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Abstract
We propose a general framework for the specification testing of continuous treat-

ment effect models. We assume a general residual function, which includes the average
and quantile treatment effect models as special cases. The null models are identified
under the confoundedness condition and contain a nonparametric weighting function.
We propose a test statistic for the null model in which the weighting function is esti-
mated by solving an expanding set of moment equations. We establish the asymptotic
distributions of our test statistic under the null hypothesis and under fixed and local
alternatives. The proposed test statistic is shown to be more efficient than that con-
structed from the true weighting function and can detect local alternatives deviated
from the null models at the rate of OP (N−1/2). A simulation method is provided to
approximate the null distribution of the test statistic. Monte-Carlo simulations show
that our test exhibits a satisfactory finite-sample performance, and an application shows
its practical value.

Keywords: Consistent tests; Continuous treatment effect; Series estimation; Bootstrap.

1 Introduction

Causal inference is a central topic in economics, statistics, and machine learning. Although
a randomized trial is the gold standard for identifying the causal effect, it is often unavail-
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able or even unethical in practice. Observational data, where the participation of an inter-
vention is only observed rather than manipulated by scientists, are predominantly what is
available. A major challenge for inferring the causality in observational study is the con-
foundedness, whereby the individual characteristics are correlated with both the treatment
variable and the outcome of interest. To identify causality, the unconfounded treatment as-
signment condition is frequently imposed in the literature, see Rosenbaum and Rubin (1983,
1984). For a comprehensive review of causal inference and its applications, see Imbens and
Wooldridge (2009) and Abadie and Cattaneo (2018).

Treatment effect models are used extensively in economics and statistics to evaluate
the causal effect of a treatment or policy. Most of the existing literature focuses on the
binary treatment where an individual either receives the treatment or does not (see e.g.,
Hahn, 1998, Hirano, Imbens, and Ridder, 2003, Donald, Hsu, and Lieli, 2014, Abrevaya,
Hsu, and Lieli, 2015, Chan, Yam, and Zhang, 2016, Athey, Imbens, and Wager, 2018, Hsu,
Lai, and Lieli, 2020, Chen, Hsu, and Wang, 2020, Fan, Hsu, Lieli, and Zhang, 2020 among
others). Some literature focus on the multivalued treatment (see e.g., Cattaneo, 2010, Lee,
2018, and Ao, Calonico, and Lee, 2021). In many applications, however, the treatment
variable is continuously valued, and its causal effect is of great interest to decision makers.
For example, in evaluating how non-labor income affects the labor supply, the causal effect
may depend on not only the introduction of the non-labor income but also the total non-
labor income. Similarly, in evaluating how advertising affects the campaign contributions
for political analysis, the causal effect may depend not only on whether any advertisements
are imposed but also on how many of them are distributed.

Estimation of the continuous treatment effects has drawn great attention from researchers
(see Hirano, Imbens, and Ridder (2003), Galvao and Wang (2015), Kennedy, Ma, McHugh,
and Small (2017), Fong, Hazlett, and Imai (2018), Dong, Lee, and Gou (2019), Huber, Hsu,
Lee, and Lettry (2020), Colangelo and Lee (2020) among others). Hirano, Imbens, and
Ridder (2003), Galvao and Wang (2015), and Fong, Hazlett, and Imai (2018) applied fully
parametric methods by modelling either the conditional distribution of the treatment given
the confounders or that of the observed outcome given the treatment and the confounders.
The shortcoming of these parametric methods is that modelling and testing the relations
of the treatment and the observed outcome regarding the confounders are difficult, espe-
cially when multiple confounding variables are involved. If the model is mis-specified, the
conclusion can be biased and completely misleading. Kennedy, Ma, McHugh, and Small
(2017) and Huber, Hsu, Lee, and Lettry (2020) estimated the continuous treatment effects
by using the nonparametric kernel method. Although nonparametric approaches are much
more flexible than parametric ones, they require smoothing of the data rather than estimat-
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ing finite dimensional parameters, which leads to less precise fits and slower convergence
rates (slower thanN−1/2). Furthermore, it is usually hard to interpret nonparametric results.

In a recent article, Ai, Linton, Motegi, and Zhang (2021) studied the continuous treat-
ment effects by imposing a univariate generalized parametric model for the functionals of
the potential outcome over the treatment variable. The general framework includes many
important causal parameters as special cases, for example, the average and quantile treat-
ment effects. They proposed a generalized weighting estimator for the causal effect with
the weights modelled nonparametrically and estimated by solving an expanding set of equa-
tions. They further derived the semiparametric efficiency bound for the causal effect of
treatment under the unconfounded treatment assignment condition and showed that their
estimator is

√
N -asymptotically normal and attains the semiparametric efficiency bound.

Although Ai, Linton, Motegi, and Zhang (2021)’s estimator enjoys superior asymptotic
properties and satisfactory finite sample performance, they did not detail the specifications
of the parametric models for the functionals of the potential outcomes. If the parametric
model is mis-specified, the results developed in Ai, Linton, Motegi, and Zhang (2021) do
not hold.

We study the question of model specification. In particular, we propose a consistent
specification test for the most generalized continuous treatment effect model. That is, we
consider the generalized parametric model in Ai, Linton, Motegi, and Zhang (2021) as
the null model in our hypothesis test. The potential outcome variable in the model is not
observable. However, under the unconfounded treatment assignment condition, the model
can be identified by a semiparametric weighted conditional model. There is abundant litera-
ture that studies the specification tests for conditional models (see e.g. Ait-Sahalia, Bickel,
and Stoker (2001), Bierens (1982, 1990), Fan and Li (1996), Zheng (1996), Bierens and
Ploberger (1997), Stute (1997), Li (1999), Chen and Fan (1999), Fan and Li (2000), Li,
Hsiao, and Zinn (2003), Crump, Hotz, Imbens, and Mitnik (2008) among others). Most
authors have considered the problems of testing a parametric/semiparametric null model
using the integrated type test statistic.Ait-Sahalia, Bickel, and Stoker (2001) and Chen and
Fan (1999) considered testing the nonparametric/semiparametric null models using non-
parametric kernel methods. Li, Hsiao, and Zinn (2003) considered testing the nonparamet-
ric/semiparametric using series methods. Crump, Hotz, Imbens, and Mitnik (2008) derived
a nonparametric Wald test statistic for testing the conditional average treatment effects un-
der the unconfoundedness condition. We estimate our semiparametric weighted null model
by using the approach developed in Ai, Linton, Motegi, and Zhang (2021) and construct an
integrated-type test statistic. Although the weights in our null model are estimated nonpara-
metrically, we show that our proposed test statistic is more efficient than that constructed
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from the true weights. Moreover, our proposed test statistic can detect local alternatives
that deviate from the null model at the rate of OP (N−1/2).

Under the null hypothesis our test statistic is shown to converge in distribution to a
weighted sum of independent chi-squared random variables. It is known that obtaining the
exact critical values of such a distribution is extremely difficult in practice. Most of the liter-
ature suggests using a residual wild bootstrap procedure to approximate the critical values.
This is not applicable in our case because our null model does not imply any explicit form
of relationship among the observed outcome, the treatment, and the confounders for resid-
ual sampling. To resolve this problem, we propose a simulation method to approximate
the null limiting distribution. Monte-Carlo simulations and real data analysis were con-
ducted to demonstrate the numerical properties of our test method and limiting distribution
approximation.

The remainder of the paper is organized as follows. We introduce the problem formu-
lation and notations in Section 2. Section 3 constructs the test statistic, followed by the
study of the asymptotic properties under null hypothesis, the fixed and the local alternatives
in Section 4. In Section 5, we discuss how to approximate the limiting distribution under
the null hypothesis. Finally, Section 6 discusses the choice of the tuning parameters in
the estimation and investigates the finite sample performance through simulations and U.S.
campaign advertisement data.

2 Basic framework

Let T denote a continuous treatment variable with support T ⊂ R, where T is a continuum
subset, and T has a marginal density function fT (t). Let Y ∗(t) denote the potential response
when treatment T = t is assigned. We are interested in testing the null hypothesis:

H0 : ∃ some θ∗ ∈ Θ, s.t. E[m{Y ∗(t); g(t;θ∗)}] = 0 for all t ∈ T , (2.1)

against the alternative hypothesis

H1 : @ any θ ∈ Θ, s.t. E[m{Y ∗(t); g(t;θ)}] = 0 for all t ∈ T ,

where Θ is a compact set in Rp for some integer p ≥ 1, m(·) is some generalized residual
function which could possibly be non-differentiable, and g(t;θ) is a parametric working
model which is differentiable with respect to θ. If H0 holds, for each t, the dose-response
function (DRF) is defined as the value g(t;θ∗) that solves the moment condition in (2.1).
The following examples show that the average dose-response function (ADRF) and the
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quantile dose-response function (QDRF) are special cases of g(t;θ∗), which result from
choosing specific forms of m(·).

• (Average) Setting m {Y ∗(t); g(t;θ∗)} = Y ∗(t)− g(t;θ∗) and letting its first moment
equal zero for each t, we obtain g(t;θ∗) = E{Y ∗(t)}, the unconditional ADRF,
which is also called a marginal structural model in Robins, Hernán, and Brum-
back (2000). This can recover the average treatment effect (ATE), which is given
by ATE(t1, t0) = E{Y ∗(t1)} − E{Y ∗(t0)}. Examples include the linear marginal
structure model E{Y ∗(t)} = β0 + β1 · t, and the nonlinear marginal structure model
E{Y ∗(t)} = β0 · t+ 1/(t+ β1)2 studied in Hirano and Imbens (2004)).

• (Quantile) Let τ ∈ (0, 1) and FY ∗(t)(·) be the cumulative distribution function of
Y ∗(t). Setting m {Y ∗(t); g(t;θ∗)} = τ − 1{Y ∗(t) < g(t;θ∗)} and letting its first
moment equal zero for each t, we obtain g(t;θ∗) = F−1

Y ∗(t)(τ) := inf{q : P(Y ∗(t) ≥
q) ≤ τ}, the unconditional QDRF. This can recover the quantile treatment effect
(QTE), which is given by QTE(t1, t0) = F−1

Y ∗(t1)(τ)−F−1
Y ∗(t0)(τ). See Firpo (2007) for

detailed discussion on QTE. Examples include the linear model g(t;θ) = θ0+θ1·t and
the Box-Cox transformation model g(t;θ) = hλ (θ0 + θ1 · t) studied in Buchinsky
(1995), where hλ(z) = λz + 1)−1/λ.

We consider the observational study where the potential outcome Y ∗(t) is not observed
for all t. Let Y := Y ∗(T ) denote the observed response. Under the null hypothesis, one
may attempt to solve the following equation to find θ∗:

E[m{Y ; g(T ;θ)∇θg(T ;θ}] = 0 .

However, if there is a selection into treatment, even under the null hypothesis, the true value
θ∗ does not solve the above equation. Indeed, in this case, the observed response and the
treatment assignment data alone cannot identify θ∗. To address this identification issue,
most studies in the literature impose a selection on the observable condition (e.g., Hirano,
Imbens, and Ridder, 2003, Imai and van Dyk, 2004, Fong, Hazlett, and Imai, 2018, Ai,
Linton, Motegi, and Zhang, 2021). Specifically, letX ∈ Rr, for some integer r ≥ 1, denote
a vector of observable covariates. The following condition shall be maintained throughout
the paper.

Assumption 1 (Unconfounded Treatment Assignment). For all t ∈ T , given X , T is inde-
pendent of Y ∗(t), that is, Y ∗(t) ⊥ T |X , for all t ∈ T .

Let {Ti,Xi, Yi}Ni=1 be an independent and identically distributed (i.i.d.) sample drawn
from the joint distribution of (T,X, Y ). Let fT |X denote the conditional density of T given
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the observed covariates X . Under Assumption 1, Ai, Linton, Motegi, and Zhang (2021)
showed that E[m{Y ∗(t); g(t;θ)}] can be identified as follows:

E[m{Y ∗(t); g(t;θ)}] = E[π0(T,X)m{Y ; g(T ;θ)}|T = t], ∀t ∈ T

where

π0(T,X) :=
fT (T )

fT |X(T |X)
.

The function π0(T,X) is called the stabilized weights in Robins, Hernán, and Brumback
(2000). Then under H0, the true value θ∗ solves the following equation:

E [π0(T,X)m{Y ; g(T ;θ)}∇θg(T ;θ)] = 0 , (2.2)

where the “∇θ” denotes the derivative with respect to θ.
The null and alternative hypothesis in (2.1) can then be re-written as

H0 : P (E[π0(T,X)m{Y ; g(T ;θ∗)}|T ] = 0) = 1 for some θ∗ ∈ Θ , (2.3)

against the alternative hypothesis

H1 : P (E[π0(T,X)m{Y ; g(T ;θ)}|T ] 6= 0) > 0 for all θ ∈ Θ .

This converts the test for (2.1) to a goodness-of-fit test for a univariate regression model, if
both π0(T,X) and θ∗ were given. Specially, letting

Ui := π0(Ti,Xi)m{Yi; g(Ti;θ
∗)} , (2.4)

the null hypothesis H0 is equivalent to P{E(Ui|Ti) = 0} = 1. A popular technique for
testing such a conditional moment model is to convert it to an unconditional one.

Note that P{E(Ui|Ti) = 0} = 1 if and only if E{UiM(Ti)} = 0 for all bounded and
measurable functions M(·). Following Bierens and Ploberger (1997), Stinchcombe and
White (1998), Stute (1997), and Li, Hsiao, and Zinn (2003), by choosing a proper weight
function H (·, ·), E(Ui|Ti) = 0 is a.s. equivalent to

E {UiH (Ti, t)} = 0 for all t ∈ T . (2.5)

Popular choices of such a weight function are the logistic function H (Ti, t) = 1/{1 +

exp(c − t · Ti)} with c 6= 0, cosine-sine function H (Ti, t) = cos(t · Ti) + sin(t · Ti) and
the indicator function H (Ti, t) = 1(Ti ≤ t) (see Stinchcombe and White, 1998 and Stute,
1997 for more detailed discussion). Now, letting

J0
N(t) =

1√
N

N∑
i=1

UiH (Ti, t) , (2.6)
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the sample analogue of E {UiH (Ti, t)} multiplied by
√
N , one can test H0 by using the

Cramer-von Mises (CM)-type statistic

CM0
N =

∫
{J0

N(t)}2F̂T (dt) =
1

N

N∑
i=1

{J0
N(Ti)}2, (2.7)

where F̂T (·) is the empirical distribution of T1, ..., TN . However, both π0(T,X) and θ∗ are
unknown in practice so that the Ui’s are unavailable. We have to replace the Ui’s with some
estimates, which is studied in the following section.

3 Test statistic

One obvious approach for estimating the Ui’s is to estimate fT (Ti) and fT |X(Ti|Xi), then
construct the estimators of π0(Ti,Xi) and θ∗. However, it is well-known that this ratio
estimator of π0(T,X) is very sensitive to small values of fT |X(T |X) because small esti-
mation errors in estimating fT |X(T |X) result in large estimation errors of the estimator of
π0(T,X). To avoid or mitigate this problem, we follow Ai, Linton, Motegi, and Zhang
(2021)’s idea of estimating the weighting function π0(T,X) by generalized empirical like-
lihood. Note that the weighting function satisfies

E {π0(T,X)u(T )v(X)} = E{u(T )} · E{v(X)} (3.1)

for any suitable functions u(t) and v(x). Ai, Linton, Motegi, and Zhang (2021, Theo-
rem 2) showed that the restriction (3.1) identifies the weighting function π0(T,X). This
result suggests that one may estimate the π0(Ti,Xi)’s by solving the sample analogue of
(3.1). The challenge is that (3.1) implies an infinite number of equations, which is im-
possible to solve with a finite sample of observations. To overcome this difficulty, Ai,
Linton, Motegi, and Zhang (2021) suggested approximating the infinite-dimensional func-
tion space by a sequence of finite-dimensional sieve spaces. Specifically, let uK1(T ) =

(uK1,1(T ), . . . , uK1,K1(T ))> and vK2(X) =
(
vK2,1(X), . . . , vK2,K2(X)

)> denote some
known basis functions with dimensions K1 ∈ N and K2 ∈ N respectively, and let K :=

K1 · K2. The functions uK1(t) and vK2(x) are called the approximation sieves, such as
B-splines or power series (see Newey, 1997, Chen, 2007, for more discussion on sieve ap-
proximation). Because the sieve approximating space is a subspace of the original function
space, π0(T,X) also satisfies

E
{
π0(T,X)uK1(T )vK2(X)>

}
= E{uK1(T )} · E{vK2(X)}> . (3.2)
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Following Ai, Linton, Motegi, and Zhang (2021), we estimate the π0(Ti,Xi)’s con-
sistently by the π̂i’s that maximize the generalized empirical likelihood (GEL) function,
subject to the sample analog of (3.2): {π̂i}Ni=1 = argmax

(
−N−1

∑N
i=1 πi log πi

)
subject to 1

N

∑N
i=1 πiuK1(Ti)vK2(Xi)

> =
{

1
N

∑N
i=1 uK1(Ti)

}{
1
N

∑N
j=1 vK2(Xj)

>
}
.

(3.3)

Two observations are immediate. First, by including a constant of one in the sieve base
functions, (3.3) guarantees that N−1

∑N
i=1 π̂i = 1. Second, we notice that

max

(
−N−1

N∑
i=1

πi log πi

)
= −min

{
N∑
i=1

(N−1πi) · log

(
N−1πi
N−1

)}
.

The entropy maximization problem minimizes the Kullback-Leibler divergence between
the weights {N−1πi}Ni=1 and the empirical frequencies {N−1}, subject to the sample ana-
logue of (3.2). Further, Ai, Linton, Motegi, and Zhang (2021) showed that the dual solution
of the primal problem (3.3) is

π̂K(Ti,Xi) := ρ′
{
uK1(Ti)

>Λ̂K1×K2vK2(Xi)
}
, (3.4)

where ρ′ is the first derivative of ρ with ρ(u) = − exp(−u − 1), and Λ̂K1×K2 is the maxi-
mizer of the strictly concave function ĜK1×K2 defined by

ĜK1×K2(Λ)

:=
1

N

N∑
i=1

ρ
{
uK1(Ti)

>ΛvK2(Xi)
}
−

{
1

N

N∑
i=1

uK1(Ti)

}>
Λ

{
1

N

N∑
j=1

vK2(Xj)

}
. (3.5)

The first order condition of (3.5) implies that {π̂K(Ti,Xi)}Ni=1 satisfy the sample analog of
(3.2), such restrictions reduce the chance of obtaining extreme weights. The concavity of
(3.5) enables us to obtain the solution quickly via the Gauss-Newton algorithm. To ensure
a consistent estimate of π0(T,X), the dimensions of the bases, K1 and K2, shall increase
as the sample size increases. The choice of K1 and K2 in practice will be discussed in
Section 6.1.

Having estimated the weights, we now estimate θ∗, denoted by θ̂, by solving the sam-
ple analogue of (2.2) with respect to θ, i.e.

1

N

N∑
i=1

π̂K(Ti,Xi)m{Yi; g(Ti; θ̂)}∇θg(T ; θ̂) = oP (N−1/2). (3.6)
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With the estimators {π̂K(Ti,Xi)}Ni=1 of {π0(Ti,Xi)}Ni=1 and θ̂ of θ, we estimate Ui by
Ûi = π̂K(Ti,Xi)m{Yi; g(Ti; θ̂)}, for i = 1, . . . , N . Replacing the Ui’s in (2.6) by the Ûi’s,
we have the feasible test statistic for H0 based on

ĴN(t) =
1√
N

N∑
i=1

ÛiH (Ti, t) ,

and the corresponding estimator of the Cramer-von Mises (CM)-type statistic in (2.7) is

ĈMN =
1

N

N∑
i=1

{ĴN(Ti)}2 .

Remark 1. Crump, Hotz, Imbens, and Mitnik (2008) considered the null hypothesis con-
cerning the conditional average treatment effect (CATE) with a binary treatment, that is,
H0 : CATE(x) := E[Y ∗(1) − Y ∗(0)|X = x] = 0 for all x. This null hypothesis indi-
cates that there is no heterogeneity in average treatment effects by covariates. Under the
unconfoundedness condition, the null hypothesis is identical to H0 : CATE(x) = E[Y |T =

1,X = x] − E[Y |T = 0,X = x] = 0 for all x. Further, they proposed series estimators
for the regression functions and formed the Wald test statistic. Their test method is appli-
cable to a particular scenario included in our general formulation (2.1) that there is no
continuous average treatment effect, that is, H ′0 : E[Y ∗(t)] = E[π0(T,X)Y |T = t] = 0 for
all t, given that π0(T,X) was known. However, in practice, π0(T,X) is usually unknown
and needs to be estimated.
Remark 2. An alternative estimator of θ∗ can be constructed underH0. Suppose that under
H0, θ∗ is identified by the unique solution of the following optimization problem:

θ∗ = arg min
θ∈Θ

CM(θ) := N ×
∫
T
{E [Ui(θ)H(Ti, t)]}2 fT (t)dt,

where Ui(θ) := π0(Ti,Xi)m{Yi; g(Ti;θ)}. Let Ûi(θ) := π̂K(Ti,Xi)m{Yi; g(Ti;θ)} and
ĴN(t;θ) := N−1/2

∑N
i=1 Ûi(θ)H (Ti, t). Under H0, the estimator of θ∗ can be defined by

θ̂opt := arg min
θ∈Θ

ĈMN(θ) := arg min
θ∈Θ

1

N

N∑
i=1

{ĴN(Ti;θ)}2. (3.7)

As a result, the alternative test statistic is ĈMN(θ̂opt). However, seeking the global mini-
mizer of ĈMN(θ) is difficult as ĈMN(θ) may not be differentiable, convex, even may not
be continuous. For example, taking m{Yi; g(Ti;θ)} = τ − 1{Yi ≤ g(Ti;θ)} for QDRF,
there does not exist a unique solution to the problem (3.7). Under a stronger condition that
m(y; g) is differentiable in g, we establish the asymptotic results for both ĴN(t; θ̂opt) and
ĈMN(θ̂opt) in Appendix E.
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4 Large sample properties

This section studies the asymptotic properties of ĴN(·) and the test statistic ĈMN .

4.1 Asymptotic properties under null hypothesis

To establish the asymptotic properties of ĴN(·) and ĈMN , the following additional assump-
tions are imposed.

Assumption 2. Suppose thatN−1
∑N

i=1 π̂K(Ti,Xi)m{Yi; g(Ti; θ̂)}∇θg(Ti; θ̂) = op(N
−1/2)

holds.

Assumption 3. V ar(Y |T ) is bounded a.s. on the support of T .

Assumption 4.

(i) g(t;β) is twice continuously differentiable in θ ∈ Θ;

(ii) E[m{Y ; g(T ;θ∗)}|T = t,X = x] is continuously differentiable in (t,x);

(iii) E [π0(T,X)m{Y ; g(T ;θ)}∇θg(T ;θ)] is differentiable w.r.t. θ and ∇θE[π0(T,X)

m{Y ; g(T ;θ)}∇θg(T ;θ)]
∣∣
θ=θ∗

is nonsingular.

Assumption 5. (i) E
[
supθ∈Θ |m{Y ; g(T ;θ)}|2+δ

]
<∞ for some δ > 0; (ii) The function

class
{
m{Y ; g(T ;θ)} : θ ∈ Θ

}
satisfies:

E

[
sup

θ1:‖θ1−θ‖<δ
|m{Y ; g(T ;θ1)} −m{Y ; g(T ;θ)}|2

]1/2

≤ a · δb

for any θ ∈ Θ and any small δ > 0 and for some finite positive constants a and b ≥ 1.

Assumption 2 is essentially saying that the estimating equation is a.s. approximately
satisfied, see Pakes and Pollard (1989). Assumption 3 is needed to bound the asymptotic
variance of the test statistic. Assumption 4 (i) and (ii) impose sufficient regularity conditions
on both the link function g and residual function m. Assumption 4 (iii) ensures that the
variance of the test statistic is finite. Assumption 5 is a stochastic equicontinuity condition,
which is needed for establishing the weak convergence of our test statistic, see Andrews
(1994). Again, this is satisfied by the widely used loss functions such as m{y, g(t;θ)} =

y − g(t;θ) and m{y, g(t;θ)} = τ − 1{y < g(t;θ)} discussed in Section 2.
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To aid presentation of the asymptotic properties of the test statistic, define the following
quantities:

φ(Ti,Xi; t) :=π0(Ti,Xi) ·H (Ti, t) · E[m {Yi; g(Ti;θ
∗)} |Ti,Xi]

− E[π0(Ti,Xi)m {Yi; g(Ti;θ
∗)} ·H (Ti, t)|Xi],

and

ψ(Ti,Xi, Yi; t) :=E
[
π0(Ti,Xi) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · ∇θg(Ti;θ
∗)>H (Ti, t)

]
× E

[
π0(Ti,Xi) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · ∇θg(Ti;θ
∗)∇>θ g(Ti;θ

∗)

]−1

×
{
π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)

− π0(Ti,Xi)∇θg(Ti;θ
∗) · E[m {Yi; g(Ti;θ

∗)} |Ti,Xi]

+ E[π0(Ti,Xi)∇θg(Ti;θ
∗)m {Yi; g(Ti;θ

∗)} |Xi]

}
,

and

η(Ti,Xi, Yi; t) := UiH (Ti, t)− φ(Ti,Xi; t)− ψ(Ti,Xi, Yi; t).

The next theorem establishes the weak convergence of ĴN(·) and ĈMN under H0.

Theorem 1. Suppose that Assumptions 1-5 and Assumptions 6-9 listed in Appendix A hold,
then under H0,

(i) ĴN(t) =
1√
N

N∑
i=1

η(Ti,Xi, Yi; t) + oP (1),

(ii) ĴN(·) converges weakly to J∞(·) in L2{T , dFT (t)} ,

where J∞ is a Gaussian process with zero mean and covariance function given by

Σ(t, t′) = E {η(Ti,Xi, Yi; t)η(Ti,Xi, Yi; t
′)} .

Furthermore,

(iii) ĈMN converges to
∫
{J∞(t)}2dFT (t) in distribution.

The proof of Theorem 1 is relegated to Appendix B. Similar to Bierens and Ploberger
(1997), Chen and Fan (1999), it can be shown that

∫
{J∞(t)}2dFT (t) can be written as an

11



infinite sum of weighted (independent) χ2
1 random variables with weights depending on the

unknown distribution of (Ti,Xi, Yi). Hence, it is difficult to obtain the exact critical values.
We suggest a simulation method to approximate the critical values for the null limiting
distribution of ĈMN , see Section 5.

The next theorem shows that the proposed test statistic is more efficient than the in-
feasible test statistic constructed by using the true π0(T,X). Suppose that π0(T,X) was
known, let θ̂0 be the estimator of θ∗ constructed by using the true ratio function π0(T,X),
which is defined to be the solution of the following equation:

1

N

N∑
i=1

π0(Ti,Xi)m {Yi; g(Ti;θ)}∇θg(Ti;θ) = oP

(
1√
N

)
,

w.r.t. θ. The infeasible test statistic for H0 is then based on

Ĵ0(t) =
1√
N

N∑
i=1

Û0iH (Ti, t), where Û0i = π0(Ti,Xi)m
{
Yi; g(Ti; θ̂0)

}
.

Let

ψ0(Ti,Xi, Yi; t) :=E
[
π0(Ti,Xi) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · ∇θg(Ti;θ
∗)>H (Ti, t)

]
× E

[
π0(Ti,Xi) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · ∇θg(Ti;θ
∗)∇>θ g(Ti;θ

∗)

]−1

× π0(Ti,Xi)m {Yi; g(Ti;θ
∗)}∇θg(Ti;θ

∗),

and

η0(Ti,Xi, Yi; t) := UiH (Ti, t)− ψ0(Ti,Xi, Yi; t).

The following theorem establishes the weak convergence of Ĵ0(·) under H0 and shows that
the asymptotic variance of the proposed test statistic ĴN(t) is smaller than that of Ĵ0(t) for
any t ∈ T .

Theorem 2. Suppose that Assumptions 3-5 hold, then under H0,

(i) Ĵ0(t) =
1√
N

N∑
i=1

η0(Ti,Xi, Yi; t) + oP (1),

(ii) Ĵ0(·) converges weakly to J0,∞(·) in L2{T , dFT (t)},

where J0,∞ is a Gaussian process with zero mean and covariance function given by

Σ0(t, t′) = E {η0(Ti,Xi, Yi; t)η0(Ti,Xi, Yi; t
′)} .

Furthermore, Σ0(t, t) > Σ(t, t) for any t ∈ T .

The proof of Theorem 2 is presented in Appendix C.
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4.2 Special cases

This section discusses two important special continuous treatment effect models, the av-
erage and quantile continuous treatment models. In the case of testing for the average
dose-response model, that is,

H0 : ∃ some θ∗ ∈ Θ ⊂ Rp, s.t. E{Y ∗(t)} = g(t;θ∗) for all t ∈ T , (4.1)

against the alternative hypothesis

H1 : @ any θ ∈ Θ ⊂ Rp, s.t. E{Y ∗(t)} = g(t;θ) = 0 for all t ∈ T ,

m {Y ∗(t); g(t;θ∗)} = Y ∗(t)− g(t;θ∗), UADRF
i = π0(Ti,Xi){Yi − g(Ti;θ

∗)} and the test
statistic for H0 is

ĈM
ADRF

N =
1

N

N∑
i=1

{ĴADRFN (Ti)}2,

where

ĴADRFN (t) =
1√
N

N∑
i=1

ÛADRF
i H (Ti, t), Û

ADRF
i = π̂K(Ti,Xi)

{
Yi − g(Ti; θ̂)

}
.

In this special case, the notations φ(Ti,Xi; t), ψ(Ti,Xi, Yi; t), and η(Ti,Xi, Yi; t) in Theo-
rem 1 become

φADRF (Ti,Xi; t) :=π0(Ti,Xi) ·H (Ti, t) · E{Yi − g(Ti;θ
∗)|Ti,Xi}

− E[π0(Ti,Xi){Yi − g(Ti;θ
∗)} ·H (Ti, t)|Xi],

and

ψADRF (Ti,Xi, Yi; t) :=E
[
π0(Ti,Xi) · ∇θg(Ti;θ

∗)>H (Ti, t)
]

× E
[
π0(Ti,Xi) · ∇θg(Ti;θ

∗)∇>θ g(Ti;θ
∗)
]−1

×
{
π0(Ti,Xi)∇θg(Ti;θ

∗)Yi − π0(Ti,Xi)∇θg(Ti;θ
∗) · E(Yi|Ti,Xi)

+ E[π0(Ti,Xi)∇θg(Ti;θ
∗){Yi − g(Ti;θ

∗)}|Xi]

}
,

and

ηADRF (Ti,Xi, Yi; t) := UADRF
i H (Ti, t)− φADRF (Ti,Xi; t)− ψADRF (Ti,Xi, Yi; t).

Then Theorem 1 implies the following result.
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Corollary 3. Suppose that Assumptions 1-3 and Assumptions 6-9 listed in Appendix A hold,
then under H0,

(i) ĴADRFN (·) converges weakly to JADRF∞ (·) in L2{T , dFT (t)},

where JADRF∞ is a Gaussian process with zero mean and covariance function given by

ΣADRF (t, t′) = E
{
ηADRF (Ti,Xi, Yi; t)η

ADRF (Ti,Xi, Yi; t
′)
}
.

Furthermore,

(ii) ĈM
ADRF

N converges to
∫
{JADRF∞ (t)}2dFT (t) in distribution.

In the case of testing for the quantile dose-response model, that is,

H0 : ∃ some θ∗ ∈ Θ ⊂ Rp, s.t. F−1
Y ∗(t)(τ) = g(t;θ∗) for all t ∈ T , (4.2)

against the alternative hypothesis

H1 : @ any θ ∈ Θ ⊂ Rp, s.t. F−1
Y ∗(t)(τ) = g(t;θ) for all t ∈ T ,

m {Y ∗(t); g(t;θ∗)} = τ − 1{Y ∗(t) < g(t;θ∗)}, UQDRF
i = π0(Ti,Xi)

[
τ − 1{Yi <

g(Ti;θ
∗)}
]
, and the test statistic for H0 is

ĈM
QDRF

N =
1

N

N∑
i=1

[ĴQDRFN (Ti)]
2,

where

ĴQDRFN (t) =
1√
N

N∑
i=1

ÛQDRF
i H (Ti, t), Û

QDRF
i = π̂K(Ti,Xi)

[
τ − 1{Yi < g(t; θ̂)}

]
.

Again, in this special case, the notations φ(Ti,Xi; t), ψ(Ti,Xi, Yi; t), and η(Ti,Xi, Yi; t)

in Theorem 1 become

φQDRF (Ti,Xi; t) :=π0(Ti,Xi) · E
(

[τ − 1{Yi < g(Ti;θ
∗)}] ·H (Ti, t)|Ti,Xi

)
− E

{
π0(Ti,Xi) [τ − 1{Yi < g(Ti;θ

∗)}] ·H (Ti, t)|Xi

}
,

and

ψQDRF (Ti,Xi, Yi; t) :=E
[
π0(Ti,Xi) · fY |T,X{g(Ti;θ

∗)|Ti,Xi} · ∇θg(Ti;θ
∗)>H (Ti, t)

]
14



× E
[
π0(Ti,Xi) · fY |T,X{g(Ti;θ

∗)|Ti,Xi} · ∇θg(Ti;θ
∗)∇>θ g(Ti;θ

∗)
]−1

×
{
− π0(Ti,Xi)∇θg(Ti;θ

∗)1{Yi < g(Ti;θ
∗)}

+ π0(Ti,Xi)∇θg(Ti;θ
∗) · E[1{Yi < g(Ti;θ

∗)}|Ti,Xi]

+ E
[
π0(Ti,Xi)∇θg(Ti;θ

∗) [τ − 1{Yi < g(Ti;θ
∗)}] |Xi

]}
,

and

ηQDRF (Ti,Xi, Yi; t) := UQDRF
i H (Ti, t)− φQDRF (Ti,Xi; t)− ψQDRF (Ti,Xi, Yi; t).

Then Theorem 1 implies the following result.

Corollary 4. Suppose that Assumptions 1-3 and Assumptions 6-9 listed in Appendix A hold,
then under H0,

(i) ĴQDRFN (·) converges weakly to JQDRF∞ (·) in L2{T , dFT (t)},

where JQDRF∞ is a Gaussian process with zero mean and covariance function given by

ΣQDRF (t, t′) = E
{
ηQDRF (Ti,Xi, Yi; t)η

QDRF (Ti,Xi, Yi; t
′)
}
.

Furthermore,

(ii) ĈM
QDRF

N converges to
∫
{JQDRF∞ (t)}2dFT (t) in distribution.

4.3 Asymptotic properties under the fixed and local alternative hy-
pothesis

This section studies the asymptotic distribution of ĴN(·) under the fixed and Pitman local
alternatives. The Pitman local alternative is given by

HL : E
[
m

{
Y ∗(t); g(t;θ∗N) +

1√
N
· δ(t)

}]
= 0 for some θ∗N ∈ Θ and all t ∈ T ,

where
∫
{δ(t)}2dFT (t) <∞. With Assumption 1, HL can be represented by

HL : E
[
π0(T,X)m

{
Y ; g(T ;θ∗N) +

1√
N
· δ(T )

} ∣∣∣∣T = t

]
= 0 for some θ∗N ∈ Θ and all t ∈ T ,

which deviates from the null model at the rate of Op(N
−1/2). Let θ∗ be the limit of θ∗N as

N →∞, hence it solves the following equation:

E
[
π0(T,X)m {Y ; g(T ;θ∗)}

∣∣∣∣T = t

]
= 0 for all t ∈ T .
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Define

µ(t) :=E
[
π0(Ti,Xi) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · ∇θg(Ti;θ
∗)>H (Ti, t)

]
× E

[
π0(Ti,Xi) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · ∇θg(Ti;θ
∗)∇>θ g(Ti;θ

∗)

]−1

× E
[
π0(Ti,Xi) ·

∂

∂g
E
[
m {Yi; g(Ti;θ

∗)}
∣∣Ti,Xi

]
· δ(Ti) · ∇θg(Ti;θ

∗)

]
.

The following theorem gives the asymptotic distribution of ĴN(·) under the local alter-
native HL and the fixed alternative H1.

Theorem 5. Suppose that Assumptions 1-5 and Assumptions 6-9 listed in Appendix A hold.
Under the local alternative hypothesis HL,

(i) ĴN(t) =
1√
N

N∑
i=1

η(Ti,Xi, Yi; t) + µ(t) + oP (1) , (4.3)

(ii) ĴN(·) converges weakly to J∞,µ(·) in L2{T , dFT (t)} ,

where J∞,µ is a Gaussian process with mean function µ(t) and covariance function given
by

Σ(t, t′) = E {η(Ti,Xi, Yi; t)η(Ti,Xi, Yi; t
′)} .

Under the fixed H1,

(iii)
1√
N
ĴN(·) converges to µ1(·) in probability in L2(T , dt),

where µ1(t) := E [π0(Ti,Xi)m {Yi; g(Ti;θ
∗)}H (Ti, t)].

Comparing Theorem 5 (ii) to Theorem 1 (ii), we see that our test statistic is able to
detect the local alternatives deviated from the null model at the rate of Op(N

−1/2).

5 Approximation for the null limiting distribution

We know from Theorem 1 that ĈMN converges in distribution to
∫
{J∞(t)}2 dFT (t). Us-

ing techniques similar to those in Bierens and Ploberger (1997) and Chen and Fan (1999),
one can show that

∫
{J∞(t)}2 dFT (t) is an infinite sum of weighted (independent) χ2

1 ran-
dom variables, where the weights depend on the unknown distribution of the (Xi, Ti, Yi)’s
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(see also Li, Hsiao, and Zinn, 2003). Obtaining the exact critical values is difficult and
we here propose a simulation method to approximate the null limiting distribution. The
method is a special case of the exchangeable bootstrap (Praestgaard and Wellner, 1993,
Van Der Vaart and Wellner, 1996, Chernozhukov, Fernández-Val, and Melly, 2013, Donald
and Hsu, 2014). Specifically, we first generate B sets of N independent standard normal
random variables w1,b, . . . , wN,b, for b = 1, . . . , B and B a large enough integer. Then we
define

Ĵ∗N,b(t) =
1√
N

N∑
i=1

wi,bη̂(Ti,Xi, Yi; t) , (5.1)

where η̂(Ti,Xi, Yi; t) = ÛiH (Ti, t)− φ̂(Ti,Xi; t)− ψ̂(Ti,Xi, Yi; t), with φ̂(Ti,Xi; t) and
ψ̂(Ti,Xi, Yi; t) respectively some consistent nonparametric plug-in estimators of φ(Ti,Xi; t)

and ψ(Ti,Xi, Yi; t) defined above in Theorem 1, for example the additive penalized spline
estimator(see Ruppert, Wand, and Carroll, 2003 for example) or the series estimator used
in Donald and Hsu (2014).

It is easy to see that E∗{wi,bη̂(Ti,Xi, Yi; t)} = 0 and E∗{w2
i,bη̂(Ti,Xi, Yi; t)η̂(Ti,Xi, Yi; t

′)}
= η̂(Ti,Xi, Yi; t)η̂(Ti,Xi, Yi; t

′), for i = 1, . . . , N , b = 1, . . . , B and all t, t′ ∈ T , where
E∗{·} is the conditional expectation given the data (Ti,Xi, Yi)

N
i=1. Because η̂ is a con-

sistent estimator of η, we can see that Ĵ∗N,b(·) has the same limiting process as ĴN(·) for
b = 1, . . . , B. Then, we can approximate the limiting distribution of ĈMN under H0 by

ĈM
∗
N,b =

1

N

N∑
i=1

{
Ĵ∗N,b(Ti)

}2
,

for b = 1, . . . , B. That is, we can approximate the p-value by B−1
∑B

b=1 1(ĈM
∗
N,b ≥

ĈMN).

6 Numerical studies

6.1 Choosing K1 and K2

The large-sample properties of the proposed estimator hold for a range of values of K1 and
K2. This presents a dilemma for applied researchers, who have only one finite sample.
Too little smoothing yields a large variance and too much smoothing yields a large bias.
Therefore, applied researchers would like to have some guidance on the choice of K1 and
K2. In this section, we propose a cross-validation method for choosing the smoothing
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parameters K1 and K2. Specifically, we split the data set into F sets (say F = 5 or 10), and
select K1 and K2 that minimize the following quantity

CV (K1, K2) =
F∑
j=1

∑
k∈Sj

[
π̂

(−j)
K (Tk,Xk)m

{
Yk; g

(
Tk; θ̂

(−j)
)}]2

, (6.1)

where Sj denotes the jth set of data of T,X and Y , and for j = 1, . . . , F ,

θ̂(−j) = arg min
θ

∑
i/∈Sj

π̂
(−j)
K (Ti,Xi)m {Yi; g(Ti;θ)}∇θg(Ti,θ) ,

with π̂(−j)
K (Ti,Xi) obtained in the same way as that introduced in Section 2 via (3.4) and

(3.5), but without using the individuals in Sj .

6.2 Simulation study

To assess the performance of our goodness-of-fit test method, we conducted Monte Carlo
simulation studies on the following four data generating processes (DGPs):

DGP0-L T = 1 + 0.2X + ξ, and Y = 1 +X + T + ε,

DGP0-NL T = 0.1X2 + ξ, and Y = X2 + T + ε,

DGP1-L T = 1 + 0.2X + ξ, and Y = 1 +X + T 3 + ε,

DGP1-NL T = 0.1X2 + ξ, and Y = X2 + T 3 + ε,

where ξ and ε are independent standard normal random variables, and X is a uniform
random variable supported on [0, 1]. For all the four scenarios, we considered the two-sided
hypothesis testing in (2.1), where m{Y ∗(t); g(t;θ∗)} = Y ∗(t) − g(t;θ∗) (average) and
m{Y ∗(t); g(t;θ∗)} = 0.5− 1{Y ∗(t) < g(t;θ∗)} (median), and

g{t; (θ∗0, θ
∗
1)} = θ∗0 + θ∗1t .

Clearly, H0 is true for DGP0-L and DGP0-NL, but fails for DGP1-L and DGP1-
NL. For each case, we generated 1000 samples of size 100, 200, and 500. The number of
samples for the simulation-based approximation of the limiting process is B = 500 and the
number of folds in the cross-validation (6.1) was taken to be F = 10. We compared the
three commonly used weight functions H that are mentioned in Section 2, the logistic, the
cosine-sine and the indicator ones. Specifically, for the logistic weight function, we took
the constant c = 5.
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Table 1: Estimated sizes

Logistic Cosine-Sine Indicator

m(·) Model N 1% 5% 10% 1% 5% 10% 1% 5% 10%

Average

DGP0-L
100 0.017 0.078 0.133 0.017 0.076 0.132 0.011 0.062 0.113

200 0.013 0.056 0.112 0.014 0.055 0.113 0.005 0.058 0.125

500 0.013 0.051 0.101 0.010 0.047 0.099 0.013 0.053 0.106

DGP0-NL
100 0.028 0.096 0.174 0.016 0.081 0.135 0.014 0.062 0.110

200 0.019 0.084 0.140 0.007 0.062 0.127 0.010 0.059 0.120

500 0.018 0.070 0.115 0.011 0.053 0.113 0.015 0.052 0.111

Median

DGP0-L
100 0.028 0.101 0.162 0.019 0.071 0.133 0.026 0.077 0.144

200 0.018 0.074 0.142 0.016 0.063 0.117 0.012 0.066 0.120

500 0.014 0.059 0.117 0.007 0.064 0.117 0.012 0.052 0.117

DGP0-NL
100 0.063 0.148 0.233 0.016 0.082 0.136 0.018 0.074 0.148

200 0.032 0.100 0.159 0.014 0.060 0.115 0.016 0.063 0.129

500 0.018 0.069 0.128 0.009 0.056 0.111 0.013 0.057 0.107

Tables 1 and 2 summarize the empirical rejection probabilities computed at significance
levels 1%, 5%, and 10% for each case, which respectively show the estimated sizes (DGP0-
L and DGP0NL) and the estimated powers (DGP1-L and DGP1-NL) of our test method.

We can see from Table 1 that the estimated sizes of our method with cosine-sine and
indicator weight functions are quite close to the nominal sizes from N = 100 to 500 for all
cases. The estimated sizes when using the logistic weight function are obviously over-sized
when the sample size is small, especially for nonlinear X cases, but they also improve as
the sample size increases and are close to the nominal sizes when N = 500.

From Table 2, we observed that all tests are quite powerful even when N = 100.
Overall, the simulation studies confirmed our asymptotic theorems and showed that

in practice, the cosine-sine and indicator weight functions might perform better than the
logistic one for nonlinearX cases.

6.3 Real data analysis

In this section, we applied our method to examine the model assumption made on the U.S.
presidential campaign data in Ai, Linton, Motegi, and Zhang (2021). The data have been
analyzed a lot in the treatment effect literature (Urban and Niebler, 2014, Fong, Hazlett, and
Imai, 2018), where the interest was to explore the casual relationship between advertising
and campaign contributions. The treatment of interest is the number of political advertise-
ments aired in each zip code from non-competitive states, which ranges from 0 to 22379
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Table 2: Estimated power

Logistic Cosine-Sine Indicator

m(·) Model N 1% 5% 10% 1% 5% 10% 1% 5% 10%

Average

DGP1-L
100 0.999 0.999 0.999 0.999 0.999 1 0.998 1 1

200 1 1 1 1 1 1 1 1 1

DGP1-NL
100 0.995 1 1 0.998 0.998 1 0.998 0.999 1

200 1 1 1 1 1 1 1 1 1

Median

DGP1-L
100 1 1 1 1 1 1 1 1 1

200 1 1 1 1 1 1 1 1 1

DGP1-NL
100 0.961 0.989 0.995 0.953 0.985 0.996 0.964 0.983 0.995

200 0.999 1 1 1 1 1 1 1 1

across N = 16265 zip codes.
The data was first analyzed by Urban and Niebler (2014), who used a binary model to

compare the campaign contributions of the 5230 zip codes that received more than 1000
advertisements with those of the other 11035 zip codes that received less than 1000 ad-
vertisements. Their research suggested that advertising in non-competitive states had a
significant casual effect on the level of campaign contributions.

By contrast, Ai, Linton, Motegi, and Zhang (2021) treated the treatment variable (num-
ber of political advertisements) as a continuous variable and assumed that

E{Y ∗(t)} = β1 + β2t+ β3t
2 ,

where the observed outcome Y ∗(T ) = log(Contribution+1) and T = log(#Advertisements+
1). The covariatesX considered were

X =



log(Population)

%Age over 65

log(Median Income)

%Hispanic

%Black

log(Population density + 1)

%College graduates

1(Can commute to a competitive state)


.

The definition of each covariate is almost self-explanatory and one can refer to Fong, Ha-
zlett, and Imai (2018) for more details. Ai, Linton, Motegi, and Zhang (2021) found
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Figure 1: The histogram of the original campaign contribution data (top left) and the Box-
Cox transformed contributions (bottom left), the scatter plot of the original campaign con-
tribution data (top right) and the Box-Cox transformed ones (bottom right) versus the log-
transformed number of political advertisements.

that the 95% confidence intervals for β2 and β3 were respectively [−0.025, 0.232] and
[−0.025, 0.001], indicating that no significant causal link between advertising and cam-
paign contributions was found from the linear model. Similar results were also reported
by Fong, Hazlett, and Imai (2018). The authors then concluded that such opposing results
from binary models and continuous linear models suggested a rather complex relationship
between advertising and campaign contributions.

We reached the same conclusion in our data analysis. First, we examined the histogram
of the original campaign contribution data and the scatter plot of the campaign contributions
versus the log-transformed number of advertisements T . From the first row of Figure 1, we
can see that the campaign contribution data are highly right-skewed both unconditionally
and conditionally on T . That is, they are not likely to fit any linear models. We then
conducted a log-transformation on the contribution data as in Ai, Linton, Motegi, and Zhang
(2021). However, the results were similar.
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Table 3: Estimated power with J = 100 and B = 500 from subsamples of U.S. presidential
campaign data

Logistic Cosine-Sine Indicator

N 1% 5% 10% 1% 5% 10% 1% 5% 10%

200 0.67 0.83 0.90 0.72 0.84 0.91 0.64 0.83 0.85

500 0.71 0.84 0.91 0.73 0.84 0.91 0.65 0.81 0.87

1000 0.93 0.96 0.98 0.91 0.97 0.98 0.90 0.96 0.98

To make the data more likely to fit a linear model, we searched across Box-Cox trans-
formations of the form {(Contribution + 1)λ − 1}/λ w.r.t. λ to find a transformation of the
contribution whose sample quantiles have the largest correlation with those of a standard
normal distribution. This yielded λ = −0.4336. The histogram and the scatter plot of the
Box-Cox-transformed contribution data are shown in the second row of Figure 1. We can
see that the transformed data are still highly right-skewed unconditionally. However, now,
given T , the scatter plot no longer shows as much skewness.

We then applied our method with logistic, cosine-sine, and indicator weight functions
with a B = 500 simulation-based approximation to the Box-Cox-transformed data to ver-
ify if they fit a linear model. Following Ai, Linton, Motegi, and Zhang (2021), we took
g(t;θ) = θ0 + θ1t + θ2t

2, uK1(T ) = (1, T, T 2)> and vK2(X) = (1,X>)> for estimating
π0. Unsurprisingly, all tests rejected the null hypothesis of a simple linear model. This
leads to the same conclusion as Ai, Linton, Motegi, and Zhang (2021) that the relationship
between advertisements and campaign contributions is rather complex, or there are some
other confounding variables not included inX .

Finally, we treated the full sample N = 16256 as a population, knowing that the linear
model is not true for this population. We then randomly took some subsamples to see the
power performance of our test. There, when we tried sample sizes larger than 1500, nearly
all tests rejected the null hypothesis 100% of the time. We report the estimated power of our
tests computed from 100 random subsamples of sample sizes 200, 500 and 1000 in Table 3.
We can see that all tests perform similarly and powerfully.
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Appendix

A Some preliminary results

We recall some preliminary results which have been established in Ai, Linton, Motegi, and
Zhang (2021). The following conditions are inherited from Ai, Linton, Motegi, and Zhang
(2021):

Assumption 6. (i) The support X of X is a compact subset of Rr. The support T of the
treatment variable T is a compact subset of R. (ii) There exist two positive constants η1 and
η2 such that

0 < η1 ≤ π0(t,x) ≤ η2 <∞ , ∀(t,x) ∈ T × X .
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Assumption 7. There exist ΛK1×K2 ∈ RK1×K2 and a positive constant α > 0 such that

sup
(t,x)∈T ×X

∣∣ρ′−1 {π0(t,x)} − uK1(t)
>ΛK1×K2vK2(x)

∣∣ = O(K−α) ,

where ρ(u) = − exp(−u− 1) and ρ′−1 is the inverse function of ρ′.

Assumption 8. (i) For every K1 and K2, the smallest eigenvalues of E
[
uK1(T )uK1(T )>

]
and E

[
vK2(X)vK2(X)>

]
are bounded away from zero uniformly in K1 and K2. (ii) There

are two sequences of constants ζ1(K1) and ζ2(K2) satisfying supt∈T ‖uK1(t)‖ ≤ ζ1(K1)

and supx∈X ‖vK2(x)‖ ≤ ζ2(K2), K = K1(N)K2(N) and ζ(K) := ζ1(K1)ζ2(K2), such
that ζ(K)K−α → 0 and ζ(K)

√
K/N → 0 as N →∞.

Assumption 9. ζ(K)
√
K2/N → 0 and

√
NK−α → 0.

See Ai, Linton, Motegi, and Zhang (2021) for a detailed discussion on Assumptions 6
-9. Under these conditions, Ai, Linton, Motegi, and Zhang (2021, Theorem 3) established
the following results:

Proposition 6. Suppose that Assumptions 6-8 hold. Then, we obtain the following:

sup
(t,x)∈T ×X

|π̂K(t,x)− π0(t,x)| = Op

[
max

{
ζ(K)K−α, ζ(K)

√
K

N

}]
,∫

T ×X
|π̂K(t,x)− π0(t,x)|2dFT,X(t,x) = Op

{
max

(
K−2α,

K

N

)}
,

1

N

N∑
i=1

|π̂K(Ti,Xi)− π0(Ti,Xi)|2 = Op

{
max

(
K−2α,

K

N

)}
.

Furthermore, for any estimand with the form of E{π0(T,X)R(T,X, Y )}, whereR(T,X, Y )

∈ L1(dFT,X,Y ), Theorem 5 of Ai, Linton, Motegi, and Zhang (2021) provides an asymptoti-
cally equivalent representation for the plug-in estimatorN−1

∑N
i=1 π̂K(Ti,Xi)R(Ti,Xi, Yi):

Proposition 7. Suppose that Assumptions 6-9 hold. For any integrable functionR(T,X, Y )

where E{R(T,X, Y )|T = t,X = x} is continuously differentiable. Then,

1√
N

N∑
i=1

[
π̂K(Ti,Xi)R(Ti,Xi, Yi)− E{π0(T,X)R(T,X, Y )}

]
=

1√
N

N∑
i=1

[
π0(Ti,Xi)R(Ti,Xi, Yi)− E{π0(Ti,Xi)R(Ti,Xi, Yi)|Ti,Xi}

+ E{π0(Ti,Xi)R(Ti,Xi, Yi)|Ti} − E{π0(Ti,Xi)R(Ti,Xi, Yi)}

+ E{π0(Ti,Xi)R(Ti,Xi, Yi)|Xi} − E{π0(Ti,Xi)R(Ti,Xi, Yi)}
]

+ op(1).
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B Proof of Theorem 1

Proof. Note that

Ûi =π̂K(Ti,Xi)m
{
Yi; g(Ti; θ̂)

}
=Ui + {π̂K(Ti,Xi)− π0(Ti,Xi)}m {Yi; g(Ti;θ

∗)}

+ π0(Ti,Xi)
[
m
{
Yi; g(Ti; θ̂)

}
−m {Yi; g(Ti;θ

∗)}
]

+ {π̂K(Ti,Xi)− π0(Ti,Xi)}
[
m
{
Yi; g(Ti; θ̂)

}
−m {Yi; g(Ti;θ

∗)}
]
,

where Ui = π0(Ti,Xi)m {Yi; g(Ti;θ
∗)}. Then, we have

ĴN(t) =
1√
N

N∑
i=1

ÛiH (Ti, t) =
1√
N

N∑
i=1

UiH (Ti, t) (B.1)

+
1√
N

N∑
i=1

{π̂K(Ti,Xi)− π0(Ti,Xi)}m {Yi; g(Ti;θ
∗)}H (Ti, t) (B.2)

+
1√
N

N∑
i=1

π0(Ti,Xi)
[
m
{
Yi; g(Ti; θ̂)

}
−m {Yi; g(Ti;θ

∗)}
]
H (Ti, t) (B.3)

+
1√
N

N∑
i=1

{π̂K(Ti,Xi)− π0(Ti,Xi)}
[
m
{
Yi; g(Ti; θ̂)

}
−m {Yi; g(Ti;θ

∗)}
]
H (Ti, t).

(B.4)

Using Proposition 7, under H0 : E[π0(Ti,Xi)m{Yi; g(Ti;θ
∗)}|Ti] = 0, we have

(B.2) =− 1√
N

N∑
i=1

π0(Ti,Xi) · E[m {Yi; g(Ti;θ
∗)} ·H (Ti, t)|Ti,Xi]

+
1√
N

N∑
i=1

E[π0(Ti,Xi)m {Yi; g(Ti;θ
∗)} ·H (Ti, t)|Ti]

+
1√
N

N∑
i=1

E[π0(Ti,Xi)m {Yi; g(Ti;θ
∗)} ·H (Ti, t)|Xi]

− 1√
N

N∑
i=1

E[π0(Ti,Xi)m {Yi; g(Ti;θ
∗)} ·H (Ti, t)] + oP (1)

=− 1√
N

N∑
i=1

π0(Ti,Xi) · E[m {Yi; g(Ti;θ
∗)} ·H (Ti, t)|Ti,Xi]

+
1√
N

N∑
i=1

E[π0(Ti,Xi)m {Yi; g(Ti;θ
∗)} ·H (Ti, t)|Xi] + oP (1)
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=− 1√
N

N∑
i=1

φ(Ti,Xi; t) + oP (1). (B.5)

By Ai, Linton, Motegi, and Zhang (2021, Theorems 4 and 5), under H0, we have

‖θ̂ − θ∗‖ = OP (N−1/2). (B.6)

We next find the expression for
√
N{θ̂ − θ∗}. Note that

1√
N

N∑
i=1

π̂K(Ti,Xi)m
{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂) = oP (1).

Note that m(·) may not be differentiable, and we cannot simply apply the mean value
theorem to obtain the expression for

√
N{θ̂ − θ∗}. We apply the empirical process theory

in Andrews (1994) to solve this problem. Let

νN(f) :=
1√
N

N∑
i=1

[f(Ti,Xi, Yi)− E{f(Ti,Xi, Yi)}]

be the empirical process indexed by f(·). Note that

oP (1) =
1√
N

N∑
i=1

π̂K(Ti,Xi)m
{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂)

=
1√
N

N∑
i=1

π0(Ti,Xi)m
{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂) (B.7)

+
1√
N

N∑
i=1

{π̂K(Ti,Xi)− π0(Ti,Xi)}m {Yi; g(Ti;θ
∗)}∇θg(Ti;θ

∗) (B.8)

+
1√
N

N∑
i=1

{π̂K(Ti,Xi)− π0(Ti,Xi)} (B.9)

×
[
m
{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂)−m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)
]
.

For (B.8), by Proposition 7, under H0, we have

(B.8) =
1√
N

N∑
i=1

{π̂K(Ti,Xi)− π0(Ti,Xi)}m {Yi; g(Ti;θ
∗)}∇θg(Ti;θ

∗)

=− 1√
N

N∑
i=1

π0(Ti,Xi) · E [m {Yi; g(Ti;θ
∗)} |Ti,Xi] · ∇θg(Ti;θ

∗)
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+
1√
N

N∑
i=1

E [π0(Ti,Xi) ·m {Yi; g(Ti;θ
∗)} |Ti] · ∇θg(Ti;θ

∗)

+
1√
N

N∑
i=1

E [π0(Ti,Xi) ·m {Yi; g(Ti;θ
∗)} · ∇θg(Ti;θ

∗)|Xi]

− 1√
N

N∑
i=1

E [π0(Ti,Xi) ·m {Yi; g(Ti;θ
∗)} · ∇θg(Ti;θ

∗)] + oP (1)

=− 1√
N

N∑
i=1

π0(Ti,Xi) · E [m {Yi; g(Ti;θ
∗)} |Ti,Xi] · ∇θg(Ti;θ

∗)

+
1√
N

N∑
i=1

E [π0(Ti,Xi) ·m {Yi; g(Ti;θ
∗)} · ∇θg(Ti;θ

∗)|Xi] + oP (1).

For (B.9), we have

|(B.9)| =
∥∥∥∥ 1√

N

N∑
i=1

{π̂K(Ti,Xi)− π0(Ti,Xi)}

×
[
m
{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂)−m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)
] ∥∥∥∥

≤
√
N · sup

(t,x)∈T ×X
|π̂K(t,x)− π0(t,x)|

· 1

N

N∑
i=1

[∥∥∥m{Yi; g(Ti; θ̂)
}
∇θg(Ti;θ

∗)−m {Yi; g(Ti;θ
∗)}∇θg(Ti;θ

∗)
∥∥∥

+
∥∥∥m{Yi; g(Ti; θ̂)

}
∇2
θg(Ti; θ̃)

∥∥∥ · ∥∥∥θ̂ − θ∗∥∥∥]

=
√
N ·OP

(
ζ(K)K−α + ζ(K)

√
K

N

)
·
{
E
[∣∣∣m{Yi; g(Ti; θ̂)

}
−m {Yi; g(Ti;θ

∗)}
∣∣∣ · ‖∇θg(Ti;θ

∗)‖
]

+OP

(
N−1/2

)}
≤OP

(
ζ(K)K−α + ζ(K)

√
K

N

)
·
√
N ·

{
O(1) · ‖θ̂ − θ∗‖+OP

(
N−1/2

)}
=oP (1), (B.10)

where the second equality holds by Proposition 6 and the law of large numbers; the second
inequality holds by Assumption 5; and the last equality holds by (B.6) and Assumption 8.
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For (B.7), we have

(B.7) =
1√
N

N∑
i=1

π0(Ti,Xi)m
{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂)

=νN (π0(Ti,Xi)m {Yi; g(Ti;θ
∗)}∇θg(Ti;θ

∗))

+
{
νN

(
π0(Ti,Xi)m

{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂)

)
− νN (π0(Ti,Xi)m (Yi; g(Ti;θ

∗))∇θg(Ti;θ
∗))
}

+
√
N · E

[
π0(Ti,Xi)m

{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂)

]
=νN [π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)] + oP (1)

+
√
N · E

[
π0(Ti,Xi)m

{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂)

]
,

where the last equality holds because Assumption 5 and the compactness of Θ imply the
empirical process{

νN [π0(Ti,Xi)m {Yi; g(Ti;θ)}∇θg(Ti;θ)] : θ ∈ Θ

}
is stochastically equicontinuous (Andrews (1994, Theorems 4 and 5)), and ‖θ̂ − θ∗‖ p−→ 0,
then

νN

[
π0(Ti,Xi)m

{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂)

]
−νN [π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)] = oP (1).

Note that under H0, θ̂ P−→ θ∗:
√
N · E

[
π0(Ti,Xi)m

{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂)

]
=
√
N · E [π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)]

+
√
N · ∇θE

[
π0(Ti,Xi)m

{
Yi; g(Ti; θ̃)

}
∇θg(Ti; θ̃)

]
·
{
θ̂ − θ∗

}
=∇θE

[
π0(Ti,Xi)m

{
Yi; g(Ti; θ̃)

}
∇θg(Ti; θ̃)

]
·
√
N
{
θ̂ − θ∗

}
+ oP (1),

where θ̃ lies between θ∗ and θ̂. Then we get

(B.7) =
1√
N

N∑
i=1

π0(Ti,Xi)m {Yi; g(Ti;θ
∗)}∇θg(Ti;θ

∗)

+∇θE
[
π0(Ti,Xi)m

{
Yi; g(Ti; θ̃)

}
∇θg(Ti; θ̃)

]
·
√
N
{
θ̂ − θ∗

}
+ oP (1)

Hence, combining the expressions of (B.7), (B.8), and (B.9), we get
√
N
{
θ̂ − θ∗

}
(B.11)
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= {−∇θE [π0(Ti,Xi)m {Yi; g(Ti;θ
∗)}∇θg(Ti;θ

∗)]}−1

× 1√
N

N∑
i=1

{
π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)

− π0(Ti,Xi)∇θg(Ti;θ
∗) · E[m {Yi; g(Ti;θ

∗}) |Ti,Xi]

+ E[π0(Ti,Xi)∇θg(Ti;θ
∗)m {Yi; g(Ti;θ

∗)} |Ti]
− E[π0(Ti,Xi)∇θg(Ti;θ

∗)m {Yi; g(Ti;θ
∗)}]

+ E[π0(Ti,Xi)∇θg(Ti;θ
∗)m {Yi; g(Ti;θ

∗)} |Xi] + oP (1)

=

{
−E

[
π0(Ti,Xi) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · ∇θg(Ti;θ
∗)∇>θ g(Ti;θ

∗)

]}−1

× 1√
N

N∑
i=1

{
π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)

− π0(Ti,Xi)∇θg(Ti;θ
∗) · E[m {Yi; g(Ti;θ

∗)} |Ti,Xi]

+ E[π0(Ti,Xi)∇θg(Ti;θ
∗)m {Yi; g(Ti;θ

∗)} |Xi]

}
+ oP (1),

where the second equality holds by noting E [π0(Ti,Xi)m {Yi; g(Ti;θ
∗)} |Ti] = 0 under

H0.
Consider the term (B.3). Note that

(B.3) =νN

{
π0(Ti,Xi)

[
m
{
Yi; g(Ti; θ̂)

}
−m {Yi; g(Ti;θ

∗)}
]
H (Ti, t)

}
+
√
N · E {π0(Ti,Xi) [m {Yi; g(Ti;θ)} −m {Yi; g(Ti;θ

∗)}] H (Ti, t)}
∣∣∣∣
θ=θ̂

.

By Assumption 5, the compactness of Θ, and Andrews (1994, Theorems 4 and 5), then the
empirical process{

νN [π0(Ti,Xi) [m {Yi; g(Ti;θ)} −m {Yi; g(Ti;θ
∗)}] H (Ti, t)] : θ ∈ Θ

}
is stochastically equicontinuous. With ‖θ̂ − θ∗‖ p−→ 0 under H0, we have

νN

{
π0(Ti,Xi)

[
m
{
Yi; g(Ti; θ̂)

}
−m {Yi; g(Ti;θ

∗)}
]
H (Ti, t)

}
= oP (1).

Using the mean value theorem and ‖θ̂ − θ∗‖ p−→ 0 under H0, we have

√
N · E {π0(Ti,Xi) [m {Yi; g(Ti;θ)} −m {Yi; g(Ti;θ

∗)}] H (Ti, t)}
∣∣∣∣
θ=θ̂

=

{
∇θE [π0(Ti,Xi)m {Yi; g(Ti;θ)}H (Ti, t)]

∣∣∣∣
θ=θ̃

}>
·
√
N
{
θ̂ − θ∗

}
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=E
[
π0(Ti,Xi) ·

∂

∂g
E{m (Yi; g(Ti;θ)} |Ti,Xi] · ∇θg(Ti;θ)>H (Ti, t)

] ∣∣∣∣
θ=θ̃

·
√
N
{
θ̂ − θ∗

}
=E

[
π0(Ti,Xi) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · ∇θg(Ti;θ
∗)>H (Ti, t)

]
·
√
N
{
θ̂ − θ∗

}
+ oP (1).

By (B.11), we have

(B.3) = − 1√
N

N∑
i=1

ψ(Ti,Xi, Yi; t) + op(1), (B.12)

where

ψ(Ti,Xi, Yi; t) :=E
[
π0(Ti,Xi) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · ∇θg(Ti;θ
∗)>H (Ti, t)

]
× E

[
π0(Ti,Xi) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · ∇θg(Ti;θ
∗)∇>θ g(Ti;θ

∗)

]−1

×
{
π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)

− π0(Ti,Xi)∇θg(Ti;θ
∗) · E[m {Yi; g(Ti;θ

∗)} |Ti,Xi]

+ E[π0(Ti,Xi)∇θg(Ti;θ
∗)m {Yi; g(Ti;θ

∗)} |Xi]

}
.

For the term (B.4), we have

|(B.4)| =

∣∣∣∣∣ 1√
N

N∑
i=1

{π̂K(Ti,Xi)− π0(Ti,Xi)}
[
m
{
Yi; g(Ti; θ̂)

}
−m {Yi; g(Ti;θ

∗)}
]
H (Ti, t)

∣∣∣∣∣
≤
√
N · sup

(t,x)∈T ×X
|π̂K(t,x)− π0(t,x)|

· 1

N

N∑
i=1

∣∣∣m{Yi; g(Ti; θ̂)
}
−m {Yi; g(Ti;θ

∗)}H (Ti, t)
∣∣∣

=
√
N ·OP

(
ζ(K)K−α + ζ(K)

√
K

N

)
·
{
E
[∣∣∣m{Yi; g(Ti; θ̂)

}
−m {Yi; g(Ti;θ

∗)}
∣∣∣ · |H (Ti, t)|

]
+OP

(
N−1/2

)}
≤OP

(
ζ(K)K−α + ζ(K)

√
K

N

)
·
√
N ·

{
O(1) · ‖θ̂ − θ∗‖+OP

(
N−1/2

)}
=oP (1), (B.13)

where the second equality holds by Proposition 6 and the law of large numbers; the second
inequality holds by Assumption 5; and the last equality holds by (B.6) and Assumption 8.
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Hence, combining (B.1), (B.5), (B.12), and (B.13), we have

ĴN(t) =
1√
N

N∑
i=1

η(Ti,Xi, Yi; t) + oP (1)

=
1√
N

N∑
i=1

{UiH (Ti, t)− φ(Ti,Xi; t)− ψ(Ti,Xi, Yi; t)}+ oP (1),

where E{φ(Ti,Xi; t)} = 0 and E{ψ(Ti,Xi, Yi; t)} = 0. Therefore, under the null hypoth-
esis H0, ĴN(·) weakly converges to J∞(·) in L2(T , dt), where J∞(·) is a Gaussian process
with zero mean and covariance function given by

Σ(t, t′) = E {η(Ti,Xi, Yi; t)η(Ti,Xi, Yi; t
′)} .

(ii) Obviously, h(J) :=
∫
{J(t)}2dFT (t) is a continuous function in L2(T , dFT ).

Given that FT (·) is absolutely continuous with respect to the Lebesgue measure, h(J) is
also continuous in L2(T , dt). Therefore, by Theorem 1 (i) and the continuous mapping
theorem, we have that

∫
{Ĵ(t)}2dFT (t) converges to

∫
{J∞(t)}2dFT (t) in distribution.

C Proof of Theorem 2

Similar to Theorem 1, results (i) and (ii) can be established. We next prove Σ0(t, t) >

Σ(t, t) for any fixed t ∈ T . Let

At :=E
[
π0(Ti,Xi) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · ∇θg(Ti;θ
∗)>H (Ti, t)

]
× E

[
π0(Ti,Xi) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · ∇θg(Ti;θ
∗)∇>θ g(Ti;θ

∗)

]−1

.

Then

ψ(Ti,Xi, Yi; t) :=At ·
{
π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)

− π0(Ti,Xi)∇θg(Ti;θ
∗) · E[m {Yi; g(Ti;θ

∗)} |Ti,Xi]

+ E[π0(Ti,Xi)∇θg(Ti;θ
∗)m {Yi; g(Ti;θ

∗)} |Xi]

}
,

and

ψ0(Ti,Xi, Yi; t) := At · π0(Ti,Xi)m {Yi; g(Ti;θ
∗)}∇θg(Ti;θ

∗).
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We have

Σ(t, t) = E
[
{η(Ti,Xi, Yi; t)}2]

=E
[
{UiH (Ti, t)− φ(Ti,Xi; t)− ψ(Ti,Xi, Yi; t)}2]

=E
[{

UiH (Ti, t)− At · π0(Ti,Xi)m {Yi; g(Ti;θ
∗)}∇θg(Ti;θ

∗)

− π0(Ti,Xi) · E[m {Yi; g(Ti;θ
∗)} |Ti,Xi] · (H (Ti, t)− At · ∇θg(Ti;θ

∗))

+ E[π0(Ti,Xi)m {Yi; g(Ti;θ
∗)} · (H (Ti, t)− At · ∇θg(Ti;θ

∗)) |Xi]

}2]
=E

[{
UiH (Ti, t)− At · π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)
}2
]

+ E
[{
π0(Ti,Xi) · E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · (H (Ti, t)− At · ∇θg(Ti;θ
∗))
}2
]

+ E
[{

E[π0(Ti,Xi)m {Yi; g(Ti;θ
∗)} · (H (Ti, t)− At · ∇θg(Ti;θ

∗)) |Xi]
}2
]

− 2 · E

[{
UiH (Ti, t)− At · π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)
}

×
{
π0(Ti,Xi) · E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · (H (Ti, t)− At · ∇θg(Ti;θ
∗))
}]

+ 2 · E

[{
UiH (Ti, t)− At · π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)
}

×
{
E[π0(Ti,Xi)m {Yi; g(Ti;θ

∗)} · (H (Ti, t)− At · ∇θg(Ti;θ
∗)) |Xi]

}]

− 2 · E

[{
π0(Ti,Xi) · E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · (H (Ti, t)− At · ∇θg(Ti;θ
∗))
}

×
{
E[π0(Ti,Xi)m {Yi; g(Ti;θ

∗)} · (H (Ti, t)− At · ∇θg(Ti;θ
∗)) |Xi]

}]

=E
[{
UiH (Ti, t)− At · π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)
}2
]

+ E
[{
π0(Ti,Xi) · E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · (H (Ti, t)− At · ∇θg(Ti;θ
∗))
}2
]

+ E
[{

E[π0(Ti,Xi)m {Yi; g(Ti;θ
∗)} · (H (Ti, t)− At · ∇θg(Ti;θ

∗)) |Xi]
}2
]
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− 2 · E

[{
π0(Ti,Xi) · E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · (H (Ti, t)− At · ∇θg(Ti;θ
∗))
}2
]

+ 2 · E

[{
E[π0(Ti,Xi)m {Yi; g(Ti;θ

∗)} · (H (Ti, t)− At · ∇θg(Ti;θ
∗)) |Xi]

}2
]

− 2 · E

[{
E[π0(Ti,Xi)m {Yi; g(Ti;θ

∗)} · (H (Ti, t)− At · ∇θg(Ti;θ
∗)) |Xi]

}2
]

=E
[{
UiH (Ti, t)− At · π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)
}2
]

+ E
[{

E[π0(Ti,Xi)m {Yi; g(Ti;θ
∗)} · (H (Ti, t)− At · ∇θg(Ti;θ

∗)) |Xi]
}2
]

− E

[{
π0(Ti,Xi) · E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · (H (Ti, t)− At · ∇θg(Ti;θ
∗))
}2
]

<E
[{
UiH (Ti, t)− At · π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)
}2
]

= Σ0(t, t),

where the fourth equality holds by using the tower property of the conditional expectation,
the inequality holds by using Jensen’s inequality.

D Proof of Theorem 5

Proof. We prove parts (i) and (ii). The proof is similar to that for Theorem 1. Let

gN(t,θ) := g(t;θ) +
δ(t)√
N

and UiN = π0(Ti,Xi)m {Yi; gN(Ti;θ
∗
N)} .

Obviously, gN(t,θ)→ g(t,θ) and UiN
a.s.−−→ Ui. Then

Ûi =π̂K(Ti,Xi)m
{
Yi; g(Ti; θ̂)

}
=UiN + {π̂K(Ti,Xi)− π0(Ti,Xi)}m {Yi; gN(Ti;θ

∗
N)}

+ π0(Ti,Xi)
[
m
{
Yi; g(Ti; θ̂)

}
−m {Yi; gN(Ti;θ

∗
N)}
]

+ {π̂K(Ti,Xi)− π0(Ti,Xi)}
[
m
{
Yi; g(Ti; θ̂)

}
−m {Yi; gN(Ti;θ

∗
N)}
]
.

Then, we have

ĴN(t) =
1√
N

N∑
i=1

ÛiH (Ti, t) =
1√
N

N∑
i=1

UiNH (Ti, t) (D.1)
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+
1√
N

N∑
i=1

{π̂K(Ti,Xi)− π0(Ti,Xi)}m {Yi; gN(Ti;θ
∗
N)}H (Ti, t) (D.2)

+
1√
N

N∑
i=1

π0(Ti,Xi)
[
m
{
Yi; g(Ti; θ̂)

}
−m {Yi; gN(Ti;θ

∗
N)}
]
H (Ti, t) (D.3)

+
1√
N

N∑
i=1

{π̂K(Ti,Xi)− π0(Ti,Xi)}
[
m
{
Yi; g(Ti; θ̂)

}
−m {Yi; gN(Ti;θ

∗
N)}
]
H (Ti, t).

(D.4)

Obviously, by Chebyshev’s inequality, we have

(D.1) =
1√
N

N∑
i=1

UiH (Ti, t) +
1√
N

N∑
i=1

(UiN − Ui)H (Ti, t) =
1√
N

N∑
i=1

UiH (Ti, t) + oP (1).

Using Proposition 7, under HL : E[π0(Ti,Xi)m{Yi; gN(Ti;θ
∗
N)}|Ti] = 0, we have

(D.2) =− 1√
N

N∑
i=1

π0(Ti,Xi) · E[m {Yi; gN(Ti;θ
∗
N)} ·H (Ti, t)|Ti,Xi]

+
1√
N

N∑
i=1

E[π0(Ti,Xi)m {Yi; gN(Ti;θ
∗
N)} ·H (Ti, t)|Ti]

+
1√
N

N∑
i=1

E[π0(Ti,Xi)m {Yi; gN(Ti;θ
∗
N))} ·H (Ti, t)|Xi]

− 1√
N

N∑
i=1

E[π0(Ti,Xi)m {Yi; gN(Ti;θ
∗
N)} ·H (Ti, t)] + oP (1)

=− 1√
N

N∑
i=1

π0(Ti,Xi) · E[m {Yi; gN(Ti;θ
∗
N)} ·H (Ti, t)|Ti,Xi]

+
1√
N

N∑
i=1

E[π0(Ti,Xi)m {Yi; gN(Ti;θ
∗
N)} ·H (Ti, t)|Xi] + oP (1)

=− 1√
N

N∑
i=1

π0(Ti,Xi) · E[m {Yi; g(Ti;θ
∗)} ·H (Ti, t)|Ti,Xi]

+
1√
N

N∑
i=1

E[π0(Ti,Xi)m {Yi; g(Ti;θ
∗)} ·H (Ti, t)|Xi] + oP (1)

=− 1√
N

N∑
i=1

φ(Ti,Xi; t) + oP (1),
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where the third equality holds by using Chebyshev’s inequality.
We consider the term (D.3). We first find the expression for

√
N{θ̂ − θ∗N}. Note from

Assumption 2 that

1√
N

N∑
i=1

π̂K(Ti,Xi)m
{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂) = oP (1).

Note that

1√
N

N∑
i=1

π̂K(Ti,Xi)m
{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂)

=
1√
N

N∑
i=1

π0(Ti,Xi)m
{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂) (D.5)

+
1√
N

N∑
i=1

{π̂K(Ti,Xi)− π0(Ti,Xi)}m {Yi; g(Ti;θ
∗
N)}∇θg(Ti;θ

∗
N) (D.6)

+
1√
N

N∑
i=1

{π̂K(Ti,Xi)− π0(Ti,Xi)} (D.7)

×
[
m
{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂)−m {Yi; g(Ti;θ

∗
N)}∇θg(Ti;θ

∗
N)
]
.

For (D.6), Proposition 7, under HL, we have

1√
N

N∑
i=1

{π̂K(Ti,Xi)− π0(Ti,Xi)}m {Yi; g(Ti;θ
∗
N})∇θg(Ti;θ

∗
N)

=− 1√
N

N∑
i=1

π0(Ti,Xi) · E [m {Yi; g(Ti;θ
∗
N)} |Ti,Xi] · ∇θg(Ti;θ

∗
N)

+
1√
N

N∑
i=1

E [π0(Ti,Xi) ·m {Yi; g(Ti;θ
∗
N)} |Ti] · ∇θg(Ti;θ

∗
N)

+
1√
N

N∑
i=1

E [π0(Ti,Xi) ·m {Yi; g(Ti;θ
∗
N)} · ∇θg(Ti;θ

∗
N)|Xi]

− 1√
N

N∑
i=1

E [π0(Ti,Xi) ·m {Yi; g(Ti;θ
∗
N)} · ∇θg(Ti;θ

∗
N)] + oP (1)

=− 1√
N

N∑
i=1

π0(Ti,Xi) · E [m {Yi; g(Ti;θ
∗)} |Ti,Xi] · ∇θg(Ti;θ

∗)

+
1√
N

N∑
i=1

E [π0(Ti,Xi) ·m {Yi; g(Ti;θ
∗)} · ∇θg(Ti;θ

∗)|Xi] + oP (1),
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where the last equality holds by using Chebyshev’s inequality and the fact that limN→∞ θ
∗
N =

θ∗.
Recall the definition of θ∗N in section 4.3, we can see that ‖θ∗N − θ∗‖ = Op(N

−1/2).
Then for (D.7), by using a similar argument used in establishing (B.13), we can obtain
(D.7) = oP (1).

For (D.5), we have

(D.5) =
1√
N

N∑
i=1

π0(Ti,Xi)m
{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂)

=νN [π0(Ti,Xi)m {Yi; g(Ti;θ
∗)}∇θg(Ti;θ

∗)]

+
{
νN

(
π0(Ti,Xi)m

{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂)

)
− νN (π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗))
}

+
√
N · E

[
π0(Ti,Xi)m

{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂)

]
=νN [π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)] + oP (1)

+
√
N · E

[
π0(Ti,Xi)m

{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂)

]
,

where the last equality holds because the empirical process{
νN (π0(Ti,Xi)m {Yi; g(Ti;θ)}∇θg(Ti;θ)) : θ ∈ Θ

}
is stochastically equicontinuous, and ‖θ̂ − θ∗‖ p−→ 0, then

νN

(
π0(Ti,Xi)m

{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂)

)
−νN (π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)) = oP (1).

Note that under HL, θ∗N → θ∗, and θ̂ P−→ θ∗:
√
N · E

[
π0(Ti,Xi)m

{
Yi; g(Ti; θ̂)

}
∇θg(Ti; θ̂)

]
=
√
N · E [π0(Ti,Xi)m {Yi; g(Ti;θ

∗
N)}∇θg(Ti;θ

∗
N)]

+
√
N · ∇θE

[
π0(Ti,Xi)m

{
Yi; g(Ti; θ̃N)

}
∇θg(Ti; θ̃N)

]
·
{
θ̂ − θ∗N

}
=
√
N · E [π0(Ti,Xi) · E [m {Yi; g(Ti;θ

∗
N)} |Ti,Xi] · ∇θg(Ti;θ

∗
N)]

+
√
N · ∇θE

[
π0(Ti,Xi)m

{
Yi; g(Ti; θ̃N)

}
∇θg(Ti; θ̃N)

]
·
{
θ̂ − θ∗N

}
=
√
N · E [π0(Ti,Xi) · E [m {Yi; gN(Ti;θ

∗
N)} |Ti,Xi] · ∇θg(Ti;θ

∗
N)]

−
√
N · E

[
π0(Ti,Xi) ·

∂

∂g
E
[
m {Yi; g̃N(Ti;θ

∗
N)}

∣∣Ti,Xi

]
· {gN(Ti;θ

∗
N)− g(Ti;θ

∗
N)}∇θg(Ti;θ

∗
N)

]
+∇θE

[
π0(Ti,Xi)m

{
Yi; g(Ti; θ̃N)

}
∇θg(Ti; θ̃N)

]
·
√
N
{
θ̂ − θ∗N

}
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=− E
[
π0(Ti,Xi) ·

∂

∂g
E
[
m {Yi; g(Ti;θ

∗)}
∣∣Ti,Xi

]
· δ(Ti) · ∇θg(Ti;θ

∗)

]
+ {∇θE [π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)] + oP (1)} ·

√
N
{
θ̂ − θ∗N

}
=− E

[
π0(Ti,Xi) ·

∂

∂g
E
[
m {Yi; g(Ti;θ

∗)}
∣∣Ti,Xi

]
· δ(Ti) · ∇θg(Ti;θ

∗)

]
+

{
E
[
π0(Ti,Xi) ·

∂

∂g
E [m {Yi; g(Ti;θ

∗)} |Ti,Xi] · ∇θg(Ti;θ
∗)∇>θ g(Ti;θ

∗)

]
+ E

[
π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇2
θg(Ti;θ

∗)
]

+ oP (1)

}
·
√
N
{
θ̂ − θ∗N

}
=− E

[
π0(Ti,Xi) ·

∂

∂g
E
[
m {Yi; g(Ti;θ

∗)}
∣∣Ti,Xi

]
· δ(Ti) · ∇θg(Ti;θ

∗)

]
+ E

[
π0(Ti,Xi) ·

∂

∂g
E [m {Yi; g(Ti;θ

∗)} |Ti,Xi] · ∇θg(Ti;θ
∗)∇>θ g(Ti;θ

∗)

]
·
√
N
{
θ̂ − θ∗N

}
+ oP (1),

where θ̃N lies between θ∗N and θ̂, and g̃N(Ti;θ
∗
N) lies between gN(Ti;θ

∗
N) and g(Ti;θ

∗
N).

Hence, we get
√
N
{
θ̂ − θ∗N

}
=E

[
π0(Ti,Xi) ·

∂

∂g
E [m {Yi; g(Ti;θ

∗)} |Ti,Xi] · ∇θg(Ti;θ
∗)∇>θ g(Ti;θ

∗)

]−1

× E
[
π0(Ti,Xi) ·

∂

∂g
E
[
m {Yi; g(Ti;θ

∗
N))}

∣∣Ti,Xi

]
· δ(Ti) · ∇θg(Ti;θ

∗
N)

]
− E

[
π0(Ti,Xi) ·

∂

∂g
E [m {Yi; g(Ti;θ

∗)} |Ti,Xi] · ∇θg(Ti;θ
∗)∇>θ g(Ti;θ

∗)

]−1

× 1√
N

N∑
i=1

{
π0(Ti,Xi)m {Yi; g(Ti;θ

∗)}∇θg(Ti;θ
∗)

− π0(Ti,Xi) · E [m {Yi; g(Ti;θ
∗)} |Ti,Xi] · ∇θg(Ti;θ

∗)

+ E [π0(Ti,Xi) ·m {Yi; g(Ti;θ
∗)} · ∇θg(Ti;θ

∗)|Xi]

}
+ oP (1).

Then similar to (B.12), we have

(D.3) = − 1√
N

N∑
i=1

ψ(Ti,Xi, Yi; t) + µ(t) + op(1),

where

µ(t) =E
[
π0(Ti,Xi) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · ∇θg(Ti;θ
∗)>H (Ti, t)

]
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× E
[
π0(Ti,Xi) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,Xi] · ∇θg(Ti;θ
∗)∇>θ g(Ti;θ

∗)

]−1

× E
[
π0(Ti,Xi) ·

d

dg
E
[
m {Yi; g(Ti;θ

∗
N)}

∣∣Ti,Xi

]
· δ(Ti) · ∇θg(Ti;θ

∗
N)

]
.

Hence, we have

ĴN(t) =
1√
N

N∑
i=1

η(Ti,Xi, Yi; t) + µ(t) + oP (1)

=
1√
N

N∑
i=1

{UiH (Ti, t)− φ(Ti,Xi; t)− ψ(Ti,Xi, Yi; t)}+ µ(t) + oP (1),

where E{φ(Ti,Xi; t)} = 0 and E{ψ(Ti,Xi, Yi; t)} = 0. Therefore, under the null hy-
pothesis H0, ĴN(·) weakly converges to J∞,µ(·) in L2(T , dt), where J∞,µ(·) is a Gaussian
process with mean function µ(t) and covariance function given by

Σ(t, t′) = E {η(Ti,Xi, Yi; t)η(Ti,Xi, Yi; t
′)} .

We prove part (iii). Because

1√
N
ĴN(t) =

1

N

N∑
i=1

ÛiH (Ti, t)

=
1

N

N∑
i=1

UiH (Ti, t) (D.8)

+
1

N

N∑
i=1

{π̂K(Ti,Xi)− π0(Ti,Xi)}m {Yi; g(Ti;θ
∗)}H (Ti, t) (D.9)

+
1

N

N∑
i=1

π0(Ti,Xi)
[
m
{
Yi; g(Ti; θ̂)

}
−m {Yi; g(Ti;θ

∗)}
]
H (Ti, t) (D.10)

+
1

N

N∑
i=1

{π̂K(Ti,Xi)− π0(Ti,Xi)}
[
m
{
Yi; g(Ti; θ̂)

}
−m {Yi; g(Ti;θ

∗)}
]
H (Ti, t).

(D.11)

By applying a similar argument for (B.2)-(B.4), we have that (D.9)-(D.11) are of oP (1).
Under H1, the law of large nubers implies (D.8) = µ1(t) + oP (1). Hence, we conclude the
proof.
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E Asymptotic properties of ĴN(t; θ̂opt) and ĈMN(θ̂opt)

Theorem 8. Suppose that m(y; g) is differentiable with respect to g, Assumptions 1-5 and
Assumptions 6-9 listed in Appendix A hold, then under H0,

(i) ĴN(t; θ̂opt) =
1√
N

N∑
i=1

ηopt(Ti,Xi, Yi; t) + oP (1),

(ii) ĴN(·; θ̂opt) converges weakly to J∞,opt(·) in L2{T , dFT (t)} ,

where J∞,opt is a Gaussian process with zero mean and covariance function given by

Σopt(t, t
′) = E {ηopt(Ti,Xi, Yi; t)ηopt(Ti,Xi, Yi; t

′)} .

Furthermore,

(iii) ĈMN(θ̂opt) converges to
∫
{J∞,opt(t)}2dFT (t) in distribution.

Proof. We first claim ‖θ̂opt − θ∗‖
P−→ 0 under H0. Since

• Θ is compact;

• by Proposition 6, |N−1 · ĈMN(θ)− CM(θ)| P−→ 0 for every θ ∈ Θ;

• CM(θ) is continuous in θ;

• |Ûi(θ)| = |π̂K(Ti,Xi)m(Yi; g(Ti;θ))| ≤ Op(1)×supθ∈Θ |m(Yi; g(Ti;θ))| and E[supθ∈Θ

|m(Yi; g(Ti;θ))|] <∞;

then it follows from van der Vaart (1998, Theorem 5.7) that ‖θ̂opt − θ∗‖
P−→ 0.

We then find the asymptotic expression for
√
N{θ̂opt−θ∗}. By the first order condition,

we get

1

N

N∑
i=1

ĴN(Ti; θ̂opt) · ∇θĴN(Ti; θ̂opt) = 0

Using the mean value theorem, we get

0 =
1

N

N∑
i=1

ĴN(Ti;θ
∗) · ∇θĴN(Ti;θ

∗)√
N

+
1

N

N∑
i=1

{
∇θĴN(Ti; θ̃opt)√

N
· ∇θĴN(Ti; θ̃opt)

>
√
N

+
ĴN(Ti; θ̃opt)√

N
· ∇

2
θĴN(Ti; θ̃opt)√

N

}
·
√
N
{
θ̂opt − θ∗

}
,
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where θ̃opt lies on the joining from θ̂opt to θ∗. Using the fact that ‖θ̂opt − θ∗‖
p−→ 0 and

Proposition 6, under H0, it is easy to obtain

1

N

N∑
i=1

{
∇θĴN(Ti; θ̃opt)√

N
· ∇θĴN(Ti; θ̃opt)

>
√
N

+
ĴN(Ti; θ̃opt)√

N
· ∇

2
θĴN(Ti; θ̃opt)√

N

}

=

∫
T
E
[
π0(T,X) · ∂

g
m{Y ; g(T ;θ∗)}∇θg(T ;θ∗)H(T ; t)

]
× E

[
π0(T,X) · ∂

g
m{Y ; g(T ;θ∗)}∇θg(T ;θ∗)>H(T ; t)

]
fT (t)dt+ oP (1)

=

∫
T
BtB

>
t fT (t)dt+ oP (1),

where

Bt := E
[
π0(T,X) · ∂

g
m{Y ; g(T ;θ∗)}∇θg(T ;θ∗)H(T ; t)

]
.

For ĴN(t;θ∗), under H0 : E[π0(Ti,Xi)m{Yi; g(Ti;θ
∗)}|T = t] = 0, by using Propo-

sition 7, we get

ĴN(t;θ∗) =
1√
N

N∑
i=1

π̂K(Ti,Xi)m{Yi; g(Ti;θ
∗)}H(Ti; t)

=
1√
N

N∑
i=1

{
π0(Ti,Xi)m{Yi; g(Ti;θ

∗)}H(Ti; t)− π0(Ti,Xi) · E[m{Yi; g(Ti;θ
∗)}|Ti,Xi] · H(Ti; t)

+ E[π0(Ti,Xi)m{Yi; g(Ti;θ
∗)}H(Ti; t)|Xi]

}
+ oP (1)

=
1√
N

N∑
i=1

ϕopt(Ti,Xi, Yi; t) + oP (1),

where

ϕopt(Ti,Xi, Yi; t) :=π0(Ti,Xi)m{Yi; g(Ti;θ
∗)}H(Ti; t)

− π0(Ti,Xi) · E[m{Yi; g(Ti;θ
∗)}|Ti,Xi] · H(Ti; t)

+ E[π0(Ti,Xi)m{Yi; g(Ti;θ
∗)}H(Ti; t)|Xi]

Now, we have

√
N
{
θ̂opt − θ∗

}
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=−
{∫
T
BtB

>
t fT (t)dt

}−1
{

1

N

N∑
i=1

ĴN(Ti;θ
∗) · ∇θĴN(Ti;θ

∗)√
N

}

=− 1√
N

N∑
i=1

{∫
T
BtB

>
t fT (t)dt

}−1

·
∫
T
ϕopt(Ti,Xi, Yi; t) ·Bt · fT (t)dt.

Let

ψopt(Ti,Xi, Yi; t) =

{∫
T
B>t fT (t)dt

}{∫
T
BtB

>
t fT (t)dt

}−1 ∫
T
ϕopt(Ti,Xi, Yi; t)BtfT (t)dt.

Following a similar argument of establishing Theorem 1, we get

ĴN(t; θ̂opt) =
1√
N

N∑
i=1

ηopt(Ti,Xi, Yi; t) + oP (1)

=
1√
N

N∑
i=1

{UiH (Ti, t)− φ(Ti,Xi; t)− ψopt(Ti,Xi, Yi; t)}+ oP (1).

The remaining results follow by using a similar argument of estalishing Theorem 1.
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