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Robust Estimation of Integrated and Spot Volatility

Z. Merrick Li* Oliver Linton†

August 9, 2022

Abstract

We introduce a new method to estimate the integrated volatility (IV) and the spot
volatility (SV) based on noisy high-frequency data. Our method employs the ReMeDI
approach introduced by Li and Linton (2022a) to estimate the moments of microstructure
noise and thereby eliminate their influence, and the pre-averaging method to target the
volatility parameter. The method is robust: it can be applied when the efficient price
exhibits stochastic volatility and jumps, the observation times are random, and the noise
process is nonstationary, autocorrelated, asymptotically vanishing and dependent on the
efficient price. We derive the limit distributions for the proposed estimators under the
infill asymptotics in a general setting. Our extensive simulation studies demonstrate the
robustness, accuracy and computational efficiency of our estimators compared to several
alternative estimators recently proposed in the literature. Empirically, we show that
neglecting the complexities of noise and the random observation times yields substantial
biases in volatility estimation and may lead to a different intraday volatility pattern.

1 Introduction

The past two decades or so have seen the emergence of high-frequency trading (HFT) that
operates at astonishing time scales. HFT yields a vast quantity of transaction data, which is in
principle good for the accurate measurement of economic parameters or processes, such as the
integrated volatility (IV), or the entire volatility process, i.e., the spot volatility (SV) of financial
returns. On the other hand, this data can be quite noisy, and one needs a coherent strategy for
dealing with this noise. This paper introduces a robust estimation method that accounts for
many salient features of high-frequency data. In particular, it can be directly applied to prices
that are available at the highest possible frequency and takes account of microstructure noise
(measurement error) of a general form.

The estimation of IV becomes straightforward if the stock price is sampled from a
semimartingale—the sum of the squared log-returns, usually called the realized volatility (RV),
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provides a consistent estimator of IV. This result dates back to Jacod (2018)1and Jacod and
Protter (1998), and it is introduced to econometrics by Andersen et al. (2003). As a consequence,
the estimation of SV becomes simple as well: the difference of the IV estimates scaled by the
difference of the observation times provides a simple yet efficient estimator of SV. In reality,
however, high-frequency prices are often perceived of as being “noisy” in a sense that the
observed price process deviates from the semimartingale “efficient price”2. The deviation, or
“noise” reflects some market imperfectness, such as transaction costs, the presence of minimal
ticks, informational effects, inventory risk, etc. The presence of microstructure noise motivates
the following model

Y = X + ", (1)

where X is the semimartingale efficient price and " represents the aforementioned market
microstructure effects. Since both X and " are latent, the inference and estimation of either
component become challenging.

Several “de-noise” methods have been proposed in order to make statistical inference
on the parameters of X . Without being exhaustive, here we mention the methods of Two-
Scale (TSRV) and Multi-Scale Realized Volatility (MSRV) (Zhang et al., 2005; Zhang, 2006), the
maximum likelihood estimators (Aı̈t-Sahalia et al., 2005; Xiu, 2010; Shephard and Xiu, 2017),
the pre-averaging method (Podolskij and Vetter, 2009; Jacod et al., 2009, 2010; Li, 2013), and
the realized kernel (Hansen and Lunde, 2006; Barndorff-Nielsen et al., 2008). Intuitively, the
statistical assumptions imposed on " will affect the estimation and inference of the parameters
of X , since both are latent and only their sum is observable. Most papers quoted above have
very restrictive assumptions on microstructure noise, often assuming it is an i.i.d. process.

However, such simple assumptions are often contradicted by empirical evidence, theoreti-
cal motivations and many practical concerns about the characteristics of high-frequency data.
Empirical studies (Chan and Lakonishok, 1995; Hasbrouck, 1993; Madhavan et al., 1997; Wood
et al., 1985) reveal that microstructure noise may have prominent intraday patterns, typically a
U-shape or reverse J-shape.There is also a large theoretical literature seeking to characterize the
economic mechanisms that govern the dynamic properties of microstructure noise, including
the modelling of the order flow reversal due to a market maker’s risk aversion (Grossman and
Miller, 1988; Campbell et al., 1993) or inventory controls (Ho and Stoll, 1981; Hendershott and
Menkveld, 2014), and the presence of inattentive (or infrequent) traders (Bogousslavsky, 2016;
Hendershott et al., 2022). However, high-frequency data, in particular tick-by-tick data, has
several prominent features that confront researchers. First, the transaction times are random,
thus the prices are irregularly spaced. Second, transactions are often clustered on one side of
the market as a consequence of order splitting or the execution of limit orders (Parlour, 1998).
Thus, microstructure noise could be highly autocorrelated. Third, the size of high-frequency

1The classic paper was written in 1994. It gets published in the Journal of Financial Econometrics recently.
2It is well known that the stock price follows a semimartingale if no arbitrage is allowed, see Delbaen and

Schachermayer (1994).
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data is huge. For example, the quote data sizes from the Trade and Quote (TAQ) database are
close to levels of several terabytes per month after 2007. These considerations call for a flexible
model and a robust estimation strategy to deal with microstructure noise.

This paper introduces a robust estimation strategy of IV and SV. Our theoretical setup
is based on two seminal works by Jacod et al. (2017, 2019), where the observation times are
random and possibly endogenous, the noise is serially dependent, nonstationary and could be
dependent of the efficient price. While Jacod et al. (2017, 2019) only consider noise of order
Op(1), we allow noise to be shrinking as the data frequency increases. The “small noise”
asymptotics are considered by Kalnina and Linton (2008), Da and Xiu (2021b), see also Chapter
7 of Aı̈t-Sahalia and Jacod (2014) and Chapter 16 of Jacod and Protter (2011). We develop new
volatility estimators using the ReMeDI estimators (Li and Linton, 2022a) of the moments of
noise to correct the bias of a pre-averaging type estimator. The bias term consists of the long-
run variance (LRV) of noise. It turns out that the ReMeDI method is flexible in estimating both
the spot and the integrated LRV of noise, thus providing a correction method that works in the
estimation of both IV and SV. We derive the limit distributions under the infill asymptotics for
the proposed estimators, and we demonstrate the inconsistency if one fails to account for the
serial dependence in noise and randomness in the observation scheme. What is particularly
intriguing is the role played by the random observation scheme in SV estimation: The spot
estimator may even be inconsistent if the irregular observation scheme is misspecified as a
regular one.3

The estimators inherit the excellent finite sample properties of the ReMeDI estimators.
Our extensive simulation studies show that compared to several alternative estimators, our
estimators perform very well in finite samples where the data generating process follows
different specifications. Moreover, the estimators are also quite robust to the choices of tuning
parameters and are computationally very efficient.4 We apply our estimators to estimate the
IV and SV of two individual stocks, and we find that substantial biases in SV and IV estimation
will emerge if one neglects the complexities of noise and randomness of the observation times.
In particular, we find a (moderate) U-shaped intraday volatility. But the U-shape disappears if
the randomness and irregularities of the observation times are not explicitly treated.

Many recent papers study the estimation of IV with a general framework for microstructure
noise. Kalnina and Linton (2008) consider microstructure noise with a time-varying scale;
Aı̈t-Sahalia et al. (2011) show that the TSRV and the MSRV remain valid when the noise
is autocorrelated; Hautsch and Podolskij (2013); Christensen et al. (2013) study q-dependent
noise; Li et al. (2020) use a variant of RV to estimate the second moments of serially dependent
noise and develop a consistent estimator of the IV. Ikeda (2015, 2016) propose the two-scale
realized kernel (TSRK) to estimate IV in the presence of serially correlated noise and random
durations between observations. Varneskov (2016, 2017) employ the flat-top realized kernel

3This is in contrast with the IV estimation: Many IV estimators preserve the consistency in the presence of
random and irregular sampling times, though the limiting variance will be different, see Remark 4.2 in Li et al.
(2020).

4For example, to perform the same estimation, our estimator usually uses less than 5% and 0.5% of the CPU
time used by the estimators in Jacod et al. (2019) and Da and Xiu (2021b), respectively.
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(FRK) to estimate IV, in a setting that is similar to Jacod et al. (2019). Both the TSRK and FRK
allow for correlations between the efficient price and noise.5 Moreover, Varneskov (2016) also
proposes to use TSRK to correct the bias of a pre-averaging type estimator. Compared to the
above estimators of IV, the key advantage of our IV estimator is that it is still valid when the
noise effect is asymptotically diminishing. As a consequence, it converges faster than the usual
rate n1/4 in the presence of shrinking noise. This is an advantage in dealing with recent high-
frequency data where it is found that the scale of noise is much smaller, see, e.g., Da and Xiu
(2021a).

The most two recent papers closest in spirit are Jacod et al. (2019) and Da and Xiu (2021b).
Specifically, we adopt and generalize the framework of Jacod et al. (2019), and both our
estimator and the one proposed in Jacod et al. (2019) are pre-averaging type estimators.
Nevertheless, there are several key differences. First, we use different technologies to remove
the noise effect: while we use the ReMeDI approach (Li and Linton, 2022a), Jacod et al.
(2019) employ the local averaging (LA) method (Jacod et al., 2017). Second, we develop a
different asymptotic variance estimator6 that yields accurate approximations in finite samples,
see our numerical evidence in Section 6.5. Third, theoretically and empirically, our estimators
work well with small noise. Lastly, our estimator is more robust to the choice of tuning
parameters and model specifications. In terms of finite sample performances, our estimator
is comparable to the Quasi-Maximum-Likelihood-Estimator (QMLE) (Da and Xiu, 2021b).
Both estimators give very accurate estimates of IVs under each specification in the simulation
studies, especially when the noise is relatively small. The most significant advantage of
our estimator is that it is computationally very efficient. Moreover, our asymptotic variance
estimator has a faster convergence rate. We should also mention that the QMLE has other
advantages over our approach: it is

p
n-consistent when noise is absent. Moreover, it always

yields a positive estimate of IV.
We also contribute to the literature on SV estimation. A partial list of related papers are

Foster and Nelson (1996), Fan and Wang (2008), Kalnina and Linton (2008), Malliavin and
Mancino (2009), Kristensen (2010), Jacod and Rosenbaum (2013), Zu and Boswijk (2014), see
also some recent papers, e.g., Bibinger and Winkelmann (2018), Bollerslev et al. (2021), Li
et al. (2022). The spot estimation strategies are also used in other problems rather than the
SV estimation, see, e.g., Aı̈t-Sahalia and Jacod (2009), Jacod and Todorov (2009), Andersen
et al. (2021). To the best of our knowledge, our SV estimator is the first one that works with
a serially dependent noise process and a random observation scheme, a framework that well
suits the massive tick data of high-frequency asset prices. Thus, the proposed SV estimator
can be directly applied to tick data. While the richness of the datasets certainly improves
the accuracy of the spot estimation, it poses further challenges. In particular, we explain
and demonstrate that the SV estimator will be inconsistent if one ignores the randomness

5The pre-averaging estimators usually assume the noise is uncorrelated with the efficient price, although some
degree of higher order dependence is allowed, see, e.g., Jacod et al. (2009), Jacod et al. (2019).

6We use the ReMeDI approach to estimate the moments of noise that appear in the asymptotic variance.
Moreover, we also avoid a direct estimation of higher-order moments of noise to reduce estimation errors.
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of the sampling scheme. Our estimator is carefully designed to deal with such technicalities
underpinning these datasets. Therefore, it is particularly useful in the context of SV estimation.

The rest of the paper proceeds as follows. Section 2 discusses the model settings. Section 3
introduces the new IV and SV estimators. Section 4 presents the limiting theorems of the
estimators, and Section 5 discusses the tuning parameters selection and some implementation
issues. Sections 6 and 7 present the simulation and empirical studies. Section 8 concludes
the paper. Some additional simulation studies, as well as mathematical proofs, are in the
supplementary materials of this paper (Li and Linton, 2022b).

2 Model Setting

We follow the general setup in Jacod et al. (2019) that allows for a general Itô semimartingale
efficient price process, a nonstationary and serially dependent microstructure noise process
and a random observation scheme. We also extend their setting by allowing for asymptotically
vanishing noise.

Let Z be a generic Itô semimartingale that is defined on a filtered probability space
(⌦,F , {Ft}t�0,P) with the Grigelionis representation:

Zt := Z0 +

Z t

0
bZs ds+

Z t

0
�Z
s dW

Z
s +

⇣
�Z1{|�Z |1}

⌘
? (µ� ⌫)t +

⇣
�Z1{|�Z |>1}

⌘
? µt, (2)

where WZ , µ are Wiener process and a Poisson random measure on R+ ⇥ E with (E, E)
a measurable Polish space on

⇣
⌦,F , (Ft)t�0 ,P

⌘
and the predictable compensator of µ is

⌫(ds, dz) = ds ⌦ �(dz) for some given �-finite measure on (E, E), see Jacod and Shiryaev
(2003) for detailed introduction of the last two integrals. The processes bZ ,�Z are optional.
The function �Z on ⌦⇥R+ ⇥E is predictable. For any Itô semimartingale Z, we could impose
an assumption that depends on some r 2 [0, 2]:

Assumption (H-r). There is a sequence of stopping times {⌧n} , a sequence of reals {wn}, and for each
n a deterministic nonnegative function �Z

n on E satisfying

��bZ(!)
��  wn,

���Z
t (!)

�� < wn,
���Z(!, t, z)

��r ^ 1  �Z
n (z)

for all (!, t, z) satisfying t  ⌧n(!).

2.1 The efficient price

The efficient price is an Itô semimartingale and its Grigelionis representation is as follows:

Xt := X0 +

Z t

0
bsds+

Z t

0
�sdWs +

�
�1{|�|1}

�
? (µ� ⌫)t +

�
�1{|�|>1}

�
? µt. (3)

We further assume the following regularity conditions.
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Assumption (H-X-r). The coefficients of the efficient price X satisfy Assumption (H-r) with r 2 [0, 1);
the processes b,� are Itô semimartingale whose coefficients satisfy Assumption (H-r) with r = 2.

Remark 2.1. The parameter r in Assumption (H-X-r) restricts the degree of jump activities: finite
activity for r = 0, summable jumps on each finite interval for r  1 and no restrictions for r = 2. We
will separate jumps from the volatility parameters of the efficient price X using a truncation method,
and we need to restrict r 2 [0, 1) for X .

This is a general class of processes that allows for stochastic volatility and jumps, and it
includes most models used in finance to characterize security prices. The parameters of interest
in this paper are the Integrated Volatility (IV) and Spot Volatility (SV) of the efficient price:

Ct :=

Z t

0
�2
sds, ct := �2

t .

2.2 The random observation scheme

Now we describe the general observation scheme. For each positive integer n, let {T (n, i) :

i 2 N⇤} be the set of observation times, which is a sequence of strictly increasing finite stopping
times with T (n, 0) = 0, T (n, i) ! 1 as i ! 1, where N⇤ is the set of nonnegative integers.
We denote the (random) number of observations upon time t and the spacing of successive
observations by

Nn
t :=

X
i�1

1{T (n,i)t}, �(n, i) := T (n, i)� T (n, i� 1). (4)

In the sequel, for any process V , we denote V n
i := VT (n,i), �

n
i V := V n

i � V n
i�1, Fn

i := FT (n,i).
Let �n be the time lag between observations in a regular sampling scheme that satisfies

�n ! 0 as n ! 1. An empirical proxy of �n is the average duration of observations. Let
↵ be another nonnegative Itô semimartingale. It serves as the “observation density” process
that relates the real observation scheme to the (possibly latent) regular observation scheme.
Specifically, ↵T (n,i�1)�(n, i) ⇡ �n conditional on the information set upon time T (n, i � 1).
Formally, we assume

Assumption (O-⇢, ⇢0). ↵ is an Itô semimartingale satisfying Assumption (H-r) with r = 2, and ↵t >

0, ↵t� > 0 for all t > 0. We further assume

(i) �nNn
t ! At :=

R t
0 ↵sds 8t > 0.

(ii) For all s, t > 0, the sequence �
1
2+⇢0

n

✓
Nn

t �Nn

(t�s�⇢0
n )+

◆
is bounded in probability for some

1/4  ⇢0 < 1/2.

(iii) For any  � 2, there are a sequence (⌧()m)m�1 of stopping times increasing to infinity and real
numbers (w()m) such that we have for all i, n,m, ⇢ > 1/4:

T (n, i� 1)  ⌧()m )

8
<

:

��E
�
↵T (n,i�1)�(n, i)

��FT (n,i�1)

�
��n

��  w()m�1+⇢
n ,

E
�
|↵T (n,i�1)�(n, i)|

��FT (n,i�1)

�
 w()m�

n.
(5)
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The observation times framework is very general, and includes, e.g., regular sampling
scheme, time-changed regular sampling scheme, modulated Poisson sampling scheme, and predictably-
modulated random walk sampling scheme. However, the observation scheme does requires that
the durations are conditionally independent of X , see the discussion on p.1136-1137 in Jacod
et al. (2017).7

2.3 Microstructure noise

We now introduce the setting of the microstructure noise. The microstructure noise has a
random scale and could exhibit some degree of serial dependence of an unknown form.
Moreover, the scales of noise could be diminishing as the data frequency increases.

Definition 2.1. Let {�i}i2Z be a sequence of stationary random variables defined on a probability space
(⌦(1),G,P(1)), where Z is the set of integers. The probability space has discrete filtrations Gp := �{�k :

p � k}, Gq := �{�k : q  k} satisfying G�1 = G1 = G. For any k 2 N⇤, we define the following
mixing coefficients for k 2 N⇤:

⇢k := sup
�
|E(VhVk+h)| : E(Vk) = E(Vk+h) = 0, kVhk2  1, kVk+hk2  1, Vh 2 Gh, Vk+h 2 Gk+h

 
. (6)

The sequence {�i}i2Z is ⇢ mixing if ⇢k ! 0 as k ! 1.

Assumption (N-v). Let {�i}i2Z be a stationary and strongly mixing random sequence with mixing
coefficients {⇢k}k2N⇤ on some probability space (⌦(1),G,P(1)). At stage n, the noise at time T (n, i) is
given by

"ni = �⌘
n · �T (n,i) · �i , (7)

where � is an Itô semimartingale satisfying Assumption (H-r) with r = 2 and �t > 0 for all t. We
further assume {�i}i2Z is centred at 0 with variance 1 and finite moments of all orders, independent of
F1 :=

W
t>0Ft. The mixing coefficients satisfy ⇢k  Kk�v for some K > 0, v > 0. The shrinking

index ⌘ satisfies ⌘ 2 [0, 16).

Remark 2.2. The noise represented in (7) has a multiplicative form. �⌘
n controls the shrinking effect

with ⌘ = 0 corresponding to the non-vanishing noise that is well studied in the literature. The process
� captures the stochastic scale of noise. It is a continuous time process and dependent on the calendar
time. This process could also be dependent of the efficient price, e.g., � could be a function of the
volatility of the efficient price so that both the noise and the efficient price may exhibit some diurnal
features that are well documented in the literature. On the other hand, the � process is essentially a
discrete-time process that characterizes the serial dependence of noise. In our context, the discreteness
reflects the ticks of high-frequency prices. Therefore, the serial dependence of noise is in tick times.

7Li et al. (2014) discuss a stronger form of endogeneity under which volatility estimators like RV may have a
bias.
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3 The Estimators

Now we introduce the new IV and SV estimators. This method is based on the pre-averaging
method with a ReMeDI correction of the impact of microstructure noise.

3.1 The Pre-averaging method

The kernel g on R is continuous piecewise C1 with a piecewise Lipschitz derivative g0, and
s /2 (0, 1) ) g(s) = 0, we also assume

R 1
0 g2(s)ds > 0.8 Let {hn}n2N⇤ be a sequence of integers.

We introduce the following notations for the pre-averaging method.

gni := g(i/hn), egni := gni+1 � gni , �n
j :=

1

hn

X

i2Z
gni g

n
i�j , e�

n
j := hn

X

i2Z
egni egni�j ;

�(s) :=

Z

R
g(u)g(u� s)du, e�(s) :=

Z
g0(u)g0(u� s)du;

�00 :=

Z 1

0
�2(s)ds, �01 :=

Z 1

0
�(s)e�(s)ds, �11 :=

Z 1

0

e�
2
(s)ds.

For any processes V , let V n
i :=

Phn�1
j=1 gnj �

n
i+jV.

3.2 The ReMeDI method

We use the ReMeDI approach (Li and Linton, 2022a) to estimate the moments of noise, which
will be subsequently subtracted off to get a consistent estimator of the integrated volatility.
The ReMeDI approach employs the noisy returns on non-overlapping intervals to estimate
the second moments of noise. The intuition is that the efficient returns are not predictable;
thus, the autocovariances of the efficient returns will be negligible. As a consequence, the
autocovariances of the noisy returns will be a good proxy of the autocovariances of the noise
differences. By tuning the distance and length of the non-overlapping intervals, we can
estimate the variance and autocovariances (of all orders) of the noise; see Section 3 of Li and
Linton (2022a) for the intuition of the ReMeDI method.

3.3 The Pre-averaging–ReMeDI (PaReMeDI) estimator of IV and SV

We propose a pre-averaging method coupled with the ReMeDI bias correction to estimate the
volatility parameters. We call this approach the PaReMeDI method. Given four sequences of
integers {hn}n, {kn}n, {`n}n, {ln}n and a sequence of reals {un}n, the PaReMeDI estimator of
IV is given by

bCn
t :=

1

hn�n
0

Nn
t �hnX

i=0

(Y
n
i )

21{|Y n
i |un} � 1

h2
n�

n
0

Nn
t �hnX

i=kn

X

|`|`n

e�
n

` (Y
n
i+` � Y n

i+`+kn
)(Y n

i � Y n
i�kn

), (8)

8The simulation and empirical studies, we will use the triangular kernel: g(x) = x ^ (1� x).
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and the PaReMeDI estimator of SV (at time t) is given by

ecnt :=
1

snt hn�n
0

Nn
t +ln�hnX

i=Nn
t

(Y
n
i )

21{|Y n
i |un} � 1

snt h
2
n�

n
0

Nn
t +ln�hnX

i=Nn
t +kn

X

|`|`n

e�
n

` (Y
n
i+` � Y n

i+`+kn
)(Y n

i � Y n
i�kn

),

(9)

where snt := T (n,Nn
t + ln)� T (n,Nn

t ).
The second terms in (8) and (9) are the ReMeDI corrections of the noise effect, which are

based on the autocovariances of noisy returns. They are the estimators of the moments of noise
that appear in the limit of the pre-averaged statistics Y

n
i . The moments, up to scaling by e�

n
i ,

are the (integrated and spot) long-run variances of the noise process.

Remark 3.1 (Tuning parameters of the PaReMeDI estimators). The PaReMeDI estimators have
several tuning parameters that warrant some explanation. hn controls the pre-averaging bandwidth; kn
is the tuning parameter of the ReMeDI estimators to estimate the moments of the microstructure noise;
ln controls the size of the local window to perform spot estimation; un controls the levels to truncate
the jumps of the efficient price process (Mancini, 2001); `n is the lag truncation parameter to estimate
the long-run variance of noise. The regularity conditions imposed on the tuning parameters will be
introduced in the next section alongside the limiting theorems.

3.4 The estimators of the asymptotic variances

The next section presents the large sample properties of our estimators and the associated
feasible CLTs, which require consistent estimators of the asymptotic variances. This subsection
develops the estimators of the asymptotic variances.

We introduce some notations first. Given three sequences of integers {dn}n, {kn}n, {`n}n
with dn � `n + kn, two integers `, i 2 N⇤, and a process V , we introduce

r(V ; `)ni,dn :=
1

dn

i+dn+knX

d=i+kn+1

(V n
d+`�V n

d+`+kn)(V
n
d �V n

d�kn); R(V )ni,dn :=
X

|`|`n
r(V ; |`|)ni,dn . (10)

Intuitively, r(V ; `)ni,dn and R(V )ni,dn are the local estimators of the autocovariances and long-run
variances of microstructure noise when V = Y .

Let {ehn}n and {sn}n be two sequences such that ehn ⇠ �nh2n, sn ⇠ �nln. Let eNn
t := Nn

t +

ln, bNn
t := eNn

t � `n � 2kn � hn. We introduce the following processes and coefficients:

V n,1
t :=

1
ehn

Nn
t �hn+1X

i=0

⇣
Y

n
i

⌘4
1{|Y n

i |<un}, eV n,1
t :=

1

snehn

eNn
t �hnX

i=Nn
t

⇣
Y

n
i

⌘4
1{|Y n

i |<un};

V n,2
t :=

1
ehnhn

Nn
t �hn�2kn�`nX

i=0

(Y
n
i )

21{|Y n
i |<un}R(Y )ni,hn

, eV n,2
t :=

1

snehnhn

bNn
tX

i=Nn
t

(Y
n
i )

21{|Y n
i |<un}R(Y )ni,hn

;

V n,3
t :=

1
ehnh2

n

Nn
t �hn�2kn�`nX

i=0

(R(Y )ni,hn
)2, eV n,3

t :=
1

snehnh2
n

bNn
tX

i=Nn
t

(R(Y )ni,hn
)2.
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We use the following estimators for the asymptotic variances:

⌃n
t :=

4ehn
�4(0)hn

⇣
Kg,1V

n,1
t + 2Kg,2V

n,2
t +Kg,3V

n,3
t

⌘
,

e⌃n
t :=

4hn
�4(0)ln

⇣
Kg,1

eV n,1
t + 2Kg,2

eV n,2
t +Kg,3

eV n,3
t

⌘
.

where

Kg,1 :=
�00

3
; Kg,2 := �01�(0)� �00

e�(0); Kg,3 := �11�
2(0)� 2�01

e�(0)�(0) + �00
e�
2
(0).

4 Asymptotic Properties of the Estimators

We present the limit theorems of our proposed estimators in this section. Throughout this
section, we assume hn, the bandwidth of the pre-averaging estimator, and un, the truncation
level of jumps satisfy

hn = ✓�
⌘� 1

2
n

⇣
1 + o

⇣
��(2⌘+1)/4

n

⌘⌘
, un ⇣ (�nhn)

$, where
1

4(2� r)
< $ <

2[v]� 3

8([v]� 1)
, r <

2[v]� 4

2[v]� 3
.

Recall that the parameter ⌘ controls the asymptotic order of noise and satisfies ⌘ 2 [0, 1/6);9 v

restricts the decaying rate of the autocovariances of noise (recall Assumption (N-v));10 and r is
the jump activity index. We will also assume the three sequences of integers {ln}n, {`n}n, {kn}n
satisfy

ln ⇣ ��l
n , `n ⇣ ��`

n , kn ⇣ ��k
n .

The regularity conditions imposed on the exponents l, ` and k will be discussed later.

Theorem 4.1. Let Assumptions (H-X-r), (O-⇢, ⇢0), (N-v) hold. Assume

v >
4

1� 6⌘
, ` 2

✓
1 + 2⌘

4(v � 1)
, k

◆
, k 2

✓
`
_ 1 + 2⌘

2(v � 1)
,
1� 6⌘

6

◆
. (11)

Let ⌘n ⇠ �
� 1

4�
⌘
2

n . Then, we have the following F1-stable convergence in law for any t > 0

⌘n( bCn
t � Ct)

Ls�F1�! Ut,

where Ut :=
R t
0 �sdBs is defined on an extension (e⌦, eF , eP) of the probability space (⌦,F ,P) and B is

a standard Brownian motion that is independent of F , and

�2
s =

4

�2(0)

✓
�00

✓�4
s

↵s
+ 2�01

�2
s�

2
s

✓
R+ �11

�4s↵s

✓3
R2

◆
, R :=

X

`2Z
E(�i�i+`). (12)

9The same condition is imposed on shrinking noise in Chapter 7 of Aı̈t-Sahalia and Jacod (2014) for i.i.d. noise.
10[v] is the integer part of v.
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Moreover, the sequence
bCn
t �Ctp
⌃n

t

converges F1-stably in law to an N (0, 1) variable that is independent

of F .

Remark 4.1 (Convergence rate with small noise). Note that when the noise is shrinking, i.e., ⌘ > 0,
the convergence rate is faster than the optimal rate ��1/4

n when the noise has a constant scale. Since
⌘ < 1/6, the convergence rate can be arbitrarily close to ��1/3

n .

Theorem 4.2. Let Assumptions (H-X-r), (O-⇢, ⇢0), (N-v) hold. Assume

v > 4, l 2
✓
1

2
� ⌘,

3

4
� ⌘

2

◆
, ` 2

✓
1 + 2⌘

8(v � 1)
, k

◆
, k 2

✓
`
_ 1 + 2⌘

4(v � 1)
,
1� 2⌘

6

◆
. (13)

Let e⌘n ⇠ l
1
2
n�

1
4�

⌘
2

n . We have the following finite-dimensional F1-stable convergence in law,

e⌘n (ect � ct)
Lf�s
�! Zt;

where the process Z is defined on an extension (e⌦, eF , eP) of the probability space (⌦,F ,P), and
conditionally on F1, is a Gaussian white noise with conditional variance

E
�
Z2
t |F

�
= e�

2
t =

4

�2(0)

✓
�00

✓�4
t

↵2
t

+ 2�01
�2
t �

2
t

✓↵t
R+ �11

�4t
✓3

R2

◆
.

Moreover, we have the finite-dimensional F1-stable convergence in law for the sequence ecnt �ctq
e⌃n
t

to an

N (0, 1) variable that is independent of F .

Remark 4.2 (Random observations and SV estimation). We may consider the following estimator
of SV at time t (recall sn ⇠ �nln):

ec0nt :=
1

snhn�n
0

eNn
t �hnX

i=Nn
t

(Y
n
i )

21{|Y n
i |un} � 1

snh2
n�

n
0

eNn
t �hnX

i=Nn
t +kn

X

|`|`n

e�
n

` (Y
n
i+` � Y n

i+`+kn
)(Y n

i � Y n
i�kn

). (14)

Note that the estimator ec0nt is scaled by the average time span of the local blocks ln�n; such estimator
often appears in the literature of SV estimation; see, Aı̈t-Sahalia and Jacod (2014) and Jacod and Protter
(2011) and references therein, see also the recent work by Li et al. (2022). However, our estimator ecnt
is scaled by the real time duration snt . The two estimators coincide with each other if the observation
scheme is regular, i.e., ↵t ⌘ 1 8t. In the presence of stochastic and irregular observation times, the
two estimators have different stochastic limits. Under the same conditions of Theorem 4.2, we have the
following finite dimensional F1-stable convergence in law:

e⌘n
✓
ec0nt � ct

↵t

◆
Lf�s
�! Zt

↵t
. (15)

Therefore, the SV estimators should be normalized or scaled by the real-time durations in the presence
of random and irregular observation times. Otherwise, the estimators may be inconsistent. Specifically,
when transactions occur more (less) often than in a regular scheme, i.e., ↵t > 1 (↵t < 1), ec0nt tends to
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underestimate (overestimate) ct. More numerical and empirical evidence of the caused inconsistency is
provided in Section 6 and Section 7.

Remark 4.3 (Optimal convergence rate). The convergence rate of our estimator is �� 1
8�

⌘
4+◆

n for any

◆ > 0. Thus, �� 1
8�

⌘
4

n serves as the upper bound of the optimal convergence rate,11 and the upper bound

can be obtained if we set ln ⇣ �
� 3

4+
⌘
2

n . However, the limiting process will be slightly different—there
will be an additional white noise process Z 0

t independent of Zt, with its limiting variance depending
on the volatility of the volatility (VoV), see the comments after Theorem 13.3.3 in Jacod and Protter
(2011). Therefore, to make the limit theorem feasible in practice, we need to construct an estimator of
the limiting variance of the SV estimator at the cost of imposing additional assumptions on VoV. This is
beyond the scope of this paper, and we leave it for future work.

5 On the implementation of PaReMeDI

To implement the PaReMeDI estimators, we need to select several tuning parameters,
recall (11) and (13). This section provides some guidances on the selection of the tuning
parameters in practice.

5.1 The optimal selection of ✓

As we will see in our extensive simulation studies that the key parameter that affects the
performance of PaReMeDI is the pre-averaging bandwidth hn—it not only affects the finite-
sample performance but also the limiting distribution via ✓. Therefore, the selection of ✓ is of
great practical concern.

Let’s first consider the estimation of IV. We can find the optimal ✓ as the value that minimizes
the asymptotic variance ⌃t :=

R t
0 �

2
sds of our estimator. The optimal ✓ is given explicitly by12

✓⇤ :=

0

@
�01R

R t
0 �

2
s�

2
sds+

q
�2
01R

2(
R t
0 �

2
s�

2
sds)

2 + 3�00�11R2
R t
0 �

4
s/↵sds

R t
0 �

4
s↵sds

�00
R t
0 �

4
s/↵sds

1

A

1
2

.

The implementation the optimal selection rule requires an estimate of ✓⇤. For a given ✓0, we let

⇥n,1
t := ✓20V

n,3
t ; ⇥n,2

t :=
V n,2
t � e�(0)V n,3

t

�(0)
; ⇥n,3

t :=
V n,1
t � 6e�(0)V n,2

t + 3e�
2
(0)V n,3

t

3✓20�
2(0)

.

A consistent estimator of the optimal ✓⇤ is given by

b✓
⇤
:=

0

@
�01⇥

n,2
t +

q
�2
01(⇥

n,2
t )2 + 3�00�11⇥

n,1
t ⇥n,3

t

�00⇥
n,3
t

1

A

1/2

.

11For example, if the noise is shrinking with ⌘ close to 1
6 in our setting, the convergence rate can be close to �

� 1
6

n .
12See also the discussion in Jacod and Mykland (2015) in a simpler setting.
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The implementation of b✓
⇤

requires the local estimations of many parameters that may bring
in more variability, thus may not provide a proper guidance to select hn in a finite sample.
However, we can make some compromise between estimation complexity and parsimony.

Consider a simpler setting where the noise is stationary, the volatility process is constant,
and the observation scheme is regular, i.e., �s ⌘ K� ,�s ⌘ K�,↵s ⌘ 1 for all s. In
this special case, the optimal choice of ✓ becomes ✓0⇤ := K�K�

p
R/K�, where K� :=r⇣

�01 +
p
�2
01 + 3�00�11

⌘
/�00 is a constant determined by the choice of g. Note that

K�

p
R/K� is the noise-to-signal ratio. Thus, the selection rule set by ✓0⇤ is very intuitive: one

should choose a larger (or small) ✓ if noise is relatively large (or small).
Let R(Y )nt := R(Y )n0,Nn

t �`n�kn
(see (10) for the notation of R(Y )ni,dn). Based on the

convergence that R(Y )nt
P! K2

�R , we propose the following proxy of ✓0⇤:

b✓0
⇤
=

K�

p
R(Y )ntq
bCn
t

, (16)

which provides a simple rule to select ✓ whence hn in practice.
We can also develop a spot version of the optimal ✓ when the noise is stationary and

the observation scheme is regular. The optimal ✓ is given by ✓0t
⇤ := K�K�

p
R/�t. Thus, an

estimator of ✓0t
⇤ is given by

e✓0t
⇤
:=

K�

q
eR(Y )ntp
ecnt

, (17)

where eR(Y )nt := R(Y )nNn
t ,ln�`n�kn

.

Remark 5.1. To implement the optimal selection rule in practice, we initially set ✓ = 0.5 to get some
preliminary estimates of bCn

t and ecnt , which will be used to calculate the optimal ✓ via (16) and (17).13

The optimal ✓ calculated in this way may be extremely small or large, depending on the underlying noise
process and the initial estimates. As a consequence, the pre-averaging bandwidth would be extreme as
well. To avoid such extreme scenarios, we restrict the range of ✓ in the implementation of PaReMeDI:
we set ✓ 2 [0.05, 10] for the IV estimation and ✓ 2 [0.2, 1] in the SV estimation.

Remark 5.2 (Nonnegative Estimates). Another practical issue related to the choice of ✓ is the negative
estimate of volatility. The PaReMeDI estimators are not guaranteed to always yield a positive estimate
of IV or SV, although we do not find any negative estimates in our simulation and empirical studies.
An estimate that is negative would mainly signal that there are some anomalies in the microstructure
noise, e.g., extremely large or small scales or strong autocorrelation patterns. We propose two remedies.
First, one could proceed with PaReMeDI, but select a large ✓ instead of the optimal one. A large ✓ has an
over-smoothing effect and the anomalies of noise will be smoothed away, see more numerical experiments

13We keep other tuning parameters, e.g., kn, `n fixed while we are calculating the optimal ✓ based on an initial
choice ✓ = 0.5. Our numerical studies show that the performances of the PaReMeDI estimators are very robust to
the choices and combinations of other parameters.
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in the next section. Second, one could just ignore the noise and use the realized volatility (RV) instead.
RV yields accurate estimates, especially if the scale of noise is small.

5.2 On the choices of other tuning parameters

Our simulation studies (see next section) show the PaReMeDI estimators are less sensitive to
the choices of kn. Thus, we recommend using some mild choices of kn, e.g., we fix kn = 10 in
the empirical studies. Moreover, we could combine the ReMeDI estimates with different kns
and use the average estimates to correct the biases of the pre-averaging method. Intuitively,
using multiple kns would improve the efficiency of the ReMeDI estimators and would reduce
the errors in bias-correction for the PaReMeDI method. However, we do not further explore
the method in this paper.

The selection of the lag truncation parameter `n in the estimation of the LRV is well studied
in the literature (Andrews, 1991). In this paper, however, we will only require `n  kn as
required by our asymptotic conditions in (11) and (13). In our simulation studies, we find
`n = [kn/2] will produce accurate estimates.

We also find that our SV estimators are very robust to the choices of the bandwidth ln.
In our empirical studies, we find the differences in the estimates using different lns are minor.
However, we observe sizeable differences if one treats the random observation times as regular.

6 Simulation Studies

In this section, we adopt the simulation approach to explore the finite sample performance
of the PaReMeDI estimators of IV and SV. We will compare the PaReMeDI estimators with
several other competing estimators recently studied in the literature. Each estimator employs
different combinations of the tuning parameters, and the performances are studied in a range
of empirically relevant scenarios where the noise scales and autocorrelation patterns vary.
Thus, the numerical study directly speaks to the robustness of the estimators to the choices
of the tuning parameters. Moreover, it also provides some guidance for selecting the tuning
parameters in empirical research.

6.1 Model settings

We normalize the interval of observations to [0, 1] without loss of generality. The efficient price
is allowed to have stochastic volatility with jumps in both the price level and the volatility
process:

dXt = 1(µ1 �Xt)dt+ �tdW1,t + ⇠1,tdNt, d�2
t = 2(µ2 � �2

t )dt+ ⌘�tdW2,t + ⇠2,tdNt;

Corr(W1,W2) = �, ⇠1,t ⇠ N (0, µ2/10) , Nt ⇠ Poi(�); ⇠2,t ⇠ Exp(�),
(18)
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where we set

1 = 0.5; µ1 = 3.6; 2 = 5/252; µ2 = 0.04/252; ⌘ = 0.05/252; � = �0.5; � = 1; � = ⌘.

The setting of jumps is motivated by some empirical facts that jumps in price levels and
volatility tend to occur together (Todorov and Tauchen, 2011; Bibinger and Winkelmann, 2018).
In this section, we set ⇠1,t ⌘ 0,14 the supplementary materials of this paper (Li and Linton,
2022b) contains additional simulation studies where the efficient price exhibits jumps.

The stationary component of the microstructure noise follows an AR(1) process with
innovations following a t-distribution with 5 degrees of freedom:

�i+1 = %�i + ei, |%| < 1. (19)

{T (n, i)}i follow an inhomogeneous Poisson process with rate n↵t where the processes ↵ and
� satisfy

↵t = 1 +
cos(2⇡t)

2
; �t = K��

0
t, d�0t = �⇢�(�

0
t � µt)dt+ ��dW1,t. (20)

The setting is to mimic the empirical facts that trades tend to cluster in the beginning and
end of a trading day, and microstructure noise has an approximately U-shape. We set n =

23400, ⇢� = 10, µt = 1 + 0.1 cos(2⇡t), �� = 0.1. Note that %,K� control the serial dependence
of noise and the signal-to-noise ratio, which are essential in the model specifications. We will
let the two variables vary to examine the robustness of the estimators.

6.2 FRK, PaReMeDI, QMLE and TSRK

We compare the performances of four estimators developed in similar settings:The the Flat-
top Realized Kernels (FRK) (Varneskov, 2016, 2017), the Pre-averaging estimator with ReMeDI
bias correction (PaReMeDI), the quasi-maximum-likelihood estimator (QMLE) (Da and Xiu,
2021b), and the Two-scales Realized Kernels (TSRK) (Ikeda, 2015, 2016). The next subsection
will compare PaReMeDI with a class of pre-averaging estimators, including the pre-averaging
estimator with local averaging correction (PaLA).

We consider four scales of noise and three autocorrelation patterns. Thus, we have a wide
range of specifications to examine the performances of the estimators. We allow for different
combinations of the tuning parameters for the nonparametric estimators (FRK, PaReMeDI and
TSRK), and we use both the AIC and BIC rules to select the MA(q) models for QMLE.

Table 1 reports the relative biases of the estimators. All estimators are performing very well
in all scenarios except for large (K� = 5 ⇥ 10�4) and strongly persistent (% = 0.8) noise. Even
with such extreme specifications, the biases could be very small with certain combinations
of the tuning parameters for the nonparametric estimators, e.g., FRK and TSRK with large

14We would like to compare our volatility estimator with QMLE (Da and Xiu, 2021b), which does not explicitly
truncate jumps. Therefore, we neglect jumps from the efficient price to present a fair comparison.

15



bandwidths. One may observe that the PaReMeDI estimator with the optimal ✓ selected
via (16) has slightly larger biases compared to the other estimators. It is not surprising since
the optimal ✓ is not set to minimize the finite sample biases. In fact, the biases can be further
reduced when we fix ✓ at certain values; see the detailed discussion in the next subsection.
However, the advantage with the optimal ✓ is that the PaReMeDI estimator has smaller root
mean squared relative errors (RMSRE). Table 2 reports the RMSRE for all the estimators. FRK
(with certain choices of the tuning parameters) and QMLE perform well on relatively large
noise. Both QMLE and PaReMeDI have very small RMSRE when noise is relatively small.15 In
terms of computational efficiency, FRK and PaReMeDI are faster than QMLE: both estimators
typically use less than 0.5% of the computational time used by QMLE. This is an advantage to
deal with the massive high-frequency datasets in the empirical research.

6.3 Pre-averaging methods with various bias-correction methods

We now conduct an extensive evaluation of a group of pre-averaging estimators with different
methods to remove the effect of microstructure noise. We consider four correction methods:
the ReMeDI method, the local averaging (LA) estimator, the TSRK correction proposed
in Varneskov (2016), and the realized volatility (RV) estimator of the variances of i.i.d. noise
that is widely used in the literature, see, e.g., Jacod et al. (2009).

Table 3 reports the relative biases of each estimator. The pre-averaging method with LA
(PaLA) corrections works well when the bandwidth parameter ✓ is large, and the tuning
parameter of LA kn is small. It is as expected as a larger ✓ has an over-smoothing effect in
practice and the noise is almost smoothed away irrespective of its scale or serial correlation
pattern (see also the discussions in Barndorff-Nielsen et al. (2008) and Varneskov (2016)), and
a smaller kn yields a smaller finite sample bias in estimating the moments of noise using the
LA method (Jacod et al., 2017). However, PaLA is very sensitive to ✓: a smaller ✓ yields a
significant and negative bias. The intuition is that the estimated noise moments, including the
bias if there is any, account for a more significant variation in the pre-averaged noisy returns
when ✓ is small. Since LA has a positive bias,16 it over-corrects the noise effect and induces
a negative bias for PaLA. It is interesting to contrast PaLA with the traditional pre-averaging
method (Jacod et al., 2009) that employs a realized volatility (RV) correction of the (possibly
misspecified) i.i.d. noise. While it is clear in Table 3 that there is a significant bias when noise
is misspecified, a direct comparison of the LA and RV corrections reveals that the finite sample
bias often overwhelms the biases caused by misspecifications.

Now we compare the relative biases of the ReMeDI correction with other methods. The
ReMeDI correction yields a very small bias and is quite robust to the choices of the tuning
parameters. The TSRK also works well except for large noise and small ✓. The ReMeDI
correction with an optimal choice of ✓ using the selection rule (16) (ReMeDI* in Table 3) has
larger biases compared to the ReMeDI corrections with fixed ✓s. But the gain of the slightly

15We find the noise scales in our empirical data are closer to being moderate or small.
16The bias is a fraction of knIV, see the discussion in Section 3.4 of Jacod et al. (2017); see also the numerical

studies by Da and Xiu (2021a), where the authors show that LA is very sensitive to noise-to-signal ratios.
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larger bias is the reduced root-mean-squared-relative-errors (RMSRE) reported in Table 4.
Measured by RMSRE, the ReMeDI correction with an optimal selection of ✓ outperforms other
estimators, except for large and strongly correlated noise with very small tuning parameters.

6.4 SV estimation

We consider four estimators of the SV: the PaReMeDI estimator ecnt (✓) (9) with a given ✓; the
PaReMeDI estimator ecnt (✓⇤) with an optimally selected ✓⇤ via (17); the PaReMeDI estimator
ec0nt (✓) (14) with a given ✓, the pre-averaging estimator of SV with a realized volatility correction
of the i.i.d. noise, denoted by bcnt (✓). The estimator ec0nt (✓) ignores the effects of random sampling
while bcnt (✓) treats noise as a simple i.i.d. process. We consider different combinations of tuning
parameters for each estimator. We estimate SV at t = 5 min, t = 100 min and t = 200 min
when ↵t > 1, ↵t ⇡ 1 and ↵t < 1; respectively.

Table 5 reports the relative biases for all SV estimators. We first discuss the left panel with
large noise (K� = 5⇥10�4). Similar to IV estimation, all estimators have larger biases when the
noise scale is large and the serial correlation is strong (% = 0.8). When the large noise becomes
i.i.d., the biases of bcnt (✓) caused by misspecification are much reduced. It is also interesting
to note that the bias of ec0nt (✓) has a clear pattern when ✓ = 1: it is negative at t = 5 min
and substantially positive at t = 200, and remains small at t = 100 min, and the pattern is
more pronounced for small noise (K� = 5 ⇥ 10�5) as one can observe in the right panel of
Table 5. Such systematic and persistent bias is predicted by our asymptotic theory (15): An SV
estimator that neglects the irregular and stochastic observation scheme tends to overestimate
(underestimate) the SV when transactions are observed more (less) often than in a regular
observation scheme.

Now we turn to the RMSRE of the estimators presented in Table 6. Compared to ecnt (✓) and
ecnt (✓⇤), ec0nt (✓) has large RMSREs when t = 5 min and t = 200 min. Thus, the misspecification
of the observation schemes directly translates into significant RMSREs. The RMSRE of bcnt (✓)
is small for small noise, but heightened significantly when the noise scale becomes large and
the serial dependence becomes strong. Measured by RMSRE, our PaReMeDI estimator ecnt (✓⇤)
with the optimal choice of ✓ is quite accurate and robust.

6.5 Examine the feasible CLTs

Figure 1 presents the QQ-plot for the standardized statistics ( bCn
t �Ct)/

p
⌃n
t . The plots clearly

demonstrate that the limit distribution provides an accurate fit in finite samples, and the
fit is quite robust to model specifications and combinations of the tuning parameters. Our
novel asymptotic variance estimators are at least partially responsible for such robustness.
The supplementary material Li and Linton (2022b) contains further simulation studies on the
feasible CLTs of the IV and SV estimators under various specifications, see Section A.1 in Li
and Linton (2022b).
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Estimators
Specifications K� = 5⇥ 10�4

K� = 10�4
K� = 5⇥ 10�5

K� = 10�5

% = 0 0.3 0.8 % = 0 0.3 0.8 % = 0 0.3 0.8 % = 0 0.3 0.8

FRK

bn = 25, fn = 5 0.0035 0.0042 0.6159 0.0026 0.0006 0.0232 -0.0017 -0.0019 0.0066 -0.0008 0.0001 -0.0038
bn = 25, fn = 10 0.0039 0.0027 0.1997 0.0031 0.0012 0.0058 -0.0016 -0.0027 0.0021 -0.0007 -0.0001 -0.0043
bn = 25, fn = 15 0.0032 0.0047 0.0678 0.0029 0.0021 -0.0006 -0.0010 -0.0030 -0.0000 -0.0005 -0.0000 -0.0049
bn = 50, fn = 5 0.0033 0.0042 0.2238 0.0026 0.0012 0.0055 -0.0008 -0.0025 0.0017 -0.0003 0.0001 -0.0046
bn = 50, fn = 10 0.0033 0.0039 0.0735 0.0024 0.0012 -0.0016 -0.0003 -0.0027 -0.0002 -0.0001 0.0001 -0.0050
bn = 50, fn = 15 0.0030 0.0041 0.0248 0.0019 0.0008 -0.0044 0.0003 -0.0027 -0.0011 0.0002 -0.0000 -0.0052
bn = 75, fn = 5 0.0031 0.0037 0.1114 0.0015 0.0003 -0.0003 -0.0000 -0.0025 0.0001 0.0001 -0.0003 -0.0052
bn = 75, fn = 10 0.0029 0.0034 0.0364 0.0010 -0.0001 -0.0038 0.0003 -0.0026 -0.0008 0.0003 -0.0005 -0.0056
bn = 75, fn = 15 0.0027 0.0033 0.0121 0.0003 -0.0007 -0.0052 0.0006 -0.0025 -0.0013 0.0005 -0.0008 -0.0060

PaReMeDI
kn = 5, `n = 3 0.0536 0.0472 1.1219 0.0627 0.1045 0.1704 0.0147 0.0277 0.0442 -0.0003 0.0011 -0.0007
kn = 10, `n = 5 0.0582 0.0398 0.2731 0.0544 0.0861 0.0807 0.0126 0.0243 0.0344 -0.0003 0.0007 -0.0017
kn = 15, `n = 8 0.0745 0.0540 0.0867 0.0340 0.0574 0.0513 0.0043 0.0130 0.0200 -0.0023 -0.0013 -0.0036

TSRK

Gn = 12, Hn = 76 0.0001 0.0256 0.2534 0.0018 0.0017 0.0061 -0.0000 -0.0020 0.0019 0.0001 0.0000 -0.0047
Gn = 12, Hn = 153 -0.0007 0.0058 0.0676 -0.0012 -0.0028 -0.0019 0.0006 -0.0017 -0.0013 0.0005 -0.0026 -0.0076
Gn = 12, Hn = 306 -0.0045 -0.0010 0.0128 -0.0045 -0.0064 -0.0058 0.0012 -0.0037 -0.0043 0.0025 -0.0068 -0.0089
Gn = 29, Hn = 76 -0.0004 0.0249 0.2636 0.0018 0.0014 0.0065 0.0000 -0.0020 0.0021 0.0002 0.0000 -0.0047
Gn = 29, Hn = 153 -0.0009 0.0054 0.0703 -0.0013 -0.0030 -0.0018 0.0006 -0.0017 -0.0012 0.0005 -0.0027 -0.0076
Gn = 29, Hn = 306 -0.0046 -0.0011 0.0135 -0.0046 -0.0064 -0.0058 0.0012 -0.0037 -0.0043 0.0025 -0.0068 -0.0090
Gn = 56, Hn = 76 -0.0000 0.0260 0.2653 0.0018 0.0016 0.0066 -0.0001 -0.0020 0.0020 0.0001 0.0000 -0.0048
Gn = 56, Hn = 153 -0.0013 0.0060 0.0709 -0.0014 -0.0031 -0.0018 0.0005 -0.0017 -0.0015 0.0005 -0.0028 -0.0078
Gn = 56, Hn = 306 -0.0048 -0.0010 0.0136 -0.0046 -0.0065 -0.0059 0.0012 -0.0038 -0.0045 0.0025 -0.0069 -0.0090

QMLE aic -0.0070 -0.0021 0.2589 0.0055 0.0040 0.0508 -0.0001 0.0007 0.0172 -0.0005 0.0013 -0.0028
bic -0.0138 -0.0122 0.2815 0.0046 0.0048 0.0980 0.0009 0.0013 0.0285 -0.0011 0.0004 -0.0022

Table 1: The relative biases of FRK, PaReMeDI, TSRK and QMLE. The noise scale parameter K� is selected in {5 ⇥ 10�4, 10�4, 5 ⇥ 10�5, 10�5}. The
AR(1) coefficient of the stationary noise is given by % 2 {0, 0.3, 0.8}. The flatness and bandwidth tuning parameters of FRK are selected from (fn, bn) 2
{5, 10, 15} ⇥ {25, 50, 75}. The jittering bandwidth is fixed at jn = 5. The ReMeDI tuning parameter kn is selected in {5, 10, 15}, and the lag truncation
parameter `n is set via `n = [kn/2]. ✓ is selected by the optimal rule in (16). The two bandwidths of TSRK are selected by Gn 2 {[n1/4], [n1/3], [n2/5]}, Hn 2
{[
p
n/2], [

p
n], 2[

p
n]} with n = 23400. The optimal moving average order q is selected within {5, 6, 7, 8, 9, 10}. The biases are obtained by taking the

averages of 1000 simulations.

18



Estimators
Specifications K� = 5⇥ 10�4

K� = 10�4
K� = 5⇥ 10�5

K� = 10�5

% = 0 0.3 0.8 % = 0 0.3 0.8 % = 0 0.3 0.8 % = 0 0.3 0.8

FRK

bn = 25, fn = 5 0.1022 0.0989 0.7288 0.0994 0.1012 0.1017 0.1096 0.1026 0.0928 0.0971 0.0956 0.0976
bn = 25, fn = 10 0.1156 0.1152 0.2786 0.1152 0.1197 0.1157 0.1303 0.1231 0.1127 0.1146 0.1151 0.1164
bn = 25, fn = 15 0.1289 0.1278 0.1798 0.1287 0.1358 0.1306 0.1421 0.1418 0.1299 0.1311 0.1344 0.1321
bn = 50, fn = 5 0.1182 0.1152 0.2943 0.1198 0.1251 0.1213 0.1321 0.1302 0.1193 0.1210 0.1233 0.1216
bn = 50, fn = 10 0.1320 0.1298 0.1748 0.1337 0.1405 0.1368 0.1462 0.1470 0.1351 0.1370 0.1390 0.1365
bn = 50, fn = 15 0.1456 0.1432 0.1692 0.1465 0.1546 0.1510 0.1585 0.1619 0.1487 0.1518 0.1526 0.1500
bn = 75, fn = 5 0.1372 0.1336 0.2006 0.1387 0.1456 0.1416 0.1514 0.1515 0.1387 0.1434 0.1438 0.1417
bn = 75, fn = 10 0.1506 0.1467 0.1728 0.1518 0.1596 0.1547 0.1642 0.1657 0.1513 0.1579 0.1570 0.1553
bn = 75, fn = 15 0.1636 0.1586 0.1813 0.1643 0.1730 0.1664 0.1758 0.1786 0.1628 0.1717 0.1691 0.1681

PaReMeDI
kn = 5, `n = 3 0.1948 0.1640 1.5066 0.0932 0.1427 0.2046 0.0559 0.0674 0.0773 0.0556 0.0533 0.0552*
kn = 10, `n = 5 0.2372 0.1932 0.4154 0.0957 0.1363 0.1409 0.0832 0.0776 0.0804 0.0674 0.0633 0.0668
kn = 15, `n = 8 0.3726 0.3871 0.2084 0.1075 0.1340 0.1334 0.1040 0.1055 0.0949 0.0967 0.0855 0.0959

TSRK

Gn = 12, Hn = 76 0.1296 0.1278 0.3271 0.1298 0.1362 0.1322 0.1419 0.1418 0.1298 0.1337 0.1346 0.1324
Gn = 12, Hn = 153 0.1822 0.1763 0.2086 0.1832 0.1968 0.1813 0.1914 0.1975 0.1786 0.1957 0.1847 0.1878
Gn = 12, Hn = 306 0.2487 0.2537 0.2690 0.2457 0.2820 0.2540 0.2548 0.2807 0.2588 0.2817 0.2543 0.2750
Gn = 29, Hn = 76 0.1349 0.1296 0.3382 0.1301 0.1363 0.1327 0.1425 0.1416 0.1302 0.1339 0.1342 0.1326
Gn = 29, Hn = 153 0.1849 0.1782 0.2116 0.1851 0.1988 0.1831 0.1932 0.1994 0.1806 0.1978 0.1861 0.1898
Gn = 29, Hn = 306 0.2499 0.2549 0.2703 0.2468 0.2833 0.2551 0.2560 0.2820 0.2602 0.2830 0.2554 0.2764
Gn = 56, Hn = 76 0.1284 0.1273 0.3390 0.1284 0.1349 0.1305 0.1407 0.1400 0.1283 0.1323 0.1332 0.1311
Gn = 56, Hn = 153 0.1876 0.1805 0.2120 0.1849 0.1998 0.1828 0.1931 0.1995 0.1807 0.1984 0.1862 0.1904
Gn = 56, Hn = 306 0.2523 0.2572 0.2724 0.2485 0.2857 0.2570 0.2578 0.2841 0.2625 0.2853 0.2573 0.2789

QMLE aic 0.1126 0.1068 0.3982 0.0852 0.0847 0.1159 0.0860 0.0876 0.0832 0.0828 0.0812 0.0815
bic 0.1240 0.1082 0.4963 0.0751 0.0743 0.1370 0.0695 0.0749 0.0772 0.0711 0.0674 0.0706

Table 2: The root-mean-squared-relative-errors (RMSRE) of FRK, PaReMeDI, TSRK and QMLE. The noise scale parameter K� is selected in {5 ⇥
10�4, 10�4, 5 ⇥ 10�5, 10�5}. The AR(1) coefficient of the stationary noise is given by % 2 {0, 0.3, 0.8}. The flatness and bandwidth tuning parameters
of FRK are selected from (fn, bn) 2 {5, 10, 15} ⇥ {25, 50, 75}. The jittering bandwidth is fixed at jn = 5. The ReMeDI tuning parameter kn is selected in
{5, 10, 15}, and the lag truncation parameter `n is set via `n = [kn/2]. ✓ is selected by the optimal rule in (16). The two bandwidths of TSRK are selected
by Gn 2 {[n1/4], [n1/3], [n2/5]}, Hn 2 {[

p
n/2], [

p
n], 2[

p
n]} with n = 23400. The optimal moving average order q is selected within {5, 6, 7, 8, 9, 10}. The

number of simulations is 1000.
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Estimators
Specifications K� = 5⇥ 10�5

K� = 5⇥ 10�4

% = 0 0.3 0.8 % = 0 0.3 0.8

LA

kn = 5, `n = 5, ✓ = 0.3 -0.3710 -0.3717 -0.3680 -0.3721 -0.3697 -0.1247
kn = 5, `n = 5, ✓ = 0.8 -0.0609 -0.0635 -0.0624 -0.0639 -0.0632 -0.0094
kn = 5, `n = 5, ✓ = 1.5 -0.0231 -0.0258 -0.0269 -0.0276 -0.0271 -0.0120
kn = 5, `n = 10, ✓ = 0.3 -0.5633 -0.5638 -0.5612 -0.5646 -0.5617 -0.3644
kn = 5, `n = 10, ✓ = 0.8 -0.1062 -0.1088 -0.1079 -0.1092 -0.1084 -0.0647
kn = 5, `n = 10, ✓ = 1.5 -0.0374 -0.0401 -0.0413 -0.0419 -0.0414 -0.0294
kn = 10, `n = 5, ✓ = 0.3 -0.7661 -0.7657 -0.7634 -0.7664 -0.7653 -0.6164
kn = 10, `n = 5, ✓ = 0.8 -0.1229 -0.1254 -0.1245 -0.1258 -0.1253 -0.0866
kn = 10, `n = 5, ✓ = 1.5 -0.0413 -0.0440 -0.0451 -0.0457 -0.0453 -0.0346
kn = 10, `n = 10, ✓ = 0.3 -1.1647 -1.1634 -1.1627 -1.1645 -1.1638 -1.1070
kn = 10, `n = 10, ✓ = 0.8 -0.2168 -0.2191 -0.2186 -0.2195 -0.2192 -0.2010
kn = 10, `n = 10, ✓ = 1.5 -0.0709 -0.0736 -0.0748 -0.0753 -0.0749 -0.0707

ReMeDI

kn = 5, `n = 5, ✓ = 0.3 -0.0024 -0.0032 0.0040 0.0023 0.0093 0.5042
kn = 5, `n = 5, ✓ = 0.8 -0.0031 -0.0056 -0.0040 -0.0058 -0.0048 0.0861
kn = 5, `n = 5, ✓ = 1.5 -0.0062 -0.0089 -0.0098 -0.0106 -0.0100 0.0158
kn = 5, `n = 10, ✓ = 0.3 -0.0025 -0.0033 0.0036 0.0025 0.0089 0.4577
kn = 5, `n = 10, ✓ = 0.8 -0.0031 -0.0057 -0.0041 -0.0057 -0.0049 0.0749
kn = 5, `n = 10, ✓ = 1.5 -0.0062 -0.0089 -0.0099 -0.0106 -0.0101 0.0122
kn = 10, `n = 5, ✓ = 0.3 -0.0025 -0.0036 0.0017 0.0028 0.0078 0.2769
kn = 10, `n = 5, ✓ = 0.8 -0.0031 -0.0057 -0.0044 -0.0057 -0.0050 0.0502
kn = 10, `n = 5, ✓ = 1.5 -0.0062 -0.0089 -0.0099 -0.0106 -0.0101 0.0052
kn = 10, `n = 10, ✓ = 0.3 -0.0024 -0.0038 0.0008 0.0027 0.0079 0.1965
kn = 10, `n = 10, ✓ = 0.8 -0.0031 -0.0057 -0.0046 -0.0057 -0.0050 0.0308
kn = 10, `n = 10, ✓ = 1.5 -0.0062 -0.0089 -0.0100 -0.0106 -0.0101 -0.0009

ReMeDI*

kn = 5, `n = 5 0.0147 0.0280 0.0471 0.0535 0.0419 0.7974
kn = 5, `n = 10 0.0146 0.0278 0.0467 0.0520 0.0395 0.5844
kn = 10, `n = 5 0.0126 0.0243 0.0344 0.0582 0.0398 0.2731
kn = 10, `n = 10 0.0099 0.0205 0.0314 0.0641 0.0395 0.1507

TSRK

Gn = 12, Hn = 76, ✓ = 0.3 -0.0011 -0.0016 0.0049 0.1229 0.1701 0.5945
Gn = 12, Hn = 76, ✓ = 0.8 -0.0029 -0.0054 -0.0038 0.0116 0.0193 0.1040
Gn = 12, Hn = 76, ✓ = 1.5 -0.0061 -0.0088 -0.0098 -0.0056 -0.0031 0.0213
Gn = 12, Hn = 153, ✓ = 0.3 -0.0010 -0.0016 0.0047 0.1228 0.1698 0.5850
Gn = 12, Hn = 153, ✓ = 0.8 -0.0029 -0.0054 -0.0038 0.0116 0.0192 0.1027
Gn = 12, Hn = 153, ✓ = 1.5 -0.0061 -0.0088 -0.0098 -0.0056 -0.0031 0.0209
Gn = 29, Hn = 76, ✓ = 0.3 -0.0006 -0.0020 0.0018 0.1228 0.1621 0.3427
Gn = 29, Hn = 76, ✓ = 0.8 -0.0028 -0.0054 -0.0042 0.0116 0.0182 0.0686
Gn = 29, Hn = 76, ✓ = 1.5 -0.0061 -0.0088 -0.0099 -0.0056 -0.0034 0.0112
Gn = 29, Hn = 153, ✓ = 0.3 -0.0004 -0.0018 0.0011 0.1224 0.1610 0.3141
Gn = 29, Hn = 153, ✓ = 0.8 -0.0028 -0.0054 -0.0044 0.0115 0.0180 0.0646
Gn = 29, Hn = 153, ✓ = 1.5 -0.0061 -0.0088 -0.0099 -0.0057 -0.0034 0.0101

RV
✓ = 0.3 -0.0052 -0.0046 0.0039 -0.0045 0.1343 0.7711
✓ = 0.8 -0.0034 -0.0058 -0.0039 -0.0063 0.0143 0.1289
✓ = 1.5 -0.0063 -0.0089 -0.0098 -0.0107 -0.0045 0.0283

Table 3: The relative biases of the pre-averaging estimators of IV with various debiasing methods.
The bandwidth parameter of the pre-averaging estimator ✓ is selected from {0.3, 0.8, 1.5}. The tuning
parameter of the LA and ReMeDI estimators kn is selected from {5, 10}. The lag truncation parameter
`n is selected from {5, 10}. The two bandwidths of TSRK are selected by Gn 2 {[n1/4], [n1/3]}, Hn 2
{[
p
n/2], [

p
n]} with n = 23400. The method ReMeDI* follows the optimal rule of selecting ✓ in (16).

The RV method refers to the realized volatility estimator of the variance of iid noise. The biases are
obtained by taking the averages of 1000 simulations.
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Estimators
Specifications K� = 5⇥ 10�5

K� = 5⇥ 10�4

% = 0 0.3 0.8 % = 0 0.3 0.8

LA

kn = 5, `n = 5, ✓ = 0.3 0.6968 0.7366 0.6948 0.6945 0.6520 0.4778
kn = 5, `n = 5, ✓ = 0.8 0.2070 0.2123 0.1893 0.2001 0.1836 0.1812
kn = 5, `n = 5, ✓ = 1.5 0.2286 0.2446 0.2223 0.2221 0.2166 0.2332
kn = 5, `n = 10, ✓ = 0.3 1.0471 1.1112 1.0542 1.0471 0.9902 0.8598
kn = 5, `n = 10, ✓ = 0.8 0.2618 0.2730 0.2473 0.2593 0.2369 0.2274
kn = 5, `n = 10, ✓ = 1.5 0.2346 0.2512 0.2283 0.2299 0.2209 0.2379
kn = 10, `n = 5, ✓ = 0.3 1.4201 1.5057 1.4328 1.4168 1.3483 1.2738
kn = 10, `n = 5, ✓ = 0.8 0.2847 0.2971 0.2708 0.2824 0.2588 0.2501
kn = 10, `n = 5, ✓ = 1.5 0.2362 0.2527 0.2298 0.2318 0.2220 0.2391
kn = 10, `n = 10, ✓ = 0.3 2.1527 2.2860 2.1814 2.1496 2.0538 2.0992
kn = 10, `n = 10, ✓ = 0.8 0.4343 0.4588 0.4268 0.4356 0.4045 0.4134
kn = 10, `n = 10, ✓ = 1.5 0.2578 0.2758 0.2520 0.2566 0.2402 0.2606

ReMeDI

kn = 5, `n = 5, ✓ = 0.3 0.1148 0.1100 0.0999 0.1038 0.0996 0.5988
kn = 5, `n = 5, ✓ = 0.8 0.1724 0.1732 0.1560 0.1590 0.1532 0.1977
kn = 5, `n = 5, ✓ = 1.5 0.2250 0.2406 0.2191 0.2164 0.2150 0.2326
kn = 5, `n = 10, ✓ = 0.3 0.1170 0.1117 0.1016 0.1048 0.1014 0.5470
kn = 5, `n = 10, ✓ = 0.8 0.1729 0.1736 0.1563 0.1593 0.1537 0.1919
kn = 5, `n = 10, ✓ = 1.5 0.2252 0.2407 0.2192 0.2165 0.2152 0.2324
kn = 10, `n = 5, ✓ = 0.3 0.1265 0.1200 0.1097 0.1115 0.1098 0.3521
kn = 10, `n = 5, ✓ = 0.8 0.1742 0.1747 0.1573 0.1603 0.1548 0.1821
kn = 10, `n = 5, ✓ = 1.5 0.2254 0.2410 0.2193 0.2167 0.2154 0.2323
kn = 10, `n = 10, ✓ = 0.3 0.1317 0.1258 0.1153 0.1157 0.1145 0.2726
kn = 10, `n = 10, ✓ = 0.8 0.1756 0.1762 0.1586 0.1616 0.1562 0.1780
kn = 10, `n = 10, ✓ = 1.5 0.2258 0.2414 0.2196 0.2171 0.2158 0.2327

ReMeDI*

kn = 5, `n = 5 0.0572 0.0699 0.0819 0.1952 0.1581 1.1294
kn = 5, `n = 10 0.0572 0.0698 0.0817 0.2075 0.1578 0.8939
kn = 10, `n = 5 0.0832 0.0776 0.0804 0.2372 0.1932 0.4154
kn = 10, `n = 10 0.0862 0.0792 0.0815 0.3148 0.2462 0.2913

TSRK

Gn = 12, Hn = 76, ✓ = 0.3 0.1160 0.1113 0.1016 0.1732 0.2096 0.7010
Gn = 12, Hn = 76, ✓ = 0.8 0.1728 0.1737 0.1564 0.1593 0.1553 0.2090
Gn = 12, Hn = 76, ✓ = 1.5 0.2251 0.2408 0.2192 0.2162 0.2150 0.2332
Gn = 12, Hn = 153, ✓ = 0.3 0.1170 0.1122 0.1019 0.1735 0.2097 0.6901
Gn = 12, Hn = 153, ✓ = 0.8 0.1733 0.1743 0.1570 0.1598 0.1558 0.2086
Gn = 12, Hn = 153, ✓ = 1.5 0.2253 0.2410 0.2194 0.2164 0.2152 0.2334
Gn = 29, Hn = 76, ✓ = 0.3 0.1326 0.1304 0.1194 0.1814 0.2099 0.4197
Gn = 29, Hn = 76, ✓ = 0.8 0.1761 0.1775 0.1599 0.1627 0.1585 0.1922
Gn = 29, Hn = 76, ✓ = 1.5 0.2260 0.2417 0.2200 0.2171 0.2159 0.2334
Gn = 29, Hn = 153, ✓ = 0.3 0.1435 0.1422 0.1278 0.1888 0.2155 0.3909
Gn = 29, Hn = 153, ✓ = 0.8 0.1787 0.1805 0.1626 0.1657 0.1613 0.1930
Gn = 29, Hn = 153, ✓ = 1.5 0.2271 0.2429 0.2212 0.2182 0.2170 0.2345

RV
✓ = 0.3 0.1107 0.1058 0.0958 0.0992 0.1730 0.9017
✓ = 0.8 0.1719 0.1728 0.1555 0.1587 0.1537 0.2257
✓ = 1.5 0.2249 0.2405 0.2190 0.2164 0.2148 0.2339

Table 4: The root-mean-squared-relative-errors (RMSRE) of the pre-averaging estimators of IV with
various debiasing methods. The bandwidth parameter of the pre-averaging estimator ✓ is selected
from {0.3, 0.8, 1.5}. The tuning parameter of the LA and ReMeDI estimators kn is selected from {5, 10}.
The lag truncation parameter `n is selected from {5, 10}. The two bandwidths of TSRK are selected by
Gn 2 {[n1/4], [n1/3]}, Hn 2 {[

p
n/2], [

p
n]} with n = 23400. The method ReMeDI* follows the optimal

rule of selecting ✓ in (16). The RV method refers to the realized volatility estimator of the variance of
i.i.d. noise. The number of simulations is 1000.
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Estimators
Specifications K� = 5⇥ 10�4

K� = 5⇥ 10�5

⇢ = 0 ⇢ = 0.8 ⇢ = 0 ⇢ = 0.8
time t=5 min 100 min 200 min t=5 min 100 min 200 min t=5 min 100 min 200 min t=5 min 100 min 200 min

ecnt (✓)

✓ = 0.5, ln = 300, kn = 5 2.9929 1.2551 0.4644 10.8252 4.4852 1.6201 0.0277 0.0014 -0.0037 0.0999 0.0379 0.0082
✓ = 0.5, ln = 300, kn = 10 3.2846 1.4325 0.5042 9.7096 4.1235 1.4464 0.0420 -0.0072 -0.0036 0.0894 0.0360 0.0055
✓ = 0.5, ln = 600, kn = 5 0.8507 0.3618 0.1570 6.5638 2.6499 1.0369 0.0202 0.0077 0.0122 0.0610 0.0285 0.0139
✓ = 0.5, ln = 600, kn = 10 0.9729 0.4378 0.1755 4.2781 1.7073 0.6728 0.0307 0.0114 0.0117 0.0308 0.0245 0.0097
✓ = 0.5, ln = 900, kn = 5 0.4420 0.1975 0.1091 5.6127 2.2338 0.9295 0.0386 0.0251 0.0420 0.0673 0.0347 0.0397
✓ = 0.5, ln = 900, kn = 10 0.5035 0.2356 0.1178 2.5477 0.9937 0.4379 0.0447 0.0249 0.0430 0.0304 0.0261 0.0339
✓ = 1.0, ln = 300, kn = 5 0.1976 0.0233 -0.0124 4.8267 1.9964 0.6946 -0.0249 -0.0486 -0.0380 0.0078 -0.0152 -0.0366
✓ = 1.0, ln = 300, kn = 10 0.2785 0.0833 0.0132 2.0806 0.8354 0.2739 -0.0156 -0.0407 -0.0453 -0.0338 -0.0258 -0.0472
✓ = 1.0, ln = 600, kn = 5 0.0375 0.0161 0.0102 3.6247 1.4515 0.5655 -0.0060 -0.0162 -0.0100 0.0078 -0.0034 -0.0136
✓ = 1.0, ln = 600, kn = 10 0.0816 0.0477 0.0207 1.5125 0.5704 0.2309 -0.0018 -0.0109 -0.0101 -0.0222 -0.0073 -0.0164
✓ = 1.0, ln = 900, kn = 5 0.0199 0.0230 0.0268 2.8847 1.1466 0.4883 0.0194 0.0056 0.0233 0.0207 0.0087 0.0170
✓ = 1.0, ln = 900, kn = 10 0.0364 0.0358 0.0298 1.3011 0.5046 0.2340 0.0217 0.0060 0.0244 0.0010 0.0039 0.0144

ec0nt (✓)

✓ = 0.5, ln = 300, kn = 5 1.6577 1.3229 1.8756 6.8496 4.6818 4.1494 -0.3183 0.0396 0.9551 -0.2682 0.0753 0.9826
✓ = 0.5, ln = 300, kn = 10 1.8437 1.5084 1.9567 6.1170 4.3088 3.8080 -0.3089 0.0308 0.9552 -0.2751 0.0739 0.9778
✓ = 0.5, ln = 600, kn = 5 0.2340 0.4462 1.2385 4.0405 2.8822 2.9421 -0.3208 0.0746 0.9577 -0.2913 0.0960 0.9623
✓ = 0.5, ln = 600, kn = 10 0.3150 0.5274 1.2745 2.5168 1.8804 2.2372 -0.3139 0.0788 0.9565 -0.3115 0.0920 0.9538
✓ = 0.5, ln = 900, kn = 5 -0.0370 0.3043 1.0982 3.4190 2.5303 2.6493 -0.3069 0.1196 0.9703 -0.2861 0.1309 0.9678
✓ = 0.5, ln = 900, kn = 10 0.0052 0.3462 1.1147 1.3717 1.1777 1.7188 -0.3028 0.1196 0.9719 -0.3108 0.1216 0.9566
✓ = 1.0, ln = 300, kn = 5 -0.2025 0.0558 0.9430 2.8675 2.1068 2.3315 -0.3532 -0.0122 0.8879 -0.3292 0.0208 0.8947
✓ = 1.0, ln = 300, kn = 10 -0.1473 0.1203 0.9945 1.0462 0.9011 1.5056 -0.3470 -0.0035 0.8738 -0.3567 0.0098 0.8727
✓ = 1.0, ln = 600, kn = 5 -0.3081 0.0795 0.9555 2.0814 1.6084 2.0300 -0.3382 0.0493 0.9146 -0.3268 0.0623 0.9089
✓ = 1.0, ln = 600, kn = 10 -0.2785 0.1133 0.9763 0.6738 0.6719 1.3821 -0.3354 0.0551 0.9140 -0.3468 0.0583 0.9035
✓ = 1.0, ln = 900, kn = 5 -0.3185 0.1143 0.9427 1.5964 1.3440 1.8145 -0.3197 0.0984 0.9347 -0.3173 0.1025 0.9247
✓ = 1.0, ln = 900, kn = 10 -0.3069 0.1285 0.9483 0.5385 0.6436 1.3332 -0.3182 0.0988 0.9367 -0.3305 0.0974 0.9197

bcnt (✓)

✓ = 0.5, ln = 300 -0.3673 -0.1732 -0.1431 13.4635 5.5619 1.9213 -0.0974 -0.1014 -0.1025 0.0303 -0.0446 -0.0800
✓ = 0.5, ln = 600 -0.1499 -0.0622 -0.0353 10.9911 4.4271 1.6716 -0.0300 -0.0359 -0.0312 0.0663 0.0047 -0.0166
✓ = 0.5, ln = 900 -0.3075 -0.1154 -0.0340 9.2429 3.6339 1.4606 0.0013 -0.0052 0.0122 0.0761 0.0202 0.0198
✓ = 1.0, ln = 300 -0.3662 -0.1927 -0.1133 7.9083 3.2430 1.1320 -0.0529 -0.0669 -0.0606 0.0169 -0.0251 -0.0516
✓ = 1.0, ln = 600 -0.0995 -0.0414 -0.0188 5.5581 2.2251 0.8497 -0.0175 -0.0263 -0.0207 0.0179 -0.0063 -0.0192
✓ = 1.0, ln = 900 -0.0495 -0.0072 0.0105 4.2302 1.6658 0.6881 0.0110 -0.0014 0.0160 0.0273 0.0065 0.0131

ecnt (✓⇤)

ln = 300, kn = 5 0.3130 0.2264 0.3038 5.0829 2.2021 0.8854 0.1077 0.0347 0.0011 0.0815 0.0070 -0.0270
ln = 300, kn = 10 0.7391 0.3956 0.2191 2.1537 0.9083 0.3683 0.0093 -0.0430 -0.0957 -0.0360 -0.0798 -0.1173
ln = 600, kn = 5 0.0712 0.1002 0.1758 4.1150 1.7924 0.8531 0.1161 0.0522 0.0174 0.1103 0.0431 0.0121
ln = 600, kn = 10 0.2572 0.3541 0.2243 1.5173 0.5941 0.2868 0.0377 -0.0255 -0.0496 -0.0107 -0.0356 -0.0569
ln = 900, kn = 5 0.0460 0.0887 0.1395 3.6760 1.6687 0.8681 0.0766 0.0444 0.0476 0.1279 0.0566 0.0531
ln = 900, kn = 10 0.0948 0.1964 0.1630 1.3042 0.5220 0.2831 0.0221 -0.0238 -0.0121 0.0181 -0.0132 -0.0204

Table 5: The relative biases of SV estimators. The tuning parameter kn of ReMeDI is either 5 or 10; the lag truncation parameter `n = [kn/2]; the bandwidth
of estimating SV ln 2 {300, 600, 900}; the bandwidth parameter of the pre-averaging method ✓ 2 {0.5, 1}. The biases are obtained by taking the averages
of 1000 simulations.
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Estimators
Specifications K� = 5⇥ 10�4

K� = 5⇥ 10�5

⇢ = 0 ⇢ = 0.8 ⇢ = 0 ⇢ = 0.8
time t=5 min 100 min 200 min t=5 min 100 min 200 min t=5 min 100 min 200 min t=5 min 100 min 200 min

ecnt (✓)

✓ = 0.5, ln = 300, kn = 5 10.2533 1.5110 0.6538 35.6338 4.9207 1.5314 0.8429 0.4020 0.3958 1.0273 0.4228 0.4342
✓ = 0.5, ln = 300, kn = 10 11.7552 1.7442 0.7559 32.6313 4.6333 1.4838 0.9451 0.4929 0.4627 1.2789 0.5095 0.4975
✓ = 0.5, ln = 600, kn = 5 3.2248 0.5925 0.4217 21.4422 2.9061 1.0650 0.9232 0.3864 0.3480 0.9319 0.3723 0.3964
✓ = 0.5, ln = 600, kn = 10 3.9983 0.7074 0.5278 14.4671 1.9820 0.8586 1.0315 0.4641 0.4159 1.0409 0.4408 0.4550
✓ = 0.5, ln = 900, kn = 5 2.1451 0.4865 0.3840 18.2908 2.4454 0.9455 0.9543 0.3702 0.3415 0.9380 0.3419 0.3768
✓ = 0.5, ln = 900, kn = 10 2.2003 0.5354 0.4636 8.8474 1.2827 0.6741 1.0811 0.4556 0.4128 1.0376 0.4432 0.4518
✓ = 1.0, ln = 300, kn = 5 2.8836 0.7013 0.5328 17.3046 2.5104 0.9632 0.9662 0.5009 0.4832 1.2212 0.5361 0.5595
✓ = 1.0, ln = 300, kn = 10 2.4928 0.8144 0.6505 8.8697 1.4571 0.8491 1.2232 0.6251 0.6398 1.5022 0.6716 0.7418
✓ = 1.0, ln = 600, kn = 5 1.5653 0.4805 0.4523 12.3772 1.7450 0.7809 0.9800 0.4372 0.3931 0.9903 0.4201 0.4424
✓ = 1.0, ln = 600, kn = 10 1.3754 0.5385 0.5494 6.3593 1.0390 0.7204 1.1059 0.5302 0.4820 1.1606 0.5101 0.5249
✓ = 1.0, ln = 900, kn = 5 1.1914 0.4394 0.4081 9.6949 1.3854 0.6659 1.0062 0.4091 0.3702 0.9465 0.3955 0.4126
✓ = 1.0, ln = 900, kn = 10 1.2310 0.4856 0.4656 5.3041 0.9275 0.6091 1.0905 0.4709 0.4235 1.0455 0.4640 0.4663

ec0nt (✓)

✓ = 0.5, ln = 300, kn = 5 6.0482 1.5908 2.4133 22.5707 5.1358 4.2378 1.0436 0.4169 1.6931 1.1593 0.4600 1.7817
✓ = 0.5, ln = 300, kn = 10 7.0334 1.8248 2.5347 20.6606 4.8320 4.0787 1.1067 0.5060 1.8200 1.2940 0.5542 1.8803
✓ = 0.5, ln = 600, kn = 5 1.5936 0.6808 1.7830 13.2549 3.1703 3.2578 1.1150 0.4152 1.6641 1.2115 0.4203 1.7312
✓ = 0.5, ln = 600, kn = 10 2.1423 0.8043 1.8190 8.6570 2.1834 2.7963 1.1586 0.5051 1.6863 1.3226 0.4861 1.7729
✓ = 0.5, ln = 900, kn = 5 1.1855 0.5806 1.6792 11.2048 2.7858 2.9448 1.0872 0.4232 1.6353 1.1886 0.4092 1.6675
✓ = 0.5, ln = 900, kn = 10 1.1588 0.6372 1.6854 4.9886 1.5025 2.3332 1.1336 0.5186 1.6757 1.3087 0.5071 1.7353
✓ = 1.0, ln = 300, kn = 5 2.0112 0.7287 1.7341 10.5098 2.6428 2.9504 1.1735 0.5087 1.7069 1.4392 0.5686 1.8204
✓ = 1.0, ln = 300, kn = 10 1.7401 0.8497 1.7870 5.1488 1.5406 2.4661 1.2629 0.6412 1.8034 1.6476 0.7019 2.0551
✓ = 1.0, ln = 600, kn = 5 1.4226 0.5262 1.5693 7.2729 1.9309 2.6034 1.1837 0.4634 1.6343 1.3466 0.4562 1.7038
✓ = 1.0, ln = 600, kn = 10 1.2843 0.5945 1.6251 3.5408 1.1569 2.2836 1.2289 0.5693 1.6880 1.4729 0.5468 1.7873
✓ = 1.0, ln = 900, kn = 5 1.2523 0.4954 1.5383 5.5141 1.6202 2.3333 1.1383 0.4566 1.6015 1.2939 0.4477 1.6506
✓ = 1.0, ln = 900, kn = 10 1.2498 0.5475 1.5620 2.8411 1.0888 2.0802 1.1675 0.5256 1.6417 1.3699 0.5171 1.7067

bcnt (✓)

✓ = 0.5, ln = 300 5.9620 0.9513 0.5103 43.4563 5.8910 1.6880 0.7300 0.3587 0.3591 0.7258 0.3471 0.3662
✓ = 0.5, ln = 600 2.2998 0.4921 0.3731 35.0967 4.6301 1.4869 0.8080 0.3385 0.2860 0.7698 0.2926 0.3205
✓ = 0.5, ln = 900 1.7085 0.4105 0.3330 29.3890 3.7951 1.3026 0.8649 0.3355 0.2934 0.8622 0.2822 0.3241
✓ = 1.0, ln = 300 2.4579 0.6153 0.4689 26.1134 3.5931 1.1303 0.8396 0.4219 0.4143 0.9903 0.4502 0.4684
✓ = 1.0, ln = 600 1.1813 0.4258 0.4193 18.0055 2.4169 0.9001 0.9190 0.4035 0.3540 0.8968 0.3764 0.4027
✓ = 1.0, ln = 900 0.9961 0.4069 0.3861 13.6466 1.8301 0.7518 0.9704 0.3922 0.3488 0.9060 0.3691 0.3906

ecnt (✓⇤)

ln = 300, kn = 5 5.0396 2.2299 1.6223 18.8126 2.9399 1.2368 1.1042 0.4344 0.3391 1.0523 0.3723 0.3859
ln = 300, kn = 10 13.0478 2.3067 1.2867 9.5457 1.7432 1.0133 1.1026 0.5307 0.5111 1.2701 0.5062 0.5176
ln = 600, kn = 5 1.7906 1.0327 0.7855 14.6056 2.3326 1.1077 0.9590 0.3319 0.2657 0.9200 0.2810 0.3062
ln = 600, kn = 10 4.9159 1.5242 0.8405 6.3915 1.1738 0.7840 1.0240 0.4222 0.3804 1.0351 0.3889 0.3929
ln = 900, kn = 5 1.4584 0.5897 0.5083 12.9737 2.1177 1.0434 0.8944 0.3357 0.2980 0.9471 0.2773 0.3151
ln = 900, kn = 10 1.7322 0.7971 0.5636 5.3267 0.9845 0.6751 0.9507 0.3817 0.3294 0.9388 0.3570 0.3714

Table 6: The root-mean-squared-relative-errors (RMSRE) of SV estimators. The tuning parameter kn of ReMeDI is either 5 or 10; the lag truncation
parameter `n = [kn/2]; the bandwidth of estimating SV ln 2 {300, 600, 900}; the bandwidth parameter of the pre-averaging method ✓ 2 {0.5, 1}. The
number of simulations is 1000.
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Figure 1: QQ Plot of ( bCn
t � Ct)/

p
⌃n

t versus Standard Normal. The scale of noise is fixed at K� =
10�4, the AR(1) coefficient of noise % 2 {0, 0.3, 0.8}. The tuning parameters are selected as follows:
✓ 2 {0.3, 0.8}, kn 2 {5, 10}, `n = [kn/2]. The number of simulations is 1000.
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7 Empirical Studies

We use the intraday transaction prices of two individual stocks, the Coca-Cola Co (KO) and
the General Electric Company (GE). The transaction prices are obtained from the Trade and
Quote (TAQ) database for January 2015. There are 20 trading days.

7.1 IV estimation

Figure 2 presents and compares the IV estimates of several estimators. The top panel of
Figure 2 plots the estimates of FRK, PaReMeDI, QMLE and TSRK.17 The estimates are very
close to each other on most of the trading days. Specifically, the PaReMeDI and QMLE
generate virtually identical estimates of the IV; most estimates are within the 95% confidence
intervals of PaReMeDI, whence they are statistically indistinguishable.18 The bottom panel of
Figure 2 illustrates the sensitivity of PaLA to the choice of ✓. When ✓ is small, PaLA tends
to underestimate the IVs due to the errors in the LA corrections. This is consistent with
our observations in the simulation studies. When ✓ becomes large, the over-smoothing effect
dominates the errors in the LA corrections and the estimates become closer to the PaReMeDI
estimates, which we believe to provide accurate proxies of the true IVs.

It is worth mentioning that there are several trading days where the discrepancies among
the estimators are large (the 2nd and 19th trading days for KO and the 15th trading day for GE).
However, QMLE and PaReMeDI still conform to each other closely. One possible explanation
is that both estimators have a quite small root mean squared errors, as they often do in the
simulation studies.

7.2 SV estimation

We estimate SV by three estimators studied in the simulation section: ecnt defined in (9) , ec0nt
defined in (14) and bcnt , where bcnt is the pre-averaging estimator of SV with a realized volatility
correction of the i.i.d. noise, see Chapter 8 of Aı̈t-Sahalia and Jacod (2014) and the recent work
by Li et al. (2022).19

The average spot volatility estimates are presented in Figure 3. In the top panel, we observe
the two SV estimates bcnt and ecnt are almost in line with each other, indicating that an i.i.d. noise
assumption is acceptable for the transaction prices of KO in the sample. However, bcnt exceeds
ecnt in almost each minute in the bottom panel for GE. The systematic differences suggest the
inadequacy of the simple i.i.d. assumption of noise. Both estimators display a weakly U-
shaped or reverse J-shaped pattern for the intraday volatility that is well documented in the

17In this empirical study, we do not consider the robustness of jumps.
18We notice that Oh and Kim (2021) study the U.S.—China trade war based on a volatility contagion model, and

the model is estimated by QMLE. The PaReMeDI estimator is used as an alternative measure of IV, and it is found
that the QMLE and PaReMeDI estimates are quite close.

19Note that Aı̈t-Sahalia and Jacod (2014) and Li et al. (2022) only consider the regular observation scheme.
The estimator bcnt used here is normalized by the differences of real observation times, recall the discussion in
Remark 4.2. Thus, the persistent differences of bcnt and ecnt —if there are any—are caused by the misspecification of
i.i.d. noise.
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literature (Andersen and Bollerslev, 1997; Wood et al., 1985).
Now we compare ecnt and ec0nt and examine the consequences of ignoring the stochastic

observation schemes. As is evident in the top panel of Figure 3, the differences of ecnt and
ec0nt are quite persistent: the latter is noticeably lower near the opening and near the close
compared with the volatility during the middle of the day. The SV estimates for GE exhibit
a similar pattern, albeit the differences are less substantial. The differences tie in closely with
our theoretical analysis and the numerical studies—the observation density ↵t plays a key
role to cause such a difference. We plot the average number of transactions in each minute
in Figure 4. The plot serves as a proxy of the process ↵t of each stock. Indeed, we observe a
clear U-pattern for KO, and an inverse J-pattern for GE. Thus, our findings align well with the
well-documented U-shape in volatility and trading volume in the literature.20 However, we
should be cautious—we will get a different intraday volatility pattern if we do not account for
the irregular observation scheme.

Figure 4 represents the average patterns over 20 trading days. It is of interest to directly
compare the daily estimates of SV at different trading times by different estimators. Figure 5
displays the SV estimates by ecnt and ec0nt at 9:35, 11:55 and 15:55. Some immediate observations
confirm the patterns we find in Figure 4: the estimates by ec0nt are almost always smaller than
the estimates by ecnt when the market opens and closes. However, the two estimates around
noon are indistinguishable.

8 Conclusion

We introduce a new class of IV and SV estimators using noisy high-frequency data. The
estimators are applicable in a broad setting of microstructure noise and observation schemes.
Compared to alternative estimators recently proposed, our estimators provides accurate and
robust estimates, and are computationally efficient. We also demonstrate the consequences
of neglecting the complexities of the noise component and the observation scheme. The
paper also initiates several future research projects. Since the pre-averaging method coupled
with ReMeDI correction can be directly applied to tick data, it opens the possibility to test
for jumps in tick data in the spirit of Aı̈t-Sahalia et al. (2012); it is an interesting approach
since jumps should be identified in samples of the highest possible frequencies (Christensen
et al., 2014). Asymptotic efficiency is not discussed in details. Adaptive estimator (Jacod and
Mykland, 2015) can be developed to improve efficiency. We leave these open questions for
future research.

20The results and the patterns are robust to the choices of tuning parameters.
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Figure 2: Integrated Volatility (IV) estimates of KO and GE for January, 2015. The tuning parameters are set as follows: For PaReMeDI, the tuning parameter of
ReMeDI is kn = 10 and the number of autocovariances incldued in the estimation of the long-run variance `n = 5; ✓ are selected according to (16). For FRK, we set
fn = 15, bn = 75, jn = 5. For PaLA, we set kn = 6, `n = 5. ✓ 2 {0.2, 0.5, 0.8, 1}. For TSRK, we set Gn = [n1/3], Hn = [n1/2] where n is the number of observations. For
the QMLE (with AIC selection criterion), the optimal q is selected within {5, 6, 7, 8, 9, 10}. The shaded areas in the top panel represent the 95% confidence intervals of the
PaReMeDI estimators.
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Figure 3: Average logarithmic spot volatility estimates for KO (top panel) and GE (bottom panel). The average
is taken over 20 trading days in January 2015. The trading time 0 (and 390) corresponds to 9:30 (and 16:00). SV
is estimated at each minute from 9:30 to 16:00. The estimators ecnt and ec0nt are defined in (9) and (14). We set
kn = 10, `n = 5, ln = 300 (for KO) and ln = 600 (for GE). The choices of ln is approximately equal to the number
of observations in 2 minutes for each stock. ✓ is selected via (17). bcnt is the pre-averaging estimator of SV with a
realized volatility correction of the i.i.d. noise.
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Figure 4: The Average number of transactions per minute for KO (top panel) and GE (bottom panel). The averages
are taken over 20 trading days in January 2015.
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Figure 5: Logarithmic spot volatility estimates at 9:30 (top panel), 11:55 (middle panel) and 15:55 (bottom panel)
of KO (left panel) and GE (right panel). The estimators ecnt and ec0nt are defined in (9) and (14). We set kn = 10, `n =

5, ln = 300 (for KO) and ln = 600 (for GE). The choices of ln are approximately equal to the number of observations
in 2 minutes for each stock. ✓ is selected via (17).
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A Additional Simulation Studies

A.1 Examine the feasible CLTs

Figure A.1 replicates Figure 1 in Li and Linton (2022a) with a different scale of noise K� =

5 ⇥ 10�5. The plots strongly support the robustness of the feasible CLT of the IV estimator.

Figure A.2 presents the QQ plot of the standardized SV estimators: (ecnt �ct)/
q
e⌃n
t . We observe

some distortions: the standardized statistics have larger dispersions at t = 5 and t = 100. 1

One possible explanation is that both the volatility and the noise have symmetric U-patterns;
thus, the spot volatility and the spot noise scale at t = 5 and t = 100 are more prominent than
t = 200 (recall that the maximal t = 390).

A.2 Robustness to jumps

Now we include jumps in our simulation design by setting ⇠1,t ⇠ N (0, µ2/10), recall the
simulation setting in Section 6.1 of Li and Linton (2022a). We set the truncation levels
at wn = 10µ2, wn = 20µ2. We compare with the Medium Blocked Realized Kernels
(MBRK) (Varneskov, 2016, 2017) that are robust to finite-activity jumps. Table A.1 and Table A.2
report the relative bias and RMSRE. We observe that both estimators work well to eliminate
the effects of jumps in IV estimation. MBRK are quite robust to the choices of the tuning
parameters. PaReMeDI tends to have smaller biases and RMSREs except for the estimator
with ✓ = 1.5.

*Corresponding author. Department of Economics, the Chinese University of Hong Kong, Esther Lee Building,
Shatin, New Territories, Hong Kong SAR. Email: merrickli@cuhk.edu.hk

†Faculty of Economics, University of Cambridge, Austin Robinson Building, Sidgwick Avenue, Cambridge,
CB3 9DD, United Kingdom. Email: obl20@cam.ac.uk.

1We obtain similar QQ plots when the parameters %,K� , ✓ and ln vary.
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Figure A.1: QQ Plot of ( bCn
t � Ct)/

p
⌃n

t versus Standard Normal. The scale of noise is fixed at K� =
5 ⇥ 10�5, the AR(1) coefficient of noise % 2 {0, 0.3, 0.8}. The tuning parameters are selected as follows:
✓ 2 {0.3, 0.8}, kn 2 {5, 10}, `n = [kn/2]. The number of simulations is 1000.
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Figure A.2: QQ Plot of (ecnt � ct)/
q
e⌃n
t versus Standard Normal for t 2 {5, 100, 200}. The scale of noise is fixed at K� = 5⇥ 10�5, the AR(1) coefficient of

noise % = 0.5. The tuning parameters are selected as follows: ✓ = 0.5, kn 2 {5, 10}, `n = [kn/2]. ln = 600. The number of simulations is 1000.
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Estimators
Specifications � = 5⇥ 10�4 � = 5⇥ 10�5

⇢ = 0 0.3 0.8 ⇢ = 0 0.3 0.8

PaReMeDI

kn = 5, `n = 5, ✓ = 0.3, wn = 10µ2 0.0193 0.0184 0.0226 0.0225 0.0261 0.5468
kn = 5, `n = 5, ✓ = 0.3, wn = 20µ2 0.0642 0.0641 0.0692 0.0711 0.0748 0.5991
kn = 5, `n = 5, ✓ = 0.8, wn = 10µ2 -0.0252 -0.0249 -0.0272 -0.0301 -0.0272 0.0717
kn = 5, `n = 5, ✓ = 0.8, wn = 20µ2 0.0572 0.0585 0.0584 0.0594 0.0614 0.1615
kn = 5, `n = 5, ✓ = 1.5, wn = 10µ2 -0.1122 -0.1119 -0.1174 -0.1243 -0.1198 -0.0801
kn = 5, `n = 5, ✓ = 1.5, wn = 20µ2 0.0429 0.0464 0.0434 0.0440 0.0468 0.0808
kn = 5, `n = 10, ✓ = 0.3, wn = 10µ2 0.0192 0.0183 0.0221 0.0227 0.0262 0.4992
kn = 5, `n = 10, ✓ = 0.3, wn = 20µ2 0.0642 0.0641 0.0687 0.0713 0.0749 0.5515
kn = 5, `n = 10, ✓ = 0.8, wn = 10µ2 -0.0252 -0.0249 -0.0273 -0.0301 -0.0272 0.0602
kn = 5, `n = 10, ✓ = 0.8, wn = 20µ2 0.0572 0.0585 0.0583 0.0594 0.0614 0.1500
kn = 5, `n = 10, ✓ = 1.5, wn = 10µ2 -0.1122 -0.1119 -0.1174 -0.1243 -0.1198 -0.0838
kn = 5, `n = 10, ✓ = 1.5, wn = 20µ2 0.0429 0.0464 0.0434 0.0440 0.0468 0.0772
kn = 10, `n = 5, ✓ = 0.3, wn = 10µ2 0.0191 0.0182 0.0203 0.0233 0.0259 0.3121
kn = 10, `n = 5, ✓ = 0.3, wn = 20µ2 0.0641 0.0640 0.0669 0.0718 0.0745 0.3644
kn = 10, `n = 5, ✓ = 0.8, wn = 10µ2 -0.0252 -0.0249 -0.0276 -0.0300 -0.0273 0.0346
kn = 10, `n = 5, ✓ = 0.8, wn = 20µ2 0.0572 0.0585 0.0581 0.0595 0.0614 0.1243
kn = 10, `n = 5, ✓ = 1.5, wn = 10µ2 -0.1122 -0.1119 -0.1175 -0.1243 -0.1198 -0.0910
kn = 10, `n = 5, ✓ = 1.5, wn = 20µ2 0.0429 0.0464 0.0433 0.0441 0.0468 0.0699
kn = 10, `n = 10, ✓ = 0.3, wn = 10µ2 0.0190 0.0181 0.0193 0.0233 0.0260 0.2283
kn = 10, `n = 10, ✓ = 0.3, wn = 20µ2 0.0640 0.0639 0.0659 0.0718 0.0747 0.2806
kn = 10, `n = 10, ✓ = 0.8, wn = 10µ2 -0.0253 -0.0249 -0.0278 -0.0300 -0.0272 0.0143
kn = 10, `n = 10, ✓ = 0.8, wn = 20µ2 0.0572 0.0585 0.0578 0.0595 0.0614 0.1041
kn = 10, `n = 10, ✓ = 1.5, wn = 10µ2 -0.1122 -0.1120 -0.1176 -0.1243 -0.1198 -0.0974
kn = 10, `n = 10, ✓ = 1.5, wn = 20µ2 0.0429 0.0464 0.0433 0.0441 0.0468 0.0635

MBRK

bn = 25, fn = 5, Ln = 300 -0.0490 -0.0522 -0.0483 0.2441 0.1851 0.6816
bn = 25, fn = 5, Ln = 500 -0.0476 -0.0497 -0.0447 0.1315 0.0948 0.6261
bn = 25, fn = 5, Ln = 1000 -0.0667 -0.0667 -0.0621 0.0244 0.0037 0.5403
bn = 25, fn = 10, Ln = 300 -0.0568 -0.0594 -0.0594 0.2397 0.1800 0.2973
bn = 25, fn = 10, Ln = 500 -0.0520 -0.0542 -0.0530 0.1314 0.0914 0.2406
bn = 25, fn = 10, Ln = 1000 -0.0687 -0.0684 -0.0680 0.0239 0.0021 0.1699
bn = 25, fn = 15, Ln = 300 -0.0647 -0.0666 -0.0687 0.2337 0.1734 0.1807
bn = 25, fn = 15, Ln = 500 -0.0565 -0.0587 -0.0588 0.1292 0.0888 0.1190
bn = 25, fn = 15, Ln = 1000 -0.0706 -0.0709 -0.0712 0.0230 0.0017 0.0507
bn = 50, fn = 5, Ln = 300 -0.0643 -0.0665 -0.0667 0.2295 0.1670 0.3026
bn = 50, fn = 5, Ln = 500 -0.0563 -0.0585 -0.0563 0.1253 0.0847 0.2521
bn = 50, fn = 5, Ln = 1000 -0.0707 -0.0711 -0.0694 0.0216 -0.0008 0.1837
bn = 50, fn = 10, Ln = 300 -0.0727 -0.0738 -0.0760 0.2230 0.1604 0.1593
bn = 50, fn = 10, Ln = 500 -0.0609 -0.0626 -0.0621 0.1227 0.0812 0.1101
bn = 50, fn = 10, Ln = 1000 -0.0732 -0.0735 -0.0726 0.0203 -0.0016 0.0476
bn = 50, fn = 15, Ln = 300 -0.0809 -0.0810 -0.0840 0.2161 0.1548 0.1108
bn = 50, fn = 15, Ln = 500 -0.0655 -0.0663 -0.0668 0.1191 0.0777 0.0627
bn = 50, fn = 15, Ln = 1000 -0.0756 -0.0759 -0.0747 0.0184 -0.0022 0.0038
bn = 75, fn = 5, Ln = 300 -0.0792 -0.0798 -0.0818 0.2163 0.1545 0.1851
bn = 75, fn = 5, Ln = 500 -0.0647 -0.0655 -0.0654 0.1184 0.0771 0.1397
bn = 75, fn = 5, Ln = 1000 -0.0751 -0.0753 -0.0737 0.0180 -0.0028 0.0785
bn = 75, fn = 10, Ln = 300 -0.0872 -0.0873 -0.0903 0.2096 0.1478 0.1085
bn = 75, fn = 10, Ln = 500 -0.0691 -0.0694 -0.0709 0.1148 0.0731 0.0656
bn = 75, fn = 10, Ln = 1000 -0.0775 -0.0775 -0.0763 0.0158 -0.0040 0.0097
bn = 75, fn = 15, Ln = 300 -0.0951 -0.0942 -0.0982 0.2027 0.1416 0.0802
bn = 75, fn = 15, Ln = 500 -0.0735 -0.0732 -0.0757 0.1107 0.0693 0.0390
bn = 75, fn = 15, Ln = 1000 -0.0799 -0.0796 -0.0784 0.0136 -0.0050 -0.0139

Table A.1: The relative biases of the jump-robust PaReMeDI and MBRK estimators of IV. The
noise scale parameter K� is selected in {5 ⇥ 10�4

, 5 ⇥ 10�5
}. The AR(1) coefficient of the

stationary noise is given by % 2 {0, 0.3, 0.8}. The tuning parameters of PaReMeDI are set
as follows: kn 2 {5, 10}, `n 2 {5, 10}, ✓ 2 {0.3, 0.8, 1.5}, wn 2 {10µ2, 20µ2}. For MBRK, the
flatness and bandwidth tuning parameters are selected from (fn, bn) 2 {5, 10, 15}⇥{25, 50, 75}.
The jittering bandwidth is fixed at jn = 5. The block sizes Ln 2 {300, 500, 1000}. The number
of simulation is 1000.
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Estimators
Specifications � = 5⇥ 10�4 � = 5⇥ 10�5

⇢ = 0 0.3 0.8 ⇢ = 0 0.3 0.8

ReMeDI

kn = 5, `n = 5, ✓ = 0.3, wn = 10µ2 0.1199 0.1094 0.1176 0.1186 0.1288 0.6528
kn = 5, `n = 5, ✓ = 0.3, wn = 20µ2 0.1861 0.1764 0.1799 0.1898 0.2025 0.7516
kn = 5, `n = 5, ✓ = 0.8, wn = 10µ2 0.3416 0.3379 0.3493 0.3584 0.3635 0.3463
kn = 5, `n = 5, ✓ = 0.8, wn = 20µ2 0.2245 0.2117 0.2133 0.2077 0.2220 0.2873
kn = 5, `n = 5, ✓ = 1.5, wn = 10µ2 0.6640 0.6698 0.6827 0.6816 0.6930 0.6691
kn = 5, `n = 5, ✓ = 1.5, wn = 20µ2 0.2524 0.2503 0.2504 0.2382 0.2407 0.2614
kn = 5, `n = 10, ✓ = 0.3, wn = 10µ2 0.1212 0.1109 0.1189 0.1197 0.1302 0.5985
kn = 5, `n = 10, ✓ = 0.3, wn = 20µ2 0.1872 0.1774 0.1808 0.1906 0.2034 0.6976
kn = 5, `n = 10, ✓ = 0.8, wn = 10µ2 0.3416 0.3380 0.3494 0.3584 0.3637 0.3466
kn = 5, `n = 10, ✓ = 0.8, wn = 20µ2 0.2248 0.2120 0.2136 0.2079 0.2223 0.2777
kn = 5, `n = 10, ✓ = 1.5, wn = 10µ2 0.6640 0.6698 0.6827 0.6816 0.6931 0.6710
kn = 5, `n = 10, ✓ = 1.5, wn = 20µ2 0.2525 0.2504 0.2505 0.2383 0.2408 0.2598
kn = 10, `n = 5, ✓ = 0.3, wn = 10µ2 0.1275 0.1179 0.1246 0.1265 0.1382 0.3914
kn = 10, `n = 5, ✓ = 0.3, wn = 20µ2 0.1918 0.1826 0.1854 0.1964 0.2078 0.4911
kn = 10, `n = 5, ✓ = 0.8, wn = 10µ2 0.3419 0.3382 0.3496 0.3584 0.3642 0.3491
kn = 10, `n = 5, ✓ = 0.8, wn = 20µ2 0.2256 0.2129 0.2144 0.2088 0.2230 0.2579
kn = 10, `n = 5, ✓ = 1.5, wn = 10µ2 0.6640 0.6698 0.6827 0.6816 0.6932 0.6747
kn = 10, `n = 5, ✓ = 1.5, wn = 20µ2 0.2527 0.2505 0.2506 0.2384 0.2410 0.2570
kn = 10, `n = 10, ✓ = 0.3, wn = 10µ2 0.1315 0.1225 0.1283 0.1306 0.1439 0.3052
kn = 10, `n = 10, ✓ = 0.3, wn = 20µ2 0.1950 0.1864 0.1888 0.2004 0.2113 0.4040
kn = 10, `n = 10, ✓ = 0.8, wn = 10µ2 0.3422 0.3384 0.3498 0.3584 0.3648 0.3531
kn = 10, `n = 10, ✓ = 0.8, wn = 20µ2 0.2266 0.2141 0.2154 0.2100 0.2240 0.2442
kn = 10, `n = 10, ✓ = 1.5, wn = 10µ2 0.6640 0.6698 0.6827 0.6815 0.6933 0.6780
kn = 10, `n = 10, ✓ = 1.5, wn = 20µ2 0.2530 0.2508 0.2509 0.2386 0.2412 0.2549

MBRK

bn = 25, fn = 5, Ln = 300 0.1412 0.1442 0.1387 0.3124 0.2570 0.8066
bn = 25, fn = 5, Ln = 500 0.1439 0.1400 0.1389 0.1984 0.1784 0.7496
bn = 25, fn = 5, Ln = 1000 0.1686 0.1654 0.1552 0.1418 0.1410 0.6455
bn = 25, fn = 10, Ln = 300 0.1608 0.1673 0.1634 0.3157 0.2594 0.3768
bn = 25, fn = 10, Ln = 500 0.1640 0.1582 0.1621 0.2088 0.1915 0.3259
bn = 25, fn = 10, Ln = 1000 0.1848 0.1790 0.1743 0.1559 0.1583 0.2581
bn = 25, fn = 15, Ln = 300 0.1758 0.1865 0.1858 0.3177 0.2636 0.2693
bn = 25, fn = 15, Ln = 500 0.1812 0.1739 0.1827 0.2178 0.2012 0.2235
bn = 25, fn = 15, Ln = 1000 0.2001 0.1927 0.1895 0.1675 0.1770 0.1947
bn = 50, fn = 5, Ln = 300 0.1692 0.1783 0.1756 0.3070 0.2488 0.3759
bn = 50, fn = 5, Ln = 500 0.1729 0.1660 0.1697 0.2058 0.1877 0.3295
bn = 50, fn = 5, Ln = 1000 0.1930 0.1864 0.1788 0.1558 0.1619 0.2632
bn = 50, fn = 10, Ln = 300 0.1866 0.1967 0.1958 0.3071 0.2536 0.2416
bn = 50, fn = 10, Ln = 500 0.1903 0.1807 0.1881 0.2147 0.1984 0.2095
bn = 50, fn = 10, Ln = 1000 0.2093 0.1999 0.1935 0.1682 0.1796 0.1842
bn = 50, fn = 15, Ln = 300 0.2050 0.2138 0.2125 0.3058 0.2589 0.2138
bn = 50, fn = 15, Ln = 500 0.2056 0.1950 0.2020 0.2230 0.2080 0.1958
bn = 50, fn = 15, Ln = 1000 0.2235 0.2125 0.2056 0.1813 0.1936 0.1913
bn = 75, fn = 5, Ln = 300 0.1982 0.2048 0.2034 0.2997 0.2513 0.2612
bn = 75, fn = 5, Ln = 500 0.1973 0.1874 0.1920 0.2159 0.2006 0.2314
bn = 75, fn = 5, Ln = 1000 0.2145 0.2054 0.1986 0.1740 0.1838 0.1959
bn = 75, fn = 10, Ln = 300 0.2172 0.2221 0.2209 0.2983 0.2556 0.2126
bn = 75, fn = 10, Ln = 500 0.2124 0.2018 0.2063 0.2242 0.2105 0.1997
bn = 75, fn = 10, Ln = 1000 0.2280 0.2181 0.2116 0.1884 0.1981 0.1922
bn = 75, fn = 15, Ln = 300 0.2365 0.2380 0.2363 0.2963 0.2601 0.2099
bn = 75, fn = 15, Ln = 500 0.2272 0.2159 0.2186 0.2319 0.2197 0.2067
bn = 75, fn = 15, Ln = 1000 0.2407 0.2308 0.2241 0.2029 0.2113 0.2080

Table A.2: The Root-mean-squared-relative-errors (RMSRE) of the jump-robust PaReMeDI and
MBRK estimators of IV. The noise scale parameter K� is selected in {5 ⇥ 10�4

, 5 ⇥ 10�5
}.

The AR(1) coefficient of the stationary noise is given by % 2 {0, 0.3, 0.8}. The tuning
parameters of PaReMeDI are set as follows: kn 2 {5, 10}, `n 2 {5, 10}, ✓ 2 {0.3, 0.8, 1.5}, wn 2

{10µ2, 20µ2}. For MBRK, the flatness and bandwidth tuning parameters are selected from
(fn, bn) 2 {5, 10, 15} ⇥ {25, 50, 75}. The jittering bandwidth is fixed at jn = 5. The block sizes
Ln 2 {300, 500, 1000}. The number of simulation is 1000.
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B Technical Proofs

We will follow the scheme of the proofs in Jacod et al. (2019), and we add a prefix “JLZ” to cite
their results. In the sequel, K will be a generic constant independent of n, which may change
from line to line or even within one line. We write it Kpar if it depends on some parameter par.
The variable  n

par is a nonnegative G-measurable variable with E
�
( n

par)
2
�
 1.

Using a classical localization procedure, it suffices to have the following stronger version
of Assumptions (H-X-r), (O-⇢, ⇢0) and (N-v) in Li and Linton (2022a):

Assumption (S-HON). Assume Assumptions (H-X-r), (O-⇢, ⇢0) (with ⌧1 = 1) and (N-v) hold.
Assumption (H-r) hold for b,�,↵, � with r = 2; the function � and the processes b,�,↵, 1/↵, �, X are
bounded and

N
n
t  Kt��1

n ,

���E
⇣
�(n, i)��n↵

�1
T (n,i�1)

��FT (n,i�1)

⌘���  K�1+⇢
n , E

�
�(n, i)

��FT (n,i�1)

�
 K�

n. (B.1)

We decompose X into the continuous and discontinuous parts: X = X
c +X

d with

X
c
t := X0 +

Z t

0
bsds+

Z t

0
�sdWs, X

d
c :=

Z

[0,t]⇥E
�(s, z)µ(s, z). (B.2)

In the sequel, i, j, j0, p > 1 are integers. We introduce the following notations

G
n,i
s :=

hn�1X

j=1

g
n
j 1{(T (n,i+j�1),T (n,i+j)]}(s), bGn,i

j,j0 :=

Z 1

0
G

n,i+j
u G

n,i+j0
u du,

m(j)np := (j � 1)(p+ 2)hn, ⌘n := �
� 1

4�
⌘
2

n , 0m = (0, . . . , 0| {z }
m

),

G
n,i
j,j0 :=

Z 1

0
G

n,i+j
u G

n,i+j0
u du

Z u

0
G

n,i+j
s G

n,i+j0
s ds, Jn(p, t) := 1 +


N

n
t

(p+ 2)hn

�
,

In(p, t) := Jn(p, t)(p+ 2)hn � 1; H
n
i := F1 ⌦ Gi�hn , K

n
i := F

n
i ⌦ Gi�hn ,

H(p)nj := K
n
m(j+1)np

, j := (j1, . . . , jd), j` 2 N, 1  `  d, r(j)n := E
 

dY

`=1

�
n
`

!
,

H
0(p)nj := K

n
m(j+1)np+phn

, bcni :=
X

j2Z
(gnj )

2�n
i+jC,

bXc,n
i :=

�
X

c,n
i

�2
� bcni ,

b"ni := ("ni )
2
� (�ni �

⌘
n)

2r(02)n, dXc"
n
i := X

c,n
i "

n
i ,

Z
n
i := (Y

c,n
i )2 � bcni � (�ni �

⌘
n)

2r(02)n = bXc,n
i + b"ni + 2dXc"

n
i , ⇣(p)ni :=

i+phn�1X

j=i

Z
n
j ,

⌘(p)nj :=
1

hn�
n
0

⇣(p)nm(j)np
, ⌘(p)nj := E

�
⌘(p)nj

��H(p)nj�1

�
,

⌘
0(p)nj :=

1

hn�
n
0

⇣(2)nm(j)np+phn
, ⌘

0(p)nj := E
�
⌘
0(p)nj

��H0(p)nj�1

�
.

For any process V , we defined �n,k
i,` := (V n

i+` � V
n
i+`+k)(V

n
i � V

n
i�k). Next, we define several

6



processes:

F (p)nt :=

Jn(p,t)X

j=1

⌘(p)nj , M(p)nt :=

Jn(p,t)X

j=1

�
⌘(p)nj � ⌘(p)nj

�
,

F
0(p)nt :=

Jn(p,t)X

j=1

⌘
0(p)nj , M

0(p)nt :=

Jn(p,t)X

j=1

�
⌘
0(p)nj � ⌘

0(p)nj
�
,

bC(p)nt :=
1

hn�
n
0

In(p,t)X

i=Nn
t �hn+2

Z
n
i ,

bCn,1
t :=

1

hn�
n
0

Nn
t �hn+1X

i=0

bcni � Ct,

bCn,2
t :=

1

hn�
n
0

Nn
t �hn+1X

i=0

⇣
(Y

n
i )

21
{|Y n

i |un}
� (Y

c,n
i )2

⌘
,

bCn,3
t :=

r(02)n
hn�

n
0

Nn
t �hn+1X

i=0

(�ni �
⌘
n)

2
�

1

h2n�
n
0

X

|`|`n

Nn
t �hn+1X

i=kn

e�
n
`�

n,kn
i,` Y.

For all p > 1, we have

bCn
t � Ct = M(p)nt +M

0(p)nt + F (p)nt + F
0(p)nt � bC(p)nt +

3X

j=1

bCn,j
t .

Lemma B.1. Under Assumption (N-v) with v > 3, we have the following convergence in law

p
hn�

n
i

L
�! N

⇣
0, e�(0)R

⌘
. (B.3)

Moreover, we have

hnr(02)n ! e�(0)R; h
3/2
n r(03)n ! 0; h

2
nr(04)n ! 3e�

2
(0)R2

. (B.4)

Proof. First, we need to check the following condition according to Rio (1997)

X

k2N⇤

k
2

r�2 ⇢k < 1, (B.5)

where {⇢k} are the ⇢-mixing coefficients introduced in Definition 2.1 of Li and Linton (2022a),
and r is a positive real such that E(|�i|

r) < 1. Assumption (N-v) implies r can be arbitrarily
large, thus (B.5) holds since v > 3. The rest of the proof of (B.3) follows from the proof of
Lemma A.1 in Li et al. (2020). (B.4) follows from the condition E(|�i|

w) < 1, w > 4 and the
limit distribution (B.3); that is, convergence in distribution implies convergence in moments
when some higher order moments of � are bounded, see, e.g., Theorem 4.5.2 in Chung (2001).

Lemma B.2. Given a fixed integer i, a real z > 1 and two sequences of integers {dn}n, {`n}n and two
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integers j, ` satisfying |j � i|  dn, |`|  `n, we have for any q � 2,

E
⇣����n,kn

i,` Y � (�⌘
n�

n
j )

2�n,kn
i,` �

���
q⌘

 K�q⌘
n

⇣
(dn + `n + kn)�n + ((dn + `n + kn)�n)

1
z

⌘
. (B.6)

Proof. We rewrite �n,kn
i,` Y = (⌘n,1i + e⌘n,1i,j )(⌘

n,2
i + e⌘n,2i,j ), where

8
>><

>>:

⌘
n,1
i := X

n
i+` �X

n
i+kn+` +�

⌘
n(�ni+` � �

n
j )�i+` ��

⌘
n(�ni+kn+` � �

n
j )�i+kn+`;

⌘
n,2
i := X

n
i �X

n
i�kn

+�⌘
n(�ni � �

n
j )�i ��

⌘
n(�ni�kn

� �
n
j )�i�kn ;

e⌘n,1i,j := �⌘
n�

n
j (�i+` � �i+kn+`), e⌘n,2i,j := �⌘

n�
n
j (�i � �i�kn).

For s 2 {1, 2}, w � 2, we have E
�
|⌘

n,s
i |

w�
 K�n(dn + `n + kn) by (JLZ-A.6), the independence

of F1 and G and the fact that � has bounded moments of all orders. Next, we have the estimate
that E

⇣
|e⌘n,si,j |

w
⌘

 K�w⌘
n by the boundedness of � and that � has bounded moments of all

orders. Since�n,kn
i,` Y � (�⌘

n�
n
j )

2�n,kn
i,` � = ⌘

n,1
i ⌘

n,2
i + ⌘

n,1
i e⌘n,2i,j + e⌘n,1i,j ⌘

n,2
i , the result follows from

Hölder’s inequality.

Lemma B.3. Let p � 1 and q � 2, and j = (j1, . . . , jq) where jk 2 N⇤ and maxk jk  phn. U is any
F1-measurable variable. We have the following estimates

���E
⇣Yq

m=1
"
n
i+j+jm � (�⌘

n�
n
i )

qr(j)n |K
n
i

⌘���  Kp,q�
⌘q
n

 
 i,j,j

hv
n

+
�n

h
[ q2�1]^(v�1)
n

!
; (B.7)

���E
⇣
U

⇣Yq

m=1
"
n
i+j+jm � (�⌘

n�
n
i )

qr(j)n
⌘
|K

n
i

⌘���  Kp,q�
⌘q
n

 
 i,j,j

hv
n

+

p
�n

h
([ q�1

2 ]+ 1
2 )^(v� 1

2 )
n

!q
E (U2 |Fn

i );

(B.8)
��E
�
U"

n
i+j |K

n
i

��� 
Kp n

i,j�
⌘
n

hv
n

E (|U | |F
n
i ) ; (B.9)

E (("ni )
q
|K

n
i )  Kq

 n
i �

⌘q
n

h
v^ q

2
n

for even integer q; (B.10)

E
⇣⇣

Y
n
i

⌘q
|K

n
i

⌘
 Kq

 
 n

i �
⌘q
n

h
v^ q

2
n

+ (hn�n)
q
2

!
for even integer q. (B.11)

Proof. We decompose U

⇣Qq
m=1 "

n
i+j+jm � (�ni �

⌘
n)qr(j)n

⌘
=: Bn + UCn, where

Bn = (�1)qU
hn�1X

l1,...,lq=0

qY

m=1

egnlm�
⌘
n�

n
i+l0m

 
qY

m=1

�i+l0m � r(l0)

!
;

Cn = (�1)q
hn�1X

l1,...,lq=0

 
qY

m=1

�
n
i+l0m

� (�ni )
q

!
r(l0)

qY

m=1

egnlm�
⌘
n

with l0 = (l01, . . . , l
0
q), where l

0
m = j + jm + lm. Next, we have by the mixing property that

E
���E

�Qq
m=1 �i+l0m � r(l0) |Gi�hn

����  K/h
v
n, thus

|E (Bn |K
n
i )|  Kp 

n
i,j,jE (|U | |F

n
i )�⌘q

n /h
v
n. (B.12)
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Note that the estimate in (B.12) is also valid when q = 1, and this immediately leads to (B.9).
Let ⇣(j)ni :=

Qq
m=1 �

n
i+jm � (�ni )

q for any j = (j1, . . . , jq). Next, we have

|E (Cn |F
n
i )| 

Kq(�
⌘
n)q

h
q
n

hn�1X

l1,...,lq=0

��r(l0)
�� ��E

�
⇣(l0)ni |F

n
i

���


Kp,q�

1+⌘q
n

h
q�1
n

Lq,(2p+1)hn


Kp,q�
1+⌘q
n

h
[ q2�1]^(v�1)
n

,

(B.13)

where the notation Lq,k is defined in the proof of Lemma JLZ-A.3. Now (B.7) follows from
(B.12) and (B.13). On the other hand, we have

E
 ✓Xhn�1

l1,...,lq=0
⇣(l0)ni r(l

0)

◆2

|F
n
i

!
= E

✓Xhn�1

l1,...,lq=0

Xhn�1

`1,...,`q=0
⇣(`0)r(`0)⇣(l0)ni r(l

0) |Fn
i

◆

 Kq�nhn

Xhn�1

l1,...,lq=0

Xhn�1

`1,...,`q=0
|r(`0)||r(l0)|

 Kq�nhnL
2
q,(2p+1)hn

,

which yields

E
�
C

2
n |F

n
i

�


Kq�
1+2⌘q
n

h
2q�1
n

L
2
q,(2p+1)hn


Kq�

1+2⌘q
n

h
(2[ q�1

2 ]+1)^(2v�1)
n

. (B.14)

(B.8) readily follows from (B.14) and an application of Cauchy-Schwarz inequality.
Now suppose q is an even integer. By (JLZ-A.25) with j = 0, jm = 0 8m = 1, . . . , q and the

fact that |r(j)n| 
Kp,q

h
v^[(q+1)/2]
n

(JLZ-A.23), we have

E (("ni )
q
|K

n
i )  Kp,q�

⌘q
n

 
 n

i

hvn
+

�n

h
( q
2�1)^(v�1)

n

+
1

h
v^[(q+1)/2]
n

!
 Kq

 n
i �

⌘q
n

h
v^ q

2
n

.

This proves (B.10). (B.11) follows immediately from (B.10) and (JLZ-A.17).

Lemma B.4. For j, j0 2 {0, . . . , phn} and an even integer q � 2, and v > 1+ 2
1�2⌘ where ⌘ 2 [0, 1/6),

we have

|E (b"ni |Kn
i )|  K n

i �
1+2⌘
n ; (B.15)

���E
⇣
dXc"

n
i |K

n
i

⌘���  K n
i �

1
2+⌘
n h

1
2�v
n ; (B.16)

|E ((b"ni )
q
|K

n
i )|  Kq 

n
i �

2⌘q
n h

�(v^q)
n ; (B.17)

���E
⇣
(dXc"

n
i )

4
|K

n
i

⌘���  K�4⌘+2
n ; (B.18)

��E
�
b"ni+jb"ni+j0 � (�⌘

n�
n
i )

4(r(j0)n � r(02)
2
n) |K

n
i

���  K�
5
4+

5⌘
2

n , where j0 = (j, j, j0, j0); (B.19)
���E
⇣
dXc"

n
i+j
dXc"

n
i+j0 |K

n
i

⌘
� (�n

i �
⌘
n�

n
i )

2r(j, j0)n bGn,i
j,j0

���  K�
5
4+

5⌘
2

n . (B.20)

Proof. Recall that we have b"ni = ("ni )
2
� (�⌘

n�
n
i )

2r(02)n. (B.15) follows directly from (B.7) and
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the fact v > 2/(1� 2⌘).
By first conditioning on H

n
i , we have |E ("ni |H

n
i )|  K n

i �
⌘
n/h

v
n. On the other hand, we

have by (JLZ-A.17) that E
�
(X

c,n
i )2 |Kn

i

�
 Khn�n. Now we have by first conditioning on H

n
i ,

and then apply Cauchy-Schwarz inequality, we obtain (B.16).
Since (b"ni )

q =
Pq

m=0C
q
m(�1)m(�ni �

⌘
n)2mr(02)mn ("ni )

2(q�m), (B.10) implies
���E
⇣
("ni )

2(q�m)
|K

n
i

⌘���  Kq 
n
i �

2⌘(q�m)
n h

�(v^(q�m))
n .

Since |r(02)n|  Kh
�1
n , we have

|E ((b"ni )
q
|K

n
i )|  Kq 

n
i �

2⌘q
n h

�m�(v^(q�m))
n  Kq 

n
i �

2⌘q
n h

�(v^q)
n .

This proves (B.17).
Let

X(1)ni := (X
c,n
i )4

�
("ni )

4
��4⌘

n (�ni )
4r(04)n

�
, X(2)ni := (X

c,n
i )4�4⌘

n (�ni )
4r(04)n.

Then we have (dXc"
n
i )

4 = X(1)ni + X(2)ni . Next, we can use (B.8) and a simple estimate that��E
�
(X

c,n
i )8 |Fn

i

���  K(hn�n)4 to get |E (X(1)ni |K
n
i )|  K(�nhn)2�

4⌘
n

⇣
 n

i
hv
n
+

p
�n

h
3/2
n

⌘
. Since

r(04)n  Kh
�2
n and

��E
�
(X

c,n
i )4 |Fn

i

���  K(hn�n)2, we have |E (X(2)ni |K
n
i )|  K�4⌘+2

n . This
finishes the proof of (B.18).

Next, we denote b"ni+jb"ni+j0 � (�⌘
n�

n
i )

4(r(j0)n � r(02)2n) =:
P4

k=1A(k)
n
i,j,j0 , where

A(1)ni,j,j0 := ("ni+j"
n
i+j0)

2
� (�⌘

n�
n
i )

4r(j0)n;

A(2)ni,j,j0 := �r(02)n(�
⌘
n�

n
i+j0)

2
�
("ni+j)

2
� (�⌘

n�
n
i )

2r(02)n
�
;

A(3)ni,j,j0 := �r(02)n(�
⌘
n�

n
i+j)

2
�
("ni+j0)

2
� (�⌘

n�
n
i )

2r(02)n
�
;

A(4)ni,j,j0 := r(02)
2
n(�

⌘
n)

4((�ni+j)
2
� (�ni )

2)((�ni+j0)
2
� (�ni )

2)).

We have the following estimates

��E
�
A(1)ni,j,j0 |K

n
i

���  Kp,q�
4⌘
n

✓
 n

i

hvn
+
�n

hn

◆
; (B.21)

��E
�
A(2)ni,j,j0 |K

n
i

���+
��E
�
A(3)ni,j,j0 |K

n
i

���  Kp,q
�4⌘

n

hn

 
 n

i

hvn
+

r
�n

hn

!
; (B.22)

��E
�
A(4)ni,j,j0 |K

n
i

���  K�1+4⌘
n /hn. (B.23)

(B.21) and (B.22) follow from (B.7) and (B.8); (B.23) follows from Cauchy-Schwarz inequality.
Now (B.19) follows immediately.

To prove (B.20), we first introduce

B(1)ni,j,j0 := E
✓Z 1

0
X

c,n,i+j
u dBn,i+j0

u +

Z 1

0
X

c,n,i+j0

u dBn,i+j
u |F

n
i

◆
;

10



B(2)ni,j,j0 := E
✓
(�n

i )
2
Z 1

0
(Gn

u)
2du�

Z 1

0
(�uG

n
u)

2du |Fn
i

◆
, where (Gn

u)
2 := G

n,i+j
u G

n,i+j0
u ;

C(1)ni,j,j0 := X
c,n
i+jX

c,n
i+j0

�
"
n
i+j"

n
i+j0 � (�ni �

⌘
n)

2r(j, j0)n
�
;

C(2)ni,j,j0 :=
⇣
X

c,n
i+jX

c,n
i+j0 � (�n

i )
2 bGn,i

j,j

⌘
(�ni �

⌘
n)

2r(j, j0)n.

Then, we have then by Itô’s formula that

E
⇣
X

c,n
i+jX

c,n
i+j0 � (�n

i )
2 bGn,i

j,j |F
n
i

⌘
= B(1)ni,j,j0 +B(2)ni,j,j0 .

By the first and last part of (JLZ-A.17), we have
���B(1)ni,j,j0

���  K(hn�n)3/2. According to the

proof of Lemma (JLZ-A.6), we have
���B(2)ni,j,j0

���  K(hn�n)3/2. It leads to
���E
⇣
C(2)ni,j,j0 |F

n
i

⌘��� 

K�
5⌘
2 + 5

4
n . By (B.8), we have

���E
⇣
C(1)ni,j,j0 |F

n
i

⌘���  K�
5⌘
2 + 5

4
n . Now (B.20) is proved.

Lemma B.5. Assume ⌘ 2 [0, 16), v > 1 + 2
1�2⌘ . We have for any p � 2 that

|E (⇣(p)ni |K
n
i )|  Kp 

n
i,p�

1
2+2⌘
n ; (B.24)

��E
�
(⇣(p)ni )

4
|K

n
i

���  Kp 
n
i,p�

12⌘�2�(⌘� 1
2 )(v^4)

n ; (B.25)
��E
�
(⇣(p)ni )

2
� 4(�n

i )
4
⇢(p, 1)ni � (�n

i �
⌘
n)

4
⇢(p, 2)n � 4(�n

i �
⌘
n�

n
i )

2
⇢(p, 3)ni |K

n
i

���  Kp 
n
i,p�

5⌘
2 + 1

4
n , (B.26)

where ⇢(p, 1) :=
phn�1X

j,j0=0

G
n,i
j,j0 , ⇢(p, 2)

n :=
phn�1X

j,j0=0

(r(j0)� r(02)n)
2
, ⇢(p, 3)ni :=

phn�1X

j,j0=0

r(j, j0)n bGn,i
j,j0 .

Proof. The first part of (JLZ-A.19), (B.15) and (B.16) imply |E (Zi |K
n
i )|  K�1+⌘

n . (B.24) now
follows immediately. (B.25) can be derived from the second part of (JLZ-A.19), (B.17) and
(B.18), and the simple fact that 4⌘ + 2 � 8⌘ + (12 � ⌘)(v ^ 4).

To see (B.26), we need the following estimates
����
Xphn�1

j,j0=0
E
⇣
bXc,n
i+j
bXc,n
i+j0 |K

n
i

⌘
� 4(�n

i )
4
G

n,i
j,j0

����  Kp�
1
4+

9⌘
2

n ; (B.27)
����
Xphn�1

j,j0=0
E
�
b"ni+jb"ni+j0 |K

n
i

�
� (�⌘

n�
n
i )

4(r(j0)n � r(02)
2
n)

����  Kp�
1
4+

9⌘
2

n ; (B.28)
����
Xphn�1

j,j0=0
E
⇣
dXc"

n
i+j
dXc"

n
i+j0 |K

n
i

⌘
� (�n

i �
⌘
n�

n
i )

2r(j, j0)n bGn,i
j,j0

����  Kp�
1
4+

9⌘
2

n ; (B.29)
����
Xphn�1

j,j0=0
E
⇣
bXc,n
i+jb"

c,n
i+j0 |K

n
i

⌘����  Kp 
n
i,j,j0�

1
4+

9⌘
2

n ; (B.30)
����
Xphn�1

j,j0=0
E
⇣
bXc,n
i+j
dXc"

n
i+j0 |K

n
i

⌘����  Kp 
n
i,j,j0�

3
4+

5⌘
2

n ; (B.31)
����
Xphn�1

j,j0=0
E
⇣
b"ni+j0

dXc"
n
i+j |K

n
i

⌘����  Kp 
n
i,j,j0�

1
4+

7⌘
2

n . (B.32)

(B.27) follows directly from Lemma JLZ-A.2 and our choice of hn; (B.28) and (B.29) are
consequences of (B.19) and (B.20); (B.30) follows directly from (B.8) and (JLZ-A.19) (the second
part). Since bXc,n

i+j
dXc"

n
i+j0 = bXc,n

i+jX
c,n
i+j0"

n
i+j0 , an application of (B.9) plus Cauchy-Schwarz

11



inequality yield (B.31). To see (B.32), we have b"ni+j0
dXc"

n
i+j = X

c,n
i+j

P3
k=1D(k)ni,j,j0 , where

D(1)ni,j,j0 := ("ni+j0)
2
"
n
i+j � (�ni �

⌘
n)

3
r3,j,j0 ;

D(2)ni,j,j0 :=
�
(�ni )

3
� (�ni+j0)

3
�
(�⌘

n)
3
r3,j,j0 ;

D(3)ni,j,j0 := �
2⌘
n (�ni+j0)

2
�
�⌘

nr3,j,j0�
n
i+j0 � r(02)n"

n
i+j

�
, where r3,j,j0 := r(02, |j � j

0
|)n.

Note that
��r3,j,j0

��  Kh
�2
n . Now (B.8) yields

���E
⇣
D(1)ni,j,j0X

c,n
i+j |K

n
i

⌘���  K n
i,j,j0�

2⌘+ 3
2

n ; Cauchy-

Schwarz inequality and (JLZ-A.17) give
���E
⇣
D(2)ni,j,j0X

c,n
i+j |K

n
i

⌘���  K n
i,j,j0�

2⌘+ 3
2

n ; (B.9) leads

to
���E
⇣
D(3)ni,j,j0X

c,n
i+j |K

n
i

⌘���  K n
i,j,j0�

3⌘
2 + 5

4
n .

Lemma B.6. For v > 2, ⌘ 2 [0, 1/6), we have for any fixed p � 1 that

⌘nF (p)nt
P
! 0; (B.33)

⌘nF
0(p)nt

P
! 0; (B.34)

⌘n
bC(p)nt

P
! 0; (B.35)

⌘n
bCn,1
t

P
! 0; (B.36)

⌘n
bCn,2
t

P
! 0; (B.37)

E
�
(⌘nM

0(p)nt )
2
�
 Kt/p. (B.38)

Proof. Note that Jn(p, t) 
Kpt
hn�n

, we have by (B.24) that E(|F (p)nt |)  K
p
�n, which leads to

E(|⌘nF (p)nt |)  K/
p
hn ! 0. The same applies to F

0(p)nt . The proofs of (B.33) and (B.34) are
complete.

By (JLZ-A.17), we have

E
⇣
( bXc,n

i )2 |Fn
i

⌘
 K(hn�n)

2
 K�1+2⌘

n . (B.39)

Next, by (B.17) and (B.18), we have the following estimates

E
⇣
(b"ni )2 + (dXc"

n
i )

2
|F

n
i

⌘
 K n

i �
1+2⌘
n . (B.40)

Thus, (B.39) and (B.40) lead to the estimate that |E (⇣ni |K
n
i )|  K n

i �
1+2⌘
n , where ⇣

n
i :=

( bXc,n
i )2 + (b"ni )2 + (dXc"

n
i )

2
. For any integer w, we have E(A(w)ns )  Kw�1+2⌘

n , where A(w)ns =
PNn

s +w
i=Nn

s +1 ⇣
n
i . To prove (B.35), it suffices to show that the sequences {sn}, {wn} constructed in

the proof of Lemma JLZ-A.13 satisfy

wn�
1+2⌘
n ! 0,P(Bn) ! 1, where Bn = {N

n
sn  N

n
t � hn, N

n
t + (p+ 3)hn  N

n
sn + wn}.

(B.41)
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Then, (B.37) follows immediately from the following inequalities

P
⇣
(⌘n bC(p)ni )

2
> "

⌘
 P(Bc

n) +
Kp

"
E(A(w)ns )  P(Bc

n) +
Kpwn�

1+2⌘
n

"
.

A sufficient condition for (B.41) to hold is 1
2 + ⇢

0
< 1 + 2⌘, and indeed it holds since ⇢

0
< 1/2.

(B.36) follows immediately from the proof of Lemma A.14 in Jacod et al. (2019) since
hn�

a�1/4
n ! 0 where a 2 [1/2 + ⇢

0
, ( � 1)/). To see (B.37), we note that Lemma JLZ-A.6

with w = z = 1 yields E
���(Y n

i )
2
� (Y

c,n
i )2

���  K(hn�n)
3
2+� for some � > 0. Now it follows

that E
⇣���⌘n bCn,2

t

���
⌘

 K(hn�n)� ! 0. (B.26) implies E
�
(⇣(2)ni )

2
|K

n
i

�
 K�4⌘

n , and it leads
to (B.38).

Proposition B.1. Assume ⌘ 2 [0, 16), v > 1 + 2
1�2⌘ . For any fixed p � 2, the sequence of processes

⌘nM(p)n converges F1-stably in law to the process

Y (p)t =

Z t

0
�(p)sdBs,

where B is as in Theorem 4.1 in Li and Linton (2022a) and �(p)t is the square root of

�(p)2t :=
4

�2(0)

✓
✓(p�00 � �00)�4

t

(p+ 2)↵t
+

2(p�01 � �01)R�
2
t �

2
t

✓(p+ 2)
+

R
2(p�11 � �11)↵t�

4
t

✓3(p+ 2)

◆
.

Proof. Let b⌘(p)nj = ⌘(p)nj � ⌘(p)nj , and �(V, p)nj := V
n
j(p+2)hn

� V
n
(j�1)(p+2)hn

for any process V .
M = M1 [ {W}, where M1 is the set of all bounded martingales orthogonal to W . By the
standard limit theorem, see, e.g., Jacod and Shiryaev (2003) Theorem IX 7.28, we need to prove
the following

t > 0 )

Jn(p,t)X

j=1

E
�
(⌘nb⌘(p)nj )2

��H(p)nj�1

� P
!

Z t

0
�(p)2sds; (B.42)

t > 0 )

Jn(p,t)X

j=1

E
�
(⌘nb⌘(p)nj )4

��H(p)nj�1

� P
! 0; (B.43)

t > 0, V 2 M )

Jn(p,t)X

j=1

E
�
⌘nb⌘(p)nj�(V, p)nj

��H(p)nj�1

� P
! 0. (B.44)

Proof of (B.42). Note that (B.24) gives (⌘(p)nj )
2

 K n
i �

1+4⌘
n /h

2
n  K n

i �
2+2⌘
n . On the

other hand, we have Jn(p, t) 
Kpt
hn�n

, thus
PJn(p,t)

j=1 E
⇣
(⌘n⌘(p)nj )

2
���H(p)nj�1

⌘
 Kpt�n ! 0.

Therefore, we will replace b⌘(p)nj by ⌘(p)nj to prove (B.42).

13



(B.26) and Lemma JLZ-A.9 imply
������
E
⇣
(⇣(p)nm(j)np

)2
���Kn

m(j)np

⌘
� 4

 
(�n

m(j)np
)2h2

n�n

↵
n
m(j)np

!2

(p�00 � �00)� 4(�n
m(j)np

�⌘
n)

4(p�11 � �11)R
2

�8
R(�n

m(j)np
�
n
m(j)np

hn)2�2⌘+1
n (p�01 � �01)

↵
n
m(j)np

�����  Kp 
n
j,p�

5⌘
2 + 1

4
n .

(B.45)

Note that the contribution of the error terms is given by ⌘
2
n�

5⌘
2 + 1

4
n Jn(p, t)/h2n ⇣ �

1
4�

3⌘
2

n ! 0

since ⌘ < 1/6. Now by (JLZ-A.43), and �
n
0 ! �(0), we have (B.42).

Proof of (B.43). For the same reasoning as in the previous proof, it suffices to replace b⌘(p)nj
by ⌘(p)nj . (B.25) yields E

⇣
(⌘(p)nj )

4
���H(p)nj�1

⌘
 Kp n

j,p�
8⌘+( 12�⌘)(v^4)
n . Since Jn(p, t) 

Kpt
hn�n

,

E
⇣
 n

j,p

⌘
 1, we have

E

0

@
Jn(p,t)X

j=1

E
�
(⌘nb⌘(p)nj )4

��H(p)nj�1

�
1

A  Kp�
5⌘+(v^4)( 12�⌘)� 3

2
n ! 0.

This finishes the proof of (B.43).

Proof of (B.44). Since V is a martingale, we have E
⇣
�(V, p)nj

���H(p)nj�1

⌘
= 0. Thus, it suffices

to prove

⌘n

hn

Jn(p,t)X

j=1

E
⇣
⇣(p)nm(j)np

�(V, p)nj
��H(p)nj�1

⌘
P
! 0. (B.46)

Let

Z(k)nj =

m(j)np+phn�1X

i=m(j)np

z(k)ni , where

z(1)ni = 2Dn,i
1 , z(2)ni = 2(Dn,i

2 +D
n,i
3 +D

n,i
4 ),

z(3)ni = b"ni , z(4)ni = dXc"
n
i .

(B.47)

Note that the D
n,i
` , ` = 1, 2, 3, 4 are defined in the proof of Lemma JLZ-A.2. To prove (B.46), it

is left to show k = 1, 2, 3, 4 that

A(k)n :=
⌘n

hn

Jn(p,t)X

j=1

E
�
Z(k)nj�(V, p)nj

��H(p)nj�1

� P
! 0, (B.48)
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since ⇣(p)nm(j)np
=
P4

k=1 Z(k)nj . First, we note that for i that is in the range of defining the

variable Z(1)nj , we have E
⇣
z(1)ni �(V, p)nj

���H(p)nj�1

⌘
= 2

P3
`=1 E (Hn

` |F
n
i ), where H

n
` , ` =

1, 2, 3 are defined on p.98 of Jacod et al. (2019), and their analysis implies

�����

3X

`=1

E (Hn
` |F

n
i )

�����  Kp

✓
hn�

3
2
n _ (hn�n)

2
_ h

2
n�

3
2+⇢
n _ h

3
n�

5
2
n

◆
 Kp�

(1+⌘)^(2⌘+⇢+ 1
2 )

n , (B.49)

which further implies |A(1)n|  Kp�
(1+⌘)^(2⌘+⇢+ 1

2 )�( 32⌘+
3
4 )

n ! 0, since ⇢ >
1
4 �

⌘
2 and ⌘ <

1
4 .

(B.48) is proved for k = 1.
Next, Cauchy-Schwarz inequality implies

��E
�
z(k)nj�(V, p)nj

��H(p)nj�1

���  Kp�(k)
n
j

r
E
⇣
(�(V, p)nj )

2
���H(p)nj�1

⌘
. (B.50)

Now we figure out �(k)nj for k = 2, 3, 4.

(1) k = 2. Using the estimates in (JLZ-S.1), we have �(2)nj = (hn�n)
3
2  K�

3⌘
2 + 3

4
n .

(2) k = 3. (B.8) yields �(3)nj =  n
j,p�

3⌘
2 + 3

4
n .

(3) k = 4. (B.9) leads to the estimate �(3)nj =  n
j,p�

v
2+

1
4�(v� 3

2 )⌘
n   n

j,p�
3⌘
2 + 3

4
n .

Next, let �n := E
⇣PJn(p,t)

j=1 (�(V, p)nj )
2
⌘
, �(k)n := ⌘2n

h2
n
E
✓PJn(p,t)

j=1

⇣Pm(j)np+phn�1

i=m(j)np
�(k)ni

⌘2◆
. We

have by (B.50) that �(k)n  Kp,t�
⌘+ 1

2
n , and �n  E

�
(V1 � V0)2

�
< 1 since V is a square-

integrable martingale. Since E
�
A(k)2n

�
 Kp�(k)n�n by Cauchy-Schwarz inequality, we see

that the proof of (B.48) for k = 2, 3, 4 is complete. This finishes the proof of (B.46).

Lemma B.7. Given two sequences of integers dn, kn and a fixed integer `, we have

E
✓⇣

r(�, `)n,kni,dn
� r(`)

⌘2◆
 K

✓
kn

dn

_ 1

(kn + `)v

◆

where r(�, `)n,kni,dn
:= 1

dn

Pi+dn+kn
d=i+kn�1�

n,kn
d,` �, and �n,kn

d,` � = (�d+` � �d+`+kn)(�d � �d�kn).

Proof. Let r(`; kn) := E
⇣
�n,kn

d,` �

⌘
. The mixing property of the � series implies

E
✓⇣

r(�, `)n,kni,dn
� r(`; kn)

⌘2◆
 K

kn

dn
.

Moreover, Lemma S2 of Li and Linton (2022b) implies |r(`)� r(`; kn)|  K(kn+ `)�v. Now the
result follows.

Lemma B.8. Assume ⌘ 2 [0, 1/6), v >
4

1�6⌘ , `n ⇣ ��`
n , kn ⇣ ��k

n , with

` 2

✓
1 + 2⌘

4(v � 1)
, k

◆
, k 2

✓
` _

1 + 2⌘

2(v � 1)
,
1

6
� ⌘

◆
. (B.51)
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For all t, we have ⌘n bCn,3
t

P
! 0.

Proof. Let r(02)`n := 1
hn

P
|`|`n

e�
n
` r(`). Note that r(02)n = 1

hn

P
`2Z
e�
n
` r(`), thus we have

|r(02)n � r(02)`n | 
K

hn`
v�1
n

) �2⌘�1
n |r(02)n � r(02)`n | /hn = o(1/⌘n). (B.52)

Moreover, �����
�2⌘

n r(02)n
hn�

n
0

kn�1X

i=0
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(B.52) and (B.53) imply that it suffices to prove
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(B.54)

The first estimate follows from Lemma B.2 and the Cauchy-Schwarz inequality, and the second
one follows from the boundedness of �, the Cauchy-Schwarz inequality and Lemma B.7
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 K(�nkn _ (kn + `)�v). For z close to 1, we see

that both bounds are of order o(1/⌘n). This finishes the proof.

Lemma B.9. Assume
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We have

V
n,1
t

P
! 3�2(0)

Z t

0

�
4
s

↵s
ds+

6�(0)e�(0)R
✓2

Z t

0
�
2
s�

2
sds+

3e�
2
(0)R2

✓4

Z t

0
�
4
sdAs; (B.56)
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V
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Proof of (B.56). We first have the following decomposition that
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i
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4
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⌘
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⌘
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By the boundedness of �, the fact that |r(03)n|  Kh
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Next, we have
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n ), r(04)n =

3e�
2
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n ), (B.62)

where we obtain (B.60) and (B.61) by and (JLZ-A.38) and (JLZ-A.39). (B.62) follows from
Lemma B.1. By Lemma JLZ-A.11, we have
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(B.63)

Let ⇥n
i := (Y
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i )4 � E

�
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i )4 |Kn
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�
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n by (B.11). Apply Lemma A.6 in Jacod et al.

17



(2017), we have
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Next, (JLZ-A.33) implies
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for some � > 0, where e⇥n
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which can be derived by the following three convergence in probability:
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By (JLZ-A.19), (JLZ-A.21), (JLZ-A.38) for the first estimate, Lemma B.1 and (B.7) for the second
estimate, we have
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2Recall R(Y )ni,hn
and r(�; |`|)ni,hn

are defined in (10) of Li and Linton (2022a)
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The proof of (B.69) is complete.
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for z close to 1.
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Apply Cauchy-Schwarz inequality, we get from (B.55)
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Using Lemma JLZ-A.6, Cauchy-Schwarz inequality, and (B.75) (with z close to 1), we have
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under (B.55).
We proved (B.57) by (B.66), (B.71), (B.73), (B.74) and (B.76).
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The second inequality follows from Lemma B.2. For z close to 1, we have E(|E(1)nt |) ! 0,
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! 0. Similarly, we have
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and the estimates yield E(2)nt + E(3)nt
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! 0 under (B.55). By (JLZ-A.43), we have E(4)nt
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Proof of Theorem 4.1 in Li and Linton (2022a). Now Proposition B.1, Lemma B.6 and Lemma B.8
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We now introduce some additional notations that will be used to prove results about the
SV estimators.
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n
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eH(p)nj := K
n
m(j+1)np,t

; eJn,p := 1 +


ln

(p+ 2)hn

�
;

eH0(p)nj := K
n
m(j+1)np,t+phn

; eIn(p, t) := N
n
t + (p+ 2)hn eJn,p � 1;

e⌘(p)nj :=
1

snhn�
n
0

⇣(p)nm(j)np,t
; e⌘(p)nj := E

⇣
e⌘(p)nj

��� eH(p)nj�1

⌘
;

e⌘0(p)nj :=
1

snhn�
n
0

⇣(2)nm(j)np,t+phn
; e⌘0(p)nj := E

⇣
e⌘0(p)nj

��� eH0(p)nj�1

⌘
;

eF (p)nt :=

eJn,pX

j=1

e⌘(p)nj ; fM(p)nt :=

eJn,pX

j=1

(e⌘(p)nj � e⌘(p)nj );

eF 0(p)nt :=

eJn,pX

j=1

e⌘0(p)nj ; fM 0(p)nt :=

eJn,pX

j=1

(e⌘0(p)nj � e⌘0(p)nj );

ec(p)nt :=
1

snhn�
n
0

eIn(p,t)X

i= eNn
t �hn+2

Zi; ecn,1t :=
1

snhn�
n
0

eNn
t �hn+1X

i=Nn
t

bcni �
ct

↵t
;

ecn,2t :=
1

snhn�
n
0

eNn
t �hn+1X

i=Nn
t

⇣
(Y

n
i )

21
{|Y

n
i |<un}

� (Y
c,n
i )2

⌘
;

ecn,3t :=
r(02)n
snhn�

n
0

eNn
t �hn+1X

i=Nn
t

(�ni �
⌘
n)

2
�

1

snh
2
n�

n
0

X

|`|`n

eNn
t �hn+1X

i=Nn
t +kn

e�
n
`�

n,kn
i,` Y.

For all p > 1, we have

ec0nt �
ct

↵t
= fM(p)nt + fM 0(p)nt + eF (p)nt + eF 0(p)nt � ec(p)nt +

3X

j=1

ecn,jt ,

where ec0nt is defined in (14) of Li and Linton (2022a).

Lemma B.10. Let ln ! 1, hn ! 1, pn ! 1 and ln/hn ! 1, (ln _ pn)�n ! 0. Then, we have

s
n
t

sn

P
!

1

↵t
; (B.79)

1
eJn,p

eJn,pX

j=1

V
n
m(j)np,t

P
! Vt; (B.80)

1

pn

pnX

j=1

V
n
Nn

t +j
P
! Vt. (B.81)

if V is one of the processes X, b,�,�
2
, �,↵, 1/↵, or any power of them.

Proof. Denote x
n
j,t :=

↵t�(n,j)
�n

for j = N
n
t + 1, . . . , eNn

t . We first note from (5) in Li and Linton
(2022a) that

E
�
�(n, j)↵n

j�1/�n � 1
��Fn

j�1

�
 K�⇢

n.
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Then, we have by the Cauchy-Schwarz inequality, (JLZ-A.6), (5) in Li and Linton (2022a), and
successive conditioning, we have

��E
�
�(n, j)(↵t � ↵

n
j�1)/�n |Ft

���  K

p
ln�n.

The two estimates immediately lead to

��E
�
x
n
j,t � 1 |Ft

���  K(�⇢
n _

p
ln�n). (B.82)

Next, apply the estimate in (JLZ-S.14), we have

��E
�
�(n, j)�(n, j0)↵2

t /�
2
n � 1

���  K(�⇢
n _

p
ln�n),

which, together with (B.82), yields

��E
�
(xnj,t � 1)(xnj0,t � 1) |Ft

���  K(�⇢
n _

p
ln�n) ! 0.

We thus have

E
 ✓X eNn

t

j=Nn
t +1

(xnj,t � 1)

◆2

|Ft

!
/l

2
n ! 0.

The convergence in (B.79) follows from an application of the Markov inequality.
Now we show (B.80) and (B.81). First, we have the following estimates

���E
⇣
(V n

m(j)np,t
� V

n
Nn

t
)(V n

m(j0)np,t
� V

n
Nn

t
)
���Fn

Nn
t

⌘���  Kphn�n

p
jj0,

���E
⇣
(V n

Nn
t +j � V

n
Nn

t
)(V n

Nn
t +j0 � V

n
Nn

t
)
���Fn

Nn
t

⌘���  K�n

p
jj0,

which can be obtained by an application of the Cauchy-Schwarz inequality and (JLZ-A.6).
They yield

E
 ✓X eJn,p

j=1
(V n

m(j)np,t
� V

n
Nn

t
)/ eJn,p

◆2
!

 Kpln�n ! 0;

E
✓⇣Xpn

j=1
(V n

Nn
t +j � V

n
Nn

t
)/pn

⌘2◆
 Kpn�n ! 0.

On the other hand, we have V
n
Nn

t

P
! Vt since t 2 [T (n,Nn

t ), T (n,N
n
t + 1)). Now the proof

of (B.80) is complete.

Lemma B.11. Let ⌘ 2 [0, 1/6), v > 1 + 2
1�2⌘ , and hn ⇣ �

� 1
2+⌘

n , ln ⇣ ��l
n , l 2

�
1
2 � ⌘,

3
4 �

⌘
2

�
. We

have

e⌘n eF (p)nt
P
! 0; (B.83)

e⌘n eF 0(p)nt
P
! 0; (B.84)
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e⌘nec(p)nt
P
! 0; (B.85)

e⌘nec
n,1
t

P
! 0; (B.86)

e⌘nec
n,2
t

P
! 0; (B.87)

E
⇣
(e⌘nfM 0(p)nt )

2
⌘
 Kt/p. (B.88)

Proof. Note that eJn,p  Kpln/hn, (B.24) implies e⌘nE
⇣��� eF (p)nt

���
⌘
 K�

3
4�

⌘
2

n
p
ln ! 0, thus (B.83)

follows. (B.84) can be proved similarly. (JLZ-A.19), (B.17) and (B.18) yield the estimate that
E
⇣
(e⌘nec(p)nt )

2
⌘
 Khn/ln ! 0, whence (B.85).

Denote ec0n,1t := 1
snt hn�n

0

P eNn
t �hn+1

i=Nn
t

bcni � ct. We have

ec0n,1t =
1

s
n
t hn�

n
0

Nn
t +ln�1X

j=Nn
t +1

�n
jC

(j�Nn
t )^(hn�1)X

l=1_(j+hn�Nn
t �ln)

(gnl )
2
� ct =

1

s
n
t

Nn
t +lnX

j=Nn
t +1

�n
jC � ct + �

n
t ,

where �nt  Khn�a
n on the set {Mn

t  �a
n} with M

n
t := max{�(n, i) : i = 1, . . . , eNn

t }. By first
conditioning on F

n
Nn

t
_ �(�(n, i) : i = N

n
t + 1, . . . , eNn

t ), and upon using (A.6) of Jacod et al.
(2017), we have

E

0

@
 

1

s
n
t

Z T (n, eNn
t )

T (n,Nn
t )

(cs � c
n
Nn

t
)ds

!2 ���Fn
Nn

t

1

A  K�nln.

Using the fact that P
�
{M

n
t  �a

n}
�

! 1 (see the proof of Lemma JLZ-A.13), and the

convergence that e⌘n(cnNn
t
� ct)

P
! 0 since t 2 [T (n,Nn

t ), T (n,N
n
t +1)), we have that e⌘nec

0n,1
t

P
! 0.

(B.86) follows immediately in view of (B.79).
Next, by successive conditioning and an application of Lemma JLZ-A.6, we get

E
⇣���e⌘nec

n,2
t

���
⌘
 Ke⌘n(�nhn)

1
2+�

! 0,

which yields (B.87) (� is a positive real according to Lemma JLZ-A.6). Finally, (B.88) follows
directly from (B.26), the fact that eJn,p  Ktln

(p+2)hn
.

Lemma B.12. Assume ⌘ 2 [0, 1/6), v >
6�4⌘
3�10⌘ , and `n ⇣ ��`

n , kn ⇣ ��k
n , ln ⇣ ��l

n with

` 2

✓
1 + 2⌘

8(v � 1)
, k

◆
, k 2

✓
1 + 2⌘

4(v � 1)

_
`,
1

4
�

5⌘

6

◆
, l 2

✓
1

2
� ⌘,

3

4
�

⌘

2

◆
. (B.89)

Then, we have e⌘nec
n,3
t

P
! 0.

Proof. In this proof, we will directly use notations and several estimates that appear in the
proof of Lemma B.8. We divide the proof into two steps. In the first step, we show it suffices
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to prove

e⌘nec
0n,3
t

P
! 0, where ec0n,3t :=

�2⌘
n r(02)`n
snhn�

n
0

eNn
t �hnX

i=Nn
t +kn

(�ni )
2
�

1

snh
2
n�

n
0

X

|`|`n

eNn
t �hnX

i=Nn
t +kn

e�
n
`�

n,kn
i,` Y.

In the second step, we will prove the above convergence in probability.
Let ecn,3t � ec0n,3t = c(1)n,3t + c(2)n,3t , where

c(1)n,3t :=
�2⌘

n (r(02)n � r(02)`n)

snhn�
n
0

eNn
t �hnX

i=Nn
t

(�ni )
2; c(2)n,3t :=

�2⌘
n r(02)`n
snhn�

n
0

Nn
t +kn�1X

i=Nn
t

(�ni )
2
.

Since |r(02)n � r(02)`n | 
K

hn`
v�1
n

, we have E
⇣
|c(1)n,3t |

⌘
 K`

1�v
n , and

e⌘nE
⇣
|c(1)n,3t |

⌘
 Ke⌘n`1�v

n ! 0,

since ⌘ < 1/6 and ` >
1

6(v�1) . Next, we have E
⇣
|c(2)n,3t |

⌘
 Kkn/ln. Thus,

e⌘nE
⇣
|c(2)n,3t |

⌘
 Ke⌘nkn/ln ! 0.

On the other hand, we can apply the same analysis to obtain (B.54) to get

E
⇣����n,kn

i,` Y � (�⌘
n�

n
i )

2
r(`)

���
⌘
 K

⇣
�⌘

n((kn + `n)�n)
1
2z _�2⌘

n

p
�nkn _ (kn + `)�v

⌘
,

for any z > 1, and it leads to the following estimate that

E
⇣
|ec0n,3t |

⌘
 K

⇣
`n�

�⌘
n ((kn + `n)�n)

1
2z _ `n

p
�nkn _ k

�(v�1)
n

⌘
.

Thus, for z close to 1, we have e⌘nE
⇣
|ec0n,3t |

⌘
! 0 under (B.89).

This finishes the proof.

Proposition B.2. Assume v > 4, for any fixed p � 2, we have the finite-dimensional convergence in
law for the sequence of processes e⌘nfM(p)nt to the limiting process Z(p)t

e⌘nfM(p)nt
Lf�s
�! Z(p)t,

which conditional on F1 is Gaussian white noise with the following conditional variance

e�(p)2t :=
4

�2(0)

✓
✓(p�00 � �00)�4

t

(p+ 2)↵2
t

+
2(p�01 � �01)R�

2
t �

2
t

↵t✓(p+ 2)
+

R
2(p�11 � �11)�4t

✓3(p+ 2)

◆
.
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Proof. Let be⌘(p)nj = e⌘(p)nj �e⌘(p)nj . By the standard limit theorem, we need to prove the following

eJn,pX

j=1

E
⇣
(e⌘nbe⌘(p)nj )2

��� eH(p)nj�1

⌘
P
! e�(p)2t ; (B.90)

eJn,pX

j=1

E
⇣
(e⌘nbe⌘(p)nj )4

��� eH(p)nj�1

⌘
P
! 0; (B.91)

V 2 M )

eJn,pX

j=1

E
⇣
e⌘nbe⌘(p)nj�(V, p)nj

��� eH(p)nj�1

⌘
P
! 0. (B.92)

Note that (e⌘(p)nj )2  K n
i �

2+2⌘
n and eJn,p  Kp,tln/hn give the estimate that

eJn,pX

j=1

E
⇣
(e⌘ne⌘(p)nj )2

��� eH(p)nj�1

⌘
 Kp,t�

3
nl

2
n ! 0.

Whence, we can replace be⌘(p)nj by e⌘(p)nj to prove (B.90). Now (B.90) follows immediately
from (B.45) and Lemma B.10. By the same reasoning above, we will replace be⌘(p)nj by e⌘(p)nj
to prove (B.91). Since v > 4, eJn,p  Kln/hn, we have by (B.25) that

eJn,pX

j=1

E
⇣
(e⌘ne⌘(p)nj )4

��� eH(p)nj�1

⌘
 Khn/ln ! 0.

To prove (B.92), it suffices to show that

1

�2⌘
n e⌘n

eJn,pX

j=1

E
⇣
⇣(p)nm(j)np,t

�(V, p)nj

��� eH(p)nj�1

⌘
P
! 0. (B.93)

Adopt a similar notation as in (B.47) by replacing m(j)np by m(j)np,t, and Z(k)nj by Z(k)nj,t, we
can prove the following convergence that is equivalent to (B.93):

eA(k)n,t :=
1

�2⌘
n e⌘n

eJn,pX

j=1

E
⇣
Z(k)nj,t�(V, p)nj

��� eH(p)nj�1

⌘
P
! 0, k = 1, 2, 3, 4. (B.94)

Apply the estimate in (B.49), we have eA(1)n,t  Kp,t�
(1�⌘)^(⇢+ 1

2 )
n /e⌘n ! 0. Next, we

have e�(k)n,t  Kp,t/e⌘2n where e�(k)n,t := 1
�4⌘

n e⌘2n
E
✓P eJn,p

j=1

⇣Pm(j)np,t+phn�1

i=m(j)np,t
�(k)ni

⌘2◆
with �(k)ni

defined in (B.50). Now Cauchy-Schwarz inequality implies

E
⇣
eA(k)2n,t

⌘
 Kp

e�(k)n,tE
�
(V1 � V0)

2
�
! 0

for k = 2, 3, 4. This finishes the proof of (B.94), thus (B.92).
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Lemma B.13. Assume v > 4, ⌘ 2 [0, 16), and kn, `n, ln, hn satisfy the following asymptotic conditions

kn ⇣ ��k
n , `n ⇣ ��`

n , hn ⇣ ✓�
⌘� 1

2
n , ` > 0, k 2

✓
`,
1� 2⌘

6

◆
, l 2

✓
1

2
� ⌘,

3

4
�

⌘

2

◆
.
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P
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↵
2
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+
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; (B.95)
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P
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✓4
; (B.96)

eV n,3
t

P
!

R
2
�
4
t

✓4
; (B.97)

Proof of (B.95). In the sequel, we will follow the proofs of Lemma B.9. We will directly use
many notations therein without further references.

Using the same decomposition as we did in the proof of (B.56) that
�
Y

c,n
i

�4
=
P10

k=1 �
n,k
i ,

and the various estimates therein, we have
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⇣���E
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�
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i |K

n
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⌘���
⌘
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5
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Thus,

1
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⌘
P
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Using the estimates in (B.60), (B.61) and (B.62), we have
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Next, we have the estimate E
�
(⇥n

i )
2
�
 K�

(4⌘+2)^(8⌘+( 12�⌘)v)
n , and Lemma A.6 of Jacod et al.

(2017) implies (recall v > 4)
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(Y
c,n
i )4. Now the proof of (B.95) is complete.

Proof of (B.96). Let
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(B.98)

On the other hand, Lemma A.6 of Jacod et al. (2017) gives
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Use the same approach to get (B.70), we have for any integer k,
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since
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(B.98), (B.99), (B.100) and (B.101) lead to
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Since

e⌅n,1
t � e⌅n,2

t =
1

snhn
ehn

bNn
tX

i=Nn
t

(Y c,n
i )2%ni ,

we now use the estimate that E
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Cauchy-Schwarz inequality, we have
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for z close to 1 since ` < 1/6. Next, (B.72) gives
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We also have a simple estimate that
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By (B.75), Lemma JLZ-A.6 and Cauchy-Schwarz inequality, we have
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where � > 0 according to Lemma JLZ-A.6. Now the proof of (B.96) is complete in view
of (B.102), (B.103), (B.104), (B.105), and (B.106).
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Proof of (B.97). Let eV 0n,3
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By (B.77), we have
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for z close to 1. Next,
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follows immediately from (B.78); and eE(4)nt
P
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R2�4
t

✓4 is a direct consequence of Lemma B.10.

Proof of Theorem 4.2 in Li and Linton (2022a). Apply the standard arguments, see, e.g., p.98
of Jacod et al. (2019), we derive the following convergence from Proposition B.2:
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Now the result follows directly from (B.79). The convergence to a standard normal distribution
follows immediately from Lemma B.13.
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