)
(
Xb
ġ·,nβ

b
0 + ubġ,n − E[Xb

ġ·,nβ
b
0 + ubġ,n|Fg,n(s)]

)
‖p

= ‖
∑

ġ:d(g,ġ)>s

Sbgġ,n(λb0)
(
Xb
ġ·,nβ

b
0 + ubġ,n − E[Xb

ġ·,nβ
b
0 + ubġ,n|Fg,n(s)]

)
‖p

≤
∑

ġ:d(g,ġ)>s

‖Sbgġ,n(λb0)‖
(
‖Xb

ġ·,nβ
b
0 + ubġ,n‖p + ‖E[Xb

ġ·,nβ
b
0 + ubġ,n|Fg,n(s)]‖p

)
≤ 2

∑
ġ:d(g,ġ)>s

‖Sbgġ,n(λb0)‖
(
‖Xb

ġ·,n‖p‖βb0‖+ ‖ubġ,n‖p
)

≤ 2 sup
n,g

sup
θ∈Θ

∑
ġ∈Gn

‖Sbgġ,n(λb)‖ ·
(

sup
n,g
‖Xb

g·,n‖p‖βb0‖+ sup
n,g
‖ubg,n‖p

)

×
sup
n,g

sup
θ∈Θ

∑
ġ:d(g,ġ)>s ‖Sbgġ,n(λb)‖

sup
n,g

sup
θ∈Θ

∑
ġ∈Gn ‖S

b
gġ,n(λb)‖

≤ ty
∗b
ψb(s),

where ty
∗b

= 2 sup
n,g

sup
θ∈Θ

∑
ġ∈Gn ‖S

b
gġ,n(λb)‖

(
sup
n,g
‖Xb

g·,n‖p‖βb0‖+ sup
n,g
‖ubg,n‖p

)
and ψb(s) ≤ 1 for b ∈ {s, o} with

ψb(s) = sup
n,g

sup
θ∈Θ

∑
ġ:d(g,ġ)>s ‖Sbgġ,n(λb)‖/ sup

n,g
sup
θ∈Θ

∑
ġ∈Gn ‖S

b
gġ,n(λb)‖, b ∈ {s, o}. The first and second inequalities

follow by Minkowski’s and the conditional Jensen’s inequalities, respectively. Given Assumption 7, ty
∗b

is bounded

provided that E‖Xb
g·,n‖p, E‖ubg,n‖p, and

∑
ġ∈Gn ‖S

b
gġ,n(λb)‖ are uniformly bounded. Since p ∈ {2, 4}, by Liapunov’s
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inequality it is enough to establish the results for p = 4. Notice that E‖Xb
g·,n‖4 = E

[
‖Xb

g1·,n‖2 + ‖Xb
g2·,n‖2

]2 ≤
sup
n,i

4E‖Xb
i·,n‖4 < ∞ by Assumption 4(ii). Because a normal distribution has infinitely many moments and

supn,g E‖ubg,n‖4 ≤ supn,i 4E|ubi,n|4, Assumption 2(i) implies that sup
n,g

E‖ubg,n‖4 <∞, whereas equivalence of matrix

norms on finite dimensional matrix spaces implies that uniformly in n ∈ N, g ∈ Gn, and θ ∈ Θ

∑
ġ∈Gn

‖Sbgġ,n(λb)‖ ≤ C1

∑
ġ∈Gn

‖Sbgġ,n(λb)‖∞ ≤ C1

∑
ġ∈Gn

(
‖Sbg1ġ,n(λb)‖∞ + ‖Sbg2ġ,n(λb)‖∞

)
≤ 2C1‖Sbg·,n(λb)‖∞ ≤ 2C1‖Sbn(λb)‖∞ <∞

(L.13)

for some constant C1 > 0 by Assumption 1(ii). Note that by Assumption 5, lims→∞ ψb(s) = 0. Thus, {y∗bg,n}g∈Gn

is a uniform L4- and L2-NED random field with NED coefficients ψb(s).

Recall that d11
g,n = 1(ysg1,n = 1, ysg2,n = 1) = 1(y∗sg1,n > 0) · 1(y∗sg2,n > 0). From the proof of Proposition 2 by Xu

and Lee (2015), it follows that for some constants C2, C3 > 0 and j = 1, 2,

‖1(y∗sgj,n > 0)− E[1(y∗sgj,n > 0)|Fg,n(s)]‖2 ≤ (1 + C2)‖y∗sgj,n − E[y∗sgj,n|Fg,n(s)]‖1/32 ≤ (1 + C2)C3ψ
1/3(s),

where the last inequality follows by Lemma J.2 and the fact that {y∗sg,n}g∈Gn is uniformly L2-NED with NED

coefficients ψs(s). Since |1(y∗sgj,n > 0) − E[1(y∗sgj,n > 0)|Fg,n(s)]|4 ≤ |1(y∗sgj,n > 0) − E[1(y∗sgj,n > 0)|Fg,n(s)]|2

implies that ‖1(y∗sgj,n > 0) − E[1(y∗sgj,n > 0)|Fg,n(s)]‖4 ≤ ‖1(y∗sgj,n > 0) − E[1(y∗sgj,n > 0)|Fg,n(s)]‖1/22 , {1(y∗sgj,n >

0)}g∈Gn is a uniform L4-NED random field with NED coefficients [ψs(s)]1/6. Given that {1(y∗sgj,n > 0)}g∈Gn is

uniformly L4-bounded, Lemma C.9 implies that {d11
g,n}g∈Gn is a uniform L2-NED random field with NED coefficients

ψs(s)1/6 + ψs(s)1/6 + ψs(s)1/3 ≤ 3[ψs(s)]1/6.1

From the definition, zg,n(θ) = yog,n−Sog·,n(λo)Xo
nβ

o, and we will now establish the uniform NED property for each

term of this summation and find their NED coefficients. Note that yog,n =
(
1(y∗sg1,n > 0)y∗og1,n , 1(y∗sg2,n > 0)y∗og2,n

)′
.

Since by Lemma J.2 and the previous results of this proof, {y∗ogj,n}g∈Gn and 1(y∗sgj,n > 0), j = 1, 2, are uniformly

L4-NED with NED coefficients ψo(s) and [ψs(s)]1/6, respectively, Lemma C.9 implies that {1(y∗sgj,n > 0)y∗ogj,n}g∈Gn

is a uniform L2-NED random field with NED coefficients [ψs(s)]1/6 +ψo(s)+ψo(s)[ψs(s)]1/6 ≤ 3ψ1/6(s). By Lemma

J.2, the same property is transfered to {yog,n}g∈Gn . It is easy to see from the proof of {y∗og,n}g∈Gn being an L2-NED

random field that {Sog·,n(λo)Xo
nβ

o}g∈Gn is a uniform L2-NED random field with NED coefficients ψo(s). Hence,

{zg,n(θ)}g∈Gn is a uniform L2-NED random field with NED coefficients [ψo(s)]1/6 + ψo(s) ≤ 2[ψo(s)]1/6.

Finally, since v11
g,n(θ) = Diag(Σ11

g,n(θ))−1/2(qg,n(θ) − µ11
g,n(θ)) and ‖Diag(Σ11

g,n(θ))−1/2‖ is uniformly bounded

by Lemma D.2, it suffices to establish the uniform NED property for qg,n(θ) and µ11
g,n(θ) and find their NED

1Note that in this case we can treat [ψs(s)]1/6 as the NED coefficient because 3 can be treated as a part of the NED scaling factor.
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coefficients. Recall that qg,n(θ) = S̃sg·,n(λs)Xs
nβ

s, thus it is a uniform L2-NED random field with NED coefficients

ψs(s). Moreover, µ11
g,n(θ) = Ω̃sog,n(θ)Ωoo−1

g,n (θ)zg,n(θ). Given that the norms of Ω̃sog,n(θ) and Ωoo−1
g,n (θ) are uniformly

bounded by Lemma D.1, {µ11
g,n(θ)}g∈Gn is a uniform L2-NED random field with NED coefficients [ψo(s)]1/6. The

conclusion follows by setting ψ(s) = max{ψs(s), ψo(s)}.

Proof of Lemma D.6. Let us denote θ0 = (βs
′

0 , β
o′

0 , λ
s
0, λ

o
0, ρ0, σ

2
0)′ and θn = (βs

′

n , β
o′

n , λ
s
n, λ

o
n, ρn, σ

2
n)′. Then by

the elementwise mean value theorem, there exists ξn with elements between λsn and λs0 such that2

ŷ∗sg,n − y∗sg,n = Ssg·,n(λsn) (Xs
nβ

s
n + usn)− Ssg·,n(λs0) (Xs

nβ
s
0 + usn)

= Ssg·,n(λsn)Xs
n(βsn − βs0) +

(
Ssg·,n(λsn)− Ssg·,n(λs0)

)
(Xs

nβ
s
0 + usn)

= Ssg·,n(λsn)Xs
n(βsn − βs0) +

∂Ssg·,n(ξn)

∂λ
(λsn − λs0) (Xs

nβ
s
0 + usn)

=
∑
ġ∈Gn

Ssgġ,n(λsn)Xs
ġ·,n(βsn − βs0) +

∑
ġ∈Gn

∂Ssgġ,n(ξn)

∂λ
(λsn − λs0)

(
Xs
ġ·,nβ

s
0 + usġ,n

)
. (L.14)

Recall that
∂Ssn(ξn)
∂λ = Ssn(ξn)W s

nS
s
n(ξn), see (L.11), which together with Ssn(λsn) has row and column sums bounded

uniformly in n, ξn, and λs by Assumption 1(ii). As in (L.13),

∑
ġ∈Gn

∥∥∥∥∂Ssgġ,n(ξn)

∂λ

∥∥∥∥ ≤ C1

∑
ġ∈Gn

∥∥∥∥∂Ssgġ,n(ξn)

∂λ

∥∥∥∥
∞
≤ C1

∑
ġ∈Gn

(∥∥∥∥∂Ssg1ġ,n(ξn)

∂λ

∥∥∥∥
∞

+

∥∥∥∥∂Ssg2ġ,n(ξn)

∂λ

∥∥∥∥
∞

)

≤ 2C1

∥∥∥∥∂Ssg·,n(ξn)

∂λ

∥∥∥∥
∞
≤ 2C1

∥∥∥∥∂Ssn(ξn)

∂λ

∥∥∥∥
∞
<∞

(L.15)

for some constant C1 > 0 uniformly in ξn, g, and n. We have also verified in the proof of Lemma D.5 that

sup
n,g

E‖Xs
g·,n‖4 <∞ and sup

n,g
E‖usg,n‖4 <∞. Hence as ξn ∈ [min{λs0, λsn},max{λs0, λsn}],

‖ŷ∗sg,n − y∗sg,n‖2 ≤ ‖βsn − βs0‖
∑
ġ∈Gn

‖Ssgġ,n(λsn)‖‖Xs
ġ·,n‖2 + |λsn − λs0|

∑
ġ∈Gn

∥∥∥∥∂Ssgġ,n(ξn)

∂λ

∥∥∥∥ (‖Xs
ġ·,n‖2‖βs0‖+ ‖usġ,n‖2

)
≤ ‖βsn − βs0‖ sup

n,g
‖Xs

g·,n‖ sup
n,g

sup
θ∈Θ

∑
ġ∈Gn

‖Ssgġ,n(λs)‖

+ |λsn − λs0|
(

sup
n,g
‖Xs

g·,n‖2‖βs0‖+ sup
n,g
‖usg,n‖2

)
sup
n,g

sup
θ∈Θ

∑
ġ∈Gn

∥∥∥∥∂Ssgġ,n(λs)

∂λ

∥∥∥∥ = O(n−1/2)

as n→∞.

Next, we establish the L2-NED property for {ŷ∗sg,n− y∗sg,n}g∈Gn . Using the definition of NED and the conditional

2The mean value theorem is applied for each element of Ss
g·,n(λsn) − Ss

g·,n(λs0) separately, and therefore, ξn might differ for each
element of ∂Ss

g·,n/∂λ.
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Jensen’s and Minkowski’s inequalities, it follows from (L.14) that

‖ŷ∗sg,n − y∗sg,n − E[ŷ∗sg,n − y∗sg,n|Fg,n(s)]‖2

≤

∥∥∥∥∥∥
∑
ġ∈Gn

Ssgġ,n(λsn)
(
Xs
ġ·,n(βsn − βs0)− E[Xs

ġ·,n(βsn − βs0)|Fg,n(s)]
)∥∥∥∥∥∥

2

+

∥∥∥∥∥∥
∑
ġ∈Gn

∂Ssgġ,n(ξn)

∂λ
(λsn − λs0)

(
Xs
ġ·,nβ

s
0 + usġ,n − E[Xs

ġ·,nβ
s
0 + usġ,n|Fg,n(s)]

)∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

ġ:d(g,ġ)>s

Ssgġ,n(λsn)
(
Xs
ġ·,n(βsn − βs0)− E[Xs

ġ·,n(βsn − βs0)|Fg,n(s)]
)∥∥∥∥∥∥

2

+

∥∥∥∥∥∥
∑

ġ:d(g,ġ)>s

∂Ssgġ,n(ξn)

∂λ
(λsn − λs0)

(
Xs
ġ·,nβ

s
0 + usġ,n − E[Xs

ġ·,nβ
s
0 + usġ,n|Fg,n(s)]

)∥∥∥∥∥∥
2

≤ ‖βsn − βs0‖
∑

ġ:d(g,ġ)>s

‖Ssgġ,n(λsn)‖
(
‖Xs

ġ·,n‖2 + ‖E[Xs
ġ·,n|Fg,n(s)]‖2

)
+ |λsn − λs0|

∑
ġ:d(g,ġ)>s

∥∥∥∥∂Ssgġ,n(ξn)

∂λ

∥∥∥∥ (‖Xs
ġ·,nβ

s
0 + usġ,n‖2 + ‖E[Xs

ġ·,nβ
s
0 + usġ,n|Fg,n(s)]‖2

)
≤ 2‖βsn − βs0‖

∑
ġ:d(g,ġ)>s

‖Ssgġ,n(λsn)‖‖Xs
ġ·,n‖2 + 2|λsn − λs0|

∑
ġ:d(g,ġ)>s

∥∥∥∥∂Ssgġ,n(ξn)

∂λ

∥∥∥∥ (‖Xs
ġ·,n‖2‖βs0‖+ ‖usġ,n‖2

)

≤ 2‖βsn − βs0‖ sup
n,g

sup
θ∈Θ

∑
ġ∈Gn

‖Ssgġ,n(λs)‖ · sup
n,g
‖Xs

g·,n‖2 ×
sup
n,g

sup
θ∈Θ

∑
ġ:d(g,ġ)>s ‖Ssgġ,n(λs)‖

sup
n,g

sup
θ∈Θ

∑
ġ∈Gn ‖S

s
gġ,n(λs)‖

+ 2|λsn − λs0| sup
n,g

sup
θ∈Θ

∑
ġ∈Gn

∥∥∥∥∂Ssgġ,n(λs)

∂λ

∥∥∥∥ · (sup
n,g
‖Xs

g·,n‖2‖βs0‖+ sup
n,g
‖usg,n‖2

)
×

sup
n,g

sup
θ∈Θ

∑
ġ:d(g,ġ)>s

∥∥∥∂Ssgġ,n(λs)

∂λ

∥∥∥
sup
n,g

sup
θ∈Θ

∑
ġ∈Gn

∥∥∥∂Ssgġ,n(λs)

∂λ

∥∥∥
≤ O(n−1/2)tŷ

∗s−y∗s max{ψs(s), ψ̃s(s)},

where tŷ
∗s−y∗s = 2 sup

n,g
sup
θ∈Θ

∑
ġ∈Gn

[∥∥∥∂Ssgġ,n(λs)

∂λ

∥∥∥+ ‖Ssgġ,n(λs)‖
](

sup
n,g
‖Xs

g·,n‖2(1 + ‖βs0‖) + sup
n,g
‖usg,n‖2

)
. Since we

have shown that tŷ
∗s−y∗s is finite in the first part of the proof and

∂Ssn(λs)
∂λ = Ssn(λs)W s

nS
s
n(λs), see (L.11), the

L2-NED property of
√
n(ŷ∗sg,n − y∗sg,n) follows from Assumptions 5 and 13.
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