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Bargaining foundations for price taking

in matching markets∗

Matthew Elliott & Eduard Talamàs†

Abstract

Agents make non-contractible investments before bargaining over who matches with

whom and their terms of trade. When an agent is a price taker—in the sense that her

investments do not change her potential partners’ payoffs—she has incentives to make

socially-optimal investments. Across a variety of non-cooperative bargaining models

featuring dynamic entry, we show that everyone necessarily becomes a price taker as

bargaining frictions vanish if and only if there is a minimal amount of competition always

present in the market. The necessity of this condition highlights that dynamic entry need

not create enough competition to guarantee price taking even if agents are arbitrarily

patient. The sufficiency of this condition highlights that everyone can be a price taker

even in markets that appear extremely thin at every point in time.

1 Introduction

The extent to which markets create appropriate investment incentives is a fundamental

question in economics (e.g., Williamson 1975; Grout 1984; Grossman and Hart 1986; Ace-

moglu 1997; Acemoglu and Shimer 1999; Cole, Mailath, and Postlewaite 2001a; Antràs 2014;

Hatfield, Kojima, and Kominers 2019; Akbarpour, Kominers, Li, and Milgrom 2020). In this

∗Date Printed: December 22, 2020.
†Elliott: University of Cambridge. Talamàs: IESE Business School and CEPR. We thank Marina Agranov,

Benjamin Golub, George Mailath, Georg Nöldeke, Andrew Postlewaite, Larry Samuelson and Jószef Sákovics

for very useful conversations, and various audiences for helpful feedback. We acknowledge financial support

from Cambridge-INET, the European Research Council under the grant “EMBED” (#757229), and the Foun-

dations of Human Behavior Initiative. Talamàs also acknowledges support from the the Warren Center for

Network & Data Sciences and the Rockefeller Foundation (#2017PRE301).
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paper, we investigate the conditions under which agents are price takers in decentralized

matching markets—in the sense that their investment choices before entering the market do

not affect the prices that they face once they enter the market. When this is the case, everyone

is the residual claimant on the returns of her investments, so private and social incentives to

invest are perfectly aligned (e.g., Rogerson 1992; Makowski and Ostroy 1995; Nöldeke and

Samuelson 2015).

Guaranteeing that everyone is a price taker in matching markets without dynamic entry

generally requires extremely thick markets containing infinitely many agents of each type

(e.g., Leonard 1983, Gretsky, Ostroy, and Zame 1999, Cole, Mailath, and Postlewaite 2001b;

Elliott 2015). In contrast, we consider markets featuring dynamic entry, and we show that

everyone necessarily becomes a price taker as bargaining frictions vanish if and only if there

is a minimum amount of competition always present in the market. For example, in our

benchmark model—in which there are arbitrarily many different types of agents and at most

one match (consisting of two agents of different types) can form in each period—the relevant

condition is that there are always at least two agents of each type present in the market. More

generally, the relevant condition is that the stock of agents of any given type in the market

is always strictly larger than the flow of this type of agents out of the market.

The minimal amount of competition that we identify as being necessary and sufficient to

guarantee price taking does not make the details of the bargaining process irrelevant: Even

when this competition is always present, the equilibrium payoffs vary with the proposer

probabilities and other details of the bargaining protocol. For example, in the context of

labor markets, as workers become more patient relative to firms, their wages increase. The

received wisdom derived from results across a variety of settings (e.g., Grossman and Hart

1986; Hart and Moore 1990; Hosios 1990) is that how the surplus is shared in equilibrium ex

post drives investment incentives. In contrast, we show that—irrespective of relative bar-

gaining powers, the specifics of the bargaining protocol and the equilibrium sharing rule—

when a minimal amount of competition is always present, everyone is the residual claimant

on the returns from their investments in the limit as bargaining frictions vanish.

On the one hand, the fact that the presence of a minimal amount of competition in each

period is necessary to guarantee price taking highlights that dynamic entry per se does not

create enough competition to ensure that agents are price takers as frictions vanish. In par-

ticular, in our non-cooperative bargaining framework, the prospect of future competition

is not a perfect substitute for present competition even if agents are arbitrarily patient. As

we illustrate with an example in section 2.2, this is because—when the minimal amount of

competition is not always present—agents can obtain monopoly rents by waiting to match
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in periods in which this competition is not present.

On the other hand, the fact that the presence of a minimal amount of competition in each

period is sufficient for price taking highlights that everyone can be a price taker even in

markets that appear extremely thin at every point in time. To gain intuition for this result,

consider an agent who invests differently from all her fellow agents of the same type. Con-

sider first her bargaining position against agents with whom she generates more surplus

than her fellows: As long as there is always a minimal amount of competition between these

agents, she can play them off to make sure that they do not appropriate these potential gains.

Second, consider her bargaining position against agents with whom she generates less sur-

plus than her fellows: As long as she always faces a minimal amount of competition, they

can ignore her without any payoff consequences, so they won’t appropriate these potential

losses either.

Our results suggest that the fluidity of a market can play an important role in determin-

ing its competitiveness and efficiency. When agents of a certain type are rare and only come

along infrequently, the minimal competition that we identify will not always be present, in

which case agents may not be able to fully appropriate the marginal returns of their invest-

ments and, as a result, may not have incentives to invest efficiently. In contrast, when the

inflow of all types of agents is relatively large, the minimal competition requirements that

we identify are naturally satisfied, and everyone’s investments are necessarily constrained-

efficient as bargaining frictions vanish. In particular, consistent with the observation that

a recent decline in US labor market fluidity has significantly reduced productivity (e.g.,

Decker, Haltiwanger, Jarmin, and Miranda 2020), our findings suggest a channel by which

declines in labor market fluidity can reduce investment incentives.

The main contributions of this paper to the bargaining literature are threefold. First, to the

best of our knowledge, this paper is the first to provide non-cooperative bargaining founda-

tions for the canonical price taking assumption in matching markets (e.g., Cole, Mailath, and

Postlewaite 2001b; Nöldeke and Samuelson 2015; Mailath, Postlewaite, and Samuelson 2017;

Chiappori, Salanié, and Weiss 2017; Chiappori, Dias, and Meghir 2018; Dizdar 2018). This

literature considers markets featuring a continuum of price-taking agents on each side to turn

off appropriation problems and to investigate other sources of investment inefficiencies—

like coordination failures, participation constraints, and imperfect information.1 Our non-

cooperative bargaining foundations for price taking provide a way to gauge the conditions

1A branch of the search and matching literature investigates investment incentives in markets that also

feature a continuum of agents on each side; see for example Acemoglu and Shimer (1999) and Bester (2013).
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under which this standard competitive matching assumption is reasonable in practice.2

Second, this paper shows that considering dynamic entry significantly changes the con-

ditions under which agents are price takers in matching markets. For example, Leonard

(1983) and Gretsky, Ostroy, and Zame (1999) show that, generically, not everyone can be a

price taker in finite assignment games. In the special case of unidimensional attributes and

complementarities in these attributes, Cole, Mailath, and Postlewaite (2001a) provide a con-

dition called “doubly overlapping attributes” that guarantees that everyone is a price taker

in these games. In contrast, taking a non-cooperative bargaining approach and allowing for

dynamic entry, we uncover a considerably less restrictive condition that is both necessary

and sufficient to ensure that agents become price takers as bargaining frictions vanish with-

out restricting attention to two-sided markets or requiring complementarities in attributes.

Finally, this paper contributes to the classical literature that investigates the extent to

which the equilibrium outcomes in non-cooperative bargaining games become competitive

as bargaining frictions vanish. The standard approach in this literature has been to compare

the equilibrium predictions of a dynamic game as frictions vanish to the Walrasian equilib-

rium of an associated static economy (e.g., Rubinstein and Wolinsky 1985, 1990; Gale 1987;

Binmore and Herrero 1988; Wolinsky 1988; McLennan and Sonnenschein 1991; de Fraja and

Sákovics 2001; Gale and Sabourian 2005; Dávila and Eeckhout 2008; Lauermann 2013; Polan-

ski and Vega-Redondo 2018; Elliott and Nava 2019). In contrast, we ask a complementary

question: Do agents become price takers as frictions vanish—in the sense that the prices that

each agent faces once she enters the market are unaffected by her investment choices?

Roadmap

The rest of this paper is organized as follows. Section 2 illustrates the main ideas of this pa-

per with a relatively simple example. Section 3 describes the benchmark model and section

4 presents our main result. Finally, section 5 discusses how this result extends beyond our

benchmark model and its implications for investment efficiency.

2A complementary literature considers how the holdup problem can be solved in bilateral matching set-

tings even if agents are not price takers (e.g., Gul 2001; Che and Sákovics 2004).
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2 Example

Section 2.1 illustrates how the lack of price taking in finite matching markets without dy-

namic entry can lead to a holdup problem. Section 2.2 illustrates how the existence of a

minimal amount of competition in every period is both necessary and sufficient to guaran-

tee that agents are price takers—and hence that holdup is not a problem—in the limit as

frictions vanish.

2.1 The holdup problem in a market without dynamic entry

There are two buyers and two sellers. Each buyer can match with at most one seller, and vice

versa. One agent (buyer b1, say) can make non-contractible investments before entering the

market. As Figure 1 illustrates, the surplus that b1 generates when matching with any seller

depends on her investment choice, which is binary: If she chooses to invest, which costs her

1/2 < c < 1, then her matching surplus with each seller is 2. If she chooses to not invest, then

she does not pay any investment cost and her matching surplus with each seller is 1. Every

buyer-seller match that does not involve b1 generates 2 units of surplus. The unit surplus

generated by the investment is larger than its cost c, so efficiency requires that b1 invests.

Once b1 has made her investment choice, bargaining occurs according to the following

standard protocol (e.g., Elliott and Nava 2019). In each period t = 1, 2, . . . , one of the four

agents is selected uniformly at random to be the proposer. If the selected agent has already

left the market in a previous period, no actions are taken and no one matches in this period.

Otherwise, the proposer chooses one agent on the other side of the market, and makes her a

take-it-or-leave-it offer to share their gains from trade. The receiver of this offer then either

accepts it, in which case the pair match and leave the market with their agreed shares; or

rejects it, in which case no one matches in this period. The bargaining friction is that agents

are impatient. We focus on the case in which this friction vanishes (agents’ common discount

factor δ goes to 1), and on strategies that only condition on the Markov state, which consists

of the set of agents yet to match and the surpluses that they can generate.

Conditional on b1 investing, there is an essentially unique Markov-perfect equilibrium:

Each proposer makes an acceptable offer to an agent on the other side of the market, and

everyone’s payoffs converge to 1 as δ goes to 1.3 As we show in Appendix A, when b1 does

not invest, she can wait for b2 to leave at a cost that vanishes as δ goes to 1, at which point b1
3In fact, the concept of iterated conditional dominance—which solves Rubinstein’s (1982) canonical

alternating-offers game (e.g., Fudenberg and Tirole, 1991, page 128)—also pins down the payoffs in this case.
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b1 b2

s1 s2

1/2 3/2

1/21/2

(a) The case in which b1 does not invest.

b1 b2

s1 s2

1 1

11

(b) The case in which b1 invests.

Figure 1: Thick and thin links correspond to matching surpluses 2 and 1 respectively.

is in a bilateral monopoly with another seller, and her unique subgame-perfect equilibrium

converges to 1/2 as δ goes to 1. In other words, by not investing, b1 can guarantee a limit

payoff of 1/2, which is larger than her limit payoff 1− c when she invests. Appendix A also

shows that a similar problem arises with an arbitrary number n of buyers and sellers, so this

example highlights how full appropriation can fail even for general-purpose investments in

arbitrarily large markets without dynamic entry.

2.2 The holdup problem in a market with dynamic entry

The above example illustrates a potential source of holdup in matching markets: An agent

that underinvests has the possibility of waiting until she is in a bilateral monopoly, at which

point she can share the surplus losses generated by her underinvestment. This suggests that

this problem might be ameliorated when new buyers and sellers enter the market over time.

We now describe an example that illustrates the conditions under which this is indeed the

case.

Consider the following modification of the game described above: At the beginning of

each period, if there are no agents left in the market, a new buyer-seller pair enters with

probability 1 and, if one buyer-seller pair is left in the market, a new buyer-seller pair enters

with probability 0 ≤ ρ ≤ 1. This process of dynamic entry ensures that there are always

either one or two buyer-seller pairs in the market and, when ρ > 0, that there is always

a strictly positive probability that there will be two buyer-seller pairs in the market in the

future. Every buyer-seller match that does not involve b1 still generates 2 units of surplus,

while every buyer-seller match that involves b1 generates 1 unit of surplus if b1 does not

invest and 2 units of surplus if b1 invests.
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b1

s1

(a) State 1.

b1 b2

s1 s2

(b) State 2.

Figure 2: The two states in which non-investor b1 is active. Conditional on no match occur-

ring in a state 1 period, the market moves to state 2 with probability ρ. Conditional on no

match occurring in a state 2 period, the market stays in state 2 with probability 1.

As above, when b1 invests, in every Markov-perfect equilibrium, every proposer makes an

acceptable offer to an agent on the other side of the market, and everyone’s payoff converges

to 1 as δ goes to 1. Consider now the case in which b1 does not invest. We describe an

equilibrium in which b1 (essentially) only matches when she is the only buyer in the market,

and the sellers’ limit payoffs while b1 is in the market are strictly below 1. In particular, as

long as ρ < 1—so that it is not guaranteed that there will be two buyers and two sellers in

the market at every point in time—b1’s investment lifts the sellers’ limit payoffs while she is

in the market.

There are four different Markov states: The state 1 in which b1 is the only buyer in the

market, the state 2 in which two buyers, including b1, are in the market, and the two states

in which b1 has already matched and there are one and two buyer-seller pairs in the market,

respectively. Figure 2 illustrates the two states in which b1 is active.4 Letting w denote ev-

eryone’s expected equilibrium payoff at the beginning of a period in which b1 has already

matched, we have w = 1
4
(2 − δw) + 3

4
δw. In particular, in this case, everyone’s payoff con-

verges to 1 as δ goes to 1. Under the following equilibrium bargaining strategies, the deviator

successfully obtains monopoly power by (essentially) waiting to match until she is in a bi-

lateral monopoly: In state 1, the two active agents make acceptable offers to each other. In

state 2:

(i) When b1 is selected to be the proposer, with (small) probability 0 < π < 1 she makes an

acceptable offer to one of the sellers (selected uniformly at random). With the remain-

ing probability 1− π, she delays (i.e., makes an unacceptable offer).

4We refer to the agents other than b1 as b2, s1 and s2, even if the identity of these agents can be different in

different periods.
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ρ
1/4 1/2 3/4 1

v∗s(ρ)1

3/4

1/2

1/4

Figure 3: Sellers’ limit equilibrium payoff v∗s(ρ) while b1 is in the market conditional on b1

not having invested.

(ii) When b2 is selected to be the proposer, she makes an acceptable offer to one of the

sellers (selected uniformly at random), and when a seller is selected to be the proposer,

she makes an acceptable offer to b2.

We write down the system of equations that characterizes the payoffs under these strate-

gies in Appendix B, and we verify that, for any given 0 ≤ ρ ≤ 1, there exists a threshold

discount factor δ(ρ) < 1 such that, when δ > δ(ρ), this strategy profile is a subgame-perfect

equilibrium. As δ goes to 1, the probability π that buyer b1 matches in state 2 converges to 0.

Figure 3 illustrates the limit payoff of the sellers while b1 is active.

This example shows that dynamic entry does not necessarily ensure that everyone be-

comes a price taker as bargaining frictions vanish if a minimal amount of competition is

not guaranteed at all times—in this case, at least two buyers and two sellers always present

in the market. When sufficient competition is guaranteed (i.e., ρ = 1), the sellers’ pay-

offs are independent of b1’s investment decision. Hence b1 is a price taker and the residual

claimant on the returns of her own investments. We now turn to formalizing—in a sub-

stantially more general framework nesting this example—that guaranteeing the presence of

a minimal amount of competition at every point in time is indeed sufficient to ensure that

everyone becomes a price taker as bargaining frictions vanish.
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3 Non-cooperative bargaining framework

There is a finite set N of types of agents. The surplus that an agent of type i and an agent of

type j can generate by matching is sij .5 We interpret these matching surpluses as resulting

from non-contractible investments that each agent must make before entering the market,

and we are interested in understanding agents’ incentives to deviate from these investments.

Towards this goal, in this section we describe a benchmark in which no one deviates from

these investments. This benchmark generalizes the bargaining model in Talamàs (2020) by

relaxing the assumption that there are always the same number of agents of each type in the

market.6 While it is common to assume stationarity for tractability, this assumption is strong

when markets are relatively thin, and hence at odds with our goal of determining the limits

of price taking.7 After characterizing the unique equilibrium outcome in this benchmark,

we describe how this equilibrium outcome is affected by an arbitrary unilateral investment

deviation in section 4, and we discuss the implications of this result for investment efficiency

in matching markets in section 5.

3.1 The bargaining game G

There is a common discount factor δ < 1, perfect information, and common knowledge

of the game. There are infinitely many periods t = 1, 2, . . . . For each type i, there are ni
bargaining slots. In any given period, each slot of a given type is either empty or occupied

by one agent of that type. We refer to the agents occupying the slots in any given period

as the active agents in that period, and we denote the set of slots of type i by Li. It will be

convenient to abuse terminology by referring to an active agent that sits in slot ` as “agent

`”, and to the set of active agents as a subset of A := ∪i∈NLi.

In each period t = 1, 2, . . . , one slot is selected uniformly at random. If the slot is empty,

no match occurs in this period. Otherwise, its occupant becomes the proposer. The proposer

chooses an active agent of another type and makes her a take-it-or-leave-it offer specifying

how to split the surplus that she can generate by matching with her. The receiver of this

5For simplicity, we start by assuming that only pairs of agents of different types can generate any surplus.

In section 5.1, we discuss how our results extend to more general matching technologies.
6While the model in Talamàs (2020) allows for coalitions of arbitrary size to form and heterogeneities in

preferences and proposer probabilities, for simplicity we focus on bilateral matching and on the case in which

no such heterogeneities are present.
7For dynamic foundations for this assumption in thick markets, see, for example, Lauermann, Nöldeke,

and Tröger (2020).
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offer either accepts or rejects. If she accepts, then they match and exit the market with their

agreed shares. Otherwise, no one matches in this period.

We assume that dynamic entry ensures that there is always at least one active agent of

each type, so that every agent can always choose to make an offer to an agent of any given

type. The process of dynamic entry is stochastic: For each type i, at the beginning of each

period in which there are 1 ≤ s ≤ ni empty bargaining slots of type i, a number s′ ≤ s

of entrants of type i are randomly assigned to different empty slots of their corresponding

type, where the number s′ of empty slots that are filled is drawn according to a probability

distribution q(i, s) : {0, 1, . . . , s} → [0, 1].

3.2 Strategies and equilibrium

The strategy σa of agent a in A specifies, for all possible histories at which she is active, the

offer that she makes when she is the proposer (which consists of a slot and how much to offer

to the agent occupying it), and her response after any possible offer that she can receive. We

focus on Markov strategies that only condition on the Markov state, which specifies which

slots are occupied. Formally, letting Si denote the set of all subsets of slots in Li, the set of

Markov states is S :=
∏

i∈NSi. A Markov-perfect equilibrium is a profile of Markov strategies

{σa}a∈A that constitutes a Nash equilibrium in every subgame.

3.3 Equilibrium characterization

The main departure of this benchmark from the model in Talamàs (2020) is that we allow

for a more general dynamic entry process that does not necessarily lead to a constant set of

active agents over time, and hence leads to multiple Markov states. While this multiplicity

of Markov states could potentially lead to complex equilibria that condition on how many

agents of each type are in the market, in this benchmark case the equilibrium strategies are

in fact insensitive to the state. Indeed, Proposition 3.1 shows that the equilibrium character-

ization in Talamàs (2020) remains valid in this case: There is still a unique payoff profile that

is consistent with Markov-perfect equilibrium, and these payoffs are homogeneous within

types and do not depend on the Markov state.

Proposition 3.1. There is a profile w in RN such that, in every Markov perfect equilibrium of G, the

expected equilibrium payoff of each agent of type i at the beginning of each period is wi.

Proof. Consider a Markov-perfect equilibrium, and let wa(s) denote agent a’s expected pay-
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off at the beginning of a period in which the state is s (before any agents enter in this period).

On the equilibrium path, in state s every agent a accepts every offer that gives her at least

δwa(s). For each type i, let wi and wi be the maximum and minimum wa(s) across all agents

a of type i, all states s, and all Markov-perfect equilibria. Given that each agent’s proposer

probability is 1
n

,

wi ≤
1

n
max
j 6=i

(
sij − δwj

)
+
n− 1

n
δwi and wi ≥

1

n
max
j 6=i

(sij − δwj) +
n− 1

n
δwi.

Combining these two inequalities gives wi = wi for every type i. To see this, consider a

type i for which wi − wi is largest, and let j maximize sij − δwj . We have that wi − wi ≤
1
n
(wj−wj)+ n−1

n
δ(wi−wi) which implies that 0 ≤ wi−wi ≤ χ(wj−wj) for χ < 1, so wi = wi.

Hence, in every Markov-perfect equilibrium, the equilibrium payoff wa(s) must be the same

across all agents a of type i and all states s, and these payoffs (wi)i∈N must solve

wi =
1

n
max
j 6=i

(sij − δwj) +
n− 1

n
δwi for all i in N.(1)

As shown in Talamàs (2020), system (1) admits a unique solution.

Our focus is on understanding the extent to which agents become price takers in this

setting as the discount factor δ goes to 1. Corollary 3.2 follows from the equilibrium char-

acterization in Talamàs (2020), and shows that the limit equilibrium payoffs are the unique

Nash credible profile, defined as follows.

Definition 3.1. For every pair i, j ∈ N and every profile θ in RN
≥0, let the Nash bargaining

solution α(ij, θ) be the unique solution of

argmax
(si,sj)

sisj subject to sij ≥ si + sj and (si, sj) ≥ (θi, θj)(2)

if sij ≥ θi + θj , and (θi, θj) otherwise.

Definition 3.2. The payoff profile β in RN is Nash credible if

βi = max
j∈N

α(ij, β−i) for every i in N ,

where β−i denotes the profile β after setting its ith entry to 0.

Corollary 3.2. As the discount factor δ goes to 1, the unique equilibrium payoff profile w converges

to the unique Nash credible profile v.
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In words, the limit payoff vi of a given type i is the maximum that this type can justify

as resulting from the Nash bargaining solution in some match while honoring the others’

outside options—determined by the maximum that they can themselves justify in this way.

This implies that, in general, the agents of any given type are—as a group—not price takers,

in the following sense: Suppose that all agents of a given type i make an investment that

increases the surplus sij of the match that determines their limit payoff (i.e., vi = α(ij, v−i)).

If j’s payoff is also determined by the match ij (i.e., vj = α(C, v−j)), these investments lift the

limit payoffs of all agents of type j as well, so the agents of type i do not fully appropriate

the marginal returns of these investments.

However, in this paper we are interested in understanding whether individual agents—

as opposed to all the agents of a given type as a group—are price takers. For this, we need

to understand how the equilibrium outcome changes after a unilateral investment deviation

by one agent of an arbitrary type—instead of investment deviations that change the surplus

that all the agents of a given type can generate. We investigate this question next, and we

obtain a sharp answer that is not sensitive to the details of the bargaining protocol and that

is qualitatively different from the answer to the related question of whether all the agents of

a given type are price takers as a group.

4 Unilateral investment deviation

We are interested in understanding agents’ incentives to deviate from the investments that

lead to the matching surpluses of the benchmark game above. To investigate this question,

we consider an agent d—which we think of as a deviator—of an arbitrary type i that can

change her matching surpluses with others. In particular, agent d chooses a number sdj for

each type j 6= i, which is the surplus that d can generate by matching with any agent of type

j. Taking d’s choices as given, we characterize the equilibrium of game Ĝ, which is exactly

like game G except that, in period t = 1, agent d is active. The set of active agents is now a

subset of Â := A+d, and each Markov state specifies which slots are filled by non-deviators

and whether the deviator d is active or not.8 Formally, letting Ŝi denote the set of all subsets

of Li + d that contain at most ni elements, the set of Markov states is Ŝ :=
∏

j∈N−iSj × Ŝi.

8For notational simplicity, we write A+ d for A ∪ {d}, etc.
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4.1 Characterization of the equilibrium in Ĝ

We start by stating that the equilibrium of interest exists.

Proposition 4.1. The game Ĝ admits a Markov-perfect equilibrium.

Proof. The argument is analogous to the one behind the equilibrium existence proof in Elliott

and Nava (2019), and we relegate it to Appendix C.

Once the deviator d leaves the market, game Ĝ is identical to game G, so we know that the

limit equilibrium payoffs from that point on are given by v. However, in general, we don’t

know whether Markov-perfect equilibrium payoffs in Ĝ are unique or homogeneous within

types or states while d is active. Nevertheless, our main result, Theorem 4.2 below, shows

that if the process of dynamic entry ensures that there are always at least two active agents

of each type, then the limit payoff of every agent other than d must converge to her limit

payoff once the deviator d has left the market. Hence, in the limit as bargaining frictions

vanish, the deviator d’s choices do not affect the prices that she has to pay others to match

once she enters the market, so she fully appropriates the marginal returns of her investment

deviation.

Theorem 4.2. Consider a sequence of discount factors converging to 1 and associated Markov-perfect

equilibria of Ĝ with converging payoffs (v̂a(s))a∈Â,s∈Ŝ . If the process of dynamic entry ensures that in

each period there are at least two active agents of each type, then for every Markov state s and every

agent a 6= d of any type j, v̂a(s) = vj .

Proof. Let ŵa(s) denote agent a’s expected payoff at the start of a period in which the state is

s (before anyone enters in this period). On the equilibrium path, when the state is s, every

agent accepts every offer that gives her at least δŵa(s). Let v̂a(s) denote the limit of ŵa(s) as

δ goes to 1. We start by showing that

v̂aj(s) + v̂ak(s) ≥ sjk for all states s and any two agents aj, ak 6= d of types j and k 6= j,(3)

because this implies that it is enough to show that

v̂aj(s) ≤ vj for every state s and every agent aj of any type j.(4)

Indeed, (4) implies that, for every agent aj 6= d of any type j, letting k maximize sjk − vk and

ak be an arbitrary agent of type k,

vj = sjk − vk ≤ sjk − v̂ak(s) ≤ v̂aj(s) for every state s.
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where the last inequality follows from (3).

To see (3), consider a state s with the lowest v̂aj(s) + v̂ak(s), and suppose for contradiction

that v̂aj(s) + v̂ak(s) < sjk. Once the deviator d leaves, the limit payoffs are given by v, and

vj + vk ≥ sjk, so the deviator d is active in state s, and either v̂aj(s) < vj or v̂ak(s) < vk.

Assume without loss of generality that v̂aj(s) < vj . Starting from state s, consider agent aj’s

strategy that deviates from her equilibrium strategy while d is active as follows: Reject every

offer, and offer slightly above v̂ak(s′) to agent ak as soon as she is the proposer in any state

s′ in which agent ak is active. Such offers are accepted with probability one, and the cost of

waiting to either be able to make this offer or to see the deviator d leave converges to 0 as δ

goes to 1. Since both the expected value of sjk − v̂ak(s′) (which aj obtains in the limit if she is

ends up being able to make such an offer) and vj (which aj obtains in the limit if the deviator

d leaves before aj is able to make such an offer) are strictly larger than v̂aj(s), we conclude

that aj’s limit expected payoff under this deviation is strictly above v̂aj(s) as δ goes to 1, a

contradiction.

It only remains to show (4). For any type j, consider an agent a 6= d and a state r such that

v̂a(r) ≥ v̂aj(r
′) for every agent aj 6= d of type j and every state r′.(5)

Given (5) and the fact that j is chosen arbitrarily, it is enough to show that v̂a(r) ≤ vj . Sup-

pose for contradiction that v̂a(r) > vj . First note that

v̂d(r) + v̂aj(r) ≥ sdj for every agent aj 6= d of type j 6= i.(6)

To see this, suppose for contradiction that v̂d(r) < sdj − v̂aj(r) for some agent aj of type j.

Starting from state r, consider agent d’s strategy that consists of rejecting every offer, and

offering slightly above v̂aj(r
′) to agent aj as soon as agent d is selected to be the proposer in

any state r′ in which agent aj is active. Such offers are accepted with probability one, and the

waiting cost of this strategy converges to 0 as δ goes to 1. Moreover, given (5), the expected

value of sdj − v̂aj(r′) is strictly larger than v̂d(r), so d’s limit expected payoff of following this

strategy is strictly above v̂d(r) as δ goes to 1, a contradiction.

By (3) and (6), a can never obtain more than a limit payoff of v̂a(r) by matching, so start-

ing from state r, for all discount factors δ sufficiently close to 1, agent a must match before

d leaves with probability one (otherwise, v̂a(r) would be a strictly convex combination of vj
and numbers that are weakly smaller than v̂a(r), a contradiction of v̂a(r) > vj). Consider

an arbitrary state r′ in which, for all δ sufficiently close to 1, agent a matches with positive

probability in state r′, obtaining v̂a(r′) = v̂a(r). The fact that a matches with positive prob-

ability in state r′ for all δ sufficiently close to 1 implies that either v̂ak(r′) + v̂a(r
′) ≤ sjk for
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some agent ak of some type k 6= j, or that v̂d(r′) + v̂a(r
′) ≤ sdj , which combined with (3) and

(6), respectively, give that v̂ak(r′) + v̂a(r
′) = sjk in the former case and v̂d(r

′) + v̂a(r
′) = sdj in

the latter case. The assumption that there are always at least two active agents of each type

ensures that there is an agent aj 6= a of type j. For any such agent aj , we have that v̂aj(r
′)

is a strictly convex combination of vj and numbers that are weakly smaller than v̂a(r), so

v̂aj(r
′) < v̂a(r

′), and hence either v̂ak(r′) < sjk− v̂aj(r′) or v̂d(r′) < sdj− v̂aj(r′), a contradiction

of (3) or (6).

Theorem 4.2 shows that the necessary condition identified by the example in section 2.2

to guarantee that everyone is a price taker as bargaining frictions vanish—namely, that there

are always at least two active agents of each type—is also sufficient to guarantee that ev-

ery agent is a price taker in our benchmark model. We discuss this minimal competition

requirement in more detail in section 5.1 below.

5 Discussion

This section discusses how our price taking result extends to more general matching tech-

nologies as well as to alternative bargaining protocols, and it outlines the implications of our

main result for investment efficiency in matching markets.

5.1 Extensions

For simplicity, our benchmark model above assumes that productive matches are bilateral,

but our main result goes through under more general matching technologies. For example,

letting C ⊆ N be the set of types that are represented in a given set of agents, suppose that

the surplus that these agents generate when they match is y(C). In this case, a proposer

of type j can choose any coalition C ⊆ N − j, as well as an active agent of each type k

in C, and proposes how to split the surplus y(C + j) that they can generate by matching.

The selected agents then respond in a pre-specified sequence, and this match forms in this

period if and only if all of them accept. If, once the deviator has left, we restrict attention to

stationary strategies, an argument analogous to the one behind Proposition 3.1 shows that

the equilibrium payoffs in this case satisfy

wi =
1

n
max
i∈C⊆N

(
y(C)−

∑
j∈C−i

δwj

)
+
n− 1

n
δwi for all i in N ,
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which, as shown by Talamàs (2020), admits a unique solution. In this case, a straightforward

extension of the argument in the proof of Theorem 4.2 shows that agent d’s choices do not

affect the limit prices that she faces once she enters the market either as long as there are

always at least two agents of each type in the market.

Our price taking result also extends to the case in which coalitions that contain more than

one agent of each type are feasible. For example, consider the case in which productive

coalitions can contain up to mi ≥ 1 agents of each type i. We can embed this case in the

framework above by enlarging the setN of types to an artificial set N̂ that containsmi copies

of each type i. In this case, Proposition 3.1 requires that there are at least mi agents of each

type i in N , and Theorem 4.2 requires that there are at least mi + 1 agents of each type i in N .

This extension highlights that the key condition behind our price taking result is that there

is always a minimal amount of competition present in the market, in the sense that in each

period there is at least one agent of each type that is in the market who does not match. In

the baseline case in which at most one agent of each type can match, this requires that there

are at least two active agents of each type. More generally, the relevant condition is that the

inflow of agents into the market is sufficiently high so that the stock of agents in the market

is always larger than the flow of agents out of the market.

For concreteness, we have considered a particular bargaining protocol in which proposers

can strategically choose which matches to propose. This has provided us with a simple

benchmark for the case in which no one chooses to deviate, because it has allowed us to

leverage the equilibrium characterization in Talamàs (2020). However, taking as given the

limit payoffs once the deviator has left, our price taking result goes through under any bar-

gaining protocol in which every agent has a strictly positive probability of being able to

make an offer to any other agent in each period. For example, consider the following alter-

native protocol, which is a version of the standard random-matching protocol used in the

literature of bargaining in stationary markets (e.g., Rubinstein and Wolinsky 1985, Manea

2011, Nguyen 2015). Suppose that the bargaining protocol is exactly as in the coalitional ex-

tension of our model above except that, in each period, not only a slot is selected uniformly

at random to be the proposer, but also a coalition C ⊆ N , and the proposer, of type j say, can

only choose an active agent of each type in C − j, and make a take-it-or-leave-it offer speci-

fying how to split the surplus that she can generate by matching with them. Continuing to

restrict attention to stationary strategies once the deviator has left, an argument analogous

to the one behind Proposition 3.1 shows that the system of equilibrium payoffs under this

protocol must be such that, for each agent a of type j and each state s, wa(s) = wj , were
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(wj)j∈N solves

wi =
1

n

∑
i∈C⊆N

1

2n
max

[
δwi, y(C)−

∑
j∈C−i

δwj

]
+
n− 1

n
δwi for every i in N ,

which, as shown by Nguyen (2015), admits a unique solution. As emphasized by Talamàs

(2020), both the coalitions that form and how the resulting surplus is split under this alter-

native protocol are different. However, an argument analogous to the one behind the proof

of Theorem 4.2 shows that our price taking result holds under this protocol as well. In other

words, while this alternative bargaining protocol makes a difference for the point predic-

tions of the theory, it does not change the fact that each agent is a price taker in the limit

as bargaining frictions vanish as long as there are always at least two active agents of each

type.

We conclude that our price taking result applies to a wide variety of markets of interest.

For example, in labor markets in which homogeneous workers and firms match one to one,

both workers and firms are guaranteed to be price takers as bargaining frictions vanish if and

only if there are always at least two workers and two firms available to match—as in the case

of ρ = 1 in the example of section 2.2. If workers and firms are instead heterogeneous, and

each firm can hire at most m workers, then both workers and firms are guaranteed to be

price takers as bargaining frictions vanish if and only if there are always at least two firms

of each type and at least m workers of each type available to match.

5.2 Implications for investment efficiency

For simplicity, we have obtained our price taking result in a framework in which an arbitrary

agent can pursue an arbitrary investment deviation. We now outline the implications of this

result for the more involved case in which all agents that enter the market in any given

period simultaneously choose their investments.

Suppose that each agent of type i chooses an investment from a set Ki of elements in Rmi ,

where mi ≥ 1. The cost of investment xi is given by c(xi). The matching surplus of a two of

agents of types i and j and whose investments are given by k in Ki ×Kj is given by y(k).

Let us start by assuming that agents choose their investments before observing any of the

others’ actions. This is a reasonable benchmark to analyze situations in which agents must

sink their investments well before knowing who will be their potential matching partners.

For simplicity, let us focus on type-symmetric equilibria—in which all agents of the same

type choose the same investment. Proposition 3.1 implies that, for each type-symmetric
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investment profile x := (xi)i∈N and each type i, there exists wi(x) > 0 such that, conditional

on every agent of type i choosing investment xi, the expected equilibrium (gross) payoff at

the beginning of each period of each agent of type i is wi(x). We denote the limit of wi(x) as

δ goes to 1 by vi(x).

In this case, our main result, Theorem 4.2, implies that, if there are always at least two

active agents of each type, in order to be able to implement the investment profile x :=

(xi)i∈N in a type-symmetric equilibrium for all sufficiently high discount factors, each agent

of each type i must find it optimal to choose xi taking as given the others’ limit payoffs; that

is,

xi ∈ argmax
zi∈Ki

[
max
j 6=i

[y(xj × zi)− vj(x)]− c(zi)
]

for each i in N .(7)

In other words, the equilibrium investment profile x in the limit as frictions vanish must be

constrained efficient—in the sense that no agent, taking others’ limit payoffs as given and free to

choose whom to match with, has a profitable investment deviation.

We conclude with a caveat: The assumption that agents choose their investments before

observing the previous investments choices is an important one, because it ensures that an

investment deviation by one agent does not trigger further investment deviations by other

agents. Indeed, Appendix D describes a simple example that shows how agents need not be

price takers if they are able to identify investment deviations before choosing their invest-

ments, because in this case, an agent’s investment deviation can trigger further investment

deviations by others.
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Appendices

A Details omitted from subsection 2.1

Suppose for contradiction that there is a Markov-perfect equilibrium in which b1 does not

invest and b2 does not strictly benefit from making acceptable offers in a period before any-

one has matched. Specifically, when selected to propose, b2 weakly prefers to delay than

to make either seller an acceptable offer; that is, letting wa denote a’s expected equilibrium

payoff at the beginning of this period, δwb2 ≥ 2 − δws1 and δwb2 ≥ 2 − δws2 . Note also that

δwb1 + δws1 < 1 or δwb1 + δws2 < 1, since otherwise the sum of everyone’s payoffs in this pe-

riod would be strictly larger than the maximum total surplus 3 that they can jointly generate.

In either case, we obtain δwb2 > 1+δwb1 ≥ 1, which contradicts our assumption above that b2
delays. Indeed, for b2 to be willing to delay, her expected equilibrium payoff must increase

when the state of the market changes—i.e., once b1 matches. In particular, for b2 to be willing

to delay we must have wb2 ≤ δw, where w is the expected payoff of b2 and the remaining

seller at the beginning of each period once b1 has left, and satisfies w = 1
4
(2− δw) + 3

4
δw, and

hence δw < 1.

We now extend the model presented in section 2.1 to include n ≥ 2 buyers and n sell-

ers. The probability that any given agent is selected to be the proposer is 1
2n

. As in the case

of n = 2 considered above, once b1 matches, there is an essentially unique Markov-perfect

equilibrium: At the beginning of each period, each agent yet to match has the same ex-

pected payoff w, each agent accepts an offer if and only if it gives her at least δw, everyone’s

proposals offer δw to an agent on the other side of the market, and w satisfies

w =
1

2n
(2− δw) +

2n− 1

2n
δw.

We now describe strategies that constitute a Markov-perfect equilibrium (for all suffi-

ciently high discount factors δ) of every subgame in which b1 has not invested and is yet to

match. In any subgame in which there are ` = 1, 2, . . . , n buyers yet to match, including b1:

(i) [Response strategies] Buyer b1 accepts an offer if and only if it gives her at least δw`b1 ,

each buyer b 6= b1 yet to match accepts an offer if and only if it gives her at least δw`b,

and each seller yet to match accepts an offer if and only if it gives her at least δw`s.

(ii) [Proposing strategies] For ` = 1, buyer b1 offers δw`s to the seller yet to match. For ` = 2,

buyer b1 offers δw`s to a seller yet to match (chosen uniformly at random) with (small)
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probability π, and delays (i.e., makes an unacceptable offer) otherwise. For ` > 2,

buyer b1 delays with probability 1.

For ` ≥ 1, each buyer b 6= b1 offers δw`s to a seller yet to match (chosen uniformly at

random), and each seller offers δw`b to a buyer b 6= b1 yet to match (chosen uniformly at

random).

For ` = 1:

1. We have that w1
b1

= 1
2n

(1− δw1
b1

) + 2n−1
2n

δw1
b1

and w1
b1

= w1
s .

For ` = 2:

2. Since b1 is indifferent between making acceptable offers and moving to the next period,

we have that 1− δw2
s = δw2

b1
.

3. The expected equilibrium payoff w2
b1

of buyer b1 is

1
2n
δw2

b1
+ 3

2n
δw1

b1
+ 2(n−2)

2n
δw2

b1
,

where the three terms of this expression correspond to the following:

1. The fact that b1 delays implies that her expected equilibrium payoff when she is

the proposer (which occurs with probability 1
2n

) is δw2
b1

.

2. The expected equilibrium payoff of b1 when a buyer other than b1 or a seller that

are yet to match are the proposers (which occurs with probability 3
2n

), a match that

does not involve b1 occurs with probability 1, so b1’s expected equilibrium payoff

is δw1
b1

.

3. With the remaining probability 2(n−2)
2n

, an agent that has already matched is the

proposer, in which case no match occurs this period and b1’s expected equilibrium

payoff is δw2
b1

.

4. The expected equilibrium payoff w2
s of a seller s that is yet to match is

1
2n(2 − δw2

b ) +
1
2nδw

1
s + 1

2n

(
1
2δw

2
s +

1
2δw

1
s

)
+ 1

2n

(
π
(
1
2δw

2
s +

1
2δw

)
+ (1− π)δw2

s

)
+ 2(n−2)

2n δw2
s ,

where the five terms of this expression correspond to the following:

1. The expected equilibrium payoff of seller s when she is the proposer (which oc-

curs with probability 1
2n

) is 2− δw2
b .

2. The expected equilibrium payoff of seller swhen another seller that is yet to match

is the proposer (which occurs with probability 1
2n

) is δw1
s .
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3. The expected equilibrium payoff of seller s when a buyer other than b1 that is yet

to match is the proposer (which occurs with probability 1
2n

) is 1
2
δw2

s+ 1
2
δw1

s because

s receives an acceptable offer with probability 1
2

and the proposer matches with a

different seller with the remaining probability 1
2
.

4. The expected equilibrium payoff of seller s when b1 is the proposer (which occurs

with probability 1
2n

) is π
(
1
2
δw2

s + 1
2
δw
)
+(1−π)δw2

s , because b1 makes an acceptable

offer with probability π (in which case she makes seller s an acceptable offer with

probability 1
2

and she matches with another seller with the remaining probability
1
2
) and delays with the remaining probability 1− π.

5. The expected equilibrium payoff of seller swhen an agent that has already matched

is the proposer (which occurs with probability 2(n−2)
2n

) is δw2
s .

5. The expected equilibrium payoff w2
b at the start of a period of a buyer b 6= b1 that is yet

to match is 1
2n(2− δw

2
s)+

1
nδw

2
b +

1
2n

(
πδw + (1− π)δw2

b

)
+ n−2

n δw2
b , where the four terms of

this expression correspond to the following:

1. The expected equilibrium payoff of buyer b when she is the proposer (which oc-

curs with probability 1
2n

) is 2− δwws .

2. The expected equilibrium payoff of buyer bwhen a seller that is yet to match is the

proposer (which occurs with probability 1
n

) is δw2
b because b receives an acceptable

offer with probability 1.

3. The expected equilibrium payoff of buyer b when b1 is the proposer (which occurs

with probability 1
2n

) is πδw + (1 − π)δw2
b , because b1 makes an acceptable offer

with probability π (in which case b obtains δw) and delays with the remaining

probability 1− π.

4. The expected equilibrium payoff of buyer bwhen an agent that has already matched

is the proposer (which occurs with probability n−2
n

) is δw2
b .

Finally, for every ` = 3, . . . , n:

6. The expected equilibrium payoff w`b1 of buyer b1 is

1
2n
δw`b1 + 2`−1

2n
δw`−1b1

+ 2n−2`
2n

δw`b1 ,

where the three terms of this expression correspond to the following:

1. The fact that b1 delays implies that her expected equilibrium payoff when she is

the proposer (which occurs with probability 1
2n

) is δw`b1 .
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2. The expected equilibrium payoff of b1 when a buyer other than b1 or a seller that

are yet to match are the proposers (which occurs with probability 2`−1
2n

), a match

that does not involve b1 occurs with probability 1, so b1’s expected equilibrium

payoff is δw`−1b1
.

3. With the remaining probability 2n−2`
2n

, an agent that has already matched is the

proposer, in which case no match occurs this period and b1’s expected equilibrium

payoff is δw`b1 .

7. The expected equilibrium payoff w`s of a seller s that is yet to match is

1
2n(2− δw

`
b) +

`−1
2n δw

`−1
s + `−1

2n

(
1
` δw

`
s +

`−1
` δw

`−1
s

)
+ 1

2nδw
`
s +

2(n−`)
2n δw`s, where the five terms

of this expression correspond to the following:

1. The expected equilibrium payoff of seller s when she is the proposer (which oc-

curs with probability 1
2n

) is 2− δw`b.

2. The expected equilibrium payoff of seller swhen another seller that is yet to match

is the proposer (which occurs with probability `−1
2n

) is δw`−1s .

3. The expected equilibrium payoff of seller s when a buyer other than b1 that is yet

to match is the proposer (which occurs with probability `−1
2n

) is 1
`
δw`s + `−1

`
δw`−1s

because s receives an acceptable offer with probability 1
`

and the proposer matches

with a different seller with the remaining probability `−1
`

.

4. The expected equilibrium payoff of seller s when b1 is the proposer (which occurs

with probability 1
2n

) δw`s.

5. The expected equilibrium payoff of seller swhen an agent that has already matched

is the proposer (which occurs with probability 2(n−`)
2n

) is δw`s.

8. The expected equilibrium payoff w`b at the start of a period of a buyer b 6= b1 that is yet

to match is 1
2n(2 − δw

`
s) +

`−2
2n δw

`−1
b + `

2n

(
1
`−1δw

`
b +

`−2
`−1δw

`−1
b

)
+ 1

2nδw
`
b +

2(n−`)
2n δw`b, where

the five terms of this expression correspond to the following:

1. The expected equilibrium payoff of buyer b when she is the proposer (which oc-

curs with probability 1
2n

) is 2− δw`s.

2. The expected equilibrium payoff of buyer b when a buyer other than b or b1 that

is yet to match is the proposer (which occurs with probability `−2
2n

) is δw`−1b .

3. The expected equilibrium payoff of buyer b when a seller that is yet to match is

the proposer (which occurs with probability `
2n

) is 1
`−1δw

`
b + `−2

`−1δw
`−1
b because b
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Figure 4: Sellers’ equilibrium payoff w`s as a function of δ in the case n = 4.

receives an acceptable offer with probability 1
`−1 and the proposer matches with

another buyer different from b1 with the remaining probability `−2
`−1 .

4. The expected equilibrium payoff of buyer b when b1 is the proposer (which occurs

with probability 1
2n

) is δw`b.

5. The expected equilibrium payoff of buyer bwhen an agent that has already matched

is the proposer (which occurs with probability 2(n−`)
2n

) is δw`b.

It can be checked that the system of equations defined by points (1)-(8) have a unique

valid solution (w1
b1
, w1

s , π)∪ (w`b1 , w
`
b, w

`
s)`=2,3,...,n for all δ sufficiently large. Figure 4 illustrates

how w`s converges to 1/2 as δ goes to 1.

B Construction of equilibrium in subsection 2.2

For any state s and any agent a, let wsa denote a’s expected equilibrium payoff at the begin-

ning of a period in which the state is s (before anyone enters in this period).

1. Recall that we defined w above as every active agent’s expected payoff after b1 has

matched, w = 1
4
(2− δw) + 3

4
δw.

2. Buyer b1’s expected equilibrium payoff in a period in which, after this period’s entry

is determined, the state is 1 is 1
4
(1 − δw1

s) + 3
4
δw1

b1
. In state 2, b1 is indifferent between
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making an acceptable offer and waiting for the next period, so

δw2
b1

= 1− δw2
s

and

w1
b1

= ρδw2
b1

+ (1− ρ)

(
1

4
(1− δw1

s) +
3

4
δw1

b1

)
.

3. In state 2, buyer b2 and a seller match unless b1 is the proposer, so

w2
b1

=
1

4
δw2

b1
+

3

4
δw1

b1
.

4. The expected equilibrium payoff of seller s in state 2 is 1
4
(2−δw2

b2
)+1

4

(
π
2
δw +

[
1− π

2

]
δw2

s

)
+

1
4

(
1
2
δw2

s + 1
2
δw1

s

)
+ 1

4
δw1

s . This is because

– The expected equilibrium payoff of seller s when she is the proposer is 2− δw2
b2

.

– The expected equilibrium payoff of seller s when buyer b1 is the proposer is
π
2
δw+

[
1− π

2

]
δw2

s , because in this case b1 matches with the other seller with prob-

ability π/2 (in which case the expected payoff of s is δw) and with the remaining

probability, s either receives an acceptable offer or stays in the market; in either

case, her expected equilibrium payoff is δw2
s .

– The expected equilibrium payoff of seller swhen buyer b2 is the proposer is 1
2
δw2

s+
1
2
δw1

s , because in this case s receives an acceptable offer with probabiity 1/2 (in

which case her expected payoff is δw2
s) and with the remaining probability, b2

matches with the other seller (in which case her expected payoff is δw1
s).

– The expected equilibrium payoff of seller s when the other seller is the proposer

is δw1
s , because in this case the other seller matches with b2 with probability 1.

Hence,

w2
s =

1

4
(2− δw2

b2
) +

1

4

(π
2
δw +

[
1− π

2

]
δw2

s

)
+

1

4

(
1

2
δw2

s +
1

2
δw1

s

)
+

1

4
δw1

s ,

and

w1
s = ρw2

s + (1− ρ)

(
1

4
(1− δw1

b1
) +

3

4
δw1

s

)
.

5. Buyer b2’s expected equilibrium payoff w2
b2

in state 2 is

w2
b2

=
1

4
(2− δw2

s) +
1

4

(
πδw + (1− π)δw2

b2

)
+

1

2
δw2

b2
,

where the three terms of this expression correspond to the following:
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– The expected equilibrium payoff of buyer b2 when she is the proposer is 2− δw2
s .

– The expected equilibrium payoff of buyer b2 when buyer b1 is the proposer is

πδw + (1 − π)δw2
b2

, because in this case b1 matches with probability π (in which

case b2’s expected equilibrium payoff is δw) and no one matches (so the market

stay in state 2) with the remaining probability.

– The expected equilibrium payoff of buyer b2 when a seller is the proposer is δw2
b2

,

because every seller makes her acceptable offers.

It can be checked that the seven equations defined by points (1)-(5) have a unique valid

solution (w,w1
b1
, w1

s , w
2
b1
, w2

b2
, w2

s , π) for all δ sufficiently close to 1. Figure 3 in section 2 illus-

trates the limit of w2
s as δ goes to 1 for all 0 ≤ ρ ≤ 1.

C Existence of a type-symmetric Markov-perfect equilibrium

We characterize the Markov perfect equilibrium of the subgame that starts at t = 1 with

agent d active, and then use it to show that such an equilibrium exists. The argument is

similar to the one in the equilibrium existence proof in Elliott and Nava (2019). We consider

the general case in which each productive match contains at most one agent of each type:

Each match that contains one agent of each type in C ⊆ N generates y(C) units of surplus.

Consider a Markov-perfect-equilibrium and its corresponding value function V : Â →
Rm, where m denotes the cardinality of Â and V (A) gives each agent’s expected equilibrium

payoff at the beginning of a period that starts with active agent set A (before any agents

enter in this period). Consider a subgame with an arbitrary active agent set A. By Markov

perfection, agent b accepts every offer that gives her strictly more than δVb(A), and rejects

every offer that gives her strictly less than δVb(A). Hence, no one offers more than δVb(A)

to any agent b, and an agent of type j proposes to form C ⊆ N − j that maximizes y(C +

j)−
∑

k∈C minbk∈Lk δVk(A). When agent a of type j is the proposer, if there exists a coalition

C ⊆ N − j such that y(C + j) −
∑

k∈C minbk∈Lk δVbk(A) > δVa(A), then she makes offers

only to coalitions that maximize this net surplus, and agreement obtains with probability

one. Otherwise, she delays—in the sense that she makes offers that are not accepted in

equilibrium. Letting πa,A(B) denote the probability that the set B of agents match when the

set of active agents is A and agent a is the proposer, any agreement probability distribution

πa,A that is consistent with the value function V is in the set Πa,A(V ) of such distributions that

satisfy that, for any set of agents B with types in j ∈ C ⊆ N , πa,A(B) = 0 if δVa(A) > y(C)−∑
b∈B−a δVb(A) or y(C)−

∑
b∈B−a δVb(A) < maxD⊆N−j

(
y(D + j)−

∑
k∈D minbk∈Lk δVbk(A)

)
.
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For any value function V , any set of active agents A in Â, and any agent a in A of type j,

define the correspondence fa,A(V ) : A→ Rm by

fa,Aa (V ) = πa,A(∅)δVa(A) +
[
1− πa,A(∅)

]
maxC⊆N−j

(
y(C + j)−

∑
k∈C minbk∈Lk δVbk(A)

)
fa,Ab (V ) = πa,A(∅)δVb(A) +

∑
b∈B⊆A π

a,A(B)δVb(A) +
∑

C⊆A−b πA(C)δVb(A− C) ∀b 6= a,

for any πa,A in Πa,A(V ). In other words, fa,A(V ) gives the set of expected payoffs that are

consistent with the value function V in any history in which the active agent set is A and the

proposer is agent a. Letting V denote the set of value functions V : Â → Rm, consider the

correspondence F : V → V defined by

F (V )(A) =
1

n

∑
a∈Â

fa,A(V ).(8)

The value function V corresponds to a Markov-perfect equilibrium payoff profile if and only

if V is in F (V ), so it is enough to show that the correspondence F has a fixed point. This

follows from Kakutani’s (1941) fixed point theorem . Indeed, the domain V of F is a non-

empty, compact and convex subset of an Euclidean space. Moreover, since, for any A in Â
and any a in A, the correspondence Πa,A is upper-hemicontinuous with non-empty convex

images, so is the correspondence fa,A, and hence so is F .

D Example: Agents need not be price takers when an invest-

ment deviation can trigger further investment deviations

As in section 6.3, all agents make investments upon arriving to the market. In contrast to

section 6.3, agents can observe all the previous investment choices made by other agents

before choosing their own investment. We construct an equilibrium in which agents are not

price takers. In particular, when a buyer makes an investment deviation, it triggers further

investment deviations by other buyers that enter the market after her, and this changes the

sellers’ limit payoffs.

There are two types of agents, buyers and sellers, and two slots per type. The process of

dynamic entry is such that there are always two active buyers and two active sellers (as in

the case ρ = 1 of the example of section 2.2). Each buyer can choose to invest or to not invest.

Investing costs .55. A buyer that does not invest has a matching surplus of 1 unit with any

seller, whereas a buyer that invests has a matching surplus of 2 units with any seller.

We construct an equilibrium in which no buyer invests, and the unit surplus of each

match is shared equally as δ → 1. Note that these investments are not constrained efficient.
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In particular, if buyers were price takers, they would find it optimal to invest, because each

would appropriate the unit value generated by her investment, which is larger than the cost

of this investment.

There are three possible Markov states: The state 0 in which none of the two active buyers

has invested, the state 1 in which only one of the two active buyers has invested, and the

state 2 in which both buyers have invested. We describe an equilibrium in which:

1. In state 0, there is no delay: The proposer makes an acceptable offer to an agent on the

other side of the market, and this offer is accepted with probability 1. Moreover, state 0

is absorbing; that is, the buyer that enters after a match occurs in state 0 never invests.

2. In state 1:

(i) Only the buyer that has not invested (b2, say) delays, and she does so with proba-

bility 1. The sellers make acceptable offers to the buyer that has invested (b1 say).

(ii) If b1 leaves, the market stays in state 1 (that is, the buyer that replaces b1 chooses to

invest) with probability π, and it moves to state 0 (that is, the buyer that replaces

b1 chooses to not invest) with probability 1− π.

(iii) If b2 leaves, the market moves to state 2 (that is, the buyer that replaces b2 chooses

to invest) with probability 1.

3. In state 2 there is no delay: The proposer makes an acceptable offer to an agent on the

other side of the market, and this offer is accepted with probability 1. Moreover, state

2 is absorbing; that is, the buyer that enters after a match in state 2 always invests.

Everyone’s equilibrium payoff w0 in state 0 satisfies:

w0 =
1

4
(1− δw0) +

3

4
δw0.

Similarly, everyone’s equilibrium payoff w2 in state 2 satisfies:

w2 =
1

4
(2− δw2) +

3

4
δw2.

In state 1, buyer b2 delays with probability 1, which implies that

w1
b2

=
1

4
δw1

b2
+

3

4
(πδw1

b2
+ (1− π)δw0) and w1

b1
=

1

4
(2− δw1

s) +
3

4
δw1

b1
.

Moreover, the fact that the buyer that replaces b1 mixes between investing and not investing

implies that she is indifferent between these two choices; that is,

δw1
b1
− .55 = δw0.
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Finally, the equilibrium payoff of any seller s in state 1 satisfies:

w1
s =

1

4
(2− δw1

b1
) +

1

4

(
1

2
δw1

s +
1

2
(πδw1

s + (1− π)δw0)

)
+

1

4
δw1

s +
1

4
(πδw1

s + (1− π)δw0)

where the first term corresponds to the event that s is the proposer, the second term cor-

responds to the event that b1 is the proposer, the third term corresponds to the event that

b2 is the proposer, and the fourth term corresponds to the event that the other seller is the

proposer.

It can be verified that the solution to the six equations above satisfies w0 → 1/2, w2 → 1,

w1
b1
→ 1.1, w1

b2
→ .15, w1

s → .9 and π → 1 as δ → 1. Hence, the strategies described constitute

an equilibrium for all sufficiently high discount factors δ. In particular, δw0 = δw1
b1
− c and

δw2 − c > δw1
b2

, so the buyers’ investment choices are optimal. Moreover, δw1
b2

+ δw1
s > 1, so

it is optimal for b2 to delay in state 1. We conclude that no one ever investing (that is, staying

in state 0 forever) is part of an equilibrium for all δ sufficiently large.
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