
 
 
 
 
 
 
 
 
 

Faculty of Economics 

CAMBRIDGE WORKING PAPERS IN ECONOMICS 
   

Global carbon price asymmetry 
 
Robert A. 
Ritz  
 

 

 

Abstract 
This paper studies a social planner who chooses countries' carbon prices so as to maximize global 
welfare. Product markets are characterized by firm heterogeneity, market power, and international 
trade. Because of the market-power distortion, the planner's optimal policy is second-best. The main 
insight is that optimal carbon prices may be highly asymmetric: zero in some countries and above the 
social cost of carbon in countries with relatively dirty production. This result obtains even though a 
uniform global carbon price is always successful at reducing countries' emissions. Competition policy 
that mitigates market power may enable stronger and more balanced climate action. 
 
 

Reference Details 
CWPE  2145 
Published 17 May 2021 
 
Key Words Carbon leakage, carbon pricing, imperfect competition, international 

trade, second best 
JEL Codes H23, L11, Q54 
 
Website www.econ.cam.ac.uk/cwpe 

http://www.econ.cam.ac.uk/cwpe
http://www.econ.cam.ac.uk/cwpe


 

 

www.eprg.group.cam.ac.uk 

 

 

Global carbon price asymmetry 

 

EPRG Working Paper      2116 

Cambridge Working Paper in Economics      2145 

 

Robert A. Ritz 
 

 

Abstract  This paper studies a social planner who chooses countries' carbon prices 

so as to maximize global welfare. Product markets are characterized by firm heterogeneity, 

market power, and international trade. Because of the market-power distortion, the planner's 

optimal policy is second-best. The main insight is that optimal carbon prices may be highly 

asymmetric: zero in some countries and above the social cost of carbon in countries with 

relatively dirty production. This result obtains even though a uniform global carbon price is 

always successful at reducing countries' emissions. Competition policy that mitigates market 

power may enable stronger and more balanced climate action. 

 

Keywords  Carbon leakage, carbon pricing, imperfect competition, international 

trade, second best 

 

JEL Classification H23 (externalities), L11 (market structure), Q54 (climate) 

Contact Robert Ritz – r.ritz@jbs.cam.ac.uk  
Publication  May 2021 
Funding  none 

mailto:r.ritz@jbs.cam.ac.uk


Global carbon price asymmetry

Robert A. Ritz∗

Energy Policy Research Group

Judge Business School

University of Cambridge

This version: December 2020

Abstract
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market power, and international trade. Because of the market-power distortion, the

planner’s optimal policy is second-best. The main insight is that optimal carbon

prices may be highly asymmetric: zero in some countries and above the social cost

of carbon in countries with relatively dirty production. This result obtains even

though a uniform global carbon price is always successful at reducing countries’
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1 Introduction

Carbon pricing is increasingly being used as a key policy instrument to combat climate

change. Yet carbon prices around the world remain low and uneven: around €30 per

ton of CO2 in Europe’s flagship cap-and-trade system—and even higher for some national

carbon taxes—but much lower in most other jurisdictions (World Bank 2020). This

picture stands in marked contrast to the Pigouvian ideal of a uniform global carbon price

set at the social cost of carbon (SCC).

So far, carbon pricing has focused on power generation and emissions-intensive indus-

trial sectors like aluminium, cement and steel. Three characteristics of these regulated

industries are striking. First, firms within each industry often have widely varying car-

bon intensities of production. This enhances the potential for market-based regulation

to achieve significant gains in abatement-cost efficiency. Second, emissions-intensive in-

dustries are often highly concentrated with long-standing concerns about the exercise of

market power. This makes relevant the theory of the second best. Third, international

trade is important as the scope of the product market in which regulated firms compete

is often wider than that of the carbon price they face. This has lead to concerns about

the potential for leakage of emissions to less regulated jurisdictions.

This paper studies the optimal design of carbon prices in a model in which these three

characteristics are crucial. The model considers a social planner who chooses countries’

carbon prices so as to maximize global welfare. Because of a market-power distortion in

the product market, the planner’s optimal policy is second-best. The central trade-off is

that a a higher carbon price reduces a country’s domestic emissions but also increases

deadweight losses in the product market (due to pass-through of carbon costs to con-

sumers) and leads to a degree of carbon leakage to the other country.1 Thereby, the coun-

try with relatively clean firms is more vulnerable to carbon leakage as a policy-induced

loss in production to the dirtier country translates into a larger increase in emissions. In

the special case without market power and without carbon leakage, the planner sets a

uniform global carbon price at the SCC, restoring the first-best outcome.

The main insight is that second-best carbon prices can be highly asymmetric across

countries. Market power, on its own, pushes countries’ optimal carbon prices downwards

as the planner seeks to cushion the increase in consumer prices. The presence of interna-

tional trade introduces a further effect: if carbon leakage for the country with relatively

clean firms is sufficiently pronounced, its optimal carbon price is zero. This, in turn, limits

deadweight losses in the product market and enables the planner to choose a higher carbon

price for the dirtier country—–which creates additional climate benefits as it reshuffles

1The leakage channel in the model arises from the market-share losses of more tightly regulated firms.
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production to cleaner firms. As long as market power is not too pronounced, the dirtier

country’s optimal carbon price may lie above the SCC. This finding obtains even though

a uniform global carbon price is always successful in reducing countries’ emissions.

The result should not be overplayed given the model’s very simple welfare function.2

The more general point is that, while carbon prices around the world today are almost

certainly far too low, failing to implement a uniform global carbon price does not nec-

essarily imply the wrong response to climate change. Moreover, competition policy to

mitigate market power may also enable stronger and more balanced climate action.

Related literature. This paper relates to several strands of literature on the theory of

environmental economics. First, when climate action is exogenously restricted to a subset

of countries, it is second-best for those countries to set lower carbon prices for sectors with

internationally-traded products—unless corrective trade tariffs are available (Hoel 1996).

This paper, by contrast, endogenizes the extent of climate action across all countries and

is concerned with cross-country (rather than cross-sectoral) differences in carbon prices.

Second, with imperfect competition in product markets, the optimal emissions price

typically falls short of the Pigouvian rule (Buchanan 1969). This theory applies to local

environmental problems in which a government sets a single domestic emissions price. This

paper studies second-best carbon prices that maximize global welfare in an international

context in which each country may set a different carbon price.3,4

Third, cross-country differences in marginal abatement costs can be optimal due

to equity concerns: a less rich country may have a higher marginal utility of income

(Chichilnisky & Heal 1994). This result can be interpreted as a second-best policy due to

restrictions on international financial transfers. This paper directly characterizes coun-

tries’ carbon prices and obtains an extreme version of non-uniform pricing in a model

without equity concerns.

2 Model

Consider a global industry in which nk ≥ 1 firm(s) are based in country k = i, j. Firm

m from country k produces xmk units of output with an emissions intensity zk ≡ emk /x
m
k ,

where emk is firm m’s emissions and Ek ≡
∑

m e
m
k (k = i, j). The global demand curve

2The model considers a partial-equilibrium setting without further distortions in factor markets or
wider tax interactions. The social planner does not have access to additional policy instruments (e.g.,
output subsidies) to directly address the market-power distortion.

3A second-best domestic emissions tax can exceed social cost if the demand curve is highly convex or if
this alleviates the problem of “excess entry” by firms. Neither consideration arises in the present model.
See Requate (2006) for a valuable survey of environmental regulation under imperfect competition.

4Babiker (2005) finds carbon leakage rates up to 130% in a general-equilibrium model with similar
ingredients to the present paper but does not study countries’ optimal carbon prices.

3



is linear p(X) = α − X where X ≡ Xi + Xj is total industry output (Xk ≡
∑

m x
m
k for

k = i, j). Firms have constant unit costs, which are set to zero to facilitate the exposition.

Faced with a carbon price τk in its country, firm m of k’s profits are Πm
k = pxmk − τkemk .5

The product market features a generalized version of Cournot competition. The con-

duct parameter θ ∈ (0, 1] indexes the intensity of competition. Formally, firms’ equilib-

rium outputs (x̂mk )k=i,j satisfy:

x̂mk = arg max
xmk ≥0

{[
p
(
θ(xmk − x̂mk ) +

∑ni

m=1
x̂mi +

∑nj

m=1
x̂mj

)
− τkzk

]
xmk

}
. (1)

Firm m in country k, in deviating its output by (xmk − x̂mk ), conjectures that industry

output will change by θ(xmk − x̂mk ) as a result. In this “conduct equilibrium” (Weyl &

Fabinger 2013), a lower θ corresponds to more intense competition while θ > 0 means

that competition is imperfect. The Cournot-Nash equilibrium occurs where θ = 1.

Profit-maximization implies that, for each firm, a generalized version of marginal rev-

enue, p − θxmk , is equal to its marginal carbon cost, zkτk. Equivalently, its marginal

abatement cost (p− θxmk )/zk equals the carbon price. Let Xk(τi, τj) and Ek(τi, τj) denote

outputs and emissions in this product-market equilibrium.

Global welfare W = U − sE reflects consumer utility U ≡
∫ X

0
p(v)dv and the global

SCC, s.6 The social planner’s problem is to maxτi,τjW (τi, τj) subject to the constraint

that firms make non-negative profits, Πm
k ≥ 0 (k = i, j). Assume that W (0, 0) > 0 so the

market is socially viable without carbon pricing—and the planner therefore never shuts it

down. A necessary condition for this is that some consumers’ willingness-to-pay exceeds

environmental damages, α > smax{zi, zj}.7

3 Carbon prices and global emissions

The first results characterize basic properties of carbon pricing. The rate of carbon leakage

associated with carbon pricing by country i is:

LCi ≡
dEj(τi, τj)/dτi
−dEi(τi, τj)/dτi

. (2)

5The assumption of constant emissions intensities is a common and useful benchmark in the literature.
Similar insights would obtain in a richer model with end-of-pipe abatement. Production costs being
equal across firms and countries switches off the welfare channel that carbon pricing can affect industry
production-cost efficiency (Hepburn, Quah & Ritz 2013) so as to focus sharply on consumer welfare and
climate damages.

6Product-market revenues are a transfer from consumers to firms, carbon-pricing revenues are a trans-
fer from firms to governments, and production costs are zero.

7It is easy to construct examples in which carbon pricing makes socially viable a market that—given
the SCC—was otherwise not, with W (τi, τj) > 0 > W (0, 0) for some τi, τj > 0.
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This measures the fraction of i’s emissions reduction that leaks to j. Also define output

leakage LOi ≡ (dXj/dτi)/(−dXi/dτi).

Lemma 1 An increase in country i’s carbon price τi reduces its domestic production,

dXi/dτi < 0 and its domestic emissions, dEi/dτi < 0, where:

(a) the rate of output leakage LOi = nj/(nj + θ) > 0;

(b) the rate of carbon leakage LCi = (zj/zi)[nj/(nj + θ)] > 0;

(c) carbon cost pass-through dp(τi, τj)/dτi = [ni/(ni + nj + θ)] zi > 0.

Output leakage is more pronounced with (i) more rivals in j engaging in “business

stealing” from those in i as a result of the unilateral cost increase (higher nj); and (ii)

more competitive conduct (lower θ).

Carbon leakage equals output leakage scaled by the relative emissions intensity zj/zi.

A higher carbon price by i increases in global emissions if its carbon leakage exceeds 100%.

This is ruled out by symmetry but occurs if j’s production is sufficiently more polluting.8

Carbon pricing reduces i’s profit margin as less than 100% of its carbon cost is passed

on to consumers; pass-through decreases with market power and with more rivals in j.

Global action “works” in the following sense:

Lemma 2 An increase in a uniform global carbon price (τk = τ for k = i, j):

(a) reduces global emissions, dE(τ, τ)/dτ < 0;

(b) reduces country k’s emissions, dEk(τ, τ)/dτ ≤ 0, if and only if LCk ≤ 1.

A uniform tightening in carbon prices is always successful at reducing aggregate

emissions—even if it may induce higher emissions by an individual country. Intuitively,

if unilateral action by i has carbon leakage above 100%, then i’s firms are significantly

cleaner than j’s so a higher global carbon price improves their competitiveness and they

expand production and emissions.9

4 Carbon prices and global welfare

Now consider the second-best carbon prices chosen by a social planner. At a global level,

carbon pricing involves a trade-off between lower consumer utility and the potential for

8Large intra-industry heterogeneity is borne out in practice (Lyubich, Shapiro & Walker 2018).
9A direct corollary is that global carbon pricing may not achieve the lowest global emissions. To

illustrate, suppose that i and j each have a carbon price of zero or the SCC. Due to the linearity of
emissions in carbon prices, the model exhibits the property that countries’ emissions reductions are
additive. Letting ∆E(τi, τj) ≡ [E(τi, τj)− E(0, 0)], unilateral action and coordinated action are related
according to:

∆E(s, s)︸ ︷︷ ︸
both i and j tighten

= ∆E(s, 0)︸ ︷︷ ︸
i tightens unilaterally

+ ∆E(0, s)︸ ︷︷ ︸
j tightens unilaterally

< 0,

So the inability of i’s carbon price to reduce global emissions (∆E(s, 0) > 0) is just the flipside of unilateral
carbon pricing achieving lower global emissions than a global carbon price (∆E(0, s) < ∆E(s, s) < 0).
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lower environmental damages. Under some conditions, the former dominates:

Lemma 3 If country i’s rate of carbon leakage is sufficiently high,

LCi ≥ 1− θ

(nj + θ)

θ

(ni + nj + θ)

(α/s)

zi
≡ LCi ,

then a zero carbon price is welfare-dominant, W (0, τj) ≥ W (τi, τj) for all τi, τj ≥ 0 .

The result is immediate if i’s carbon leakage exceeds 100%. Then a “reverse leakage”

argument applies: a reduction in i’s carbon price raises its own emissions but this is

outweighed by the induced reduction in j’s emissions—so global emissions decline. As

consumers also gain, global welfare rises. Because its leakage rate is constant, this logic

holds at any level of countries’ carbon prices. Put simply, the extent of i’s carbon leakage

precludes any effective climate action by way of carbon pricing for its firms.

This conclusion applies as long as i’s leakage rate is sufficiently high, LCi ≥ LCi , where

LCi < 1 because of market power, θ > 0. The critical value LCi declines with the ratio α/s,

which is a measure of the size of market-power distortion (via α) relative to the climate

problem (via s).10 If the former is sufficiently important, LCi turns negative.

The main interest of the paper lies in global carbon price asymmetry, so suppose that

i’s firms are cleaner with zi/zj < 1. The next result shows how the problem is then

resolved by the three industry characteristics described in the introduction:

Lemma 4 Suppose that country i’s carbon price τi = 0. Then an interior solution τ ∗j > 0

for country j that maximizes W (0, τj) satisfies:

τ ∗j
s

= 1− θ

nj

(
α/s− zj

zj

)
︸ ︷︷ ︸

market power

+
ni
nj

[
1 +

(
ni + nj + θ

θ

)(
1− zi

zj

)]
︸ ︷︷ ︸
international competition & firm heterogeneity

.

The first deviation of τ ∗j from the SCC is driven by market power. The standard

result that a second-best domestic emissions tax is below social cost is nested where

ni = 0. Lemma 4 then reduces to τ ∗j
∣∣
ni=0

= [s − (θ/nj) (α/zj − s)] < s (recalling that

α > smax{zi, zj}). With perfect competition, τ ∗j
∣∣
ni=0,θ=0

= s follows the Pigouvian rule.

The second deviation from the SCC instead pushes τ ∗j upwards—driven by firm het-

erogeneity and cross-border competition. An increase in j’s carbon price shifts production

to i’s cleaner firms. This has two implications. First, output leakage to i limits the con-

traction in industry output due to j’s carbon price, mitigating the incremental product-

market distortion. Second, the contraction in industry output leads to a greater reduction

10The initial p(0, 0) = θα/(ni + nj + θ) > 0 so DWL(0, 0) = 1
2 [p(0, 0)]2 increases with α.
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in global emissions precisely because i’s firms are cleaner. These factors limit deadweight

losses and amplify environmental benefits, pushing upwards j’s optimal carbon price.

A related observation is that the social planner regards countries’ carbon prices as

strategic substitutes.11 A higher carbon price by j raises the product price and so exacer-

bates the market-power distortion. This sharpens the planner’s trade-off against emissions

cuts by i, and reduces the welfare gain from i’s own carbon price.

The main result shows how this international-competition effect can dominate the

planner’s calculus and yield extreme asymmetry in global carbon prices:

Proposition 1 Suppose that country i’s firms are sufficiently cleaner than j’s, with

zi
zj
≤ 1− θnj

[(ni + θ)(ni + θ) + nj(ni + nj + θ)]
≡ δ < 1.

Then, for the range of parameter values given by

α

s
∈
[
Φ,Φ +

ni
θ

nj
θ

(zj − zi)
]

where Φ ≡
(

1 +
ni
θ

) [
zj +

ni
θ

(zj − zi)
]
,

i’s second-best carbon price τ ∗i = 0 while j’s satisfies τ ∗j ∈ [s, s[1 + (ni/θ)(1− zi/zj]] .

Proposition 1 establishes in equilibrium the logic underlying Lemmas 3 and 4. The

range on α/s ensures that, on one hand, the market-power distortion is small enough for

τ ∗j to exceed the SCC by Lemma 4 but, on the other hand, it is also large enough for j’s

firms to remain profitable at a very high carbon price.12 The condition zi/zj ≤ δ ensures

that indeed τ ∗i = 0 because i’s leakage is sufficiently pronounced as per Lemma 3.

To illustrate, let ni = nj = 3, θ = 1
2
, zj = 1, and s = 50. Competitive conduct then lies

“half-way” between Cournot-Nash and perfect competition, broadly in line with empirical

estimates for many industrial markets. Suppose that i’s firms are modestly cleaner with

zi = 0.9; Proposition 1’s condition becomes zi ≤ δ = 121
127

and is therefore met. With

α = 600, j’s optimal carbon price is τ ∗j = 731
3

by Lemma 4—almost 50% above the SCC.

If instead α = 560, τ ∗j = 80 makes j’s firms just indifferent about being active while τ ∗j

remains above the SCC as long as α ≤ 740. For these parameter values, LCi = .952 and

LCj = .771 (independent of the value of α, by Lemma 1), confirming that the result does

not hinge on carbon leakage exceeding 100% so global action works as per Lemma 2.13

11Global welfare, W (τi, τj) = U(τi, τj)− sE(τi, τj) is submodular in countries’ carbon prices:

d

dτj

[
dW (τi, τj)

dτi

]
=

d

dτj

[
p(τi, τj)

dX

dτi
− sdEi

dτi
(1− LC

i )

]
=

dp

dτj

dX

dτi
< 0,

since dX/dτi, dEi/dτi and LC
i are all constants, dp/dτj > 0, and dX/dτi < 0 (Lemma 1).

12Note that i’s firms are always profitable given that τ∗i = 0.
13For α < 560, Lemma 4’s τ∗j violates the constraint Πm

j ≥ 0 so the planner instead chooses the highest
τj such that Πm

j = 0. For α > 740, τ∗j remains interior as per Lemma 4 until it becomes zero for α ≥ 1040.
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Online Appendix

Proof of Lemma 1. Faced with a carbon price τk, the first-order condition for firm m

in country k, which satisfies (1), is:

(p− zkτk)− θxmk = 0. (3)

Summing over all ni + nj firms shows that the industry output and product price are

equal to:

X(τi, τj) =
ni(α− ziτi) + nj(α− zjτj)

(ni + nj + θ)
and p(τi, τj) =

θα + niziτi + njzjτj
(ni + nj + θ)

. (4)

The optimality conditions (3) imply Xi = ni (α−X − ziτi) /θ for i and so:

Xi(τi, τj) =
ni

(ni + nj + θ)

[
α− (nj + θ)

θ
ziτi +

nj
θ
zjτj

]
. (5)

For part (a), this pins down the output responses to i’s own carbon price as well as to j’s:

dXi

dτi
= − ni(nj + θ)

θ(ni + nj + θ)
zi < 0 and

dXi

dτj
=

ninj
θ(ni + nj + θ)

zj > 0 (6)

So output leakage equals LOi ≡ (dXj/dτi)/(−dXi/dτi) = nj/(nj + θ). For part (b), in

terms of emissions, using the definition Ek ≡ zkXk (k = i, j),

dEi
dτi

= − ni(nj + θ)

θ(ni + nj + θ)
z2
i < 0 and

dEi
dτj

=
ninj

θ(ni + nj + θ)
zizj > 0. (7)

So carbon leakage rate LCi ≡ (dEj/dτi)/(−dEi/dτi) = (zj/zi)[nj/(nj + θ)]. Finally, for

part (c), carbon cost pass-through follows directly from (4).

Proof of Lemma 2. For part (a), using (5) and Ek ≡ zkXk (k = i, j), global emissions

E ≡ Ei + Ej are given by:

E(τi, τj) =
α (nizi + njzj)

(ni + nj + θ)
− nizi [(nj + θ)zi − njzj]

θ(ni + nj + θ)
τi −

njzj [(ni + θ)zj − nizi]
θ(ni + nj + θ)

τj (8)

For the special case with equal carbon prices τi = τj = τ , this becomes:

E(τ, τ) =
α (nizi + njzj)

(ni + nj + θ)
− [nizi [(nj + θ)zi − njzj] + njzj [(ni + θ)zj − nizi]]

θ(ni + nj + θ)
τ

=
α (nizi + njzj)

(ni + nj + θ)
−
[
ninj(zi − zj)2 + θ

(
niz

2
i + njz

2
j

)]
θ(ni + nj + θ)

τ (9)
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so that dE(τ, τ)/dτ < 0 holds for any values of firms’ emissions intensities zi,zj. For part

(b), using (5) and Ei ≡ ziXi for country i, say, and again imposing τi = τj = τ shows

that dEi(τ, τ)/dτ ≤ 0 holds if and only if nj/(nj + θ) ≤ zi/zj. Using Lemma 1(b), this is

the same condition as that for LCi ≤ 1.

Proof of Lemma 3. Using the expression for global welfare W (τi, τj) =
∫ X(τi,τj)

v=0
p(v)dv−

sE(τi, τj) and the definition of the carbon leakage rate LCi , the impact of a change in

country i’s carbon price satisfies:

dW

dτi
(τi, τj) = p(τi, τj)

dX

dτi
− sdE

dτi
(10)

=
dX

dτi

[
p(τi, τj)− s

(
dEi
dτi

/
dX

dτi

)
(1− LCi )

]
. (11)

=
dX

dτi

[
p(τi, τj)−

(nj + θ)

θ
szi(1− LCi )

]
, (12)

where the last line uses (4) and (7) from the proof of Lemma 1. Apart from p(τi, τj), all

terms on the right-hand side are constants with respect to carbon prices, and, by Lemma

1(c), carbon cost pass-through is positive, dp/dτk > 0 for k = i, j, so for any τi, τj ≥ 0

this expression is bounded above according to:

dW

dτi
(τi, τj) ≤

dX

dτi

[
p(0, 0)− (nj + θ)

θ
szi(1− LCi )

]
. (13)

Using p(0, 0) = θα/(ni + nj + θ) from (4) and rearranging shows that if LCi ≥ LCi then

dW (τi, τj)/dτi ≤ 0 and so W (0, τj) ≥ W (τi, τj) for all τi, τj ≥ 0.

Proof of Lemma 4. By assumption, τi = 0 for country i and the optimal τ ∗j > 0 for

country j is interior so it solves the analogous expression to (12):

dW

dτj
(0, τ ∗j ) =

dX

dτj

[
p(0, τ ∗j )− szj

[
1 +

ni
θ

(
1− zi

zj

)]]
= 0, (14)

where dX/dτj < 0 by Lemma 1 and using LCj = (zi/zj)[ni/(ni+θ)]. By (4), the equilibrium

product price satisfies:

p(0, τ ∗j ) =
(θα + njzjτ

∗
j )

(ni + nj + θ)
. (15)

Using these two expressions to solve for τ ∗j initially yields:

njzjτ
∗
j

(ni + nj + θ)
= szj

[
1 +

ni
θ

(
1− zi

zj

)]
− θα

(ni + nj + θ)
(16)
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and so:
τ ∗j
s

=

[
1 +

(ni + θ)

nj

] [
1 +

ni
θ

(
1− zi

zj

)]
− θ(α/s)

njzj
. (17)

Now isolating the terms that hinge on θ > 0 and ni > 0, respectively, gives:

τ ∗j
s

= 1+
θ

nj

(
1− α/s

zj

)
+

[
ni
θ

(
1− zi

zj

)
+
ni
nj

[
1 +

ni
θ

(
1− zi

zj

)]
+
ni
nj

(
1− zi

zj

)]
(18)

and some further rearranging gives the expression as claimed.

Proof of Proposition 1. The proof has three steps. First, to identify conditions under

which τ ∗j ≥ s. Second, to identify conditions under which j’s firms remain profitable

under this τ ∗j . Third, to obtain a condition under which τ ∗i = 0 is indeed optimal.

Step 1. Suppose that τ ∗i = 0 and that optimal τ ∗j > 0 for country j is interior. If so, then

τ ∗j satisfies the expression in Lemma 4, and therefore τ ∗j ≥ s holds if and only if:

ni
nj

[
1 +

(
ni + nj + θ

θ

)(
1− zi

zj

)]
≥ θ

nj

(
α/s− zj

zj

)
. (19)

Rearranging this expression in terms of α/s gives:

α/s ≤
(

1 +
ni
θ

)
zj +

ni
θ

(
ni + nj + θ

θ

)
(zj − zi) ≡ A. (20)

Step 2. By the first-order condition in (3), j’s firms remain profitable (with Πm
j ≥ 0)

under this τ ∗j as long as p(0, τ ∗j ) ≥ zjτ
∗
j . Using (4) and rearranging shows that this is

equivalent to:
θ(α/s)

(ni + θ)zj
≥
τ ∗j
s

. (21)

Now inserting the expression for τ ∗j /s from Lemma 4 gives:

θ(α/s)

(ni + θ)zj
≥ 1− θ

nj

(
α/s− zj

zj

)
+
ni
nj

[
1 +

(
ni + nj + θ

θ

)(
1− zi

zj

)]
. (22)

Simplifying this expression in terms of α/s yields:

(α/s) ≥
(

1 +
ni
θ

) [
zj +

ni
θ

(zj − zi)
]
≡ B. (23)

Step 3. By Lemma 3, LCi ≥ LCi is a sufficient condition for τ ∗i = 0 to be optimal for the

social planner. This condition can instead be written as:

zj
zi

nj
(nj + θ)

≥
[
1− θ

(nj + θ)

θ(α/s)

(ni + nj + θ)zi

]
(24)
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and so

(α/s) ≥ (ni + nj + θ)

θ

[
zi −

nj
θ

(zj − zi)
]
≡ C. (25)

Now obtain a further condition on the relative emissions intensity under which B ≥ C:(
1 +

ni
θ

) [
zj +

ni
θ

(zj − zi)
]
≥ (ni + nj + θ)

θ

[
zi −

nj
θ

(zj − zi)
]

(26)

which rearranges to:

zi
zj
≤ 1− θnj

[(ni + θ)(ni + θ) + nj(ni + nj + θ)]
≡ δ < 1. (27)

In summary, whenever α/s exceeds B, and also exceeds C given that zi/zj ≤ δ, τ ∗i = 0

is indeed optimal and j’s firms remain profitable under the τ ∗j of Lemma 4 which, as long

as α/s is less than A, exceeds the SCC. It is easy to check that A > B then also always

holds:

A−B =
ni
θ

nj
θ

(zj − zi) > 0. (28)

The maximum value given by τ ∗j = s[1 + (ni/θ)(1 − zi/zj)] occurs where j’s are just

indifferent about being active at α/s = B.
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