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by allowing conditional heteroskedasticity in the variance of volatility process. We
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ity simultaneously in this simple setting. The volatility forecast function follows

a second-order difference equation as opposed to first-order under GARCH(1,1)

and RT-GARCH(1,1). Empirical studies confirm the presence of conditional het-

eroskedasticity in the volatility process and the standardised residuals of return are
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1 Introduction

Volatility modelling is important in many areas of finance and economics from risk man-

agement to derivative pricing and asset allocation. There are two main approaches in

volatility modelling: GARCH and its various extensions and hybrid models (Engle (1982),

Bollerslev (1986), Nelson (1991), Glosten et al. (1986), Hansen et al. (2012), among oth-

ers) regard volatility as determined solely by past information and share the same source

of uncertainty with return process (see Francq and Zaköıan (2010) for an overview of

GARCH models). On the other hand, stochastic volatility (SV) models (Heston (1993),

Fong and Vasicek (1991), Longstaff and Schwartz (1992), among others) regard volatil-

ity as a latent variable driven by a different innovation term (see Shepherd (2005) for

an overview of discrete and continuous time SV models). The main difference between

GARCH and SV models lies in their information set, that is, whether the current infor-

mation is incorporated in the volatility process. Nelson’s (1990) diffusion approximation

theorem links these two approaches when the sampling interval is increasing finer. Duan

(1997) extends the theorem to include a wide class of popular GARCH-type models.

In discrete time, Smetanina (2017) attempts to link these two approaches by propos-

ing a hybrid model called the Real-time GARCH (RT-GARCH), which incorporate the

current return innovation in the volatility process. Specifically,

σ2
t = α+ βσ2

t−1 + γr2
t−1 + ψε2t , (1.1)

where εt ≡ rt/σt are i.i.d. random variables symmetric around zero with the first two

moments equal to 0 and 1, respectively and Eε4 < ∞.1 The process σ2
t is no longer

the conditional variance of return process since it is not Ft−1−measurable, where Ft−1

is the σ− algebra generated by r0, ..., rt−1. RT-GARCH is closely related to Breitung

and Hafner (2016), who include the current return innovation in the log volatility process.

Ding (2020) derives the diffusion limit of RT-GARCH and show the enlarged RT-GARCH

converges weakly to a bivariate Ornstein-Uhlenbeck process with an auxiliary process.

The aim of RT-GARCH model is to make efficient use of all internal information

(Smetanina, 2017). However, the volatility process under RT-GARCH has a constant

conditional variance which casts doubt on the efficiency. Time-varying volatility of volatil-

ity has long been considered as an important risk factor. Corsi and Mittnik (2008) and

Bollerslev et al. (2009) have noted the volatility clustering of realised volatility (RV) and

incorporate a GARCH type specification in the conditional variance of RV. Moreover, the

Chicago Board Options Exchange (CBOE) has been publishing the implied volatility of

VIX index (VVIX) since 2012. VVIX index is essentially the risk neutral expectation of

the volatility of volatility of S&P 500 index options. Park (2015) argues that VVIX is

1The zero third moment assumption is to ensure the return process is a martingale difference sequence
and the existence of fourth moment is needed for covariance stationarity as well as valid forecast, see
Smetanina (2017).
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a better ‘tail risk indicator’ than other existing measures. It is therefore, important to

incorporate the volatility of volatility in existing volatility models.

In this paper, we propose an RT-GARCH-type model that jointly models the volatility

and volatility of volatility while retaining the simple QML estimation framework. We call

this model augmented RT-GARCH model. In this model, the volatility process, σ2
t , has a

time-varying conditional variance which is a quadratic function of lagged volatility. This

can be related to the asymptotic variance of RV which is proportional to the integrated

quarticity (IQ),
∫ t
t−1

σ4
sds. Since RV is a noisy estimate of σ2

t , this specification of volatility

of volatility can be viewed as an approximation of IQ.

The volatility forecast function under the augmented RT-GARCH follows a second-

order difference equation in contrast to first-order difference equation under RT-GARCH

and GARCH models. This comes from the feedback of volatility of volatility on the

squared return. In the empirical studies, we show that the new model produces not

only a better fit of standardised return residuals, but also more accurate out-of-sample

volatility forecasts over GARCH and RT-GARCH models.

The remainder of the paper is structured as follows. In section 2 we introduce the

augmented RT-GARCH model. In section 3 we provide some statistical properties of

augmented RT-GARCH. Section 4 presents the empirical analysis including in-sample

goodness-of-fit and out-of-sample forecasts. Section 5 concludes. All proofs are included

in appendix A and additional figures are in appendix B.

2 Augmented RT-GARCH

2.1 Main model

We present the general model with leverage effects in the fashion of GJR-GARCH. Specif-

ically, the joint process (rt, σ
2
t ) satisfies

rt = σtεt, (2.1)

σ2
t = α+ βσ2

t−1 + γr2
t−1+φ(r−t−1)2 + (ψ1 + ψ2σ

2
t−1)ε2t + η(ε−t )2, (2.2)

where εt satisfy the same conditions as in (1.1) and x− = min(0, x). To ensure σ2
t > 0

with probability one, we require the parameter vector (α, β, γ, φ, ψ1, ψ2, η)
′ ≥ 0 with at

least one of the inequalities being strictly larger. Since the leverage effects come from

both current and lagged negative returns. We call this full specification the augmented

RT-GJR-GARCH with feedback and write as ART-GJR-GARCH-F(1,1,1). We call the

model with leverage effect only from the current negative return, i.e., φ = 0, ART-GJR-

GARCH(1,1,1) and the symmetric model, ART-GARCH(1,1,1) with φ = η = 0. The

numbers inside the bracket correspond to the numbers of lags of σ2
t and r2

t included in

the autoregressive and variance terms. (2.1) - (2.2) nest Smetanina’s (2017) RT-GARCH
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by setting ψ2 = φ = η = 0, which nests GARCH model with ψ1 = 0. In what follows we

will call the three variants of (2.1) - (2.2) the class of ART-GARCH models.

The reasons for choosing this particular specification are as follows: First, it allows

us to model the volatility and volatility of volatility simultaneously. To see this, we can

express (2.2) as an AR(1) process with stochastic coefficient,

σ2
t = Φ0 + Φ1,t−1σ

2
t−1 + zt, (2.3)

where

Φ0 = α+ ψ1 + 1
2η, (2.4)

Φ1,t−1 = β + ψ2 + γε2t−1 + φ(ε−t−1)2, (2.5)

and

zt = (ψ1 + ψ2σ
2
t−1)(ε2t − 1) + η

(
(ε−t )2 − 1

2

)
(2.6)

is a martingale difference sequence (MDS) with conditional variance

E[z2
t |Ft−1] = κ(ψ1 + ψ2σ

2
t−1)2 + κη(ψ1 + ψ2σ

2
t−1) + (1

2κ+ 1
4)η2, (2.7)

where κ = Eε4t − 1. By definition, the RHS of (2.7) is the conditional variance of σ2
t

at time t − 1. We call E[z2
t |Ft−1] the pseudo-latent variable in ART-GARCH models.

This is because although stochastic, it is a quadratic function of the volatility and only

one filter is needed to estimate both the volatility and volatility of volatility from the

observed return process. Note the specification (2.3) is not final since Φ1,t and σ2
t are

not independent and thus, we can not forecast σ2
t+n for n > 1 directly. We present the

final expression of σ2
t and r2

t as an ARMA process in section 3. Finally, Nelson (1992)

argues the GARCH filter works in a similar way as RV for high frequency data. Since the

asymptotic variance of RV is proportional to IQ (see for example Barndorff-Nielsen and

Shephard (2003)), that is, ∑[t/h]
k=1 r

2
kh −

∫ t
0 σ

2
sds√

2h
∫ t

0 σ
4
sds

d−−→ N(0, 1), (2.8)

as h ↓ 0 for kh ≤ t < (k + 1)h, where [x] denotes the largest integral part less than

or equal to x. Since E[σ2
t |Ft−1] is a quadratic function of σ2

t−1, (2.7) can be viewed as a

polynomial approximation of IQ. We can formally test the hypothesis against the presence

of conditional heteroskedasticity in the variance of volatility process, i.e. H0 : ψ2 = 0

against H1 : ψ2 > 0. This can be done once we derive the quasi-likelihood function of

ART-GARCH from which we can construct the quasi-likelihood ratio (QLR) statistics.

To include multiple lags, we can consider the ART-GJR-GARCH-F(p, q, l):

σ2
t = α+

p∑
j=1

βjσ
2
t−j +

q∑
j=1

(
γj + φjIt−j)r

2
t−j + ε2t

l∑
j=1

(
ψ1 + ψj+1σ

2
t−j + ηIt

)
, (2.9)
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where It = 1(rt<0) and 1(·) is the indicator function. For the rest of the paper, we only

consider the class of ART-GARCH(1,1,1) models.

2.2 Comparison to other volatility models

ART-GARCH models, similar to RT-GARCH, assign time-varying albeit different weights

to past squared returns. Specifically, it can be shown that (2.2) can be approximately

expressed as

σ2
t ≈

α

1− β
+

(at−1 + ηIt)r
2
t

bt−1
+

∞∑
j=1

(
βj
at−1−j + ηIt−j

bt−1−j
+ βj−1(γ + φIt−j)

)
r2
t−j , (2.10)

using a first order Taylor expansion, where

at−1 = ψ1 + ψ2σ
2
t−1, (2.11)

bt−1 = α+ βσ2
t−1 + γr2

t−1 + φ(r−t−1)2, (2.12)

The weights on past squared returns, (at−1−j + ηIt−j)/bt−1−j, are more flexible then those

of RT-GARCH, (ψ1+ηIt−j)/bt−1−j. To see how this flexibility affects the volatility process,

we can regard bt−1−j as the predictable part of σ2
t since it is Ft−1−j−measurable while

at−1−j + ηIt−j can be seen as the uncertainty part since they are the coefficients of εt−j.

Both parts are time-varying and depend on lagged volatility whereas in RT-GARCH

the uncertainty part is a constant. The ratio of these terms can be interpreted as how

surprising the new observation is relative to the predictable part. The weights in (2.10)

are then the standard GARCH weights adjusted by these surprising factors.

We next consider the news impact curve as defined in Engle and Ng (1993). For

ART-GARCH (2.1) - (2.2), the news impact curve is given by

E[r2
t+1|Ft] = ᾱ+ 1

2 β̄
(
b̄+

√
b̄2 + 4ār2

t + 4η(r−t )2
)

+ γr2
t + φ(r−t )2, (2.13)

where we have taken εt ∼ N(0, 1), ᾱ = α+3(ψ1 +1/2η1), β̄ = β+3ψ2, b̄ = α+βσ̄2 +γr̄2 +

φr̄−2 and ā = ψ1 + ψ2σ̄2 with σ̄2, r̄2 and r̄−2 being the unconditional levels of σ2
t , r

2
t and

(r−t )2 whose exact expressions are given in (3.5), (3.6) and (3.7) in section 3, respectively.

To see how the conditional variance responds to different values of rt in our model, we

plot the news impact curves in Figure 1 for all variants of ART-GARCH models against

the benchmark GARCH, GJR-GARCH and RT-GARCH models. In the upper panel, for

small values of rt, ART-GARCH models respond faster than RT-GARCH and GARCH

models. While for large values of rt, the responses are smaller for ART-GARCH models

as seen in the lower panel of Figure 1. This is a desirable feature since we would like the

volatility to respond quickly to ‘normal’ shocks but downweigh large abnormal shocks.

As Harvey (2013) points out quadratic response does not fit heavy tail distributions since

large shocks are fed substantially into the volatility update and can lead to a lack of
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Figure 1: News impact curves for small and large values of rt. All models’ parameters are
estimated from DJIA index daily returns which can be found in Table 1.

robustness. While still quadratic, the response in our model is substantially smaller for

large values of rt than RT-GARCH and GARCH models. The term at−1ε
2
t + η(ε−t )2 acts

like a scaling factor to downweigh large shocks similar to using the score of conditional

distribution in Harvey’s (2013) DCS model. Note ART-GJR-GARCH model is less prone

to negative shocks than other asymmetric models.

Finally, we compare our model to discrete time SV models. The ART-GARCH models,

like RT-GARCH, are similar to the contemporaneous SV model of Taylor (1994). Both

RT-GARCH and ART-GARCH share the same idea with Breitung and Hafner (2016).

The main difference between them is ART-GARCH includes the current return innovation

directly in the volatility process whereas Breitung and Hafner (2016) do so in the log

volatility specification. SV models are generally more difficult to estimate especially when

the volatility of volatility is also stochastic. ART-GARCH models, on the other hand,

admit analytical form of quasi-likelihood function. Moreover, the conditional variance in

SV models are not typically available in closed form. This makes comparative statistics,

for example, news impact curve, complicated and the computation of the conditional

variance requires numerical methods (Linton, 2019). ART-GARCH models, on the other

hand, do not have these issues.
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3 Properties of ART-GARCH

In this section, we present some statistical properties of ART-GARCH(1,1,1). We first

state the assumption on return innovations εt.

Assumption 1. Let εt be i.i.d. random variables symmetric around zero with Eεt = 0,

Eε2t = 1 and Eε4t <∞.

Let Ft be the σ-algebra generated by r0, ..., rt. We now present the stationarity con-

ditions for rt and σ2
t .

Theorem 3.1. Let εt satisfy Assumption 1 and (rt, σ
2
t ) be generated by (2.1) and (2.2).

Let θ = (α, β, γ, φ, ψ1, ψ2, η)
′ ≥ 0 satisfy

E log |β + (γ + ψ2)ε20 + φ(ε−0 )2| < 0, (3.1)

E
(

log |α+ ψ1ε
2
0 + η(ε−0 )2|

)+
<∞, (3.2)

where (x)+ = max(x, 0) and ε0 is the starting point of εt endowed with probability measure

P((σ2
0, ε0) ∈ Γ) = v0(Γ) for any Γ ∈ B(R2), (3.3)

where B(R2) is the Borel sets on R2 and v0

(
(σ2

0, ε0) : 0 < σ2
0 < ∞

)
= 1. Then the joint

process (rt, σ
2
t ) is strictly stationary.

Theorem 3.2. Let εt satisfy Assumption 1 and (rt, σ
2
t ) be generated by (2.1) and (2.2).

If θ = (α, β, γ, φ, ψ1, ψ2, η)
′ ≥ 0 satisfy

β + ψ2 + γ + 1
2φ+ κψ2(γ + 1

2φ) < 1, (3.4)

where κ = Eε4t −1, then the process (rt, σt) is weakly stationary with unconditional second

moment given by

Eσ2
t =

α+ ψ1 + 1
2η + 1

4φηEε
4
t + (γ + 1

2φ)(ψ1 + 1
2η)κ

1−
(
β + ψ2 + γ + 1

2φ+ κψ2(γ + 1
2φ)
) , (3.5)

and

Er2
t =

α+ (ψ1 + 1
2η + 1

4φη)Eε4t + κ
(
αψ2 − β(ψ1 + 1

2η) + 1
4φηψ2Eε4t

)
1−

(
β + ψ2 + γ + 1

2φ+ κψ2(γ + 1
2φ)
) . (3.6)

Moreover,

E(r−t )2 = 1
2Er

2
t + 1

4ηEε
4
t . (3.7)

Remark 1. Since P(rt < 0) = P(rt > 0) = 0.5 because εt is symmetric around zero and

σt > 0 a.s.. rt has negative unconditional mean and skewness from (3.7).

In order to analyse the kurtosis and fourth moment stationarity condition, we need a

stronger assumption on εt.
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Assumption 2. In addition to Assumption 1, let Eε8t <∞.

Theorem 3.3. Let εt satisfy Assumption 2 and (rt, σ
2
t ) be generated by (2.1) and (2.2).

Let θ = (α, β, γ, φ, ψ1, ψ2, η)
′ ≥ 0 satisfy

ξ4 < 1, (3.8)

ξ1 + ξ4−ξ1ξ4 + ξ2ξ3 < 1, (3.9)

where

ξ1 =
(
β2 + ψ2

2u4 + 2βψ2 + (γ2 + 1
2φ

2 + γφ)
(
u4 + ψ2

2(u8 − u2
4) + 2βψ2(u6 − u4)

))
, (3.10)

ξ2 = (2γ + φ)
(
β + ψ2

(
1 + (γ2 + 1

2φ
2 + γφ)(u6 − u4)

))
, (3.11)

ξ3 =
(

1 + ψ2

(
(u6 − u4)ψ2 + 2βκ

))
, (3.12)

ξ4 = ψ2(2γ + φ)κ, (3.13)

with un = Eεnt for n ≥ 1 and κ = u4 − 1. Then the process (rt, σt) is fourth moment stationary.

Remark 2. The exact expressions for Eσ4
t and Er4

t are lengthy and can be found in the

proof of Theorem 3.3 in appendix A. Since all parameters are restricted to be non-negative

and ART-GARCH models nest RT-GARCH and GARCH models, it can be shown that rt

has excess unconditional kurtosis > 0 and ≥ those of GARCH and RT-GARCH.

We next turn to the conditional properties of ART-GARCH models.

Theorem 3.4. Let εt satisfy Assumption 1 and (rt, σ
2
t ) be generated by (2.1) and (2.2).

Let θ = (α, β, γ, φ, ψ1, ψ2, η)
′ ≥ 0. Then the transition density of the return process is

given by

fr(y|Ft−1) =
y

d1(y, σ2
t−1; θ)d2(y, σ2

t−1; θ)
fε
(
d2(y, σ2

t−1; θ)
)
, (3.14)

for y 6= 0, where fε(·) is the probability density function of εt,

d1(y, σ2
t−1; θ) =

√
b2t−1 + 4at−1y2 + 4η(y−)2, (3.15)

and

d2(y, σ2
t−1; θ) =


sign(y)

√
d1(y, σ2

t−1; θ)− bt−1

2at−1 + 2η1(y<0)
, for (ψ1, ψ2, η)

′ 6= 0

y/
√
bt−1, for (ψ1, ψ2, η)

′
= 0

(3.16)

where at−1 and bt−1 are defined in (2.11) and (2.12). For y = 0,

lim
y→0

fr(y|Ft−1) =
1√
bt−1

fε(0). (3.17)

Note at the true parameter vector θ0, εt = d2(rt, σ
2
t−1; θ0). The conditional cumulative

distribution function of return process is given by Fr(y|Ft−1) = Fε
(
d2(y, σ2

t−1; θ)
)
, where

Fε(·) is the cdf of εt.
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Figure 2: Transition densities of ART-GARCH and RT-GARCH models from unconditional
levels. The parameters are estimated from S&P500 index daily returns and reported in Table 1.

Finally, the first-order approximation of the n-th conditional moment of y, for n ∈ Z+,

is given by

E[yn|Ft−1] ≈ bn/2t−1

(
E[d2(y)n] +

nat−1

2bt−1
E[d2(y)n+2] +

nη

2bt−1
E[d2(y)n+2

1(y<0)]
)
, (3.18)

where E[·] on the right hand side is taken w.r.t. εt.

From (3.18), it is clear that rt is not an MDS unless η = 0. Since

E[rt|Ft−1] ≈ η

2
√
bt−1

E(ε−t )3, (3.19)

which is clearly not zero. When εt are i.i.d. Gaussian, (3.19) becomes −η/
√

2πbt−1. If

both MDS and leverage effects are required, we can subtract (3.19) from (2.1) resulting

in a variant of GARCH-in Mean or include only lagged leverage effect. The magnitude of

(3.19) is assumed to be of smaller order, the same reason why GARCH models often ignore

the mean of return series and it is the case from empirical estimates in section 5.2 We

plot the transition densities of ART-GARCH models against RT-GARCH in Figure 2.It

is clear ART-GARCH is able to produce heavier-tails than RT-GARCH which already

has heavier-tails compared to GARCH (Smetanina, 2017). Similar to stochastic volatility

inducing heavy tails, stochastic volatility of volatility also contribute to the tails. The

ART-GJR-GARCH-F is able to produce heavier left tail than RT-GARCH. It is also clear

from Figure 2b that the magnitude of the conditional mean of ART-GJR-GARCH-F is

close to zero.

If Assumption 2 is satisfied, then under ART-GJR-GARCH-F and ART-GJR-GARCH

models, rt has time-varying negative conditional skewness. Under all ART-GARCH mod-

els, rt has time-varying excess conditional kurtosis. Since (3.19) is close to zero, we will

2(3.19) is on average -0.034 compared to 1.312 for the unconditional second moment from S&P 500
estimates.
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ignore the nonzero unconditional mean in order to keep the following expressions neat.

The conditional kurtosis of ART-GARCH is given by

E[r4
t |Ft−1]

E[r2
t |Ft−1]2

=
b2t−1Eε4t + (2at−1 + η)bt−1Eε6t + (a2

t−1 + 1
2η

2 + ηat−1)Eε8t(
bt−1 + (at−1 + 1

2η)Eε4t
)2 , (3.20)

and the first-order approximation of the conditional skewness is given by

E[r3
t |Ft−1]

E[r2
t |Ft−1]3/2

≈
3
2η
√
bt−1E(ε−t )5(

bt−1 + (at−1 + 1
2η)Eε4t

)3/2 , (3.21)

where at−1 and bt−1 are defined in (2.11) and (2.12).

From (3.14) it is clear that all parameters of ART-GARCH models can be uniquely

identified from the likelihood function. We next consider the asymptotic properties of the

QML estimator based on Gaussian specification.

Theorem 3.5. Let εt satisfy Assumption 1 and in addition, Eε6t < ∞. Let (rt, σ
2
t ) be

generated by (2.1) and (2.2). The QML estimator θ̂ of the true parameter θ0 is given by

θ̂ = argmaxθ∈Θ LT (θ), where Lt(θ) is the quasi-log-likelihood function of rt, that is,

LT (θ) =

T∑
t=1

lt(θ), (3.22)

where

lt(θ) = −1

2
log 2π − 1

2
d2(rt, σt−1; θ)2 + log

rt
d1(rt, σt−1; θ)d2(rt, σt−1; θ)

, (3.23)

and d1(rt, σt−1; θ), d2(rt, σt−1; θ) are given in (3.15) and (3.16). Moreover, if θ0 ∈ Θo,

where Θo is the interior of the parameter space Θ. Then,

√
T (θ̂ − θ0)

d−→ N (0, Vθ0), (3.24)

where Vθ0 = Σ−1
2 Σ1Σ−1

2 with

Σ1 = Eθ0
[∂lt(θ0)

∂θ0

∂lt(θ0)

∂θ
′
0

]
and Σ2 = −Eθ0

[∂2lt(θ0)

∂θ0∂θ
′
0

]
. (3.25)

Finally, provided a consistent estimator: V̂θ̂
p−→ Vθ0,

V̂
−1/2

θ̂

√
T (θ̂ − θ0)

d−→ N (0, 1). (3.26)

Theorem 3.5 also enables us to test the presence of conditional heteroskedasticity in

the variance of volatility, i.e. H0 : ψ2 = 0 based on the QLR statistics. Given the non-

negativity constraints on θ0, the QLR statistics is on the boundary of the parameter space.

The asymptotic distribution of the QLR statistics is therefore, nonstandard and requires

corrections of the usual critical values as pointed out by Francq and Zaköıan (2009). Let

θ̂−1 be the restricted (by H0) estimator of θ0, the modified QLR statistics is given by

−2
(
LT (θ̂−1)−LT (θ̂)

)
/κ̂, where κ̂ is a consistent estimator of κ. The modified asymptotic
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level is c/2 for a nominal asymptotic level of c under one restriction. That is, we reject

the null at an asymptotic level c if the QLR statistics is larger than χ2
1,1−2c. See Francq

and Zaköıan (2009) for detailed discussions.

We next discuss volatility forecasts under ART-GARCH models. Unlike GARCH mod-

els, in both RT-GARCH and ART-GARCH models there are two concepts of volatility:

instantaneous volatility σ2
t and conditional variance Var[rt|Ft−1]. Note in the case when

η 6= 0, E[r2
t |Ft−1] is no longer the conditional variance because rt is no longer an MDS.

However, since E[rt|Ft−1] is close to zero by (3.19), E[r2
t |Ft−1] is approximately equal to

Var[rt|Ft−1]. Moreover, E[rt+n|Ft] do not have a closed form for n > 1. Therefore, with a

little abuse of terminologies, we will regard E[r2
t |Ft−1] as the conditional variance and call

σ2
t simply the volatility. Readers should bear in mind that the true conditional variance

is E[
(
rt+n−E[rt+n|Ft]

)2|Ft] ≈ E[r2
t+n|Ft] for all n ≥ 1. The volatility filtering equation is

given by

σ2
t = 1

2bt−1 + 1
2

√
b2t−1 + 4at−1r2

t + 4η(r−t )2. (3.27)

The one-step volatility forecast is given by

E[σ2
t+1|Ft] = α+ ψ1 + 1

2η + (β + ψ2)σ2
t + γr2

t + φ(r−t )2, (3.28)

and the one-step conditional variance forecast is given by

E[r2
t+1|Ft] = α+ (ψ1 + 1

2η)Eε4t +
(
β + ψ2Eε4t

)
σ2
t + γr2

t + φ(r−t )2. (3.29)

The one-step ahead forecast equations are similar to those of RT-GARCH except for

the autoregressive parameter which takes into account the feedback from the volatility

of volatility. The forecast equations start to differ towards multi-step ahead predictions.

Specifically, the two-step ahead forecast function for volatility is given by

E[σ2
t+2|Ft] = α+ ψ1 + 1

2η + 1
4φηEε

4
t + (β + ψ2)E[σ2

t+1|Ft] + (γ + 1
2φ)E[r2

t+1|Ft], (3.30)

and for conditional variance,

E[r2
t+2|Ft] = α+ (ψ1 + 1

2η + 1
4φη)Eε4t +

(
β + ψ2Eε4t

)
E[σ2

t+1|Ft] + (γ + 1
2φ)E[r2

t+1|Ft]. (3.31)

Finally, the multi-period forecasts are given in the following theorem:

Theorem 3.6. Let εt satisfy Assumption 1 and (rt, σ
2
t ) be generated by (2.1) and (2.2).

Then for any n ≥ 3, n ∈ Z+, the n-step volatility forecast is given by

E[σ2
t+n|Ft] = Eσ2

t + Φ1(E[σ2
t+n−1|Ft]− Eσ2

t ) + Φ2(E[σ2
t+n−2|Ft]− Eσ2

t ), (3.32)

where Eσ2
t is given in (3.5), Φ1 = β+γ+ψ2 + 1

2
φ and Φ2 = κψ2(γ+ 1

2
φ) with κ = Eε4t −1.

The initial conditions for (3.32), E[σ2
t+2|Ft] and E[σ2

t+1|Ft], are given in (3.28) and (3.30).

The n-step conditional variance forecast is given by

E[r2
t+n|Ft] = Er2

t + Φ1(E[r2
t+n−1|Ft]− Er2

t ) + Φ2(E[r2
t+n−2|Ft]− Er2

t ), (3.33)

where Er2
t is given in (3.6). The initial conditions for (3.33), E[r2

t+2|Ft] and E[r2
t+1|Ft],

are given in (3.29) and (3.31).

11



Remark 3. Which volatility to use depends on the purposes and what volatility proxy is

used for evaluation. For example, realised measures (RM) are frequently used as volatility

proxies and they are consistent estimators of the integrated volatility (IV),
∫ t
t−1

σ2
sds. In

this case, instantaneous volatility should be used. On the other hand, if we are interested

in the overall fluctuations of future returns, the conditional variance should provide more

insights.

Theorem 3.6 states the forecast function of ART-GARCH models follows a second-

order difference equation with two persistence parameters Φ1 and Φ2. In contrast, under

both RT-GARCH and standard GARCH models the forecast functions are first-order

difference equations. This is because in ART-GARCH models, there is a feedback from

volatility of volatility on the squared return. This is the reason why we say the AR(1)

with stochastic coefficient representation in (2.3) is not final. Indeed, for the symmetric

case, both (r2
t , σ

2
t ) can be expressed as a VARMA(2,1) process. Specifically,r2
t

σ2
t

 =

α+ ψ1Eε4t + κ(αψ2 − βψ1)

α+ ψ1 + κγψ1

+ (β + γ + ψ2)

r2
t−1

σ2
t−1


+ κγψ2

r2
t−2

σ2
t−2

+

1 0

1 1

zt
et

+

 0 γ

κψ2 −β − ψ2

zt−1

et−1

 ,
(3.34)

where zt is defined in (2.6) and

et = r2
t − σ2

t − κ(ψ1 + ψ2σ
2
t−1) (3.35)

is an MDS. See appendix A for the derivation of (3.34).

4 Empirical Analysis

In this section we present some empirical results using daily open-to-close returns of

S&P 500 and Dow Jones Industrial Average (DJIA) indices, JPMorgan Chase (JPM) and

Apple Inc. (AAPL) stock prices and EUR/USD exchange rate. Our purpose is not to

select the best model for volatility modelling but to compared the new model with three

benchmark models: GARCH, GJR-GARCH and RT-GARCH. We use QQ plot compare

the goodness-of-fit. Subsequently we compare the filtered volatility. We also report the

filtered volatility of volatility. Finally, we compare the out-of-sample 1-, 2-, 5-, 10- and

15-step volatility forecasts. We use mean squared error (MSE) which is a robust criterion

in the sense of Patton (2011) for forecast comparison.3 We use both RV and bipower

variation (BPV) as proxies for the true volatility and RQ for the volatility of volatility.

3A robust criterion consistently ranks forecast performance using a variety of volatility proxies as long
as they are consistent estimators of volatility itself.
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Table 1: Parameter estimates of the ART-GARCH models

α β γ ψ1 ψ2 η φ BIC QLR

S&P 500 0.0000
(0.0014)

0.8856
(0.0086)

0.0000
(0.0016)

0.0022
(0.0017)

0.0212
(0.0076)

0.0423
(0.0063)

0.1257
(0.0155)

14214 54.54

0.0000
(0.0019)

0.8807
(0.0100)

0.0332
(0.0108)

0.0000
(0.0018)

0.0454
(0.0108)

0.0593
(0.0082)

- 14315 58.80

0.0000
(0.0024)

0.8810
(0.0100)

0.0201
(0.0112)

0.0097
(0.0033)

0.0872
(0.0136)

- - 14424 37.33

DJIA 0.0000
(0.0009)

0.8886
(0.0082)

0.0000
(0.0009)

0.0027
(0.0013)

0.0289
(0.0068)

0.0358
(0.0057)

0.1112
(0.0137)

13956 44.59

0.0000
(0.0009)

0.8861
(0.0085)

0.0245
(0.0094)

0.0000
(0.0010)

0.0528
(0.0104)

0.0526
(0.0073)

- 14036 53.54

0.0000
(0.0015)

0.8807
(0.0098)

0.0166
(0.0110)

0.0098
(0.0025)

0.0905
(0.0121)

- - 14135 38.51

JPM 0.0117
(0.0093)

0.8885
(0.0127)

0.0000
(0.0100)

0.0000
(0.0097)

0.0762
(0.0113)

0.0212
(0.0125)

0.0516
(0.0125)

19936 11.72

0.0000
(0.0090)

0.9051
(0.0109)

0.0000
(0.0087)

0.0000
(0.0101)

0.0872
(0.0110)

0.0434
(0.0121)

- 19951 7.80

0.0145
(0.0089)

0.8919
(0.0113)

0.0000
(0.0087)

0.0000
(0.0098)

0.1052
(0.0119)

- - 19958 78.30

AAPL 0.0000
(0.0069)

0.9118
(0.0092)

0.0083
(0.0068)

0.0054
(0.0108)

0.0633
(0.0094)

0.0420
(0.0181)

0.0188
(0.0110)

22241 1.56

0.0000
(0.0061)

0.9148
(0.0091)

0.0109
(0.0073)

0.0000
(0.0062)

0.0670
(0.0091)

0.0542
(0.0158)

- 22235 6.03

0.0000
(0.0093)

0.9143
(0.0096)

0.0114
(0.0075)

0.0203
(0.0112)

0.0691
(0.0101)

- - 22239 41.94

EUR/USD 0.0000
(0.0023)

0.9348
(0.0144)

0.0000
(0.0090)

0.0005
(0.0028)

0.0619
(0.0187)

0.0015
(0.0017)

0.0000
(0.0073)

4684.4 0.00

0.0000
(0.0019)

0.9348
(0.0162)

0.0000
(0.0066)

0.0005
(0.0023)

0.0619
(0.0155)

0.0015
(0.0016)

- 4676.3 0.44

0.0000
(0.0018)

0.9340
(0.0170)

0.0000
(0.0092)

0.0013
(0.0021)

0.0626
(0.0152)

- - 4669.0 44.79

Note: The first line refers to ART-GJR-GARCH-F, followed by ART-GJR-GARCH and
ART-GARCH. The standard errors in parentheses are calculated numerically. The last two
columns are the BIC and likelihood ratio statistics which compare each model to the subse-
quent model and ART-GARCH to RT-GARCH. The modified critical value for QLR test is
2.706 at 5% asymptotic level for one restriction. The BIC for RT-GARCH is 14490 for S&P
500, 14203 for DJIA, 20106 for JPM, 22314 for AAPL and 4750.5 for EUR/USD.

4.1 Data description

Our sample spans from 2 January 1998 to 31 December 2019 and for EUR/USD ex-

change rate from 2 January 2009 to 31 December 2019. The daily data are obtained

from Yahoo! Finance and their 1-min intraday high frequency data are from FirstRate

Data LLC. For out-of-sample forecast evaluation we divide the sample into estimation

and forecast periods. The out-of-sample period contains the last 1500 observations. We

use an expansion window for estimation and update for every 50 observations. For the

calculations of RV and BPV, we use 5-min intraday returns since ultra high frequency

data are typically contaminated by market microstructure noise (see for example, Hansen

and Lunde (2006)). Other methods to consistently estimate IV using high frequency data

include Zhang et al. (2005), Barndorff-Nielsen et al. (2008), Kalnina and Linton (2008)

and Podolskij and Vetter (2009) among others.
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Figure 3: QQ plots of the standardised returns for S&P 500 index

4.2 Full sample analysis

The parameter estimates for full sample are reported in Table 1. We have imposed the

covariance stationarity condition (3.4) to penalise overfitting. α is generally insignificant

and close to zero for all ART-GARCH models. In terms of lowest BIC, ART-GARCH

models are always selected over the benchmark models. Moreover, ART-GJR-GARCH-

F is preferred for S&P 500, DJIA and JPM while ART-GJR-GARCH is preferred for

AAPL and for EUR/USD, ART-GARCH. The QLR statistics suggests the hypothesis,

H0 : ψ2 = 0, is rejected in all cases. Thus, there is strong evidence suggesting the

presence of conditional heteroskedasticity in the variance of volatility. Moreover, all three

ART-GARCH models are distinguishable from each other except for EUR/USD in which

case we fail to reject the hypothesis H0 : φ = η = 0 and for AAPL where we fail to

reject H0 : η = 0. Note the standard errors are only indicative since clearly one or more

coefficients are located on the boundary of parameter space. We refer to Francq and

Zaköıan (2009) for the asymptotic variance of QMLE for the boundary case.

We show the QQ plots of standardised residuals under ART-GARCH and RT-GARCH

for S&P 500 index in Figure 3 (for other assets see appendix B). All three ART-GARCH

models have significant better goodness-of-fit over RT-GARCH, especially in the left tail.
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Table 2: Volatility filtering comparison using RV as volatility proxy

S&P 500 DJIA JPM AAPL EURUSD

MSE pMCS MSE pMCS MSE pMCS MSE pMCS MSE pMCS

GARCH 1.1825 0.001 1.2002 0.001 4.2540 0.000 4.4926 0.002 0.0646 0.001

GJR-GARCH 1.2448 0.006 1.2399 0.004 4.1033 0.000 4.4658 0.002 0.0641 0.001

RT-GARCH 1.0434 0.006 1.0706 0.004 3.9953 0.002 4.3046 0.003 0.0651 0.000

ART-GARCH 0.9371 0.006 0.9853 0.004 3.9159 0.004 3.9891 0.003 0.0589 0.115∗

ART-GJR-GARCH 0.8598 1.000∗ 0.9248 1.000∗ 3.8449 0.237∗ 3.9530 0.906∗ 0.0588 1.000∗

ART-GJR-GARCH-F 0.9794 0.006 1.0047 0.004 3.7512 1.000∗ 3.9518 1.000∗ 0.0588 0.115∗

Note: pMCS are the p-values of Model Confidence Set of Hansen et al. (2011). The models marked with ∗ fall in
the model confidence set M̂∗95%.

This is particularly true for ART-GJR-GARCH and ART-GJR-GARCH-F whose quan-

tiles are almost identical to those of standard normal. This provides justification for better

volatility filter and forecasts of ART-GARCH models. The improvement holds for all the

other assets except for EUR/USD. As seen in Figure 8, all models have almost the same

goodness-of-fit for EUR/USD and none of them results in a better fit of the tails.

The MSE of filtered volatility and the 95 percentile model confidence set (MSC),

M̂∗
95%, as defined in Hansen et al. (2011) are reported in Table 2.4 We use the last

2514 observations and for EUR/USD, last 3119 observations (exchange rate is traded

over-the-counter and on Sundays) spanning from 04 January 2010 to 31 December 2019

for evaluation. The better goodness-of-fit directly results in smaller MSE for all ART-

GARCH models over the benchmark models. Moreover, only the ART-GARCH models

fall in the M̂∗
95%. For S&P 500, DJIA and EUR/USD, ART-GJR-GARCH is the best

model, while for JPM and AAPL, ART-GJR-GARCH-F has the smallest MSE. Volatility

filtering is still an important tool for ex-post volatility estimation since other consistent ex-

post estimators like RV or in general, RM, rely on the availability of high frequency data.

For relatively new and exotic products, for example inflation-linked bonds and emerging

market currencies, trading activities are still infrequent and thus, high frequency data

are not always available.5 In such situation, we can only rely on filtering techniques to

estimate volatility from low frequency data.

The ART-GARCH models also contain information about Var[σ2
t |Ft−1]. It can be

filtered out according to (2.7) once we obtain the filtered volatility process itself. We plot

the filtered volatility of volatility of S&P 500 index returns in Figure 4 against the rescaled

RQ. Recall from Barndorff-Nielsen and Shephard (2003), RV has asymptotic distribution:∑[t/h]
k=1 r

2
kh −

∫ t
0 σ

2
sds√

2
3

∑[t/h]
k=1 r

4
kh

d−−→ N(0, 1), (4.1)

as h ↓ 0, where [x] denotes the largest integer part less than or equal to x. The de-

4The 95 percentile model confidence set, M̂∗
95%, is the set that contains the best models with proba-

bility 0.95 in terms of loss functions, see Hansen et al. (2011) for more details.
5From the author’s own experience at fixed income trading desk.
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Figure 4: Filtered volatility of volatility and rescaled RQ of S&P 500 index.

nominator of the LHS of (4.1), rescaled RQ, is a consistent estimator of IQ which is the

asymptotic variance of RV. The ideal estimator for the volatility of volatility would be

the realised volatility of RV. However, for such estimator one would require ultra high

frequency data to calculate the RV of each intraday squared return. Such dataset would

not only be of severely limited availability but also subject to large microstructure noises

(see Zhang et al. (2005)). As a result, we use the asymptotic theory for RV, (4.1), to eval-

uate the filtered volatility of volatility. The filtered volatility of volatility path is generally

in-line with rescaled RQ. Figures for the volatility of volatility of DJIA, JPM, AAPL and

EUR/USD can be found in appendix B.

4.3 Out-of-sample volatility forecasts comparison

Finally, we compare the out-of-sample 1-, 2-, 5-, 10- and 15-step volatility forecasts. From

Table 3, the three ART-GARCH models consistently outperform the benchmark models.

For S&P 500 and DJIA indices, ART-GJR-GARCH dominates 1-, 2-, 5-step volatility

forecasts in terms of smallest MSE. For 10- and 15-step forecasts, ART-GARCH is pre-

ferred for S&P 500 while ART-GJR-GARCH is still the best model for DJIA. In terms of

MCS, ART-GARCH and ART-GJR-GARCH always fall in the 95% MCS while GARCH

and GJR-GARCH are always outside. For JPM and AAPL stock returns, ART-GJR-

GARCH-F has the smallest MSE for 1-step forecast, ART-GJR-GARCH outperforms the

others from 2-step forecast onward except for AAPL, where ART-GARCH performs the

best for 10- and 15-step forecasts. Similarly, ART-GARCH and ART-GJR-GARCH are

always in the 95% MCS. ART-GJR-GARCH-F is also in the 95% MCS for all except

15-step forecast. For EUR/USD exchange rate, the differences across all models are very

small. However, all three ART-GARCH models are still in the 95% MCS and consistently
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Table 3: Out-of-sample volatility forecasts comparison using RV as volatility proxy

S&P 500 DJIA JPM AAPL EURUSD

MSE pMCS MSE pMCS MSE pMCS MSE pMCS MSE pMCS

1-step

GARCH 0.3958 0.001 0.7569 0.005 2.2491 0.059∗ 4.6462 0.020 0.0742 1.000∗

GJR-GARCH 0.4005 0.001 0.7623 0.005 2.2477 0.119∗ 4.5942 0.042 0.0756 0.166∗

RT-GARCH 0.3595 0.049 0.7070 0.074∗ 2.2072 0.637∗ 4.5992 0.059∗ 0.0755 0.166∗

ART-GARCH 0.3461 0.160∗ 0.7024 0.113∗ 2.2581 0.070∗ 4.4424 0.059∗ 0.0745 0.711∗

ART-GJR-GARCH 0.3211 1.000∗ 0.6660 1.000∗ 2.2262 0.255∗ 4.4111 0.267∗ 0.0749 0.166∗

ART-GJR-GARCH-F 0.3465 0.318∗ 0.6816 0.630∗ 2.1916 1.000∗ 4.3965 1.000∗ 0.0749 0.166∗

2-step

GARCH 0.4643 0.002 0.8523 0.011 2.3930 0.191∗ 4.8988 0.028 0.0763 1.000∗

GJR-GARCH 0.5008 0.001 0.9021 0.003 2.4217 0.173∗ 4.8815 0.041 0.0772 0.726∗

RT-GARCH 0.4301 0.017 0.8029 0.031 2.4022 0.191∗ 4.9255 0.041 0.0786 0.025

ART-GARCH 0.3963 0.217∗ 0.7687 0.091∗ 2.3664 0.191∗ 4.6783 0.202∗ 0.0768 0.726∗

ART-GJR-GARCH 0.3831 1.000∗ 0.7446 1.000∗ 2.3488 1.000∗ 4.6641 1.000∗ 0.0771 0.204∗

ART-GJR-GARCH-F 0.4431 0.062∗ 0.8073 0.074∗ 2.3593 0.569∗ 4.6725 0.476∗ 0.0771 0.204∗

5-step

GARCH 0.5675 0.001 0.9657 0.008 2.5436 0.075∗ 5.1718 0.014 0.0759 0.968∗

GJR-GARCH 0.6343 0.001 1.0493 0.002 2.5726 0.065∗ 5.1638 0.014 0.0767 0.199∗

RT-GARCH 0.5294 0.002 0.9054 0.018 2.5873 0.065∗ 5.2670 0.013 0.0779 0.066∗

ART-GARCH 0.4755 0.945∗ 0.8519 0.274∗ 2.4669 0.247∗ 4.9021 0.525∗ 0.0759 1.000∗

ART-GJR-GARCH 0.4749 1.000∗ 0.8365 1.000∗ 2.4574 1.000∗ 4.8952 1.000∗ 0.0762 0.604∗

ART-GJR-GARCH-F 0.5714 0.002 0.9380 0.018 2.4900 0.233∗ 4.9149 0.254∗ 0.0762 0.199∗

10-step

GARCH 0.6171 0.006 1.0128 0.005 2.6216 0.023 5.4353 0.021 0.0691 1.000∗

GJR-GARCH 0.6832 0.006 1.1039 0.005 2.6644 0.006 5.4470 0.021 0.0701 0.565∗

RT-GARCH 0.5647 0.006 0.9297 0.020 2.6744 0.023 5.6242 0.006 0.0718 0.038

ART-GARCH 0.5125 1.000∗ 0.8862 0.379∗ 2.5078 0.122∗ 5.1173 1.000∗ 0.0691 0.953∗

ART-GJR-GARCH 0.5175 0.804∗ 0.8699 1.000∗ 2.4936 1.000∗ 5.1258 0.416∗ 0.0694 0.565∗

ART-GJR-GARCH-F 0.6219 0.006 0.9822 0.016 2.5440 0.117∗ 5.1589 0.103∗ 0.0694 0.565∗

15-step

GARCH 0.6588 0.001 1.0479 0.003 2.7354 0.002 5.7037 0.028 0.0698 1.000∗

GJR-GARCH 0.7308 0.001 1.1515 0.003 2.8084 0.001 5.7287 0.028 0.0710 0.268∗

RT-GARCH 0.5963 0.001 0.9485 0.017 2.8462 0.001 6.0316 0.000 0.0731 0.036

ART-GARCH 0.5410 1.000∗ 0.9105 0.561∗ 2.5689 0.310∗ 5.3624 1.000∗ 0.0698 0.942∗

ART-GJR-GARCH 0.5555 0.528∗ 0.8963 1.000∗ 2.5587 1.000∗ 5.3747 0.476∗ 0.0701 0.268∗

ART-GJR-GARCH-F 0.6751 0.001 1.0221 0.003 2.6550 0.007 5.4251 0.036 0.0701 0.617∗

Note: pMCS are the p-values of Model Confidence Set of Hansen et al. (2011). The models marked with ∗ fall in
the model confidence set M̂∗95%.
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outperform RT-GARCH. The best performing model alternates between GARCH and

ART-GARCH. This is consistent with Figure 8 that asymmetric models do not result in

better goodness-of-fit and leverage effect parameters are insignificant from Table 1. We

also use another robust loss function, QLIKE, for the forecast evaluations and obtain sim-

ilar rankings. For reasons of brevity, we do not report the QLIKE results here. Overall,

ART-GARCH models consistently outperform RT-GARCH, GJR-GARCH and GARCH

models.

Since volatility forecast performance depends partially on the choice of volatility proxy,

we next use BPV to assess the forecast performance. In the absence of jumps and mi-

crostructure noises, both RV and BPV are consistent estimators of IV. However, if jumps

are present, RV is not robust since

[t/h]∑
k=1

r2
kh

p−−→
∫ t

0
σ2
sds+

Nt∑
i=1

J2
i , (4.2)

as h ↓ 0 for kh ≤ t < (k + 1)h, where (Nt) is a finite activity counting process and Ji

are nonzero random variables that represent the infrequent jumps in the price process.

Various studies have confirmed empirically that jumps are present in asset prices (see for

example, Barndorff-Nielsen and Shephard (2006), Bollerslev et al. (2007), Aı̈t-Sahalia and

Jacod (2009), among others). Often, we are interested in the continuous part of volatility

for reasons including risk management and portfolio allocation purposes. All GARCH-

type and SV models are designed to model the continuous part of volatility. However,

using RV to evaluate the forecast performance may result in inconsistency due to the

presence of jumps. Recall from Barndorff-Nielsen and Shephard (2004),

π

2

[t/h]−1∑
k=1

|rkh||r(k+1)h|
p−−→
∫ t

0
σ2
sds, (4.3)

as h ↓ 0 for kh ≤ t < (k + 1)h. We compute the rescaled BPV according to the LHS of

(4.3) and report the forecast evaluation in Table 4.

The rankings are similar to those using RV as volatility proxy for all assets except

EUR/USD where ART-GARCH models now have the best forecast performance by a clear

margin. Moreover, the reductions of MSE are more profound for ART-GARCH models

than for the benchmark models across all assets. This suggests that ART-GARCH mod-

els and are more robust to jumps. This is evident from the heavy-tails of ART-GARCH

models in the conditional density. The differences in MSE between RV and BPV as

volatility proxies are more profound for stocks and exchange rates than indices. This is

intuitive since individual stocks have jumps associated with both market conditions and

idiosyncratic characteristics, for example, earning announcements (see Maheu and Mc-

curdy (2004)). On the other hand, exchange rates are affected by economic fundamentals

and central banks’ announcements of both sides, adding more potentials for jump events.
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Table 4: Out-of-sample volatility forecasts comparison using BPV as volatility proxy

S&P 500 DJIA JPM AAPL EURUSD

MSE pMCS MSE pMCS MSE pMCS MSE pMCS MSE pMCS

1-step

GARCH 0.4082 0.001 0.7113 0.002 1.9901 0.002 4.8117 0.013 0.0575 0.111∗

GJR-GARCH 0.4222 0.001 0.7331 0.002 2.0117 0.002 4.7627 0.029 0.0589 0.061∗

RT-GARCH 0.3695 0.032 0.6579 0.062∗ 1.9593 0.149∗ 4.7801 0.029 0.0574 0.222∗

ART-GARCH 0.3494 0.240∗ 0.6412 0.169∗ 1.9363 0.149∗ 4.5532 0.080∗ 0.0561 1.000∗

ART-GJR-GARCH 0.3282 1.000∗ 0.6106 1.000∗ 1.9134 0.669∗ 4.5249 0.448∗ 0.0563 0.222∗

ART-GJR-GARCH-F 0.3629 0.240∗ 0.6420 0.294∗ 1.9041 1.000∗ 4.5143 1.000∗ 0.0563 0.222∗

2-step

GARCH 0.4762 0.002 0.8007 0.022 2.1284 0.026 5.0634 0.016 0.0596 0.295∗

GJR-GARCH 0.5233 0.002 0.8661 0.001 2.1777 0.000 5.0501 0.021 0.0607 0.295∗

RT-GARCH 0.4392 0.017 0.7474 0.022 2.1487 0.026 5.1107 0.024 0.0606 0.003

ART-GARCH 0.3991 0.392∗ 0.7036 0.239∗ 2.0416 0.000 4.7899 0.389∗ 0.0585 1.000∗

ART-GJR-GARCH 0.3901 1.000∗ 0.6845 1.000∗ 2.0325 1.000∗ 4.7794 1.000∗ 0.0586 0.374∗

ART-GJR-GARCH-F 0.4606 0.017 0.7616 0.189∗ 2.0660 0.390∗ 4.7922 0.389∗ 0.0586 0.374∗

5-step

GARCH 0.5760 0.001 0.9075 0.006 2.2912 0.000 5.3290 0.011 0.0596 0.139∗

GJR-GARCH 0.6494 0.001 1.0003 0.004 2.3434 0.000 5.3276 0.011 0.0606 0.139∗

RT-GARCH 0.5352 0.001 0.8426 0.010 2.3586 0.000 5.4536 0.009 0.0605 0.007

ART-GARCH 0.4754 1.000∗ 0.7814 0.369∗ 2.1511 1.000∗ 5.0085 0.907∗ 0.0581 1.000∗

ART-GJR-GARCH 0.4784 0.794∗ 0.7693 1.000∗ 2.1516 0.954∗ 5.0072 1.000∗ 0.0582 0.585∗

ART-GJR-GARCH-F 0.5827 0.001 0.8813 0.010 2.2134 0.025 5.0323 0.150∗ 0.0582 0.585∗

10-step

GARCH 0.6268 0.000 0.9548 0.002 2.3902 0.000 5.6129 0.008 0.0534 0.219∗

GJR-GARCH 0.6992 0.000 1.0555 0.002 2.4605 0.000 5.6316 0.006 0.0544 0.219∗

RT-GARCH 0.5718 0.000 0.8670 0.007 2.4921 0.000 5.8512 0.001 0.0550 0.013

ART-GARCH 0.5133 1.000∗ 0.8153 0.531∗ 2.2062 1.000∗ 5.2442 1.000∗ 0.0521 0.535∗

ART-GJR-GARCH 0.5223 0.625∗ 0.8029 1.000∗ 2.2064 0.988∗ 5.2593 0.166∗ 0.0521 0.535∗

ART-GJR-GARCH-F 0.6350 0.000 0.9269 0.007 2.2985 0.004 5.2993 0.053∗ 0.0520 1.000∗

15-step

GARCH 0.6688 0.000 0.9896 0.001 2.4916 0.000 5.8798 0.009 0.0541 0.289∗

GJR-GARCH 0.7445 0.000 1.0999 0.001 2.5803 0.000 5.9106 0.007 0.0552 0.173∗

RT-GARCH 0.6038 0.001 0.8851 0.004 2.6605 0.000 6.2716 0.000 0.0562 0.006

ART-GARCH 0.5421 1.000∗ 0.8393 0.673∗ 2.2627 1.000∗ 5.4898 1.000∗ 0.0528 0.289∗

ART-GJR-GARCH 0.5607 0.412∗ 0.8290 1.000∗ 2.2647 0.845∗ 5.5110 0.193∗ 0.0527 0.289∗

ART-GJR-GARCH-F 0.6877 0.000 0.9655 0.001 2.3924 0.000 5.5671 0.016 0.0527 1.000∗

Note: pMCS are the p-values of Model Confidence Set of Hansen et al. (2011). The models marked with ∗ fall in
the model confidence set M̂∗95%.
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5 Conclusion

In this paper we have proposed a new class of model which builds on Smetanina’s (2017)

RT-GARCH model by allowing heteroskedasticity in the conditional variance of volatility

process. In doing so, we are able to simultaneously model both volatility and volatility

of volatility from the observed return process. This is important since the volatility of

volatility is widely regarded an additional source of risk. Our model has the advantage

of computational tractability since only one filter is needed for both latent variables and

estimation is conducted in the usual QML framework with analytical quasi-likelihood

function.

Empirical studies show that incorporating volatility of volatility is important in order

to (i) obtain heavier-tails of the conditional density of returns and better goodness-of-fit,

(ii) filter volatility ex-post more efficiently, (iii) forecast volatility ex-ante more accurately

for multiple forecast horizons.

We finish by suggesting some further researches. A natural extension is to incorporate

RM in the model in the fashion of Hansen et al. (2012). Since one of the reasons to

use a quadratic function of σ2
t for the volatility of volatility stems from the asymptotic

distribution (2.8) of RV. We can replace ψ1+ψ2σ
2
t−1 by a function of RQ or other consistent

estimator of IQ. Another possible extension is to specify a separate latent process for the

volatility of volatility in a GARCH fashion. This enables the volatility of volatility to have

its own dynamics which can be very different from volatility itself. Finally, extension to

multivariate case can allow more flexible covariance structure across assets and their

volatility.
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A Proofs

Proof of Theorem 3.1. By Assumption 1, the process (εt) is strictly stationary and er-

godic. Thus, (rt) is strictly stationary if and only if (σt) is strictly stationary. By repeated

substitution, the process σ2
t is essentially a stochastic difference equation with stationary

coefficients. In order to obtain the strictly stationarity condition, we need to either assume

the trivial σ−algebra F0 and the probability measure v0 associated with it or assume the

process extends infinitely into the past. These two approaches are identical if we assume

ε0 or ε−t for t→ −∞ are in the steady state. Let’s assume (3.3) and express σ2
t in terms

of a stochastic difference equation

σ2
t+1 = At+1σ

2
t +Bt+1, (A.1)
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where At and Bt are given by

At = β + γε2t−1 + φ(ε−t−1)2 + ψ2ε
2
t , (A.2)

Bt = α+ ψ1ε
2
t + η(ε−t )2. (A.3)

The sequences At and Bt are measurable functions of εt and are thus, strictly stationary

and ergodic as well as the joint sequence (At, Bt) by Theorem 3.5.8 of Stout (1974). We

can then apply Theorem 1 of Brandt (1986) upon making the usual assumption that

ε0 = ε−1 and conclude that the process (A.1) is strictly stationary iff

P(A0 = 0) > 0 (A.4)

or

E log |A0| < 0, (A.5)

E(log |B0|)+ <∞, (A.6)

where x+ = max (0, x). Plugging in the expressions for A0 and B0, we obtain (3.1) and

(3.2). We also require A0 and B0 not equal to zero.

Proof of Theorem 3.2. By Assumption 1 and σ2
t are positive with probability one, we have

E1(rt<0) = 0.5, where 1(·) is the indicator function. Using contemporaneous independence

of r2
s , σ

2
s and εt for s < t, it is straightforward to show

E[(r−t+n)2|Ft] = 1
2E[r2

t+n|Ft] + 1
4Eε

4
t η, (A.7)

for all n ≥ 1. Thus,

E[(r−t )2] = 1
2E[r2

t ] + 1
4Eε

4
t η. (A.8)

Taking unconditional expectation on both sides of (2.2) and assuming σ2
t and r2

t are

weakly stationary, we obtain

Eσ2
t = α+ ψ1 + 1

2η + 1
4Eε

4
tφη + (β + ψ2)Eσ2

t + (γ + 1
2φ)Er2

t , (A.9)

Er2
t = (1 + ψ2κ)Eσ2

t + (ψ1 + 1
2η1)κ, (A.10)

where κ = Eε4t − 1. Plugging (A.10) into (A.9), we obtain (3.5). This is only valid iff

the denominator and numerator are both positive and finite. We obtain the condition for

covariance stationarity (3.4). Plugging (3.5) into (A.10), we obtain (3.6).

Proof of Theorem 3.3. By the same argument as in the proof of Theorem 3.2, it is straight-

forward to show

E(r−t )4 = 1
2Er

4
t + c1, (A.11)

E[(r−t )2σ2
t ] = 1

2E[r2
t σ

2
t ] + c2, (A.12)
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where c1 = 1
2
η
(
(1

2
η + ψ1 + ψ2)u8 + (α + β + γ + φ)u6

)
and c2 = 1

2
η
(
(1

2
η + ψ1 + ψ2)u6 +

(α + β + γ + φ)u4

)
. A direct calculation using (A.11) and (A.12) leads to

Er4
t =

(
u4 +ψ2

2(u8−u2
4)+2βψ2(u6−u4)

)
Eσ4

t +ψ2(u6−u4)(2γ+φ)E[r2
t σ

2
t ]+f1(r̄2, σ̄2; θ), (A.13)

where

f1(r̄2, σ̄2; θ) = (u8 − u2
4)(ψ2

2 + 1
2η

2 + ψ1η) + (u6 − u4)(αη + 1
2u4φ

2ψ1η + 2φψ2c2

+ 1
4u4φ

2η2) +
(
ψ2(u8 − u2

4)(η + 2ψ1) + β(u6 − u4)(2ψ1 + η)
)
σ̄2

+ (u6 − u4)(2ψ1 + η)(γ + 1
2φ)r̄2,

(A.14)

with r̄2 = Er2
t and σ̄2 = Eσ2

t . Plugging (A.13) to the expression of Eσ4
t ,

Eσ4
t = ξ1Eσ4

t + ξ2E[r2
t σ

2
t ] + (γ2 + 1

2φ
2 + γφ)f1(r̄2, σ̄2; θ) + f2(θ), (A.15)

where ξ1 and ξ2 are given in (3.10) and (3.11) and

f2(θ) = φ
(
c1(φ+ 2γ) + 2c2(β + φ)

)
+
(
ψ2

1 + 1
2η

2 + ψ1η

+ φ2η(1
2α+ ψ1 + 1

4η)
)
u4 + α(2ψ1 + η).

(A.16)

We next calculate E[r2
t σ

2
t ] ≡ E[σ4

t ε
2
t ]. By (A.11) and (A.12), a direct calculation leads

to

E[r2
t σ

2
t ] = ξ3Eσ4

t + ξ4E[r2
t σ

2
t ] + f3(r̄2, σ̄2; θ), (A.17)

where ξ3 and ξ4 are given in (3.12) and (3.13) and

f3(r̄2, σ̄2; θ) = η(u6 − u4)(1
2η + ψ1) + κ

(
α(2ψ1 + η) + u4φ

2η(1
2ψ1 + 1

4η) + 2φψ2c2

)
+
(
φ2(u6 − u4)(2φ1 + η) + κ(2αψ2 + 2βψ1 + βη)

)
σ̄2

+ κ(2ψ1 + η)(γ + 1
2φ)r̄2,

(A.18)

Thus, ξ4 < 1 is necessary for rtσt to be covariance stationary. Solving for E[r2
t σ

2
t ] from

(A.17) and plugging into (A.15),

Eσ4
t =

(γ2 + 1
2φ

2 + γφ)f1(r̄2, σ̄2; θ) + f2(θ) + f3(r̄2, σ̄2; θ)/(1− ξ4)

1− ξ1 − ξ1 + ξ1ξ4 − ξ2ξ3
. (A.19)

(A.19) is only valid iff (3.9) is satisfied. Substitude (A.19) into (A.17) then into (A.13),

we obtain the expression for Er4
t .

Proof of Theorem 3.4. The proof follows exactly the proof of Theorem 1 of Smetanina

(2017) by replacing ψ with at−1 + η1(y<0) where 1(·) is the indicator function. Since

at−1 is Ft−1−measurable, we obtain the transition density (3.14). Furthermore, since

Eε2nt = 1
2
E(ε−t )2n for all integers n ≥ 1, we obtain the conditional moments approximation

in (3.18) by making the same substitution.

Proof of Theorem 3.5. The proof follows step by step of Smetanina and Wu (2019) by

making the same substitution in the proof of Theorem 3.4. Crucially, the joint process
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(r2
t , σ

2
t ) is still geometrically moment contracting with moment coefficient 1 + δ for some

δ > 0 since at−1 is Ft−1−measurable and ergodic as long as σ2
t−1 is ergodic. Therefore,

there exists an a.s.-unique causal ergodic strictly stationary solution to (2.1) and (2.2)

at θ. The derivative process ∂σ2
t (θ)/∂θ has an a.s.-unique strictly stationary and ergodic

solution and is also geometrically moment contracting with the moment coefficient 1+δ for

some small δ > 0. Therefore, Theorem 3.5 follows directly from Theorem 7 of Smetanina

and Wu (2019). The exact expressions for ∂σ2
t (θ)/∂θ, ∂lt(θ)/∂θ and Vθ0 are much more

involved and we leave them for future research.

Proof of Theorem 3.6. The filtering equation (3.27) can be obtained by solving the quartic

equation of (2.1) and the one-step forecast equations (3.28) and (3.29) are from straight-

forward calculations. By twice repeated substitution we obtain the two-step forecast

equations (3.30) and (3.31). For multi-step forecast, let n > 2 for any integer n, using

(A.7) we have,

E[σ2
t+n|Ft] = α+ ψ1 + 1

2η + 1
4u4φη + (β + ψ2)E[σ2

t−n−1|Ft] + (γ + 1
2φ)E[r2

t+n−1|Ft], (A.20)

where u4 = Eε4t . Rearranging terms we obtain,

E[r2
t+n−1|Ft] =

1

γ + 1
2φ

E[σ2
t+n|Ft]−

α+ ψ1 + 1
2η + 1

4u4φη

γ + 1
2φ

− β + ψ2

γ + 1
2φ

E[σ2
t+n−1|Ft]. (A.21)

Expand (A.20) for another lag and substitute E[r2
t+n−1|Ft] with (A.21),

E[σ2
t+n|Ft] = α+ ψ1 + 1

2η + 1
4φηu4 + κ(γ + 1

2φ)(ψ1 + 1
2η)

+ (β + γ + ψ2 + 1
2φ)E[σ2

t+n−1|Ft] + κψ2(γ + 1
2φ)E[σ2

t+n−2|Ft],
(A.22)

where κ = u4−1. Upon examining (3.5) in Theorem 3.2, the numerator of the expression

for Eσ2
t is the intercept term of the right hand side of (A.22). Combining (3.5) and (A.22),

we obtain (3.32). Similarly, we can derive (3.33) using (3.6).

Derivation of (3.34). We only need to prove zt and et are both MDS. It is straightforward

to verify (3.34) reduces to σ2
t in (2.2) and r2

t by direct calculation. zt is an MDS by

Assumption 1. et is an MDS because E[r2
t |Ft−1] = E[σ2

t |Ft−1] + κ(ψ1 + ψ2σ
2
t−1).
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Figure 5: QQ plots of the standardised returns for DJIA index
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Figure 6: QQ plots of the standardised returns for JPM stock
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Figure 7: QQ plots of the standardised returns for AAPL stock
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Figure 8: QQ plots of the standardised returns for EUR/USD exchange rate
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Figure 9: Filtered volatility of volatility of ART-GJR-GARCH.
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