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Summary Multilateral comparison of outcomes drawn from multiple groups per-
vade the social sciences and measurement of their variability, usually involving functions
of respective group location and scale parameters, is of intrinsic interest. However, such
approaches frequently mask more fundamental differences that more comprehensive ex-
amination of relative group distributional structures reveal. Indeed, in categorical data
contexts, location and scale based techniques are no longer feasible without artificial
and questionable cardinalization of categories. Here, Ginis’ Transvariation measure is
extended and employed in providing quantitative and visual multilateral comparison
tools in discrete, continuous, categorical, univariate or multivariate settings which are
particularly useful in paradigms where cardinal measure is absent. Two applications,
one analyzing Eurozone cohesion in terms of the convergence or divergence of con-
stituent nations income distributions, the other, drawn from a study of aging, health
and income inequality in China, exemplify their use in a continuous and categorical
data environment.

1. INTRODUCTION

Following early concerns about the measurement of aggregate differences (Dalton 1920,
Gini 1921) and the path breaking work of Fisher (1932, 1935), multilateral comparisons
of grouped outcomes have become ubiquitous in the empirical sciences1 rendering unit
free measurement of their collective variation of intrinsic interest. Unit free measures are

1Outcomes of two or more distinct groups are compared and contrasted in Equality of Opportunity,
Mobility and wellbeing literatures (e.g. Blackorby and Donaldson 1978: Arrow, Bowles and Durlauf 2000;
Herrnstein and Murray 1994; Peragine, Palmisano and Brunori 2014; Roemer 1998; Weymark 2003). The
financial returns of a collection of portfolios are compared on a combined mean-variance basis (Markowitz
1952; Bali, Brown and Demirtas 2013; Banz 1981; Basu 1983; Jegadeesh 1990). Within and between firm
and industry wage inequalities have been explored in the Industrial Organization and Labour literatures
(Abowd et al. 2018, Card et. al. 2018, Song et. al. 2019). In treatment effect, event and matching study
and policy evaluation literatures (Angrist and Krueger 2001) assessment is based upon comparisons
of conditional means across outcome states. Recent developments in the measurement and analysis of
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preferred because they are comparable across different entities. Generally, studies of rela-
tive variation within and between groups employ standard summary statistics of location
(means and medians) and dispersion (variances and ranges) in various combinations in
three basic approaches: range measures, average distance from a central value measures
and average distance between all possible pairs measures. Range (largest less the smallest
number) or interquartile range measures divided by a location parameter are examples
of the first unit free approach, the coefficient of variation or Theil’s entropic measures
(Theil 1967, Maasoumi 1986, Maasoumi, Racine and Stengos 2007) exemplify average
difference from the average approaches, and the Gini Coefficient (Gini 1921, Yitzhaki
1983, Chakravarty 1988) is an example of the third approach. Each has its pros and
cons. Range measures are easily computed and capture the potential span of differences
but fail to reflect the extent of bilateral differences between groups within the interior
of the collection – they are not subgroup decomposable so that a subgroups impact on
overall variability cannot always be established. The second group, in accounting for
the difference from the average of each element reflects the totality of differences much
better and, like the ANOVA technique, they are usually subgroup decomposable. How-
ever, Sen (1995) and Yitzhaki (2003) argue that measures of average absolute differences
such as the Gini, capture more of the totality of differences than difference from mean-
based measures. Unfortunately, when analyzing subgroup impacts, Gini-type measures
are not subgroup decomposable (Bourguignon 1979) except in exceptional circumstances
(Mookherjee and Shorrocks 1982).

A common problem with these approaches, highlighted in the contexts of treatment
effects and growth and convergence models (Carneiro et. al. 2002, 2003, Durlauf and
Quah 2002), is that, in confining analyses to subsets of conditional moments, important
information concerning differences in moments beyond those subsets is ignored and can
thus be misleading. Somewhat trivially, in a collection of distributions with identical
means, difference in means tests have zero power against more general distributional dif-
ferences such as differences in variances. In essence, employing just means and variances
creates a “veil of ignorance” that is only countervailed by comparing subgroup distri-
butions in their entirety across their complete range. Moreover, such analyses are not
feasible in ordinal environments encountered for example in subjective wellbeing mea-
surement literatures without arbitrary assignment of cardinal scales to ordinal categories.
Unfortunately, arbitrary scale assignment is not a solution because of the scale depen-
dency problem (Schroder and Yitzhaki 2017, Liddell and Kruschke 2018, Bond and Lang
2019) and, since objects like the range, coefficient of variation and Gini coefficients are
monotone scale dependent, this issue carries over to inequality measurement.

Here, in answer to these concerns, measures of distributional differentness or inequality
are introduced. These measures compare a collection of distributions across their com-
plete range of variation. Specifically, Gini’s Bilateral Distributional Transvariation (Gini
1916, 1959) is extended to multilateral environments in generating three new general
measures, together with their respective asymptotically normal standard errors, which
are distributional analogues of the aforementioned three basic measures of variation in
collections of numbers. The measures, which focus on relative distributional differences in
collections of discrete, continuous, categorical and potentially multivariate distributions,
are in the respective forms of a Multilateral Transvariation (MGT) statistic, a distribu-

subjective wellbeing (Kahneman and Krueger 2006) involve multilateral comparisons of groups in the
context of ordinal categorical data.
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tional coefficient of variation (DCV) and a Distributional Gini (DisGini) coefficient. All
come in population weighted and unweighted forms.

MGT is a generalization to K distributions of Gini’s Bilateral Transvariation, originally
introduced in Anderson, Linton and Thomas (2017), here its sampling distribution is
provided. Like its Range counterpart, it is simple to compute and provides a measure
of the extremes of variation of the collection of distributions but gives no sense of the
extent of bilateral distributional differences or aggregate differences from the “average”
distribution.

DCV, like its Coefficient of Variation counterpart, measures aggregated differences of
distributions from an average distribution and is particularly useful for studying conver-
gence and divergence issues in collections of distributions. Its development prompted a
new concept of universal convergence/divergence whereby all groups in the collection are
converging/diverging in concert which can be usefully visualized in a radar chart and
tests for which are provided.

DisGini measures the totality of bilateral similarities or differences in a collection
of distributions and is the most comprehensive measure of distributional differences.
Conceptually, it is based upon an extension of the between group means component of
the threefold sub-group decomposition of the Gini (Bourgignon 1979). While the Gini
coefficient between-group component captures between group inequalities in terms of
differences between sub-group means, DisGini captures between-group dissimilarities in
terms of the totality of sub-group distributional differences.

In the following, Section 2 introduces the three new instruments for assessing multi-
lateral distributional differences. Estimators for these measures along with their distri-
butional properties are derived in Section 3. Section 4 reports the main results of two
exemplifying applications. The first, a study of the progress of the Eurozone income dis-
tribution, addresses the question of increasing commonality in the income distributions
of the Eurozone’s constituent nations. The second, in exemplifying the efficacy of the
techniques in ordered categorical data contexts, examines the progress of health-income
inequalities over the aging process. Some conclusions are drawn in Section 5.

2. MULTILATERAL TRANSVARIATION

2.1. MGT: Generalizing Gini’s Transvariation measure

In his original bilateral transvariation measure GT, Gini (1916, 1959) provided a measure
of the difference between two distributions2 which, for two distributions fi (x) , fj (x)
whose support3 is confined to R+, can be defined, following Anderson, Linton and Thomas
(2017), as follows:

GTij =
1

2

∫ ∞
0

|fi (x)− fj (x)| dx =

=
1

2

∫ ∞
0

[max (fi (x) , fj (x))−min (fi (x) , fj (x))]dx . (2.1)

2See Pittau and Zelli (2017) for an overview of Gini’s original concepts of transvariation.
3Since translation to discrete and categorical paradigms is straightforward, discussion is confined to

the continuous paradigm for brevity purposes.
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Since 0 ≤
∫∞
0
|fi (x)− fj (x) |dx ≤ 2, pre-multiplying by 0.5 yields a statistic that will

be 0 when the two distributions are identical and 1 when they have mutually exclusive
support.4 Note that, by definition, GTij = GTji, furthermore it has a one to one rela-
tionship with distributional overlap OVij measuring the extent of commonality between
the two distributions (Anderson, Linton and Whang 2012), which is given by:

OVij =

∫ ∞
0

min(fi (x) , fj (x))dx . (2.2)

Essentially GT = 1-OV.
Generalizing equation (2.1) to K distributions indexed k = 1, . . . ,K, suggests contem-

plating a Multilateral Gini Transvariation measure (MGT), defined as follows:

MGT =
1

K

∫ ∞
0

[max (f1 (x) , f2 (x) , . . . , fK (x))−

min (f1 (x) , f2 (x) , . . . , fK (x))]dx . (2.3)

As in the bilateral comparison, when the distributions have mutually exclusive support
MGT = 1, when the distributions are identical MGT = 0.

A weighted version of MGT, MGT-W is also possible, and has the form

MGT-W =

∫ ∞
0

[max (w1f1 (x) , w2f2 (x) , ., wKfK (x))−

−min (w1f1 (x) , w2f2 (x) , ., wKfK (x))]dx , (2.4)

where wk are possible weights associated to the distributions fk, k = 1, . . . ,K. When
the K distributions are regarded as subgroups of an overall distribution, wk are the
proportions associated with each density function.

One problem with the multilateral transvariation measure is its maximum-minimum
nature. Like the range statistic for a collection of numbers which does not reflect dif-
ferences in objects in the mid range, the MGT does not reflect the many bi-lateral
functional differences and similarities camouflaged by just considering extreme density
values. Indeed, it is in essence the distributional analogue of the relative range measure of
a collection of numbers wherein the relative locations of interior and low weight members
have little or no impact on its value. An alternative which is in effect an aggregation of
all distributional differences from the average distribution or what will be referred to as
the Distributional Coefficient of Variation (DCV) is introduced in the next section.

2.2. DCV: A Distributional Coefficient of Variation

The collection of K subgroups indexed k = 1, . . . ,K with respective distributions fk(x)
may be considered in the context of individual distributions being components within a
mixture f(x) representing the overall population distribution:

f (x) =

K∑
k=1

wkfk(x),

K∑
k=1

wk = 1 and wk≥0 for all k (2.5)

4The Gini bilateral transvariation can be regarded as the Total Variation distance between two proba-
bility measures (it is the normalized `1-distance between them).
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where wk are weights reflecting the importance of the component within the popula-
tion. So, for example, f(x) may refer to a societal income distribution with fk(x) being
the income distribution of the k-th constituency and wk its relative population size. Al-
ternatively, from a representative agent or treatment effect perspective, the distributions
describing outcomes of particular groups could be compared directly, without reference
to their relative importance in the collection, in which case wk would be set to 1/K for all
k. Indeed, from a policy application perspective, there is no reason why f(x) should not
be defined for policy purposes as some “target” distribution that constituencies should
aspire to so that DCV provides a measure of the extent to which the policy has not been
achieved.

OVko, the distributional overlap between the k’th subgroup distribution and the overall
mixture is such that:

OVko =

∫ ∞
0

min (fk(x), f(x)) dx (2.6)

The corresponding subgroup/overall transvariation is related to the overlap measure
as follows: GTko = 1−OVko. Then DCV, the weighted average of subgroup-overall dis-
tribution transvariations, may then be written as:

DCV =
1

(1−
∑K
k=1 w

2
k)

K∑
k=1

wkGTko =
1

(1−
∑K
k=1 w

2
k)

K∑
k=1

wk(1−OVko). (2.7)

Note that when subgroup distributions are identical they will be identical to their
weighted sum so that GTko = 0 for all k and DCV=0. When the subgroups have mutually
exclusive support GTko = 1− wk so that DCV=1.

As with the Sen (1995) and Yitzhaki (2003) critiques of mean deviation measures,
DCV still does not reflect the full panoply of distributional differences between groups.
However a “Distributional” Gini Coefficient will.

2.3. DisGini: The “Distributional” Gini Coefficient

To fully explore distributional differences consider instead:

DisGini =
1

ϕ

K∑
i=1

K∑
j=1

0.5

∫ ∞
0

wiwj |fi(x)− fj(x)|dx =
1

ϕ

K∑
i=1

K∑
j=1

wiwjGTij (2.8)

Where ϕ is a scaling parameter. Note the term
∫∞
0
wiwj |fi(x) − fj(x)|dx may be

written as “wiwj2GTi,j” which is twice Gini’s Transvariation of sub distributions fi(x)
and fj(x), multiplied by the product of the respective population shares. Given the
relationship (2.2) between GT and the overlap measure OV, (2.8) may be written as:

DisGini =
1

ϕ

K∑
i=1

K∑
j=1

wiwj(1−OVij)

Which, letting c be a K element column vector of ones, may be written in matrix form:
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1

ϕ
c′


0 w1w2(1−OV 12)

w2w1(1−OV 21) 0
. . . w1wK(1−OV 1K)
. . . w2wK(1−OV 2K)

...
...

wKw1(1−OV K1 ) wKw2(1−OV K2 )

. . .
...

. . . 0

 c (2.9)

Consider a typical element wiwj(1−OVij), when i = j the element will be zero, also
when fi(x) = fj(x) for all x (i.e. subgroups i and j have identical distributions), the term
will be 0. It follows that when all subgroups have identical distributions, expression (2.9)
will be 0 since all of the elements are non-negative this will constitute a lower bound for
DisGini.

Now consider the situation where all of the respective subgroup income distributions
have mutually exclusive support, i.e. the subgroups are completely segmented so that
for all i 6= j and a given x, fi(x) ≥ 0 ⇒ fj(x) = 0 and fj(x) ≥ 0 ⇒ fi(x) = 0. This
corresponds to the mixture distribution situation where there is no distributional overlap
between any constituency pairing, thus Gini’s Transvariation would be at a maximum
value of 1.

In this case (2.8) may be written:

1

ϕ
c′


0 w1w2

w2w1 0
. . . w1wK
. . . w2wK

...
...

wKw1 wKw2

. . .
...

. . . 0

 c =
1

ϕ

K∑
k=1

wk(1− wk) =
1−

∑K
k=1 w

2
k

ϕ

If the scaling parameter ϕ is set to (1−
∑K
k=1 w

2
k) then DisGini will always fall in the

interval [0,1] and be equal to 1 when there is complete distributional inequality in terms
of complete segmentation of the constituency distributions. It follows that DisGini may
finally be written as:

DisGini =
1

(1−
∑K
k=1 w

2
k)

K∑
i=1

K∑
j=1

wiwj(1−OVij) =
1

(1−
∑K
k=1 w

2
k)

K∑
i=1

K∑
j=1

wiwjGTij .

(2.10)
If comparison of the distributions without subgroup weighting is desired, as in the afore-

mentioned representative agent type scenarios, simply set wi = 1
K for all i = 1, . . . ,K.

By noting that the Transvariation and Overlap of two multivariate distributions is
given by: ∫ ∑

|f(x, y)− g(x, y)|dx and

∫ ∑
min(f(x, y)− g(x, y))dx

respectively, where integration is over all continuous variables x and summation is
over all discrete variables y, the foregoing formulae are readily extended to multivariate

situations. Furthermore, by replacing fi(x) with Fhi (x) where Fhi (x) =
∫ x
0
F

(h−1)
i (z)dz

in (2.3), (2.7) or (2.8) and adjusting the normalizing parameter accordingly, multilateral
variation of higher order integrals of distribution functions could be contemplated re-
flecting the classic stochastic dominance criteria for more restrictive wellbeing structures
(see Anderson, Post and Whang, 2020). All of which are matters for future research.

These indices provide a complete ordering of collections of distributions with respect
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to their differentness, as such they can be shown to satisfy some popular axioms in the
inequality literature (Sen, 1995). When applied to the groups as subjects Anonymity,
Scale and Translation Invariance, Normalization and Replication Invariance axioms are
all satisfied by these indices. When sub-distributions are posited to be the atomistic
equivalents of the sub-distributions employed in Duclos, Esteban and Ray (2004) and
subjected to the same transformations, they comply with the polarization axioms posed
therein.

It should also be noted that although the Gini coefficient has problems with negative
values (see Manero 2017), the discussion was confined to distributions defined on the
positive orthant. However, the measures proposed here are not subject to this difficulty
and are well defined on all support types.

Finally, it is of interest to understand how the DisGini coefficient is affected by the
expansion of the number of groups under consideration, Appendix A demonstrates that
DisGini will increase or diminish as it is exceeded by or exceeds the weighted sum of the
new group’s transvariations with respect to the existing groups in the analysis.

3. ESTIMATION AND DISTRIBUTION THEORY

3.1. Estimation and standard errors of MGT

Non-parametric estimation of MGT facilitates analysis of the collection of distributions
over their full range revealing the extent of their similarity and differentness without
reliance on the limited purview of summary statistics or visual perceptions.

In the case of discrete and categorical variables, estimation of category membership
probabilities and their sampling distributions is straightforward following Rao (1973).
Suppose there are C categories Γc indexed c = 1, . . . , C with a C vector of category
membership probabilities p with typical element pc and let x be an T vector of inde-
pendent observations with typical element xi so that pc = Pr (xi ∈ Γc). Then, p̂c, the
estimate of pc, may be obtained by letting zi,c = 1 when xi ∈ Γc and 0 otherwise, so

p̂c,k = 1
T

∑T
i=1 zi,c. In this case the vector p̂ is asymptotically normal with large sample

variance equal to 1/T times V = diag(p1, . . . , pC)− ppᵀ
. We then let

θ̂KT =
1

K

C∑
c=1

(max {p̂c,1, p̂c,2, . . . , p̂c,K} −min {p̂c,1, p̂c,2, . . . , p̂c,K}) .

We present now the estimator for the case where Xk are continuously distributed with
Lebesgue density fk, k = 1, . . . ,K, with common support R. Suppose that we observe
independent random samples from the kth population Xkt, t = 1, . . . , Tk. We define the
kernel estimates:

f̂k (x) =
1

Tk

Tk∑
h=1

Kb (x−Xk,h) , k = 1, . . . ,K, (3.11)

where K is a (potentially d dimensioned multivariate) kernel with Kb(.) = K(./b)/bd,
where b is a positive bandwidth sequence. We then estimate the unweighted multilateral
transvariation index θK =MGT defined above,

θ̂KT =
1

K

(∫
max

{
f̂1 (x) , f̂2 (x) , . . . , f̂K (x)

}
dx−

∫
min

(
f̂1 (x) , f̂2 (x) , . . . , f̂K (x)

)
dx

)
.
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The integral is computed by numerical quadrature routines.
The theory for θ̂KT follows closely the analysis in Anderson, Linton and Whang (2012).

We present the theory for the case where the contact sets

Ci,j =
{
x ∈ Rd : fi(x) = fj(x) > 0

}
,

all have Lebesgue measure zero. In practice, this is perhaps the most useful case. The
main case where the contact set is not of measure zero is the case where the densities
are equal, which is a hypothesis of interest; however, in that case there are other tests
available. For simplicity of presentation we suppose that Tk = T for k = 1, . . . ,K.

Let λ = (λ1, . . . , λd)
> denote a vector of nonnegative integer constants. For such

vector, we define |λ| =
∑d
i=1 λi and, for any function h(x) : Rd → R, Dλh(x) =

∂|λ|/(∂xλ1
1 · · · ∂x

λd

d )(h(x)), where x = (x1, . . . , xd)
> and xλ =

d∏
j=1

x
λj

j .

Assumptions
(A1) K is a sth order kernel function having support in the closed ball of radius 1/2

centered at zero, symmetric around zero, integrates to 1, and s-times continuously dif-
ferentiable on the interior of its support, where s is an integer that satisfies s > d.

(A2) The densities fk, k = 1, . . . ,K are strictly positive, bounded and absolutely con-
tinuous with respect to Lebesgue measure and s-times continuously differentiable with
uniformly bounded derivatives. (ii) For all λ ∈ Nd with 0 ≤ |λ| ≤ s,

∫
|Dλfk(x)|dx <∞,

k = 1, . . . ,K.
(A3) The bandwidth satisfies: (i) nb2s → 0, (ii) nb2d →∞ and (iii) nbd/ (log n)→∞.
(A4) {Xki : i ≥ 1, k = 1, . . . ,K} are i.i.d. with support Rd × · · · × Rd.
Define the sets CKi,∗ and CKi,∗:

CKi,∗ = {x : fi (x) < fj (x) , for all j = 1, ...,K, j 6= i}
CKi,∗ = {x : fi (x) > fj (x) , for all j = 1, ...,K, j 6= i} .

Let pkU = Pr
(
Xk ∈ CK i,∗) and pkL = Pr (Xk ∈ CK i,∗) , and note that CKi,∗∩CKi,∗ =

∅ so that pkUL = Pr
(
Xk ∈ CK i,∗∩CKi,∗

)
= 0, and define the positive scalar

vKT =
1

K2

K∑
k=1

{pkU (1− pkU ) + pkL (1− pkL) + 2pkUpkL}.

Theorem 1. Suppose that Assumptions A1-A4 hold. Then, we have:

√
T
(
θ̂KT − θKT

)
=⇒ N(0, vKT ).

The limiting variance can be consistently estimated by

v̂KT =
1

K2

1

T

K∑
k=1

{p̂kU (1− p̂kU ) + p̂kL (1− p̂kL) + 2p̂kU p̂kL}.

We may construct a 1 − α asymptotic coverage confidence interval for θKT as θ̂KT ±
zα/2

√
v̂KT /T .

The distributional properties of MGTW can be derived as above by working with
wkf̂k (x) in place of f̂k (x) and modifying gKT (K) accordingly as in (2.4).



9

3.2. Estimation and standard error of DCV

As the weighted average of K subgroup distribution - overall distribution transvariations,
the Distributional Coefficient of Variation (DCV) can be estimated as:

θ̂DCV =
1

(1−
∑K
k=1 w

2
k)

K∑
k=1

wk

{
1−

∫ b

a

min
(
f̂k (x) , f̂ (x)

)
dx

}
, (3.12)

where f̂k (x) are kernel estimates of fk(x), k = 1, . . . ,K, wk’s are known weights, and

f̂ (x) is the kernel estimate of the overall distribution f (x) =
∑K
k=1 wkfk(x),

∑K
k=1 wk =

1 and wk≥0 for all k (or it could be some pre-specified overall target distribution).
Maintaining the assumptions of the previous MGT analysis, in this case define the sets

CKk,O and CKk,O:

CKk,O = {x : fk (x) < f (x)} , k = 1, . . . ,K

CKk,O = {x : fk (x) > f (x)} , k = 1, . . . ,K.

Let pkU = Pr
(
Xk ∈ CK k,O

)
and pkL = Pr (Xk ∈ CK k,O), and define the positive

scalar

vDCV =
1

(1−
∑K
k=1 w

2
k)2

K∑
k=1

w2
k (pkU (1− pkU ) + pkL (1− pkL) + 2pkUpkL) .

Then in a similar fashion to Theorem 1 above, it may be shown that:

√
T
(
θ̂DCV − θDCV

)
=⇒ N(0, vDCV ).

The limiting variance can be estimated and the asymptotic coverage confidence interval
can be computed as above. The representative agent (equally weighted) case can be
considered by setting wk = 1/K for all k.

3.3. Estimation and standard errors of DisGini

We estimate the Distributional Gini Index (DisGini or DG) over K distributions by:

θ̂DG =
1

(1−
∑K
k=1 w

2
k)

K∑
i=1

K∑
j=1

wiwj

{
1−

∫ b

a

min
(
f̂i (x) , f̂j (x)

)
dx

}
, (3.13)

where f̂k (x) are kernel estimates of fk(x), k = 1, . . . ,K, and the wk’s are known weights.
Define the pairwise sets Ci,j i, j = 1, ..,K i 6=j as:

Ci,j = {x : fi (x) < fj (x)}

and let
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vDG =

K∑
i=1

∑
j>i

w2
iw

2
j

(
Pr (Xi∈Cij )− Pr (Xi∈Cij )

2
)

+

+ 2

K∑
i=1

∑
j>i

∑
k>j>i

w2
iwjwk (Pr (Xi∈Cij∩Cik )− Pr (Xi∈Cij ) Pr (Xi∈Cik )) .

Theorem 2. Suppose that Assumptions A1-A4 hold. Then, we have:
√
T
(
θ̂DG − θDG

)
=⇒ N(0, vDG).

The limiting variance may be consistently estimated by replacing the population quan-
tities by their sample analogues.

4. AN EMPIRICAL EXAMPLE

4.1. Household income distributions in the Eurozone

The efficacy of the new techniques is first illustrated in a study of the 21st century evolu-
tion of household income inequality in the Eurozone. Milanovic (2011) noted that growing
divergence between constituencies within a federation can be a catalyst for the deterio-
ration of its cohesion and the recent rise of economic nationalism in Europe has given
cause for concern regarding the European Unions coherence (Krastev 2014, Webber 2018,
Lindberg 2019). Formed to promote commonality of wellbeing among its constituents,
there is interest in seeing whether the European nations household income distributions
are converging. The growth and convergence literature suggests that variation of average
incomes across constituencies is of interest since it speaks directly to the question of
whether the distribution of income across economies is becoming more or less equitable
(Quah 1993). However, deterioration of cohesiveness has much to do with the extent to
which economic wellbeing differs across constituencies, the sense in which such differences
are perceived by agents within those constituencies and the relative importance of those
constituencies. In this context, cohesiveness is more than just a matter of whether or not
constituencies have similar average incomes, it is more a matter of whether or not they
have common income distributions.

When member nations are equally unequal with relatively similar income levels and
distributions, there is a commonality of situation among member constituents which
promotes cohesion, whereas a more divisive and alienated situation arises when such
inequalities and income levels are not so equally shared in a more segmented society.
The cohesiveness of a union of economies is therefore related to the extent to which its
respective nation income distributions are segmenting or converging. The new measures
are employed to address these distinctions within nations in the Eurozone.

Viewed as an entity, the overall Eurozone household income distribution f (x) is a
mixture of the household income distributions fk (x) k = 1, ..,K of its K constituent
nations where the weights wk correspond to relative population sizes (see equation 2.5).

Stochastic processes are frequently used to rationalize distributional structures and
Gibrat’s Law of Proportional Effects and some of its modifications (Gabaix 1999, Reed
2001) have been foundational in providing a theoretical rationale for expecting increas-
ing income inequality. The Law posits that household incomes in subgroup k follow a
stochastic process which, in its simplest form in period t, has the form:
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xk,t = (1 + δk,t)xk,t−1

where δk,t is a random variable with mean δk (which is small relative to one in absolute
value) and variance σ2

k. The law predicts that, given a starting value x0 and letting X =
ln(x), after T periods XkT will have a mean equal to X0 + T

(
δk + 0.5σ2

k

)
and variance

equal to Tσ2
k, respectively i.e. log income variation that grows through time. Following

Modigliani and Brumberg (1954), classical economic models of income (Hall 1978) use
this idea to predict increasingly unequal income distributions (Battistin, Blundell, and
Lewbel 2009, Blundell and Preston 1998, Browning and Lusardi 1996). When applied to
the k = 1, . . . ,K constituent societies in the Eurozone, clearly different configurations
of pairs (δk, σ

2
k) for k = 1, . . . ,K will yield collections of distributions that could be

converging or diverging, segmenting or increasingly overlapping, becoming more or less
equal in distribution.

Multilateral comparisons, as presented in equations (2.4), (2.7), and (2.8), can be
estimated using wk = 1/K or wk proportional to the population size of nation k. The
first case resembles the unweighted inequality between nations in which each country is
taken as the unit of observation, disregarding its size. This unweighted version of the
measures can be construed as a representative agent model, recording the juxtaposition
of nation income distributions directly without respect to their relative importance or
impact in the overall income distribution. In the second case each country is weighted
by its population. The unit of observation is then a person instead of a country. This
weighted version gives insight into distributional differences of the Eurozone as an entity,
with small populations given low weight and large populations high weight.

The data source is the European Union Survey on Income and Living Conditions (EU-
SILC).5 To analyze the evolution of the Euro area income distribution over time, four
temporally equi-spaced waves, 2006, 2009, 2012 and 2015 were chosen. Since data for
Malta are only available from the 2008 wave, this country is excluded from analysis leav-
ing 18 Euro zone countries. Income is the total household net disposable annual income
(in thousands Euro) obtained by aggregation of all income sources from all household
members net of direct taxes and social contributions.6 Assuming consumption economies
of scale in cohabitation, incomes are age and size-adjusted using the modified-OECD
equivalence scale. Given significant disparities in the cost of living between countries, the
PPP index for the household final consumption expenditure is used to adjust household
incomes.

As an entity, the Eurozone had overall household income Gini coefficients of 0.305,
0.313, 0.317, 0.335 for the years 2006, 2009, 2012 and 2015 respectively, suggesting ever
increasing household income disparities in the area over the period.

In the light of concerns regarding European disintegration, questions arise as to the
extent to which such inequalities are equally shared across its various nations, which
prompts and investigation into the juxtaposition of the income distributions of the Eu-
rozone’s constituent nations.7

5Version estatCROS 2019ki9, released in May 2019. EU-SILC is a harmonized household-level survey
that is a collection of annual national surveys of socio-economic conditions of individuals and households
in EU countries.
6The income reference period refers to the previous year, consequently analysis with EU-SILC files

actually refers to 2005-2014.
7An alternative approach would consider a transnational decomposition based upon latent household
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Table 1 reports the unweighted Multilateral Gini Transvariation (MGT), the Distribu-
tional Coefficient of Variation (DCV), and the Distributional Gini Coefficient (DisGini).
The income densities fk(x) are kernel estimated using the Sheather and Jones (1991)
bandwidth as smoothing parameter, and take into account the weighting scheme of the
EU-SILC survey. The measures can yield insights into the progress of distributional in-
equalities over the era, tending toward 0 as distributions converge and tending toward 1
as they segment or diverge. All the unweighted indices record a decline over the whole
period with respect to 2006. Thus, in a representative agent view of the world, similar to
that pursued in the sigma convergence literature wherein nations are equally weighted
(Quah, 1993), the multilateral results present significant evidence of nation income dis-
tribution convergence.

Table 1. Unweighted MGT, DCV and DisGini coefficients - Nation group analysis.

Year MGT DCV DisGini
2006 0.135 0.270 0.386

(0.004) (0.001) (0.003)
2009 0.111 0.226 0.341

(0.004) (0.001) (0.003)
2012 0.106 0.234 0.326

(0.003) (0.001) (0.003)
2015 0.107 0.250 0.341

(0.004) (0.001) (0.003)

Note: Asymptotic standard errors are in brackets.

Table 2 reports the weighted Multilateral Gini Transvariation (MGT-W), the Dis-
tributional Coefficient of Variation (DCV-W), and the Distributional Gini Coefficient
(DisGini-W). Looking at the patterns under population-weighted version of the statis-
tics quite different stories emerge. The population-weighted indices, after a slight dip in
2009, show a significant increase, indicating increasing distributional divergence in terms
of increasingly segmented nations.

Taken together, the weighted and unweighted versions of the statistics reveal that lesser
populated nations of the Eurozone are exhibiting a convergence pattern whereas nations
with larger populations appear to be segmenting.

A further insight on the extent to which each country is converging to, or diverging
from, the Eurozone norm is given by GTko, k = 1, ..K, the bilateral transvariations
between each country k and the overall Eurozone distribution. These magnitudes can
be visualized in a radar chart whose spokes are the respective country/overall distri-
bution transvariations. Figure 1 reports the corresponding radar chart, a decomposed
distributional coefficient of variation as it were.

The center of the chart corresponds to zero transvariation where all subgroups have
identical distributions. The closer is a point on a nation’s spoke to the periphery, the
higher is the transvariation of that nation’s income distribution with respect to the whole

income classes that transcend nation boundaries. These latent classes can be identified by a semipara-
metric mixture distribution analysis (see Anderson, Pittau, Zelli and Thomas 2018).
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Table 2. Population weighted MGT, DCV and DisGini coefficients - Nation group anal-
ysis.

Year MGT-W DCV-W DisGini-W
2006 0.291 0.107 0.237

(0.005) (0.002) (0.003)
2009 0.279 0.103 0.222

(0.005) (0.002) (0.003)
2012 0.323 0.135 0.282

(0.005) (0.002) (0.003)
2015 0.349 0.173 0.361

(0.005) (0.002) (0.003)

Note: Asymptotic standard errors are in brackets.

Eurozone distribution (a value equal to 1 means complete segmentation, i.e. the two
distribution are far apart). The points have been colour coded by year, so that intuitively
nations with green dots (year 2015) nearer the centre than black dots (year 2006) are
converging to the Eurozone distribution over the observation period, whereas nations
with green dots outside of the black dots are diverging from the Eurozone distribution.

The bilateral nation-overall transvariations range from 0.03 for Italy to 0.68 for Slovakia
in the year 2006. The pattern of this bilateral index shows a process of convergence to-
ward the EuroArea distribution for Eastern European countries (notably low population
countries) and significant divergence from the Eurozone distribution for Spain, Finland,
France and Greece. Figures in appendix show the evolution of the income distributions
of constituent nations and their overlapping with respect to the Eurozone distribution in
2006 and in 2015.

Summing up, what emerges is a collection of distributions that result in a Eurozone
with an increasingly unequal overall income distribution comprised of an increasingly
similar (i.e. convergent) collection of unweighted distributions that, when population
weighted, become divergent as a collection.
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Figure 1. Radar chart of bilateral transvariation of each country with respect to Eurozone.
The center of the wheel corresponds complete overlapping with the Eurozone distribu-
tion. Moving to the periphery reflects less commonality with the Eurozone. Countries
are clockwise ordered starting with the largest positive difference between 2006 and 2015
(indicating convergence) and ending with the largest negative difference (indicating di-
vergence).
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4.2. Health-income inequalities and the ageing process in China

To exemplify the use of DisGini in situations where only categorical data is available,
age related inequalities in health and incomes in China are examined. The world wide
prevalence of aging populations has stimulated interest in the aging process and its con-
nection with wellbeing. For elderly populations, health, income and aging is inextricably
interlinked. In this regard indeed, Anand (2004) argues that health should have primacy
over consumption in the wellbeing calculus. Welfare programs, in providing support for
the elderly and the poor especially in terms of their health outcomes, are also integral
to the process. Given its aging population, its unprecedented economic growth and its
recently developed welfare program Dibao, China is of particular interest in this respect.
Anderson and Fu (2020) study health and income wellbeing in China’s older population
groups and the impact that Dibao may have had on them. The categorical nature of
self reported health status presents a particular challenge in this regard with respect to
quantifying wellbeing levels and inequalities, the Distributional Gini provides a solution.

Gao (2017) presents an extensive analysis of the impact of Dibao on work and welfare,
and, along with Kakwani (2019), produces evidence of poor targeting, i.e. assistance does
not always appear to be reaching those for which the program was defined. However, little
has been done to examine the health - income inequalities and the impact that Dibao
may have had on inequalities in those dimensions, especially with regard to the elderly.

Here, employing survey data drawn from the China Health and Retirement Longitu-
dinal Study (CHARLS) 2013 follow up to a 2011 baseline study, age group based in-
equalities in health and incomes are examined. Groups based upon gender, urban/rural
location, and Dibao recipient were established. Respondents who were at least 45 years
of age were asked to categorize their health as poor, fair, good, very good, excellent and
placed in income quintiles (adult equivalized incomes based upon the square root rule
were used). The sample was partitioned into age groups 45-50, 50-60, 60-70 and over 70
with respective sample sizes of 1823, 5396, 4782 and 2872 yielding an overall sample size
of 14873.

Two exercises were performed using the unweighted formulation which treats all groups
equally which is as it should be in a representative agent situation which looks at the
health and income inequality risks facing a randomly selected member from each group.
One formulation separately identified Dibao recipients as a separate group within each
category, the other formulation did not separately identify Dibao recipients8 (see Table
3). What is observed as part of the aging process is significantly increasing inequality
in the joint distribution of health and income in post retirement years. When Dibao
recipients are separately identified, distributional inequalities increase uniformly across
age groups which, from considerations regarding augmenting of groups in section ??,
indicates inequalities suffered by those groups are on average even greater than those
endured by non-Dibao recipients, suggesting that targeting may well not be as bad as
has been claimed.

Of particular interest from an aging perspective is the radar chart (Figure 2) that shows

8The two formulations refer to the same sample. Initially individuals are stratified by four age class. For
each age-class, in the first formulation individuals are grouped in four clusters based on their residential
area (urban or rural) and their sex (male and female). In the second formulation, instead, for each age-
class the initial four groups are further split in Dibao recipients or not, a binary variable in the survey.
The class shares of Dibao recipients (youngest to oldest) were respectively 0.0910, 0.0804, 0.1041 and
0.1496.
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Table 3. Distributional Gini coefficients. Age group analysis when Dibao recipients are
separately identified and when they are not.

Age groups DisGini
(Dibao Recipients

Separately Identified)

DisGini
(Dibao Recipients

Not Identified)
45–50 0.3645 0.2170

(0.0019) (0.0024)
50–60 0.2625 0.1890

(0.0010) (0.0013)
60–70 0.3145 0.2839

(0.0011) (0.0016)
>70 0.3943 0.3103

(0.0015) (0.0021)

Note: Asymptotic standard errors in brackets.

the bilateral transvariation of each group with respect to the overall distribution (GTko),
by age class. The polygon formed by joining the points of spokes is a representation
of the aggregated extent of differences of the groups from the “average”. Consider two
age groups, A and B, if the polygon representing the inequality measure in age class
A, is everywhere inside the corresponding polygon for B, then A corresponds to an
universal, unequivocal and comprehensive reduction of inequality over B in the sense
that all subgroup distributions are closer to the mean distribution in A than they are
in B. Here, the 50-60 year olds polygon is completely inside the 60-70 year olds polygon
which in turn is completely inside over 70 year olds polygon reflecting a universal increase
in health and income wellbeing inequality over the aging process in later life for every
category.

In a wellbeing measurement setting it suggests the idea of a comprehensive reduction
in inequality with all groups converging to the overall norm. More generally it implies
the notion of universal convergence/divergence amongst a collection of groups. This may
be examined statistically by noting that the respective vectors of estimated spokes in A

and B, ĜT
A

O and ĜT
B

O, are respectively asymptotically distributed

N ∼

(
GTAO ,

diag(GTAO )−GTAO ·GTA
′

O

T

)
and N ∼

(
GTBO ,

diag(GTBO )−GTBO ·GTB
′

O

T

)
and testing the joint hypothesis:

H0 : GTAO −GT
B
O > 0, against H1 : GTAO −GT

B
O ≤ 0

or vice versa using the Maximum Modulus Distribution (Stoline and Ury 1979).
This is verified in Table 4 which fails to reject the hypothesis that older age group

polygons lay outside younger age group polygons for successive over 50’s age groups.
Older age groups clearly suffer increasing health and income inequalities with the aging
process.
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Figure 2. Radar chart of bilateral transvariation of each group with respect to the overall
distribution (GTko), by age class. The center of the wheel corresponds to the minimum
value of GTko, that is the maximum overlapping. Moving to the periphery reflects more
dissimilarity with respect to the overall distribution. Subgroups are identified by a three-
letter acronym of their labels. The first letter indicates Dibao recipient (D) or not recipient
(N). The second letter indicates urban(U) or rural (R). The third letter indicates female
(F) or male (M).
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Table 4. Stoline-Ury maximum modulus statistics (SUMMS) for spoke changes for suc-
cessive age classes. Subgroups are identified by a three-letter acronym of their labels. The
first letter indicates Dibao recipient (D) or not recipient (N). The second letter indicates
urban(U) or rural (R). The third letter indicates female (F) or male (M).

45–50 vs 50–60 50–60 vs 60–70 60–70 vs >70
Groups diff se SUMMS diff se SUMMS diff se SUMMS

NRM 0.079 0.015 5.306 -0.111 0.015 7.310 -0.020 0.016 1.243
DRM 0.001 0.007 0.182 -0.028 0.008 3.698 -0.037 0.010 3.873
NRF 0.135 0.016 8.513 -0.043 0.015 2.801 -0.123 0.016 7.568
DRF 0.006 0.008 0.761 -0.029 0.009 3.440 -0.015 0.010 1.552
NUM 0.001 0.013 0.099 -0.055 0.013 4.130 -0.077 0.015 5.208
DUM 0.019 0.005 3.541 0.000 0.004 0.066 -0.001 0.004 0.331
NUF 0.025 0.013 1.923 -0.043 0.013 3.228 -0.013 0.014 0.923
DUF 0.033 0.006 5.354 0.000 0.004 0.050 -0.010 0.005 2.067

Note: Maximum modulus 5% critical value 2.8.
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5. CONCLUSIONS

When comparing collections of groups, simple first and second order moment multilat-
eral comparisons can overlook substantive differences between groups that a more com-
prehensive multilateral distributional comparison can reveal. Here, some new tools for
the multilateral comparison of many distributions in univariate or multivariate, discrete
and continuous, weighted and unweighted environments have been introduced. Based on
extensions of Ginis’ Transvariation Measure, new Multilateral Transvariation measures
and more comprehensive Gini-like distributional difference measures, together with their
asymptotic distributions, have been developed, namely the Multilateral Gini Transvari-
ation (MGT), the Distributional Coefficient of Variation (DCV), and the Distributional
Gini Coefficient (DisGini). The Distributional Coefficient of Variation is a scaled weighted
sum of subgroup vs overall distribution transvariations, the magnitude of which can be
represented as a polygon within a radar chart which in turn has prompted definition of
the notion of comprehensive inequality reduction (increase), the consequence of all sub-
groups converging to (diverging from) the overall distribution. Assessing distributional
differences in categorical - non cardinal environments is particularly challenging and
these techniques have been shown to overcome these challenges in these situations. The
measures have been exemplified in applications which study national household income
distributions in the Eurozone in the 21st century and income and health inequalities and
the aging process in China.
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APPENDIX A: DISGINI AND ADDITIONAL GROUPS

The relationship between DisGiniK and DisGiniK+1 may be understood as follows. Let

the original weights be wk, k = 1, . . . ,K where
∑K
k=1 wk = 1 and the new weights in

the extended collection of groups wnewk , k = 1, . . .K+1 where
∑K+1
k=1 w

new
k = 1 are such

that:

wk =
wnewk(

1− wnewK+1

) =
wnewk

θ
, k = 1, . . . ,K

Let ϕnew =
∑K+1
k=1

(
1− (wnewk )

2
)

, then

DisGiniK+1 =
1

ϕnew

K+1∑
i=1

K+1∑
j=1

wnewi wnewj GTi,j =
1

ϕnew

K+1∑
i=2

i∑
j=1

∫ ∞
0

wnewi wnewj |fi(x)− fj(x)|dx

=
1

ϕnew

K∑
i=2

i∑
j=1

∫ ∞
0

wnewi wnewj |fi (x)− fj (x) |dx+
1

ϕnew

K∑
j=1

∫ ∞
0

wnewK+1w
new
j |fK+1 (x)− fj (x) |dx

=
θ2

ϕnew

K∑
i=2

i∑
j=1

∫ ∞
0

wiwj |fi (x)− fj (x) |dx+
1

ϕnew

K∑
j=1

∫ ∞
0

wnewK+1w
new
j |fK+1 (x)− fj (x) |dx

=
θ2ϕ

ϕnew
DisGiniK +

1

ϕn

K∑
j=1

∫ ∞
0

wnewK+1w
new
j |fK+1 (x)− fj (x) |dx

= DisGiniK −
(

1− θ2ϕ

ϕnew

)
DisGiniK +

1

ϕnew

K∑
j=1

∫ ∞
0

wnewK+1w
new
j |fK+1 (x)− fj (x) |dx

= DisGiniK −
(
ϕnew − θ2ϕ

ϕnew

)
DisGiniK +

wnewK+1

ϕn

K∑
j=1

∫ ∞
0

wnewj |fK+1 (x)− fj (x) |dx

= DisGiniK −
(
wnewK+1

ϕnew

)
2
(
1− wnewk+1

)
DisGiniK +

wnewK+1

ϕn

K∑
j=1

∫ ∞
0

wnewj |fK+1 (x)− fj (x) |dx

= DisGiniK −
(
wnewK+1

ϕnew

)2θDisGiniK −
K∑
j=1

∫ ∞
0

wnewj |fK+1 (x)− fj (x) |dx


= DisGiniK −

(
2θwnewk+1

ϕnew

)DisGiniK −
1

2

K∑
j=1

∫ ∞
0

wnewj |fK+1 (x)− fj (x) |dx
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APPENDIX B: DERIVATION OF LARGE SAMPLE PROPERTIES

Proof of Theorem 1. We can write

θ̂KT = θ̂KTU − θ̂KTL

where

θ̂KTU =
1

K

∫
max

(
f̂1 (x) , f̂2 (x) , . . . , f̂K (x)

)
dx,

θ̂KTL =
1

K

∫
min

(
f̂1 (x) , f̂2 (x) , . . . , f̂K (x)

)
dx.

We have following the arguments of Anderson, Linton and Whang (2012)

θ̂KTU − θKTU =
1

gKT (K)

K∑
k=1

∫
CKk,∗

(
f̂k(x)− E

(
f̂k(x)

))
dx+ rT , (B.1)

where rT is generic notation for a remainder term that is of smaller order in probability
(rT may be different from expression to expression). Similarly,

θ̂KTL − θKTL =
1

gKT (K)

K∑
k=1

∫
CKi,∗

(
f̂k(x)− E

(
f̂k(x)

))
dx+ rT . (B.2)

Combining (B.1) and (B.2) together, we have

θ̂KT−θKT =
1

K

K∑
k=1

∫
CKi,∗

(
f̂k(x)− E

(
f̂k(x)

))
dx− 1

K

K∑
k=1

∫
CKi,∗

(
f̂k(x)− E

(
f̂k(x)

))
dx+rT .

The limiting distribution follows.

Proof of Theorem 2. The estimator θ̂DG may be written as

θ̂DG =
1

K

2K2 −
K∑
i=1

K∑
j=1

wiwj

{∫ b

a

min
(
f̂i (x) , f̂j (x)

)}
dx

 .

So, for the distributional properties of θ̂DG attention can be focussed upon:

θ̂OV =

K∑
i=1

K∑
j=1

wiwj

{∫ b

a

min
(
f̂i (x) , f̂j (x)

)
dx

}
=

K∑
i=1

K∑
j=1

wiwj

{
θ̂i,j

}
, (B.3)

where f̂k (x) are defined as in (3.11).

Considering the θ̂i,j , for simplicity assume independent samples of T observations and
that the contact sets are of measure 0.

Then

θ̂i,j − θi,j =

∫
Ci,j

(
f̂i (x)− E

(
f̂i (x)

))
dx +

∫
Cj .i

(
f̂j (x)− E

(
f̂j (x)

))
dx + rT
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and thus

θ̂OV − θOV =

K∑
i=1

K∑
j=1

wiwj

(
θ̂i,j − θi,j

)
=

=

K∑
i=1

K∑
j=1

wiwj

(∫
Ci,j

(
f̂i (x)− E

(
f̂i (x)

))
dx +

∫
Cj,i

(
f̂j (x)− E

(
f̂j (x)

))
dx

)
+ rT .

Then generally,

AV AR
(
θ̂i,j

)
=

1

T
(pi:ij (1− pi:ij) + pj:ji (1− pj:ji) + 2 (pij − pi:ijpj:ji))

pi:ij = Pr (Xi∈Ci,j) and pij = Pr (Xi∈Ci,j∩Xj∈Cj,i) ,
which may simplify with independent sampling. However even if Xi and Xj are inde-

pendent θ̂i,j and θ̂k,l will be dependent if they have one subscript in common so that

ACOV (θ̂i,j , θ̂k,l) 6=0 when there is a commonality in subscripts. All such terms need to
be considered so that a threefold summation is required involving probabilities of sets of
the form:

Ci,j∩Ci,k = {x : fi (x) < min (fj (x) , fk (x))} .
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APPENDIX C: FIGURES OF INCOME DISTRIBUTION OVERLAPS

Figure C.1. Income distribution of Slovakia and Estonia and their overlap with the Eu-
rozone income distribution: years 2006 and 2015.
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Figure C.2. Income distribution of Latvia and Lithuania and their overlap with the
Eurozone income distribution: years 2006 and 2015.
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Figure C.3. Income distribution of Greece and Spain and their overlap with the Eurozone
income distribution: years 2006 and 2015.
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Figure C.4. Income distribution of Finland and France and their overlap with the Euro-
zone income distribution: years 2006 and 2015.
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