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petition. We characterize the comovement of firm, sectoral, and economy-wide markups

with sectoral and aggregate output following firm-level shocks. We then quantify the model’s

ability to reproduce salient features of the cyclical properties of measured markups in French
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Introduction

A long tradition in the business-cycle literature evaluates models on their ability to account

for salient moments of business-cycle data, such as the relative volatility and correlation with

GDP of key macroeconomic aggregates. Although there exists a broad consensus on moments

concerning, for example, the behavior of consumption, investment, or unemployment over

the business cycle, disagreement lingers, both in terms of theory and measurement, over the

cyclical behaviour of markups (see, e.g., Bils et al., 2018 and Nekarda and Ramey, 2013, 2020).1

In this paper, we re-examine this question, studying the cyclical properties of markups at the

firm, sector, and aggregate level, both theoretically and empirically, based on French admin-

istrative data. We consider a model of oligopolistic competition in which granular firm-level

shocks result not only in sector and economy-wide output changes, as in Gabaix (2011), but

also in markup dynamics. We characterize the model’s implications for comovement between

output and markups, that is “markup cylicality”, at various levels of disaggregation from the

bottom (firm) level up to the sector and aggregate levels, and show how this comovement is

mediated by market structure within and across sectors. We then assess the quantitative ability

of our granular oligopolistic setting to reproduce salient measures of the cyclical properties of

markups in the French data at the firm, sector, and aggregate levels.

To model in a tractable way the determination and aggregation of markups in an economy fea-

turing a large but finite number of sectors with a discrete number of firms, we use a nested

CES demand structure studied in Atkeson and Burstein (2008).2 Firms compete under flexible

prices, setting markups that are increasing in within-sector sales shares.3 Firm-level shocks

follow a random growth process that generates empirically plausible firm dynamics, firm-size

distributions, and granular sectoral and aggregate fluctuations (Carvalho and Grassi 2019). The

model yields predictions for the joint behavior of within-sector market shares, markups, and

output following exogenous changes in firm-level shifters. Furthermore, the model’s conve-

1Other studies contributing to the active debate on the sign and magnitude of markup cyclicality include Bils
(1987), Hall (1988), Anderson, Rebelo and Wong (2018), and Stroebel and Vavra (2019). Additionally, a growing liter-
ature provides measures of lower-frequency trends in markups, such as De Loecker, Eeckhout and Unger (2020) and
De Loecker and Eeckhout (2018).

2A similar framework has been used in a number of macro applications to quantify the welfare costs of mar-
ket power (Edmond, Midrigan and Xu, 2018 and Berger, Herkenhoff and Mongey, 2019), trends in market power
(De Loecker, Eeckhout and Mongey, 2018), optimal product market policy (Boar and Midrigan, 2019), managerial
compensation (Bao, De Loecker and Eeckhout, 2022), wage inequality (Deb, Eeckhout, Patel and Warren, 2022), pro-

competitive gains from trade (Edmond, Midrigan and Xu, 2015), exchange-rate pass-through (Amiti, Itskhoki and
Konings, 2019), and granularity in trade (Gaubert and Itskhoki, 2018). Other prominent work featuring fluctuations
in market power in macroeconomic models include Gali (1994), Kimball (1995), Jaimovich and Floetotto (2008), and

Bilbiie, Ghironi and Melitz (2012).
3Much of the literature on markup cyclicality is motivated by the implications of models with nominal rigidities

(e.g., Rotemberg and Woodford (1999) for a comprehensive early survey), which depend on the nature of nominal
rigidities (prices vs. wages) and on the source of aggregate shocks (e.g., monetary vs. productivity). By contrast,
we examine how far a model with flexible prices and granular, firm-level shocks can go in accounting for observed
patterns of markup cyclicality at different levels of disaggregation. See Mongey (2017) and Wang and Werning (2020)
for recent analyses of money non-neutrality in an oligopolistic model like ours with price rigidities.
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nient equilibrium aggregation yields simple sectoral and aggregate counterparts to many of

these firm-level objects.

Our first theoretical contribution is to provide simple analytic expressions showing how the

sign of markup cyclicality depends on the level of aggregation, the market structure within and

across sectors, and the set of shocked firms.4 We show sectoral output and markups comove

positively in response to shocks to large firms in the sector, whereas they comove negatively in

response to shocks to small firms. In turn, the effect of such shocks on the aggregate markup

depends on the distribution of sector-level markups and sectoral expenditure shares. Under

the additional assumption that shocks are uncorrelated across firms (such that large firms drive

the cycle in each sector), we provide sufficient conditions for a positive asymptotic correlation

between markups and output at the sectoral and aggregate levels.

Second, we compare, theoretically, the implications of our model to an alternative specifica-

tion in which firm-level markups are heterogeneous but constant in response to shocks (i.e.,

complete pass-through) so that sectoral and aggregate markups only change due to between-

firm reallocation and not within-firm markup changes. We show that, although within-firm

markup changes account for half of sectoral markup fluctuations in the variable markup model,

changes in sectoral and aggregate markups can be larger or smaller than in the constant

markup model, depending on parameter values, because the extent of between-firm realloca-

tion falls with incomplete pass-through. Additionally, we provide analytical formulas for sec-

toral and aggregate output volatility, which generalize those in Gabaix (2011) to an oligopolistic

setting with variable markups, and show how the introduction of variable markups dampens

granular aggregate volatility, by acting in a similar way to a decline in the Herfindahl index. In-

tuitively, when pass-through rates are lower for larger firms, the weight of large firm shocks in

the price index is effectively reduced relative to constant markup models.

Our quantitative analysis is based on French administrative firm-level data over a 26-year pe-

riod (1994-2019) covering approximately 400,000 firms per year. We use these data to compute

empirical distributions of firm market shares, sectoral output and concentration, and aggre-

gate output over our annual sample. We use balance-sheet, price and quantity information

to obtain a measure of firm-level markups – following the methodologies in De Loecker and

Warzynski (2012), De Loecker et al. (2016) and De Ridder et al. (2022) – which we then aggre-

gate at the sectoral and economy-wide levels.5,6 We employ a rich set of empirical moments at

4Grassi (2018) studies the role of input-output linkages and endogenous markups in shaping comovement of

sector-level variables, providing an analytical characterization of the impact of microeconomic shocks on aggregate
output using an approximation with respect to the deep parameters of the model. Our analytic results make use of
a different approximation with respect to firm-level idiosyncratic shocks, similar to the one used in, for example,
Gopinath et al. (2010), Burstein and Gopinath (2014), and Amiti et al. (2019) in the context of exchange rate shocks.

5By using information on firm-level quantities, our measures of markups are not prone to the biases identified
in Bond et al. (2020) that result from using revenues rather than quantities. See De Ridder et al. (2022) for a detailed
discussion.

6Given the level of aggregation in our baseline dataset, we do not measure markups at the level of geographic
regions, as in Anderson et al. (2018), or products, as in De Loecker et al. (2016). For consideration of pricing with
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the firm, sector, and aggregate levels both to calibrate our model and to assess its quantitative

implications for (non-targeted) markup cyclicality.

We start by analyzing a basic mechanism in our oligopolistic setting: within a narrowly de-

fined sector, a firms’ market power is increasing in its market share. This relationship implies a

positive correlation between firm-level markup and firm-level market share, both in the cross

section and over time. Moreover, aggregating firm-level outcomes implies the same correlation

between sectoral markups and sectoral concentration. We find support for these predicted cor-

relations in the French data, both at the firm and at the sector levels, in the cross section, and

over time.7 Moreover, changes in firm-level markups account for a sizable portion of changes

in sectoral markups both in our model (50%) and in the data (53% in the median sector).8

Second, we examine in the model and data three measures of markup cyclicality in the liter-

ature. We first consider a notion of firm-level markup cyclicality proposed by Hong (2017).

In particular, we ask whether firm-level markups covary systematically with respect to sector-

level output. We find this reduced-form relation is “counter-cyclical” for the average firm in

the French data, but switches sign for large firms. Consistently with the model mechanics dis-

cussed above, our quantitative model is able to reproduce these findings. Relatedly, we addi-

tionally find that, in the data, large firms are “pro-cyclical” in that their market share increases

during sectoral expansions, which is a key implication of our granular model.We then proceed

to evaluate notions of sector-level markup cyclicality. Following Nekarda and Ramey (2013)

(the working paper version of Nekarda and Ramey, 2020), we ask whether sector markups co-

move with sector output over the business cycle. Like Nekarda and Ramey (2013) for the US,

we find evidence for a positive systematic comovement between the two measures, or “pro-

cyclicality”, in the French data. The model simulations also reproduce this fact, as anticipated

in our theoretical discussion. Also consistently with the model mechanism, we find that in the

data, sectoral expansions tend to be associated with an increase in sectoral concentration Fi-

nally, we follow the work of Bils et al. (2018), who investigate yet another notion of cyclicality:

the extent to which sector level markups comove with aggregate output. According to this mea-

sure, we find weak (statistically insignificant) counter-cyclical point estimates. Bils et al. (2018)

document a negative correlation for the US. Simulations of our model also imply that this al-

ternative comovement measure is not statistically different from zero. Overall, in the data, we

obtain seemingly conflicting measures of markup cyclicality across different layers of aggrega-

tion despite using a single dataset and measure of firm-level markups. This suggests that by

exploiting different reduced-form measures of markup cyclicality, two researchers may arrive

at opposing conclusions even within a single dataset. Nevertheless, our model can reproduce

multi-product firms in a similar framework to ours, see Hottman et al. (2016).
7Relatedly, Brooks et al. (2016) and Kikkawa et al. (2019) provide evidence of a positive relation between market

shares and markups in the time series using firm-level data from China and Belgium, respectively.
8This is consistent with Figure 3 in Baqaee and Farhi (2019), showing that within-firm changes in markups in the

US are quantitatively important in accounting for high frequency movements in aggregate markup.
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qualitatively, and sometimes quantitatively, these different reduce-form notions measures of

markup cyclicality.

Finally, we examine the model’s implications for aggregate markup and output fluctuations.

In our baseline calibration we abstract from aggregate shocks that leave the firm-size distribu-

tion unchanged because, in our model, they do not affect markups. Our model with granular

firm-level shocks generates roughly 25% (on average, across 25-year simulated samples) of the

volatility of aggregate output in the French data. The ratio of markup volatility relative to out-

put volatility is roughly 0.7 in the data and 0.4 in the model, abstracting from other aggregate

shocks. Note that much of the work on the granular origin of business cycles abstracts from

these movements in desired markups that can partly offset the impact of own firm-level shocks

or magnify the impact from shocks to competing firms.9,10 Turning to aggregate markup cycli-

cality, our model implies a counterfactually large and positive point estimate for the correlation

between aggregate output and markups relative to the data. However, there is large variation

in point estimates across small 25-year simulated samples. This is because, as our analytic ex-

pressions show, the extent of markup cyclicality depends on the set of shocked firms, which

can vary substantially across small samples. Moreover, superimposing aggregate productivity

shocks to account for the overall aggregate volatility reduces this correlation significantly. Fi-

nally, we show the magnitude and cyclicality of aggregate markups in our model is not too dif-

ferent when we counterfactually fix markups at their initial, heterogeneous equilibrium level.

Of course, rather than exogenously fixing markups, our model provides a unified theory of both

markup (level) heterogeneity across firms and endogenous markup changes.

The paper is organized as follows. In section 1, we present our granular oligopolistic setup and

describe the equilibrium from the bottom (firm) level to the aggregate level. In section 2, we

characterize analytically various measures of markup cyclicality at various aggregation levels.

In section 3, we discuss our French administrative firm data, the markup-estimation strategy

and model calibration. In section 4, we compare a host of markup-related moments in the data

and in model-generated data. Section 5 concludes. In the Appendix, we more fully discuss

markup estimation, provide additional results and proofs, and present robustness checks.

9Gaubert and Itskhoki (2018) study the granular origins of a country’s comparative advantage in an oligopolistic
framework that is similar to ours. For work on the granular origins of business-cycle fluctuations – but featuring
either perfect competition or constant markups – see Carvalho and Gabaix (2013) on the evolution of business-
cycle volatility over time and across countries and di Giovanni and Levchenko (2012) or di Giovanni et al. (2018) for

granular settings linking trade, aggregate volatility, and cross-country comovement. di Giovanni et al. (2014) provide
an empirical benchmark for the role of granularity in aggregate fluctuations. Our emphasis on the micro origins of
aggregate fluctuations is also related to the literature on production networks. See Acemoglu et al. (2012) for an

initial benchmark, and Grassi (2018) for an analysis of how market power distorts the propagation of shocks along
input linkages. Finally, Pasten et al. (2020) examine aggregate granular fluctuations in a multi-sector model allowing
for changes in markups due to nominal price rigidities.

10Baqaee and Farhi (2019) provide a very general characterization of the impact of microeconomic shocks on
aggregate productivity and output in a large class of models in which productivities and wedges (e.g., markups)
are exogenous primitives. Baqaee and Farhi (2020) study the role of variable markups in shaping the aggregate
implications of changes in market size.
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1 Model

Our model consists of a representative household that supplies labor and consumes a fixed set

of goods produced by a discrete number of flexible-price firms that compete oligopolistically

and that the representative household owns. In this section we describe the model and charac-

terize the equilibrium, first within a sector and then at the aggregate level.

1.1 Preferences and technologies

Households have preferences at time t over consumption of a final composite good, Yt, and

labor, Lt, represented by the utility function

U (Yt, Lt) =
1

1− η
Y 1−η
t −

f0
1 + f−1

L1+f−1

t ,

where η ≤ 1 and f ≥ 0 are, respectively, the constant relative risk aversion and the Frisch elas-

ticity of labor supply. Households choose consumption and labor to maximize utility subject

to the constraint that consumption expenditures must not exceed the sum of wage payments

and aggregate profits.

The final good aggregates output of N sectors according to a constant-elasticity-of-substitution

(CES) aggregator:

Yt =

[
N∑

k=1

A
1

σ

k Y
σ−1

σ

kt

] σ

σ−1

,

where Ykt denotes sector k output, Ak is a demand shifter for sector k (which we assume is

constant over time, and we set it in our calibration to target the average size of each sector),

and σ ≥ 1 is the elasticity of substitution across sectors.

As in Atkeson and Burstein (2008), each sector k is itself a CES aggregator of the output of Nk

individual firms given by

Ykt =

[
Nk∑

i=1

A
1

ε

kitY
ε−1

ε

kit

] ε

ε−1

,

where Ykit denotes the output of firm i in sector k, Akit is a firm-quality shifter, and ε is the

elasticity of substitution between the output of firms in sector k.11 We assume σ ≤ ε, so that

goods are more substitutable within sectors than across sectors. With a finite number of sectors

and a discrete number of firms per sector, firm-level shocks can generate aggregate fluctuations

as in Gabaix (2011). By contrast, with a continuum of sectors, as in Atkeson and Burstein (2008),

11The model’s implications for markups, market shares, and concentration measures are unchanged if Akit is a
taste shock. However, measures of aggregate output calculated using chain-weighted deflators are path-dependent
in the presence of taste shocks (i.e. growth between t and t′ depends on the sequence of shocks between t and t′); see
e.g. Baqaee and Burstein (2021). For this reason, we abstract from taste shocks. Given the challenges of measuring
quality changes at high frequencies, in the quantification we only consider firm-level productivity shocks.
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firm-level shocks would not generate aggregate fluctuations.

Firm i in sector k produces output according to the constant-returns-to-scale technology:

Ykit = ZkitLkit, (1)

where Zkit denotes the productivity of firm i in sector k and Lkit is a variable input, employ-

ment, that is perfectly mobile across firms.12 Labor market clearing requires that the sum of

employment across all firms equals aggregate labor, Lt.
13

We introduce assumptions about the stochastic process of firm-level shocks Akit and Zkit in the

analytic section 2 for our asymptotic results and in the quantitative section 3 when describing

our model calibration.

1.2 Market structure and sector equilibrium

We now describe the equilibrium in a sector. Firm i in sector k setting a non-quality adjusted

price Pkit faces demand Ykit = AkAkit (Pkit)
−ε (Pkt)

ε−σ P σ
t Yt, where the sector k price is

Pkt =

[
Nk∑

i=1

AkitP
1−ε
kit

] 1

1−ε

, (2)

and the aggregate price is

Pt =

[
N∑

k=1

AkP
1−σ
kt

] 1

1−σ

.

The markup for firm i in sector k, which we characterize below, is defined as the ratio of price

to marginal cost,

µkit ≡
ZkitPkit

Wt
, (3)

where Wt is the price of the variable input (i.e., the wage). This markup determines how the

firm’s revenues are split into labor payments and profits, such that

LkitWt = µ−1
kitPkitYkit, and Πkit =

(
1− µ−1

kit

)
PkitYkit.

The market share of firm i in sector k, skit ≡ PkitYkit

PktYkt
, can be expressed in terms of markups

12In appendix A.7, we provide analytic results allowing for decreasing returns to scale at the firm level.
13Our results in section 2 on firm-level and sectoral-level outcomes are unchanged if the variable input, Lkit,

is a composite of multiple inputs (e.g., labor, intermediate goods, and capital) that is common across firms in the
sector. The specific assumptions on the composition of this variable input matter only for the aggregate response
of the economy to given firm-level shocks. When estimating markups in Section 3, we assume the input Lkit is a
translog combination of labor, capital, materials, and services inputs with parameters that vary by sector. We then
compare measures of cyclicality of estimated markups in the data with measures of cyclicality implied by our model
in section 4.
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and firm shifters, which are defined as a composite of quality and productivity shifters, Vkit ≡

AkitZ
ε−1
kit . Specifically,

skit =
Vkitµ

1−ε
kit∑Nk

i′=1 Vki′tµ
1−ε
ki′t

. (4)

One can consider two alternative market structures. Firms maximize profits by choosing price,

taking other firms’ prices as given (Bertrand competition), or by choosing quantity, taking other

firms’ quantities as given (Cournot competition). In both cases, firms take into account that

they are non-atomistic in their sector, and hence their choices affect sectoral output and prices.

We assume, however, that individual firms behave as if the sector they produce in is atomistic

in the aggregate economy (as in the case of a continuum of sectors).14

Under these assumptions, equilibrium markups and market shares in each sector k solve the

non-linear system of equations given by (4) and

µkit =





ε
ε−1

[
1−

(
ε/σ−1
ε−1

)
skit

]−1
under Cournot,

ε
ε−1

[
1−( ε−σ

ε
)skit

1−( ε−σ

ε−1
)skit

]
under Bertrand.

(5)

Under both formulations, since ε > σ, markups are increasing in market shares,15 with

lim
skit→0

µkit =
ε

ε− 1
and lim

skit→1
µkit =

σ

σ − 1
. If ε = σ, markups are common across firms and

constant over time as in the standard monopolistically competitive model. In our analytic

and quantitative results, we focus on the case of Cournot competition because it generates

more markup variation than Bertrand and is thus better able to match estimates of incomplete

pass-through and markup-size relationship. In Appendix A, we provide analytic results under

Bertrand.

Two remarks are in order about firm shifters. First, firm-level market shares and markups in

sector k depend only on relative firm shifters across firms within this sector. This result implies

that market shares and markups in sector k do not vary in response to proportional changes in

shifters to all firms in sector k (including sectoral demand shifters Ak), shocks in other sectors,

or changes in the aggregate wage. It follows that aggregate shocks to firms in all sectors generate

fluctuations in aggregate output but not in aggregate markups. For this reason, in our baseline

quantitative analysis, we abstract from standard aggregate productivity shocks.

14In Appendix A.8 we solve for markups in the case in which each firm maximizes real profits internalizing the
effect of their individual choice of output or prices on aggregate output and the real wage, thus relaxing our baseline
behavioral assumption. Firms do not internalize, however, the impact that changes in profits have on the welfare of

the firm’s owner (Azar and Vives, 2021). We show that markups depend not only on the firm’s sectoral sales share,
but also on the firm’s sectoral employment share as well as the firm’s economy-wide share in sales and employment,
which increases the computational burden of solving the model. Applying the new formula using the sales and
employment shares in our baseline calibration results has a negligible impact on markup levels compared to our
baseline. This is because most sectors in our data are quite small.

15The property is satisfied in a variety of models with variable elasticity of demand (see, e.g., the reviews in
Burstein and Gopinath (2014) and Arkolakis and Morlacco (2017))
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Second, the split of firm shifters Vkit into quality and productivity does not matter for the model

implications on markups, concentration and output (for the latter, as long as deflators use

quality-adjusted prices) at the firm, sector, or aggregate levels. In practice, price deflators used

by statistical agencies typically do not incorporate high-frequency changes in quality. There-

fore, in order to compare output in the model and data, we only consider firm-level productivity

shocks and abstract from quality shocks.

1.3 Sectoral outcomes

We now describe how the model aggregates outcomes from the firm level to the sector level.

We define sectoral markup as the ratio of sectoral revenues to labor payments,

µkt ≡
PktYkt

WtLkt
, (6)

where sectoral employment is Lkt =
∑Nk

i=1 Lkit. Sectoral markups can be expressed as an har-

monic mean (weighted by market shares) of firm-level markups,

µkt =

[
Nk∑

i=1

µ−1
kitskit

]−1

. (7)

Substituting the markup-market-share relationship (equation 5) under Cournot competition,

we can express the sectoral markup, µkt, as a simple function of the sector’s Herfindahl-

Hirschman index, HHIkt =
∑Nk

i=1 s
2
kit:

16

µkt =
ε

ε− 1

[
1−

(
ε/σ − 1

ε− 1

)
HHIkt

]−1

. (8)

Note the positive relationship between sectoral markup and HHI takes the same form as the

firm-level relationship between markup and market share in equation (5). In the same way

that a firm with a large market share charges a higher markup, a sector with a large average

market share, that is, a high HHI, has a high sectoral markup as long as ε > σ.17

Sectoral markups can be expressed as the standard ratio between sectoral price and marginal

cost (i.e., the ratio of wage to sectoral productivity), µkt = PktZkt/Wt. Sectoral productivity,

Zkt ≡ Ykt/Lkt, can be expressed in terms of firm-level markups and firm shifters as

Zkt =

(∑Nk

i=1 Vkitµ
1−ε
kit

) ε

ε−1

∑Nk

i=1 Vkitµ
−ε
kit

. (9)

16The HHI is an average of market shares, weighted by market shares themselves, and hence ranges between 0
and 1.

17A similar mapping between sectoral markups and concentration indices can be obtained under Bertrand com-
petition (see Grassi, 2018).
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1.4 Aggregate outcomes

We now describe how the model aggregates outcomes from the sector level to the aggregate

level. We define aggregate markup as the ratio of aggregate revenues and labor payments,

µt ≡
PtYt

WtLt
=

[
N∑

k=1

sktµ
−1
kt

]−1

. (10)

As indicated by the second equality, aggregate markups can be expressed as a harmonic

weighted average of sectoral markups, where sectoral expenditure shares are determined by

sectoral markups and sectoral shifters Vkt ≡ AkZ
σ−1
kt ,

skt ≡
PktYkt

PtYt
=

Vkt (µkt)
1−σ

∑
k′ Vk′t (µk′t)

1−σ . (11)

Alternatively, under Cournot, we can express the aggregate markup as a simple function of

average sectoral HHI (weighted by sectoral expenditure shares) that mirrors the expressions

for firm-level and sector-level markups in equations (5) and (8), respectively:

µt =
ε

ε− 1

[
1−

(
ε/σ − 1

ε− 1

) N∑

k=1

sktHHIkt

]−1

.

The weighted average of sectoral HHIs is equal to the average market share across firms

weighted by firms’ expenditure share in the whole economy.18 When this weighted-average

market share in the economy is high, the aggregate markup is high.

Aggregate markups can also be expressed as the standard ratio between aggregate price and

aggregate marginal cost, µt = PtZt/Wt, where aggregate productivity, Zt ≡ Yt/Lt, can be ex-

pressed in terms of sectoral markups and sectoral shifters as

Zt =

(∑N
k=1 Vktµ

1−σ
kt

) σ

σ−1

(∑N
k=1 Vktµ

−σ
kt

) . (12)

Finally, aggregate output and labor are given by

Y
η+ 1

f

t =
Z

1+ 1

f

t

f0µt
and Lt =

Yt

Zt
, (13)

where the aggregate markup, µt, distorts the leisure/consumption choice relative to the optimal

allocation.

18Specifically,
∑N

k=1 sktHHIkt =
∑N

k=1

∑Nk
i=1 skts

2
kit =

∑N

k=1

∑Nk
i=1

PktYkt

PtYt

PkitYkit

PktYkt
skit =

∑N

k=1

∑Nk
i=1

PkitYkit

PtYt
skit.
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1.5 Summary of equilibrium

Our model aggregates outcomes in a very parsimonious manner from the firm level to the sec-

tor level, and from the sector level to the aggregate level. Here we summarize how to solve

for prices and quantities as a function of time t of firm shifters, {Vkit}, and sectoral demand

shifters, {Ak}.

Equilibrium firm-level markups and market shares, µkit and skit, are the solution to equations

(4) and (5). Sectoral markups and productivities, µkt and Zkt, are solved from equations (7) and

(9), respectively, and sectoral expenditure shares, skt, from equation (11).

Aggregate markup, productivity, output, and employment, µt, Zt, Yt, and Lt, are solved from

equations (10), (12), and (13). Setting Wt = W̄ as the numeraire, sectoral, and aggregate price

levels, Pkt and Pt, are given by Pkt = µktWt/Zkt and Pt = µktWt/Zt . Sectoral output is solved

from

Ykt = AkP
−σ
kt P σ

t Yt,

and sectoral employment using Lkt = Ykt/Zkt. Firm-level expenditures and employment,

PkitYkit and Lkit, are solved from PkitYkit = skitPktYkt and equation (6), respectively. Finally,

given a split of firm shifters Vkit into productivity {Zkit} and quality {Akit}, firm-level output

Ykit and price Pkit are solved from equations (1) and (3), respectively.

In the following section, we use a first-order approximation to characterize the equilibrium

response to firm-level shocks at the firm, sectoral, and aggregate levels.

2 Analytic results

In this section, we characterize, up to a first-order approximation, the equilibrium response of

markups, prices, and output to firm-level shocks at the firm, sectoral, and aggregate levels.19

We first introduce a first-order approximation to solve for changes in firm-level markups and

market shares in a sector. We then develop expressions for changes in prices, markups, and

output in response to firm-level shocks, first at the sector level and then at the aggregate level.

We provide expressions for asymptotic covariances between markup and output changes at

different aggregation levels under the additional assumption that firm-level shocks are i.i.d.

and equally distributed across firms with variance σ2
v ≡ Var

[
V̂kit

]
. We focus on the case of

Cournot competition, and present results under Bertrand in the appendix. We highlight the

role of variable markups versus constant markups in shaping markup cyclicality, as well as the

impact of variable markups on aggregate output volatility. We return to these formulas in our

quantitative analysis in section 4.3.

19We thank Dmitry Mukhin for his valuable input in deriving these analytic results.
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2.1 Firm-level outcomes

Consider an initial equilibrium in sector k with market shares {ski} and markups {µki} where,

for simplicity, we omit time subscripts in the initial equilibrium. Taking a first-order approxi-

mation of the expressions of market share (equation 4) and of firm-level markup (equation 5),

changes in the equilibrium market shares and markups are the solution to the following system

of equations

ŝkit = V̂kit + (1− ε) µ̂kit −

Nk∑

i′=1

ski′
(
V̂ki′t + (1− ε) Γki′ ŝki′t

)
, (14)

µ̂kit = Γkiŝkit. (15)

Variables with hats denote log differences at time t relative to the initial equilibrium, that is,

V̂kit ≡ log Vkit − log Vki, and Γki denotes the markup elasticity with respect to market share for

firm i in sector k, evaluated at the initial equilibrium.

Markup elasticities under Cournot are, by equation (5),

Γki ≡
∂ log µki

∂ log ski
=

(
ε
σ − 1

)
ski

ε− 1−
(
ε
σ − 1

)
ski

.

As discussed above, if ε > σ, markups are increasing in market shares i.e., Γki ≥ 0, with strict

inequality if ski > 0. Moreover, markup elasticities are also increasing in market shares. This

property whereby markup elasticities are increasing in market shares is satisfied by a variety of

demand models with variable elasticity, as discussed in, for example, Burstein and Gopinath

(2014) and Arkolakis and Morlacco (2017).

We now introduce pass-through elasticities, which are not required to solve for sectoral market

shares and markups but, nevertheless, we use in our analytic results that follow. We choose

the wage as the numeraire, without loss of generality. Changes in firm-level prices (relative

to the wage) at time t are given by P̂kit = −Ẑkit + µ̂kit. Combined with equations (15) and

ŝkit = Âkit + (1− ε)
(
P̂kit − P̂kt

)
, we obtain

P̂kit = αki

(
−Ẑkit + ΓkiÂkit

)
+ (1− αki) P̂kt, (16)

where αki is the pass-through rate governing how firm-level prices respond to idiosyncratic

shocks (for given changes in sectoral prices, P̂kt),

αki =
1

1 + (ε− 1) Γki
. (17)

Conversely, 1 − αki governs how prices respond to changes in sectoral price (due to variable
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markups).20 Because markup elasticities are increasing in market shares (if ε > σ), pass-

through rates are decreasing in market shares.21 To isolate the role of changes in markups in

response to shocks, we consider the case in which markups are fixed at the initial equilibrium

levels, imposing Γki = 0 and αki = 1.

2.2 Sectoral outcomes

In this subsection, we characterize how sectoral prices, markups, and output respond to firm-

level shocks, and provide expressions for variances and covariances of markup and output

changes over long realizations of shocks.

Sectoral prices As a first step in understanding changes in sectoral output, we characterize

changes in sectoral prices (relative to the the numeraire, i.e., wage), which are related to sectoral

output by CES demand, Ykt = AkP
−σ
kt P σ

t Yt.

Taking a first-order approximation of the sectoral price definition (2) and using firm-level price

changes (16), log changes in sectoral prices can be expressed as a weighted average of firm

shifters,

P̂kt = −
1

ε− 1

∑Nk

i=1 skiαkiV̂kit∑Nk

i=1 skiαki

, (18)

where the weights are given by the product of market shares, ski, and pass-through rates, αki.

Because ε ≥ 1, sectoral prices fall in response to an increase in firm shifter.

To understand how sectoral price changes are shaped by pass-through rates, note that if αki =

αk, P̂kt is independent of αk for given market shares ski in the initial equilibrium. That is, the

response in sectoral price is identical to that if markups were fixed at their initial level (αki = 1).

Intuitively, as pass-through αk falls, the larger markup change by a firm to an own shock is

exactly offset by a larger change in markup, in the opposite direction, of its competitors.

With heterogeneity in pass-through rates, because αki is decreasing in ski, a single value s̄pk
exists such that a positive shock to firm i with ski > s̄pk results in a smaller reduction in sectoral

prices than if markups were fixed at their initial level. Intuitively, firm i’s increase in markup

more than offsets the markup decrease of its competitors. Conversely, a positive shock to firm

i with ski < s̄pk results in a larger reduction in sectoral prices than if markups were fixed at their

initial level.22

20In the appendix, we provide expressions for the elasticity of market shares with respect to firm-level shifters
and for the variance of market shares.

21We can further solve for P̂kit using P̂kt = skiP̂kit + (1 − ski)P̂k−it, where P̂k−it is the competitors’ price index

defined in Amiti et al. (2019). We can rewrite (16) as P̂kit = α̃ki

(
−Ẑki + ΓkiÂkit

)
+ (1− α̃ki) P̂k−it, where α̃ki =

αki

1−(1−αki)ski
, which is a U-shaped function of market shares ski.

22The threshold s̄pk is defined implicitly by αk(s̄
p

k) =
∑Nk

i=1 skiαki.
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From equation (18), the asymptotic variance of price changes in sector k assuming firm-level

shifters are i.i.d. with common variance σ2
v is

Var
[
P̂kt

]
=

(
σv

ε− 1

)2 Nk∑

i=1

(
αkiski∑
i′ αki′ski′

)2

. (19)

If markups are fixed at their initial level (or, more generally, if αki = αk), this variance is propor-

tional to the sectoral HHI, as in Gabaix (2011): Var
[
P̂kt

]
=
(

σv

ε−1

)2∑Nk

i=1 s
2
ki. Comparing this

expression with (19), we note Var
[
P̂kt

]
is lower under variable markups than under constant

markups if and only if the variance of αkiski∑
i′ αki′ski′

is lower than the variance of ski. Because αki

is decreasing in ski, this condition is satisfied if skiαki is increasing in ski (see condition A10 in

appendix A.3). Intuitively, under this condition, pass-through rates are lower for larger firms,

effectively reducing the weight of large firm shocks in the price index (with similar effects on

volatility as a decline in the HHI).

Sectoral markups Changes in sectoral markups, defined in equation (7), can be decomposed

into changes in markups within firms and the reallocation of expenditures between firms with

heterogeneous markups:

µ̂kt =

Nk∑

i=1

ski
µk

µki
(µ̂kit − ŝkit) . (20)

In appendix A, we derive the following expression for changes in sectoral markups:23

µ̂kt = 2

(
1

σ
−

1

ε

)
µk

Nk∑

i=1

skiαki

[
ski −

∑
i′ s

2
ki′αki′∑

i′ ski′αki′

]
V̂kit. (21)

The following proposition states that a positive shock to firm i results in an increase in the

sectoral markup if and only if firm i is sufficiently large in its sector.

Proposition 1 Consider a positive shock to firm i in sector k, V̂kit > 0. Then, under Cournot
competition, sector k markup increases, µ̂kt > 0, if and only if ski >

∑
i′ s

2
ki′αki′/

∑
i′ ski′αki′ .

Intuitively, recall from equation (20) that changes in sectoral markups reflect changes in firm-

level markups (within term) and between-firm reallocation (between term). Consider first the

within term. A positive shock to firm i raises firm i’s markup and reduces it for competing

firms. The former dominates if firm i is large, whereas the latter dominates if firm i is small.

Consider now the between term. A positive shock to firm i reallocates market shares towards

firm i, increasing the sectoral markup if firm i’s markup is sufficiently high (or, equivalently, if

23Ex-ante firm heterogeneity is a necessary condition for sectoral markups to change in response to firm-level
shocks. To see this, if ski and µki are equal across all firms in sector k, equations (15), (20), and

∑Nk
i=1 skiŝki = 0

imply that µ̂kt = 0.
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its market share is sufficiently large). Therefore, the within and between terms push the sectoral

markup in the same direction.

The “2” in front of (21) reflects the fact that the magnitude of the within term is equal to

the magnitude of the between term (and hence each accounts for 50% of changes in sec-

toral markups). A change in parameters (e.g., an increase in ε − σ) that increases the sensi-

tivity of markups to firm-level shocks (increasing the within term) also increases the dispersion

of markups across firms (increasing the between term). In appendix A, we show this 50-50

within/between decomposition of changes in sectoral markups under Cournot competition

holds globally not only up to a first order.

How do changes in sectoral markups compare in the specification with variable markups ver-

sus the specification with constant markups in which sectoral markups change only due to

between-firm reallocation? If firm-level markups are fixed at their initial level (setting Γki = 0

and αki = 1), changes in sectoral markups in equation (20) are:

µ̂kt =

Nk∑

i=1

ski

(
1−

µk

µki

)
V̂kit. (22)

In response to a positive shock to firm i, sectoral markups increase if and only if µki > µk.

In general, we cannot easily compare (22) and (21). To make analytic progress, in appendix A,

we restrict the extent of ex-ante firm heterogeneity to two types and provide a simple sufficient

condition for sectoral markups to change by more (and display a higher variance) under vari-

able markups than under constant markups. Intuitively, changes in sectoral markups can be

smaller under variable markups than under constant markups because the larger response of

sectoral markups due to changes in firm-level markups is more than offset by a smaller extent

of between-firm reallocation due to incomplete pass-through.

To summarize, even though changes in sectoral markups under variable markups are twice

as large as the between-firm reallocation term for any firm-level shocks, variable markups do

not necessarily magnify changes in sectoral markups relative to the model specification with

constant markups, because incomplete pass-through mutes the extent of between-firm reallo-

cation

Covariance between sectoral prices and sectoral markups Recall from previous results that

in response to a positive shock to firm i in sector k, the sectoral price falls, whereas sectoral

markup can increase or decrease depending on the firm’s initial markup. In finite samples,

comovement can be positive or negative depending on which firms are shocked. We now cal-

culate the asymptotic covariance between sectoral price and markup changes, which shapes

the covariance between sectoral output and markup that we examine below.
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First, to build intuition, in the case of constant markups,

Cov
[
µ̂kt, P̂kt

]
= −

1

ε− 1

Nk∑

i=1

s2ki

[
1−

µk

µki

]
× σ2

v . (23)

Thus, sectoral markups and prices are negatively correlated as long as large firms within sec-

tor charge higher markups. Intuitively, shocks to small firms induce a positive comovement,

whereas shocks to large firms induce a negative comovement. Overall, comovement is nega-

tive because shocks to large firms induce larger changes in sectoral price than shocks to small

firms.

With variable markups, using the expressions for the change in sectoral price (18) and markup

(21),

Cov
[
µ̂kt, P̂kt

]
= −

(
2µk

ε− 1

)(
1

σ
−

1

ε

) Nk∑

i′=1

s2ki′αki′

Nk∑

i=1

[
s2kiαki∑Nk

i′=1
s2ki′αki′

−
skiαki∑Nk

i′=1
ski′αki′

]
skiαki∑Nk

i′=1
ski′αki′

×σ2

v.

(24)

Therefore, when ε > σ, sectoral prices and markups comove negatively in long samples if and

only if
Nk∑

i=1

[
s2kiαki∑Nk

i′=1 s
2
ki′αki′

−
skiαki∑Nk

i′=1 ski′αki′

]
skiαki∑Nk

i′=1 ski′αki′
> 0. (25)

If firms are ex-ante homogeneous, equation (25) holds with equality and sectoral markups are

constant over time. If firms are heterogeneous in the initial equilibrium, inequality (25) may or

may not hold. The following proposition, proven in the appendix, states that if pass-through

rates do not fall too strongly with market shares, inequality (25) holds, so sectoral prices and

markups comove negatively.

Proposition 2 Under Cournot competition, if firms are ex-ante heterogeneous and skiαki is in-

creasing in ski, sectoral markup and price comove negatively, Cov
[
µ̂kt, P̂kt

]
< 0.

In appendix A.3 we show that skiαki is increasing in ski provided that market shares are not

too large. Intuitively, the condition that skiαki is increasing in ski implies, by equation (18), that

sectoral prices are more responsive to large firm shocks than to small firm shocks (i.e., the lower

pass-through rate by large firms does not fully offset their higher weight in the price index). The

fact that sectoral markups increase in response to large firm shocks and decrease in response

to small firm shocks implies a negative covariance between sectoral price and markup, as in

the case of constant markups.
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Covariance between sectoral output and markups In appendix A, we derive the following

expression for changes in sector k output in response to sector k shocks:

Ŷkt = −

[
σ (1− sk) +

(
f + 1

fη + 1
+

(
σ − 1

fη + 1

)(
1−

µ

µk

))
sk

]
P̂kt +

skµ

µk

µ̂kt

fη + 1
. (26)

A sufficient condition for sectoral output and price to move in opposite directions is that sec-

tor k is small in the aggregate (sk → 0) or that disutility of labor is linear (f → ∞). In this

case, the previous results on sectoral price apply immediately to sectoral output (with the op-

posite sign).24 Specifically, in response to a positive shock to firm i in sector k, sectoral out-

put increases whereas sectoral markup can increase or decrease depending on the firm’s initial

markup.

Taking into account a long sequence of firm shocks in sector k, the covariance between changes

in sectoral output and sectoral markup is:

Cov
[
Ŷkt, µ̂kt

]
= −


σ (1− sk) +

f + 1 + (σ − 1)
(
1− µ

µk

)

fη + 1
sk


Cov

[
P̂kt, µ̂kt

]
+

skµ

µk

1

fη + 1
Var [µ̂kt] ,

where Cov
[
P̂kt, µ̂kt

]
is defined above. The following proposition provides sufficient conditions

for pro-cyclical sectoral markups with respect to sectoral output.

Proposition 3 Under the conditions of Proposition 2, sectoral markup and sectoral output co-

move positively, Cov
[
Ŷkt, µ̂kt

]
> 0, if at least one of these three conditions holds: (i) sk → 0, (ii)

f → ∞, (iii) σ → 1. If all three conditions (i)-(iii) are violated, Cov
[
Ŷkt, µ̂kt

]
> 0 as long as

sectoral markup µk is not too low relative to aggregate markup.

In our empirical analysis, we also consider the cyclicality between sector output and firm-level

markups. In appendix A, we show that, for the case of f → ∞, the covariance between changes

in firm i markup and sector k output is

Cov
[
Ŷkt, µ̂kit

]
=
(
σ (1− sk) + η−1sk

) αkiΓki

(ǫ − 1)
∑Nk

i′=1
ski′αki′

[
skiαki −

∑Nk

i′=1
(ski′αki′)

2

∑Nk

i′=1
ski′αki′

]
× σ2

v. (27)

The following proposition states that firm-level markups are procyclical for large firms and

counter-cyclical for small firms:

Proposition 4 If skiαki is increasing in ski and f → ∞, firm-level markups and sectoral output

comove positively, Cov
[
Ŷkt, µ̂kit

]
> 0, if and only if ski > s̄µk , and comove negatively if and only if

ski < s̄µk , where s̄µk is defined by the condition that the square bracket in (27) is equal to 0.

Intuitively, firm-level markups are positively correlated with sectoral output in response to

24If f finite and sector k is sufficiently large in the aggregate, it is possible that sectoral output and price both fall
in response to positive sector k firm level shocks if sectoral markup µk is very low relative to the aggregate markup
and/or if sector k markup falls substantially when the sectoral price falls.
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own-shocks and negatively correlated in response to competitors’ shocks. Because large firms

have a disproportionate impact on sectoral price and output (if skiαki is increasing in ski), firm-

level markups are pro-cyclical for large firms and counter-cyclical for small firms.25

Before presenting the aggregate results, we briefly discuss our model’s implications for changes

in markups when some prices are nominally rigid.

Discussion of firm and sector-level markups with rigid prices Whereas in this paper we

study markup fluctuations under flexible prices, markups can also fluctuate if costs change

and prices are nominally rigid. Consider the specification under Bertrand competition, and

suppose that the price of firm i in sector k at time t is stuck at P̄kit before the shocks hit.26 For a

sticky price firm, the markup is µkit = ZkitP̄kit/Wt. For flexible price firms (which do not antic-

ipate that that their price may be stuck in the future), markups are given by (5). Market shares

for all firms are determined by the system of equations (4).

In response to productivity shocks to flexible price firms, the sign of the change in sectoral

markups depends on the relative markup level of the shocked firms, as in the baseline model.

Consider now an increase in productivity of a rigid-price firm and suppose that the change

in nominal wage is negligible. The markup of the shocked rigid-price firm rises mechanically,

while markups of other firms remain unchanged (since prices and thus market shares do not

change). Hence, the sectoral markup rises irrespective of whether the shocked firm is small or

large. This force strengthens pro-cyclical sectoral markups in comparison to the flexible-price

model.

Consider now a uniform decline in marginal costs for all firms (productivity rises relative to the

nominal wage). For firms with rigid price, markups rise. For firms with flexible price, markups

also rise since these firms lower their price and increase market share relative to sticky price

firms. Hence, markups rise for all firms. There are additional compositional effects on the

sectoral markup as market shares shift towards flexible price firms. This composition effect

increases the sectoral markup if flexible price firms charge higher markups.27 Whether the in-

crease in markups is pro-cyclical or countercyclical depends on the source of the movement

in marginal cost. In response to an increase in productivity for all firms, markups and out-

put rise. This force provides another reason for pro-cyclical markups relative to the flexible

price baseline where, recall, sectoral shocks leave markups unchanged. In response to contrac-

tionary monetary policy that reduces marginal cost for all firms, markups rise but output falls,

25The cutoff s̄µk differs from the cutoff defined in Proposition 1, because the condition in Proposition 1 is based on
a shock to one firm only, whereas the asymptotic covariance in Proposition 4 takes into account shocks to all firms

in the sector.
26Here for simplicity we take P̄kit as given and do not study how firms choose their reset price. For a detailed

analysis of sticky prices in a dynamic environment with oligopolistic competition, see Mongey (2017) and Wang and
Werning (2022).

27For evidence that prices are more flexible for large firms (which in our model charge higher markups), see
Goldberg and Hellerstein (2009) and D’Acunto et al. (2018).
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implying countercyclical markups. Our flexible-price baseline abstracts from this well-studied

source of countercyclical markups.

2.3 Aggregate outcomes

We now describe how changes in sectoral markup, price, and output that we characterized

above shape changes in aggregate price (i.e., the inverse of the real wage given that the wage

is the numeraire), markup, productivity, and output. We provide expressions for sectoral and

aggregate markup cyclicality with respect to aggregate output, which we consider in our empir-

ical analysis. We also examine how the variance of aggregate output compares under variable

markups and constant markups.

Up to a first order, changes in the aggregate price are P̂t =
∑

k skP̂kt. Based on our results above,

any positive firm-level shock in sector k reduces the corresponding sectoral price and therefore

reduces the aggregate price (or increases the real wage) proportionately to the share in expen-

ditures of sector k. Whether the real wage increases more or less under variable markups rela-

tive to constant markups depends, as discussed above, on the shocked firm’s relative size in its

sector.

Changes in aggregate markup can be decomposed into a within-sector markup term and a

reallocation term, analogous to the decomposition of sectoral markups in equation (20):

µ̂t =
∑

k

sk
µ

µk
µ̂kt + (1− σ)

∑

k

sk

(
1−

µ

µk

)
P̂kt. (28)

In response to a positive shock to a firm in sector k, aggregate markup can increase or decrease.

The first (within) term in (28) is positive if the shocked firm is relatively large (and sets a higher

markup) in sector k. The second (between) term in (28) is positive, when σ > 1, if sector k has

a relatively high markup relative to the aggregate markup.

Changes in aggregate productivity, using Ẑt = µ̂t − P̂t, can be expressed in terms of changes in

sectoral markups and prices as

Ẑt =
∑

k

sk
µ

µk
µ̂kt −

∑

k

sk

[
1 + (σ − 1)

(
1−

µ

µk

)]
P̂kt. (29)

Recall that in response to positive firm-level shocks, the sectoral price decreases (P̂kt < 0).

Aggregate productivity typically increases, but can decrease if shocked firms are relatively small

in their sector (such that the sectoral markup falls) or belong to low-markup sectors and σ > 1.

Finally, by equation (13), changes in aggregate output are

Ŷt = (f−1 + η)−1
[
f−1Ẑt − P̂t

]
. (30)
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With inelastic labor supply (f → 0), Ŷt = Ẑt. With linear disutility of labor (f → ∞), the

aggregate productivity term drops, so Ŷt = −η−1
∑

k skP̂kt. A positive firm-level shock in sector

k reduces the sectoral price and increases aggregate output. Based on the discussion above on

the role of variable markups for the response of sectoral prices, the increase in aggregate output

is smaller under variable markups compared to constant markups if and only if the shocked

firm has a high market share.

Variance of aggregate output The variance of aggregate output (when f → ∞) is

Var
[
Ŷt

]
= η−2

∑

k

s2kVar
[
P̂kt

]
=

σ2
v

η2 (ε− 1)2

∑

k

s2k

Nk∑

i=1

(
αkiski∑
i′ αki′ski′

)2

, (31)

where the second equality used equation (19). Based on the discussion after equation (19)

above, aggregate output is less volatile under variable markups than under constant markups

when pass-through rates are decreasing in size, effectively reducing the weight of large firms in

the price index (with similar effects on volatility as a reduction in market-share concentration).

In appendix A, we provide an expression for the variance of aggregate output without imposing

f → ∞, as well as for the variance of aggregate markups.

Covariance between aggregate output and markups We first calculate the covariance be-

tween aggregate output and sector k markup, which is one of the measures of cyclicality in

our empirical analysis. When calculating this covariance, we use the fact that sector k markups

are affected only by shocks to sector k firms and not by shocks to firms in other sectors. We can

thus express this covariance as

Cov
[
Ŷt, µ̂kt

]
= Cov

[
Ŷkt, µ̂kt

]
+ σ (1− sk)Cov

[
P̂kt, µ̂kt

]
. (32)

The following proposition states that the covariance between aggregate output and sector k

markups is positive:28

Proposition 5 Under the conditions of Proposition 3, Cov
[
Ŷt, µ̂kt

]
> 0.

28To prove the first inequality in Proposition 5, we write equation (32) as

Cov
[
Ŷt, µ̂kt

]
= −sk



f + 1 + (σ − 1)

(
1− µ

µk

)

fη + 1


Cov

[
P̂kt, µ̂kt

]
+

skµ

µk

1

fη + 1
Var [µ̂kt] .

Note also that under the conditions of Proposition 3, Cov
[
P̂kt, µ̂kt

]
≤ 0 so Cov

[
Ŷt, µ̂kt

]
≤ Cov

[
Ŷkt, µ̂kt

]
, where the

inequality holds strictly if the economy has more than one sector (i.e. sk < 1 ). The fact that the covariance between
sectoral markups and aggregate output is lower than that between sectoral markups and sectoral output does not
extend to correlations because, for some sectors, the variance of aggregate output is smaller than the variance of
sectoral output.
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Next, we calculate the covariance between aggregate output and aggregate markups (when f →

∞):

Cov
[
Ŷt, µ̂t

]
= −

µ

η

∑

k

s2k
µk

Cov
[
P̂kt, µ̂kt

]
+

σ − 1

η

∑

k

s2k

(
1−

µ

µk

)
Var

[
P̂kt

]
. (33)

The first term in (33) is positive if sectoral markups and sectoral prices comove negatively,

which we discussed above. The second term in (33) is positive unless larger sectors have rela-

tively lower markups.

So far, we have calculated measures of markup cyclicality considering only i.i.d firm-level

shocks. In our quantitative analysis, we also allow for aggregate productivity shocks to firms in

all sectors. In our model, in which firm-level markups are functions of market shares, markups

do not respond to aggregate shocks. Therefore, incorporating aggregate shocks leaves the co-

variance of aggregate markups and output unchanged but decreases the correlation, because

the volatility of aggregate output increases with these shocks.

From these theoretical results, we see the sign of markup cyclicality depends on the level of

aggregation, market structure within and across all industries, and the set of shocked firms.

Moreover, the sign and magnitude of covariances in finite samples may differ from those of the

asymptotic covariances we derived.

In what follows, we calibrate the model to match salient features of the French firm-level data.

We evaluate quantitatively its implications for the cyclicality of markups, as well as its ability to

generate aggregate fluctuations in output and markups in response to idiosyncratic firm-level

shocks.

3 Data, Estimation, and Calibration

For the remainder of this paper, we use the model above as a data-generating process from

which we simulate firm-level outcomes then aggregated into sector and aggregate time se-

ries. We then proceed to compare the resulting model-implied moments to their empirical

counterparts. In this section, we describe how we use French administrative firm-level data to

parametrize our model and provide the empirical moments of interest. We start by describ-

ing the data and how we estimate markups. We then describe how we parametrize the firm

shock process and how we calibrate the model. Appendix B provides additional information

on the data and the procedures to estimate production functions and markups. Appendix C

reports robustness of our empirical results for different choices of data selection and markup

estimation.
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3.1 Data

Our empirical analysis deploys French firm-level data between 1994 and 2019. We use admin-

istrative sources for income statements and balance sheets, and a survey for information on

quantity and price.

The firm-level information (except for quantity and price) comes from two administrative

datasets: the FICUS data covering the period 1994-2007 and the FARE dataset covering the pe-

riod 2008-2019. The datasets cover the universe of French firms and originate from the French

tax administration that collects yearly tax statements for each firm, including income state-

ments, balance-sheet, and demographic information. The Institut National de la Statistique et

des Etudes Economiques (INSEE) uses these statements to construct the FICUS-FARE datasets.

We assign firms to sectors according to the Nomenclature d’Activités Française (NAF2008) five-

digit classification, which is a French industry classification similar to the NACE Rev. 2 industry

classification at four-digit.29

We use a subset of the variables available in the FICUS-FARE dataset: total firm revenues, wage

bill (sum of wages and social security payments), capital (measured by fixed assets), and ex-

penditures on both material and service inputs. Our baseline measure of materials (which is

our choice of variable input in the estimation of markups) is the sum of expenditures on ma-

terials and merchandises (ACHAMPR and ACHAMAR, respectively) net of changes in stocks of

materials (VARSTMP for materials and VARSTMA for merchandise). The variable ACHAMPR

is defined as “everything that the firm purchases in order to be transformed,” and ACHAMAR

is defined as “everything that the firm purchases to be sold as is.” VARSTMP and VARSTMA

are defined analogously for changes in stocks. We consider as a separate input expenditures

on service inputs (AUTACH), including research expenditures, outsourcing costs, and external

personnel cost (including temporary workers). We use GDP deflators and two-digit sector-price

indices provided by EU-KLEMS.

We construct firm-level quantity as firm-level revenues deflated by price (calculated as de-

scribed below) using the survey Enquête Annuelle de Production (EAP) conducted by INSEE.

This survey covers the universe of large firms (with at least 20 employees or 5 million euro

annual revenues) and a representative sample of small firms for a subset of two-digit sectors,

mostly in manufacturing, in the period 2009-2019.30 For each firm, this dataset provides in-

29In 2008, the NACE and NAF industry classification changed. To construct a panel of firms between 1994 and
2019 with a consistent industry classification over time, we proceed as follows. For firms for which the old and new

industry codes are observed, we apply the new code to all years. For firms for which only observe one industry code
on either side of 2008, we assign the code that is most frequently associated with the observed industry code (using
the sample of firms where we do observe the two sectoral codes). We thank Isabelle Mejean for sharing the code to
help merge the FICUS and FARE datasets.

30The two-digit sectors according to the NACE rev 2 codes, covered by our EAP sample are 08, 13, 14, 15 ,16 ,17
18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 43 and 46, where the last two are non-manufacturing sectors
(“specialized construction activities” and “wholesale trade, except of motor vehicles and motorcycles” respectively)
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formation on revenues and quantities by product, where product is a combination of a 8-digit

code and a unit of account.31 We drop around one-third of firm-products without quantity

data. For each firm and product, we calculate price as the ratio of revenues to quantity sold.

We follow De Ridder et al. (2022) and Aghion et al. (2023) in standardizing prices by dividing

them by the quantity-weighted average price of the same product across firms in the sample in

the same year. We do this because firms produce different goods in different units (e.g. kilo-

grams and liters) and aggregation requires homogenous units. Our measure of firm price in a

given year is the revenue-weighted average of standardized prices across the products sold by

the firm. Firm-level quantity is defined as the ratio of firm-level revenues to firm-level price.

We consider two samples: (i) firms with price and quantity information in the EAP dataset, that

we use to estimate two-digit sector-level production functions used in the markup calculation

and (ii) all firms that belong to sectors covered by the EAP dataset, that we use to calculate our

measures of markup cyclicality.

For the first sample, which covers the period 2009-2019, we keep firms with more than 2 em-

ployees and with positive value added, revenue, materials, services expenditure, wage bill,

capital, and price. We winsorize these variables by sector at the 1% level. We end up with

220, 733 firm-year observations across 11 years and 22 two-digit sectors. For the second sample,

which covers the period 1994-2019, we keep firms with positive value added, revenue, mate-

rials, services expenditure, wage bill, capital, and markups.32 Finally, we keep firms that are

government-owned earlier on in our sample because most of them switched to private owner-

ship during the period we consider.33 We end up with a firm-level panel that covers 26 years, 22

two-digit sectors and 275 five-digit sectors.

Table A1 in the Appendix B.1 displays summary statistics for both the estimation sample (Panel

A) and the baseline sample used to measure markup cyclicality (Panel B).The number of ob-

servations in the baseline sample is about 40 times larger than in the estimation sample. This

is due to both the smaller number of years and firms covered by the EAP survey. Furthermore,

firms in the estimation sample are larger than firms in the baseline sample since the EAP sur-

vey focuses on large firms. On the baseline sample, we compute firm-level market share as

the share of revenue within a five-digit sectors. The average market share across all firms and

years, defined as revenue of a firm divided by total revenue of firms in the same five-digit sector,

is very low at about 0.07%. However, the distribution of market shares is highly skewed, with

the top 0.01% firms having a market share of above 38%.

31Examples of units of accounts are kilograms, tonnes, or pieces. We define a product as a combination of a unit
of accounts and product code because firms that use different units of accounts for the same product code might

produce relatively heterogeneous goods.
32We drop firms in a handful of five-digit sectors where for some years there are no firms with a positive value-

added. For these five-digit sectors we are unable to construct sector-level output.
33Information about government-owned firms can be found in the variable APPGR of FICUS-FARE, which is avail-

able only before 2009. Government-owned firms represented 0.12% of the total number of firms in 1994 and 0.05%
in 2008. Over the same period, their share of revenue fell from 7.2% to 4.2%.
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Although this dataset is extremely rich, it misses some important information that limits the

extent of our analysis. First, we do not use information on imports and exports in the corre-

sponding sector. Specifically, when we compute market share as the ratio of a firm’s revenue

relative to the sum of all French firms’ revenue in this sector, we do not take into account the

sales of foreign firms in this market. Moreover, when we estimate markups, we do not exclude

sales to foreign countries, because we do not know the share of inputs expenditure accounted

for by exports.

Second, because firm-level revenues in our dataset are reported at the national level, we do not

have information on revenues at the local level. This limitation is important for non-tradeable

goods, whose markets are most likely local.34 Because our definition of a market is at the na-

tional level, for non-tradable goods, we likely underestimate the concentration in the local mar-

ket relevant for the firm.

3.2 Markup Estimation

To compute firm-level markup, we need estimates of the production function and the ratio

of firm revenues to expenditures on a variable input. We estimate the former for each two-

digit sector based on the sample of firms in the estimation sample which includes quantity

information. We measure the latter for all firms in the baseline sample which, recall, has a

larger coverage than the estimation sample.

We use our markup estimates for two purposes. First, we calculate measures of markup cycli-

cality in the data, which we compare with markup dynamics implied by our model. Second,

when we calibrate the model, we target the relationship between sectoral markups and HHI.

Our empirical framework to estimate markups in the data is more general than our theoretical

framework described above, where labor was the only factor of production. Specifically, we

introduce materials, capital and service in addition of labor as factors of production, some of

which may be subject to adjustment frictions.35 However, we assume that materials is a variable

input that is not subject to adjustment cost or intertemporal choices. Following Hall (1988) and

De Loecker and Warzynski (2012), for the variable input material, M , the first-order condition

in the cost-minimization problem by firm i in sector k implies

µkit = θMkit
PkitYkit

PM
kitMkit

, (34)

where PM
kitMkit denotes expenditure on input M by firm i in sector k, PkitYkit is revenues, and

34See Rossi-Hansberg et al. (2020) for a study of diverging local and national market-concentration trends or

Smith and Ocampo (2023) for the evolution and consequences of market-concentration trends in the US retail sec-
tor.

35We maintain the assumption that firms are price takers in input markets. Morlacco (2019) relaxes this assump-
tion to estimate markdowns on inputs.
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θMkit is the output elasticity with respect to input M . To measure markups at the firm level, we

require the ratio of material expenditures to revenues — which is available for all firms in our

baseline sample — and the output elasticity with respect to materials.

To estimate output elasticities with respect to materials, we combine data on input usage at the

firm level and estimates of the production function. We assume that firms combine the four

inputs (labor, capital, materials, and services) according to a flexible translog production func-

tion. All firms in the same two-digit sector share the same production-function parameters

and — constrained by the availability of two-digit-level price indices for intermediate inputs —

inputs are homogeneous across firms within sector. The output elasticity with respect to mate-

rials of firm i in market k at time t is equal to θMkit = βm + 2βm2mkit + βmllkit + βmookit + βmkkkit

where the βxy are the parameter of the production functions and mkit, lkit, okit and kkit are re-

spectively the firm-level log materials, labor, service and capital usage. Note that output elas-

ticities differ across firms within two-digit sectors even if these firms have the same production

function parameters β.

To estimate the production function parameters, we implement a two-stage iterative general-

ized method of moments (GMM) following De Ridder et al. (2022) which builds on Olley and

Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg et al. (2007, 2015). Here we provide

an overview of our approach, and in Appendix B.2 we provide additional details. The first stage

of this method controls for unobserved productivity by using conditional demand of material

input. As discussed in Doraszelski and Jaumandreu (2019) and De Ridder et al. (2022), under

imperfect competition of the form considered in this paper, this first-stage requires additional

controls, namely market share and firm-level price. In the second stage, we implement a dy-

namic panel estimator using GMM. Importantly, in both stages we use quantity data as our out-

put measure, thus we can only implement this approach in our estimation sample of firms.36

Table A1 provides descriptive statistics of our firm-level markup estimates. The distribution of

markups is quite skewed, with a median of 1.21, a mean of 1.39 and a top quartile of 1.77.

3.3 Calibration

In this section, we describe how we parametrize the model to match salient features of the

French data. We first introduce the firm-level productivity stochastic process, which follows

a discrete Markov chain giving rise to random productivity growth as in the literature on firm

dynamics (see, e.g., Luttmer, 2010). We then describe how we target the size and concentration

of each of the 275 five-digits sectors, together with other moments from our data and the lit-

erature. Finally, we discuss the model’s implications for other empirical moments that are not

based on our estimates of markups.

36Since we use quantity as a measure of output, our methodology is not subject to biases due to the use of rev-
enues. See Bond et al. (2020) and De Ridder et al. (2022) for a detailed analysis of this source of bias.
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Firm-Level Productivity Process

We assume firm-level demand shocks, Akit, are fixed over time. It follows that the composite

Vkit is driven only by productivity shocks.37 Following Carvalho and Grassi (2019), we assume

that firm-level productivity, Zikt, follows the discretized random growth process introduced

by Córdoba (2008). Specifically, firm productivity in sector k evolves on an evenly spaced log

grid, Φk = {1, ϕk , ϕ
2
k, . . . , ϕ

S
k }, where ϕk is greater than 1 and where S is an integer. Note ϕn

k =

ϕkϕ
n−1
k . A firm’s productivity follows a Markov chain on this grid where the associate matrix

{P
(k)
n,m}n,m∈[|1,S|] of transition probabilities is such that P

(k)
n,n = 1−ak−ck, P

(k)
n,n−1 = ak,P

(k)
n+1,n = ck,

P
(k)
1,1 = ak + bk, and P

(k)
S,S = bk + ck with 1 > ak, bk, ck > 0 and ak + bk + ck = 1. The stationary

distribution of this process is Pareto with a tail index equal to δk = log(ak

ck
)/ log(ϕk). The three

parameters ϕk, δk, and ck characterize this productivity process.

As shown in Córdoba (2008) and Carvalho and Grassi (2019), this process satisfies Gibrat’s law

for productivity such that, away from the boundaries, firms’ productivity growth is indepen-

dent of its current level. Additionally, this law generates a stationary Pareto distribution of pro-

ductivity (Gabaix 1999). Note, however, that in our environment, this does not immediately

imply firm size satisfies these properties, due to the finite number of firms within sectors and

variable markups.

In Section 4.3, we discuss an exercise where we add aggregate TFP shocks chosen to target the

volatility of annual changes in aggregate output.

Calibration Strategy

We now describe how we assign values to the model’s parameters: the two demand elasticities

ε and σ, the two macro parameters relative risk aversion η and Frisch labor-supply elasticity f ,

the number of firms Nk, the demand shifter Ak, and the productivity parameters ϕk, δk, and ck

for each of our 275 sectors. Table 2 summarizes parameter values while Table 1 and Figure 1

describes the model fit.

In terms of macro parameters, we set the relative risk aversion to 1 (log utility) and the Frisch

labor-supply elasticity to 1, both of which are standard values in the business-cycle literature.

We assume that in all sectors firms compete à la Cournot. We set the within sector elasticity

ε = 5.38 We calibrate the between sector elasticity σ to target the slope of a regression in first-

differences (over time) of the inverse sectoral markup on the HHI. In the data, the coefficient

37Although our analytic results do not take a stand on the importance of productivity versus quality-shifter firm-
level shocks, in the data we construct sectoral output by deflating nominal value-added by industry price indices.
The latter typically do not take into account high-frequency changes in quality shifters. Therefore, for consistency,
we abstract from shocks to quality shifters.

38In Appendix E we provide sensitivity analysis for alternative values of ε ranging between 4 and 7 while recali-
brating the remaining model parameters. Our quantitative results on markup cyclicality are fairly stable, while the
volatility of aggregate output is increasing in ε.
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Table 1: Calibration Targets

Panel A: Economy Wide targets

Moment Source Data Model

Slope of ∆µ−1
t,k on ∆HHIt,k Table 5 -0.35 -0.35

Constant. of volat. on market share Table A2 0.27 0.27

Panel B: Sectoral targets

Moment Source Data Model

Number of firms Nk
(∗) Baseline sample 1453 1453

Revenue share (∗) Baseline sample 0.16% 0.16%

HHI (See Fig 1) (∗) Baseline sample 0.115 0.115

NOTE: The rows with a (∗) refers to 275 moments, one per five-digit sectors, we therefore report the average across
the 275 sectors.

of this regression is −0.35 as reported in column (2) of the Table 5 discussed in Section 4.1.

In the model, taking first-differences of equation (8) implies ∆µ−1
t,k = −

( ε

σ
−1)
ε ∆HHIt,k. Given

our choice of ε, matching a slope of −0.35 requires σ = 1.8. Own-cost pass-through rates α̃ki,

defined in footnote 21, are shaped by the two demand elasticities. Our baseline choices of σ

and ε imply an own-cost pass-through rate of 0.63 for large firms (those with a market share of

57% or higher), which lies within the confidence intervals in Amiti et al. (2019) for Belgian large

firms.39

We now discuss how we assign parameter values that vary across our 275 sectors to match

salients features of our data in the period 1994-2019. We set the number of firms per sector,

Nk, to the average number of firms in sector k observed in our data. We calibrate the constant

sector-level demand shifter, Ak, to target the average revenue share of each of our 275 sectors

in the data. For each sector k, we choose the tail parameter of the stationary distribution, δk , to

match the average HHI in the data. Figure 1 reports HHI in the data against the model coun-

terpart. The fit is good, as revealed by the fact that all dots lie close to the 45-degree line.40

The grid parameter ϕk determines the range of values that the HHI can take as we vary δk. We

choose the lowest ϕk such that this range of values contains the value of the HHI in the data for

39About 360 firm-year observations have a market share above 57%, representing approximatively the top 0, 004%
of the market-share distribution. Our model implies pass-through rates that are on the high end of estimates in Amiti
et al. (2019) for Belgian firms and on the low end of estimates in Berman et al. (2012) for French exporters, and is

consistent with findings in both papers that pass-through rates are decreasing in firm size. For alternative values of
ε reported in Appendix E, pass-through rates are lower (e.g. 0.55 for large firms when ε = 7) and hence closer to the
point estimates in Amiti et al. (2019).

40Given a guess of δk, we draw 1,000 samples of Nk firm-level productivities from the Pareto distribution char-
acterized by δk. For each of these samples, we solve for firm-level market shares and compute the implied HHI.
We then calculate the median HHI across the 1,000 samples, and iterate over δk until we match the HHI for a given
sector in the data. We repeat this procedure for each of the 275 sectors.
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Table 2: Baseline Calibration

Panel A: Economy Wide parameters

Parameters Value Description

η 1 relative risk aversion

f 1 Frisch elasticity of labor supply

f0 1 labor disutility parameter

ε 5 substitution across firms

σ 1.8 substitution across sectors

Panel B: Sectoral parameters

Parameters Value Description

S 70 number of productivity bins

ϕk 1.091 median firm-level pdty process

ak, ck 0.348, 0.250 median firm-level pdty process

Ak 0.0015 median sectoral preference shifter

this sector.41 Finally, we set the remaining parameter of the productivity process, ck, such that

in each sector, the conditional volatility of market-share for a hypothetical infinitesimal firm

is equal to the constant in the regression of market-share volatility on market-share estimated

across all sectors in the data and reported in Table A2.42

In what follows, we use the calibrated model as a data-generating process to simulate firm-

level, sector-level, and aggregate-level time series. We use the simulated sector-level and firm-

level panels to run the corresponding regressions that we run on actual data. We also compute

aggregate business-cycle statistics using the simulated aggregate time-series, which we then

compare with counterparts in the data.

4 Model meets Data

In this section, we interpret measures of firm, sector, and aggregate markup changes in our data

through the lenses of our framework.43 We start by documenting the relation between markups

and concentration measures, both within and across sectors. We additionally show that within-

41We choose the number of productivity bins S = 70. Higher values of S have a minor impact on our results.
42Using the baseline sample, we compute market share growth rates for each period. We then compute for each

firm, over time, the standard deviation of its market share growth rate. In column (2) of Table A2, we report the
regression of the latter measure of market share volatility on average market share. Alternatively, we compute the
standard deviation of the growth rate of market-share in the cross-section as explain in the note of Table A2. In both
case, we obtain a precise estimated constant of 0.27 (0.00).

43We present baseline results in the main text and supplement our analysis with extensive robustness checks in
Appendix D. In Appendix C, we report further robustness exercises addressing possible concerns regarding different
markup measures and sample selection.
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Figure 1: Model Fit

NOTE: For each sector, this figure show the HHI in the data (x-axis) against the median HHI computed over 1,000

samples drawn from the baseline calibration (y-axis). The size of each dot is proportional to the sector’s average

revenue share between 1994 and 2019.

firm markup dynamics account for a non-negligible fraction of sector-level markup changes.

We then focus on unconditional reduced-form notions of markup cyclicality, showing that our

model can rationalize the sign and magnitude of these alternative measures in the data. We

conclude by quantifying the magnitude of aggregate markup movements in our granular setup

and the role of endogenous markup.

4.1 Inspecting the Mechanism: Firm and Sector-level Evidence

4.1.1 Firm-level Evidence

Hardwired into our model is a key micro-level relationship between markups and concentra-

tion. At the firm-level, and following the discussion in Section 1.2, markups increase with a

firm’s market share. In turn, this immediately gives rise to a notion of markup pro-cyclicality at

the micro-level: a firm’s markup increases whenever its market share increases.

Taking the inverse of equation (5) and applying first differences yields a simple linear relation

between the firm’s market share and its inverse-markup,

∆µ−1
kit = −

ε
σ − 1

ε
∆skit (35)

where ∆µ−1
kit is the first-difference of the inverse (gross) markup of firm i in sector k at time t and
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∆skit is the first-difference of its market share. This motivates the following simple empirical

specification,

∆µ−1
kit = αt + β∆skit + ǫkit, (36)

where β is the coefficient of interest, which the model predicts to be negative. We allow for year

fixed-effects αt to control for unobserved markup shifters that are common across all firms.

In alternative specifications we further allow for sector-year fixed effects, αkt, thus absorbing

markup variation that is common across all firms in a sector, in a given year. While these fixed

effects are not present in our theoretical model they nevertheless allow us to empirically control

for arbitrary aggregate and sector-specific markup trends in the data and serve as a robustness

check.

We start by inspecting these firm-level relations in the French data. Recall from our discussion

in the previous section that we have estimated firm-level markups for French firms over the

period 1994-2019. Firm-level market shares are immediate to calculate in data by dividing firm-

level revenue by the corresponding five-digit NAF sector revenue. Taking first-differences yields

time series for ∆µkit and ∆skit for about 1 million firms over the period 1995-2019, where we

lose the first year of observations due to the first-difference transformation.

Table 3: Inverse Markup and Market Share

(1) (2) (3)

Dependent Variable: ∆µ−1
kit

∆skit -0.268 -0.268 -0.293

(0.092) (0.093) (0.099)

Year FE N Y N

Sector × Year FE N N Y

Observations 8,051,767 8,051,767 8,051,767

NOTE: ∆µ−1
kit is the first difference of the inverse of firm i sector k gross markup between t and t− 1, and ∆skit gives

the first difference of market share of firm i in sector k. Columns (1)-(3) report baseline empirical estimates for the
FICUS-FARE (1995-2019) data. Column (1) reports pooled estimates while columns (2) and (3) report estimates that
further control for year or sector×year fixed effects, respectively. Sector-year fixed effects are defined at the 5-digit

NAF sector classification. Standard errors (in parentheses) are two-way clustered at the firm and year level. ∆µ−1
kit is

winsorized at the 3% level.

Table 3 displays our estimates and the associated two-way (at firm and year level) cluster-robust

standard errors. Column (1) displays the firm-level relation in first-differences, obtained by

pooling all firm-level data (across sectors and years) for a total of over 8 million observations.

This yields a negative and statistically significant coefficient, as theory predicts. Further, the

empirical estimates remain stable and significant when additionally controlling for year (col-

umn 2) and sector-year (column 3) fixed effects. Finally, as a further robustness check, in Ta-

ble A4 of Appendix D.1 we report estimates for an alternative specification that regresses firm
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markups on firm market shares in levels, allowing for firm fixed effects. The estimates are again

similar to those in first-differences in columns (1) and (2) of Table 3.

The data is therefore consistent with changes in a firm’s market share acting as a proximate

driver of its markup dynamics, as predicted by theory. Notice however that, ultimately, in the

model, a firm’s market share and markup are jointly determined in equilibrium by exogenous

firm-level technology (and/or quality) shifters. All else constant, a decrease in firm’s marginal

cost relative to that of its competitors will increase its competitiveness in the product market

and, hence, its market share (and therefore its markup, as above). We now turn to assessing this

relation in the data.

To do so, recall from Section 3.2 that, for the estimation sample, we can obtain both firm-level

price data, Pkit, and markup estimates, µkit. Given this, for firms in this smaller estimation

sample we can exploit the relation Pkit/µkit = mckit, to back out an empirical proxy of firm-

level marginal costs, mckit. We can thus inspect the model-implied predictions above regarding

marginal costs, market shares and markups, albeit in a significantly smaller sample. Table 4

reports empirical estimates of simple OLS regressions of firm-level market share and markup

growth rates on the growth rates of our firm-level marginal cost proxy.

Table 4: Markups, Market Shares and Marginal Costs

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ log skit ∆ log µkit

∆ logmcit -0.022 -0.022 -0.023 -0.091 -0.091 -0.096

(0.003) (0.003) (0.003) (0.008) (0.009) (0.009)

Year FE N Y N N Y N

Sector × Year FE N N Y N N Y

Observations 178,368 178,368 178,368 178,368 178,368 178,368

NOTE: ∆ log µkit is the first-difference of (log) gross markup of firm i sector k at time t, ∆ log skit is the first-difference
of (log) market share, and ∆ logmcit is the first-difference of (log) marginal cost when the latter is defined as the
difference between (log) price and (log) markup of firm i in sector k at time t. Columns (1)-(6) report empirical
estimates for the estimation sample FARE (2009-2019) data. Columns (1) and (4) report pooled estimates while

columns (2), (3), (5) and (6) report estimates that further control for year or sector×year fixed effects. Sector-year
fixed effects are defined at the 5-digit NAF sector classification level. Standard errors (in parentheses) are two-way
clustered at the firm and year level. Variables are winsorized at the 3% level.

Starting with the simple bivariate relation between marginal cost growth and market share

growth, our estimates in column (1) – where we pool data across all sectors and years – imply

that a one percent year-on-year increase in firm-level marginal costs translates to a two percent

decrease of a firm’s market share growth. This estimate is robust to additionally controlling for

average economy-wide marginal cost dynamics (i.e. the year fixed effects specification in col-

umn 2) or the average marginal cost growth across competitors in a given firm’s sector (i.e. the

sector-year fixed effects specification in column 3). Our evidence is therefore consistent with
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the main model mechanism. The second panel of Table 4 completes the argument by inspect-

ing the relation between firm-level marginal cost growth and firm-level markups. Again, we

observe that year-on-year increases in marginal costs results, as the model predicts, in lower

markups, both unconditionally (in column 4) and when conditioning on year or sector-year

fixed effects in columns (5) and (6), respectively. Finally, Tables A5 and A6 of Appendix D.1 we

again verify that these empirical estimates are robust to considering an alternative specifica-

tion in levels (rather than growth rates) with firm fixed-effects. Taken together, we conclude

that the data is consistent with the basic qualitative firm-level predictions of our model.

4.1.2 Sector-level Evidence

As discussed in Section 1.3, equilibrium aggregation of firm-level outcomes yields additional

predictions at the sector-level. First, note that, by the same logic as above, taking the inverse

of equation (8) and then first-differences, yields the following relation between inverse sectoral

markup and the sector’s HHI:

∆µ−1
kt = −

ε
σ − 1

ε
∆HHIkt, (37)

where∆µ−1
kt is the first-difference of the inverse (gross) markup of sector k at time t and∆HHIkt

is the first-difference of its HHI. This yields a sector-level counterpart to equation (35) where

now inverse sectoral markups comove linearly with sectoral concentration. To assess this rela-

tionship in the data, we consider the following empirical specification:

∆µ−1
kt = αt + β∆HHIkt + ǫkt, (38)

where β is the coefficient of interest and where again we allow for year fixed effects αt and addi-

tionally consider robustness to the inclusion of broad 2-digit sector-year fixed effects. Finally,

in Appendix D.1, we additionally report estimates based on a levels specification and sector-

level fixed effects.

To construct sectoral markups within 275 narrowly defined five-digit sectors, we aggregate

firm-level markups to their sector-level counterparts by taking an harmonic market-share

weighted average of firm-level markups - as indicated by the model equation (7).44 For each

these five-digit sectors, we construct the HHI by summing the squared firm-level market

shares. For both the sector-level markup and HHI series, we then take first-differences across

time periods. We obtain a balanced panel of 275 five-digit sectors across 25 years for a total of

6,875 observations.

Table 5, column (1) displays estimates of a pooled regression across all sectors and years, with

44To compute the sector-level markup, we first winsorized the underlying firm-level inverse markup at the 3%
level.
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Table 5: Sector Inverse Markup and Sector HHI

(1) (2) (3)

Dependent Variable: ∆µ−1
kt

∆HHIkt -0.354 -0.354 -0.350

(0.172) (0.172) (0.166)

Year FE N Y N

Sector(2D)×Year FE N N Y

Number of Sectors 275 275 275

Observations 6,875 6,875 6,875

NOTE: ∆µ−1
kt is the first difference of sector k (inverse) markup in year t, ∆HHIkt is the first difference of HHI in

sector k. Columns (1)-(3) report empirical estimates for the FICUS-FARE (1995-2019) data, aggregated to the five-
digit NAF sector level. Column (1) reports pooled estimates while columns (2) and (3) report estimates that further
control for year or broad 2-digit-sector×year fixed effects, respectively. Standard errors (in parentheses) are two-way
clustered at the sector and year level. Underlying firm-level inverse markups are winsorized at 3%.

and without year fixed-effects. Our estimates indicate a negative and significant relation be-

tween the change in concentration and the change in the inverse of sector markups. Further,

our estimates remain stable when additionally considering year or broader 2-digit sector-year

fixed effects in columns (2) and (3), respectively. Finally, note that estimates are similar if in-

stead of growth rates we consider alternative specifications in levels, as shown in Table A7 in

the Appendix D.1. In our model calibration, we target a slope of −0.35 in the specification (38),

as reported in Table 1.

Note that our model additionally imposes cross-equation restrictions. Comparing equations

(35) and (37), the slope coefficients of these two relations - that is, the slope of the inverse of

firm markup on market share and the slope of the inverse sector markup on sector HHI - should

coincide. Comparing point estimates across Tables 3 and 5, suggests that the implied slopes are

indeed similar: focusing on the more demanding sector-year fixed effects specifications, we

obtain slopes of −0.293 and −0.350, respectively, with both estimates falling within (less than)

a one standard-error confidence interval from each other.

Finally, recall that in our model, changes in sectoral markups reflect two forces. First, for given

firm market shares, the evolution of endogenous firm-level markups may lead to changes in

aggregated, sector-level markups. Second, for given heterogeneous firm-level markups, equi-

librium reallocation of market shares also impact sector markup dynamics. Specifically, note

that following equation (7), the change in sectoral markups between two time periods can be

written as

∆µ−1
kt =

Nk∑

i=1

∆µ−1
kit skit +

Nk∑

i=1

∆skit µ
−1
kit,

where ∆ denotes the year-on-year difference and bars denote averages over two consecutive
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years. This yields a standard within-between decomposition of sectoral markup changes. The

first term on the right-hand-side gives the within term, measuring the change in (inverse) sec-

toral markup due to changes in firm-level markups, evaluated at the average market share of

each firm. The second term on the right-hand-side is the between or reallocation term: it mea-

sures the change in the (inverse) sectoral markup due to the changes in firm market share,

evaluated at a firm’s average (inverse) markup. As discussed in Section 2.2 and shown in Ap-

pendix A.1, in the model under Cournot competition the within and between terms are equal

to each other in every sector. From this result, it follows that, under Cournot, the contribution

of the within and between/reallocation terms are each predicted to be equal to 50%.

Given time series of firm-level markups and market shares in the data, the within-between de-

composition above can be readily computed. To do this, for each sector, we regress the within

term over time on changes in sector-level markup. The coefficient of this regression is the con-

tribution of the within term to the evolution of sector-level markups.45 We find that for the

median sector in the French data the within term accounts for 53% of the changes in sector

markups, close to the model prediction 50%. While there is heterogeneity in the data, for half

of the sectors in France, the contribution of the within term lies between 27% and 79%. Over-

all, taking firm and sector evidence together, the data is consistent with key predictions of the

model.

4.2 Reduced-Form Varieties of Markup Cyclicality

Our theoretical framework yields a simple relation between markups and size: the level of a

firm’s markup is determined by its market share within a sector. In turn, both markups and

market shares are driven by firm-level marginal cost shifters. The aggregation of within-firm

endogenous markup changes and reallocation of market shares across firms determines sec-

toral markups and sectoral concentration, yielding a linear relation between a sector’s (inverse)

markup and its concentration. As we have seen, the data broadly supports these model-implied

relations.

By contrast, a large applied literature investigates different definitions of “markup cyclicality.”

This literature yields a variety of results, with some contributions arguing for pro-cyclicality

and others concluding in favor of counter-cyclicality.

In this section, we argue these conflicting empirical results can be largely ascribed to the al-

ternative reduced-form exercises pursued and, in particular, to the reduced-form definitions

of markup cyclicality being deployed in the literature. Importantly, as we show, our model

with firm-level shocks only can go a long away in accounting for these seemingly conflicting

45In the data, the reallocation term is not only due to changes in market share across continuing firms, but also
due to churning as some firms enter and exit the market each year. We define the empirical reallocation term as the
residual obtained from the difference between the change in (inverse) sectoral markup and the within term.
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reduced-form relations in the data.

4.2.1 Firm-level Evidence

We start by analyzing a firm-level notion of reduced-form markup cyclicality and ask how do

firm markups covary with the respective sector-level output.

Before going to the data, recall that our setting is a granular one in which extensive within-

sector heterogeneity in the firm-size distribution enables large firm dynamics to lead the sec-

tor business cycle. In particular, in our setting with idiosyncratic firm-level shocks – and if

pass-through rates do not fall too strongly with market shares – sector-output fluctuations are

necessarily led by shocks to very large firms. To make matters concrete, consider a reduction

in marginal cost for a large market-share firm. Given the granular nature of the economy, the

corresponding sector output will typically increase (see equation 26). In addition, the large

shocked firm will increase its market share and markup. This implies, as indicated in Proposi-

tion 4, that markups of large firms should comove positively with sector output.

By the same token, the average (small) firm in a given sector loses market share to the very

largest firms: if sector-level output expansions are led by large firms, the latter will increase

their market share whereas the average firm loses competitiveness - as evaluated by its mar-

ket share within the sector. Again, due to the markup-market-share relation in our setting, this

implies the average firm-markup is expected to comove negatively with sector output, as sum-

marized by Proposition 4.

To evaluate this implication of the model, we implement the following reduced-form regres-

sion, both in the data and in our model-simulated data:

log(µkit) = αi + γt + β1 log Yk,t + β2 log Yk,t × skit + ǫit, (39)

where log(µkit) is firm i sector k (log) gross markup in year t, Ykt is sector k’s (log) value-added in

year t and skit is firm-level market share for firm i in sector k at year t.46 Given the specification

in log-levels, αi is a firm fixed effect, which controls for time-invariant firm-level unobservables

determining the average level of a firm’s markup, while γt is a year fixed effect.47 In this speci-

fication, β1 captures the average correlation between firm markups and their respective sector

output, and coefficient β2, in the interaction term, captures heterogeneity in this relation as

a function of a firm’s market share.48 For robustness, we additionally consider a specification

in first differences of (log) firm markups, ∆log(µkit), and (log) sectoral value added, ∆Ykt and

46To obtain sector value-added, we sum firm-level nominal value-added to the NAF five-digit level and deflate
using EU-KLEMS sectoral price deflators.

47We drop the year 1994 to have the same year of coverage as in section 4.1. For this reason, the number of
observations is lower than what is reported in Table A1. Including the year 1994 gives very similar results.

48According to our model, given the parameters ε and σ, the market share suffices to determine the markup
(equation 5). For this reason, we estimate equation (39) without further controls.
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no firm-level fixed effects. In Appendix D.2 we consider additional robustness with alternative

measure of sector output.

Table 6: Firm Markup and Sector Output

(1) (2) (3) (4)

Data Data Model Model

Dependent variable: log(µkit) ∆log(µkit) log(µkit) ∆log(µkit)

Ykt -0.073 -0.001

(0.008)

Ykt ∗ skit 0.574 0.265

(0.044)

∆Ykt -0.024 -0.001

(0.009)

∆Ykt ∗ skit 0.280 0.247

(0.040)

Firm FE Y N Y N

Year FE Y N Y N

Number of Observations 9,039,476 8,051,767 - -

NOTE: µkit is firm i sector k gross markup in year t, skit gives the market share of firm i in sector k, year t and Ykt

sector k’s (log) value-added in year t. ∆log(µkit) is the first-difference of (log) gross markup in year t for firm i sector
k, skit gives the market share of firm i in sector k, year t and ∆Ykt is the first-difference of sector k (log) value-added
in year t. Columns (1) and (2) report empirical estimates for the FICUS-FARE (1995-2019) data. Standard errors are
two-way clustered at the sector×year level. Columns (3) and (4) report estimates based on model-simulated data.
Log and first-difference of log markup are winsorized at the 3% level.

Before proceeding, note that Hong (2017) considers a version of this regression, where Y is

aggregate (rather than sector) value-added, using data for four large European countries. For

these data, Hong (2017) estimates a negative β1 and a positive β2 estimate, concluding that

(i) in the data “markups are countercyclical” and (ii) that there is “substantial heterogeneity

in markup cyclicality across firms, with small firms having significantly more countercyclical

markups than large firms.”

Columns (1) and (2) of Table 6 summarize the estimates obtained when implementing the

above reduced-form regression on our French firm-level data, in both levels (with firm fixed

effects) and first differences of logged variables. The implied point estimates β1 are negative

and significant in both cases: the markup of the average firm is “countercyclical” with respect

to own-sector output. Though the point estimates differ in magnitude across empirical spec-

ifications, the qualitative behavior of the average firm’s markup is therefore consistent with

the model intuition above. Further, we additionally confirm that there is substantial cross-

sectional heterogeneity in this relation. In particular, the estimates on the interaction term –

for either specification – imply that large firms, roughly with market shares above 10% (in the

top 0.1% of the market share distribution), are procyclical with respect to the dynamics of sec-
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toral output.49

Columns (3) and (4) of Table 6 implement the same reduced-form regressions on model-

simulated data for 399,520 firms distributed across 275 five-digit sectors.50 The model is able

to reproduce the qualitative patterns observed in the data. Consistent with Proposition 4,

markups for the average firm are countercyclical with respect to own-sector output, whereas

large firm markups are procyclical. Furthermore, point estimates for the implied large firm pro-

cyclicality are of the same order of magnitude in both model-simulated and French data, and

particularly close for the first-differences specification. Finally, in Appendix D.2 we show that

these relations are robust to alternative definitions of sectoral output dynamics, by considering

log-deviations of sector real value added from its trend (defined by either a Hodrick-Prescott

or Hamilton (2018) filters) instead. These further checks again confirm that large firm markup

dynamics are procyclical with respect to own sectoral output, whereas the average firm is not.

As discussed above, underlying the prediction of the model for heterogeneous cyclicality of

firm-level markups is the fact that, in our granular environment, large firms’ market shares are

correlated positively with sector output whereas small firms’ market shares are countercyclical.

To assess this mechanism in the data we estimate the following regression:

log(skit) = αi + γt + β log Yk,t + ǫkit,

where log(skit) is the (log of) market share of firm i in sector k, log Yk,t is the (log of) sector k

real value-added, αi is a firm-level fixed effect, and γt is a year fixed effect. Again, as above,

we additionally consider a first difference specification (without firm fixed effects). In either

specification, β measures the relation between market share and sector value-added. To assess

the predicted heterogeneous behavior of firm-level market shares with respect to sector out-

put, we implement this regression (i) on the whole sample of firms, (ii) on the subsample of

firms whose average market share is lower than 50%, and (iii) on the subsample of firms whose

average market share is above 50%.

Columns (1) and (4) in Table 7 report estimates of β on the full sample of the data and on the

model-simulated data, respectively. As before, we experiment with both levels (and firm-fixed

effects) and first-differences specifications. Both in the data and in the model – and for both

specifications – the average firm’s market share is counter-cyclical. Columns (2) and (5) report

estimates for the subsample of firms whose market share is lower than 50%. Estimates of β are

negative both in the data and in the model. Columns (3) and (6) report estimates for the sub-

sample of firms whose market share is above 50%: consistently with our argument, estimates

49As discussed above, Hong (2017) reports a version of this regression where aggregate value-added is interacted
with an indicator for large firm. When we estimate a version of this reduced-form specification where sector value-
added is interacted with an indicator for market-shares over 50%, we find a coefficient of 0.240 (0.044) on the inter-
action term for the log-level specification and of 0.026 (0.013) for the first-difference specification.

50The number of firms is smaller in the simulation than in the model as our model abstract from entry and exit
and targets the yearly average number of firms in the economy over our period.
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Table 7: Firm Market Share and Sector Output

(1) (2) (3) (4) (5) (6)
Data Data Data Model Model Model

(all data) (s̄ki < 0.50) (s̄ki > 0.50) (all data) (s̄ki < 0.50) (s̄ki > 0.50)

Dependent variable: log skit

Ykt -0.594 -0.595 0.144 -2.613 -2.621 0.535
(0.009) (0.009) (0.060)

Firm FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Number of Obs. 9,039,476 9,039,036 440 - - -

Dependent variable: ∆log skit

∆Ykt -0.488 -0.488 0.091 -2.585 -2.591 0.274
(0.018) (0.018) (0.037)

Firm FE N N N N N N
Year FE N N N N N N
Number of Obs. 8,251,767 8,251,340 427 - - -

NOTE: skit gives the market share of firm i in sector k, year t, and Ykt is the deviation of sector k (log) value-added

in year t from its mean. ∆logskit gives the first-difference of (log) market share of firm i in sector k, year t, and ∆Ykt

is the first-difference of sector k (log) value-added in year t. s̄ki is the average market share of firm i in market k.
Column (1-3) reports empirical estimates for the FICUS-FARE (1995-2019) data. Sectors are defined at the 5-digit

NAF sector classification level. First-difference in log market shares are winsorized at the 3% level. Standard errors in
the data are two-way clustered at the sector×year level. Column (4-6) reports estimates based on model-simulated
data.
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of β are now positive, both in the data and in the model, although the magnitude is smaller in

the data. Additionally, in Appendix D.2 we confirm that these findings are robust to alternative

de-trending techniques for sectoral output dynamics.

Taken together, these results provide support for a key implication of our granular model with

firm-level shocks. The average firm’s market share and markup are countercyclical with respect

to its own sector value-added, whereas large firms’ market share and markups are procyclical.

4.2.2 Sector-Level Evidence

We now explore sector-level notions of markup cyclicality. We first ask how sector markups

covary with own-sector output. Recall that in our granular setting, sectoral business cycles are

driven by large firm dynamics, and that shocks to large firms induce a positive relationship

between changes in sector-level output and markups. As encoded in Proposition 3, we should

expect a positive correlation between sector markup and sector output.

To assess this relationship in the model and in the data, we follow Nekarda and Ramey (2013)

and consider the following sector-level empirical specification:

∆ log µkt = αk + γt + β∆Ykt + ǫkt, (40)

where ∆ log µkt denotes the first-difference of sector k’s (log) markup, and∆Ykt denotes the first

difference of sector k’s (log) real value-added. Sector-level markups are aggregated from firm-

level estimates according to a harmonic weighted average, as indicated by the model equation

(7).51 We measure sector value-added in the data as in the previous section. We follow Nekarda

and Ramey (2013) and include sector and year fixed effects to control for possibly heteroge-

neous trends in sector level variables. For robustness, we consider an alternative specification

where we use sectoral variables in log deviations from trend (rather than first differences) and

the trend is estimated following Hamilton (2018). In Appendix D.3 we report additional ro-

bustness, considering fixed-effect regressions for variables in levels and alternative detrending

procedures.

Nekarda and Ramey (2013) estimate a positive and significant β in US sectoral data using a

similar specification, concluding that “markups are generally procyclical (...) hitting troughs

during recessions and reaching peaks in the middle of expansions.”

Columns (1) and (2) in Table 8 report estimates of β in our French data for both first differ-

ences and trend-deviation specifications. Sector markups comove positively and significantly

with sector output, which is consistent with the findings in Nekarda and Ramey (2013) despite

51Nekarda and Ramey (2013) measure sectoral markup using various measure of the inverse of the labor share at
the sectoral level. We construct sector-level markup from the aggregation of firm-level markup based on equation
34 with material as a variable input.
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Table 8: Sector Markup and Sector Output

(1) (2) (3) (4)

Data Data Model Model

Dependent variable: ∆ log µkt l̂ogµkt ∆ log µkt l̂ogµkt

∆Ykt 0.248 0.110

(0.053) (0.040)

Ŷkt 0.174 0.117

(0.050) (0.035)

Sector FE Y Y Y Y

Year FE Y Y Y Y

Number of Sectors 275 275 275 275

Number of Obs. 6,875 6,325 6,875 6,325

NOTE: Regression of sector-level (log) change (columns 1 and 3), and Hamilton (2018) trend deviation of markup

(columns 2 and 4), ∆ log µkt and l̂ogµkt respectively on sector value-added ∆Ykt and Ŷkt respectively. Column (1-2)

reports empirical estimates for the FICUS-FARE (1995-2019) data, and standard errors (in parentheses) are clustered
at the sector level. Sectors are defined at the 5-digit NAF sector classification level. Columns (3-4) report estimates
based on model-simulated data. The point estimates for these columns give the median coefficient obtained from
running the reduced-form regression over 5,000 simulated samples, each of the same length (25 years) as the French

data. The standard errors (in parentheses) are computed over the same simulated samples.

differences regarding the country of analysis, sample period, and the methods deployed to es-

timate markups. Appendix D.3 further confirms the robustness of this correlation to alternative

empirical specifications and detrending procedures.

Columns (3) and (4) in Table 8 reports estimates of β in model-simulated data, applying the

same empirical specifications as in the French data. We report the median and standard devia-

tion of β estimates over 5,000 samples of 25 years each. The model implies a positive correlation

between sector markup and sector output, yielding point estimates that are smaller but in the

same order of magnitude as in the data.

To further understand the previous result, recall that sector-level markups in our model are

linked to sector-level concentration as measured by the HHI, a relationship we explored em-

pirically in Section 4.1.2. Therefore, underlying the cyclicality of sector-level markup is the

cyclicality of the sectoral HHI. In our granular environment, in a typical sectoral expansion a

few large firms expand by increasing their market share while smaller firms lose market share,

resulting in higher concentration. To assess this mechanism in the data, we estimate a similar

specification to equation 40, with sectoral HHI rather than sectoral markup on the left hand

side:

∆ logHHIkt = αk + γt + β∆Ykt + ǫkt.

Here, ∆ logHHIkt is the first-difference in sector k’s (log) HHI and∆Ykt denotes the first differ-

ence of sector k’s (log) output. We include sector and year fixed effect as in the markup cyclical-
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Table 9: Sector Concentration and Sector Output

(1) (2) (3) (4)

Data Data Model Model

Dependent variable: ∆ logHHIkt l̂ogHHIkt ∆ logHHIkt l̂ogHHIkt

∆Ykt 0.332 0.533

(0.067) (0.235)

Ŷkt 0.281 0.726

(0.049) (0.288)

Sector FE Y Y Y Y

Year FE Y Y Y Y

Number of Sectors 275 275 275 275

Number of Obs. 6,875 6,325 6,875 6,325

NOTE: Regression of sector-level (log) change (columns 1 and 3), and Hamilton (2018) trend deviation of HHI

(columns 2 and 4) ∆logHHIkt and l̂ogHHIkt respectively on sector value-added ∆Ykt and Ŷkt respectively. Col-

umn (1-2) reports empirical estimates for the FICUS-FARE (1995-2019) data, and standard errors (in parentheses)
are clustered at the sector level. Sectors are defined at the 5-digit NAF sector classification level. Columns (3-4)
report estimates based on model-simulated data. The point estimates for these columns give the median coeffi-
cient obtained from running the reduced-form regression over 5,000 simulated samples, each of the same length (25

years) as the French data. The standard errors (in parentheses) are computed over the same simulated samples.

ity specification, equation (40). For robustness, we consider an alternative specification where

we use log deviations from trend computed as in Hamilton (2018). In appendix D.3 we report

additional robustness.

Columns (1) and (2) in Table 9 report estimates of β in our French data for both first differences

and trend-deviation specifications. Sector concentration comoves positively and significantly

with sector output. We next apply the same empirical specification in model simulated data,

and we calculate the median and standard deviation of β estimates over 5,000 samples of 25

years each. Columns (3) and (4) in Table 9 show positive and significant estimates of β, con-

sistent with the data. Table A11 in appendix D.3 confirms the robustness of this correlation to

alternative empirical specifications and detrending procedures.

The more recent work by Bils et al. (2018) explores yet another reduced-form notion of markup

cyclicality. Unlike the previous specification which relates changes in sectoral markups and

changes in sectoral output, Bils et al. (2018) measure the cyclical comovement between sectoral

markup and aggregate real GDP.

To understand this form of comovement in the context of our model, note that sector markups

only react to within-sector firm shocks. Over long samples, under the conditions of Proposi-

tion 5, the model implies (i) positive comovement of a sector’s markup with aggregate GDP and

(ii) that this comovement is nevertheless weaker than that between a sector’s markup and its

output. Over a given cyclical episode - or more generally, in small samples - the model predic-
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tion is ambiguous. A positive comovement is expected if the fluctuation in aggregate economic

activity is driven by large firms in the same sector. However, aggregate output movements also

reflect shocks hitting other sectors in the economy. If a sector comoves negatively with aggre-

gate output, a negative correlation of that sector’s markup with aggregate output will obtain.

Overall, we should expect a weaker relationship between the average sector’s markup and ag-

gregate GDP fluctuations than between sectoral markups and sectoral output.

To explore this notion of cyclicality, we implement the following regression:

∆ log µkt = αk + β∆Yt + ǫkt, (41)

where ∆ log µkt is the first-difference of sector k’s log markup in year t, ∆Yt gives the first differ-

ence of (log) aggregate value-added in year t. αk is a sector fixed effect that controls for sector-

specific trends in markups. Sector-level markups are computed as above by taking a weighted

harmonic mean of firm-level markups and aggregate value-added is computed by summing

firm-level value-added deflated by the respective EU-KLEMS sector-level deflator. Finally, for

robustness we again consider an alternative specification in log deviations from a Hamilton

(2018) trend rather than growth rates. In appendix D.3, we consider another specification with

different detrending.

Bils et al. (2018) consider a version of this regression based on US data. They conclude that “the

price markup is estimated to be highly countercyclical” with the possible exception of service

industries, for which they find evidence favoring procyclicality.52

Columns (1) and (2) of Table 10 summarize our estimates based on French data. While the point

estimates are negative, they are also noisy: we do not find a statistically significant relation

between sectoral markups and aggregate GDP. As shown in Table A12 of appendix D.3, this

finding is robust to consider other detrending methods. For the average French sector, the data

suggests that this reduced-form relation is not statistically significantly different from zero.

We now explore the connection between sector-specific markups and aggregate output im-

plied by our model. Table 10 present median estimates (along with their respective standard

deviations) of β over 5,000 samples of 25 year length. For the baseline calibration, reported

in columns (3) and (4), our model implies a positive point estimate. However, the model sim-

ulations point to considerable uncertainty over this point estimate which is not statistically

different from zero, as in the data.

As we will discuss in the next subsection, our model with only idiosyncratic productivity shocks

understates aggregate output volatility. In order to match the observed volatility of aggregate

output, we consider an extension with aggregate productivity shocks. Firm-level productivity is

52Bils et al. (2018) measure markup using intermediate input share computed from sector level data from KLEMS.
Instead, we construct sector-level markup by the aggregation of firm-level markup based on equation 7. Similarly,
we use material as a variable input to estimate firm-level markup using equation 34.
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given by Z̃t×Zikt, where Z̃t is normally distributed and independent across periods with volatil-

ity set to match the volatility of aggregate output in the data.53 For this alternative parameter-

ization, reported in columns (5) and (6), our model implies a point estimate roughly equal to

zero. Of the 5,000 samples, about 20 to 30% (depending on how we filter the model-generated

data) display sectoral markups that are countercyclical with respect to aggregate output. In-

tuitively, aggregate productivity shocks enhance aggregate output volatility but do not affect

the relative firm-level productivity and therefore do not affect the market-share and markup

distributions. It follows that aggregate shocks do not affect sector-level markups. Point esti-

mates with aggregate shocks are therefore smaller than without aggregate productivity shocks

and closer to its empirical counterpart.

We thus conclude that, consistent with the data, the model is able to generate a weak and noisy

comovement between sectoral markups and aggregate output (in comparison to the stronger

relation between sectoral markups and sectoral output).

4.3 Aggregate Markup Cyclicality and Output Fluctuations

In this final section, we turn our attention to fluctuations in aggregate markups and output.

In the model, we first consider only idiosyncratic firm-level shocks according to the Markov

process introduced above. Recall that in our environment, these shocks constitute the only

source of markup and output fluctuations at the firm, sector, and aggregate levels. We then

introduce aggregate productivity shocks to fully account for aggregate output volatility in our

data.

Using our FICUS-FARE data, we construct aggregate markups, µt, as a weighted harmonic

mean of firm-level markups, and aggregate GDP, Yt, as the sum of firm-level value-added. We

detrend these variables using the Hamilton (2018) filter. Using our calibrated model, we sim-

ulate 5,000 samples of 25-year firm-level histories. We implement the same procedure to con-

struct detrended time-series of model simulated aggregate output and markup. For robustness,

we also consider a first-differences specification. Table 11 presents data- and model-based es-

timates of the correlation and standard deviation of aggregate output and markups.

We first consider aggregate markup cyclicality. Recall from expression (33) that our model im-

plies a positive comovement between aggregate output and aggregate markups, unless larger

sectors have lower markups or, for finite samples, if a particular expansionary episode is driven

by a sector with a sufficiently low markup, in which case negative comovement may obtain.

That is, whereas we should observe positive comovement over sufficiently long samples, in any

given short sample, comovement may be absent or negative depending on sectors driving the

aggregate dynamics.

53We set the standard deviation for log Z̃t to 2.20% (resp. 2.04%) for the specification in first-difference (resp. in
deviation from trend)
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Table 10: Sector Markup and Aggregate Output

(1) (2) (3) (4) (5) (6)

Data Model Model

without Aggr. Shocks with Aggr. Shocks

Dependent variable: ∆ log µkt l̂ogµkt ∆ log µkt l̂ogµkt ∆ log µkt l̂ogµkt

∆Yt -0.327 0.165 0.008

(0.176) (0.101) (0.042)

Ŷt -0.235 0.169 0.017

(0.195) (0.119) (0.044)

Share negative coefficients - - 0.02 0.02 0.29 0.21

Sector FE Y Y Y Y Y Y

Number of Sectors 275 275 275 275 275 275

Number of Obs. 6,875 6,325 6,875 6,325 6,875 6,325

NOTE: Regression of sector k’s markup in year t in first-differences (∆ log µkt, in columns 1 and 3) and Hamilton

(2018) trend deviation (l̂ogµkt, in columns 2 and 4) on (log) aggregate real value-added in year t in either first-

differences or Hamilton (2018) trend deviation ( ∆Yt and Ŷt, resp.). Columns (1) and (2) report empirical estimates

for the FICUS-FARE (1995-2019) data. Regressions are weighted by average sectoral value-added. Standard errors (in

parentheses) are clustered at the year level. Columns (3) and (4) report estimates based on model-simulated data.

Point estimates for this column give the median coefficient obtained from running the reduced-form regression over

5,000 simulated samples, each of the same length (25 years) as the French data. The standard errors (in parentheses)

are computed over the same simulated samples. Columns (5) and (6) report estimates based on model-simulated

data with aggregate TFP shocks. Point estimates for this column are computed as for columns (3) and (4). The

volatility of the serially uncorrelated aggregate TFP shocks is calibrated to match the aggregate volatility of aggre-

gate output (either measured as a deviation from trend or a log first-difference) in France. The line “Share negative

coefficients” gives the share of simulation with negative estimated coefficients in regression on the model-based

simulations.
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In Table 11, we can see that both in the data and in the model, the correlation between ag-

gregate markup and aggregate output is positive. Our model predicts, however, much higher

correlation than that observed in the data: the correlation is, at most, 0.13 in the data and 0.91

(computed as the median correlation across shock realizations) in the model.54

Next, we examine the magnitude of aggregate, granular fluctuations in output and markups

implied by our model. Recall from our analytic results that incomplete pass-through weakens

(relative to the specification of the model with heterogeneous but constant markups) the re-

sponse of aggregate output to firm-level shocks, as implied by equation (31) — derived under

parameter restrictions that we relax in our quantitative analysis.

Table 11 shows that, for the detrended specification, the standard deviation of aggregate out-

put is 3.16% in our French data and 0.83% in our model (median across samples). That is, the

volatility of aggregate output in our purely granular model is 26% of the volatility in the data.

This result is robust to alternatively computing correlations on first-differences in the data and

in model simulated samples. How large are granular movements in aggregate markups? The

ratio of the standard deviation of aggregate markup to that of aggregate output is 59% in the

data and 36% in our calibrated model (median across samples).

Although our model with firm-level shocks generates non-negligible fluctuations in aggregate

output and markups, it only accounts for a fraction of aggregate fluctuations in the data. More-

over, as we discussed above, the correlation of markups and output is much higher than that

in the data. In what follows, we show that if we superimpose on our calibrated model aggre-

gate productivity shocks – in order to match aggregate output volatility in the data – the pro-

cyclicality of markups is much lower and closer to the data.

As discussed in the previous section, we assume firm-level productivity is given by Z̃t × Zikt,

where Z̃t is normally distributed and independent across periods. We choose the standard

deviation of Z̃t to match the volatility of aggregate output in the data. Column (3) of Table

11 shows the implied business-cycle moments for the median 25-year sample. As discussed

in Section 1, aggregate shocks do not affect firm market shares and markups, and hence the

volatility of aggregate markups is unchanged relative to the model with only firm-level shocks.

Because movements in output driven by aggregate productivity shocks are uncorrelated with

markups, the correlation between aggregate markup and output falls to 0.27. In 16% of our

25-year samples, aggregate markups are countercyclical.55

54Our model predicts large variation in the correlation coefficient and in the relative volatility of aggregate

markups and output across small samples, depending on which sectors are driving aggregate dynamics and the
relative levels of their markups. To see this variation at play, Figure A1 in Appendix D plots the histogram of correla-
tion coefficients ρ(µt, Yt) and relative standard deviations σ(µt)/σ(Yt) across our 5,000, 25-year samples.

55We also considered second-moment shocks to firm-level productivity as in Bloom et al. (2018). An increase in
the dispersion of firm-level productivity shocks reallocates market shares toward large firms, increasing the aggre-
gate markup, but also raise aggregate output (Oi-Hartman-Abel effect). That is, in our model second moment shocks
increase the correlation between aggregate markup and output.

44



Table 11: Aggregate Markup and Aggregate Output

(1) (2) (3)

Data Model Model

without aggr. shocks with aggr. shocks

σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y )

Ŷt 3.16 1 1 0.83 1 1 3.16 1 1

µ̂t 1.87 0.59 0.01 0.30 0.36 0.91 0.30 0.09 0.29

∆Yt 3.28 1 1 0.72 1 1 3.28 1 1

∆µt 2.23 0.68 0.13 0.26 0.36 0.91 0.26 0.08 0.27

NOTE: The table reports standard deviations, σx, relative standard deviations, σx/σY , and time-series correlations,

ρ(x, Y ), for deviations from trend computed as in Hamilton (2018) of (log) aggregate output Ŷt and (log) aggregate
markup µ̂t, and, for log first-difference of aggregate output ∆Yt and aggregate markup ∆µt. Column (1) reports
empirical estimates for the FICUS-FARE (1995-2019) data. Column (2) reports the median over 5,000 simulated
samples, each of 25 years. Column (3) reports the average over 5,000 simulated samples of 25 years from a model
with aggregate TFP shocks. The volatility of the serially uncorrelated aggregate TFP shocks is calibrated to match
the aggregate volatility of aggregate output (either measured as a deviation from trend or a log first-difference) in
France.

Role of changes in firm-level markups for aggregate results Whereas the within/between

decomposition in Section 4.1 demonstrates the importance of changes in firm-level markups to

account for changes in aggregate markups in the model and data, as we discussed in Section 2,

it is not necessarily informative of how different movements in aggregate output and markups

would be if firm-level markups were heterogeneous but fixed over time.

To answer this question, we apply quantitatively the first-order-approximation analytic expres-

sions in Section 2. In Appendix A.6, we provide expressions for correlations and volatilities un-

der variable markups versus constant markups, given market shares and markups in the initial

equilibrium. Because in our model, the distribution of firms by sector changes every period, we

consider 1,000 independent samples drawn from the equilibrium in our quantitative model.56

Consider first movements in aggregate output. We compare the standard deviation of aggregate

output under variable markups with that under heterogeneous but constant markups, given

the same initial firm-level expenditure shares and markups and assuming the same volatility of

firm-level shocks.57 For the median sample, the standard deviation of aggregate output under

56The magnitudes of correlations and ratios of standard deviations based on the first-order approximations are
remarkably close to those in our quantitative non-linear results. For the median sample, the standard deviation
of aggregate markup relative to output is 0.42 (vs. 0.36 in our quantitative non-linear results) and the correlation
between aggregate markup and output is 0.87 (vs. 0.91 in our quantitative non-linear results).

57Market shares of large firms are less volatile under variable markups than under constant markups (see equa-
tion (A4) in the appendix). One could compare aggregate volatilities under these two specifications after adjusting
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variable markups is 0.87 times that under heterogeneous but constant markups (the 95% con-

fidence interval calculated across samples is 0.82-0.97). As explained in Section 2, incomplete

pass-through (given pass-through rates that are decreasing in size) reduces aggregate output

volatility in a similar way that a decline in firm concentration does.58

Consider now movements in aggregate markups. For the median sample, the standard devia-

tion of aggregate markups under variable markups is 1.08 times that under heterogeneous but

constant markups (the 95% confidence interval is 1.00-1.18). The median volatility of aggregate

markups relative to output is 0.42 under variable markups and 0.34 under heterogeneous but

constant markups. The median correlation between markups and output is 0.87 under variable

markups and 0.92 under constant markups (the 95% confidence interval for the difference in

correlations is [0-0.07]).

Overall, we see the magnitude and cyclicality of aggregate markups in our model are not too

different when we counterfactually fix markups at their initial, heterogeneous level. Of course,

rather than exogenously fixing markups, our model provides a unified theory of both markup

(level) heterogeneity across firms and endogenous markup changes. Furthermore, this theory

is consistent with a number of observations about markup changes in the data at the firm,

sector, and aggregate levels.

5 Conclusion

In this paper, we examine markup cyclicality through the lens of a simple oligopolistic macroe-

conomic model with rich implications for the behavior of markups at the firm, sector, and ag-

gregate levels. Working with administrative firm data for France, we show the model can repro-

duce qualitatively, and many times quantitatively, an array of markup-related empirical mo-

ments at various levels of disaggregation. Within our framework and measure of markups, we

can reconcile seemingly conflicting variants of “markup-cyclicality” that have been considered

in the literature. Finally, our granular oligopolistic setting produces non-negligible aggregate

fluctuations, both in output and markups.

the size of firm-level shocks to keep the same average volatility of market-shares (which, recall, is a target in our base-
line calibration). If we match an unweighted average of these market-share volatilities, our results remain roughly
unchanged. If we target a weighted average of these market-share volatilities, aggregate volatility is slightly higher

under variable markups. In all cases, variable markups have a limited impact on reducing aggregate output volatility.
58Whereas variable markups reduce the volatility of aggregate output, markup heterogeneity per se contributes to

higher aggregate volatility. By equation (30), markup heterogeneity under constant markups does not affect output
changes with linear disutility of labor (f → ∞). However, with finite labor disutility, reallocation of economic activity
across heterogeneous markup firms is an additional source of output fluctuations, as studied in Baqaee and Farhi

(2019). In our model, the median standard deviation under heterogeneous and constant markups is 1.18 times that
under homogeneous and constant markups (the 95% confidence interval is 1.13-1.22). Combining both results, the
standard deviation under variable and heterogeneous markups is 1.02 times that under homogeneous and constant
markups (the 95% confidence interval is 0.99-1.14). That is, output volatility under variable markups is only slightly
higher than under constant and homogeneous markups.
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One obvious route for future work is to superimpose in our model alternative shocks and fric-

tions. Along this line, prime candidates would be to consider price setting and customer-

accumulation frictions (see, e.g., Gilchrist et al. 2017 and Afrouzi 2019), as well as aggregate

monetary and financial shocks. Relatedly, we have focused on static, intra-temporal markup

decisions in which movements in markups are the result of changes in the shape of the de-

mand curve in response to firm-level shocks. These forces would remain relevant even if one

were to extend the model to allow for richer inter-temporal dynamics that result in more com-

plex dynamic markup strategies (see e.g., Rotemberg and Saloner 1986). Bringing the resulting

firm, sector, and aggregate dynamics to data - and comparing them against the forces in our

static benchmark - would then render possible an assessment of the empirical merits of this

more general approach.

Finally, extensions to more realistic and richer product and market structures would allow us

to more accurately map model objects to the increasingly detailed micro data available to

researchers. Such extensions would likely include multi-product firms, interlinked through

intermediate-inputs, with some firms competing only locally in spatially segmented (product

and factor) markets and others doing so nationwide and/or internationally.
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Appendix to “Bottom-up Markup Fluctuations”

Ariel Burstein, Vasco M. Carvalho, and Basile Grassi

A Theory Appendix

A.1 Global between / within decomposition of changes in sectoral markups

The change in the inverse of the sectoral markup between two time periods is, by equation (7),

1

µkt′
−

1

µkt
=

Nk∑

i=1

(
skit′

µkit′
−

skit
µkit

)

This change in sectoral markups can be decomposed into a within term (i.e., changes in firm-

level markups evaluated at firms’ expenditure share averaged over both time periods) and a

between term (i.e., changes in expenditure shares evaluated at firm-level markups averaged

over both time periods) as follows:

1

µkt′
−

1

µkt
=

Nk∑

i=1

1

2

[
(skit′ + skit)

(
1

µkit′
−

1

µkit

)
+

(
1

µkit′
+

1

µkit

)
(skit′ − skit)

]
(A1)

Note that if markups are equal across firms (as is the case with σ = ε), then all terms in (A1) are

equal to zero.

It is straightforward to show that, by equation (5) under Cournot competition, the within and

the between terms in (A1) are equal to

1

2

Nk∑

i=1

(skit′ − skit) (skit′ + skit)

(
1

σ
+

1

ε

)
.

Therefore, under Cournot competition, the contribution in changes in sectoral markups of the

between and the within terms is 50% each, irrespective of the values of σ and ε (as long as

σ 6= ε). If σ is close to ε, firm-level markups are less responsive to shocks (reducing the within

term), but firm-level markups are also less heterogeneous across firms (reducing the between

term).

With Bertrand competition, the within/between decomposition is not pinned down at 50-50.
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A.2 Firm-level market shares

Combining ŝkit = Âkit + (1− ε)
(
P̂kit − P̂kt

)
, (16), and (18),

ŝkit = αki

[
V̂kit −

∑Nk

i′=1 ski′αki′V̂ki′t∑Nk

i′=1 ski′αki′

]
. (A2)

The response of firm i’s expenditure share to a firm i shock is

ŝkit = αki

[
1−

skiαki∑Nk

i′=1 ski′αki′

]
V̂kit. (A3)

Finally, we can express the variance of expenditure shares as

Var [ŝkit] =

(
αkiσv∑Nk

i′=1 ski′αki′

)2





Nk∑

i′ 6=i

ski′αki′




2

+

Nk∑

i′ 6=i

(ski′αki′)
2


 . (A4)

A.3 Changes in sectoral markups

Substituting equations (15), (16), (18), and

ŝkit = Âkit + (1− ε)
(
P̂kit − P̂kt

)
, (A5)

into equation (20) yields

µ̂kt = µk

Nk∑

i=1

skiαki



(
Γki − 1

µki

)
−

∑Nk

i′=1 ski′αki′

(
Γki′−1
µki′

)

∑Nk

i′=1 ski′αki′


 V̂kit. (A6)

Setting Γki = 0 and αki = 1, we obtain the expression for changes in sectoral markups under

constant markups, (22).

Under our assumptions on market structure,

Γki − 1

µki
=

ε− 1

ε
−

2

µki
. (A7)

(Γki − 1)/µki is increasing in markup µki and hence also in market share ski. Substituting equa-

tion (A7) into (A6), we obtain expression (21).

Under Bertrand competition, markup elasticities Γki are given by

Γki ≡
∂ log µki

∂ log ski
=

[
ε

(
µki − 1

µki

)
− 1

]
(µki − 1) ,
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and (Γki − 1)/µki by

Γki − 1

µki
= ε

(
µki − 1

µki

)2

. (A8)

Both Γki and Γki−1
µki

are increasing in markups and market shares. Changes in sectoral markups

under Bertrand competition are

µ̂kt = µkε

Nk∑

i=1

skiαki

[
(ε− ski (ε− σ))−2 −

∑Nk

i′=1 ski′αki′ (ε− ski′ (ε− σ))−2

∑Nk

i′=1 ski′αki′

]
V̂kit.

As under Cournot, a positive shock to firm i results in an increase in sectoral markup if and only

if firm i is sufficiently large in its sector.

To compare analytically changes in sectoral markups under constant markups (equation 15)

and variable markups (equation 21), we restrict the extent of ex-ante firm heterogeneity. Specif-

ically, we assume that sector k contains NA
k type A firms and NB

k = Nk −NA
k type B firms, and

in the initial equilibrium, firms within each type have equal demand/productivity composite,

Vkit. In the initial equilibrium, each firm of type g = A,B has market share sgk, markup µg
k, and

markup elasticity Γg
k. Firms of type A are indexed by i = 1, ..., NA

k and firms of type B are in-

dexed by NA
k + 1, ..., Nk . In this case, equation (A6) under Cournot competition can be written

as

µ̂kt =
2

1 + (ε− 1)Γ̃k


sAk

(
1−

µk

µA
k

) NA
k∑

i=1

V̂kit + sBk

(
1−

µk

µB
k

) Nk∑

i=NA
k +1

V̂kit


 , (A9)

where

Γ̃k = NB
k sBk Γ

A
k +NA

k sAk Γ
B
k .

The term in square brackets in equation (A9) corresponds to the change in the sectoral markup

under fixed markups as expressed above. Therefore, given the same firm-level shocks, sectoral

markups change by more (and the variance is higher) under variable markups than under con-

stant markups if and only if the term in front of the square brackets in equation (A9) is higher

than 1, which is the case if (ε−1)Γ̃k < 1. This condition is violated if σ is sufficiently low and/or

ε sufficiently high.

Proof of Proposition 2 Define f(s) and g(s) as probability density functions defined over

market shares in sector k, s = sk1, ..., skNk
, given by f(s) = sα(s)∑Nk

i′=1
ski′αki′

and g(s) = sf(s)a

with a =
∑Nk

i′=1
ski′αki′∑Nk

i′=1
s2
ki′

αki′

> 1 and α(s) is defined in equation (17). Because the likelihood ra-

tio g(s)/f(s) = sa is increasing in s, g(.) first-order stochastically dominates f(.). If skiαki is

increasing in ski, f(s) is increasing in s. It then follows that
∑Nk

i=1 [g(ski)− f(ski)] f(ski) > 0,

which corresponds to inequality (25). Note that if skiαki is decreasing in ski, inequality (25) is

reversed.�

Under what conditions is skiαki increasing in market shares, as required by Proposition 2? Un-
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der Cournot competition,

skiαki =

(
1− 1

ε

)
ski −

(
1
σ − 1

ε

)
s2ki

1− 1
ε + (ε− 2)

(
1
σ − 1

ε

)
ski

,

which is increasing in ski if and only if

2

(
ε− 1

ε

)
ski +

(
1

σ
−

1

ε

)
(ε− 2) s2ki <

σ (ε− 1)2

ε (ε− σ)
. (A10)

Because the left-hand side of this equation is increasing in sik (for sik ≤ 1), this inequality holds

for ski ≤ s̃k, where s̃k is a function of σ and ε. This implies inequality (25) is satisfied if all market

shares in sector k are less than or equal to ski ≤ s̃k. Note the condition that skiαki is increasing

in ski is sufficient but not necessary for inequality (25) to hold. In particular, inequality (25)

may hold (so that sectoral markups and prices comove negatively) even if skiαki is increasing

in some range of the distribution of market shares in a sector but decreasing at the upper tail of

the distribution.

A.4 Changes in sectoral productivity

By equations (9) and (15), changes in sectoral productivity are, up to a first order, given by

Ẑkt =

Nk∑

i=1

ski

[(
ε

ε− 1
−

µk

µki

)
V̂kit − ε

(
1−

µk

µki

)
Γkiŝkit

]
,

where changes in market shares are given by (A5). The term ski ×
ε

ε−1 corresponds to the elas-

ticity of sectoral productivity under monopolistic competition. The remaining terms reflect

changes in efficiency due to reallocation across firms with heterogeneous markups, as dis-

cussed in detail in Baqaee and Farhi (2019).

A.5 Changes in sectoral and aggregate output

We now derive equation (30). We first calculate changes in aggregate output. Using equations

(29) and (30), changes in aggregate output can be expressed in terms of changes in sectoral

markup and price as

Ŷt = (1 + fη)−1
∑

k

sk

[
−

(
f + 1 + (σ − 1)

(
1−

µ

µk

))
P̂kt +

skµ

µk
µ̂kt

]
(A11)

In response to sector k shocks only, changes in aggregate output are

Ŷt = (1 + fη)−1 sk

[
−

(
f + 1 + (σ − 1)

(
1−

µ

µk

))
P̂kt +

skµ

µk
µ̂kt

]
(A12)
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and change in aggregate price by P̂t = skP̂kt.

Changes in sectoral output are given by

Ŷkt = −σP̂kt + σP̂t + Ŷt. (A13)

In response to sector k shocks only, substituting changes in aggregate output and price using

the expressions above, changes in sectoral output are given by equation (26).

Finally, expression (27) is obtained as follows. First, changes in firm-level markups are, com-

bining equations (A2) and (15),

µ̂kit = Γkiαki

[
V̂kit −

∑Nk

i′=1 ski′αki′ V̂ki′t∑Nk

i′=1 ski′αki′

]
. (A14)

Changes in sectoral output when f → ∞ are, by equations (26) and (18),

Ŷkt = −
[
σ (1− sk) + η−1sk

]
P̂kt =

[
σ (1− sk) + η−1sk

]

ε− 1

∑Nk

i=1 skiαkiV̂kit∑Nk

i=1 skiαki

. (A15)

Calculating Cov
[
Ŷkt, µ̂kit

]
in the presence of shocks to all firms (only those in sector k are rele-

vant), we obtain expression (27).

A.6 Volatility and covariance of aggregate markups and output

In this section, we provide expressions for the variance of and covariance between aggregate

markups and aggregate output. We do not impose f → ∞, as we do in the main text. We use

these expressions in section 4.3.

The covariance between sector prices and markups, Cov
[
µ̂kt, P̂kt

]
, is given by (24) under vari-

able markups and (23) under constant markups.

The variance of sectoral prices is

Var
[
P̂kt

]
=

σ2
v

(ε− 1)2

Nk∑

i=1

(
αkiski∑
i′ αki′ski′

)2

. (A16)

Under constant markups, Γki = 0 and αki = 1. The variance of the aggregate price is

Var
[
P̂t

]
=
∑

k

s2kVar
[
P̂kt

]
. (A17)
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The variance of sectoral markups is

Var [µ̂kt] = µ2
k

Nk∑

i=1

s2kiα
2
ki



(
Γki − 1

µki

)
−

∑Nk

i′=1 ski′αki′

(
Γki′−1
µki′

)

∑Nk

i′=1 ski′αki′



2

σ2
v . (A18)

The variance of aggregate markups is

Var [µ̂t] =
∑

k

s2k

[(
µ

µk

)2

Var [µ̂kt] + (1− σ)2
(
1−

µ

µk

)2

Var
[
P̂kt

]
− (σ − 1)

(
1−

µ

µk

)
Cov

[
µ̂kt, P̂kt

]]

(A19)

The covariance between aggregate price and markup is

Cov
[
P̂t, µ̂t

]
= µ

∑

k

s2k
µk

Cov
[
P̂kt, µ̂kt

]
− (σ − 1)

∑

k

s2k

(
1−

µ

µk

)
Var

[
P̂kt

]
. (A20)

The variance of aggregate output is

Var
[
Ŷt

]
=

(
1

1 + ηf

)2

Var [µ̂t] +

(
1 + f

1 + ηf

)2

Var
[
P̂t

]
−

(1 + f)

(1 + ηf)2
Cov

[
P̂t, µ̂t

]
(A21)

Finally, the covariance between aggregate output and markups is

Cov
[
Ŷt, µ̂t

]
=

(
1

1 + ηf

)
Var [µ̂t]−

(
1 + f

1 + ηf

)
Cov

[
P̂t, µ̂t

]
. (A22)

A.7 Decreasing returns to scale

The production function is now given by

Ykit = ZkitL
β
kit. (A23)

where β ≤ 1. Marginal cost is

MCkit = β−1Wt (Ykit)
(1−β)/β (Zkit)

−1/β , (A24)

or, using PkitYkit = skitPktYkt,

MCkit = β−1Wtµ
β−1
kit (PktYktskit)

(1−β) (Zkit)
−1 . (A25)

The firm-level markup, µkit, is defined as the ratio of price to marginal cost, and is related to

expenditure shares by equation (5), which does not depend on β.
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Labor payments of firm i in sector k are

LkitWt = βµ−1
kitPkitYkit,

and profits (revenues minus labor payments) are

Πkit =
(
1− βµ−1

kit

)
PkitYkit.

We define the sectoral markup as the ratio of sectoral revenues to labor payments,

µkt ≡
PktYkt

WtLkt
, (A26)

which can be expressed as a function of firm-level markups and expenditure shares,

µ−1
kt = β

Nk∑

i=1

µ−1
kitskit. (A27)

The 50-50 between/within decomposition of changes in sectoral markups under Cournot com-

petition derived in the appendix holds irrespectively of the value of β.

The expenditure share of firm i in sector k, using Pkit = µkitMCkit, satisfies

skit =
Vkit

(
µβ
kits

1−β
kit

)1−ε

∑Nk

i′=1 Vki′t

(
µβ
ki′ts

1−β
ki′t

)1−ε . (A28)

Equilibrium firm-level expenditure shares and markups are the solution to equations (5) and

(A28).

Log-linearizing (A28) and using µ̂kit = Γkiŝkit, we obtain the analog to equation (14):

ŝkit = V̂kit + (1− ε) Λkiŝkit −

Nk∑

i′=1

ski′
(
V̂ki′t + (1− ε) Λki′ ŝki′t

)
, (A29)

where Λki = βΓki + 1− β. Note that Γki < Λki if and only if Γki < 1.

We can follow similar steps to obtain expressions for changes in sectoral markups and prices to

firm-level shocks, as well as the implied variances and covariances.

A.8 Markups when firms internalize impact on aggregates

In our baseline model we assume that when a firm chooses quantity, it does not take into ac-

count that its choice impacts aggregate output and the wage. This is a behavioral assumption

since, with a discrete number of sectors and a discrete number of firms by sector, a firm’s choice
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does has a non-zero effect on aggregates. Here we solve for markups relaxing this assumption.

The inverse demand for firm i in sector k (omitting time subscripts) is

pi ≡
Pki

P
= Y

− 1

ε

ki (Yk)
1

ε
− 1

σ Y
1

σ .

Differentiating pki with respect to Yki, taking other firms’ quantities as given (but not sectoral

or aggregate output), we obtain

d log pki
d log Yki

= −
1

ε
(1− ski)−

1

σ
ski +

1

σ
skski (A30)

where we used
d log Yk

d log Yki
=

PkiYki

PkYk
= ski

and
d log Y

d log Yk
=

PkYk

PY
= sk.

The last term in (A30) is zero if we calculate this derivative taking Y as given. From labor supply

choice, we can express the real wage as

w ≡
W

P
= f0Y

ηL
1

f

Differentiating w with respect to Yki and using the fact that d log Yki = d logLki (since Yki =

ZkiLki), we obtain
d logw

d log Yki
= ηskski +

1

f
snks

n
ki, (A31)

where snk =
∑

i∈k Lki/L and snki = Lki/Lk.

Firm i chooses output Yki to maximize real profits (i.e. profits relative to the aggregate price in-

dex), Yki ×
[
pki (Yki, Y−ki)−

w
Zki

(Yki, Y−ki)
]

, taking output choices by other firms, Y−ki, as given.

We do not take into account the effect that changes in profits have on consumption and leisure

of the firm’s owner (Azar and Vives, 2021). The first order condition is

pki −
w

Zki
+ Yki

(
dpki
dYki

−
dw

dYki

1

Zki

)
= 0

which can be re-arranged as

pki =
w

Zki

(
1 + d logw

d log Yki

1 + d log pki

d log Yki

)
.

Substituting the expressions for d log pki

d log Yki
and d logw

d log Yki
, (A30) and (A31), we obtain

Pki =
W

Zki

(
1 + ηskski +

1
f s

n
ks

n
ki

1− 1
ε (1− ski)−

1
σski +

1
σskski

)
(A32)
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Since markups now depend on economy-wide sales and employment shares, skski and snks
n
ki,

rather than on the shares within sectors, we must solve for markups in all sectors simultane-

ously rather than sector by sector in our baseline model, which is more intensive computation-

ally.

If sk → 0, then (A32) becomes

Pki =
W

Zki

(
1

1− 1
ε (1− ski)−

1
σski

)
. (A33)

This is the expression for prices in the baseline model, in which we assumed that d logw
d log Yki

=
d log Y
d log Yki

= 0 when firms choose quantity.

Markups in expressions (A32) and (A33) differ for two reasons. First, a unilateral increase in Yki,

raises Y , implying a smaller decline in price pki compared to the case in which individual firms

take Y as given. This implies a higher effective demand elasticity, lowering markups. This effect

is captured by the term 1
σskski in the denominator of (A32).

Second, an increase in Yki raises w. This reduces the profit maximizing quantity compared to

the case in which w is taken as given by individual firms. This effect is smaller the higher is

the Frish elasticity f and the less sensitive is the marginal utility of consumption to aggregate

output. This effect is zero if labor disutility is independent of aggregate labor (e.g. for perfectly

elastic labor supply f = ∞) and if the marginal utility of consumption is independent of aggre-

gate consumption (e.g. for linear utility in consumption η = 0).

Applying (A32) using sales and employment shares in our baseline calibration has a negligible

impact on markup levels compared to those based on (A33) our baseline. For example, across

the two alternatives, the implied level of markups levels for the highest markup firms (where

the effect would be largest) differ only at the third decimal place.

B Data, Estimation, and Calibration Appendix

B.1 Data appendix

In table A1, we report descriptive statistics for the estimation sample used in the estimation of

the production function and for the baseline sample used to compute markups in our empirical

exercise.
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Table A1: Descriptive Statistics

Panel A: Estimation Sample

#obs mean median 25th per. 75th per. 95th per.

Sales (log) 220,733 8.14 7.97 6.98 9.08 11.04

Quantity (log) 220,733 7.53 7.45 6.29 8.76 10.94

Price (log) 220,733 0.61 0.28 -.005 .90 2.95

Wage bill (log) 220,733 6.83 6.67 5.82 7.61 9.41

Capital (log) 220,733 6.92 6.74 5.59 8.08 10.37

Services (log) 220,733 6.72 6.61 5.55 7.73 9.60

Materials (log) 220,733 6.94 6.83 5.62 8.15 10.26

Panel B: Baseline Sample

#obs mean median 25th per. 75th per. 95th per.

Sales (log) 9,383,228 5.85 5.58 4.69 6.77 8.86

Wage bill (log) 9,383,228 4.32 4.32 3.06 5.49 7.21

Capital (log) 9,383,228 4.00 3.84 2.93 4.92 7.09

Services (log) 9,383,228 4.20 3.90 3.01 5.13 7.26

Materials (log) 9,383,228 4.69 4.44 3.40 5.78 8.22

Markup 9,383,228 1.39 1.21 0.82 1.77 3.30

Elast. Materials 9,383,228 0.45 0.40 0.25 0.59 1.02

Sales/Materials 9,383,228 3.63 2.92 2.09 4.35 8.95

Local RTS 9,383,228 0.95 0.96 0.84 1.09 1.26

#obs mean median top 1% top 0.1% top 0.01%

Market Share (pp) 9,383,228 0.07 0.003 0.93 9.12 38.40

NOTE: Panel A (estimation sample) gives statistics for the sample of firms in the EAP survey from 2009 to 2019 with
price and quantity information. Data is winsorized by two-digit sectors at 1%. Panel B (baseline sample) gives

statistics of for the sample of firms in FICUS-FARE from 1994 to 2019 as described in the main text. Local Return
to Scale (Local RTS) is defined as the sun of the material, labor, capital and service elasticities. Markup, material
elasticity, ratio of sales to materials and local RTS are winsorized at the 3% level.
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B.2 Markup Estimation

In this appendix, we describe the empirical framework we use to estimate production functions

and firm-level markups. We also discuss its implementation in the FICUS-FARE French firm

census data. This framework is based on the so-called production approach and builds on to

the methodology in De Loecker and Warzynski (2012) and De Loecker et al. (2016, 2020) as

discussed and implemented in De Ridder et al. (2022).

We assume all firms within two-digits sectors have a common production function, up to a

firm-specific Hicks-neutral TFP. We further assume that this firm-specific TFP Zit follows an

AR(1) process in logs, that is, logZit = ρ logZit−1 + ξit. For simplicity, in what follows, we omit

sector notation. The production function of firm i is

Yit = ZitF (Lit,Kit,Mit, Oit) , (A34)

where Zit denotes TFP, Lit denotes labor, Kit denotes capital, Mit denotes materials, and Oit

denotes services. These inputs are homogenous across firms within sectors and traded in com-

petitive markets. In our estimation of markups, we do not impose that F is constant returns to

scale.

B.2.1 Recovering Markups

When minimizing costs, we assume that material is a variable input that is not subject to

any adjustment cost or any intertemporal decision. Under these assumptions, the first-order-

condition of the firms’ cost-minimization problem for materials Mit can be rewritten as

PM
t = λitZit

∂F

∂M
⇔ µit =

PitYit

PM
t Mit

Zit
∂F
∂M

Yit/Mit
,

where λit = Pit

µit
; that is output price is equal to the markup over marginal cost. We denote

by θMit =
Zit

∂F

∂M

Yit/Mit
the elasticity of the production function with respect to material input Mit.

Markup is equal to the product of the ratio of sales to materials and the elasticity of the produc-

tion function with respect to materials:

µit =
PitYit

PM
t Mit

θMit . (A35)

We calculate the ratio of sales to materials using the FICUS-FARE data (Panel B Table A1) on

sales and input expenditures, and we estimate the production function as discussed in the next

section.
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B.2.2 Production-function estimation

In this subsection, we describe the production-function estimation procedure. We implement

a two-stage procedure using a control-function approach, as introduced by Ackerberg et al.

(2007, 2015), but adapted to an oligopolistic competition environment following De Ridder et

al. (2022).

We implement the estimation procedure described below at the two-digit sector level. Given

our assumptions that inputs are homogeneous and that firms are price takers in the input mar-

kets, we deflate input expenditures by sector-level price indices to recover inputs’ quantities.

Below, we denote with small capital letters the logarithm of large capital letters: zit = logZit,

pit = logPit, lit = logLit, kit = logKit, mit = logMit and oit = logOit. We assume that firms, in a

given sector, produce by combining their inputs using a translog production function:

yit = zit +
∑

u∈{l,k,m,o}

βuuit +
∑∑

{u,v}∈{l,k,m,o}

βuvuitvit = zit +X ′
itβ

where, in the last equality, we collect all the terms in the vector of data X ′
it =

(lit, kit,mit, oit, l
2
it, k

2
it,m

2
it, o

2
it, litkit, litmit, litoit, kitmit, kitxit, ,mitxit) and the vector of parame-

ters to be estimated β′ = (βl, βk, βm, βo, βl2 , βk2 , βm2 , βo2 , βlk, βlm, βlo, βkm, βko, βmo). Finally, we

assume that quantity is observed with some measurement errors ǫit, that is, observed quantity

ỹit differs from actual quantity yit such that

ỹit = yit + ǫit = X ′
itβ + zit + ǫit.

The estimation consists of two stages. First, we purge the observed quantity from the measure-

ment errors ǫit. Second, we construct a dynamic panel GMM estimator to estimate the vector

of parameters β.

The empirical counterpart of each variable is discussed in section 3.1 and descriptive statistics

are given in Panel A of Table A1. The summary statistics of the data used in the estimation of

markups can be found in Panel A of Table A1.

First-Stage. The first stage of this procedure consists of separating the measurement errors

from the true quantity using the fact that firms observe their productivity zit when deciding the

amount of inputs. The demand for the variable input, here material mit, can be expressed as a

function of productivity: mit = m(zit,Ξit), where Ξit is a vector of all variables that determine

mit other than productivity. This function is often called the control function introduced by Ol-

ley and Pakes (1996) later extended in Levinsohn and Petrin (2003) and Ackerberg et al. (2015).

Under the assumption that mit rises monotonically in zit, the demand function can be inverted,
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such that zit = m−1(mit,Ξit). Substituting this function in the production function gives

ỹit = yit + ǫit = X ′
itβ +m−1(mit,Ξit) + ǫit.

The fitted values of a non-parametric regression of ỹit on the variables in X ′
it, mit and Ξit there-

fore identify ǫit, as long as the the variables in Ξit that determine the demand for mit are cor-

rectly specified.

To construct this control function, we use the first-order-condition with respect to the static

input materials in the cost-minimization problem (as in equation A35)

PM
t =

Pit

µit
Zit

∂F

∂M
. (A36)

Using the fact that ∂F
∂M is a function of the inputs’ usage, ∂F

∂M (Lit,Kit,Mit,Xit), equation (A36)

implicitly defines Mit as a function of productivity, Zit, conditional on other inputs’ usage

Lit,Kit,Xit, material price, output price pit, and markup. Furthermore, following De Ridder

et al. (2022), we assume the markup is a function of market share, µit = µt(sit), as is the case

under the nested CES demand system in our model under either Cournot or Bertrand competi-

tion. In the data, this market share is defined as the ratio between firm-level sales and the sum

of the sales of all firms in the same NAF sector, where market shares are defined at the five-digit

level of sectoral disaggregation.

Equipped with this control function, we run non-parametric regression of ỹit on the inputs

usage and their interaction in Xit, market share sit to control for markups, output price pit, and

a time-fixed effect to control for input price.A59 The fitted values of this regression identified

the measurement errors ǫit and allowed to recover the true quantity yit.

Second-Stage. In the second stage, as in Ackerberg et al. (2015), we build a dynamic panel

estimator similar in the spirit of Blundell and Bond (2000) where the identification is achieved

through an instrument. Specifically, we used past values of input usage as instruments for

current values. Following De Ridder et al. (2022), the GMM-based asymptotic estimator we

study is defined as follows:

Definition 1 The GMM estimator is β̂ ∈ R14 and ρ̂ ∈ R such that the moments E
[
Xit−1ξ̂it

]
and

E

[
ẑit−1ξ̂it

]
are equal to zero where ẑit = yit − X ′

itβ̂ = X ′
it(β − β̂) + zit and ξ̂it = ẑit − ρ̂ẑit−1 =

(Xit − ρXit−1)
′(β − β̂) +X ′

it−1(β − β̂)(ρ− ρ̂) + zit−1(ρ− ρ̂) + ξit

In the remainder of this appendix, we study the condition under which the above estimator
admits solutions. To this end, let us study the following system of equations, which defined the

A59In practice such non-parametric regression is performed by regressing the observed quantity on a third-order
polynomial of the variables.
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estimator and whose unknowns are β̂ and ρ̂:




E

[
Xit−1ξ̂it

]
= 0

E

[
ẑit−1ξ̂it

]
= E

[
Xit−1ξ̂it

]
′

(β − β̂) + E

[
zit−1ξ̂it

]
= 0

⇐⇒





E

[
Xit−1ξ̂it

]
= 0

E

[
zit−1ξ̂it

]
= 0

⇐⇒





E

[
Xit−1X̃

′

it

]
(β − β̂) + E [Xit−1X

′

it−1] (β − β̂)(ρ− ρ̂) + E [Xit−1zit−1] (ρ− ρ̂) = 0

E

[
zit−1X̃

′

it

]
(β − β̂) + E [zit−1X

′

it−1] (β − β̂)(ρ− ρ̂) + E
[
z2it−1

]
(ρ− ρ̂) = 0

,

where we use E [Xit−1ξit] = 0 and E [zit−1ξit] = 0, and, where we denote X̃it = Xit − ρXit−1.
Note that the first line of the above system of equations corresponds to 14 equations, while the

second line is just a scalar equation. We have 14 + 1 equations with unknown (β̂′, ρ̂) ∈ R14+1.

In general, this system of equations has multiple solutions. However, when (β̂′, ρ̂) is not too far

from the true value (β′, ρ), the terms in (β − β̂)(ρ− ρ̂) are of second order. Ignoring these terms
leads to the following reduced system which can be written in matrix form:




E

[
Xit−1X̃

′

it

]
(β − β̂) + E [Xit−1zit−1] (ρ− ρ̂) = 0

E

[
zit−1X̃

′

it

]
(β − β̂) + E

[
z2it−1

]
(ρ− ρ̂) = 0

⇐⇒


 E

[
Xit−1X̃

′

it

]
E [Xit−1zit−1]

E

[
zit−1X̃

′

it

]
E
[
z2it−1

]



(

β − β̂

ρ− ρ̂

)
= 0

which admits a unique solution (β̂, ρ̂) = (β, ρ) as long as the (15 × 15) matrix

 E

[
Xit−1X̃

′

it

]
E [Xit−1zit−1]

E

[
zit−1X̃′

it

]
E

[
z2it−1

]
,



 is invertible. We conclude that the GMM estimator is locally iden-

tified and consistent.

B.3 Calibration Appendix

Table A2: Market Share and Market Share Volatility

Dependent Variable σgs
i

kit σgs
t

ki

Coefficient (1) (2)

skit -0.536
(0.001)

ski -0.839
(0.026)

Constant 0.274 0.271
(0.000) (0.000)

Observations 9,358,228 833,285

NOTE: σgs
i

kit is, for a firm i in sector k at time t, the standard deviation of the growth rate of market share across firm in

the same market share percentile. σgs
t

ki is the standard deviation of the growth rate of market share of firm i in sector

k across time. Column (1) gives the regression of σgs
i

kit on market share of firm i at time t, skit. Column (2) gives the

regression of σgs
t

ki on average market share of firm i across time, ski.
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C Robustness Empirical Results

In this appendix, we discuss further robustness exercises. We consider the following variations

of our baseline choices: using accounting (Lerner index) markups (section C.1), restricting the

sample to the period covered by price data (section C.2), alternative outlier treatment (section

C.3), computing markups using revenue data only (section C.4), estimating production func-

tions for single product firms (section C.5), restricting the sample to the estimation sample

(section C.6) and focusing on manufacturing firms (section C.7).

The empirical results for these robustness exercises are collected in Table A3, which display

around 96 estimated coefficients. For convenience, column (1) displays the baseline results.

C.1 Accounting markup (Lerner Index)

Our baseline estimates and several of our robustness checks are based on the production func-

tion approach to recover markups, as described in section 3.2 and appendix B.2. In this robust-

ness exercise, we instead compute markups using the “accounting approach” which consists of

measuring accounting profits which, under constant return to scale and suitably normalized,

will be equal to firm-level markup.

Specifically, we compute the Lerner index of firm i at time t as Lernerit ≡
PitYit−TCit

PitYit
where TCit

is the total cost measured as the sum of labor, capital, material and service expenditures, and

PitYit is the total revenue of the firm i at time t.A60 Assuming that TCit is correctly measuring the

total cost incurred by the firms, and constant return to scale, that is MCit = TCit/Yit, implies

that the Lerner index is equal to the price-cost margin Lernerit =
Pit−

TCit

Yit

Pit
= Pit−MCit

Pit
. This

“price-cost margin” measure is then transformed into a measure of markup by taking µLerner
it =

(1− Lernerit)
−1, i.e. the inverse ratio of total cost to revenue µLerner

it = PitYit

TCit
.

The results of this exercise are collected in the column “Lerner” of Table A3. All the results are

qualitatively the same as in our baseline sepecification: the sign and significance of coefficients

are identical across columns (1) and (2). This confirms that our empirical results and analysis

are robust this alternative measure of markup based on the “accounting approach”.

C.2 Period 2009-2019

In this robustness exercise, we restrict our sample to the period 2009-2019. Recall that the

sub-sample used to estimate the production function elasticity starts only in 2009 as firm-level

quantities and prices are not available for earlier years. In our baseline, in order to maximize

the sample of markups available for our exercises, we assumed that the estimated production

A60The expenditure on capital is computed assuming capital return net of depreciation of 4%. Here we abstract
from risk or sector heterogeneity in depreciation rate.
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Table A3: Robustness Table

(1) (2) (3) (4) (5) (6) (7) (8)
Baseline Lerner 2009-2019 Winsorized Revenue Single-Product Estimation Manufacturing

at 1% Sample

Firm-Level Markup and Market Share

First-Diff. −0.268
(0.092)

−0.961
(0.073)

−0.459
(0.175)

−0.350
(0.151)

−0.818
(0.068)

−0.121
(0.056)

−0.063
(0.030)

−0.223
(0.065)

Sector-Level Markup and HHI

First-Diff. −0.354
(0.172)

−0.093
(0.047)

−0.199
(0.361)

−0.467
(0.190)

−0.0679
(0.121)

−0.347
(0.133)

−0.127
(0.081)

−0.096
(0.172)

Within Contribution to Sector Markup Change
Median 0.530 0.863 0.598 0.542 0.689 0.525 0.600 0.676
Standard Deviation 0.299 0.172 0.345 0.290 0.276 0.296 0.341 0.270

Firm-Level Markup and Sector Output

∆Ykt
−0.024
(0.009)

0.033
(0.004)

0.021
(0.012)

−0.021
(0.010)

0.019
(0.004)

0.006
(0.006)

0.001
(0.005)

0.012
(0.011)

∆Ykt ∗ skit
0.280
(0.041)

0.127
(0.030)

−0.002
(0.096)

0.355
(0.050)

0.152
(0.029)

0.226
(0.034)

0.067
(0.043)

0.145
(0.055)

Firm-Level Market Share and Sector Output

All firms −0.488
(0.018)

−0.484
(0.018)

−0.507
(0.022)

−0.520
(0.019)

−0.487
(0.018)

−0.503
(0.022)

−0.501
(0.035)

−0.507
(0.018)

skit < 0.5 −0.489
(0.018)

−0.485
(0.018)

−0.507
(0.022)

−0.521
(0.019)

−0.488
(0.018)

−0.504
(0.022)

−0.504
(0.035)

−0.508
(0.018)

skit > 0.5 0.091
(0.037)

0.022
(0.059)

0.103
(0.020)

0.093
(0.038)

0.048
(0.051)

0.094
(0.033)

−0.214
(0.022)

−0.006
(051)

Sector-Level Markup and Sector Output

∆Ykt
0.248

(0.0645)
0.0788
(0.014)

0.176
(0.094)

0.254
(0.060)

0.119
(0.048)

0.227
(0.062)

0.135
(0.067)

0.226
(0.089)

Sector-Level HHI and Sector Output

∆Ykt
0.332
(0.067)

0.317
(0.067)

0.385
(0.072)

0.332
(0.067)

0.317
(0.067)

0.338
(0.071)

0.008
(0.044)

0.298
(0.093)

Sector-Level Markup and Aggregate Output

∆Yt
−0.371
(0.176)

0.019
(0.013)

−0.059
(0.252)

−0.400
(0.194)

−0.243
(0.047)

−0.149
(0.097)

0.105
(0.077)

−0.061
(0.230)

NOTE: This table reproduces our baseline estimates for various robustness checks. Column (1) collects our baseline estimates discussed in the main text (in the

same order as they appear: Tables 3, 5, section 4.1.2, Tables 6, 7, 8, 9 and 10. Each other column represents a robustness exercise described in this appendix.

Specifically, column (2) is discussed in appendix C.1, column (3) in C.2, column (4) in C.3, column (5) in C.4, column (6) in C.5, column (7) in C.6 and column (8) in

C.7.
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functions are stable and extend to the earlier period 1994-2009. This exercise addresses the

concern that this assumption maybe driving our results. The results of our empirical exerci-

ces are collected in the column “2009-2019” of Table A3. The results are qualitatively similar

to our baseline specification. However, the coefficient of the regression of sector markup on

sector level concentration is no longer significant (though the point estimate is still negative),

likely due to the lower number of observations in our sector panel in this significantly shorter

subsample.

C.3 Outlier treatment

In this robustness exercise, we deploy a different outlier treatment relative to our baseline.

Specifically, in our baseline specification we winsorize the firm-level markup distribution at

the 3% level while in column “Winsorize at 1%” we report results for a winsorization at the 1%

level. We also have explored 2% and 5% levels of winsorization. The results are barely affected

by these alternative outliers treatments.

C.4 Revenue Markup

In this robustness exercise, we run our empirical specification on markups calculated with out-

put elasticities estimated without price or quantity data. This exercise has two purposes. First,

revenue markups obviate the need for quantity measurement or correct for quality differences,

for example, and are widely used in the literature. Second, following the conclusions of De Rid-

der et al. (2022), revenue-based markups should include information about the true quantity

markup. In particular, note that this revenue-based markup and our baseline quantity-based

markup have a correlation at 0.3 in log-levels and 0.4 in growth rate.The results for this markup

specification are collected in the column (5) “Revenue” of Table A3. Again, the results are qual-

itatively similar to in our baseline specification in column (1). However, two coefficients switch

statistical significance relative to the baseline: the sector markup-concentration relationship

loses significance while the sector markup on aggregate output gains significance.

C.5 Single Product firms

The price data from the EAP database, as described in section 3.1, gives quantity and revenue

information at the product level that we then aggregate at the firm-level. One source of con-

cern is that the aggregation process from product to firms – in an environment where large

firms tend to produce several products – maybe driving our results.. In this robustness exer-

cise, we restrict the estimation sample on single-product firms to address this concern. Results

are collected in the column “ Single-Product” of Table A3 and are similar to the baseline esti-
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mates even if the sample of firms used to estimate the production function drops to 117,737

observations.

C.6 Estimation Sample

In this robustness exercise, we focus on the estimation sample only. Specifically, each regres-

sion and aggregation from firm to sector-level is carried out on the same sample used to esti-

mate the production function, that is, over only 220,733 observations on the period 2009-2019.

Relative to our first robustness exercise above, note that we now also lose a large number of

firms as the EAP estimation sample is only a representative survey for smaller firms. The re-

sults are collected in the column “Estimation Sample” of Table A3. For this exercise, while we

do obtain similar sign patterns across the different regressions, the statistical significance of

several coefficients is reduced. This is partly due to statistical power - we have a much smaller

sample relative to baseline, both in term of number of periods and in number of observations

- and partly due to measurement error in key covariates - arising from not accounting for the

population of small firms - such as market shares and HHIs.

C.7 Manufacturing firms

In this robustness exercise, we focus on the subset of sectors in manufacturing that is for the

2-digit codes 13, 14, 15 ,16 ,17 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, and 33. Results

are collected in the column “Manufacturing” of Table A3. Results are qualitatively similar, but

since we lose many 5-digits sectors, some of the results lack statistical power, as for instance,

the coefficient of inverse markup on concentration.
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D Additional Figures and Tables

D.1 Inspecting the mechanism

Table A4: Firm Inverse Markup and Market Share: Level

Dependent Variable: µ−1
kit

Coefficient (1) (2) (3) (4) (5) (6)

skit -1.366 -1.382 -1.17 -0.469 -0.508 -0.297

(0.112) (0.113) (0.132) (0.133) (0.137) (0.146)

Year FE N Y N N Y N

Firm FE N N N Y Y Y

Market * Year FE N N Y N N Y

Observations 9,089,750 9,089,750 9,089,750 9,039,476 9,039,476 9,039,476

NOTE: µ−1
kit is the inverse of firm i sector k gross markup in year t, and skit gives the market share of firm i in sector k.

Columns (1)-(4) report empirical estimates for the FICUS-FARE (1995-2016) data. Standard errors (in parentheses)
are clustered at the firm and year level. Inverse markups are winsorized at the 3% level.

Table A5: Market Share and Marginal Cost

Dependent Variable: log skit

Coefficient (1) (2) (3) (4) (5) (6)

logmcit -0.152 -0.153 -0.033 -0.009 -0.009 -0.008

(0.013) (0.013) (0.011) (0.002) (0.002) (0.002)

Year FE N Y N N Y N

Firm FE N N N Y Y Y

Market * Year FE N N Y N N Y

Observations 212,459 212,459 212,459 212,184 212,184 212,184

NOTE: log skit is the (log) firm i sector k market share, and logmcit = log pit − log µkit is the (log) marginal cost
defined as the difference between (log) price and (log) markup of of firm i in sector k at time t. Columns (1)-(4)
report empirical estimates for the estimation sample FARE (2009-2019) data. We drop observations with negative
markup. Standard errors (in parentheses) are clustered at the firm and year level. Variables are winsorized at the 3%
level.
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Table A6: Markup and Marginal Cost

Dependent Variable: log µkit

Coefficient (1) (2) (3) (4) (5) (6)

logmcit -0.169 -0.169 -0.149 -0.093 -0.093 -0.096

(0.007) (0.007) (0.006) (0.007) (0.007) (0.008)

Year FE N Y N N Y N

Firm FE N N N Y Y Y

Market * Year FE N N Y N N Y

Observations 212,459 212,459 212,459 212,184 212,184 212,184

NOTE: log µkit is the (log) firm i sector k gross markup, and logmcit = log pit − log µkit is the (log) marginal cost
defined as the difference between (log) price and (log) markup of of firm i in sector k at time t. Columns (1)-(4)
report empirical estimates for the estimation sample FARE (2009-2019) data. We drop observations with negative
markup. Standard errors (in parentheses) are clustered at the firm and year level. Variables are winsorized at the 3%
level.

Table A7: Sector Inverse Markup and Sector HHI: Level

Dependent Variable: µ−1
kt

Coefficient (1) (2) (3) (4) (5)

HHIkt -1.301 -1.306 -0.185 -0.199 -0.419

(0.175) (0.181) (0.195) (0.193) (0.150)

Year FE N Y N Y N

Sector FE N N Y Y N

Sector (2 Digit) * Year FE N N N N Y

Number of Sectors 275 275 275 275 275

Observations 6,875 6,875 6,875 6,875 6,875

NOTE: µ−1
kt is sector k (inverse) markup in year t, HHIkt is the HHI in sector k. Columns (1)-(4) report empirical

estimates for the FICUS-FARE (1995-2016) data, aggregated to the sector level. Standard errors (in parentheses) are
clustered at the sector and year level.
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D.2 Firm-level evidence

Table A8: Firm Markup and Sector Output

(1) (2) (3) (4)

Data Data Model Model

Dependent variable: log(µkit)

Ŷkt 0.010 -0.001

(0.014)

Ŷkt ∗ skit 0.158 0.190

(0.065)

Ŷ HP
kt -0.022 -0.002

(0.021)

Ŷ HP
kt ∗ skit 0.413 0.425

(0.114)

Firm FE Y Y Y Y

Year FE Y Y Y Y

Number of Obs. 8,361,273 9,039,476 - -

NOTE: µkit is firm i sector k gross markup in year t, skit gives the market share of firm i in sector k, year t. Ŷkt

(resp. Ŷ HP
kt ) is (log) value-added of sector k at time t detrended following Hamilton (2018) (resp. using a HP-filter).

Columns (1) and (2) report empirical estimates for the FICUS-FARE (1995-2019) data. Standard errors are two-
way clustered at the sector×year level. Columns (3) and (4) report estimates based on model-simulated data. Log
markup are winsorized at the 3% level. Note that the number of observations for the deviation from a Hamilton

(2018) trend is lower, as we lose a few periods due to the filtering.
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Table A9: Firm Market Share and Sector Output

(1) (2) (3) (4) (5) (6)
Data Data Data Model Model Model

(all data) (s̄ki < 0.50) (s̄ki > 0.50) (all data) (s̄ki < 0.50) (s̄ki > 0.50)

Dependent variable: log skit

Ŷkt -0.486 -0.488 0.143 -1.377 -1.381 0.336
(0.027) (0.027) (0.052)

Firm FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Number of Obs. 8,361,273 8,360,864 440 - - -

Dependent variable: log skit

Ŷ HP
kt -0.829 -0.831 0.143 -3.469 -3.477 0.343

(0.046) (0.046) (0.061)

Firm FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Number of Obs. 9,039,476 9,039,036 440 - - -

NOTE: log skit gives the (log) market share of firm i in sector k, year t. Ŷkt (resp. Ŷ HP
kt ) is (log) value-added of sector

k at time t detrended following Hamilton (2018) (resp. using a HP-filter). s̄ki is the average market share of firm i
in market k. Column (1-3) reports empirical estimates for the FICUS-FARE (1995-2019) data. Sectors are defined at
the 5-digit NAF sector classification level. Column (4-6) reports estimates based on model-simulated data. Standard
errors in the data are two-way clustered at the sector×year level. First-difference in log market share are winsorized
at the 3% level. Note that the number of observations for the deviation from a Hamilton (2018) trend is lower, as we
lose a few periods due to the filtering.
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D.3 Sector-Level

Table A10: Sector Markup and Sector Output

(1) (2) (3) (4)

Data Model

Dependent variable: log µkt l̂ogµHP
kt log µkt l̂ogµHP

kt

Ykt 0.134 0.145

(0.040) (0.023)

Ŷ HP
kt 0.250 0.110

(0.065) (0.040)

Sector FE Y Y Y Y

Year FE Y Y Y Y

Number of Sectors 275 275 275 275

Number of Obs. 6,875 6,875 6,875 6,875

NOTE: Regression of sector-level (log) level and HP-trend deviation of markup (log µkt, l̂ogµHP
kt resp.) on sector

value-added (Ykt , Ŷ HP
kt resp.). Column (1-2) reports empirical estimates for the FICUS-FARE (1995-2019) data,

and standard errors (in parentheses) are clustered at the sector level. Columns (3-4) reports estimates based on
model-simulated data. The point estimate for this column give the median coefficient obtained from running the
reduced-form regression over 5,000 simulated samples, each of the same length (25 years) as the French data. The

standard errors (in parentheses) are computed over the same simulated samples.
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Table A11: Sector Concentration and Sector Output

(1) (2) (3) (4)

Data Data Model Model

Dependent variable: logHHIkt l̂ogHHIHP
kt logHHIkt l̂ogHHIHP

kt

Ykt 0.094 1.258

(0.046) (0.292)

Ŷ HP
kt 0.330 0.554

(0.064) (0.241)

Sector FE Y Y Y Y

Year FE Y Y Y Y

Number of Sectors 275 275 275 275

Number of Obs. 6,875 6,325 6,875 6,325

NOTE: Regression of sector-level (log markup on sector (log) value-added in level and HP-trend deviation (

logHHIkt, Ykt and l̂ogHHIHP
kt , Ŷ HP

kt resp.). Column (1-2) reports empirical estimates for the FICUS-FARE (1995-

2019) data, and standard errors (in parentheses) are clustered at the sector level. Columns (3-4) reports estimates
based on model-simulated data. The point estimate for this column give the median coefficient obtained from run-
ning the reduced-form regression over 5,000 simulated samples, each of the same length (25 years) as the French
data. The standard errors (in parentheses) are computed over the same simulated samples.

Table A12: Sector Markup and Aggregate Output

(1) (2) (3)

Data Model Model

without Aggr. Shocks without Aggr. Shocks with Aggr. Shocks

Dependent variable: l̂ogµHP
kt l̂ogµHP

kt l̂ogµHP
kt

Ŷ HP
t -0.371 0.165 0.015

(0.227) (0.108) (0.044)

Share negative coefficients - 0.02 0.20

Sector FE Y Y Y

Number of Sectors 275 275 275

Number of Obs. 6,875 6,875 6,875

NOTE: Regression of sector k’s markup in year t in HP trend deviation l̂ogµHP
kt on (log) aggregate real value-added in

year t in HP trend deviation Ŷ HP
t . Columns (1) report empirical estimates for the FICUS-FARE (1995-2019) data.

Standard errors (in parentheses) are clustered at the year level. Columns (2) report estimates based on model-

simulated data. Point estimates for this column give the median coefficient obtained from running the reduced-

form regression over 5,000 simulated samples, each of the same length (25 years) as the French data. The stan-

dard errors (in parentheses) are computed over the same samples. Column (3) reports estimates based on model-

simulated data with aggregate TFP shocks. Point estimates and standard deviation for this column is computed as

for columns (2). The volatility of the serially uncorrelated aggregate TFP shocks is calibrated to match the aggregate

volatility of aggregate output measured in deviation from HP trend in France. Regression are weighted by average

sector value-added.
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D.4 Aggregate-level

Table A13: Aggregate Markup and Aggregate Output

(1) (2) (3)

Data Model Model with Aggr. Shock

σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y )

Ŷ HP
t 1.81 1 1 0.54 1 1 1.81 1 1

µ̂HP
t 1.39 0.76 0.08 0.19 0.36 0.90 0.24 0.13 0.38

NOTE: The table reports standard deviations, σx, relative standard deviations, σx/σY , and time-series correlations,

ρ(x, Y ), for aggregate output Ŷ HP
t and aggregate markup µ̂HP

t in deviations from their HP trend. Column (1) reports
empirical estimates for the FICUS-FARE (1995-2019) data. Column (2) reports the median over 5,000 independent
simulated samples, each of 25 years. Column (3) reports the average over 5,000 simulated samples of 25 years from
a model with aggregate TFP shocks. The volatility of the serially uncorrelated aggregate TFP shocks is calibrated to
match the aggregate volatility of aggregate output measured in deviation from HP trend in France.

Panel A: Correlation Panel B: Ratio of standard deviations

Figure A1: Histogram of Correlation and Relative Standard Deviations of Aggregate Markups

and Output in Model-Simulated Data

NOTE: Kernel density of ρ(∆µt,∆Yt), the correlation coefficient between aggregate markups and aggregate out-
put, and σ(∆µt)/σ(∆Yt), the ratio of standard deviation of aggregate markups and aggregate output, on model-
simulated data based on 5,000 repetitions of 25 period samples. Vertical redlines show the empirical estimates.
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E Alternative Calibration Results

In this section, we reproduce the quantitative results for various alternative calibration of the

preference parameters ε. For each calibration, we choose the remaining parameters to match

the same targets of Table 1 as in our baseline calibration with ε = 5.

Table A14: Firm Markup and Sector Output

(1) (2) (3) (4) (5) (6) (7) (8)
(σ = 2.01 and ε = 7) (σ = 1.92 and ε = 6) (σ = 1.80 and ε = 5) (σ = 1.66 and ε = 4)

Dependent variable: log(µkit) ∆log(µkit) log(µkit) ∆log(µkit) log(µkit) ∆log(µkit) log(µkit) ∆log(µkit)

Ykt -0.001 -0.001 -0.001 -0.001

Ykt ∗ skit 0.272 0.236 0.265 0.264

∆Ykt -0.001 -0.001 -0.001 -0.001

∆Ykt ∗ skit 0.281 0.227 0.247 0.248

Firm FE Y N Y N Y N Y N
Year FE Y N Y N Y N Y N

NOTE: µkit is firm i sector k gross markup in year t, skit gives the market share of firm i in sector k, year t and Ykt

sector k’s (log) value-added in year t. ∆log(µkit) is the first-difference of (log) gross markup in year t for firm i sector

k , skit gives the market share of firm i in sector k, year t and ∆Ykt is the first-difference of sector k (log) value-added
in year t. All columns report estimates based on model-simulated data for various choices of elasticities σ and ε.
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Table A15: Firm Market Share and Sector Output

(1) (2) (3) (4)
(σ = 2.01 and ε = 7) (σ = 1.92 and ε = 6) (σ = 1.8 and ε = 5) (σ = 1.66 and ε = 4)
all small large all small large all small large all small large

Dep. var. log skit

Ykt -3.404 -3.419 0.583 -2.890 -2.900 0.273 -2.613 -2.621 0.535 -1.977 -1.979 0.146

Firm FE Y Y Y Y Y Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y Y Y Y Y Y

Dep. var. ∆log skit

∆Ykt -3.404 -3.412 0.355 -2.925 -2.932 0.253 -2.585 -2.591 0.274 -1.952 -1.956 0.283

Firm FE N N N N N N N N N N N N
Year FE N N N N N N N N N N N N

NOTE: skit gives the market share of firm i in sector k, year t, and Ykt is the deviation of sector k (log) value-added
in year t from its mean. ∆logskit gives the first-difference of (log) market share of firm i in sector k, year t, and ∆Ykt

is the first-difference of sector k (log) value-added in year t. s̄ki is the average market share of firm i in market k. All
columns report estimates based on model-simulated data for various choices of elasticities σ and ε.

Table A16: Sector Markup and Sector Output

(1) (2) (3) (4) (5) (6) (7) (8)
(σ = 2.01 and ε = 7) (σ = 1.92 and ε = 6) (σ = 1.8 and ε = 5) (σ = 1.66 and ε = 4)

Dependent variable: ∆ log µkt l̂ogµkt ∆ log µkt l̂ogµkt ∆ logµkt l̂ogµkt ∆ log µkt l̂ogµkt

∆Ykt 0.091 0.105 0.110 0.103
(0.035) (0.041) (0.040) (0.046)

Ŷkt 0.096 0.110 0.117 0.120
(0.032) (0.037) (0.035) (0.039)

Sector FE Y Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y Y

Number of Sectors 275 275 275 275 275 275 275 275
Number of Obs. 6,875 6,325 6,875 6,325 6,875 6,325 6,875 6,325

NOTE: Regression of sector-level (log) change (columns 1, 3, 5 and 7), and Hamilton (2018) trend deviation of markup

(columns 2, 4, 6 and 8), (∆ log µkt, l̂ogµkt resp.) on sector value-added (∆Ykt, Ŷkt resp.). All columns report estimates
based on model-simulated data for various choices of elasticities σ and ε. The point estimates for these column give

the median coefficient obtained from running the reduced-form regression over 5,000 simulated samples, each of
the same length (25 years) as the French data. The standard errors (in parentheses) are computed over the same
simulated samples.
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Table A17: Sector Concentration and Sector Output

(1) (2) (3) (4) (5) (6) (7) (8)
(σ = 2.01 and ε = 7) (σ = 1.92 and ε = 6) (σ = 1.8 and ε = 5) (σ = 1.66 and ε = 4)

Dependent variable: ∆ logHHIkt l̂ogHHIkt ∆ logHHIkt l̂ogHHIkt ∆ logHHIkt l̂ogHHIkt ∆ logHHIkt l̂ogHHIkt

∆Ykt 0.431 0.455 0.533 0.548
(0.193) (0.213) (0.235) (0.346)

Ŷkt 0.530 0.565 0.726 0.737
(0.214) (0.259) (0.288) (0.356)

Sector FE Y Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y Y

Number of Sectors 275 275 275 275 275 275 275 275
Number of Obs. 6,875 6,325 6,875 6,325 6,875 6,325 6,875 6,325

NOTE: Regression of sector-level (log) change (columns 1, 3, 5 and 7), and Hamilton (2018) trend deviation of HHI

(columns 2, 4, 6 and 8), (∆ logHHIkt, l̂ogHHIkt resp.) on sector value-added (∆Ykt, Ŷkt resp.). All columns report
estimates based on model-simulated data for various choices of elasticities σ and ε. The point estimates for these
column give the median coefficient obtained from running the reduced-form regression over 5,000 simulated sam-
ples, each of the same length (25 years) as the French data. The standard errors (in parentheses) are computed over
the same simulated samples.

Table A18: Sector Markup and Aggregate Output

(1) (2) (3) (4) (5) (6) (7) (8)
(σ = 2.01 and ε = 7) (σ = 1.92 and ε = 6) (σ = 1.8 and ε = 5) (σ = 1.66 and ε = 4)

Dependent variable: ∆ log µkt l̂ogµkt ∆ log µkt l̂ogµkt ∆ logµkt l̂ogµkt ∆ log µkt l̂ogµkt

∆Yt 0.140 0.138 0.165 0.169
(0.104) (0.102) (0.101) (0.095)

Ŷt 0.144 0.146 0.169 0.171
(0.107) (0.106) (0.119) (0.099)

Sector FE Y Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y Y

Number of Sectors 275 275 275 275 275 275 275 275
Number of Obs. 6,875 6,325 6,875 6,325 6,875 6,325 6,875 6,325

NOTE: Regression of sector k’s markup in year t in first-differences (∆ log µkt, in columns 1, 3, 5 and 7) and Hamilton

(2018) trend deviation (l̂ogµkt, in columns 2, 4, 6 and 8+) on (log) aggregate real value-added in year t in either

first-differences or Hamilton (2018) trend deviation ( ∆Yt and Ŷt, resp.). All columns report estimates based on

model-simulated data for various choices of elasticities σ and ε. Point estimates for this column give the median

coefficient obtained from running the reduced-form regression over 5,000 simulated samples, each of the same

length (25 years) as the French data. The standard errors (in parentheses) are computed over the same simulated

samples.
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Table A19: Sector Markup and Aggregate Output with Aggregate Shocks

(1) (2) (3) (4) (5) (6) (7) (8)
(σ = 2.01 and ε = 7) (σ = 1.92 and ε = 6) (σ = 1.8 and ε = 5) (σ = 1.66 and ε = 4)

Dependent variable: ∆ log µkt l̂ogµkt ∆ log µkt l̂ogµkt ∆ logµkt l̂ogµkt ∆ log µkt l̂ogµkt

∆Yt 0.005 0.006 0.008 0.012
(0.012) (0.022) (0.042) (0.035)

Ŷt 0.010 0.010 0.017 0.022
(0.016) (0.027) (0.044) (0.036)

Sector FE Y Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y Y

Number of Sectors 275 275 275 275 275 275 275 275
Number of Obs. 6,875 6,325 6,875 6,325 6,875 6,325 6,875 6,325

NOTE: Regression of sector k’s markup in year t in first-differences (∆ log µkt, in columns 1, 3, 5 and 7) and Hamilton

(2018) trend deviation (l̂ogµkt, in columns 2, 4, 6 and 8+) on (log) aggregate real value-added in year t in either

first-differences or Hamilton (2018) trend deviation ( ∆Yt and Ŷt, resp.). All columns report estimates based on

model-simulated data for various choices of elasticities σ and ε. Point estimates for this column give the median

coefficient obtained from running the reduced-form regression over 5,000 simulated samples, each of the same

length (25 years) with aggregate productivity shocks chosen to match the aggregate volatility of output in the French

data. The standard errors (in parentheses) are computed over the same simulated samples.

Table A20: Aggregate Markup and Aggregate Output

(1) (2) (3) (4)
(σ = 2.01 and ε = 7) (σ = 1.92 and ε = 6) (σ = 1.8 and ε = 5) (σ = 1.66 and ε = 4)

σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y )

Ŷt 0.71 1 1 0.77 1 1 0.83 1 1 1.04 1 1

µ̂t 0.25 0.35 0.93 0.30 0.39 0.93 0.30 0.36 0.91 0.36 0.35 0.90

∆Ŷt 0.63 1 1 0.64 1 1 0.69 1 1 0.86 1 1

∆µt 0.21 0.33 0.95 0.24 0.38 0.94 0.25 0.36 0.91 0.30 0.35 0.91

NOTE: The table reports standard deviations, σx, relative standard deviations, σx/σY , and time-series correlations,

ρ(x, Y ), for deviations from trend computed as in Hamilton (2018) of (log) aggregate output Ŷt and (log) aggregate
markup µ̂t, and, for log first-difference of aggregate output ∆Yt and aggregate markup ∆µt. Column (1-4) reports

the median over 5,000 simulated samples of 25 years for each alternative calibration.
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Table A21: Aggregate Markup and Aggregate Output with Aggregate Shocks

(1) (2) (3) (4)
(σ = 2.01 and ε = 7) (σ = 1.92 and ε = 6) (σ = 1.8 and ε = 5) (σ = 1.66 and ε = 4)

σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y )

Ŷt 3.16 1 1 3.16 1 1 3.16 1 1 3.16 1 1

µ̂t 0.25 0.08 0.25 0.25 0.08 0.22 0.30 0.09 0.29 0.36 0.11 0.35

∆Ŷt 3.28 1 1 3.28 1 1 3.28 1 1 3.28 1 1

∆µt 0.21 0.06 0.21 0.25 0.08 0.22 0.26 0.08 0.27 0.30 0.09 0.29

NOTE: The table reports standard deviations, σx, relative standard deviations, σx/σY , and time-series correlations,

ρ(x, Y ), for deviations from trend computed as in Hamilton (2018) of (log) aggregate output Ŷt and (log) aggregate
markup µ̂t, and, for log first-difference of aggregate output ∆Yt and aggregate markup ∆µt. Column (1-4) reports
the median over 5,000 simulated samples of 25 years for each alternative calibration with aggregate productivity
shocks chosen to match the aggregate volatility of output in the French data.
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