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1 Introduction

Volatility of asset returns has been an active research area following the seminal works

of Engle (1982) and Bollerslev (1986). Most GARCH-type models define the volatility as

the conditional variance of returns based on past observations (see Francq and Zaköıan,

2010 for a survey of GARCH-type models). The increasing availability of high frequency

data in recent decades has motivated the use of the daily realised measures (RM), which

are consistent estimators of the daily integrated volatility (IV), as volatility proxies. This

makes the estimation easier since the volatility is no longer latent in these models. Since

then, various authors have found evidence of volatility clustering in the RM (e.g., Corsi

et al., 2008 and Bollerslev et al., 2009) which implies the presence of conditional het-

eroskedasticity in the volatility. This casts doubt on the GARCH-type specification since

the volatility is conditionally deterministic. Ding (2021) argues that failing to take into

account the time-varying volatility of volatility can result in a measurement error in the

volatility estimates. Moreover, GARCH-type models ignore the (arguably) most impor-

tant information in the current observation which makes it difficult to justify the accuracy

of the volatility estimates (Ding, 2021). On the other hand, models based on RM rely

exclusively on the high frequency data which is usually not available for asset managers

with medium horizons. In addition, these models are subject to the discretisation error

and market microstructure noise stemming from estimating the RM. Stochastic volatility

(SV) models are natural candidates to address these issues.1 However, the difficulty in

estimation and inference therein is hard to overcome.

To capture the time-varying volatility of volatility and make use of the current ob-

servation in the volatility estimate, Ding (2021) proposes the stochastic heteroskedastic

autoregressive volatility (SHARV) model. Specifically, the volatility process is given by

σ2t = βσ2t−1 + (α+ ψσ2t−1)ε
2
t , (1.1)

where εt ≡ rt/σt are i.i.d.(0, 1) random variables. He shows that SHARV along with its

asymmetric form, ASHARV, can capture all stylised facts of financial returns even when

εt ∼ N(0, 1). Moreover, he shows that both models have better goodness-of-fit and out-

of-sample volatility and Value-at-Risk (VaR) forecasts than GARCH-type models. The

conditional variance of σ2
t is given by E[σ2

t |Ft−1] = (α + βσ2
t−1)

2Eε4t provided Eε4t < ∞.

The dynamics of the volatility of volatility is completely determined by the lagged level

of volatility. This is quite restrictive. Ideally, we would want the volatility of volatility to

follow a separate process which in turn, drives the volatility process. This would lead to

the so called stochastic volatility of volatility (SVV) model where both the volatility and

volatility of volatility are latent processes.

1Only the contemporaneous SV models make use of the current observation in the volatility estimates.
This is captured by the correlation between return and volatility innovations. See Taylor (1994) for the
definitions of contemporaneous and lagged SV models.
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Apart from directly modelling the volatility of volatility, another way to alleviate the

heteroskedasticity in the volatility is to model the log volatility. This can be explained by

the fact that the asymptotic variance of the log realised volatility (RV), which is given by

2
∫ t
0
σ4
sds/(

∫ t
0
σ2
sds)

2 (Barndorff-Nielsen and Shephard, 2003), is much more stable than

the asymptotic variance of RV, 2
∫ t
0
σ4
sds. However, this can only partially alleviate the

heteroskedasticity in the volatility. To see this, consider a simple diffusion process,

dσ2
t = (a− bσ2

t )dt+ vtdLt,

where Lt is a (homogenous) Lévy process and vt is an almost surely positive and locally

square-integrable process. By Itô’s lemma, the log volatility satisfies

d log σ2t = (
a

σ2t
− b)dt− v2t

2σ4t
d〈L〉t +

vt
σ2t
dLt, (1.2)

where 〈L〉t is the quadratic variation of Lt. Clearly, only when vt is proportional to σ2
t and

Lt is a Brownian motion can we eliminate the heteroskedasticity in log σ2
t . Moreover, most

exponential-SV models assume an autoregressive structure for log σ2
t , which is subject to

misspecification if σ2
t has an autoregressive structure,2 This can be seen from (1.2) where

the drift term does not depend on log σ2
t explicitly. On the other hand, if we assume

d log σ2
t = (a− b log σ2

t )dt+ vtdLt,

then again by Itô’s lemma,

dσ2
t = (a− b log σ2

t )σ
2
t dt+

1

2
v2t σ

2
t d〈L〉t + vtσ

2
t dLt,

and σ2
t still has an autoregressive structure. Therefore, modelling σ2

t directly while taking

into account the time-varying volatility of volatility is less prone to misspecifications than

modelling log σ2
t .

Compared to SV models, literature on SVV models without using high frequency data

are relatively scarce. Barndorff-Nielsen and Veraart (2012) propose a volatility modulated

non-Gaussian Ornstein-Uhlenbeck (OU) SVV model. In their model, the volatility follows

a non-Gaussian OU process driven by a Lèvy subordinator and the volatility of volatility

is captured by one or more stochastic components of the Lèvy subordinator. In particular,

they discuss the cases of stochastic proportional and stochastic time change in the Lévy

subordinator. Moreover, they show that the so-called leverage effect can be captured by

the correlation between the volatility of volatility and asset price processes.3 Meanwhile,

Huang et al. (2019) propose a model where both the volatility and volatility of volatility

are driven by Brownian motions. Using VIX and VVIX spot and option data, they show

2For example, in the stochastic autoregressive volatility (SARV) model, log σ2
t = α+ β log σ2

t−1 + γut.
3The Lèvy subordinator is intrinsically independent from the Brownian motion term in the asset price

process. Therefore, in the non-Gaussian OU process with stochastic volatility of volatility, the leverage
effect can only be introduced by adding a jump component in the asset price process.
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that the fluctuations in the volatility of volatility are not directly related to the level of

volatility itself. However, the volatility in their model fails to be positive with probability

one which makes it hard to justify their model to be the true data generating process.

All above-mentioned models are in continuous time settings. To our knowledge, dis-

crete time SVV models have not yet been studied. In this paper, we propose a new class

of conditional heteroskedasticity in the volatility (CH-V) models which includes SHARV

and several GARCH-type models as special cases. Despite having two latent processes,

we show that CH-V models have analytical expressions for the likelihood function which

makes the parameter estimation and statistical inference straightforward. Moreover, we

show a novel way of introducing the leverage effect via the volatility of volatility. Subse-

quently, we introduce two examples of CH-V models where the volatility of volatility fol-

lows a GJR- and E-GARCH processes, respectively. We call them the GARCH-V models.

Empirical evidence shows that GARCH-V models have slightly better goodness-of-fit than

SHARV. For volatility forecasts, while the difference between GARCH-V and SHARV is

not significant, both models have much more accurate forecasts than other GARCH-type

models. This confirms the importance of modelling the time-varying volatility of volatility.

For VaR forecasts, GARCH-V models produce more accurate results than SHARV.

The rest of this paper is organised as follows: In section 2 we introduce the class of

CH-V models. In section 3 we introduce the GJR- and E-GARCH-V models. In section

4 we present the empirical analysis and section 5 concludes. All proofs and derivations

can be found in appendix A.

2 Conditional heteroskedasticity in the volatility

We now introduce the class of univariate CH-V models which nests SHARV and several

GARCH-type models as special cases. We only consider the first-order case, extension to

higher order is straightforward. Specifically, let Ft denote the σ-algebra generated by all

available information up to time t. Let the return and its volatility processes satisfy

rt = µt−1 + σtεt, (2.1)

σ2t = bt−1 + (at−1 + ct−11(εt<0))ε
2
t , (2.2)

where εt ∼ i.i.d.(0, 1) with Eε4t < ∞ and 1(·) is the indicator function. µt, at, bt and ct

are all Ft-measurable functions with bt > 0, at and ct ≥ 0 with probability one. The term

ct−1ε
2
t1(εt<0) captures the skewness in the conditional density of rt and the leverage effect.

This leverage effect is contemporaneous, i.e., the correlation between the current negative

returns and the current level of volatility. The lagged leverage effect, i.e., the correlation

between the lagged negative returns and the current level of volatility, can be included in

the term bt−1. See Ding (2021) for more discussions on the contemporaneous and lagged
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leverage effects. For SHARV, set µt = 0, bt = βσ2
t , at = α + ψσ2

t and ct = 0 while for

ASHARV, reset µt = µσt and ct = ω+φσ2
t .

4 When at = 0, ct = 0 and bt = α+βσ2
t +γr2t ,

we obtain GARCH. We can relax the i.i.d. assumption on εt by requiring εt|Ft−1 ∼ (0, 1)

with E[ε4t |Ft−1] <∞. This results in a semi-strong CH-V model similar to the semi-strong

GARCH of Drost and Nijman (1993). Most results of this paper continue to hold for the

semi-strong case. Moreover, if we are only interested in the forecast of σ2
t , we do not need

the assumption of Eε4t <∞. The finite fourth moment condition is merely to ensure that

E[r2t |Ft−1] < ∞. For convenience, we will keep the i.i.d.(0, 1) and finite fourth moment

assumptions in place. Empirical evidence in section 4 shows that the standardised return

residuals for all three CH-V models that we consider in this paper are close to Gaussian for

indices and individual stocks. Therefore, these assumptions can be empirically justified.

When at and/or ct are not constants, the process σ2
t exhibits conditional heteroskedas-

ticity. Ding (2021) argues that ignoring the time-varying volatility of volatility results in

a measurement in the volatility estimate. The volatility is no longer defined as the condi-

tional variance of returns unless it degenerates to GARCH-type. Since financial returns

are known to be heavy-tailed, the conditional variance is not a good measurement of the

tail risk. The specification of the volatility process in CH-V can capture the time-varying

tail index in the conditional density of returns. To see this, for simplicity, consider the

symmetric CH-V where µt = ct = 0 for all t. The conditional kurtosis

E[r4t |Ft−1]
E[r2t |Ft−1]2

=
b2t−1Eε4t + 2at−1bt−1Eε6t + a2t−1Eε8t(

bt−1 + at−1Eε4t
)2 ,

is larger than 3 when b2t−1(Eε4t − 3) + 2at−1bt−1(Eε6t − 3Eε4t ) + a2t−1(Eε8t − 3Eε4t ) > 0. For

Gaussian εt, this condition is satisfied for all at−1 > 0. Therefore, at−1, and ct−1 in the

case of asymmetric CH-V, not only captures the conditional heteroskedasticity in σ2
t but

also controls for the conditional kurtosis in rt. For asymmetric CH-V, it is not difficult

to see that E[σtεt|Ft−1] < 0 which in turn, induces a time-varying conditional skewness

in rt. The direction of the skewness is hard to determine analytically since E[σtεt|Ft−1]
does not have an analytical expression in general.

Ding (2021) argues that by ignoring the current observation in the volatility estimate,

GARCH-type models disregard the (arguably) most important information which makes

it difficult to justify the accuracy of volatility estimates produced by these models. On

the other hand, the volatility filtering equation for CH-V is given by

σ2
t = 1/2

(
bt−1 +

√
b2t−1 + 4(at−1 + ct−11(εt<0))(rt − µt−1)2

)
.

In addition, the non-quadratic response of σ2
t to rt has the advantage of down-weighing

the influence of large observations on the volatility estimates. See Harvey (2013) for the

importance of down-weighing outliers in volatility estimation.

4We can reduce the number of parameters for ASHARV by specifying σ2
t = βσ2

t−1 + (α+ψσ2
t−1)(ε2t +

ρε2t1(εt<0)).
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The restrictions on µt−1, at−1, bt−1 and ct−1 are very weak. This allows for an abun-

dance of functional forms for these terms that can be used to capture the persistence of

both the volatility and volatility of volatility, lagged leverage effect, long-run and short-

run effects as well as the addition of exogenous explanatory variables. If we require the

return process to be a martingale difference sequence (MDS) as required under the effi-

cient market hypothesis, we need to impose Eε3t = 0 and ct−1 = 0. CH-V can be viewed

as a special case of the contemporaneous SV models in which the volatility is driven by

the squared (contemporaneous) return innovation. The conditional density of returns is

given in the following theorem.

Theorem 2.1. Let (rt, σ
2
t ) satisfy (2.1)–(2.2). Let r̃t ≡ rt − µt−1 and θ be the parameter

vector. For y 6= 0, the conditional density of r̃t|Ft−1 is given by

fr(y|Ft−1) =
y

d1,t−1(y; θ)d2,t−1(y; θ)
fε
(
d2,t−1(y; θ)

)
, (2.3)

where fε(·) is the probability density function of εt,

d1,t−1(y; θ) =
√
b2t−1 + 4at−1y2 + 4ct−1(y−)2, (2.4)

d2,t−1(y; θ) =


sign(y)

√
d1,t−1(y; θ)− bt−1

2at−1 + 2ct−11(y<0)
, if (at−1, ct−1) 6= 0

y/
√
bt−1, if (at−1, ct−1) = 0

(2.5)

and εt = d2,t−1(r̃t; θ0) at the true parameter vector θ0. For y = 0,

lim
y→0

fr(y|Ft−1) =
1√
bt−1

fε(0). (2.6)

The conditional cumulative distribution function (CDF) of r̃t is given by Fr(y|Ft−1) =

Fε(d2,t−1(y; θ)), where Fε(·) is the CDF of εt.

Remark 1. If we replace the i.i.d. assumption on εt by εt|Ft−1 ∼ (0, 1), then we need to

replace fε(·) by fεt|Ft−1(·) in (2.3) and (2.6).

The 1-step ahead p% VaR forecast can be obtained by inverting the conditional prob-

ability P(rt+1 ≤ −VaRt+1|Ft) given in Theorem 2.1,

VaRt+1 = −µt +
√

(at + ct1(F−1
ε (p)<0))(F

−1
ε (p))4 + bt(F

−1
ε (p))2, (2.7)

where F−1ε (p) is the p% quantile of εt. See section 3 of Ding (2021) for the derivation.

We next discuss the stationarity conditions for CH-V models. The case when σ2
t has

an autoregressive structure will be of particular interest. Since the indicator function of

a measurable set is a measurable function and therefore, 1(εt<0) is strictly stationary and

ergodic. Therefore, without loss of generality, we assume ct = 0 for all t and σ2
t satisfies

σ2t = φtσ
2
t−1 + ãt−1ε

2
t , (2.8)
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where φt > 0, ãt ≥ 0 almost surely, φt is a measurable function of εt and ãt is contem-

poraneously independent of σ2
t . Setting φt = β + ψε2t and ãt−1 = α, we obtain SHARV.

Before we state strict stationarity conditions, we need a further assumption on εt.

Assumption 1. ε2t is non-degenerate (εt thus need to be different from scaled symmetric

Bernoulli or denerate random variables).

Theorem 2.2. Let (rt, σ
2
t ) be generated (2.1) and (2.8) and εt satisfy Assumption 1. Let

ât ≡ ãt−1ε
2
t be strictly stationary and ergodic. Define uσ

2
t ≡

∑∞
k=0

∏k−1
j=0 φt−j ât−k, where∏−1

j=0 φt−j = 1. If

E log φt < 0 and E(log ãt)
+ <∞, (2.9)

where x+ = max(x, 0), then uσ
2
t is the unique strictly stationary and ergodic solution of

(2.8) given φt and ât. Furthermore, uσ
2
t converges absolutely almost surely and |σ2

t −
uσ

2
t | → 0 almost surely for an arbitrary random starting point σ2

0 defined on the same

probability space as φt and ât. In particular, σ2
t

d−→ uσ
2
t as t → ∞. Moreover, condition

(2.9) is the necessary condition for the results to hold.

Remark 2. Theorem 2.2 also nests the strict stationarity conditions for GARCH if we

set φt = β + γε2t−1 and ât = α and for E-GARCH by setting σ2
t = log h2t , φt = β and

ât = ω + α(|εt−1| − E|εt−1|) + γεt−1.

Corollary 2.2.1. If E log φt ≥ 0, then σ2
t →∞ almost surely as t→∞. If we relax the

i.i.d. assumption and assume only strictly stationary and ergodic εt, then with an addi-

tional assumption (Assumption A2 of Linton et al., 2010), we have the same conclusion.

Finally, If 0 ≤ Eãt = ã < ∞ and 0 < Eφt = φ < 1, where ã and φ are constants and

do not depend on t, then σt is weakly stationary.

3 GARCH in the volatility

In this section, we discuss two examples of CH-V.

3.1 GJR-GARCH-V

In the first example, we specify a GJR-GARCH process for ãt−1. Let (rt, σ
2
t , vt) satisfy

rt = σtεt, (3.1)

σ2t = φσ2t−1 + vtε
2
t , (3.2)

vt = ω + βvt−1 + (α+ γ1(εt−1<0))vt−1ε
2
t−1, (3.3)

where φ > 0 and (ω, α, β, γ)
′ ≥ 0. We call (3.1)–(3.3) the GJR-GARCH-V model. It is

easy to see that rt is an MDS if εt are symmetric. Hence similar to SHARV, we generally
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cannot allow for skewness in εt and E[rt|Ft−1] = 0 simultaneously. Although symmetry

of εt is quit a strong restriction, skewness is usually negligible for short horizon returns

(Neuberger and Payne, 2020). Thus for convenience, we will assume Eε3t = 0 for the rest

of the paper in addition to the i.i.d. and moment assumptions in section 2. Note that for

long horizon returns, our model can still generate skewness because of the leverage effect

coupled with volatility persistence. We collect all assumptions on εt and state as follows,

Assumption 2. Let εt be i.i.d.(0, 1) with Eε3t = 0 and Eε4t <∞.

At first glance, (3.3) does not have the familiar GARCH form. However, upon noticing

that vt−1ε
2
t−1 = σ2

t−1 − φσ2
t−2, it is immediate that vt is driven by the volatility residuals.

Note that in (3.3) we have modelled the conditional standard deviation vt instead of the

conditional variance v2t . This is because in order to forecast σ2
t+n for n > 1, we need to

forecast vt+n first.

We can express (3.1)–(3.3) as a VARMA(1,1) process. Specifically,
r2t

σ2t

vt

 =


ωι4

ω

ω

+


φ 0 ξι4 − κφ

0 φ ξ

0 0 ξ



r2t−1

σ2t−1

vt−1

+


1 1 0

0 1 0

0 0 0



zt

et

ut

+


−φ αι4 γι4

0 α γ

0 α γ



zt−1

et−1

ut−1

 , (3.4)

where ι4 = Eε4t , κ = ι4 − 1, ξ = β + α + 1/2γ and (zt, et, ut)
′

are all MDS given by

zt = r2t − σ2t − κvt, (3.5)

et = vt(ε
2
t − 1), (3.6)

ut = vt(ε
2
t1(εt<0) −

1

2
). (3.7)

Unlike the first-order GARCH and SHARV where the volatility follows an AR(1) process,

the volatility in GJR-GARCH-V follows an ARMA(1,1) process. Moreover, the volatility

of volatility is no longer solely determined by the lagged level of volatility but follows an

AR(1) process instead and affects the current level of volatility. This allows us to analyse

the volatility and volatility of volatility separately. The leverage effect is captured by the

term γ1(εt−1<0)vt−1ε
2
t−1 in (3.3), which transfers into (3.2) through vt. This demonstrates

a novel way of introducing the leverage effect via the volatility of volatility process. Note

that in GJR-GARCH-V, we have the lagged leverage effect instead of the contemporaneous

one in ASHARV. It is straightforward to model the contemporaneous leverage effect by

including an additional term ρvtε
2
t1(εt<0) in (3.2). In doing so, rt is no longer an MDS. In

this paper, we focus on the case when E[rt|Ft−1] = 0 and assume only the lagged leverage

effect. We leave the simultaneous treatment of the contemporaneous and lagged leverage

effects for future research.

The conditional variance of returns is given by E[r2t |Ft−1] = φσ2
t−1 + vtEε4t and the

conditional variance of the volatility is given by Var(σ2
t |Ft−1) = v2t (Eε4t − 1). The strict

stationarity and ergodicity conditions are given in the following proposition.
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Proposition 3.1. The processes (3.2) and (3.3) have unique strictly stationary and er-

godic solutions if and only if φ < 1 and E log
(
β + (α + γ1(εt<0))ε

2
t

)
< 0.

The weak stationarity conditions for are given by φ < 1 and β + α + 1/2γ < 1. The

unconditional level of σ2
t is given by Eσ2

t = Evt/(1−φ) where Evt = ω/(1−β−α−1/2γ).

Finally, if vt follows an integrated GJR-GARCH process, i.e. β + α + 1/2γ = 1, σ2
t and

vt can still be strictly stationary provided the conditions in Proposition 3.1 are satisfied.

On the other hand, the volatility process itself cannot follow an integrated process, that

is, φ cannot be equal to 1 if we want to preserve the strict stationarity of σ2
t .

3.2 E-GARCH-V

We next introduce anther example of CH-V in which the volatility of volatility follows an

E-GARCH process. Let (rt, σ
2
t , vt) satisfy

rt = σtεt, (3.8)

σ2t = φσ2t−1 + vtε
2
t , (3.9)

log vt = ω + β log vt−1 + γεt−1 + α(|εt−1| − E|εt−1|). (3.10)

We call (3.8)–(3.10) the E-GARCH-V model. To ensure that σ2
t > 0 almost surely, we

only require that φ > 0. Clearly, E(log vt)
+ <∞ if |β| < 1, together with φ < 1 we have

the strict stationarity conditions. These conditions coincide with the weak stationarity

conditions and are easy to verify in practice. Moreover, E-GARCH-V allows the volatility

of volatility to exhibit oscillatory behaviour since no positivity constraint is imposed on

its parameters. This in turn, allows for oscillations in the volatility. Note that we can

model either the log conditional variance or log conditional standard deviation of σ2
t in

(3.10) since E log v2t = 2E log vt for vt > 0. To be consistent with GJR-GARCH-V, we

proceed with modelling the log conditional standard deviation of σ2
t , i.e., log vt.

The disadvantage of E-GARCH-V, similar to E-GARCH, is that the multi-step ahead

volatility forecasts directly depends on the distributional assumption of εt since E exp (εt)

depends on the distribution of εt. Empirical evidence in section 4.2 suggests that εt are

close to Gaussian for indices and individual stocks. Therefore, we assume εt ∼ N(0, 1) for

volatility forecasts purposes for E-GARCH-V. On the other hand, εt for E-GARCH are

far from Gaussian and exhibit heavy tails. It is therefore, more reasonable to justify the

distributional (Gaussian) assumption of εt for E-GARCH-V than for E-GARCH empiri-

cally. This is important for multi-step ahead volatility forecasts. As Nelson (1991) points

out, the moments of E-GARCH do not typically exist for heavy-tailed εt. The moment

of γεt + α(|εt| − E|εt|) is given in Theorems A1.1 and A1.2 of Nelson (1991). Note that

the case of constant volatility under E-GARCH-V is not trivial. This is because in order

for vt = 0 for all t, we would require log vt = −∞ for all t. If we want to nest this case,

we can replace vtε
2
t by ηvtε

2
t in (3.9). If φ = 1 and η = 0, we obtain the case of constant

9



Table 1: Parameter estimates for GJR- and E-GARCH-V

φ ω β α γ BIC

S&P 500 0.8731
(0.0088)

0.0119
(0.0048)

0.8830
(0.0296)

0.0213
(0.0087)

0.1826
(0.0476)

23221

0.8745
(0.0087)

−0.0169
(0.0068)

0.9712
(0.0096)

0.2024
(0.0370)

−0.1234
(0.0289)

23228

DJIA 0.8744
(0.0093)

0.0127
(0.0049)

0.8743
(0.0307)

0.0061
(0.0024)

0.2035
(0.0513)

23030

0.8763
(0.0095)

−0.0206
(0.0093)

0.9670
(0.0122)

0.2039
(0.0426)

−0.1403
(0.0339)

23036

JPM 0.8859
(0.0090)

0.0075
(0.0041)

0.9325
(0.0119)

0.0294
(0.0104)

0.0706
(0.0197)

28425

0.8870
(0.0090)

0.0022
(0.0014

0.9930
(0.0024)

0.1402
(0.0236)

−0.0426
(0.0119)

28443

AAPL 0.9057
(0.0083)

0.0029
(0.0013)

0.9598
(0.0003)

0.0355
(0.0053)

0.0085
(0.0103)

30331

0.9078
(0.0089)

0.0025
(0.0013)

0.9960
(0.0028)

0.0909
(0.0253)

−0.0047
(0.0091)

30351

EUR/USD 0.9429
(0.0096)

0.0002
(0.0005)

0.9632
(0.0213)

0.0238
(0.0314)

0.0249
(0.0160)

10403

0.9468
(0.0084)

−0.0111
(0.0128)

0.9953
(0.0048)

0.0808
(0.0306)

−0.0278
(0.0098)

10403

Note: The first row for each asset refers to GJR-GARCH-V, followed by E-GARCH-
V. The standard errors in parentheses are calculated numerically. The BIC of SHARV
for all above assets are 23254, 23071, 28437, 30335 and 10395, respectively. The BIC
of E-GARCH and GJR-GARCH are larger in values than those of the three models for
all assets, meaning CH-V-type models are always preferred over GARCH-type models.

volatility. Since conditional heteroskedasticity is a stylised fact of asset returns, we will

proceed with (3.9) without the additional parameter η for simplicity.

4 Empirical analysis

4.1 Data description

Our primary sample consists of daily open-to-close returns of S&P 500, Dow Jones Indus-

trial Average (DJIA), JPMorgan Chase & Co. (JPM) and Apple Inc. (AAPL) spanning

from 3 January 2000 to 31 December 2020 and EUR/USD exchange rate from 2 January

2009 to 31 December 2020. We use the bipower variation (BPV) of Barndorff-Nielsen and

Shephard (2003) calculated from 5-min intraday returns as volatility proxy to eliminate

the effect of large jumps on volatility. This is important since COVID-19 is likely to have

created large jumps in asset returns during 2020.

4.2 In-sample analysis

The Gaussian quasi-maximum likelihood estimates (QMLE) for GJR- and E-GARCH-V

are reported in Table 1. Note that we have annualised the log returns and imposed the

10
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(b) DJIA
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Figure 1: QQ plots of the standardised return residuals for the full sample
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(b) 2000–2010

Figure 2: QQ plots of the standardised return residuals for 1980–1990 and 2000–2010

weak stationarity conditions. For brevity, we do not report the parameter estimates for

SHARV and GARCH. In terms of BIC, the three CH-V models are all preferred over

GJR- and E-GARCH. For the two GARCH-V models, both the volatility and volatility

of volatility are highly persistent. The leverage effects are significant for indices and JPM

but less so for AAPL and EUR/USD. Recall from section 5 of Ding (2021), the contem-

poraneous leverage effect is directly ruled out by QML for EUR/USD. This demonstrates

that there is a distinction between the contemporaneous and lagged leverage effects which

deserves a more detailed analysis for future research.

The QQ plots of the standardised return residuals for CH-V and E-GARCH are shown

in Figure 1. The standardised return residuals for the three CH-V models are almost iden-

tical to standard normal in terms of their quantiles except for EUR/USD. For EUR/USD,

the three CH-V models still have better goodness-of-fit than E-GARCH. Within the three

CH-V models, the differences are marginal.

The (nearly) Gaussianity of standardised return residuals has important implications.

Clark (1973) argues that the non-Gaussianity and heavy-tails of asset returns arises from

the random news arrival process and the difference between clock time and market time

scales. Therefore, conditional on the correct news arrival process, we should be able to

recover the Gaussianity of asset returns. The QQ plots in Figure 1 seem to suggest that

both SHARV and GARCH-V correctly capture the news arrival process for indices and

individual stocks in the period of 2000–2020. We next consider the periods of 1980–1990

and 2000–2010 which cover the 1987 stock market crash and the latest financial crisis,

respectively. The QQ plots for SHARV are similar to those for GARCH-V while for E-

GARCH, the standardised return residuals are far from Gaussian. Therefore for brevity,

we do not report the QQ plots for them. It is clear from Figure 2 that εt are still close

to Gaussian for GARCH-V in the period of 2000–2010. However, in the period of 1980–

12



Table 2: Comparison of standard errors of QMLE and MLE for GARCH-V for JPM

φ ω β α γ

GJR-GARCH-V

(Σ−11 )ii 0.0087 0.0021 0.0090 0.0122 0.0151

(Σ−12 )ii 0.0088 0.0028 0.0099 0.0110 0.0165

(Σ−12 Σ1Σ
−1
2 )ii 0.0090 0.0041 0.0119 0.0104 0.0197

E-GARCH-V

(Σ−11 )ii 0.0084 0.0014 0.0017 0.0178 0.0103

(Σ−12 )ii 0.0087 0.0014 0.0020 0.0199 0.0107

(Σ−12 Σ1Σ
−1
2 )ii 0.0090 0.0014 0.0024 0.0234 0.0119

Note: Σ1 = Eθ0
[
∂lt(θ0)
∂θ0

∂lt(θ0)

∂θ
′
0

]
and Σ2 = −Eθ0

[
∂2lt(θ0)

∂θ0∂θ
′
0

]
where lt(θ0) is the quasi-log-

likelihood function evaluated at the true parameter vector. The standard errors are
calculated from the square root of the diagonal elements of these matrices.
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Figure 3: News impact curves of GJR-GARCH-V, E-GARCH-V and GJR-GARCH

1980, the left tail of εt starts to deviate from Gaussian although it is still much closer to

Gaussian than E-GARCH. Events like 1987 are relatively rare, we can therefore include a

jump component in the return process similar to the GARCH-Jump model of Maheu and

McCurdy (2004) and see whether the standardised return residuals will be even closer to

Gaussian in the period of 1980–1990. We leave this for future research.

Another implication concerns the efficiency of the Gaussian QMLE which approaches

that of the MLE since εt are close to Gaussian for CH-V. This can be seen by comparing

the standard errors of the QMLE and the MLE. Ding (2021) has compared the standard

errors for SHARV and ASHARV. Therefore, we only compare the standard errors for the

two GARCH-V models for JPM for brevity. From Table 2, it is clear that the standard

errors of the Gaussian QMLE are almost identical to those of the MLE.

We next consider the news impact curves. Since the class of CH-V models does not

nest E-GARCH, we use GJR-GARCH as benchmark for comparison. From Figure 3, it is

clear that the magnitude of the leverage effect is much smaller for GARCH-V models than

13



Table 3: Volatility nowcast comparison using BPV as volatility proxy

S&P 500 DJIA JPM AAPL EUR/USD

MSE pMCS MSE pMCS MSE pMCS MSE pMCS MSE pMCS

GJR-GARCH 0.1328 0.000 0.1384 0.000 0.3060 0.003 0.3632 0.000 0.0229 0.000

E-GARCH 0.1234 0.000 0.1303 0.000 0.3156 0.000 0.3745 0.000 0.0221 0.000

SHARV 0.0988 0.670∗ 0.1083 0.776∗ 0.2776 1.000∗ 0.2918 0.752∗ 0.0187 0.135∗

GJR-GARCH-V 0.0978 0.670∗ 0.1067 0.781∗ 0.2798 0.753∗ 0.2896 1.000∗ 0.0184 1.000∗

E-GARCH-V 0.0968 1.000∗ 0.1060 1.000∗ 0.2845 0.021 0.2944 0.000 0.0187 0.327∗

Note: pMCS are the p-values of the model confidence set of Hansen et al. (2011). Models marked with ∗
fall in the 95% model confidence set.

for GJR-GARCH. This is because the leverage effect in GARCH-V is introduced via the

volatility of volatility whose magnitude is often much smaller than that of the volatility

itself. We can include another leverage effect term in the volatility process to increase

its magnitude. We can use this additional term to capture either the contemporaneous

leverage effect in the fashion of ASHARV (see Ding, 2021) or the lagged leverage effect

in the fashio of GJR-GARCH. The simultaneous treatment of the contemporaneous and

lagged leverage effects is of particular interest. We leave this for future research.

To show that CH-V models have more accurate volatility nowcasts, we next compare

the mean square errors (MSE) and the 95 percentile model confidence set (MSC) M̂∗
95% of

Hansen et al. (2011) in Table 3. Clearly, CH-V models consistently outperform GARCH-

type models since they are the only models in the 95% MCS. For individual stocks, E-

GARCH-V is outside the 95% MCS. However, it still outperforms GJR- and E-GARCH

according to the superior predictive ability (SPA) test of Hansen (2005). For brevity, we

do not report the SPA test results. We then plot the filtered volatility (σt) and volatility

of volatility (
√

E[σ2
t |Ft−1]) of E-GARCH-V for DJIA and JPM for the year of 2020 in

Figure 4. The dynamics of the volatility is generally in-line with that of the volatility of

volatility while the volatility of volatility exhibits more fluctuations than the volatility.

This is in contrast to SHARV where the current level of volatility of volatility is entirely

determined by the lagged level of volatility. For GARCH-V, the volatility of volatility has

its own dynamics which feeds back into the current level of volatility.

4.3 Forecast evaluation

For out-of-sample volatility and VaR forecasts, we divide the sample into the estimation

and forecast periods. The forecast period contains the last 1500 observations. We employ

an expanding window and update the estimation for every 50 observations. For volatility

forecast comparison, we use the QLIKE loss function which is robust to imperfect volatility

proxies as shown by Patton (2011). From Table 4, it is evident that CH-V consistently

outperform GJR- and E-GARCH since they are the only models in the 95% MCS for

all assets except for JPM where all models are in the 95% MCS. Within the class of

CH-V, E-GARCH-V is outside the 95% MCS for AAPL and EUR/USD. However, even
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Figure 4: Filtered volatility (σt) and volatility of volatility (
√
E[σ2t |Ft−1]) of E-GARCH-V

Table 4: Out-of-sample volatility forecast comparison using BPV as volatility proxy

S&P 500 DJIA JPM AAPL EUR/USD

QLIKE pMCS QLIKE pMCS QLIKE pMCS QLIKE pMCS QLIKE pMCS

1-step

GJR-GARCH 0.1069 0.000 0.1102 0.000 0.0616 0.506∗ 0.0780 0.000 0.0530 0.000

E-GARCH 0.0998 0.000 0.1041 0.000 0.0627 0.436∗ 0.0780 0.000 0.0497 0.001

SHARV 0.0832 1.000∗ 0.0837 1.000∗ 0.0600 1.000∗ 0.0667 0.090∗ 0.0431 1.000∗

GJR-GARCH-V 0.0853 0.126∗ 0.0864 0.067∗ 0.0618 0.436∗ 0.0643 1.000∗ 0.0451 0.065∗

E-GARCH-V 0.0847 0.199∗ 0.0861 0.094∗ 0.0620 0.436∗ 0.0708 0.000 0.0474 0.004

5-step

GJR-GARCH 0.1469 0.000 0.1526 0.000 0.0790 0.260∗ 0.0958 0.000 0.0584 0.001

E-GARCH 0.1366 0.000 0.1423 0.000 0.0802 0.260∗ 0.0971 0.000 0.0546 0.035

SHARV 0.1176 1.000∗ 0.1212 1.000∗ 0.0762 1.000∗ 0.0837 0.404∗ 0.0499 1.000∗

GJR-GARCH-V 0.1222 0.057∗ 0.1262 0.055∗ 0.0796 0.376∗ 0.0818 1.000∗ 0.0527 0.071∗

E-GARCH-V 0.1210 0.158∗ 0.1244 0.221∗ 0.0798 0.260∗ 0.0908 0.000 0.0548 0.035

Note: pMCS are the p-values of the model confidence set of Hansen et al. (2011). Models marked with ∗ fall in
the 95% model confidence set.

in this case, E-GARCH-V still outperforms GJR- and E-GARCH according to the SPA

test results. This confirms the importance of the current observation and time-varying

volatility of volatility in volatility forecasts. On the other hand, the specifications of the

volatility of volatility in SHARV and GARCH-V only result in marginal differences. This

is because the dynamics of the volatility and volatility of volatility are largely in-line as

seen in Figure 4, therefore, a function of the lagged level of volatility can provide a good

approximation of the volatility of volatility as in the case of SHARV.

Finally, we compare 1-step ahead 1% and 5% VaR forecasts. We use the conditional

coverage test of Christoffersen (1998) to evaluate the accuracy and report the p-values

in Table 5. Clearly, only GARCH-V have correct conditional coverage for all assets and

for both percentiles. Moreover, E-GARCH-V is the only model with correct conditional

coverage for 1% VaR forecast for S&P 500. The results are consistent with Ding (2021)

where he finds that both the time-varying volatility of volatility and leverage effect are
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Table 5: P-values of the conditional coverage test for 1-step ahead VaR forecasts

S&P 500 DJIA JPM AAPL EUR/USD

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

GJR-GARCH 0.008 0.730∗ 0.002 0.325∗ 0.123∗ 0.074∗ 0.227∗ 0.025 0.006 0.004

E-GARCH 0.000 0.902∗ 0.008 0.658∗ 0.123∗ 0.086∗ 0.049 0.031 0.006 0.018

SHARV 0.004 0.500∗ 0.000 0.063∗ 0.817∗ 0.166∗ 0.812∗ 0.021 0.570∗ 0.053∗

GJR-GARCH-V 0.007 0.876∗ 0.065∗ 0.146∗ 0.812∗ 0.123∗ 0.710∗ 0.124∗ 0.680∗ 0.135∗

E-GARCH-V 0.065∗ 0.858∗ 0.340∗ 0.189∗ 0.710∗ 0.299∗ 0.812∗ 0.132∗ 0.447∗ 0.001

Note: The conditional coverage test has an asymptotic χ2 distribution with 2 degrees of freedom (Christof-
fersen, 1998). Models marked with * are those we fail to reject the null at 95% confidence level, that is, the
proportion of failures is consistent with the VaR confidence level and failures on consecutive time periods
are independent.

important for VaR forecasts. We point out that the leverage effects in GARCH-V in the

paper are lagged leverage effects, the analysis of the contemporaneous leverage effect is

left for future research.

5 Conclusion

In this paper, we have proposed a new class of CH-V models which nests both SHARV

and several GARCH-type models. We have discussed the importance of modelling the

volatility of volatility and derived some statistical properties of CH-V models including

the conditional density of returns and the stationarity conditions. Subsequently, we have

introduced two examples of CH-V: GJR- and E-GARCH-V. We have also demonstrated

a novel way of modelling the leverage effect through the volatility of volatility process.

Empirical analysis showed that the standardised return residuals of CH-V are close to

Gaussian for indices and individual stocks. Finally, we concluded that CH-V have more

accurate volatility nowcasts and forecasts than GARCH-type models. Within the CH-V,

GARCH-V models have more accurate VaR forecasts than SHARV.

Further works are still needed to complete the theory and practice of CH-V models.

It remains to develop a multivariate version and an asymptotic theory for the Gaussian

QMLE. It would be useful to derive the diffusion limit of the two GARCH-V models to

establish the link to asset pricing theories. For empirical studies, it would be helpful to

consider the simultaneous treatment of the contemporaneous and lagged leverage effects

and the impacts on volatility and VaR forecasts. Finally, using heavy-tailed innovations

and adding a jump component in the return process would provide more insights into

different ways of modelling excess kurtosis in financial returns.
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A Proof of main theorems

Proof of Theorem 2.1. Since bt > 0 with probability one, when (at, ct)
′

= 0, the condi-

tional density of r̃t can be obtained by a change of variable argument. Therefore, we focus

on the case when either at > 0 or ct > 0 or both. In this case, σ2
t is strictly increasing in

εt, so is r̃t. Therefore, for each y, there exists a unique ε̄, such that for all εt ≤ ε̄,

r̃t =
√
bt−1 + (at−1 + ct−11(εt<0))ε

2
t εt ≤ y, (A.1)

holds and for all εt ≥ ε̄, the direction of the inequality sign flips in (A.1). The rest follows

exactly the proof of Theorem 3.1 of Ding (2021).

Proof of Theorem 2.2. By repeated substitution for σ2
t in (2.8), we obtain

σ2t =
t−1∏
j=0

φt−jσ
2
0 +

t−1∑
k=0

k−1∏
j=0

φt−j ât−k, (A.2)

where

P
(
(r̂0, σ

2
0) ∈ Γ

)
= ν0(Γ) for any Γ ∈ B(R2), (A.3)

where B(Rn) denote the Borel sets on Rn and ν0(·) is a probability measure such that

P(0 < σ2
0 <∞) = 1.

We first show that uσ
2
t <∞ almost surely. Since φt is a measurable function of εt, it is

strictly stationary and ergodic. By the strong law of large numbers for strictly stationary

and ergodic processes, we have

lim sup
k→∞

k−1(
k−1∑
j=0

log φt−j + log ât−k) < 0 a.s.,

if and only if E log φt < 0 and E(log ât)
+ <∞. Therefore,

lim sup
k→∞

(
k−1∏
j=0

φt−j ât−k)
1/k < 1 a.s..

By Cauchy’s root test, the series
∑∞

k=0

∏k−1
j=0 φt−j ât−k converges absolutely almost surely.

Condition E(log ât)
+ <∞ is equivalent to −∞ ≤ E log ât <∞ by Lebesgue integrability.

By definition, E log ât = E[log ãt + log ε2t ]. Since Eε2t = 1, we have E log ε2t ≤ logEε2t = 0

by Jensen’s inequality. Therefore, E(log ât)
+ < ∞ if and only if E(log ãt)

+ < ∞, which

is the second part of condition (2.9) in Theorem 2.2. The sequence
∏k−1

j=0 φt−j ât−k is a

measurable function of strictly stationary and ergodic sequences, hence it is also strictly

stationary and ergodic and so is the sequence sn ≡
∑n

k=0

∏k−1
j=0 φt−j ât−k for all finite n.

Since sn is increasing in n, we have supn sn = s∞ =
∑∞

k=0

∏k−1
j=0 φt−j ât−k = uσ

2
t which
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is measurable by Theorem 20, Chapter 3 of Royden (1963). Therefore, uσ
2
t is strictly

stationary and ergodic with a well defined probability measure.

We next show σ2
t converges almost surely to uσ

2
t . To see this,

σ2
t − uσ

2
t =

t−1∏
j=0

φt−jσ
2
0 −

∞∑
k=t

k−1∏
j=0

φt−j ât−k.

Using the strong law of large numbers and condition (2.9) again, we have

k−1∏
j=0

φt−j =
(

exp
(
1/k

k−1∑
j=0

log φt−j
))k k→∞−−−→ 0 a.s.. (A.4)

Therefore, σ2
t − uσ

2
t → 0 almost surely as t → ∞. Since uσ

2
t is strictly stationary and

ergodic, uσ
2
t has the same law as uσ

2
0. The almost sure convergence implies convergence

in distribution, i.e., σ2
t

d−→ uσ
2
t as t→∞. Moreover,

φt+1 · uσ2t + ât+1 = φt+1

∞∑
k=0

k−1∏
j=0

φt−j ât−k + ât+1

=
∞∑
k=0

k−1∏
j=0

φt+1−j ât+1−k = uσ
2
t+1.

Thus uσ
2
t is a proper strictly stationary and ergodic solution of (2.8).

We next show uσ
2
t is the unique strictly stationary and ergodic solution. Assume uσ̂

2
t

is another strictly stationary and ergodic solution of (2.8). Then

uσ̂
2
t − uσ

2
t = φt(uσ̂

2
t−1 − uσ

2
t−1) = ... =

k−1∏
j=0

φt−j(uσ̂
2
t−k − uσ

2
t−k).

By (A.4),
∏k−1

j=0 φt−j(uσ̂
2
t−k − uσ

2
t−k)

k→∞−−−→ 0 almost surely since both uσ̂
2
t and uσ

2
t are

strictly stationary and ergodic. Therefore, uσ̂
2
t − uσ

2
t → 0 almost surely.

Finally, we prove the necessary part of the theorem. Suppose (2.8) has a unique strictly

stationary and ergodic solution uσ
2
t . By Cauchy’s root test, the series

∑∞
k=0

∏k−1
j=0 φt−j ât−k

diverges almost surely if

lim sup
k→∞

(
k−1∏
j=0

φt−j ât−k)
1/k > 1 a.s..

If E log φt ≥ 0, using the argument of Corollary 2.2.1 (see below), we have σ2
t → ∞ and

thus, uσ
2
t →∞. If both lim supt→∞ log ât/t =∞ and E log φt = −∞, we define

k−1(
k−1∑
j=0

log φt−j + log ât−k) ↓ 0, a.s. as k →∞,

i.e., the limit approaches zero strictly from above. Then

lim sup
k→∞

(
k−1∏
j=0

φt−j ât−k)
1/k ↓ 1 a.s. as k →∞,
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and uσ
2
t →∞. In both cases, the results contradict the fact (2.8) has a strictly stationary

and ergodic solution. We conclude that condition (2.9) is the necessary condition.

Proof of Corollary 2.2.1. Since φt > 0 and ât ≥ 0 almost surely, by (A.2)

σ2
t ≥

t−1∏
j=0

φt−jσ
2
0,

where σ2
0 is defined in (A.3). Since φt is a measurable function of the i.i.d. sequence εt,

it follows the same argument of Theorem 1 of Nelson (1990). For non i.i.d. εt, it follows

the same arguments of Lemma 1 and Theorem 1 together with Assumption A2 of Linton

et al. (2010).

Derivation of (3.4). It is straightforward to write vt = ω + ξvt−1 + αet−1 + γut−1 since it

is a (GJR-)GARCH process. By the symmetric assumption on εt and the independence

of εt and vt, et and ut are two MDS. Consequently, we can write σ2
t = vt + φσ2

t−1 + et.

Substituting for vt, we have

σ2t = ω + φσ2t−1 + ξvt−1 + et + αet−1 + γut−1. (A.5)

Adding and subtracting r2t and φr2t−1 on the right hand side (RHS) of (A.5), we obtain

r2t = ω + φr2t−1 + r2t − σ2t − φ(r2t−1 − σ2t−1) + ξvt−1 + et + αet−1 + γut−1. (A.6)

Since E[r2t |Ft−1] = E[σ2
t |Ft−1] + κvt, zt is an MDS. Substituting r2t − σ2

t = zt + κvt on the

RHS of (A.6),

r2t = ω + φr2t−1 + ξvt−1 + zt + κvt − φzt−1 − φκvt−1 + et + αet−1 + γut−1. (A.7)

Substituting for vt on the RHS of (A.7) and rearranging the terms, we obtain (3.4).

Proof of Proposition 3.1. Condition E log (β + (α + γ1(εt<0))ε
2
t ) < 0 is the strict station-

arity condition for GJR-GARCH. By Theorem 2 of Nelson (1990), vt has a unique strictly

stationary and ergodic solution uvt which is a measurable function of ε2t−1, ε
2
t−2, ... and is

given by

uvt ≡ ω
(

1 +
∞∑
k=1

k∏
j=1

(
β + (α + γ1(εt−j<0))ε

2
t−j
))
.

Moreover, uvt <∞ almost surely and vt−uvt → 0 as t→∞ almost surely. Consequently,

E(log uvt)
+ ≤ E(uvt)

+ <∞. By Assumption 1, uvtε
2
t is a measurable function of ε2t , ε

2
t−1, ...

and is therefore, strictly stationary and ergodic. All conditions of Theorem 2.2 are satisfied

with φt = φ and ât = uvtε
2
t . Finally, define urt ≡ uσtεt, where uσ

2
t is the unique strictly

stationary and ergodic solution to (3.3). It follows immediately that urt <∞ almost surely

and urt is strictly stationary and ergodic since it is a measurable function of εt, εt−1, ...

as long as ε2t is non-degenerate. Moreover, since uσ
2
t > 0 almost surely, by continuous

mapping theorem, urt − rt → 0 almost surely and rt
d−→ urt as t→∞.
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