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Abstract

We carry out some analysis of the daily data on the number of new cases and the number of
new deaths by (191) countries as reported to the European Centre for Disease Prevention and
Control (ECDC). Our benchmark model is a quadratic time trend model applied to the log of
new cases for each country. We use our model to predict when the peak of the epidemic will
arise in terms of new cases or new deaths in each country and the peak level. We also predict
how long the number of new daily cases in each country will fall by an order of magnitude.
Finally, we also forecast the total number of cases and deaths for each country. We consider
two models that link the joint evolution of new cases and new deaths.
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1 Introduction
We implement econometric models of daily data on the number of new cases of and new deaths
from COVID-19 in countries worldwide. Our benchmark model is a regression of log outcomes on
a quadratic trend function for each country. Since April 5th 2020 we have been estimating our
model every day and providing outlooks for the future development of the pandemic in different
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countries. Our primary purpose when we initiated this study was to estimate the turnaround dates,
the expected peak to trough times, and the expected total number of cases and deaths using only
the data at hand, which was before the peak had been achieved. The results have been updated
daily at the website
http://covid.econ.cam.ac.uk/linton-uk-covid-cases-predicted-peak; R-code is available
upon request. On this website we have also provided various robustness tests: we considered
quantile estimation in place of mean estimation to limit the effect of large measurement error; we
provided a one-step ahead forecasting exercise that keeps track of the model performance. We eval-
uated the residuals from our model along several dimensions. In particular, we found little evidence
of day of the week effects in most countries, although the United States and the United Kingdom do
appear to have a seasonal effect in deaths. We find some evidence of autocorrelation in the residuals
but it varies widely across countries, with the mean effect (across countries) being positive auto-
correlation. We find some limited evidence of time varying cross-sectional heteroskedasticity. We
find the error distribution pooled across countries is not far from symmetric for cases and slightly
less so for deaths. There appears to be substantial cross sectional contemporaneous correlation
between the errors from cases and deaths within a country (positive) and between cases in one
country and another (here, the mean is small and positive but there is wide dispersion meaning
there are also negative correlations in some cases). The SUR models we fit cannot benefit from
GLS, but the error properties can affect the standard errors and test statistics. We also develop a
joint model for the evolution of new cases and new deaths and test the restrictions it implies and
estimate the restricted model.

Our model is purely statistical and we do not pretend to model the disease dynamics per se, just
the data. However, the epidemiological models themselves do not have perfect forecasting records
and our approach is complementary to the large literature produced by professional epidemiologists
and biostatisticians.1 One advantage of our model over dynamic epidemiological models is that the
publicly available data from many countries is subject to a wide range of errors that make dynamic
models very suspect without some additional model for the measurement error, which typically
requires many untestable assumptions.

Literature Review. Many researchers apply or extend the SIR or its variants (SIRD, SEIR)
to model the dynamics of the Covid-19 outbreak. For example, Wu, Leung, Leung (2020)[31],
Anastassopoulou et.al (2020)[2], and Lin, Hu and Zhou (2020)[17]. A short description of the
baseline SIR model is as follows. The fixed population (N) can be split into three non-intersecting
classes: susceptibles (S), infectious (I) and recovered (R). The number of individuals in each of
these classes changes over time and satisfies

N(t) = S(t) + I(t) +R(t).

The dynamics of each class can be described using ordinary differential equations (ODEs) as follows:

dS

dt
= −βIS, dI

dt
= βIS − αI, dR

dt
= αI,

where β is the transmission rate constant, βI is the force of infection, and βIS is the number
of individuals who become infected per unit of time. The susceptible individuals who become

1They do say that Noah’s Ark was built and sailed by amateurs, whereas the Titanic was built and sailed by
professionals.
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infected move to the class I and individuals who recover (the constant recovery rate is α) leave the
infectious class and move to the recovered class. Equipped with initial conditions S(0), I(0), R(0),
the model can be easily solved. Elaborations on the basic SIR model that are used in the study
of Covid19 includes SIRD (eg. Anastassopoulou et.al (2020)[2]) and SEIR (eg. Wu, Leung, and
Leung (2020)[31] as well as Read et al. (2020)[26] ). Since there are daily data available on the
number of deaths, an additional class ’Deceased’ (D) can be included as well, which corresponds
to SIRD model. The other popular variant of baseline SIR is SEIR, which separately considers
susceptibles (S) and exposed (E).

Chudik, Pesaran and Rebucci (2020)[8] contrast government-mandated social distancing policies
with voluntary self-isolation in an SEIR model. They decompose the population, N , into two
categories: the exposed NE and the rest, NI , which are isolated. The strength of a mitigation
policy can be measured by 1 − λ where λ = NE

N
, and it integrates social distancing policy in the

traditional SIR model. They evaluate the costs and benefits of alternative societal decisions on
the degree and the nature of government-mandated containment policies by considering alternative
values of λ in conjunction with an employment loss elasticity α. They found that the employment
loss can be reduced if the social distancing policy is targeted towards people that are most likely
to spread the infection. Besides, other articles also discuss this model, see Wu, Leung, and Leung
(2020)[31] , Read et al. (2020)[26] , and Peng (2020) et al. [24] for details.

One feature of Covid-19 is that different sub-populations face different risks. Taking that into
account, Acemoglu et.al (2020)[1] develop a heterogeneous agent multi-risk SIR model (MR-SIR)
where infection, hospitalization and fatality rates vary between groups. Describing the laws of
motion of the susceptible, infectious and recovered populations by group, they found that better
social outcomes can be achieved with targeted policy that applies an aggressive lockdown on the
oldest group instead of a uniform lockdown policy.

However, these kinds of models have a high requirement on the data availability and quality, to
which the estimates are very sensitive. One of the limitations of Covid-19 data is that the number of
susceptible and recovered people are seldom reported. Apart from this reason, Li et al. (2020)[16]
point out the limitations of SIR style models, arguing that the real situation could be much more
complicated and changing all the time.

Another strand of time series analysis originated from Generalized Logistic Model (GLM), first
proposed by Richard (1959)[27], developed for modelling growth curves. Allowing for more flexible
S-shaped aggregation, the infection curve Y (t) evolves as

Y (t) = A+
K − A

(1 +Qe−Bt)1/v
,

where A and K are lower and upper asymptotes; B is the growth rate; v affects the maximum
asymptote growth; and Q is related to the value Y (0). An extension of GML called sub-epidemic
modelling was studied by Chowell, Tarip and Hyman (2019)[7], where they model each group sub-
epidemic by a GLM and then comprise a set of n overlapping sub-epidemics to describe the whole
epidemic waves. Roosa et al. (2020)[28] extend the aforementioned GML to fit the cumulative
number of confirmed Covid-19 cases and forecast short-run new cases in Hubei and other provinces
in China, and they found the S-shape curve fits the initial data well, based on the information until
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9th Feb. Additionally, they also compare their model with the Richard curve and sub-epidemic
modelling. All models provide good visual fits to the epidemic curves, and their estimates obtained
from GLM consistently illustrate that the epidemic growth is nearly exponential in Hubei and
sub-exponential in other provinces at early stages.

Liu, Moon and Schorfheide (2020) [19] consider a panel regression model for the infection growth
rates. Like us, they suppose a deterministic trend, in their case a piecewise linear trend for the
growth rates with breakpoint at the peak of the curve. They also explicitly include first order auto-
correlation in the error term, which after quasi differencing introduces a lagged dependent variable
into the mean equation. They assume a common value across countries for the autocorrelation, but
allow the other parameters to vary across countries. They specify prior distributions for all param-
eters. For example, the prior for the common autocorrelation is a normal with mean 0.5 truncated
to [0, 0.99]. They assume normality for the innovation process of the regression and independence
of these error terms across country and independence of the random coefficients across countries.
They provide Bayesianist inference and predictive density forecasts. This paper has some impres-
sive results. However, it is not clear what the evidence base is for some of their choices, since they
do not elucidate on them. In fact, we have found negative autocorrelations in the residuals from
our mean model to be quite common (perhaps due to stale reporting in some countries, Lo and
MacKinlay (1990))[20].2 Also, we find strong evidence of cross-sectional correlation between the
error terms, which seems eminently plausible as countries like Belgium and Netherlands, say, share
a lot common shocks, a point that has led to the developments in [12].

Apart from GLM, several other time trend modelling are worth reviewing, some of which verifies
the parabola time trend of daily new cases and deaths. Deb et al. (2020)[9] showed that a time-
dependent quadratic trend successfully captures the log incidence pattern of the disease among
Chinese provinces. Li, Feng and Quan (2020)[16]use time series modelling to fit the infections
and fatalities in China, an apparent quadratic trend and turning points are found. They also
demonstrate that the distribution of daily deaths is similar to that of daily infections with a 5 to 6
days delay. Furthermore, Flaxman et al. (2020) develop a semi-mechanistic Bayesian hierarchical
model to accommodate the impact of government interventions on both daily new infections and
fatalities among 11 European countries. Especially, most of their online plots based on data from
European CDC present second-order polynomial time trend, which are consistent with the evidence
from China. Moreover, Hafner (2020) [12] consider both serial correlation and spillover effects of
Covid-19 by spatial autoregressive models. Finally, Hu et.al (2020)[14] apply artificial intelligence
method for real-time forecasting of Covid-19 cases data. By using cumulative confirmed cases
data until the end of February 2020, they predicted that the provinces/cities would enter plateaux
eventually, although with varied time points.

Trend modelling has been a major activity in econometrics. The class of nonstationary processes
is extremely broad, and different types of nonstationarity can generate quite different behavior and
require quite different analytical techniques. There are two main approaches to depict the structure
of nonstationary data. One is the unit root theory for integrated time series, or similar techniques
for fractional integrated time series that covers unit root process as a special case. This theory and
associated techniques are studied and developed by Park and Phillips (1999,2001)[22][23], Marinucci
and Robinson (2001)[21], Hualde and Robinson (2011)[15], and Wang (2014,2015)[29][30], among

2They work with three day moving averages of the raw data, which is likely to induce positive autocorrelation.
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others. The other is locally stationary processes and deterministic trends. In economics, many data
series feature increasing trends that are quite close to linear. For epidemic data, the situation is
more complex so that typically there is an upward exponential growth, a plateaux, and a declining
trend part, all of which needs to be captured.

2 Transformation Regression Model
We model the number of new cases and new deaths per day for each country or territory. For
national health services, these are key quantities that determine peak resource needs. Let yit
denote either the number of new cases or the number of new deaths in country i on day t. We
sometimes add one to the count as this is necessary for some countries with sparse data records
or at early stages of the epidemic when zero counts were common. We also sometimes work with
the data normalized by population, i.e., (yit + 1) /ni, where ni is the population of country i and
rescaled time. Division by population only affects the constant term in our regressions, but is done
to aid comparability across countries.

We suppose that for some monotonic transformation τ (such as the logarithm)

xit = τ (yit) = mi(t) + εit, (1)

where mi is the trend in the mean of the process xit, i.e., mi(t) = E(xit), and the error term εit is
mean zero. We also define the mean of the original process yit, as Mi(t) = E(yit). We will allow
all aspects of the model to vary across countries without restriction, but we sometimes drop the
subscript i in the discussion for convenience. Although the data are counts, i.e., integer values,
we do not impose this property; this can matter a bit at the beginning and at the end of the
trajectory for small countries, but otherwise it doesn’t seem to be necessary or helpful to impose
some Poisson type process for large countries in the middle of the episode. We focus on the mean
regression and we do not restrict the error process beyond the zero mean property, it may be
autocorrelated and heteroskedastic within some limits. Nevertheless, statistical folklore suggests
that the transformation can help in reducing heteroskedasticity and other issues that arise from the
non-negative count nature of y, Box and Cox (1964). The long run behaviour is fully determined
by the trend m. We discuss both nonparametric and parametric (local and global) approaches to
choosing m.

Other models involve dynamic processes for yt; one problem with this approach is the presence
of measurement error in y, which in our framework is simply averaged out, whereas in a dynamic
model some additional structure regarding the measurement error would have to be imposed to
mitigate its effects on parameter estimation.

2.1 Parametric Forms

We first discuss the transformation τ.We have considered the Box-Cox family of transforms τv(y) =
(yv−1)/v, where v is an unknown parameter. In several of the web updates we provide a discussion
of inference in this model and provide prediction based on estimating the parameter v. However,
we found (see the website) that identification of the parameter v from short time series to be
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challenging, so in the sequel we suppose that v = 0 (i.e., τ is the logarithm of y or y+ 1) is given.3

We next discuss the trend function m. We consider polynomials in t and log(t). Suppose that

m(t) = a+ bt+ ct2, (2)

where a, b, c are parameters to be determined.A quadratic is the simplest function that reflects
the possibility of a turning point. A well defined maximum of m occurs if and only if c < 0
and occurs at the time τmax = −b/2c, which results in the maximal value of cases per day of
m(τmax) = a− b2/4c; finally, the value of t after which no cases would be reported (the end of the
epidemic) is the larger root of m(t) = 0. A quadratic function can also be rewritten in vertex form
so that m(t) = α + γ(t − µ)2, where µ = τmax and α = m(τmax), and the parameter γ = c. The
vertex form is good for interpretation since it is parameterized in terms of the quantities of interest
(but it does require some nonlinear estimation, whereas the parameters of the standard form all
have linear parameter effects, which makes it easier to implement). We consider a generalization
of the vertex form of the quadratic model

m(t) = α + γ|t− µ|λ, (3)

where α, γ, µ, λ are parameters to be determined. For any λ, a well defined maximum of m occurs
if and only if γ < 0 and occurs at the time τmax = µ,which results in the maximal value of (log)
cases per day of m(τmax) = α. The parameter λ controls the shape of the curve around the peak.
When λ > 2, this is called the leptobottomed case, that is, the peak is elongated relative to the
λ = 2 case. When λ = 1, the platybottomed case, the peak is sharper than the λ = 2 case. The
parameter γ measures the speed of approach to the peak and decline from the peak. We look at
values λ = 2 and λ = 4 primarily. In the case λ = 2, the equations (2) and (3) are in one to
one relation. The case λ = 4 is a special case of a quartic polynomial. For any λ this model is
symmetric about the peak, which enables prediction from before the peak is achieved, although it
is restrictive.

We have also worked with the mixed polynomial logarithmic functional form, that is,

m(t) = a− bt+ c log(t), t > 0, (4)

which is consistent with the typical unimodal trajectory under some restrictions. It suffices that
b > 0 and c > 0, in which case the peak is located at time c/b. The curve can be reparameterized
as m(t) = α − βt + βµ ln(t), where t = µ is the peak time. This functional form can generate
asymmetric behavior around the peak. The UK government promoted this type of curve, perhaps
as a way of encouraging "prudent" behaviour during the lockdown easing process, UK gov (2020).

Our model is for the transformed value of cases, the implied model for the cases themselves is
obtained by taking the inverse transformation. Specifically, for the general model (1) we obtain

M(t) = E
[
τ−1(m(t) + εt)

]
. (5)

3We use natural logarithms and base 10 logarithms interchangeably, where the latter is useful for interpretation
of graphs, while the former has a more convenient notation.
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If the distribution of εt is time invariant and τ is increasing, then the maximum of M and m
are achieved at the same time. In the logarithmic special case, M(t) = exp(m(t))κ0, where κ0 =
E [exp(εt)]. If εt were N(0, σ2), then κ0 = exp(σ2/2) and for small σ2 we have κ0 ' 1 + σ2/2,
and macroeconomists refer to this as the Jensen’s inequality term, and often drop it, Campbell
(1993)[4]. We do not specify any distributional shape for εt, since we don’t need to, and we account
for the presence of the stochastic error term in our predictions by estimating κ0.

In the case where τ is logarithmic, when λ = 2 the model m is quadratic in time and the implied
model for M(t) is proportional to a Gaussian density. When λ = 4, the implied model for M(t) is
proportional to a "fat bottomed" density with a flatter peak and faster curvature before and after
the peak. The mixed functional form (4) for m implies a shape for M(t) proportional to a gamma
density, i.e., M(t) ∝ tc+1 exp(−bt).

2.1.1 Parameters of Interest

The curves m(.),M(.) themselves are of interest and follow directly once the parameters are known
or estimated. Parameters of interest are the time τmax = µ where the maximum of m andM occurs
and the maximal value of (log) cases per day, m(τmax), which in the model (3) is α, since this is
embedded in the vertex form. Transforming back to cases we obtain for that model

ymax = exp(α)E [exp(εt)] , (6)

which is the maximum of M(t). For the log and linear curve (4), the peak is located at τmax =
−b/d = µ and m(τmax) = α + βµ(log(µ) − 1) and ymax = exp(α − βµ)µβµE [exp(εt)] . The peak
time could be in the future relative to the estimation window or could already have past.

We may be interested in the expected first passage time to some trough level from the peak. For
example, suppose that trough is defined as the expected peak number of new cases divided by some
number L. Then

tTP = min
t>τmax

{
ymax

M(t)
≥ L

}
.

For the quadratic model, this is equivalent to finding the first point t > τmax for which (t − µ) ≥√
− logL/γ.

We are also interested in the total number of cases that would occur in a given country, which
is
∑∞

t=−∞ exp(m(t)). We work with rescaled time below, that is, t 7→ t/K for some large K. In
this framework we can replace the sum by an integral and obtain a closed form in terms of the
parameters. In the case λ = 2, this is approximately

Ntotal = K ×
∫ ∞
−∞

exp(m(t))dt = K

√
−π
γ

exp (α) (7)

and in the case λ = 4

Ntotal = K
2Γ
(
5
4

)
4
√
−γ

exp(α) =
1.812K

4
√
−γ

exp(α). (8)

Finally, for the (4) family we have

Ntotal = K
Γ (c+ 1)

(−b)c+1
exp(a). (9)
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The reproduction number, also known as R or R0, is the average number of people that one person
with an infectious disease will likely infect in the future. It measures how fast the epidemic will
increase over time. In the context of our model, we may define R0 asm′(t)+1; this has the property
that R0 starts out above one and declines to one at the peak and then declines further towards
zero as the episode ends. (it measures the rate of growth of the epidemic)

3 Asymptotic Framework
We suppose that time is relative to December 31st 2019, which is the putative starting point of
the epidemic. However, the first time point tmin for a given country may be some time after this.
The last time point tmax we hope is finite, so that yt = 0 and log(yt + 1) = 0 for all t < tmin and
t > tmax. It follows that there are a finite, albeit potentially quite large, number of time periods with
information about m. We may use the traditional long horizon setting subject to this limitation.
Instead, we use an infill asymptotic scheme. We suppose that time is rescaled according to the
number of observations being used. That is, we if we label today as time t1, and if use we use the K
most recent observations, we suppose they fall in the interval [t0, t1] for some t0, so that observation
times are t0 + (t1− t0)/K, , . . . , t1 (with an abuse of notation we say t = 1, . . . , K). As K →∞ our
observations fill up the interval [t0, t1]. The data generating process is consequently a triangular
array indexed by K. The model however is assumed to operate over all time, i.e., from −∞ to ∞
(or from 0 to +∞ for the model containing a logarithmic trend). We note that some parameters
are relative to the coordinate system [t0, t1] induced by K, and we may want to convert them back
to calendar time relative to December 31st 2019 or today), which we do by linear transformation.
If we interpret the model as parametric and true for all data (the model is global), the model can
extrapolate both forward and backward.

Consider the nonparametric point of view. In this case the function m(.) is not specified except
that it is a smooth function of (rescaled time), and our quadratic regressions can be interpreted
as approximations (the model is local). In this case we take the one-sided estimation window of
size K to be a small fraction of the total available observations T . In this case, the interpretation
is that we are estimating the level of the regression function at the point u ∈ [t0, t1] using data
from previous periods and a local quadratic fit. For the local quadratic regression (Fan and Gijbels
(1996)[10], Gozalo and Linton (2000)[11]), a = m(u), b = hm′(u), and c = h2m′′(u)/2 so that
γ = h2m′′(u)/2, µ = −m′(u)/hm′′(u), and α = m(u) − (m′(u)2/2m′′(u)), where h is a bandwidth
parameter (1/K). This suggests that the γ parameter may be hard to estimate since it depends
on the second derivative of the regression function and also is scaled by a small quantity. In this
case, the model itself has limited extrapolative properties based on the assumption of smoothness.

4 Estimation
Our estimation methodology is very simple. We work with daily data that is available for all
countries since December 31st 2019. Each country in the database has a day of first case tcmin and
day of first death tdmin; these vary by country with China having its first recorded cases (as far as
this database is concerned) on December 31st, but other countries enter into the fray subsequently.
The current time period is denoted t1 and so we have data {ycit, ydit, t = 1, . . . , K, i = 1, . . . , n},
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which are count data with many zeros at the beginning.4

1. To estimate (3) we fix λ = 2 or λ = 4 and estimate the parameters α, γ for given µ by OLS
of the log of counts plus one (log(y+ 1)) for each country using the estimation window data,
which contains the most recent K datapoints with rescaled time (t/K).5 We then search for
the minimum squared error across different µ. For (4) we estimate by OLS directly. We allow
country specific case and country specific death values for all parameters. We also include
day of the week dummy variables in each regression. We provide standard errors for the
parameter estimates based on NLLS theory, which is detailed in the appendix. We use the
LS standard errors for simplicity, given the small sample size we have for each country the
HAC-based standard errors can be subject to a lot of noise. We comment on the residual
properties below.

2. We then extrapolate the estimated regression curves outside the estimation window and take
exponentials to deliver predictions of the number of new cases and new deaths per day.
That is, we calculate m̂(s) and M̂(s) = exp(m̂(s))κ̂0 for any s from −∞ to +∞, 6 where
κ̂0 =

∑K
t=1 exp(ε̂t)/K and ε̂t = log yt − m̂(t) are the least squares residuals. We forecast ys

for ANY TIME s by M̂(s). This is an asymptotically, i.e., as the estimation error disappears
(K →∞), unbiased forecast.

3. We provide frequentist prediction intervals for M(s) for any fixed s,

I(s) =
[
M̂(s) exp

(
q̂α/2

)
, M̂(s) exp

(
q̂1−α/2

)]
, (10)

where q̂α is the α-quantile of the residuals {ε̂t, t = 1, . . . , K}. As the estimation error
disappears (K →∞), this interval will contain M(s) with probability converging to 1− α.

4. We provide a forecast of the total number of cases: the total number of cases so far plus∑
s>today M̂(s). Alternatively, we use the formula for the total number of cases from the

model m, which is approximately given by (7), (8), and (9)

5. Selection of K. Our choice of K is often limited by data availability. We investigate in Section
9 a specific algorithm for choosing K.

When viewed as a parametric model, the choice of specification is crucial to obtain consistent
estimates of parameters. However, there is one robustness result that does hold, namely, in the
vertex model with λ0 > 0, provided there is data on either side of the peak, our estimation
procedures will robustly estimate the location of the peak µ for other values of λ, although other
parameters will not be consistently estimated.

Regarding the prediction intervals, a full disclosure. These are intended to assist the reader in
gauging the fundamental uncertainty that would be present were the parameter values known and

4For the model (4), t must be positive and so we define time from 1 to T.
5For the quadratic and log linear functional forms one can equivalently estimate by OLS the a, b, c parameters

and then derive the quantities of interest as functions of these parameters. Similarly for the model (4).
6For the model (4), s runs from 0 to ∞.
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the model were true. The reality is that neither of these conditions are met. If one takes account
of parameter uncertainty, then the prediction intervals expand rapidly with horizon. Technically,
the parameter uncertainty overwhelms the prediction uncertainty when the horizon is greater than
the square root of estimation sample size. We would argue that this is true of any model in this
setting unless one believes in Bayesian magic. We discuss short term prediction intervals that take
account of parameter uncertainty in more detail in the appendix.

5 Data
We use daily data on new cases and fatalities downloaded from the website of the European Centre
for Disease Protection and Control (ECDC), which is an agency of the European Union. According
to that website, the first case worldwide was recorded as December 31st 2019 (day 1). We have
the daily number of (new) cases and the number of (new) deaths upto today’s date, which is 180+
days at the time of writing since day 1. These are count data with some zeros initially but the
counts get quite big quite quickly for the major countries.

We consider the 191+ countries and entities in the ECDC dataset but report separately only the
thirty countries with the largest number of cases (excluding China) and with at least K days of
data. Specifically, cases are the reported daily count of detected and laboratory (and sometimes,
depending on the country reporting them and the criteria adopted at the time, also clinically) con-
firmed positive and sometimes - depending on the country reporting standards - also presumptive,
suspect, or probable cases of detected infection. The size of the gap between detected (whether
confirmed, suspect or probable) and reported cases versus actual cases will depend on the number
of tests performed and on the country’s transparency in reporting. Most estimates have put the
number of undetected cases at several multiples of detected cases. There are a number of report-
ing issues. Some of these include official governmental channels changing or retracting figures,
or publishing contradictory data on different official outlets. National or State figures with old
or incomplete data compared to regional, local (counties, in the US) government’s reports is the
norm.

6 Results
We consider the thirty countries with the largest number of cases (excluding China) and with
at least K days of data. We re-estimate every day as new data comes in. We fully expect the
parameters to change over time and to vary across country, and they do.

6.1 Estimation of Trend Models

We fit the models (3) and (4) on each country’s case and death data separately with the most recent
K datapoints (and using rescaled time with estimation window [t0, t1]) and report the most recent
results below in: Table 1a (cases, λ = 2), Table 1b (cases, λ = 4), Table 1c (cases, (4)), Table 2a
(fatalities, λ = 2) and Table 2b (fatalities, λ = 4) and Table 1c (fatalities, (4)). We use K = 100
here. The regressions generally have high R2 (not reported). There is quite a bit of heterogeneity
across the parameters consistent with different countries being at different stages of the cycle and
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having taken different approaches to managing the epidemic and having different demographics.
By now most countries have µ significantly in the past, which means their peak has passed, but
a number of countries still have yet to reach their peak. The γ parameters are mostly negative
but the standard errors are quite wide, and in some cases the confidence intervals around these
estimates includes zero. The ymax parameter is quite well estimated for most countries with some
exceptions. Most countries do not exhibit strong seasonal effects, although generally Monday and
Tuesday seem to report lower cases and deaths than other days of the week.

We provide likelihood ratio test statistics ` that can be used to test the difference between the
three models; the critical value for the likelihood ratio test is χ2

0.95 = 3.84. In the past there was
not much to choose between the models, for most countries. Currently, the US strongly prefers the
fat-bottomed model, Brazil favours the quadratic regression, whereas the UK favours the model
(4).

The table below gives log(caset + 1) = α + γ|t− µ|2 +
∑6

d=1 βdDd.

Table 1a: Empirical Results of the quadratic model with K=100

Name ymax µ̂ γ̂ Mon Tue Wed Thu Fri Sat log_likelihood
USA 32600 139 -2.17 -0.18 -0.16 -0.11 -0.19 -0.03 -0.04 -37.69*

(3262) (4) (0.5 ) (0.14) (0.14) (0.14) (0.14) (0.14) (0.14)
Brazil 33548 180 -4.89 -0.32 -0.36 0.05 0.09 0.09 0.15 8.39***

(3217) (3) (0.32) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)
Russia 15655 145 -13.01 0.09 -0.29 0.02 0.01 0.07 0.02 -82.68*

(2352) (1) (0.78) (0.22) (0.22) (0.22) (0.22) (0.22) (0.22)
India 13710 174 -5.88 -0.03 -0.11 -0.09 -0.08 -0.11 -0.03 -18.04 *

(1460) (3) (0.41) (0.12) (0.12) (0.12) (0.11) (0.11) (0.12)
UK 5107 121 -6.53 -0.05 -0.2 -0.1 -0.16 -0.03 0.03 -30.5**

(480 ) (1) (0.47) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13)
Peru 7075 145 -11.54 0.14 -1.35 -0.48 0.33 0.12 -0.07 -166.64***

(1925) (3) (1.82) (0.51) (0.51) (0.51) (0.5 ) (0.5 ) (0.51)
Chile 17642 235 -2.09 -0.09 -0.15 -0.16 0 0.01 0.03 -41.85***

(9555) (27) (0.52) (0.15) (0.15) (0.15) (0.14) (0.14) (0.15)
Spain 53 278 1.34 -0.43 -0.03 -0.03 0.22 0.22 0.11 -55.61***

(65 ) (68) (0.6 ) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17)
Italy NA -265 -0.49 -0.14 -0.32 -0.2 -0.04 -0.01 -0.04 -16.66**

(NA) (323) (0.41 ) (0.11 ) (0.11 ) (0.11 ) (0.11 ) (0.11 ) (0.11 )
Iran 1730 99 1.28 -0.04 0.01 0.01 0.03 0 -0.49 -117.07**

(353 ) (27) (1.11) (0.31) (0.31) (0.31) (0.31) (0.31) (0.31)
Mexico 4594 171 -5.46 0.01 -0.16 -0.01 0.02 0.1 0.11 30.96*

(289 ) (2) (0.25) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07)
France 315 218 1.56 -0.84 -0.25 0.1 -0.16 0.06 -0.1 -94.4***

(184 ) (52) (0.88) (0.25) (0.25) (0.25) (0.24) (0.24) (0.25)
Pakistan 13561 205 -3.27 -0.03 -0.1 -0.09 -0.46 -0.29 -0.88 -150.55***

(9385) (37) (1.55) (0.43) (0.43) (0.43) (0.43) (0.43) (0.43)
Turkey 2847 124 -4.88 -0.04 -0.09 0.01 -0.1 0.01 0.03 -97.42*

(460 ) (2) (0.91) (0.26) (0.26) (0.26) (0.25) (0.25) (0.26)
Germany 418 180 2.94 -0.23 -0.01 0.1 0.18 -0.15 0.35 -121.23***

(128 ) (21) (1.15) (0.32) (0.32) (0.32) (0.32) (0.32) (0.32)
Saudi Arabia 4241 163 -6.05 -0.13 -0.08 -0.06 -0.12 -0.07 -0.49 -92.9**

(747 ) (5) (0.87) (0.24) (0.24) (0.24) (0.24) (0.24) (0.24)
Bangladesh 3283 162 -11.15 0.14 0.2 0.22 0.17 0.23 0.17 -101.7*

11



(570 ) (3) (0.95) (0.27) (0.27) (0.27) (0.26) (0.26) (0.27)
South Africa 0 -178 0.86 0.19 0.09 -0.01 0.08 0.26 0.28 -56.7**

(1) (21 ) (0.6 ) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17)
Canada 1757 124 -7.57 -0.06 -0.06 -0.08 -0.01 0.04 -0.03 -33.81**

(171 ) (1) (0.48) (0.14) (0.14) (0.14) (0.13) (0.13) (0.14)
Qatar 2391 149 -10.93 -0.07 -0.14 -0.03 -0.15 -0.1 -0.48 -76.59**

(336 ) (2) (0.74) (0.21) (0.21) (0.21) (0.2 ) (0.2 ) (0.21)
Colombia 10458 272 -1.41 -0.19 -0.16 0 0.03 -0.62 0.07 -115.23**

(20669) (112) (1.09 ) (0.31 ) (0.31 ) (0.31 ) (0.3 ) (0.3 ) (0.31 )
Sweden 688 132 -4.7 -0.26 0.18 0.6 0.76 0.79 0.14 -152.85*

(163 ) (5) (1.58) (0.44) (0.44) (0.44) (0.44) (0.44) (0.44)
Egypt 2528 188 -3.63 -0.65 -0.36 -0.1 -0.89 -0.19 -0.31 -157.87***

(1198) (28) (1.66) (0.47) (0.47) (0.47) (0.46) (0.46) (0.47)
Belgium 1371 96 -5.45 -0.3 -0.51 -0.27 -0.26 0.02 0.03 -106.07**

(238 ) (6) (0.99) (0.28) (0.28) (0.28) (0.27) (0.27) (0.28)
Belarus 1414 144 -14.66 -0.14 0.59 0.45 0.42 0.62 0.56 -154.17**

(315 ) (2 ) (1.6 ) (0.45) (0.45) (0.45) (0.44) (0.44) (0.45)
Argentina 25 -46 1.02 -1.27 -0.26 -0.96 -0.39 -1.39 -0.41 -192.34**

(97 ) (401) (2.35) (0.66) (0.66) (0.66) (0.65) (0.65) (0.66)
Ecuador 881 150 -4.51 -0.14 -0.15 0.02 -0.03 -0.38 0.13 -133.09**

(136 ) (7) (1.3 ) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36)
Indonesia 1137 178 -2.76 -0.15 -0.27 -0.07 -0.33 -0.03 0 -69.65*

(215 ) (13) (0.69) (0.19) (0.19) (0.19) (0.19) (0.19) (0.19)
Netherlands 1561 42 -1.67 0 -0.57 -0.2 -0.16 0.11 0.08 -88.65**

(817 ) (43 ) (0.83) (0.23) (0.23) (0.23) (0.23) (0.23) (0.23)
UAE 1956 142 -12.36 -0.56 0.01 -0.08 -0.43 -0.18 -1.01 -151.5*

(426 ) (2) (1.56) (0.44) (0.44) (0.44) (0.43) (0.43) (0.44)

This table uses the latest K=100 days’ data (until 2020-06-26) to fit the quadratic model.
Standard errors are in parentheses below the estimates.
µ̂ is the estimated day of the peak, taking 201-12-31 as day 0.
The number of * at the last column denotes the relative goodness of fit based on log likelihood, where *** indicates
the model of the best fit among others.

The table below gives log(caset + 1) = α + γ|t− µ|4 +
∑6

d=1 βdDd.

Table 1b: Empirical Results of Quartic Model of Cases with K=100

Name ymax µ̂ γ̂ Mon Tue Wed Thu Fri Sat log_likelihood
USA 31178 138 -9.69 -0.19 -0.17 -0.13 -0.17 -0.02 -0.03 -15.73***

(37612) (126 ) (2.51 ) (0.11 ) (0.11 ) (0.11 ) (0.11 ) (0.11 ) (0.11 )
Brazil 38309 250 -0.63 -0.33 -0.37 0.04 0.1 0.1 0.15 2.21*

(7695) (21 ) (0.12) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)
Russia 10149 158 -15.87 0.07 -0.33 -0.03 0.01 0.05 0.04 -65.09***

(25297) (266 ) (3.6 ) (0.18 ) (0.18 ) (0.18 ) (0.18 ) (0.18 ) (0.18 )
India 17207 247 -0.72 -0.03 -0.11 -0.1 -0.07 -0.11 -0.03 -5.52**

(3825) (23 ) (0.13) (0.1 ) (0.1 ) (0.1 ) (0.1 ) (0.1 ) (0.1 )
UK 4233 125 -28.99 -0.05 -0.2 -0.1 -0.13 -0.01 0.04 -48.42*

(3602) (92 ) (2.54) (0.16) (0.16) (0.16) (0.15) (0.15) (0.16)
Peru 5575 176 -5.7 0.13 -1.38 -0.52 0.31 0.08 -0.06 -168.7*

(16008) (402 ) (4.33 ) (0.52 ) (0.52 ) (0.52 ) (0.51 ) (0.51 ) (0.52 )
Chile 6730 250 -0.52 -0.09 -0.15 -0.16 0.04 0.04 0.03 -60.14*

(2325) (39 ) (0.22) (0.18) (0.18) (0.18) (0.17) (0.17) (0.18)
Spain 318 250 0.46 -0.41 -0.01 -0.04 0.2 0.23 0.12 -72.63*
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(123 ) (44 ) (0.25) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 )
Italy 5692 0 -0.4 -0.14 -0.32 -0.2 0 0.03 -0.05 -53.04*

(1778) (34 ) (0.19) (0.16) (0.16) (0.16) (0.16) (0.16) (0.16)
Iran 1634 11 0.11 -0.04 0.01 0 0.04 0.01 -0.49 -117.27*

(1034) (73 ) (0.43) (0.31) (0.31) (0.31) (0.31) (0.31) (0.31)
Mexico 5761 244 -0.67 0.01 -0.17 -0.02 0.02 0.1 0.11 45.53***

(808 ) (14 ) (0.08) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
France 485 250 0.33 -0.85 -0.25 0.1 -0.17 0.06 -0.09 -98.55*

(224 ) (57 ) (0.32) (0.26) (0.26) (0.26) (0.25) (0.25) (0.26)
Pakistan 8976 250 -0.6 -0.03 -0.1 -0.09 -0.43 -0.27 -0.87 -152.75*

(6400) (97 ) (0.55) (0.44) (0.44) (0.44) (0.44) (0.44) (0.44)
Turkey 2566 131 -24.26 -0.05 -0.11 -0.02 -0.07 0.03 0.04 -90.66 **

(3154) (147 ) (3.94) (0.24) (0.24) (0.24) (0.23) (0.24) (0.24)
Germany 395 250 0.37 -0.23 -0.01 0.1 0.17 -0.16 0.35 -122.87*

(243 ) (72 ) (0.41) (0.33) (0.33) (0.33) (0.32) (0.32) (0.33)
Saudi Arabia 4865 226 -0.98 -0.13 -0.09 -0.07 -0.12 -0.08 -0.49 -92.69***

(3092) (70 ) (0.47) (0.24) (0.24) (0.24) (0.24) (0.24) (0.24)
Bangladesh 3957 221 -2.03 0.13 0.19 0.2 0.17 0.22 0.18 -99.87***

(2643) (81 ) (0.57) (0.26) (0.26) (0.26) (0.26) (0.26) (0.26)
South Africa 70 0 0.54 0.19 0.09 -0.01 0.02 0.21 0.28 -85.11*

(29 ) (47 ) (0.26) (0.23) (0.23) (0.23) (0.22) (0.22) (0.23)
Canada 1426 127 -34.37 -0.07 -0.06 -0.08 0.02 0.07 -0.03 -38.58*

(1071) (80 ) (2.27) (0.14) (0.14) (0.14) (0.14) (0.14) (0.14)
Qatar 1969 180 -5.18 -0.09 -0.17 -0.06 -0.16 -0.13 -0.46 -78.82*

(2625) (146 ) (1.5 ) (0.21) (0.21) (0.21) (0.21) (0.21) (0.21)
Colombia 2122 250 -0.48 -0.19 -0.16 0 0.07 -0.58 0.07 -119.27*

(1262) (70 ) (0.39) (0.32) (0.32) (0.32) (0.31) (0.31) (0.32)
Sweden 626 130 -23.51 -0.27 0.18 0.6 0.79 0.82 0.15 -151.51***

(1122) (260 ) (7.14) (0.44) (0.44) (0.44) (0.43) (0.43) (0.44)
Egypt 2440 250 -0.53 -0.65 -0.36 -0.1 -0.88 -0.18 -0.31 -159.25*

(1858) (104 ) (0.58) (0.47) (0.47) (0.47) (0.47) (0.47) (0.47)
Belgium 1690 19 -0.6 -0.29 -0.5 -0.27 -0.27 0.01 0.03 -109.04*

(1009) (73 ) (0.46) (0.29) (0.29) (0.29) (0.28) (0.28) (0.29)
Belarus 954 165 -12.01 -0.16 0.55 0.4 0.4 0.57 0.57 -154.66*

(3185) (510 ) (6.31) (0.45) (0.45) (0.45) (0.45) (0.45) (0.45)
Argentina 164 0 0.37 -1.27 -0.26 -0.96 -0.42 -1.42 -0.41 -193.39*

(128 ) (139 ) (0.76) (0.67) (0.67) (0.67) (0.66) (0.66) (0.67)
Ecuador 742 170 -3.04 0.01 -0.12 -0.01 -0.06 -0.34 0.23 -121.02***

(1471) (303 ) (3.5 ) (0.32) (0.32) (0.32) (0.32) (0.32) (0.32)
Indonesia 1129 232 -0.53 -0.15 -0.27 -0.07 -0.32 -0.02 0 -66.93**

(530 ) (50 ) (0.32) (0.19) (0.19) (0.19) (0.19) (0.19) (0.19)
Netherlands 1156 0 -0.3 0 -0.57 -0.2 -0.15 0.12 0.08 -92.16*

(512 ) (51 ) (0.28) (0.24) (0.24) (0.24) (0.24) (0.24) (0.24)
UAE 1187 145 -27.54 -0.58 -0.02 -0.14 -0.42 -0.19 -0.99 -150.17**

(5939 ) (724 ) (12.04) (0.43 ) (0.43 ) (0.43 ) (0.43 ) (0.43 ) (0.43 )

This table uses the latest K=100 days’ (until 2020-06-26) data to fit the quartic model.
Standard errors are in parentheses below the estimates.
µ̂ is the estimated day of the peak, taking 2020-12-31 as day 0.
The number of * at the last column denotes the relative goodness of fit based on log likelihood, where *** indicates
the model of the best fit among others.

The table below gives log(caset + 1) = a+ bt+ c log(t) +
∑6

d=1 βdDd.
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Table 1c: Empirical Results of Gamma Model of Cases with K=100

Name ymax µ̂ ĉ Mon Tue Wed Thu Fri Sat log_likelihood
USA 33085 133 8.21 -0.19 -0.16 -0.11 -0.18 -0.03 -0.04 -31.09**

(22014) (3 ) (1.41 ) (0.13 ) (0.13 ) (0.13 ) (0.13 ) (0.13 ) (0.13 )
Brazil 50411 218 14.64 -0.33 -0.37 0.04 0.09 0.09 0.15 7.69 **

(57481) (11 ) (0.95 ) (0.09 ) (0.09 ) (0.09 ) (0.09 ) (0.09 ) (0.09 )
Russia 13501 143 40.48 0.08 -0.31 0 0.02 0.07 0.03 -70.12**

(16091) (1 ) (2.08 ) (0.19 ) (0.19 ) (0.19 ) (0.19 ) (0.19 ) (0.19 )
India 16085 194 18.57 -0.03 -0.11 -0.1 -0.07 -0.11 -0.03 -4.5***

(17871) (7 ) (1.08 ) (0.1 ) (0.1 ) (0.1 ) (0.1 ) (0.1 ) (0.1 )
UK 5369 118 21.01 -0.05 -0.21 -0.11 -0.15 -0.03 0.03 -11.21***

(1777) (1 ) (1.15) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11)
Peru 6187 145 34.37 0.13 -1.36 -0.5 0.33 0.11 -0.06 -167.02**

(15394) (5 ) (5.47 ) (0.51 ) (0.51 ) (0.51 ) (0.5 ) (0.5 ) (0.51 )
Chile NA 4101 5.69 -0.09 -0.15 -0.17 0 0.01 0.03 -43.4**

(NA) (37121 ) (1.59 ) (0.15 ) (0.15 ) (0.15 ) (0.15 ) (0.15 ) (0.15 )
Spain NaN -127 -2.53 -0.43 -0.03 -0.02 0.22 0.22 0.11 -57.38**

(NaN ) (186 ) (1.83) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17)
Italy 14321 42 2.48 -0.14 -0.32 -0.2 -0.04 -0.01 -0.04 -15.14***

(32526) (13 ) (1.2 ) (0.11 ) (0.11 ) (0.11 ) (0.11 ) (0.11 ) (0.11 )
Iran 1698 101 -4.13 -0.03 0.01 0.01 0.03 0 -0.49 -116.95***

(375 ) (16 ) (3.32) (0.31) (0.31) (0.31) (0.31) (0.31) (0.31)
Mexico 5206 189 16.81 0.01 -0.17 -0.02 0.02 0.1 0.11 45.47**

(3470) (4 ) (0.65) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
France NaN -787 -3.03 -0.84 -0.25 0.1 -0.15 0.06 -0.1 -95.27**

(NaN ) (5143) (2.67) (0.25) (0.25) (0.25) (0.25) (0.25) (0.25)
Pakistan NA 436 8.76 -0.03 -0.11 -0.1 -0.46 -0.3 -0.87 -151.06**

(NA) (594 ) (4.67 ) (0.44 ) (0.44 ) (0.44 ) (0.43 ) (0.43 ) (0.44 )
Turkey 3058 121 17.89 -0.04 -0.09 0 -0.08 0.02 0.04 -88.89***

(2248) (2 ) (2.51) (0.23) (0.23) (0.23) (0.23) (0.23) (0.23)
Germany 220 264 -7.1 -0.23 -0.01 0.1 0.19 -0.14 0.35 -122.49**

(980 ) (152 ) (3.51) (0.33) (0.33) (0.33) (0.32) (0.32) (0.33)
Saudi Arabia 4358 175 18.17 -0.13 -0.09 -0.07 -0.12 -0.07 -0.49 -92.94*

(9388) (11 ) (2.61) (0.24) (0.24) (0.24) (0.24) (0.24) (0.24)
Bangladesh 3346 172 33.73 0.13 0.19 0.2 0.17 0.23 0.17 -100.57**

(6902) (6 ) (2.82) (0.26) (0.26) (0.26) (0.26) (0.26) (0.26)
South Africa 18 42 -3.33 0.19 0.09 -0.01 0.07 0.26 0.28 -55.94***

(58 ) (15 ) (1.8 ) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17)
Canada 1819 120 23.89 -0.07 -0.07 -0.09 -0.01 0.04 -0.03 -17.07***

(711 ) (1 ) (1.22) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11)
Qatar 2103 149 33.02 -0.08 -0.16 -0.04 -0.15 -0.11 -0.47 -75.16***

(2862) (2 ) (2.18) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 )
Colombia NaN -1177 4.55 -0.19 -0.16 0 0.03 -0.62 0.07 -115.09***

(NaN ) (8904) (3.26) (0.3 ) (0.3 ) (0.3 ) (0.3 ) (0.3 ) (0.3 )
Sweden 670 128 14.22 -0.27 0.18 0.59 0.76 0.79 0.15 -152.78**

(975 ) (5 ) (4.75) (0.44) (0.44) (0.44) (0.44) (0.44) (0.44)
Egypt 7702 292 9.4 -0.65 -0.36 -0.1 -0.9 -0.2 -0.31 -158.55**

(46487) (217 ) (5.03 ) (0.47 ) (0.47 ) (0.47 ) (0.46 ) (0.46 ) (0.47 )
Belgium 1451 100 17.61 -0.3 -0.51 -0.28 -0.25 0.02 0.04 -103.37***

(244 ) (3 ) (2.9 ) (0.27) (0.27) (0.27) (0.27) (0.27) (0.27)
Belarus 1202 143 44.67 -0.15 0.57 0.43 0.42 0.61 0.56 -152.79***

(2332) (3 ) (4.75) (0.44) (0.44) (0.44) (0.44) (0.44) (0.44)
Argentina 109 59 -4.04 -1.27 -0.26 -0.96 -0.39 -1.39 -0.41 -192.26***
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(466 ) (54 ) (7.05) (0.66) (0.66) (0.66) (0.65) (0.65) (0.66)
Ecuador 862 150 14.54 -0.2 -0.16 0.01 -0.03 -0.4 0.12 -136.54*

(1344) (11 ) (4.04) (0.38) (0.38) (0.38) (0.37) (0.37) (0.38)
Indonesia 1184 193 9.51 -0.15 -0.27 -0.07 -0.32 -0.02 0 -66.76***

(2348) (24 ) (2.01) (0.19) (0.19) (0.19) (0.18) (0.18) (0.19)
Netherlands 1098 80 6.45 0 -0.57 -0.2 -0.16 0.11 0.08 -87.18***

(1030) (11 ) (2.46) (0.23) (0.23) (0.23) (0.23) (0.23) (0.23)
UAE 1717 139 38.15 -0.57 0 -0.1 -0.42 -0.18 -1.01 -149.51***

(3063) (3 ) (4.59) (0.43) (0.43) (0.43) (0.42) (0.42) (0.43)

This table uses the latest K=100 days’ data (until 2020-06-26) to fit the Gamma model.
Standard errors are in parentheses below the estimates.
µ̂ is the estimated day of the peak, taking 2019-12-31 as day 0.
The number of * at the last column denotes the relative goodness of fit based on log likelihood, where *** indicates the
model of the best fit among others.

The table below gives log(deatht + 1) = α + γ|t− µ|2 +
∑6

d=1 βdDd.

Table 2a: Empirical Results of Quadratic model with K=100

Name ymax µ̂ γ̂ Mon Tue Wed Thu Fri Sat log_likelihood
USA 2500 131 -9.57 -0.33 -0.23 0.25 0.25 0 0.14 -112.99*

(457 ) (1 ) (1.06) (0.3 ) (0.3 ) (0.3 ) (0.29) (0.29) (0.3 )
Brazil 1146 155 -8.71 -0.4 -0.3 0.22 0.1 0.18 0.07 -2.69*

(83 ) (1 ) (0.35) (0.1 ) (0.1 ) (0.1 ) (0.1 ) (0.1 ) (0.1 )
Russia 164 152 -10.02 0 -0.12 0.23 0.21 0.25 0.25 -31.22*

(15 ) (1 ) (0.47) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13)
India 349 173 -5.76 0.14 0.02 0.19 0.12 0.07 0.07 -53.9*

(50 ) (5 ) (0.59) (0.17) (0.17) (0.17) (0.16) (0.16) (0.17)
UK 801 122 -8.41 -0.69 -0.6 0.3 0.18 0.06 0.13 -87.75**

(120 ) (1 ) (0.82) (0.23) (0.23) (0.23) (0.23) (0.23) (0.23)
Peru 215 153 -8.26 -0.28 -0.8 -0.3 0.01 -0.06 -0.1 -118.37*

(43 ) (4 ) (1.12) (0.31) (0.31) (0.31) (0.31) (0.31) (0.31)
Chile 29522 427 -0.79 0.13 -0.46 -0.62 -0.09 -0.07 0.01 -96.64**

(198732) (342 ) (0.9 ) (0.25 ) (0.25 ) (0.25 ) (0.25 ) (0.25 ) (0.25 )
Spain 1353 85 -6.43 0.66 0.82 0.18 0.19 0.68 0.21 -153.85*

(182 ) (11 ) (1.6 ) (0.45) (0.45) (0.44) (0.44) (0.45) (0.45)
Italy 1110 52 -2.34 -0.36 -0.29 -0.17 -0.1 -0.07 -0.05 7.88**

(192 ) (10 ) (0.32) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)
Iran 68 134 3.32 -0.02 0.04 0.03 0.07 0.05 -0.36 -72.4***

(10 ) (3 ) (0.71) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 )
Mexico 547 165 -7.97 -0.38 -0.09 0.24 0.29 0.23 0.28 -56.89*

(70 ) (3 ) (0.61) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17)
France 385 100 -6.4 -0.37 0.35 0.76 0.21 0.36 0.22 -85.53**

(55 ) (4 ) (0.81) (0.23) (0.23) (0.23) (0.22) (0.22) (0.23)
Pakistan 141 197 -3.17 0.02 0 0.07 -0.14 -0.02 -0.15 -69.82**

(42 ) (15 ) (0.69) (0.19) (0.19) (0.19) (0.19) (0.19) (0.19)
Turkey 87 124 -7.82 0 0 0.01 -0.03 0.04 -0.05 -86.86**

(13 ) (1 ) (0.82) (0.23) (0.23) (0.23) (0.23) (0.23) (0.23)
Germany 101 115 -8.88 -0.23 0.61 0.88 0.62 0.41 0.49 -128.69**

(21 ) (2 ) (1.24) (0.35) (0.35) (0.35) (0.34) (0.34) (0.35)
Saudi Arabia 546 342 -0.83 -0.09 -0.24 -0.06 -0.18 -0.09 -0.29 -43.32**

(1223) (137 ) (0.53) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15)
Bangladesh 115 235 -1.86 -0.11 -0.09 -0.09 -0.05 -0.17 -0.15 -63.09***
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(75 ) (37 ) (0.64) (0.18) (0.18) (0.18) (0.18) (0.18) (0.18)
South Africa 0 -775 0.27 -0.22 0.16 -0.15 0.22 0.14 0.31 -83.78**

(0 ) (2621) (0.79) (0.22) (0.22) (0.22) (0.22) (0.22) (0.22)
Canada 229 133 -13.43 -0.4 -0.39 -0.21 -0.07 -0.02 -0.06 -65.95*

(29 ) (1 ) (0.66) (0.19) (0.19) (0.19) (0.18) (0.18) (0.19)
Qatar 1 90 1.86 0.2 0.04 0.1 0.11 0.01 0.18 -59.19**

(0 ) (13 ) (0.62) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17)
Colombia 153 234 -1.79 0.07 -0.03 -0.02 -0.18 -0.26 0.09 -85.05**

(119 ) (48 ) (0.8 ) (0.23) (0.23) (0.23) (0.22) (0.22) (0.23)
Sweden 62 127 -9.41 -1.46 0.36 1.01 1.2 0.63 0.72 -120.28*

(11 ) (2 ) (1.14) (0.32) (0.32) (0.32) (0.32) (0.32) (0.32)
Egypt 1390 393 -0.58 -0.18 -0.12 -0.09 -0.56 -0.19 -0.2 -107.9**

(8209) (462 ) (1.01) (0.28) (0.28) (0.28) (0.28) (0.28) (0.28)
Belgium 151 114 -10.99 -0.03 -0.06 0.27 0.44 0.25 0.37 -100.86**

(24 ) (2 ) (0.94) (0.26) (0.26) (0.26) (0.26) (0.26) (0.26)
Belarus 7 150 -4.05 -0.04 0.03 -0.09 -0.09 0.1 -0.13 -26.8*

(1 ) (3 ) (0.45) (0.13) (0.13) (0.13) (0.12) (0.12) (0.13)
Argentina 44 234 -1.14 -0.65 0.04 -0.14 -0.01 -0.01 -0.09 -78.22**

(32 ) (70 ) (0.75) (0.21) (0.21) (0.21) (0.21) (0.21) (0.21)
Ecuador 58 143 -5.27 0.12 -0.03 -0.02 0.25 -0.53 0.78 -166.03*

(12 ) (7 ) (1.8 ) (0.51) (0.51) (0.51) (0.5 ) (0.5 ) (0.51)
Indonesia 59 206 -1.06 0.05 -0.27 -0.2 -0.29 0.02 -0.04 -74.89*

(23 ) (54 ) (0.73) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 )
Netherlands 124 102 -7.21 -0.56 -0.8 0.15 -0.01 0 0.05 -72.11**

(16 ) (3 ) (0.71) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 )
UAE 6 132 -6.52 0 0.15 0.11 0.05 0.06 -0.05 -71.67**

(1 ) (1 ) (0.7 ) (0.2 ) (0.2 ) (0.2 ) (0.19) (0.19) (0.2 )

This table uses the latest K=100 days’ data (until 2020-06-26) to fit the quadratic model.
Standard errors are in parentheses below the estimates.
µ̂ is the estimated day of the peak, taking 201-12-31 as day 0.
The number of * at the last column denotes the relative goodness of fit based on log likelihood, where *** indicates
the model of the best fit among others.

The table below gives log(deatht + 1) = α + γ|t− µ|4 +
∑6

d=1 βdDd.

Table 2b: Empirical Results of Quartic Model of Deaths with K=100

Name ymax µ̂ γ̂ Mon Tue Wed Thu Fri Sat log_likelihood
USA 1885 132 -42.44 -0.34 -0.25 0.22 0.29 0.03 0.15 -94.9***

(2730) (171 ) (4.31) (0.25) (0.25) (0.25) (0.25) (0.25) (0.25)
Brazil 1057 194 -3 -0.41 -0.31 0.19 0.1 0.17 0.08 19.77***

(402 ) (39 ) (0.35) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)
Russia 146 189 -3.8 0 -0.14 0.2 0.21 0.24 0.26 -30.11**

(101 ) (72 ) (0.68) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13)
India 414 241 -0.79 0.14 0.01 0.18 0.13 0.07 0.08 -46.97**

(140 ) (37 ) (0.22) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15)
UK 643 126 -39.88 -0.69 -0.61 0.29 0.22 0.1 0.14 -90.82*

(730 ) (136 ) (3.83) (0.24) (0.24) (0.24) (0.24) (0.24) (0.24)
Peru 199 193 -2.85 -0.29 -0.82 -0.32 0.01 -0.07 -0.1 -117.82**

(269 ) (158 ) (1.43) (0.31) (0.31) (0.31) (0.31) (0.31) (0.31)
Chile 125 250 -0.55 0.13 -0.46 -0.62 -0.04 -0.02 0.01 -108.52*

(61 ) (63 ) (0.35) (0.29) (0.29) (0.29) (0.28) (0.28) (0.29)
Spain 1417 0 -0.56 0.69 0.82 0.18 0.21 0.67 0.2 -153.01**
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(495 ) (93 ) (0.51) (0.45) (0.45) (0.44) (0.44) (0.45) (0.45)
Italy 903 0 -0.38 -0.36 -0.29 -0.17 -0.1 -0.05 -0.05 -8.6*

(191 ) (22 ) (0.12) (0.11) (0.11) (0.11) (0.1 ) (0.1 ) (0.11)
Iran 77 130 13.89 -0.02 0.04 0.03 0.05 0.03 -0.36 -75.17*

(89 ) (124 ) (3.36) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 )
Mexico 586 219 -1.62 -0.38 -0.1 0.22 0.3 0.23 0.29 -45.97**

(264 ) (48 ) (0.34) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15)
France 499 17 -0.59 -0.37 0.35 0.77 0.19 0.34 0.21 -94.57*

(256 ) (62 ) (0.38) (0.25) (0.25) (0.25) (0.24) (0.24) (0.25)
Pakistan 116 250 -0.53 0.02 0 0.06 -0.12 -0.01 -0.15 -73.2*

(46 ) (44 ) (0.25) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 )
Turkey 70 129 -35.23 -0.01 -0.02 -0.02 0.01 0.06 -0.04 -88.75*

(79 ) (133 ) (3.75) (0.23) (0.23) (0.23) (0.23) (0.23) (0.23)
Germany 80 122 -39.19 -0.24 0.61 0.88 0.66 0.45 0.5 -139.68*

(153 ) (272 ) (6.8 ) (0.39) (0.39) (0.39) (0.38) (0.38) (0.39)
Saudi Arabia 40 250 -0.41 -0.09 -0.24 -0.06 -0.15 -0.05 -0.28 -56.95*

(14 ) (37 ) (0.21) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17)
Bangladesh 48 250 -0.47 -0.11 -0.09 -0.09 -0.02 -0.14 -0.15 -71.67*

(19 ) (43 ) (0.24) (0.2 ) (0.2 ) (0.2 ) (0.19) (0.19) (0.2 )
South Africa 2 0 0.5 -0.21 0.16 -0.14 0.16 0.09 0.3 -102.88*

(1 ) (56 ) (0.31) (0.27) (0.27) (0.27) (0.27) (0.27) (0.27)
Canada 150 132 -55.41 -0.42 -0.41 -0.23 -0.02 0.02 -0.04 -60.63**

(164 ) (119 ) (3.04) (0.18) (0.18) (0.18) (0.17) (0.17) (0.18)
Qatar 1 1 0.16 0.2 0.04 0.1 0.11 0.01 0.18 -59.86

(0 ) (37 ) (0.2 ) (0.18) (0.18) (0.18) (0.17) (0.17) (0.18)
Colombia 69 250 -0.45 0.07 -0.03 -0.02 -0.15 -0.23 0.09 -87.21*

(30 ) (51 ) (0.28) (0.23) (0.23) (0.23) (0.23) (0.23) (0.23)
Sweden 47 129 -43.7 -1.47 0.35 0.99 1.24 0.67 0.73 -116.64**

(63 ) (176 ) (4.96) (0.31) (0.31) (0.31) (0.3 ) (0.3 ) (0.31)
Egypt 66 250 -0.36 -0.18 -0.12 -0.09 -0.52 -0.16 -0.2 -111.47*

(34 ) (64 ) (0.36) (0.29) (0.29) (0.29) (0.29) (0.29) (0.29)
Belgium 128 66 -2.61 -0.02 -0.04 0.3 0.39 0.22 0.36 -123.1*

(176 ) (183 ) (1.72) (0.33) (0.33) (0.33) (0.32) (0.32) (0.33)
Belarus 7 177 -2.36 -0.04 0.02 -0.1 -0.09 0.09 -0.12 -23.64***

(6 ) (94 ) (1 ) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12)
Argentina 26 250 -0.29 -0.65 0.04 -0.14 0.01 0.01 -0.09 -79.16*

(11 ) (47 ) (0.26) (0.21) (0.21) (0.21) (0.21) (0.21) (0.21)
Ecuador 48 150 -9.62 0.12 -0.05 -0.05 0.26 -0.54 0.79 -165.18***

(234 ) (876 ) (13.38) (0.5 ) (0.5 ) (0.5 ) (0.49 ) (0.49 ) (0.5 )
Indonesia 51 250 -0.2 0.05 -0.27 -0.2 -0.28 0.03 -0.04 -74.63**

(20 ) (45 ) (0.25) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 )
Netherlands 147 32 -0.93 -0.56 -0.79 0.16 -0.03 -0.02 0.05 -84.25*

(86 ) (67 ) (0.46) (0.22) (0.22) (0.22) (0.22) (0.22) (0.22)
UAE 5 133 -22.67 -0.01 0.14 0.09 0.06 0.06 -0.04 -82.18*

(6 ) (153 ) (3.83) (0.22) (0.22) (0.22) (0.22) (0.22) (0.22)

This table uses the latest K=100 days’ (until 2020-06-26) data to fit the quartic model.
Standard errors are in parentheses below the estimates.
µ̂ is the estimated day of the peak, taking 2020-12-31 as day 0.
The number of * at the last column denotes the relative goodness of fit based on log likelihood, where *** indicates
the model of the best fit among others.

The table below gives log(deatht + 1) = a+ bt+ c log(t) +
∑6

d=1 βdDd.
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Table 2c: Empirical Results of Gamma Model of Deaths with K=100

Name ymax µ̂ ĉ Mon Tue Wed Thu Fri Sat log_likelihood
USA 2512 127 31.76 -0.33 -0.24 0.24 0.26 0 0.14 -101.92**

(2532) (1 ) (2.85) (0.27) (0.27) (0.27) (0.26) (0.26) (0.27)
Brazil 1055 159 26.76 -0.4 -0.31 0.2 0.1 0.18 0.08 16.49**

(697 ) (2 ) (0.87) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)
Russia 148 154 30.35 0 -0.13 0.22 0.21 0.25 0.25 -26.6***

(138 ) (2 ) (1.34) (0.13) (0.13) (0.13) (0.12) (0.12) (0.13)
India 395 191 18.34 0.14 0.01 0.18 0.12 0.07 0.08 -46.76***

(623 ) (10 ) (1.64) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15)
UK 854 118 27.57 -0.69 -0.61 0.29 0.19 0.07 0.14 -75.29***

(505 ) (1 ) (2.19) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 )
Peru 198 156 25.09 -0.29 -0.81 -0.31 0.01 -0.06 -0.1 -117.66***

(423 ) (6 ) (3.34) (0.31) (0.31) (0.31) (0.31) (0.31) (0.31)
Chile NaN -101 2.64 0.13 -0.47 -0.62 -0.09 -0.07 0.02 -96.54***

(NaN ) (190 ) (2.71) (0.25) (0.25) (0.25) (0.25) (0.25) (0.25)
Spain 1325 94 21.65 0.66 0.81 0.17 0.2 0.68 0.19 -151.52***

(261 ) (5 ) (4.69) (0.44) (0.44) (0.43) (0.43) (0.44) (0.44)
Italy 857 78 7.55 -0.37 -0.29 -0.17 -0.09 -0.07 -0.05 12.87***

(355 ) (3 ) (0.91) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)
Iran 71 131 -9.34 -0.01 0.04 0.03 0.07 0.05 -0.37 -73.89**

(67 ) (4 ) (2.16) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 )
Mexico 551 175 24.96 -0.38 -0.1 0.23 0.29 0.23 0.28 -47.77***

(778 ) (5 ) (1.66) (0.16) (0.16) (0.16) (0.15) (0.15) (0.16)
France 417 103 21.52 -0.38 0.34 0.75 0.22 0.36 0.22 -75.8***

(72 ) (2 ) (2.2 ) (0.21) (0.21) (0.21) (0.2 ) (0.2 ) (0.21)
Pakistan 336 284 9.59 0.02 0 0.06 -0.14 -0.03 -0.15 -69.67***

(995 ) (81 ) (2.07) (0.19) (0.19) (0.19) (0.19) (0.19) (0.19)
Turkey 92 120 26.33 0 -0.01 0 -0.01 0.05 -0.05 -71.7***

(58 ) (1 ) (2.11) (0.2 ) (0.2 ) (0.2 ) (0.19) (0.19) (0.2 )
Germany 111 113 29.33 -0.24 0.6 0.87 0.63 0.42 0.5 -122.37***

(75 ) (2 ) (3.5 ) (0.33) (0.33) (0.33) (0.32) (0.32) (0.33)
Saudi Arabia NaN -371 3.29 -0.09 -0.24 -0.06 -0.18 -0.08 -0.28 -42.3***

(NaN ) (715 ) (1.57) (0.15) (0.15) (0.15) (0.14) (0.14) (0.15)
Bangladesh 15240 1098 5.54 -0.12 -0.09 -0.09 -0.05 -0.17 -0.15 -63.15 **

(84165) (3050 ) (1.94 ) (0.18 ) (0.18 ) (0.18 ) (0.18 ) (0.18 ) (0.18 )
South Africa 0 19 -1.11 -0.22 0.16 -0.15 0.22 0.14 0.31 -83.73***

(2 ) (35 ) (2.38) (0.22) (0.22) (0.22) (0.22) (0.22) (0.22)
Canada 216 129 41.48 -0.41 -0.4 -0.23 -0.06 -0.02 -0.05 -50.83***

(153 ) (1 ) (1.71) (0.16) (0.16) (0.16) (0.16) (0.16) (0.16)
Qatar 1 95 -5.7 0.2 0.04 0.1 0.1 0.01 0.18 -58.99***

(0 ) (8 ) (1.86) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17)
Colombia 530 412 6.69 0.07 -0.03 -0.02 -0.18 -0.26 0.09 -83.52***

(2282) (346 ) (2.38) (0.22) (0.22) (0.22) (0.22) (0.22) (0.22)
Sweden 63 123 30.12 -1.46 0.35 0.99 1.21 0.63 0.72 -114.89***

(58 ) (1 ) (3.25) (0.3 ) (0.3 ) (0.3 ) (0.3 ) (0.3 ) (0.3 )
Egypt NaN -219 2.44 -0.18 -0.12 -0.1 -0.55 -0.19 -0.2 -107.73***

(NaN ) (757 ) (3.03) (0.28) (0.28) (0.28) (0.28) (0.28) (0.28)
Belgium 169 112 35.51 -0.03 -0.07 0.26 0.45 0.26 0.37 -87.33***

(74 ) (1 ) (2.47) (0.23) (0.23) (0.23) (0.23) (0.23) (0.23)
Belarus 7 150 12.48 -0.04 0.02 -0.1 -0.09 0.1 -0.12 -24.4**

(6 ) (4 ) (1.32) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12)
Argentina 85 386 4.41 -0.65 0.03 -0.14 -0.01 -0.01 -0.09 -77.38***
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(330 ) (421 ) (2.23) (0.21) (0.21) (0.21) (0.21) (0.21) (0.21)
Ecuador 55 141 16.67 0.12 -0.04 -0.03 0.26 -0.53 0.79 -165.51**

(97 ) (8 ) (5.39) (0.5 ) (0.5 ) (0.5 ) (0.5 ) (0.5 ) (0.5 )
Indonesia 66 252 4.06 0.05 -0.27 -0.2 -0.28 0.02 -0.04 -74.16***

(179 ) (142 ) (2.16) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 ) (0.2 )
Netherlands 137 103 23.39 -0.57 -0.8 0.14 -0.01 0 0.05 -61.35***

(22 ) (2 ) (1.9 ) (0.18) (0.18) (0.18) (0.18) (0.18) (0.18)
UAE 6 129 19.69 -0.01 0.15 0.1 0.05 0.05 -0.05 -71.11***

(5 ) (2 ) (2.1 ) (0.2 ) (0.2 ) (0.2 ) (0.19) (0.19) (0.2 )

This table uses the latest K=100 days’ data (until 2020-06-26) to fit the Gamma model.
Standard errors are below the estimates.
µ̂ is the estimated day of the peak, taking 2019-12-31 as day 0.
The number of * at the last column denotes the relative goodness of fit based on log likelihood, where *** indicates
the model of the best fit among others.

6.2 Prediction of the Future

We present the estimated curves along with their 95% prediction intervals for selected countries
in the graphs below. The estimated curve in solid blue, confidence intervals in dotted blue, and
data points in red. The extrapolation curve is a scaled density function as mandated by our curve
models.

Figure 1: Plots of Cases and Deaths of the Best models of Selected countries Part1
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Figure 2: Plots of Cases and Deaths of the Best models of Selected countries Part2
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Figure 3: Plots of Cases and Deaths of the Best models of Selected countries Part3
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We estimate the time that it has taken for selected countries to pass from peak to trough, where
trough is defined as the estimated peak number of new cases divided by 10. Admittedly, this is not
a very exacting standard, but the advantage is that there are several countries that have effectively
satisfied this. An empirical estimator is just based on the first passage time

t̂TP = min
t>τmax

{log10(yτmax)− log10(yt) ≥ 1} ,

where log10(10) ' 1 and τmax = arg maxs log10(ys). For New Zealand, Australia, and Austria,
t̂TP = 14, for South Korea t̂TP = 15, for China t̂TP = 19, for Norway t̂TP = 21, for Israel t̂TP = 21,
while for Switzerland t̂TP = 31. These estimates are rather rough and in each case there was some
bounce back. Incidentally, looking at these successful countries’ trajectories, there seems to be a
fairly symmetric curve around the peak, see below the case of New Zealand.

We can also estimate the passage time from the model for countries that have not yet passed the
threshold by computing

min {t : m(τmax)−m(τmax + t) ≥ 1} ,

This is equivalent to (t− µ) ≥
√
−1/γ. For the UK, this gives around 28 days based on the latest

estimates, although the confidence interval is rather wide.

7 Model Tests and Robustness

7.1 One Step Ahead Prediction

The Choice of K This section illustrates the selection of the window width K. Let today
(2020-06-26) be the day 0, K ranges from 14 to 100 and L is the length of the test data. Due to
the missing data, we only list 27 out of top 30 countries. We compute the one step ahead forecast
m̂(1 − l;K) of log y1−l based on the data from {−l,−l − 1, . . . ,−l − K} for l = 1, 2, . . . , L and
calculate:

Q̂(K;L) =
1

L

L∑
1

|(log yi−l)− m̂(1− l;K)|.
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And we show the empirical results for both daily infections and fatalities below. Although K = 100
is not the best choice for all countries with top cases, it still works well for most of them.

Table 3: One Step Ahead Prediction Loss of Cases

Minimum Average Loss Average Loss of K=100
Name 1a 1b 1c 1a 1b 1c
USA 6463 9480 5186 16247 14250 16755
Brazil 3263 2395 2753 6139 5737 4130
Russia 103 845 120 2440 2757 1499
India 2761 1004 2612 5348 4902 4529
UK 109 93 109 292 258 267
Peru 1553 1800 1583 1677 2968 1885
Chile 1115 949 1100 3606 1143 3840
Italy 94 67 98 139 165 140
Iran 38 100 46 1102 1086 1014
Mexico 956 547 872 1448 1072 1050
France 207 202 211 207 304 213
Pakistan 706 1012 825 4907 3081 5554
Turkey 115 64 137 679 479 717
Germany 74 50 63 210 110 246
Saudi Arabia 77 95 86 302 745 594
South Africa 346 297 371 364 3837 397
Canada 32 21 27 64 65 44
Qatar 163 160 221 330 1110 613
Colombia 917 681 875 1248 1595 1194
Sweden 797 787 798 1310 1368 1281
Egypt 361 554 420 1256 767 1310
Belgium 86 75 88 91 95 90
Belarus 196 209 203 257 1132 443
Argentina 1099 1067 1108 1680 2023 1643
Indonesia 47 62 46 155 213 155
Netherlands 6 14 6 13 14 14
UAE 40 76 43 127 633 170

This table summarises the average loss of one step prediction for
new daily cases when L=5. And K ranges from 14 to 100 days. The
second column presents the minimum average loss of 5 days within
that range. And the corresponding results of K=100 are provided
for comparisions.
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Table 4: One Step Ahead Prediction Loss of Deaths

Minimum Average Loss Average Loss of K=100
Name 2a 2b 2c 2a 2b 2c
USA 389 149 393 609 564 595
Brazil 48 70 58 225 89 120
Russia 16 19 20 22 60 31
India 27 26 28 57 53 43
UK 43 29 45 74 75 72
Peru 86 80 84 102 82 89
Chile 34 48 35 76 155 69
Italy 18 15 18 18 17 18
Iran 13 3 20 19 20 26
Mexico 240 268 245 344 284 288
France 8 6 8 12 9 11
Pakistan 27 28 30 47 33 50
Turkey 2 3 2 15 12 15
Germany 4 4 4 8 8 7
Saudi Arabia 2 2 2 5 12 4
South Africa 20 14 20 32 110 32
Canada 7 11 9 7 14 9
Qatar 2 1 2 2 2 2
Colombia 31 31 39 49 58 49
Sweden 13 13 14 24 25 23
Egypt 38 33 38 45 58 47
Belgium 5 5 5 5 5 5
Belarus 1 1 1 1 1 1
Argentina 9 8 9 11 13 11
Indonesia 4 3 4 4 6 4
Netherlands 1 1 1 1 1 1
UAE 0 0 0 1 1 1

This table summarises the average loss of one step prediction for
new daily deaths when L=5. And K ranges from 14 to 100 days.
The second column presents the minimum average loss of 5 days
within that range. And the corresponding results of K=100 are
provided for comparisions.
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Table 5: One Step Ahead Prediction of Cases

Predicted Cases Reported Cases t-statistics
Name 1a 1b 1c 1a 1b 1c
USA 20555 21768 19793 40949 -1.8 -0.79 -2.04
Brazil 35116 35861 40111 39483 -0.55 -0.08 -0.05
Russia 3970 10810 5149 7113 -1.13 0.21 -0.74
India 11443 12221 12610 17296 -1.38 -0.27 -1.23
UK 568 437 624 1118 -2 -1.08 -2.1
Peru 2268 6038 3203 3913 -0.64 0.02 -0.38
Chile 9787 6095 10446 4648 1.69 0.06 1.85
Spain 237 474 212 400 -1.29 0.01 -1.52
Italy 171 102 164 296 -1.89 -0.05 -2.09
Iran 3973 3944 3782 2595 0.34 0.01 0.29
Mexico 4722 5363 5412 6104 -1.26 -0.16 -0.72
France 421 607 377 0 8.48 1.44 8.32
Pakistan 8678 6818 9694 2775 0.66 0.07 0.75
Turkey 631 691 610 1458 -1.41 -0.56 -1.58
Germany 329 391 282 477 -0.59 -0.07 -0.76
Saudi Arabia 3391 4314 3996 3372 -0.18 0.04 0.04
Bangladesh 3138 4618 4169 3946 -0.58 -0.01 -0.2
South Africa 8717 19777 8774 6579 0.39 0.03 0.42
Canada 194 136 223 369 -1.9 -1.24 -1.77
Qatar 844 1791 1131 1060 -0.57 0.22 -0.04
Colombia 1334 937 1390 3486 -1.3 -0.29 -1.26
Sweden 454 297 525 1566 -1.34 -0.71 -1.22
Egypt 1830 1586 2165 2989 -0.62 -0.12 -0.49
Belgium 32 32 35 109 -1.87 -0.08 -1.79
Belarus 523 1819 749 437 -0.2 0.25 0.11
Argentina 743 1275 783 2606 -1.03 -0.01 -1
Indonesia 1088 1025 1094 1178 -0.29 -0.1 -0.28
Netherlands 77 61 75 110 -0.74 -0.02 -0.78
UAE 325 967 419 430 -0.58 0.11 -0.35
τPY 1.18 -0.39 1.43

This table presents the results of one step ahead prediction of new cases for
2020-06-26 along with the reported values and t-statistics of the prediction. All
three models are applied. K=100 and τPY is the joint prediction test statistics
of all listed countries as Pesaran and Yamagata (2012)[25], see Appendix.
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Table 6: One Step Ahead Prediction of Deaths

Predicted Deaths Reported Deaths t-statistics
Name 2a 2b 2c 2a 2b 2c
USA 214 194 241 2437 -3.31 -1.64 -3.55
Brazil 859 1259 1032 1141 -1.08 0.1 -0.52
Russia 113 196 147 92 0.44 0.59 1.23
India 350 377 395 407 -0.55 -0.08 -0.28
UK 54 36 59 149 -1.8 -1.07 -1.84
Peru 120 183 148 175 -0.64 -0.04 -0.39
Chile 193 94 193 172 -0.09 -0.18 -0.09
Italy 24 19 25 34 -1.39 -0.04 -1.31
Iran 129 157 115 134 -0.2 0.05 -0.42
Mexico 579 691 680 718 -0.66 -0.07 -0.31
France 10 12 10 21 -1.34 -0.04 -1.36
Pakistan 134 101 142 59 1.36 0.13 1.5
Turkey 8 8 8 21 -1.68 -0.7 -1.84
Germany 3 1 3 21 -1.99 -1.15 -2.02
Saudi Arabia 54 32 52 41 0.47 -0.12 0.41
Bangladesh 51 34 55 39 0.35 -0.08 0.48
South Africa 146 355 147 87 0.62 0.03 0.64
Canada 15 14 20 20 -0.77 -0.34 -0.21
Qatar 4 4 4 2 0.83 0.02 0.71
Colombia 53 41 54 163 -2.02 -0.41 -2.04
Sweden 8 5 9 21 -1.39 -0.77 -1.25
Egypt 63 43 64 168 -1.5 -0.33 -1.49
Belgium 1 0 1 4 -1.49 -1.04 -1.48
Belarus 5 6 5 5 -0.11 0.15 0.08
Argentina 27 22 26 39 -0.84 -0.2 -0.89
Indonesia 53 48 51 47 -0.04 -0.05 -0.08
Netherlands 1 1 1 3 -1.66 -0.06 -1.64
UAE 1 1 1 1 -0.57 -0.07 -0.26
τPY 0.38 -0.46 0.58

This table presents the results of one step ahead prediction of new deaths for
2020-06-26 along with the reported values and t-statistics of the prediction.
All three models are applied. K=100 and τPY is the joint prediction test
statistics of all listed countriesas as Pesaran and Yamagata (2012)[25], see
Appendix.
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7.2 Residual Properties

In this section we look at the properties of the residuals from the trend fitting. The model assump-
tions do not exclude autocorrelation or heteroskedasticity but there is limited scope to improve
efficiency by exploiting these properties. They would however affect standard errors and might
suggest alternative short term predictors.

Autocorrelation We first estimate the autocorrelation function of {ε̂it, t = 1, 2, . . . , K} denoted
ρ̂i(j), j = 1, 2, . . . , J for all the available countries that have at least 100 observations, currently,
n = 150 countries. We take J = 21 to allow for long lag effects, which might be predicted for deaths
by epidemiological models. We calculated the estimated mean value of ρ̂i(j) across countries along
with standard errors that take account of the cross-sectional averaging but allow for cross sectional
correlation as Linton (2020)[18]. The pattern of autocorrelation is similar in both cases and deaths
for all three models, the weak positive correlation at low lags that declines across horizon to negative
autocorrelation after around ten days, and then remains a very low level closed to zero.

Distributional Properties We next show the kernel density estimate of the pooled standardized
residuals of both cases and death of all three models, which appears not far from a Gaussian shape,
at least, roughly symmetrical.

Cross-sectional Correlation We analysis cross-sectional correlation by computing the n × n
pairwise correlation matrix of time series residuals. We compare the plot of the pairwise correlation
density and normal distribution. For cases, the mean value of the pairwise correlation is very close
to zero and distributed similarly to normal distribution for all three models. However, for deaths,
the mean value is slightly positive, such as 0.18 for the quadratic model (2a), 0.09 for the quartic
model (2b) and 0.13 for the Gamma model (2c) .

Heteroskedasticity We look at time-varying heteroskedasticity in the residuals, specifically we
graph the time series of mean squared residuals

∑n
i=1 ε̂

2
it/n. It seems that there are limited spikes

for residuals of cases models while more outliers of deaths models in the cross country variability
of the error terms. However, it moves, generally speaking, in a modest range.

We show the results of all four residual properties of the quadratic model of cases (1a) in Figure 4
and deaths (1b) in Figure 5.
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Figure 4: Residual Properties of Quadratic Model of Cases
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Figure 5: Residual Properties of Quadratic Model of Deaths
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8 Combining Case and Fatality Models
Total fatalities should be a fraction of the total cases reported, and fatalities should follow cases, at
least individually. For this reason we consider the following model, which imposes that the fatality
curve is a delayed and shifted (because this is the log of cases) version of the case curve. Let ydit
denote deaths and ycit denote cases, where:

log
(
ydit
)

= md
i (t) + εdit,

log (ycit) = mc
i(t) + εcit.

We suppose that for some θi < 0 and ki ≥ 0

md
i (t) = θi +mc

i(t− k), (11)

which is a special case of the model considered by Härdle and Marron (1990)[13]. This imposes
restrictions across the coefficients of the two quadratic equations. The turning point for md occurs
k periods after the turning point for mc, that is, αd = αc + θ and µd = µc + k. The only equality
restriction is that the γ parameter is the same across both cases and deaths. We can test this by
comparing the statistic

γ̂d − γ̂c√
v̂ar(γ̂d − γ̂c)

(12)

with the standard normal critical values. Regarding the inequality restrictions αd − αc < 0 and
µd−µc > 0, these can also be tested separately by similar t-statistics with one-sided critical values.
Specifically, we consider

µ̂c − µ̂d√
var(µ̂c − µ̂d)

.

The tests results are presented below in two tables. The model does not fare well on either count
(although the significance mostly disappears when HAC standard errors are used)

We estimate the constrained model as described in the appendix, the results are shown below
graphically. For the UK the results look quite plausible.
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Table 7: The Hypotheses Test On γ̂case = γ̂death of Top 30 Countries
Until 2020-06-26 and K=100

countryname γ̂case γ̂death s.e(∆γ̂) t-stat
UAS -2.1263 -9.3089 0.731 9.826
Brazil -4.7037 -8.4341 0.334 11.169
Russia -12.7193 -9.7444 0.764 -3.894
India -5.7853 -5.638 0.478 -0.308
UK -6.4149 -8.1086 0.716 2.366
Peru -11.06 -7.9733 0.95 -3.249
Chile -2.013 -0.7313 0.888 -1.443
Spain 1.6029 -8.809 1.806 5.765
Italy -0.4951 -2.1971 0.406 4.192
Iran 1.303 3.3044 0.566 -3.536
Mexico -5.3239 -7.6995 0.567 4.19
France -0.1307 -6.2251 1.189 5.126
Pakistan -3.2801 -3.1389 1.089 -0.13
Turkey -4.7904 -7.6543 0.355 8.067
Germany 2.8744 -8.622 0.794 14.479
Saudi Arabia -5.9082 -0.8122 0.873 -5.837
Bangladesh -10.9014 -1.8296 0.833 -10.891
South Africa 0.8659 0.3374 0.988 0.535
Canada -7.3964 -13.0866 0.635 8.961
Qatar -10.7066 1.8031 0.893 -14.009
Colombia -1.4845 -1.8614 0.757 0.498
Sweden -4.3263 -8.8669 1.446 3.14
Egypt -3.6688 -0.6793 1.033 -2.894
Belgium -5.3037 -10.6704 0.828 6.482
Belarus -14.2614 -3.9488 1.462 -7.054
Argentina 0.8656 -1.0505 1.975 0.97
Ecuador -2.0516 -5.2959 1.792 1.81
Indonesia -2.7413 -1.0625 0.675 -2.487
Netherlands -1.5925 -6.9629 0.762 7.048
UAE -12.1046 -6.3816 1.561 -3.666
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Table 8: The Hypotheses Test On µ̂case < µ̂death of Top 30 Countries
Until 2020-06-26 and K=100

countryname µ̂case µ̂death s.e(∆µ̂) t-stat
USA -0.389 -0.4642 0.03 2.507
Brazil 0.0396 -0.2182 0.037 6.968
Russia -0.3254 -0.2524 0.016 -4.563
India -0.0311 -0.0364 0.041 0.129
UK -0.5664 -0.5593 0.012 -0.592
Peru -0.3159 -0.2354 0.018 -4.472
Chile 0.5982 2.6875 3.871 -0.54
Spain 0.6927 -0.8921 0.443 3.577
Italy -4.3904 -1.2917 3.126 -0.991
Iran -0.7841 -0.4399 0.255 -1.35
Mexico -0.0593 -0.1186 0.03 1.977
France -12.2877 -0.7758 102.432 -0.112
Pakistan 0.272 0.1937 0.264 0.297
Turkey -0.5309 -0.5346 0.013 0.285
Germany 0.0299 -0.6219 0.201 3.243
Saudi Arabia -0.1377 1.6637 1.348 -1.336
Bangladesh -0.1499 0.5781 0.348 -2.092
South Africa -3.4868 -7.7151 16.794 0.252
Canada -0.5359 -0.4478 0.009 -9.789
Qatar -0.2855 -0.8835 0.132 4.53
Colombia 0.8555 0.5091 0.74 0.468
Sweden -0.4535 -0.5077 0.043 1.26
Egypt 0.0942 1.7521 3.007 -0.551
Belgium -0.8177 -0.642 0.054 -3.254
Belarus -0.3293 -0.273 0.031 -1.816
Argentina -2.4996 0.6446 4.894 -0.642
Ecuador -0.3769 -0.3477 0.178 -0.164
Indonesia 0.0011 0.2768 0.467 -0.59
Netherlands -1.3903 -0.7647 0.45 -1.39
UAE -0.3542 -0.4502 0.027 3.556
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We calculate the ratio of expected total deaths to expected total cases (the fatality ratio) by country
as

Fr = exp(αd − αc) = exp

(
ad − ac − (bd)2

c
+

(bc)2

c

)
.

At the time of writing, UK has 0.136, France has 0.170, Italy has 0.132, Spain has 0.101, Germany
has 0.045, Australia has 0.052, and USA has 0.051. This may be saying more about the disparity
between countries in testing rather than the quality of treatment.

Epidemiological models often build in the effect of lagged cases on deaths, reflecting the natural
causal ordering of cases on deaths. We consider an alternative model that combines that feature
with our quadratic regression. Suppose that the log death regression is a weighted delay of the log
cases regression

md(t) =

∫ ∞
0

wsm
c(t− s)ds. (13)

In principle, if mc,md were both nonparametric and estimable one might be able to estimate the
function w by sieve expansion, using the methods described in inter alia Chen (2007)[5] and Chen
and Christensen (2015)[6]. We take a parametric approach where both m functions are quadratic.
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This is possible provided

ad + bdt+ cdt2 =

∫ ∞
0

ws
(
ac + bc(t− s) + cc(t− s)2

)
ds

=

∫ ∞
0

ws
(
ac + bct+ cct2

)
ds−

∫ ∞
0

wss (bc + 2cct) ds+ cc
∫ ∞
0

wss
2ds

= ac
∫ ∞
0

wsds− bc
∫ ∞
0

wssds+ cc
∫ ∞
0

wss
2ds+ t

(
bc
∫ ∞
0

wsds− 2cc
∫ ∞
0

wssds

)
+t2cc

∫ ∞
0

wsds.

We suppose that w is a constant ψ times the density of a normal random variable whose mean is
ϑ and whose variance is one. This shape seems plausible since it implies a peak loading some days
previous. We need the constants ϕj =

∫∞
0
sjwsds. Suppose that ϕj(θ), where θ = (ψ, ϑ) ∈ R2;

these constants are obtainable in closed form as integrals of normal densities, Barr and Sherrill
(1999)[3]: ∫ ∞

0

wsds = ψ

∫ ∞
−ϑ

φ(s)ds = ψ (1− Φ(−ϑ)) = ψΦ(ϑ)∫ ∞
0

wssds = ψ

∫ ∞
−ϑ

φ(s)sds = ψE(Z|Z > −ϑ) Pr(Z > −ϑ) = ψφ(ϑ)

∫ ∞
0

wss
2ds = ψ

∫ ∞
−ϑ

φ(s)s2ds = ψE(Z2|Z > −ϑ) Pr(Z > −ϑ) = ψ
1

2

∫ ∞
ϑ2

1

23/2Γ(3/2)
u1/2e−u/2du

= ψ
1

2

(
1− Fχ2(3)(ϑ

2)
)
,

where φ,Φ are the density function and c.d.f. of a standard normal random variable. This expresses
the parameters of the death curve uniquely as a function of the parameters of the case curve and
the two parameters ψ, ϑ. In particular, the location of the death peak is related to the case peak
as follows

µd =
−bd

2cd
= −

bc
∫∞
0
wsds− 2cc

∫∞
0
wssds

2cc
∫∞
0
wsds

=
−bc

2cc
+

∫∞
0
wssds∫∞

0
wsds

=
−bc

2cc
+
φ(ϑ)

Φ(ϑ)
= µc + λ(ϑ).

Since the Heckman correction λ(ϑ) ≥ 0, this implies that µd ≥ µc as for the previous model. This
equation allows the determination of ϑ because the function λ(ϑ) = φ(ϑ)/Φ(ϑ) > 0 is monotonic
decreasing. That is, ϑ = λ−1(µd − µc). Whence, ψ = cd/ϕ0(ϑ)cc. It follows that the quadratic
model for both cases and deaths is compatible with the posited relation between deaths and cases.

Regarding the peak of the two curves, we have

md
max = ad − (bd)2

4cd
= ψ

[
ϕ0m

c
max + cc

(
ϕ2 −

ϕ2
1

ϕ0

)]
.

By the Cauchy-Schwarz inequality, ϕ2− ϕ2
1

ϕ0
≥ 0 so that with negative cc we have md

max ≤ ψϕ0m
c
max.

This model imposes exactly one restriction like the shape invariant model but the nature of the
restrictions are quite different. We plan to investigate this model in the sequel.
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9 Concluding Remarks
There are many challenges in modelling the COVID data. Countries differ widely in their reporting
methods and standards, which makes the data noisy and sometimes very unreliable. Our model
does not impose any restrictions across countries for the evolution of the epidemic and we find
there are very large differences across countries in all the key parameters. Another complication
is due to different interventions implemented in different countries at different times. Actually,
most European countries introduced lockdown measures within the month of March 2020 so that
whatever effects these measures have had will be fully reflected in the subsequent data. Our model
allows us to estimate future turning points of the curves without imposing much structure. It
also allows the forecasting of total number of cases, although the confidence intervals around such
estimates are extremely large when proper attention is given to parameter uncertainty.

The one day ahead forecasting record of our model has been quite good, discounting the problems
arising from late and incorrect reporting of data. The main source of forecasting error was late
reporting. On the other hand, longer term forecasting has proved more challenging. We have
consistently underestimated the likely total number of cases and deaths for the UK and US.

We have some specific findings from the empirical work that is worth commenting. First, the
shapes of the curves appear to be quite different across countries. Second, the timing of peak
deaths in some countries precedes the peak of cases, which seems to be against the epidemiological
models. This may be because testing capacity has increased a lot and treatment has improved.
Third, the characteristics of endgame countries varies a lot: being a small island seems to help,
but countries as diverse as Luxembourg, China, South Korea, Israel, Switzerland have also reached
the endgame relatively quickly. There are also differences across countries in terms of the ratios
of deaths to cases. Part of this is due to how much testing is done (USA) and different death
definitions (Russia), but there must be more factors at play such as demographics, lifestlye choices
and social norms.

The models we have considered impose a single peak, although when we use a rolling window
analysis, a second peak will be detected from the updated sample. We may allow for multiple
peaks in a global model by taking higher order polynomial time trends. For example, quartic
polynomials allow two peaks. We may parameterize this explicitly as the double peak model

m(t) = α− γ (t− µ1)
2 ((t− µ2)

2 + δ
)

has twin peaks at µ1 and µ2 with the difference in peak heights given by γδ (µ2 − µ1)
2 . Using

this model we have found that South Korea and China and Portugal show signs of a second peak,
although the height of this second peak is an order of magnitude lower than the first round.

10 Appendix

10.1 Missing Data

In all the datasources we have worked with there are sometimes clearly "erroneous" data, such
as negative values. Health agencies sometimes report negative values to correct earlier mistakes,
and they often do not break down the corrections by date rather just post a single correction. For
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example, on 21/05/2020 the UK posted -515 new cases, while on 03/07/2020 they posted -29726.
This was accompanied by the statement

We have updated the methodology of reporting positive cases, to remove duplicates
within and across pillars 1 and 2, to ensure that a person who tests positive is only
counted once. Methodologies between nations differ and we will be making future revi-
sions to align approaches as much as possible across the 4 nations. Due to this change,
and a revision of historical data in pillar 1, the cumulative total for positive cases is
30,302 lower than if you added the daily figure to yesterday’s total. We will revise the
methodology note explaining this in more detail in due course

We take the following steps to adjust our estimation for these data issues. Suppose that at dates
t1, . . . , tr, the outcome variable is negative for country i. We then exclude yit1 , . . . , yitr and estimate
the model using the data excluding these observations. We then impute the missing observations
by

ŷits = exp(m̂(ts))κ̂0. (14)

Then we take the original negative values and the imputed ones yits − ŷits and redistribute them
to all the observations {yit, t ≤ ts} equally. Finally we reestimate the model with the full sample
reflecting the level shift(s). We have also carried out quantile regressions instead, which provides
some robustness to missrecording. The results are quite similar to the least squares ones.

10.2 Standard Errors

Here, we consider standard errors for a regression function of the form m(t) = α + γ|t − µ|λ +∑6
j=1 βjDjt, where µ is the location of the peak and λ > 1 is a known parameter that measures

the type of peak, while Djt are day of the week dummies. We let θ = (α, γ, µ, β
ᵀ
)
ᵀ
, where β =

(β1, . . . , β6)
ᵀ
, and let θ̂ minimize

QK(θ) =
1

K

K∑
t=1

(
yt − α− γ|t− µ|λ −

6∑
j=1

βjDjt

)2

.

In fact we solve this in two steps: for given µ, (α, γ, β
ᵀ
)
ᵀ can be found by closed form OLS

estimation, we then do grid search over µ. By standard theory for profile likelihood, this procedure
is equivalent to the MLE.

The score function components are

∂QK(θ)

∂α
=

1

K

K∑
t=1

(
yt − α− γ|t− µ|λ −

6∑
j=1

βjDjt

)

∂QK(θ)

∂γ
=

1

K

K∑
t=1

(
yt − α− γ|t− µ|λ −

6∑
j=1

βjDjt

)
|t− µ|λ
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∂QK(θ)

∂µ
=

1

K

K∑
t=1

(
yt − α− γ|t− µ|λ −

6∑
j=1

βjDjt

)
λγ|t− µ|λ−1.

∂QK(θ)

∂β
=

1

K

K∑
t=1

(
yt − α− γ|t− µ|λ −

6∑
j=1

βjDjt

)
Dt,

where Dt = (D1t, . . . , D6t)
ᵀ
. We can drop the constant term λγ from the score for µ (assuming

that γ 6= 0). Define the K × 9 data matrix

X =
(

1 |ti − µ̂|λ |ti − µ̂|λ−1 D1t · · · D6t

)K
i=1

M̂ = X
ᵀ
X/K.

It follows that (under iid error assumptions) as K →∞

M̂−1/2
√
K
(
θ̂ − θ

)
=⇒ N(0, σ2

ε),

where σ2
ε is the error variance. Standard errors are computed as

σ̂εsqrt(diag(M̂−1)),

where σ̂2
ε is the residual variance. We use these standard errors for the quadratic and quartic vertex

models; for the log model we just use OLS standard errors. The Gaussian log likelihood is

−K log σ2
ε −

1

2σ2
ε

K∑
t=1

(
yt − α− γ|t− µ|λ −

6∑
j=1

βjDjt

)2

.

To compare across different λ we can consider the likelihood ratio statistic, `λ − `2, where

`λ = K log (σ̂ε(λ)) ,

which should be approximately χ2 with one degree of freedom under the null hypothesis that the
true λ = 2.

10.3 Forecasting Test

We discuss here our approach to obtaining prediction intervals. We have a classical linear regression
with K observations:

yt = θ
ᵀ
xt + εt, t = 1, . . . , K

θ̂ = (X
ᵀ
X)−1X

ᵀ
y

V −1/2(θ̂ − θ) =⇒ N(0, I), V = σ2
ε(X

ᵀ
X)−1

yK+s|K = θ̂
ᵀ
xK+s.

We have

yK+s − yK+s|K = (θ̂ − θ)ᵀ
xK+s + εK+s ' N

(
0, σ2

εx
ᵀ

K+s(X
ᵀ
X)−1xK+s

)
+ εK+s,
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where we assume that the two random variables are independent.

As K → ∞, the parameter uncertainty is small for given s, but as s → ∞, the parameter un-
certainty grows without bound (in our case since xK+s = (1, 1 + s/K, (1 + s/K)2)

ᵀ
). In fact the

estimator of m is only consistent in the range where s2/K → 0. Our intervals, or any intervals, are
only valid over short horizons without strong additional assumptions or Bayesian magic. In our
graphs above we have ignored the contribution from estimation uncertainty, which mostly affects
long term prediction intervals, and affects them dramatically.

A simple approach is to assume normality for εK+s, in which case εK+s|K = yK+s − yK+s|K ∼
N
(
0, σ2

ε(1 + x
ᵀ

K+s(X
ᵀ
X)−1xK+s)

)
. We provide a test of the vector of one step ahead predictions

for n = 30 countries. We have for the vector of one step ahead predictions

εK+1|K ∼ N
(
0, (1 + x

ᵀ

K+1(X
ᵀ
X)−1xK+1)Ωε

)
,

where Ωε is the error covariance matrix, so that

ti =
yK+1 − yK+1|K√

(1 + x
ᵀ

K+1(X
ᵀX)−1xK+1)σ̂ii

,

is approximately standard normal for each i. Since n > K, we use a version of the Pesaran and
Yamagata (2012)[25] statistic to aggregate across countries

τPY =

∑n
i=1 t

2
i − n√

2iᵀn

(
R̂ε � R̂ε

)
in

, R̂ε = diag(Ω̂ε)
−1/2Ω̂εdiag(Ω̂ε)

−1/2,

which is asymptotically standard normal under the null (provided n is large and the cross-sectional
dependence is weak); the test is rejected if τPY > z1−α, where Φ(za) = a. Here, � denotes
Hadamard product and Ω̂ε is the residual covariance matrix estimate

Ω̂ε =
1

K

K∑
t=1

ε̂tε̂
ᵀ
t .

These are the statistics reported in Tables 3 and 4.

10.4 Restricted Model Estimation

We next discuss how to estimate the restricted model of Section 5. In this case we have a pair of
quadratic equations with an equality restriction,

log (yct + 1) = αc + βct+ γct2 + εct ,

log
(
ydt + 1

)
= αd + βdt+ γdt2 + εdt ,

where
E

[(
εct
εdt

)(
εct εdt

)]
= Ω.
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This is a SUR with a cross-equation restriction and the optimal estimator is a GLS. The unre-
stricted estimator vector θ̂ = (α̂c, β̂c, γ̂c, α̂d, β̂d, γ̂d)

ᵀ has variance Ω ⊗ (X
ᵀ
X)−1. We define θ =

(αc, βc, αd, βd, γ)
ᵀ and L the 6× 5 matrix of zeros and ones that picks out the right element

θ̃ =
(
L

ᵀ
(

Ω̂−1 ⊗ (X
ᵀ
X)
)
L
)−1

L
ᵀ
(

Ω̂−1 ⊗ (X
ᵀ
X)
)
θ̂

with asymptotic variance (
L

ᵀ (
Ω−1 ⊗ (X

ᵀ
X)
)
L
)−1

.

In our second model, the quasi likelihood can be used with one step taken from initial consistent
estimators of θ = (ac, bc, cc, ψ, ϑ)

ᵀ
. The quasi-likelihood is

`(θ,Ω) = −K
2

log det Ω− 1

2

K∑
t=1

(yt −mt(θ))
ᵀ

Ω−1 (yt −mt(θ)) ,

where yt = (yct , y
d
t )

ᵀ and mt = (mc
t ,m

d
t )

ᵀ
, where, with ϕ0(ϑ) = Φ(ϑ), ϕ1(ϑ) = φ(ϑ), and ϕ2(ϑ) =

1
2
(1− Fχ2(3)(ϑ

2)), we have

md
t = ψ (acϕ0(ϑ)− bcϕ1(ϑ) + ccϕ2(ϑ)) + tψ (bcϕ0(ϑ)− 2ccϕ1(ϑ)) + t2ψccϕ0(ϑ).

This is an SUR system with a nonlinear cross equation restriction. The efficient estimator should
use the error covariance matrix.

We can alternatively estimate the unrestricted model (ac, bc, cc, ad, bd, cd)
ᵀ and then impose the

restrictions afterwards by minimum distance where ad

bd

cd

 = ψ

 ϕ0(ϑ) −ϕ1(ϑ) ϕ2(ϑ)
0 ϕ0(ϑ) −2ϕ1(ϑ)
0 0 ϕ0(ϑ)

 ac

bc

cc

 .

for some norm. This is similar to the case we have already studied because there are five unrestricted
parameters and 6 estimable quantities.
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