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Abstract

In this paper, we consider estimating spot/instantaneous volatility matrices of high-frequency
data collected for a large number of assets. We first combine classic nonparametric kernel-based
smoothing with a generalised shrinkage technique in the matrix estimation for noise-free data
under a uniform sparsity assumption, a natural extension of the approximate sparsity commonly
used in the literature. The uniform consistency property is derived for the proposed spot volatility
matrix estimator with convergence rates comparable to the optimal minimax one. For the high-
frequency data contaminated by the microstructure noise, we introduce a localised pre-averaging
estimation method in the high-dimensional setting which first pre-whitens data via a kernel filter
and then uses the estimation tool developed in the noise-free scenario, and further derive the
uniform convergence rates for the developed spot volatility matrix estimator. In addition, we also
combine the kernel smoothing with the shrinkage technique to estimate the time-varying volatility
matrix of the high-dimensional noise vector, and establish the relevant uniform consistency result.
Numerical studies are provided to examine performance of the proposed estimation methods in
finite samples.
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1 Introduction

Modelling high-frequency financial data is one of the most important topics in financial economics
and has received increasing attention in recent decades. Continuous-time econometric models
such as the Itô semimartingale are often employed in the high-frequency data analysis. One of the
main components in these models is the volatility function or matrix (if there are multiple financial
assets). In the low-dimensional setting (with a single or a small number of assets), the realised
volatility (or covariance matrix) is often used to estimate the integrated volatility over a fixed time
period (e.g., Andersen and Bollerslev, 1998; Barndorff-Nielsen and Shephard, 2002, 2004; Andersen
et al., 2003). In practice, it is not uncommon that the high-frequency financial data are contaminated
by the market microstructure noise, which leads to biased realised volatility if the noise is ignored
in the estimation procedure. Hence, various modification techniques such as the two-scale, pre-
averaging and realised kernel have been introduced to account for the microstructure noise and
produce consistent volatility estimation when there is a single asset or a small number of assets (e.g.,
Zhang, Mykland and Aı̈t-Sahalia, 2005; Barndorff-Nielsen et al., 2008; Kalnina and Linton, 2008;
Jacod et al., 2009; Podolskij and Vetter, 2009; Christensen, Kinnebrock and Podolskij, 2010; Park,
Hong and Linton, 2016). Shephard (2005), Andersen, Bollerslev and Diebold (2010) and Aı̈t-Sahalia
and Jacod (2014) provide comprehensive reviews for estimating volatility with high-frequency
financial data under various settings.

In recent years, financial economists often have to deal with the situation that there are a large
amount of high-frequency financial data collected for a large number of assets. A key issue is to
estimate the large volatility structure for these assets which has applications in various areas such
as the optimal portfolio choice and risk management. Partly motivated by recent developments
in large covariance matrix estimation for low-frequency data in the statistical literature, Wang
and Zou (2010), Tao, Wang and Zhou (2013) and Kim, Wang and Zou (2016) estimate the large
volatility matrix under an approximate sparsity assumption (Bickel and Levina, 2008); Zheng
and Li (2011) and Xia and Zheng (2018) study large volatility matrix estimation using the large-
dimensional random matrix theory (Bai and Silverstein, 2010); and Lam and Feng (2018) propose a
nonparametric eigenvalue-regularised integrated covariance matrix for high-dimensional asset
returns. Given that there often exists co-movement between a large number of assets and the co-
movement is driven by some risk factors which can be either observable or latent, Fan, Furger and
Xiu (2016), Aı̈t-Sahalia and Xiu (2017), Dai, Lu and Xiu (2019) extend the methodologies developed
by Fan, Liao and Mincheva (2011, 2013) for large low-frequency data to estimate the large volatility
matrix by imposing a continuous-time factor model structure on the high-dimensional and high-
frequency financial data, and Aı̈t-Sahalia and Xiu (2019) study the principal component analysis
of high-frequency data and derive the asymptotic distribution for the estimates of the realised
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eigenvalues, eigenvectors and principal components.

The estimation methodologies in the aforementioned literature rely on the realised volatility
(or covariance) matrices, measuring the integrated volatility structure over a fixed time interval. In
practice, it is often interesting to further explore the actual spot/instantaneous volatility structure
and its dynamic change over certain time interval, which is a particularly important measurement
for the financial assets when the market is in a volatile period (say, the global financial crisis or
COVID-19 outbreak). For a single financial asset, Fan and Wang (2008) and Kristensen (2010)
introduce a kernel-based nonparametric method to estimate the spot volatility function and
establish its asymptotic properties including the point-wise and global asymptotic distribution
theory and uniform consistency. For the noise-contaminated high-frequency data, Zu and Boswijk
(2014) combine the two-scale realised volatility with the kernel-weighted technique to estimate the
spot volatility, whereas Kanaya and Kristensen (2016) propose a kernel-weighted pre-averaging
spot volatility estimation method. Other nonparametric spot volatility estimation methods can
be found in Fan, Fan and Lv (2007) and Figueroa-López and Li (2020). Chapter 8 of Aı̈t-Sahalia
and Jacod (2014) reviews some recent developments on spot volatility estimation. It seems
straightforward to extend this local nonparametric method to estimate the spot volatility matrix
for a small number of assets. However, a further extension to the setting with vast financial assets
is non-trivial. There is virtually no work on estimating the vast spot volatility matrix except Kong
(2018) which considers estimating large spot volatility matrices and their integrated versions under
the continuous-time factor model structure for noise-free high-frequency data.

We consider the large spot volatility matrix estimation problem in two scenarios: (i) noise-free
high-frequency data, and (ii) noise-contaminated high-frequency data. In scenario (i), we first
use the nonparametric kernel-based smoothing method to estimate the volatility and co-volatility
functions as in Fan and Wang (2008) and Kristensen (2010), and then apply a generalised shrinkage
to off-diagonal estimated entries. With small off-diagonal entries forced to be zeros, the resulting
large spot volatility matrix estimate would be non-degenerate. We derive the uniform consistency
property for the proposed spot volatility matrix estimator under a uniform sparsity assumption,
which is also adopted by Chen, Xu and Wu (2013), Chen and Leng (2016) and Chen, Li and Linton
(2019) in the low-frequency data setting. In particular, the derived uniform convergence rates
are comparable to the optimal minimax rate in large covariance matrix estimation (e.g., Cai and
Zhou, 2012). The number of assets is allowed to be ultra large in the sense that it can grow at
an exponential rate of 1/∆ with ∆ being the sampling frequency. In scenario (ii) when the high-
frequency data are contaminated by the microstructure noise, we extend a localised pre-averaging
estimation method from the low-dimensional setting (e.g., Kanaya and Kristensen, 2016) to the
high-dimensional one. Specifically, we first pre-average data via a kernel filter and then apply
the same estimation method to the kernel fitted high-frequency data (at pseudo-sampling time
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points) as in the noise-free scenario (i). The microstructure noise vector is assumed to be weakly
correlated and heteroskedastic with the time-varying covariance matrix satisfying the uniform
sparsity assumption. We further combine the kernel smoothing with generalised shrinkage to
estimate the time-varying noise volatility matrix and derive its uniform convergence property.
Some simulation studies are provided to examine the finite-sample performance of the proposed
estimation methods.

The rest of the paper is organised as follows. In Section 2, we estimate the large spot volatility
matrix in the noise-free high-frequency data setting and give the uniform consistency property.
In Section 3, we extend the methodology and theory to the noise-contaminated data setting
and further estimate the large noise volatility matrix. Section 4 discusses the spot precision
matrix estimation and addresses the asynchronicity issue in the estimation. Section 5 reports the
simulation studies. Section 6 concludes the paper. All the mathematical proofs are available in
Appendices A and B. Throughout the paper, we let ‖ · ‖2 be the Euclidean norm of a vector; and
for a d× dmatrix A = (Aij)d×d, we let ‖A‖ and ‖A‖F be the matrix spectral norm and Frobenius
norm, |A|1 =

∑d
i=1

∑d
i=1 |Aij|, ‖A‖1 = max16j6d

∑d
i=1 |Aij|, ‖A‖∞,q = max16i6d

∑d
j=1 |Aij|

q and
‖A‖max = max16i6dmax16j6d |Aij|.

2 Estimation with noise-free data

Suppose that Xt = (X1,t, · · · ,Xp,t)
ᵀ

is a p-variate Brownian semi-martingale solving the following
stochastic differential equation:

dXt = µtdt+ σtdWt, (2.1)

where Wt = (W1,t, · · · ,Wp,t)
ᵀ

is a p-dimensional standard Brownian motion, µt = (µ1,t, · · · ,µp,t)
ᵀ

is a p-dimensional drift vector, and σt = (σij,t)p×p is a p× pmatrix. The spot volatility matrix of
Xt is defined as

Σt = (Σij,t)p×p = σtσ
ᵀ

t. (2.2)

Our main interest lies in estimating Σt when the size p is large. As in Chen, Xu and Wu (2013)
and Chen and Leng (2016), we assume that the true spot volatility matrix satisfies the following
uniform sparsity condition: {Σt : 0 6 t 6 T } ∈ S(q,$(p), T) which is defined by{

Σt = [Σij,t]p×p , t ∈ [0, T ]
∣∣ sup

06t6T
‖Σt‖∞,q 6 Λ$(p)

}
, (2.3)

where 0 6 q < 1, T is a fixed positive number and Λ is a positive random variable satisfying
E[Λ] 6 CΛ <∞. This is a natural extension of the approximate sparsity assumption (e.g., Bickel
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and Levina, 2008; Tao, Wang and Zhou, 2013). The asset prices are assumed to be collected over
a fixed time interval [0, T ] at 0,∆, 2∆, · · · ,n∆, where ∆ is the sampling frequency and n = bT/∆c
with b·c denoting the floor function. In this section, we focus on a simple case of equidistant time
points in the high-frequency data collection and will discuss the asynchronicity issue in Section 4.2.

For each 1 6 i, j 6 p, we estimate the spot co-volatility Σij,t by

Σ̂ij,t =

n∑
k=1

Kh(tk − t)∆Xi,k∆Xj,k, 0 < t < T , (2.4)

where tk = k∆, Kh(u) = h−1K(u/h), K(·) is a kernel function, h is a bandwidth shrinking to zero
and∆Xi,k = Xi,tk−Xi,tk−1 . A naive method is to estimate the spot volatility matrixΣt by Σ̂t, directly
using Σ̂ij,t as its entry. However, this estimate often performs poorly in practice when the number
of assets is very large (say, p > n). To address this issue, a commonly-used technique is to apply a
shrinkage function to Σ̂ij,t when i 6= j, forcing very small estimated off-diagonal entries to be zeros.
Let sρ(·) denote a shrinkage function satisfying the following three conditions: (i) |sρ(u)| 6 |u|

for u ∈ R; (ii) sρ(u) = 0 if |u| 6 ρ; and (iii) |sρ(u) − u| 6 ρ, where ρ is a user-specified tuning
parameter. With the shrinkage function, we construct the following nonparametric estimator of Σt:

Σ̂t =
(
Σ̂sij,t

)
p×p

with Σ̂sij,t = sρ1(t)(Σ̂ij,t)I(i 6= j) + Σ̂ii,tI(i = j), (2.5)

where ρ1(t) is a tuning parameter which is allowed to change over t and I(·) denotes the indicator
function. The above estimation method of the spot volatility matrix can be seen as a natural
extension of the recent work on the kernel-based large covariance matrix estimation (e.g., Chen,
Xu and Wu, 2013; Chen and Leng, 2016; Chen, Li and Linton, 2019) from the low-frequency data
setting to the high-frequency one. We next give some technical assumptions which are needed to
derive the uniform convergence property of Σ̂t.

Assumption 1. (i) {µi,t} and {σij,t} are adapted locally bounded processes with continuous sample path.

(ii) With probability one,

min
16i6p

inf
06s6T

Σii,s > 0, min
16i 6=j6p

inf
06s6T

Σ∗ij,s > 0,

where Σ∗ij,s = Σii,s+Σjj,s+ 2Σij,s. For almost all path of the spot covariance process {Σij,t}, them-th
derivative (with respect to time), denoted by Σ(m)

ij,t ,m > 0, exists and satisfies that

sup
16i,j6p

∣∣∣Σ(m)
ij,t+ε − Σ

(m)
ij,t

∣∣∣ 6 B(t, ε)|ε|γ + o(|ε|γ), ε→ 0, (2.6)

where 0 < γ < 1, and B(t, ε) is a positive random function slowly varying at ε = 0 and continuous
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with respect to t.

Assumption 2. (i) The kernel K(·) is a bounded and Lipschitz continuous function with a compact support
[−1, 1]. In addition,

∫1
−1 K(u)du = 1,

∫1
−1 u

iK(u)du = 0, i = 1, · · · , κ, and
∫1
−1 |u|

κK(u)du <∞.

(ii) The bandwidth h satisfies that h→ 0 and h
∆ log(p∨∆−1)

→∞.

(iii) Let the time-varying tuning parameter ρ1(t) in the generalised shrinkage be chosen as

ρ1(t) =M(t)ζ∆,p, ζ∆,p = hm+γ +

[
∆ log(p∨ ∆−1)

h

]1/2

,

whereM(t) is a positive function satisfying that

0 < CM 6 inf
06t6T

M(t) 6 sup
06t6T

M(t) 6 CM <∞.

Remark 1. Assumption 1 imposes some mild restrictions on the drift and volatility processes. By a
typical localisation procedure as in Section 4.4.1 of Jacod and Protter (2012), the local boundedness
condition in Assumption 1(i) can be strengthened to the bounded condition over the entire time
interval, i.e., with probability one,

max
16i6p

sup
06s6T

|µi,s| 6 Cµ <∞, max
16i6p

sup
06s6T

Σii,t 6 CΣ <∞,

which are similar to Assumption A2 in Tao, Wang and Zhou (2013) and Assumptions (A.ii) and
(A.iii) in Cai et al (2020). Assumption 1(ii) gives the smoothness condition on the spot covariance
process, crucial to derive the uniform asymptotic order for the kernel estimation bias. A similar
condition is also used by Kristensen (2010) and Zu and Boswijk (2014) in the univariate spot
volatility estimation. Note that we allow Σij,t to be either deterministic or generated by standard
stochastic volatility models. When the spot covariance is driven by continuous semimartingales,
(2.6) holds withm = 0 and γ < 1/2 (e.g., Ch. V, Exercise 1.20 in Revuz and Yor, 1999). Assumption
2(i) contains some commonly-used conditions for the kernel function. For κ > 2, K(·) becomes
the so-called higher-order kernel, which, together with the condition m > 2, leads to reduction
of bias order in kernel estimation. Assumptions 2(ii)(iii) impose some mild conditions on the
bandwidth and time-varying shrinkage parameter. In particular, when p diverges at a polynomial
rate of 1/∆, Assumption 2(ii) reduces to the regular bandwidth restriction. Assumption 2(iii)
is comparable to that assumed by Chen and Leng (2016) and Chen, Li and Linton (2019). It is
worthwhile to point out that the developed methodology and theory still hold when the time-
varying tuning parameter in Assumption 2(iii) is allowed to vary over the (i, j) entries in the spot
volatility matrix estimation, which is expected to perform well in finite samples. For example, we
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construct ρij(t) = ρ(t)
(
Σ̂ii,tΣ̂jj,t

)1/2
in the simulation study and shrink the (i, j)-entry to zero if

the spot correlation Σ̂ij,t/
(
Σ̂ii,tΣ̂jj,t

)1/2
6 ρ(t).

The following theorem gives the uniform convergence property for the proposed spot volatility
matrix estimator Σ̂t in the matrix spectral norm.

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied, {Σt : 0 6 t 6 T } ∈ S(q,$(p), T) and
κ > m+ γ. Then we have

sup
h6t6T−h

∥∥∥Σ̂t − Σt∥∥∥ = OP

(
$(p)ζ1−q

∆,p

)
, (2.7)

where$(p) is defined in (2.3) and ζ∆,p is defined in Assumption 2(iii).

Remark 2. The first term of ζ∆,p is hm+γ, which is the bias rate due to application of the local
smoothing technique. It is smaller than the conventional h2-rate whenm > 2 due to Assumption
2(i) on the higher-order kernel function. The second term of ζ∆,p is square root of ∆ log(p∨∆−1)

h
,

the uniform asymptotic rate for the kernel estimation variance component. When p diverges at
a polynomial rate of n, ζ∆,p reduces to the uniform convergence rate derived in Theorem 3 of
Kristensen (2010) for univariate spot volatility function estimation (see also Kanaya and Kristensen,
2016). The uniform convergence rate in (2.7) is also similar to those obtained by Chen and Leng
(2016) and Chen, Li and Linton (2019) in the low-frequency data setting. Note that the dimension
p affects the uniform convergence rate via$(p) and log(p∨ ∆−1) and the estimation consistency
may be achieved in the ultra-high dimensional setting when p diverges at an exponential rate
of n = T/∆. Treating (nh) as the “effective” sample size in the local estimation procedure and
disregarding the bias order hm+γ, the uniform convergence rate in (2.7) is comparable to the
optimal minimax rate in large covariance matrix estimation (e.g., Cai and Zhou, 2012).

Due to the kernel boundary effect, Theorem 1 only considers the uniform consistency property
for the spot volatility matrix estimate Σ̂t over the trimmed time interval [h, T − h]. In practice, it is
often important to investigate the spot volatility structure near the boundary points. For example,
when we consider one trading day as a time interval, it is particularly interesting to estimate the
spot volatility matrix near the opening and closing times which are peak times in stock market
trading. Assume that the underlying spot volatility is driven by continuous semimartingales (e.g.,
Remark 1), Assumption 1(ii) is satisfied with m = 0 and γ < 1/2. As recommended by Li and
Racine (2007), we may replace Kh(tk − t) in (2.4) by a boundary kernel weight which is defined by

K∗h(tk − t) =


Kh(tk − t)/

∫1
−t/h K(u)du, 0 6 t < h,

Kh(tk − t), h 6 t 6 T − h,
Kh(tk − t)/

∫(T−t)/h
−1 K(u)du, T − h < t 6 T .
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With the boundary kernel in the proposed spot volatility matrix estimator, we may show that

sup
06t6T

∥∥∥Σ̂t − Σt∥∥∥ = OP

(
$(p)ζ1−q

∆,p,∗

)
,

where ζ∆,p,∗ = h
γ +

[
∆ log(p∨∆−1)

h

]1/2
with γ < 1/2.

3 Estimation with contaminated high-frequency data

In practice, it is not uncommon that high-frequency financial data are contaminated by the market
microstructure noise. The kernel estimation method proposed in Section 2 would be biased if the
noise is ignored in the estimation procedure. In this section, we consider the following additive
noise structure:

Ztk = Xtk + ξk = Xtk +ω(tk)ξ
∗
k, (3.1)

where tk = k∆, k = 1, · · · ,n, Zt = (Z1,t, · · · ,Zp,t)
ᵀ

is a vector of observed asset prices at time t, and
ξk = (ξ1,k, · · · , ξp,k)

ᵀ is a p-dimensional vector of noises with nonlinear heteroskedasticity,ω(·) =
[ωij(·)]p×p is a p× pmatrix of deterministic functions, and ξ∗k =

(
ξ∗1,k, · · · , ξ∗p,k

)ᵀ
independently

follows a p-variate identical distribution. The noise structure defined in (3.1) is similar to the
setting considered in Kalnina and Linton (2008) which also contains a nonlinear mean function
and allows the existence of endogeneity for a single asset. Throughout this section, we assume that
{ξ∗k} is independent of the Brownian semimartingale {Xt}.

3.1 Estimation of the spot volatility matrix

To account for the microstructure noise and produce consistent volatility matrix estimation, we
apply a localised version of the pre-averaging technique as the realised kernel estimate (Barndorff-
Nielsen et al., 2008) can be seen as a member of the pre-averaging estimation class whereas the
two-scale estimate (Zhang, Mykland and Aı̈t-Sahalia, 2005) can be re-written as the realised kernel
estimate with the Bartlett-type kernel (up to the first-order approximation). The pre-averaging
method has been studied by Jacod et al. (2009), Podolskij and Vetter (2009) and Christensen,
Kinnebrock and Podolskij (2010) in estimating the integrated volatility for a single asset and is
further extended by Kim, Wang and Zou (2016) and Dai, Lu and Xiu (2019) to the large high-
frequency data setting. Kanaya and Kristensen (2016) is among the first to introduce a localised
pre-averaging technique to estimate the spot volatility function for a single asset and derive the
uniform convergence rate for the developed estimate. A similar technique is also used by Xiao
and Linton (2002) to improve convergence of the nonparametric spectral density estimator for
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time series with general autocorrelation for low-frequency data. The main aim of this section is to
extend the localised pre-averaging volatility estimation to the high-dimensional data setting with
more flexible noise structure.

We first pre-average the observed high-frequency data via a kernel filter, i.e.,

X̃τ =
T

n

n∑
k=1

Lb(tk − τ)Ztk , 0 < τ < T , (3.2)

where L(·) is a kernel function and b is a bandwidth. Let ∆X̃i,l = X̃i,τl − X̃i,τl−1 , where X̃i,τl is the
i-th component of X̃τl and τ0, τ1, · · · , τN are the pseudo-sampling time points in the fixed interval
[0, T ] with equal distance ∆∗ = T/N. Replacing ∆Xi,k by ∆X̃i,l in (2.4), for each 1 6 i, j 6 p, we
estimate the spot co-volatility Σij,t by

Σ̃ij,t =

N∑
l=1

Kh(τl − t)∆X̃i,l∆X̃j,l, 0 < t < T , (3.3)

where the kernel weight Kh(·) is defined as in Section 2. Furthermore, to obtain a non-degenerate
spot volatility matrix estimate in finite samples when the dimension p is large, as in (2.5), we apply
shrinkage to Σ̃ij,t, 1 6 i 6= j 6 p, and subsequently construct

Σ̃t =
(
Σ̃sij,t

)
p×p

, Σ̃sij,t = sρ2(t)

(
Σ̃ij,t

)
I(i 6= j) + Σ̃ii,tI(i = j), (3.4)

where ρ2(t) is another time-varying shrinkage parameter. We next give some conditions needed to
derive the uniform consistency property of Σ̃t.

Assumption 3. (i) Let {ξ∗k} be an independent and identically distributed (i.i.d.) sequence of p-dimensional
random vectors. Assume that E(ξ∗i,k) = 0 and

E
[
exp

(
s|u

ᵀ
ξ∗k|
)]
6 Cξ <∞, 0 < s 6 s0,

for any p-dimensional vector u satisfying ‖u‖2 = 1.

(ii) The deterministic functionsωij(·) are bounded uniformly over i, j ∈ {1, · · · ,p}, and satisfy that

max
16i6p

sup
06t6T

p∑
j=1

ω2
ij(t) 6 Cω <∞.

Assumption 4. (i) The kernel function L(·) is Lipschitz continuous and has a compact support [−1, 1]. In
addition,

∫1
−1 L(u)du = 1.
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(ii) The bandwidth b and the dimension p satisfy that

b→ 0,
∆2ι−1b

log(p∨ ∆−1)
→∞, p∆ exp{−s∆−ι}→ 0,

where 0 < ι < 1/2 and 0 < s 6 s0.

(iii) Let ν∆,p,N =
√
N log(p∨ ∆−1)

[
b1/2 + (∆−1b)−1/2

]
→ 0 and the time-varying tuning param-

eter ρ2(t) be chosen as ρ2(t) =M(t)
(
ζ∗N,p + ν∆,p,N

)
, whereM(t) is defined as in Assumption 2(iii)

and ζ∗N,p is defined as ζ∆,p with N replacing ∆−1.

Remark 3. We allow nonlinear heteroskedasticity on the microstructure noise. The i.i.d. restriction
on ξ∗i may be weakened to some weak dependence conditions (e.g., Kim, Wang and Zou, 2016;
Dai, Lu and Xiu, 2019) at the cost of more lengthy proofs. The moment condition in Assumption
3(i) is weaker than the sub-Gaussian condition (e.g., Bickel and Levina, 2008; Tao, Wang and Zhou,
2013) which is commonly used in large covariance matrix estimation when the dimension p is ultra
large. The boundedness condition onωij(·) in Assumption 3(ii) is similar to the local boundedness
restriction in Assumption 1(i). Assumption 4(ii) imposes some mild restrictions on b and p, which
also imply that there is a trade-off between them. When ι is larger, p diverges at a faster exponential
rate of 1/∆ but the bandwidth condition becomes more restrictive. If p is divergent at a polynomial
rate of 1/∆, we may let ι be sufficiently close to zero, and then the bandwidth condition reduces
to the conventional one as in Assumption 2(ii). The condition ν∆,p,N → 0 in Assumption 4(iii) is
crucial to show that the error of the kernel filter X̃τ tends to zero asymptotically, whereas the form
of the time-varying shrinkage parameter ρ2(t) is relevant to the uniform convergence rate of Σ̃ij,t
(see Proposition A.2).

Theorem 2. Suppose that Assumptions 1(i)(ii), 2(i), 3 and 4 are satisfied, κ > m+ γ and Assumption 2(ii)
holds with ∆−1 replaced by N. When {Σt : 0 6 t 6 T } ∈ S(q,$(p), T), we have

sup
h6t6T−h

∥∥∥Σ̃t − Σt∥∥∥ = OP

(
$(p)

[
ζ∗N,p + ν∆,p,N

]1−q
)

, (3.5)

where ζ∗N,p and ν∆,p,N are defined in Assumption 4(iii).

Remark 4. The uniform convergence rate in (3.5) relies on$(p), ζ∗N,p and ν∆,p,N. With the high-
frequency data collected at pseudo time points with sampling frequency ∆∗ = T/N, the rate ζ∗N,p

is comparable to ζ∆,p for the noise-free kernel estimator in Section 2. The rate ν∆,p,N is due to
the error of the kernel filter X̃τ in the first step of the local pre-averaging estimation procedure.

In particular, when q = 0, $(p) is bounded, b = ∆1/4 and h = N− 1
2(m+γ)+1 with N = ∆−

2(m+γ)+1
2[4(m+γ)+1] ,

the uniform convergence rate in (3.5) becomes ∆
m+γ

2[4(m+γ)+1]
√

log(p∨ ∆−1). Furthermore, if m = 0
and γ = 1/2, the rate is simplified to ∆1/12

√
log(p∨ ∆−1), comparable to those derived by Zu and
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Boswijk (2014) and Kanaya and Kristensen (2016) in the univariate high-frequency data setting.
The boundary kernel defined in Section 2 is applicable to Σ̃ij,t defined in (3.3) and the uniform
consistency result in (3.5) can be extended to cover the entire interval [0, T ].

3.2 Estimation of the time-varying noise volatility matrix

In practice, it is often interesting to further explore the volatility structure of microstructure noise.
A recent paper by Chang et al. (2021) estimates the constant covariance matrix for high-dimensional
noise and derives the optimal convergence rates for the developed estimate. In the present paper,
we consider the time-varying noise covariance matrix defined by

Ω(t) =ω(t)ω
ᵀ
(t) = [Ωij(t)]p×p , 0 6 t 6 T . (3.6)

It is sensible to assume that {Ω(t) : 0 6 t 6 T } satisfies the uniform sparsity condition as in (2.3).
For each 1 6 i, j 6 p, we estimateΩij(t) by the kernel smoothing method:

Ω̂ij(t) =
∆

2

n∑
k=1

Kh1(tk − t)∆Zi,tk∆Zj,tk , (3.7)

where h1 is a bandwidth and ∆Zi,tk = Zi,tk−Zi,tk−1 . As in (2.5) and (3.4), we again apply shrinkage
to Ω̃ij(t), 1 6 i 6= j 6 p, and construct

Ω̂(t) =
[
Ω̂sij(t)

]
p×p

, Ω̂sij(t) = sρ3(t)

(
Ω̂ij(t)

)
I(i 6= j) + Ω̂ii(t)I(i = j), (3.8)

where ρ3(t) is a time-varying shrinkage parameter. To derive the uniform consistency property of
Ω̂(t), we need to impose stronger moment condition on ξ∗k and smoothness restriction onΩij(·).

Assumption 5. (i) For any p-dimensional vector u satisfying ‖u‖2 = 1,

E
[
exp

(
s(u

ᵀ
ξ∗k)

2)] 6 C?
ξ <∞, 0 < s 6 s0.

(ii) Them-th derivative ofΩij(t), denoted byΩ(m)
ij (t),m > 0, exists and satisfies that

sup
16i,j6p

∣∣∣Ω(m)
ij (t) −Ω

(m)
ij (s)

∣∣∣ 6 CΩ|t− s|γ,

where CΩ is a positive constant.
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(iii) The bandwidth h1 and the dimension p satisfy that

h1 → 0,
∆2ι?−1h1

log(p∨ ∆−1)
→∞, p∆−1 exp{−s∆−ι?/Cω}→ 0,

where 0 < ι? < 1/2, 0 < s 6 s0 and Cω is defined in Assumption 3(ii).

Remark 5. Assumption 5(i) strengthens the moment condition in Assumption 3(i) and is equivalent
to the sub-Gaussian condition, see Assumption A1 in Tao, Wang and Zhou (2013). The smoothness
condition in Assumption 5(ii) is similar to (2.6), crucial to derive the asymptotic order of the
kernel estimation bias. The restrictions on h1 and p in Assumption 5(iii) are similar to those in
Assumption 4(ii), allowing the dimension p to be divergent to infinity at an exponential rate of
1/∆.

In the following theorem, we state the uniform consistency result for Ω̂(t) with convergence
rate comparable to that in Theorem 1.

Theorem 3. Suppose that Assumptions 1, 2(i), 3 and 5 are satisfied, κ > m + γ and Assumption 2(ii)
holds when ρ1(t), ζ∆,p and h are replaced by ρ3(t), δ∆,p and h1, respectively, where δ∆,p = hm+γ

1 +[
∆ log(p∨∆−1)

h1

]1/2
. When {Ω(t) : 0 6 t 6 T } ∈ S(q,$(p), T), we have

sup
h16t6T−h1

∥∥∥Ω̂(t) −Ω(t)
∥∥∥ = OP

(
$(p)δ1−q

∆,p

)
. (3.9)

Remark 6. If the bandwidth parameter h1 in (3.7) is the same as h in (2.4), we may find that the
uniform convergence rate OP

(
$(p)δ1−q

∆,p

)
would be the same as that in Theorem 1. Treating (nh1)

as the “effective” sample size and disregarding the bias order, we may show that the uniform
convergence rate in (3.9) is comparable to the optimal minimax rate derived by Chang et al. (2021)
for the constant noise covariance matrix estimation. Meanwhile, the uniform consistency result in
Theorem 3 can be extended to cover the entire interval [0, T ] by using the boundary kernel.

4 Discussion and extension

In this section, we discuss estimation of the spot precision matrix and address the asynchronicity
issue which is common when multiple asset returns are collected.
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4.1 Estimation of the spot precision matrix

The spot precision matrix of high-frequency data defined as inverse of the spot volatility matrix,
plays an important role in dynamic optimal portfolio choice. In the low-frequency data setting,
estimation of large precision matrices has been extensively studied in the literature and various
estimation techniques such as penalised likelihood (Lam and Fan, 2009), graphical Danzig selector
(Yuan, 2010) and CLIME (Cai, Liu and Luo, 2011) have been introduced. In the high-frequency data
setting, Cai et al (2020) estimate the precision matrix defined as inverse of the integrated volatility
matrix, derive the relevant asymptotic properties under various scenarios and apply the estimated
precision matrix to minimum variance portfolio estimation. In this section, we consider estimating
the large spot precision matrix under a uniform sparsity assumption. Specifically, assume that
model (3.1) holds and that the large spot precision matrix Λt := Σ−1

t satisfies {Λt : 0 6 t 6 T } ∈
S∗(q,$∗(p), T) which is defined by{

Λt = [Λij,t]p×p , t ∈ [0, T ]
∣∣Λt � 0, sup

06t6T
‖Λt‖1 6 CΛ, sup

06t6T
‖Λt‖∞,q 6 $∗(p)

}
, (4.1)

where “Λ � 0” denotes thatΛ is positive definite and CΛ is a positive constant.

We next apply Cai, Liu and Luo (2011)’s constrained `1 minimisation or CLIME method to
estimate the spot precision matrixΛt. The estimate is defined as

Λ̃t = arg min
Λ

|Λ|1 subject to
∥∥∥Σ̃tΛ− Ip

∥∥∥
max
6 ρ4(t),

where Σ̃t =
(
Σ̃ij,t

)
p×p

with Σ̃ij,t defined in (3.3), Ip is a p× p identity matrix, and ρ4(t) is a time-

varying tuning parameter. The final CLIME estimate ofΛt is obtained by further symmetrising
Λ̃t. Suppose that Assumptions 1, 2(i), 3 and 4(i)(ii) are satisfied and Assumption 4(iii) holds with
ρ2(t) replaced by ρ4(t). Using Proposition A.2 in Appendix A and following the proof of Theorem
6 in Cai, Liu and Luo (2011), we may show that

sup
h6t6T−h

∥∥∥Λ̃t −Λt∥∥∥ = OP

(
$∗(p)

[
ζ∗N,p + ν∆,p,N

]1−q
)

. (4.2)

4.2 The asynchronicity issue

In Sections 2 and 3, we consider a very special sampling scheme: the high-frequency data are
synchronised with equally spaced time points between 0 and T . Such a setting simplifies exposition
and facilitates proofs of the uniform consistency properties. However, in practice, it is often the
case that a large number of assets are traded at times that are not synchronised. This may induce
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volatility matrix estimation bias and possibly result in the so-called Epps effect (e.g., Epps, 1979). We
next deal with the asynchronicity problem and discuss modifications of the estimation techniques
and theory developed in the previous sections.

Assume that the i-th asset price is collected at ti1, · · · , tini , which are non-equidistant time points
over [0, T ]. To address this asynchronicity issue, we may adopt a synchronisation scheme before
implementing the large spot volatility matrix estimation method proposed in Sections 2 and 3.
Commonly-used synchronisation schemes include the generalised sampling time (Aı̈t-Sahalia, Fan
and Xiu, 2010), refresh time (Barndorff-Nielsen et al., 2011) and previous tick (Zhang, 2011). We
next propose an alternative technique by slightly amending the localised pre-averaging estimation
in (3.2) to jointly tackle the asynchronicity and noise contamination issues. Replace the kernel filter
in (3.2) by

X̃∗τ =
(
X̃∗1,τ, · · · , X̃∗p,τ

)ᵀ

with X̃∗i,τ =

ni∑
k=1

Lb(t
i
k − τ)Zi,tik

(
tik − t

i
k−1

)
, (4.3)

and then use X̃∗τ in the kernel smoothing (3.3). It is easy to verify that the uniform consistency result
(3.5) still holds by slightly modifying the proofs of Lemma B.1 and Proposition A.2 in Appendix B
and imposing mild restrictions on the time points tik.

The time-varying noise covariance matrix estimation also needs to be modified when large
high-frequency data are non-synchronised. As in Chang et al. (2021), we let Ti =

{
ti1, ti2, · · · , tini

}
be the set of time points at which we observe the contaminated asset prices, and denote

Tij = Ti ∩ Tj =
{
tij1 , tij2 , · · · , tijnij

}
,

where nij is the cardinality of Tij. Then, we modify the kernel estimate in (3.7) as follows,

Ω̃ij(t) =
1
2

nij∑
k=1

Kh1

(
tijk − t

)
∆Z

i,tijk
∆Z

j,tijk

(
tijk − tijk−1

)
,

where tij0 = 0. In contrast to Ω̂ij(t), tk, Zi,tk and ∆ in (3.7) are now replaced by tijk , Z
i,tijk

and

tijk − tijk−1, respectively. We subsequently apply the shrinkage to Ω̃ij(t) when i 6= j and obtain

the final estimate of Ω(t). Assuming max16i,j6pmax16k6nij

(
tijk − tijk−1

)
→ 0 and letting n◦ =

min16i,j6p nij, we may similarly derive the uniform consistency property as in (3.9) but with ∆
replaced by n−1

◦ .

14



5 Monte-Carlo simulation studies

In this section, we report the Monte-Carlo simulation studies to assess the numerical performance
of the proposed large spot volatility matrix and time-varying noise volatility matrix estimation
methods. Both synchronous and asynchronous high-frequency data are simulated in the studies.

5.1 The simulation setup

We generate the noise-contaminated high-frequency data according to model (3.1), whereω(t)

is taken as the Cholesky decomposition of the noise covariance matrixΩ(t) = [Ωij(t)]p×p, ξ∗k =(
ξ∗1,k, · · · , ξ∗p,k

)ᵀ
is an independent p-dimensional random vector of cross-sectionally independent

standard normal random variables, the latent return process Xt of p assets is generated from the
following zero-drift model:

dXt = σtdWX
t , t ∈ [0, T ], (5.1)

as in Wang and Zou (2010), WX
t =

(
WX

1,t, · · · ,WX
p,t

)ᵀ
is a standard p-dimensional Brownian motion,

and σt is chosen as the Cholesky decomposition of the spot covariance matrix Σt = (Σij,t)p×p. In
the simulation, we consider the volatility matrix estimation over the time interval of a full trading
day, and set the sampling interval to be 15 seconds, i.e., ∆ = 1/(252× 6.5× 60× 4), to generate
synchronous data. We consider three structures in Σt andΩ(t): “banding”, “block-diagonal”, and
“exponentially decaying”. Following Wang and Zou (2010), we generate the diagonal elements
of Σt from the following geometric Ornstein-Uhlenbeck model (see also Barndorff-Nielsen and
Shephard, 2002):

d logΣii,t = −0.6 (0.157 + logΣii,t)dt+ 0.25dWΣ
i,t, W

Σ
i,t = ιiW

X
i,t +

√
1 − ι2iW

∗
i,t,

where W∗t =
(
W∗1,t, · · · ,W∗p,t

)ᵀ
is a standard p-dimensional Brownian motion independent of WX

t ,
and ιi is a random number generated uniformly between −0.62 and −0.30, reflecting the leverage
effects. The diagonal elements ofΩ(t) are defined as daily cyclical deterministic functions of time,

Ωii (t) = ci

{
1
2
[cos (2πt/T) + 1]× (ω−ω) +ω

}
,

whereω = 1 andω = 0.1 reflect the observation by Kalnina and Linton (2008) that the noise level
is high at both the opening and the closing times of a trading day and is low in the middle of the
day, and the scalar ci controls the noise ratio for each asset which is chosen to match the highest
noise ratio considered by Wang and Zou (2010). As in Barndorff-Nielsen and Shephard (2002,
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2004), we define a continuous-time stochastic process κΣt by

κΣt =
e2κt − 1
e2κt + 1

, dκt = 0.03 (0.64 − κt)dt+ 0.118κtdWκ
t ,

Wκ
t =

√
0.96W�t − 0.2

p∑
i=1

WX
i,t/
√
p

whereW�t is a standard univariate Brownian motion independent of WX
t and W∗t . Let

κΩt =
κ− κ

2
[cos (2πt/T) + 1] + κ,

where κ = 0.5 and κ = −0.5. We will use κΣt and κΩt to define the off-diagonal elements in Σt and
Ω(t), respectively, which are specified as follows.

• Banding structure for Σt andΩ(t): The off-diagonal elements are defined by

Σij,t =
(
κΣt
)|i−j|√

Σii,tΣjj,t · I (|i− j| 6 2) ,

and
Ωij(t) =

(
κΩt
)|i−j|√

Ωii(t)Ωjj(t) · I (|i− j| 6 2) ,

for 1 6 i 6= j 6 p.

• Block-diagonal structure for Σt andΩ(t): The off-diagonal elements are defined by

Σij,t =
(
κΣt
)|i−j|√

Σii,tΣjj,t · I ((i, j) ∈ B) ,

Ωij(t) =
(
κΩt
)|i−j|√

Ωii(t)Ωjj(t) · I ((i, j) ∈ B) ,

for 1 6 i 6= j 6 p, where B is a collection of row and column indices (i, j) located within our
randomly generated diagonal blocks 1.

• Exponentially decaying structure for Σt andΩ(t): The off-diagonal elements are defined by

Σij,t =
(
κΣt
)|i−j|√

Σii,tΣjj,t, Ωij(t) =
(
κΩt
)|i−j|√

Ωii(t)Ωjj(t), 1 6 i 6= j 6 p. (5.2)

It is clear that the sparsity condition is not satisfied when the off-diagonal elements of Σt and

1As in Dai, Lu and Xiu (2019), to generate blocks with random sizes, we fix the largest block size at 20 when p = 200
and randomly generate the sizes of the remaining blocks from a random integer uniformly picked between 5 and
20, such that the total size of all blocks is p = 200. When p = 500, the largest size is 40, and the random integer is
uniformly picked between 10 and 40. Block sizes are randomly generated but fixed across all Monte Carlo repetitions.
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Ω(t) are exponentially decaying as in (5.2). To generate the asynchronous data, we follow Wang
and Zou (2010) by randomly deleting 2 observations from every consecutive block of 3 synchronous
15-second observations. Consequently, the average number of asynchronous observations for each
asset is equal to one third of the number of synchronous observations. The number of assets p is
set as p = 200 and 500 and the replication number is R = 200

5.2 Volatility matrix estimation

In the simulation studies, we consider the following volatility matrix estimates.

• Noise-free spot volatility matrix estimate Σ̂t (for synchronous data). This infeasible estimate
serves as a benchmark in comparing the numerical performance of various estimation
methods. As in Section 2, we apply the kernel smoothing method to estimate Σij,t by
directly using the latent return process Xt, where the bandwidth is determined by the
leave-one-out cross validation. We apply four shrinkage methods to Σ̂ij,t for i 6= j: hard
thresholding (Hard), soft thresholding (Soft), adaptive LASSO (AL) and smoothly clipped
absolute deviation (SCAD). For comparison, we also compute the naive estimate without
applying any regularisation technique.

• Noise-contaminated spot volatility matrix estimate Σ̃t (for synchronous data). We combine
the kernel smoothing with pre-averaging in Section 3.1 to estimate Σij,t by using the noise-
contaminated process Zt. As in the noise-free estimation, we apply four shrinkage methods
to Σ̃ij,t for i 6= j and also compute the naive estimate without applying the shrinkage.

• Noise-contaminated spot volatility matrix estimate Σ̃
∗
t (for asynchronous data). This is an

extension of Σ̃t defined above to the asynchronous high-frequency data with the modification
technique introduced in Section 4.2.

• Time-varying noise volatility matrix estimate Ω̂(t) (for synchronous data). We combine the
kernel smoothing with four shrinkage techniques in the estimation as in Section 3.2 and also
the naive estimate without shrinkage.

• Time-varying noise volatility matrix estimate Ω̂
∗
(t) (for asynchronous data). This is an

extension of Ω̂(t) to the asynchronous high-frequency data with the modification technique
introduced in Section 4.2.

The choice of tuning parameter in shrinkage is similar to that in Dai, Lu and Xiu (2019).
For example, in the noise-free spot volatility estimate, we set the tuning parameter as ρij(t) =

ρ(t)
(
Σ̂ii,tΣ̂jj,t

)1/2
where ρ(t) is chosen as the minimum value among the grid of values on [0, 1]
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such that the shrinkage estimate of the spot volatility matrix is positive definite. To evaluate the
estimation performance of Σ̂t, we consider 21 equidistant time points on [0, T ] and compute the
following Mean Frobenius Loss (MFL) and Mean Spectral Loss (MSL) over 200 repetitions:

MFL =
1

200

200∑
m=1

(
1

21

21∑
j=1

∥∥∥Σ̂(m)

tj
− Σ

(m)
tj

∥∥∥
F

)
,

MSL =
1

200

200∑
m=1

(
1

21

21∑
j=1

∥∥∥Σ̂(m)

tj
− Σ

(m)
tj

∥∥∥) ,

where tj, j = 1, 2, · · · , 21 are the 21 equal-distant time points on the interval [0, T ], and Σ̂
(m)

tj
and

Σ
(m)
tj

are respectively the estimated and true spot volatility matrices at tj for them-th repetition.
The “MFL” and “MSL” can be similarly defined for Σ̃t, Σ̃

∗
t , Ω̂(t) and Ω̂

∗
(t).

5.3 Simulation results

Table 1 reports the simulation results when the dimension is p = 200. The three panels in the table
(from top to bottom) report the results where the true volatility matrix structures are banding,
block-diagonal, and exponentially decaying, respectively. In each panel, the MFL results are
reported on the left, whereas the MSL results are reported on the right. The first three rows of each
panel contain the MFL and MSL results for the spot volatility matrix estimation (the first two rows
are for synchronous data and the third row is for asynchronous data). The fourth and fifth rows
contain the results for the time-varying noise volatility matrix estimation for synchronous and
asynchronous data, respectively.

For the noise-free estimate Σ̂t, when the volatility matrix structure is banding, the performance
of the four shrinkage estimators are substantially better than that of the naive estimate (without any
shrinkage). In particular, the results of the soft thresholding, adaptive LASSO and SCAD are very
similar and their MFL and MSL values are approximately one third of those of the naive estimator.
Meanwhile, the performance of the hard thresholding is less accurate (despite the much stronger
level of shrinking used), but is still much better than the naive estimate. These results suggest
that the shrinkage technique is an effective tool in estimating the sparse volatility matrix. Similar
results are obtained for the noise-contaminated estimates Σ̃t and Σ̃

∗
t for both the synchronous and

asynchronous data. Unsurprisingly, due to the microstructure noise, the MFL and MSL values
of the local pre-averaging estimates are noticeably higher than the corresponding values of the
noise-free estimates. The finite-sample convergence is slowed down when the high-frequency
data are not synchronised. We next turn the attention to the time-varying noise volatility matrix
estimates Ω̂(t) and Ω̂

∗
(t). As in the spot volatility matrix estimation, the naive method again

18



produces the highest MFL and MSL values. The performance of the four shrinkage estimators
are similar with the adaptive LASSO and SCAD being slightly better than the hard and soft
thresholding. The simulation results for the block-diagonal and exponentially decaying covariance
matrix settings, reported in the middle and bottom panels of Table 1, are fairly close to those for the
banding setting. Overall, the results in Table 1 show that the shrinkage methods perform well not
only in the sparse covariance matrix settings but also in the non-sparse one (i.e., the exponentially
decaying setting).

The simulation results when the dimension is p = 500 are reported in Table 2. In general, the
results are very similar to those in Table 1, so we omit the detailed discussion and comparison to
save the space.

Table 1: Estimation results for the spot volatility and time-varying noise covariance matrices when p = 200

“Banding”
Frobenius Norm Spectral Norm

Naive Hard Soft AL SCAD Naive Hard Soft AL SCAD
Σ̂t MFL 14.396 11.407 5.490 4.038 4.830 MSL 3.963 1.799 1.073 0.867 0.987
Σ̃t MFL 18.497 12.899 12.196 12.064 12.177 MSL 4.796 2.347 2.260 2.255 2.262
Σ̃
∗
t MFL 21.180 13.234 13.723 13.392 13.768 MSL 6.174 2.375 2.458 2.385 2.474
Ω̂(t) MFL 11.714 4.226 4.740 3.237 3.960 MSL 3.281 0.682 1.039 0.571 0.753
Ω̂
∗
(t) MFL 38.072 4.640 4.647 4.640 4.646 MSL 6.624 0.663 0.666 0.663 0.665

“Block-diagonal”
Frobenius Norm Spectral Norm

Naive Hard Soft AL SCAD Naive Hard Soft AL SCAD
Σ̂t MFL 14.398 11.277 5.818 4.786 5.424 MSL 4.000 2.293 1.310 1.233 1.386
Σ̃t MFL 18.475 12.811 12.192 12.059 12.158 MSL 4.915 2.777 2.663 2.669 2.662
Σ̃
∗
t MFL 21.143 13.141 13.648 13.310 13.693 MSL 6.275 2.805 2.821 2.804 2.827
Ω̂(t) MFL 11.713 4.076 4.875 3.240 3.964 MSL 3.274 0.741 1.098 0.606 0.816
Ω̂
∗
(t) MFL 38.066 4.520 4.528 4.520 4.526 MSL 6.634 0.736 0.738 0.736 0.737

“Exponentially decaying”
Frobenius Norm Spectral Norm

Naive Hard Soft AL SCAD Naive Hard Soft AL SCAD
Σ̂t MFL 14.402 12.033 6.091 5.287 5.976 MSL 4.078 2.456 1.410 1.348 1.510
Σ̃t MFL 18.738 13.464 12.748 12.655 12.739 MSL 4.977 2.934 2.810 2.819 2.815
Σ̃
∗
t MFL 21.454 13.772 14.217 13.914 14.258 MSL 6.313 2.961 2.968 2.958 2.972
Ω̂(t) MFL 11.715 4.330 4.860 3.355 4.077 MSL 3.297 0.774 1.085 0.626 0.833
Ω̂
∗
(t) MFL 38.098 4.716 4.723 4.717 4.722 MSL 6.672 0.762 0.764 0.762 0.764

The selected bandwidths are h∗ = 90 for Σ̂t, h∗ = 90 and b∗ = 4 for Σ̃t and Σ̃∗t , h∗1 = 90 for Ω̂(t), and h∗1 = 250 for

Ω̂
∗
(t), where h∗ = h/∆, b∗ = b/∆, and h∗1 = h1/∆.
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Table 2: Estimation results for the spot volatility and time-varying noise covariance matrices when p = 500

“Banding”
Frobenius Norm Spectral Norm

Naive Hard Soft AL SCAD Naive Hard Soft AL SCAD
Σ̂t MFL 21.971 4.067 5.167 4.916 3.954 MSL 3.907 0.621 0.715 0.698 0.568
Σ̃t MFL 28.479 19.193 18.617 17.930 18.466 MSL 4.767 2.339 2.281 2.228 2.281
Σ̃
∗
t MFL 32.710 20.656 20.445 20.600 20.445 MSL 6.212 2.440 2.427 2.430 2.427
Ω̂(t) MFL 18.269 4.045 4.826 5.532 4.547 MSL 3.307 0.461 0.540 0.675 0.519
Ω̂
∗
(t) MFL 93.263 7.348 7.348 7.348 7.348 MSL 10.724 0.681 0.681 0.681 0.681

“Block-diagonal”
Frobenius Norm Spectral Norm

Naive Hard Soft AL SCAD Naive Hard Soft AL SCAD
Σ̂t MFL 21.973 5.703 6.429 5.928 5.480 MSL 3.999 0.855 1.134 0.895 0.886
Σ̃t MFL 28.682 19.685 19.155 18.539 19.029 MSL 4.917 2.854 2.782 2.736 2.798
Σ̃
∗
t MFL 32.928 21.080 20.873 21.026 20.873 MSL 6.330 2.962 2.951 2.948 2.950
Ω̂(t) MFL 18.271 4.208 4.935 5.686 4.684 MSL 3.312 0.522 0.603 0.751 0.572
Ω̂
∗
(t) MFL 93.281 7.331 7.331 7.331 7.331 MSL 10.759 0.773 0.773 0.773 0.773

“Exponentially decaying”
Frobenius Norm Spectral Norm

Naive Hard Soft AL SCAD Naive Hard Soft AL SCAD
Σ̂t MFL 21.973 6.069 6.697 6.120 5.739 MSL 4.035 0.894 1.173 0.927 0.921
Σ̃t MFL 28.867 20.195 19.561 18.950 19.454 MSL 4.938 2.914 2.836 2.788 2.850
Σ̃
∗
t MFL 33.153 21.524 21.371 21.459 21.317 MSL 6.341 3.015 3.003 3.001 3.003
Ω̂(t) MFL 18.275 4.335 5.001 5.763 4.745 MSL 3.322 0.533 0.610 0.757 0.578
Ω̂
∗
(t) MFL 93.287 7.469 7.469 7.469 7.469 MSL 10.783 0.781 0.781 0.781 0.781

The selected bandwidths are h∗ = 240 for Σ̂t, h∗ = 240, b∗ = 4 for Σ̃t, h∗ = 240, b∗ = 6 for Σ̃∗t , h∗1 = 240 for Ω̂(t), and

h∗1 = 260 for Ω̂
∗
(t), where h∗ = h/∆, b∗ = b/∆, and h∗1 = h1/∆.

6 Conclusion

In this paper, we have explored the nonparametric estimation methods for large spot volatility
matrices under the uniform sparsity assumption. The kernel smoothing combined with the gen-
eralised shrinkage technique is proposed to estimate the spot volatility matrix for the noise-free
high-frequency data and the uniform convergence rate of the proposed estimate is comparable
to the minimax one. This nonparametric estimation method is further combined with the kernel
pre-averaging to tackle the noise-contaminated high-frequency data. We also develop the nonpara-
metric estimation methodology and uniform convergence theory for the large time-varying noise
volatility matrix. Furthermore, we discuss the spot precision matrix estimation and modify the
developed estimation methods to address the asynchronicity issue which is very common when a
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large number of asset returns are collected. The estimation methodology and theory developed in
this paper are applicable to Xt which is the residual process from regressing returns on observed
low-dimensional factors with constant regression coefficients, as the residual estimation error
would be dominated by the uniform convergence rates derived in Theorems 1 and 2. The simula-
tion results show that the proposed estimation methods and their modification work well in finite
samples for both the synchronous and asynchronous data when the underlying spot volatility
matrices are either sparse or non-sparse (with exponentially decaying off-diagonal elements).

Several issues can be further explored. For example, the sparsity assumption imposed on
the spot volatility matrix may be too restrictive when assets are highly correlated. There often
exist co-movements between these highly-correlated asset returns, which may be modelled by a
time-varying factor model (e.g., Kong, 2018; Chen, Mykland and Zhang, 2020). It would be an
interesting future topic to extend the nonparametric shrinkage methods developed in this paper to
estimate the large spot volatility structure of the high-frequency data satisfying the latent factor
structure. It is also worthwhile to further study the spot precision matrix estimation which is
briefly discussed in Section 4.1 and explore its application to optimal portfolio choice.

Appendix A: Proofs of the main results

In this appendix, we give the proofs of Theorems 1–3. We start with three propositions on the
uniform convergence rates for Σ̂ij,t, Σ̃ij,t and Ω̂ij(t). Their proofs are available in Appendix B.

Proposition A.1. Suppose that Assumptions 1 and 2(i)(ii) are satisfied and let κ > m+ γ, wherem and γ
are defined in Assumption 1(ii) and κ is defined in Assumption 2(ii). Then, we have

max
16i,j6p

sup
h6t6T−h

∣∣∣Σ̂ij,t − Σij,t∣∣∣ = OP (ζ∆,p) , (A.1)

where ζ∆,p = hm+γ +
[
∆ log(p∨∆−1)

h

]1/2
.

Proposition A.2. Suppose that Assumptions 1, 2(i), 3 and 4(i)(ii) are satisfied, κ > m+γ and Assumption
2(ii) holds with ∆−1 replaced by N.

max
16i,j6p

sup
h6t6T−h

∣∣∣Σ̃ij,t − Σij,t∣∣∣ = OP (ζ∗N,p + ν∆,p,N
)

, (A.2)

where ζ∗N,p and ν∆,p,N are defined in Assumption 4(iii).
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Proposition A.3. Suppose that Assumptions 1, 2(i), 3 and 5 are satisfied and κ > m+ γ. Then, we have

max
16i,j6p

sup
h6t6T−h

∣∣∣Ω̂ij(t) −Ωij(t)∣∣∣ = OP (δ∆,p) , (A.3)

where δ∆,p = hm+γ
1 +

(
∆ log(p∨∆−1)

h1

)1/2
.

Proof of Theorem 1. By the definition of Σ̂
s

t and the property of sρ(·), we readily have that

sup
h6t6T−h

∥∥∥Σ̂st − Σt∥∥∥
6 sup

h6t6T−h
max

16i6p

p∑
j=1

∣∣∣Σ̂sij,t − Σij,t∣∣∣
= sup

h6t6T−h
max

16i6p

p∑
j=1

∣∣∣sρ1(t)

(
Σ̂ij,t

)
I
(∣∣∣Σ̂ij,t∣∣∣ > ρ1(t)

)
− Σij,t

∣∣∣
= sup

h6t6T−h
max

16i6p

p∑
j=1

∣∣∣sρ1(t)

(
Σ̂ij,t

)
I
(∣∣∣Σ̂ij,t∣∣∣ > ρ1(t)

)
− Σij,tI

(∣∣∣Σ̂ij,t∣∣∣ > ρ1(t)
)
−

Σij,tI
(∣∣∣Σ̂ij,t∣∣∣ 6 ρ1(t)

)∣∣∣
6 sup

h6t6T−h
max

16i6p

p∑
j=1

∣∣∣sρ1(t)

(
Σ̂ij,t

)
− Σ̂ij,t

∣∣∣ I(∣∣∣Σ̂ij,t∣∣∣ > ρ1(t)
)
+

sup
h6t6T−h

max
16i6p

p∑
j=1

∣∣∣Σ̂ij,t − Σij,t∣∣∣ I(∣∣∣Σ̂ij,t∣∣∣ > ρ1(t)
)
+

sup
h6t6T−h

max
16i6p

p∑
j=1

|Σij,t| I
(∣∣∣Σ̂ij,t∣∣∣ 6 ρ1(t)

)
=: Π1 + Π2 + Π3. (A.4)

Define the event

G(M) =

{
max

16i,j6p
sup

h6t6T−h

∣∣∣Σ̂ij,t − Σij,t∣∣∣ 6Mζ∆,p

}

where M is a positive constant. For any small ε > 0, by (A.1), we may find a sufficiently large
constantMε > 0 such that

P (G(Mε)) > 1 − ε (A.5)
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By property (iii) of the shrinkage function and (A.5), we have

Π1 6 sup
h6t6T−h

ρ1(t)

[
max

16i6p

p∑
j=1

I
(∣∣∣Σ̂ij,t∣∣∣ > ρ1(t)

)]

and

Π2 6Mεζ∆,p

[
sup

h6t6T−h
max

16i6p

p∑
j=1

I
(∣∣∣Σ̂ij,t∣∣∣ > ρ1(t)

)]
conditional on the event G(Mε). By the reverse triangle inequality and Proposition A.1,∣∣∣Σ̂ij,t∣∣∣ 6 |Σij,t|+Mεζ∆,p

on G(Mε). Letting CM = 2Mε in Assumption 2(iii), as {Σt : 0 6 t 6 T } ∈ S(q,$(p), T), we have

Π1 + Π2 6 ζ∆,p(CM +Mε)

[
sup

h6t6T−h
max

16i6p

p∑
j=1

I
(∣∣∣Σ̂ij,t∣∣∣ > CMζ∆,p

)]

6 ζ∆,p(CM +Mε)

[
sup

h6t6T−h
max

16i6p

p∑
j=1

I
(∣∣∣Σ̂ij,t∣∣∣ > Mεζ∆,p

)]

= OP (ζ∆,p)

[
sup

h6t6T−h
max

16i6p

p∑
j=1

|Σij,t|
q

(Mεζ∆,p)
q

]
= OP

(
Λ$(p)ζ1−q

∆,p

)
= OP

(
$(p)ζ1−q

∆,p

)
. (A.6)

on the event G(Mε), whereCM is defined in Assumption 2(iii). Note that the events
{∣∣∣Σ̂ij,t∣∣∣ 6 ρ1(t)

}
and G(Mε) jointly imply that

{
|Σij,t| 6

(
CM +Mε

)
ζ∆,p
}

. Then, we may show that

Π3 6 sup
h6t6T−h

max
16i6p

p∑
j=1

|Σij,t|I
(
|Σij,t| 6

(
CM +Mε

)
ζ∆,p

)
6

(
CM +Mε

)1−q
ζ1−q
∆,p sup

h6t6T−h
max

16i6p

p∑
j=1

|Σij,t|
q

= OP

(
Λ$(p)ζ1−q

∆,p

)
= OP

(
$(p)ζ1−q

∆,p

)
. (A.7)

By (A.6) and (A.7), and letting ε→ 0 in (A.5), we complete the proof of Theorem 1. �

Proof of Theorem 2. The proof is similar to the proof of Theorem 1 with Proposition A.2 replacing
Proposition A.1. Details are omitted to save the space. �

Proof of Theorem 3. The proof is similar to the proof of Theorem 1 with Proposition A.3 replacing
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Proposition A.1. Details are omitted to save the space. �

Appendix B: Proofs of technical results

We next provide the detailed proofs of the propositions stated in Appendix A. As in Remark 1,
the local boundedness condition in Assumption 1(i) can be strengthened to the following uniform
boundedness condition:

max
16i6p

sup
06s6T

|µi,s| 6 Cµ <∞, max
16i6p

sup
06s6T

Σii,t 6 CΣ <∞, (B.1)

with probability one. Throughout this appendix, we let C denote a generic positive constant whose
value may change from line to line.

Proof of Proposition A.1. Throughout this proof, we let ζ∗∆,p =
[
∆ log(p∨∆−1)

h

]1/2
. By (2.1), we have

(∆Xi,k)(∆Xj,k) =

(∫ tk
tk−1

µi,sds+

p∑
l=1

∫ tk
tk−1

σil,sdWl,s

)(∫ tk
tk−1

µj,udu+

p∑
l=1

∫ tk
tk−1

σjl,udWl,u

)

=

(∫ tk
tk−1

µi,sds

∫ tk
tk−1

µj,udu

)
+

(∫ tk
tk−1

p∑
l=1

σil,sdWl,s

∫ tk
tk−1

µj,udu

)
+(∫ tk

tk−1

µi,sds

∫ tk
tk−1

p∑
l=1

σjl,udWl,u

)
+

(∫ tk
tk−1

p∑
l=1

σil,sdWl,s

∫ tk
tk−1

p∑
l=1

σjl,udWl,u

)
= Mij,k(1) +Mij,k(2) +Mij,k(3) +Mij,k(4).

This leads to the following decomposition for Σ̂ij,t:

Σ̂ij,t =

n∑
k=1

Kh(tk−t)Mij,k(1)+
n∑
k=1

Kh(tk−t)Mij,k(2)+
n∑
k=1

Kh(tk−t)Mij,k(3)+
n∑
k=1

Kh(tk−t)Mij,k(4).

By (B.1) and Assumptions 2(i)(ii), we readily have that

max
16i,j6p

sup
h6t6T−h

∣∣∣∣∣
n∑
k=1

Kh(tk − t)Mij,k(1)

∣∣∣∣∣ 6 max
16i,j6p

max
16k6n

|Mij,k(1)| sup
h6t6T−h

n∑
k=1

Kh(tk − t)

6 C∆ sup
h6t6T−h

∆

n∑
k=1

Kh(tk − t)

= OP (∆) = oP
(
ζ∗∆,p

)
, (B.2)
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as ∆
∑n
k=1 Kh(tk − t) is bounded uniformly over h 6 t 6 T − h.

We next show that

max
16i,j6p

sup
h6t6T−h

∣∣∣∣∣
n∑
k=1

Kh(tk − t)Mij,k(4) −
n∑
k=1

Kh(tk − t)

∫ tk
tk−1

Σij,sds

∣∣∣∣∣ = OP (ζ∗∆,p

)
. (B.3)

Let dX∗i,t =
∑p
l=1 σil,tdWl,t, ∆X∗i,k =

∫tk
tk−1

∑p
l=1 σil,sdWl,s and X∗i,t be adapted to the underlying

filtration (Ft)t>0. Note that

Mij,k(4) = ∆X∗i,k∆X
∗
j,k =

1
2

[(
∆X∗i,k + ∆X

∗
j,k

) (
∆X∗i,k + ∆X

∗
j,k

)
−
(
∆X∗i,k

)2
−
(
∆X∗j,k

)2
]

=:
1
2

[
M∗ij,k(4) −

(
∆X∗i,k

)2
−
(
∆X∗j,k

)2
]

.

Hence, to show (B.3), it is sufficient to prove that

max
16i6p

sup
h6t6T−h

∣∣∣∣∣
n∑
k=1

Kh(tk − t)
(
∆X∗i,k

)2
−

n∑
k=1

Kh(tk − t)

∫ tk
tk−1

Σii,sds

∣∣∣∣∣ = OP (ζ∗∆,p

)
(B.4)

and

max
16i,j6p

sup
h6t6T−h

∣∣∣∣∣
n∑
k=1

Kh(tk − t)M
∗
ij,k(4) −

n∑
k=1

Kh(tk − t)

∫ tk
tk−1

Σ∗ij,sds

∣∣∣∣∣ = OP (ζ∗∆,p

)
, (B.5)

where Σ∗ij,s is defined in Assumption 1(ii).

We next only prove (B.4) as the proof of (B.5) is analogous. Consider covering the interval
[h, T − h] by some disjoint intervals Tv with centre τ∗v and length d = h2ζ∗∆,p, v = 1, 2, · · · ,V .
Observe that

max
16i6p

sup
h6t6T−h

∣∣∣∣∣
n∑
k=1

Kh(tk − t)
(
∆X∗i,k

)2
−

n∑
k=1

Kh(tk − t)

∫ tk
tk−1

Σii,sds

∣∣∣∣∣
6 max

16i6p
max

16v6V

∣∣∣∣∣
n∑
k=1

Kh(tk − τ
∗
v)
(
∆X∗i,k

)2
−

n∑
k=1

Kh(tk − τ
∗
v)

∫ tk
tk−1

Σii,sds

∣∣∣∣∣+
max

16i6p
max

16v6V
sup
t∈Tv

∣∣∣∣∣
n∑
k=1

[Kh(tk − t) − Kh(tk − τ
∗
v)]
(
∆X∗i,k

)2

∣∣∣∣∣+
max

16i6p
max

16v6V
sup
t∈Tv

∣∣∣∣∣
n∑
k=1

[Kh(tk − t) − Kh(tk − τ
∗
v)]

∫ tk
tk−1

Σii,sds

∣∣∣∣∣ . (B.6)

25



As the kernel function has the compact support [−1, 1], we have, for any t ∈ [h, T − h],

n∑
k=1

Kh(tk − t)

[(
∆X∗i,k

)2
−

∫ tk
tk−1

Σii,sds

]
=

b(t+h)/∆c∑
k=b(t−h)/∆c

Kh(tk − t)

[(
∆X∗i,k

)2
−

∫ tk
tk−1

Σii,sds

]
.

Letting N be a standard normal random variable, by Lemma 1 in Fan, Li and Yu (2012), we have

E
(
exp{ψ(N2 − 1)}

)
6 exp

{
2ψ2} for |ψ| 6 1/4. (B.7)

Following the argument in the proof of Lemma 3 in Fan, Li and Yu (2012) and using (B.7), for
k = b(τ∗v − h)/∆c, · · · , b(τ∗v + h)/∆c

E
(

exp
{
θ
(
∆−1h

)1/2
Kh(tk − τ

∗
v)

[(
∆X∗i,k

)2
−

∫ tk
tk−1

Σii,sds

]}
|Ftk−1

)
6 exp

{
2∆
h
θ2C2

ΣK
2
(
tk − τ

∗
v

h

)}
,

where θ satisfies that
∣∣∣θCΣ(∆h−1)1/2K

(
tk−τ

∗
v

h

)∣∣∣ 6 1/4 and CΣ is defined in (B.1). Consequently, we
have

E

(
exp

{
θ
(
∆−1h

)1/2
n∑
k=1

Kh(tk − τ
∗
v)

[(
∆X∗i,k

)2
−

∫ tk
tk−1

Σii,sds

]})

= E

exp

θ (∆−1h
)1/2

b(t+h)/∆c∑
k=b(t−h)/∆c

Kh(tk − t)

[(
∆X∗i,k

)2
−

∫ tk
tk−1

Σii,sds

]


6 exp
{

2θ2C2
Σν0
}

, (B.8)

where ν0 =
∫1
−1 K

2(u)du. By (B.8), using the Markov inequality and choosing θ =

√
log(p∨∆−1)

C2
Σν0

, we
can prove that

P

(∣∣∣∣∣
n∑
k=1

Kh(tk − τ
∗
v)
(
∆X∗i,k

)2
−

n∑
k=1

Kh(tk − τ
∗
v)

∫ tk
tk−1

Σii,sds

∣∣∣∣∣ > Mζ∗∆,p

)
6 2 exp{−C(M) log(p∨∆−1)},

where C(M) is positive and becomes sufficiently large if we chooseM to be large enough. Then,
by the Bonferroni inequality, we have

P

(
max

16i6p
max

16v6V

∣∣∣∣∣
n∑
k=1

Kh(tk − τ
∗
v)
(
∆X∗i,k

)2
−

n∑
k=1

Kh(tk − τ
∗
v)

∫ tk
tk−1

Σii,sds

∣∣∣∣∣ > Mζ∗∆,p

)
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6
p∑
i=1

V∑
v=1

2 exp{−C(M)(log(p∨ ∆−1))}→ 0,

where the convergence is due to the fact pV = o
(
exp{CM log(p∨ ∆−1)}

)
as V is divergent at a

polynomial rate of 1/∆ and C(M) is sufficiently large, which implies that

max
16i6p

max
16v6V

∣∣∣∣∣
n∑
k=1

Kh(tk − τ
∗
v)
(
∆X∗i,k

)2
−

n∑
k=1

Kh(tk − τ
∗
v)

∫ tk
tk−1

Σii,sds

∣∣∣∣∣ = OP(ζ∗∆,p). (B.9)

By the smoothness condition on the kernel function in Assumption 2(i), we have

max
16i6p

max
16v6V

sup
t∈Tv

∣∣∣∣∣
n∑
k=1

[Kh(tk − t) − Kh(tk − τ
∗
v)]
(
∆X∗i,k

)2

∣∣∣∣∣
6 max

16v6V
sup
t∈Tv

|Kh(tk − t) − Kh(tk − τ
∗
v)| max

16i6p

n∑
k=1

(
∆X∗i,k

)2

= O
(
dh−2) max

16i6p

n∑
k=1

(
∆X∗i,k

)2 .

Similar to the proof of (B.9), we may show that

max
16i6p

n∑
k=1

(
∆X∗i,k

)2
6 max

16i6p

∫T
0
Σii,sds+ oP(1) = OP(1)

as T is fixed and Σii,t is uniformly bounded by CΣ. Hence, by the choice of d, we have

max
16i6p

max
16v6V

sup
t∈Tv

∣∣∣∣∣
n∑
k=1

[Kh(tk − t) − Kh(tk − τ
∗
v)]
(
∆X∗i,k

)2

∣∣∣∣∣ = OP(ζ∗∆,p). (B.10)

Analogously, we also have

max
16i6p

max
16v6V

sup
t∈Tv

∣∣∣∣∣
n∑
k=1

[Kh(tk − t) − Kh(tk − τ
∗
v)]

∫ tk
tk−1

Σii,sds

∣∣∣∣∣ = OP(ζ∗∆,p). (B.11)

By (B.6) and (B.9)–(B.11), we complete the proof of (B.4).

By (B.2), (B.3) and the Hölder inequality, we have

max
16i,j6p

sup
h6t6T−h

∣∣∣∣∣
n∑
k=1

Kh(tk − t)Mij,k(2)

∣∣∣∣∣
2
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6 max
16i6p

sup
h6t6T−h

n∑
k=1

Kh(tk − t)
(
∆X∗i,k

)2 max
16j6p

sup
h6t6T−h

n∑
k=1

Kh(tk − t)

(∫ tk
tk−1

µj,udu

)2

= OP (∆) ·OP(1) = OP (∆) ,

indicating that

max
16i,j6p

sup
h6t6T−h

∣∣∣∣∣
n∑
k=1

Kh(tk − t)Mij,k(2)

∣∣∣∣∣ = OP (∆1/2) = oP (ζ∗∆,p

)
, (B.12)

and similarly,

max
16i,j6p

sup
h6t6T−h

∣∣∣∣∣
n∑
k=1

Kh(tk − t)Mij,k(3)

∣∣∣∣∣ = OP (∆1/2) = oP (ζ∗∆,p

)
. (B.13)

With (B.2), (B.3), (B.12) and (B.13), we prove that

max
16i,j6p

sup
h6t6T−h

∣∣∣∣∣Σ̂ij,t −
n∑
k=1

Kh(tk − t)

∫ tk
tk−1

Σij,sds

∣∣∣∣∣ = OP (ζ∗∆,p

)
. (B.14)

On the other hand, by Assumption 1(ii), we may use the m-th order Taylor expansion for Σij,s.
Then, using Assumption 2(i) and Lemma 7 in Kristensen (2010), we may show that

max
16i,j6p

sup
h6t6T−h

∣∣∣∣∣
n∑
k=1

Kh(tk − t)

∫ tk
tk−1

Σij,sds− Σij,t

∣∣∣∣∣ = OP (hm+γ) . (B.15)

Then we prove (A.1) by virtue of (B.14) and (B.15). �

We next turn to the proof of Proposition A.2, in which a crucial step is to derive a uniform
consistency for X̃i,τ. The latter is stated in Lemma B.1 below.

Lemma B.1. Suppose that Assumptions 1(i), 3 and 4(i)(ii) are satisfied. Then we have

max
16i6p

max
06l6N

∣∣∣X̃i,τl − Xi,τl∣∣∣ = OP (√log(p∨ ∆−1)
[
b1/2 +

(
∆−1b

)−1/2
])

. (B.16)

Proof of Lemma B.1. By the definition of X̃τ in (3.2), we write

X̃i,τl − Xi,τl =
T

n

n∑
k=1

Lb(tk − τl)Zi,tk − Xi,τl = Πi,l(1) + Πi,l(2) + Πi,l(3) + Πi,l(4), (B.17)
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where

Πi,l(1) =
T

n

n∑
k=1

Lb(tk − τl)ξi,k,

Πi,l(2) =

n∑
k=1

Lb(tk − τl)

∫k∆
(k−1)∆

(Xi,tk − Xi,s)ds,

Πi,l(3) =

n∑
k=1

∫k∆
(k−1)∆

[Lb(tk − τl) − Lb(s− τl)]Xi,sds,

Πi,l(4) =

∫T
0
Lb(s− τl)Xi,sds− Xi,τl .

Let ν∗∆,p =
[
∆ log(p∨∆−1)

b

]1/2
,ωi(tk) = [ωi1(tk), · · · ,ωip(tk)]

ᵀ

, andωi,∗(tk) =ωi(tk)/ ‖ωi(tk)‖.
We first consider Πi,l(1). Define

ξ?i,k =ω
ᵀ

i(tk)ξ
∗
kI
(
|ω

ᵀ

i,∗(tk)ξ
∗
k| 6 ∆

−ι
)

, ξ�i,k =ω
ᵀ

i(tk)ξ
∗
kI
(
|ω

ᵀ

i,∗(tk)ξ
∗
k| > ∆

−ι
)

, (B.18)

where ι is defined in Assumption 4(ii). Note that

Πi,l(1) =
T

n

n∑
k=1

Lb(tk − τl)ω
ᵀ

i(tk)ξ
∗
k

=
T

n

n∑
k=1

Lb(tk − τl)
[
ξ?i,k − E(ξ?i,k)

]
+
T

n

n∑
k=1

Lb(tk − τl)
[
ξ�i,k − E(ξ�i,k)

]
as E(ξ?i,k) + E(ξ�i,k) = 0. By the noise moment condition in Assumption 3(i) and the uniform
boundedness condition on ‖ωi(tk)‖ in Assumption 3(ii), we have

E
(∣∣ξ�i,k∣∣) 6 Cω · E [∣∣ωᵀ

i,∗(tk)ξ
∗
k

∣∣ I (|ωᵀ

i,∗(tk)ξ
∗
k| > ∆

−ι
)]

= O
(
∆ιM

�
ξ

)
= o

(
ν∗∆,p

)
,

whereM�ξ > 0 is arbitrarily large. Then, by Assumptions 3(i), 4(ii) and the Bonferroni and Markov
inequalities, we have, for any ε > 0,

P

(
max

16i6p
max

06l6N

∣∣∣∣∣Tn
n∑
k=1

Lb(tk − τl)
[
ξ�i,k − E(ξ�i,k)

]∣∣∣∣∣ > εν∗∆,p

)

6 P

(
max

16i6p
max

06l6N

∣∣∣∣∣Tn
n∑
k=1

Lb(tk − τl)ξ
�
i,k

∣∣∣∣∣ > 1
2
εν∗∆,p

)

6 P
(

max
16i6p

max
16k6n

∣∣ξ�i,k∣∣ > 0
)
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6 P
(

max
16i6p

max
16k6n

∣∣ωᵀ

i,∗(tk)ξ
∗
k

∣∣ > ∆−ι

)
6

p∑
i=1

n∑
k=1

P
(∣∣ωᵀ

i,∗(tk)ξ
∗
k

∣∣ > ∆−ι
)

6 pn exp{−s∆−ι}Cξ = o(1)

for 0 < s < s0, where Cξ is defined in Assumption 3(i). Hence, we have

max
16i6p

max
06l6N

∣∣∣∣∣Tn
n∑
k=1

Lb(tk − τl)ωi(tk)
[
ξ�i,k − E(ξ�i,k)

]∣∣∣∣∣ = oP (ν∗∆,p

)
. (B.19)

On the other hand, by Assumptions 3 and 4(i)(ii) as well as the Bernstein inequality for the
independent sequence (e.g., Proposition 2.14 in Wainwright, 2019), we may show that

P

(
max

16i6p
max

06l6N

∣∣∣∣∣Tn
n∑
k=1

Lb(tk − τl)
[
ξ?i,k − E(ξ?i,k)

]∣∣∣∣∣ > Mν∗∆,p

)

6
p∑
i=1

N∑
l=1

P

(∣∣∣∣∣Tn
n∑
k=1

Lb(tk − τl)
[
ξ?i,k − E(ξ?i,k)

]∣∣∣∣∣ > Mν∗∆,p

)
= O

(
pN exp

{
−C?(M) log(p∨ ∆−1)

})
= o(1),

where N diverges to infinity at a polynomial rate of n, C?(M) is positive and could be sufficiently
large by lettingM be large enough. Therefore, we have

max
16i6p

max
06l6N

∣∣∣∣∣Tn
n∑
k=1

Lb(tk − τl)
[
ξ?i,k − E(ξ?i,k)

]∣∣∣∣∣ = OP (ν∗∆,p

)
. (B.20)

By (B.19) and (B.20), we readily have that

max
16i6p

max
06l6N

|Πi,l(1)| = OP
(
ν∗∆,p

)
. (B.21)

For Πi,l(2), we write it as

Πi,l(2) =

n∑
k=1

Lb(tk − τl)

∫k∆
(k−1)∆

(∫k∆
s

µi,udu

)
ds+

n∑
k=1

Lb(tk − τl)

∫k∆
(k−1)∆

(∫k∆
s

p∑
j=1

σij,udWj,u

)
ds

= Πi,l(2, 1) + Πi,l(2, 2).

30



By (B.1) and Assumption 4(i), we have

max
16i6p

max
06l6N

|Πi,l(2, 1)| = OP(∆) = oP
(
ν∗∆,p

)
. (B.22)

By the Bonferroni inequality, we may show that, for any ε > 0

P

(
max

16i6p
sup

(k−1)∆6s6k∆

∣∣∣∣∣
∫k∆
s

p∑
j=1

σij,udWj,u

∣∣∣∣∣ > εν∗∆,p

)

6
p∑
i=1

P

(
sup

(k−1)∆6s6k∆

∣∣∣∣∣
∫k∆
s

p∑
j=1

σij,udWj,u

∣∣∣∣∣ > εν∗∆,p

)

6
p∑
i=1

P

(
sup

(k−1)∆6s6k∆

∣∣∣∣∣
∫s
(k−1)∆

p∑
j=1

σij,udWj,u

∣∣∣∣∣ > 1
2
εν∗∆,p

)
. (B.23)

By the conditional Jensen inequality, we may verify that both
{∣∣∣∫s(k−1)∆

∑p
j=1 σij,udWj,u

∣∣∣}
s>(k−1)∆

and
{

exp
(
ψ
∣∣∣∫s(k−1)∆

∑p
j=1 σij,udWj,u

∣∣∣)}
s>(k−1)∆

are sub-martingales, where ψ > 0. Using the

moment generating function for the folded normal random variable and (B.1), we have

E

[
exp

(
ψ

∣∣∣∣∣
∫k∆
(k−1)∆

p∑
j=1

σij,udWj,u

∣∣∣∣∣
)]
6 exp

(
ψ2∆CΣ

2

)
,

where CΣ is defined in (B.1). Combining the above arguments and using Doob’s inequality for
sub-martingales, we may show that

P

(
sup

(k−1)∆6s6k∆

∣∣∣∣∣
∫s
(k−1)∆

p∑
j=1

σij,udWj,u

∣∣∣∣∣ > 1
2
εν∗∆,p

)

= P

(
sup

(k−1)∆6s6k∆

exp

{
ψ

∣∣∣∣∣
∫s
(k−1)∆

p∑
j=1

σij,udWj,u

∣∣∣∣∣
}
> exp

{
1
2
ψεν∗∆,p

})

6 exp
(
−
ψεν∗∆,p

2

)
E

[
exp

(
ψ

∣∣∣∣∣
∫k∆
(k−1)∆

p∑
j=1

σij,udWj,u

∣∣∣∣∣
)]

6 exp
(
ψ2∆CΣ

2
−
ψεν∗∆,p

2

)
. (B.24)

Then, choosing ψ = εν∗∆,p/(2∆CΣ), by (B.23) and(B.24), we have

P

(
max

16i6p
sup

(k−1)∆6s6k∆

∣∣∣∣∣
∫k∆
s

p∑
j=1

σij,udWj,u

∣∣∣∣∣ > εν∗∆,p

)
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6 p exp

{
−
(εν∗∆,p)

2

8∆CΣ

}
= O

(
p exp

{
−
ε2

8CΣ
· log(p∨ ∆−1)

b

})
= o(1)

for any ε > 0, which indicates that

max
16i6p

max
06l6N

|Πi,l(2, 2)| = oP
(
ν∗∆,p

)
. (B.25)

By (B.22) and (B.25), we readily have that

max
16i6p

max
06l6N

|Πi,l(2)| = oP
(
ν∗∆,p

)
. (B.26)

For Πi,l(3), we note that

|Πi,l(3)| 6 sup
06u6T

|Xi,u| ·
n∑
k=1

∫k∆
(k−1)∆

|Lb(tk − τl) − Lb(s− τl)|ds.

By Assumption 4(i), we have

max
06l6N

n∑
k=1

∫k∆
(k−1)∆

|Lb(tk − τl) − Lb(s− τl)|ds = O
(
∆b−1) . (B.27)

On the other hand, by (B.1),

sup
06u6T

|Xi,u| = sup
06u6T

∫u
0
|µi,u|du+ sup

06u6T

∣∣∣∣∣
∫u

0

p∑
j=1

σij,udWj,u

∣∣∣∣∣ = sup
06u6T

∣∣∣∣∣
∫u

0

p∑
j=1

σij,udWj,u

∣∣∣∣∣+OP(1).
Following the proof of (B.25), we may show that

sup
06u6T

∣∣∣∣∣
∫u

0

p∑
j=1

σij,udWj,u

∣∣∣∣∣ = OP
(√

log(p∨ ∆−1)

)
,

indicating that

sup
06u6T

|Xi,u| = OP

(√
log(p∨ ∆−1)

)
. (B.28)

By virtue of (B.27) and (B.28), we prove that

max
16i6p

max
06l6N

|Πi,l(3)| = OP

(
∆b−1

√
log(p∨ ∆−1)

)
= oP

(
ν∗∆,p

)
. (B.29)
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Finally, for Πi,l(4), we write it as

Πi,l(4) =

{∫T
0
Lb(s− τl)

∫s
0
µi,ududs−

∫τl
0
µi,udu

}
+{∫T

0
Lb(s− τl)

∫s
0

p∑
j=1

σij,udWj,uds−

∫τl
0

p∑
j=1

σij,udWj,u

}
=: Πi,l(4, 1) + Πi,l(4, 2).

By Assumptions 1(i) and 4(i), we readily have that

max
16i6p

max
06l6N

|Πi,l(4, 1)| = OP (b) . (B.30)

Following the proof of (B.25), we may show that

P

(
max

16i6p
max

16l6N
sup

τl6s6τl+b

∣∣∣∣∣
∫s
τl

p∑
j=1

σij,udWj,u

∣∣∣∣∣ > M√b log(p∨ ∆−1)

)
→ 0

and

P

(
max

16i6p
max

16l6N
sup

τl−b6s6τl

∣∣∣∣∣
∫τl
s

p∑
j=1

σij,udWj,u

∣∣∣∣∣ > M√b log(p∨ ∆−1)

)
→ 0

whenM > 0 is sufficiently large. Consequently, we have

max
16i6p

max
06l6N

|Πi,l(4, 2)| = OP

(√
b log(p∨ ∆−1)

)
. (B.31)

Combining (B.30) and (B.31),

max
16i6p

max
06l6N

|Πi,l(4)| = OP

(√
b log(p∨ ∆−1)

)
. (B.32)

The proof of (B.16) in Lemma B.1 is completed with (B.21), (B.26), (B.29) and (B.32). �

Proof of Proposition A.2. By (3.3), we have

Σ̃ij,t − Σij,t =

N∑
l=1

Kh(τl − t)∆X̃i,l∆X̃j,l − Σij,t

=

N∑
l=1

Kh(τl − t)∆Xi,l∆Xj,l − Σij,t +

3∑
k=1

Ξij,t(k),

33



where

Ξij,t(1) =

N∑
l=1

Kh(τl − t)∆Xi,l

(
∆X̃j,l − ∆Xj,l

)
,

Ξij,t(2) =

N∑
l=1

Kh(τl − t)
(
∆X̃i,l − ∆Xi,l

)
∆Xj,l,

Ξij,t(3) =

N∑
l=1

Kh(τl − t)
(
∆X̃i,l − ∆Xi,l

)(
∆X̃j,l − ∆Xj,l

)
.

By Proposition A.1, we have

max
16i,j6p

sup
h6t6T−h

∣∣∣∣∣
N∑
l=1

Kh(τl − t)∆Xi,l∆Xj,l − Σij,t

∣∣∣∣∣ = OP
(
hm+γ +

[
log(p∨N)

Nh

]1/2
)

. (B.33)

By Lemma B.1 and Assumption 2(i), we have

max
16i,j6p

sup
h6t6T−h

|Ξij,t(3)| = OP

(
N log(p∨ ∆−1)

[
b1/2 +

(
∆−1b

)1/2
]2
)

. (B.34)

By Proposition A.1, (B.34) and the Hölder inequality, we have

max
16i,j6p

sup
h6t6T−h

(|Ξij,t(1)|+ |Ξij,t(2)|) = OP

(√
N log(p∨ ∆−1)

[
b1/2 +

(
∆−1b

)1/2
])

. (B.35)

The proof of (A.2) in Proposition A.2 is completed by virtue of (B.33)–(B.35). �

Proof of Proposition A.3. By (3.1) and (3.7), we write

Ω̂ij(t) =
∆

2

n∑
k=1

Kh1(tk − t)∆Xi,k∆Xj,k +
∆

n

n∑
k=1

Kh1(tk − t)∆Xi,k(ξj,k − ξj,k−1) +

∆

2

n∑
k=1

Kh1(tk − t)(ξi,k − ξi,k−1)∆Xj,k +
∆

2

n∑
k=1

Kh1(tk − t)(ξi,k − ξi,k−1)(ξj,k − ξj,k−1)

=: Ω̂ij,1(t) + Ω̂ij,2(t) + Ω̂ij,3(t) + Ω̂ij,4(t).

By Proposition A.1, we have

max
16i,j6p

sup
h16t6T−h1

∣∣∣Ω̂ij,1(t)∣∣∣ = OP (∆) . (B.36)
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To complete the proof of (A.3), it is sufficient to show

max
16i,j6p

sup
h16t6T−h1

∣∣∣Ω̂ij,4(t) −Ωij(t)∣∣∣ = OP (δ∆,p) . (B.37)

In fact, combining (B.36) and (B.37), and using the Hölder inequality, we

max
16i,j6p

sup
h16t6T−h1

[∣∣∣Ω̂ij,2(t)∣∣∣+ ∣∣∣Ω̂ij,3(t)∣∣∣] = OP (∆1/2) . (B.38)

By virtue of (B.36)–(B.38), we readily have (A.3).

It remains to prove (B.37). We aim to show that

max
16i,j6p

sup
h16t6T−h1

∣∣∣∣∣∆
n∑
k=1

Kh1(tk − t)ξi,kξj,k −Ωij(t)

∣∣∣∣∣ = OP (δ∆,p) , (B.39)

max
16i,j6p

sup
h16t6T−h1

∣∣∣∣∣∆
n∑
k=1

Kh1(tk − t)ξi,k−1ξj,k−1 −Ωij(t)

∣∣∣∣∣ = OP (δ∆,p) , (B.40)

max
16i,j6p

sup
h16t6T−h1

∣∣∣∣∣∆
n∑
k=1

Kh1(tk − t) (ξi,kξj,k−1 + ξi,k−1ξj,k)

∣∣∣∣∣ = OP (δ∗∆,p

)
, (B.41)

where δ∗∆,p =
[
∆ log(p∨∆−1)

h1

]1/2
. To save the space, we only provide the detailed proof of (B.39) as

the proofs of (B.40) and (B.41) are similar (with minor modifications).

Note that

∆

n∑
k=1

Kh1(tk − t)ξi,kξj,k −Ωij(t)

=

{
∆

n∑
k=1

Kh1(tk − t) [ξi,kξj,k −Ωij(tk)]

}
+

{
∆

n∑
k=1

Kh1(tk − t)Ωij(tk) −Ωij(t)

}
=: Υij,1(t) + Υij,2(t). (B.42)

Let χij,k = ξi,kξj,k −Ωij(tk),

χ?ij,k = χij,kI (|χij,k| 6 ∆
−ι?) and χ�ij,k = χij,k − χ

?
ij,k,

where ι? is defined in Assumption 5(ii). Observe that

Υij,1(t) = ∆

n∑
k=1

Kh1(tk − t)
[
χ?ij,k − E(χ?ij,k)

]
+ ∆

n∑
k=1

Kh1(tk − t)
[
χ�ij,k − E(χ�ij,k)

]
. (B.43)
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By Assumptions 3(ii) and 5(i), we have E
[∣∣χ�ij,k∣∣] = O (∆ι?Mχ

)
withMχ > 0 being arbitrarily large.

Then, by Assumptions 5(i)(ii) and the Markov inequality, we have that, for any ε > 0,

P

(
max

16i,j6p
sup

h16t6T−h1

∣∣∣∣∣∆
n∑
k=1

Kh1(tk − t)
[
χ�ij,k − E(χ�ij,k)

]∣∣∣∣∣ > εδ∗∆,p

)

6 P

(
max

16i,j6p
sup

h16t6T−h1

∣∣∣∣∣∆
n∑
k=1

Kh1(tk − t)χ
�
ij,k

∣∣∣∣∣ > 1
2
εδ∗∆,p

)

6 P
(

max
16i,j6p

max
16k6n

∣∣χ�ij,k∣∣ > 0
)
6 P

(
max

16i,j6p
max

16k6n
|χij,k| > ∆

−ι?

)
6 P

(
max

16i,j6p
max

16k6n
|ξi,kξj,k| > ∆

−ι? −MΩ

)
6 P

(
max

16i,j6p
max

16k6n

(
ξ2
i,k + ξ

2
j,k

)
> 2(∆−ι? −MΩ)

)
6 2P

(
max

16i6p
max

16k6n
ξ2
i,k > ∆

−ι? −MΩ

)
6 2

p∑
i=1

n∑
k=1

P
(
ξ2
i,k > ∆

−ι? −MΩ

)
6 2pn exp{−sC−1

ω (∆−ι? −MΩ)}C
?
ξ = o(1) (B.44)

for 0 < s < s0, whereMΩ = max16i,j6p sup06t6T |Ωij(t)| 6 Cω, Cω is defined in Assumption 3(ii)
and C?

ξ is defined in Assumption 5(i).

Cover the closed interval [h1, T −h1] by some disjoint intervals T?
l , l = 1, · · · ,V?, with the center

t?l and length d? = h2
1δ
∗
∆,p∆

ι? . By the Lipschitz continuity of K(·) in Assumption 2(i), we have

max
16i,j6p

sup
h16t6T−h1

∣∣∣∣∣∆
n∑
k=1

Kh1(tk − t)
[
χ?ij,k − E(χ?ij,k)

]∣∣∣∣∣
6 max

16i,j6p
max

16l6V?

∣∣∣∣∣∆
n∑
k=1

Kh1(tk − t
?
l)
[
χ?ij,k − E(χ?ij,k)

]∣∣∣∣∣+
max

16i,j6p
max

16l6V?

sup
t∈T?

l

∣∣∣∣∣∆
n∑
k=1

[Kh1(tk − t) − Kh1(tk − t
?
l)]
[
χ?ij,k − E(χ?ij,k)

]∣∣∣∣∣
6 max

16i,j6p
max

16l6V?

∣∣∣∣∣∆
n∑
k=1

Kh1(tk − t
?
l)
[
χ?ij,k − E(χ?ij,k)

]∣∣∣∣∣+
O (∆−ι?) max

16l6V?

sup
t∈T?

l

∆

n∑
k=1

|Kh1(tk − t) − Kh1(tk − t
?
l)|

6 max
16i,j6p

max
16l6V?

∣∣∣∣∣∆
n∑
k=1

Kh1(tk − t
?
l)
[
χ?ij,k − E(χ?ij,k)

]∣∣∣∣∣+OP (δ∗∆,p

)
. (B.45)

36



On the other hand, by the Bernstein inequality, we may show that

P

(
max

16i,j6p
max

16l6V?

∣∣∣∣∣∆
n∑
k=1

Kh1(tk − t
?
l)
[
χ?ij,k − E(χ?ij,k)

]∣∣∣∣∣ > Mδ∗∆,p

)

6
p∑
i=1

p∑
j=1

V?∑
l=1

P

(∣∣∣∣∣∆
n∑
k=1

Kh1(tk − t
?
l)
[
χ?ij,k − E(χ?ij,k)

]∣∣∣∣∣ > Mδ∗∆,p

)
= O

(
p2V? exp

{
−C�(M) log(p∨ ∆−1)

})
= o(1),

where C�(M) is positive and becomes sufficiently large by choosingM to be large enough, and V?

diverges at a polynomial rate of n. Therefore, we have

max
16i,j6p

max
16l6V?

∣∣∣∣∣∆
n∑
k=1

Kh1(tk − t
?
l)
[
χ?ij,k − E(χ?ij,k)

]∣∣∣∣∣ = OP(δ∗∆,p). (B.46)

With (B.43)–(B.46), we can prove that

max
16i,j6p

sup
h16t6T−h1

|Υij,1(t)| = OP(δ
∗
∆,p). (B.47)

Finally, by them-th order Taylor expansion ofΩij(·) and Assumption 2(i), we have

max
16i,j6p

sup
h16t6T−h1

|Υij,2(t)| = O (hm+γ) . (B.48)

By virtue of (B.42), (B.47) and (B.48), we complete the proof of (B.39). �
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ZHANG, L., MYKLAND, P. A. AND A ÏT-SAHALIA, Y. (2005). A tale of two time scales: Determining integrated volatility

with noisy high-frequency data. Journal of the American Statistical Association 100, 1394–1411.

ZHENG, X. AND LI, Y. (2011). On the estimation of integrated covariance matrices of high dimensional diffusion

processes. Annals of Statistics 39, 3121–3151.

ZU, Y. AND BOSWIJK, H. P. (2014). Estimating spot volatility with high-frequency financial data. Journal of Econometrics

181, 117–135.

41


	JIcover2208
	cwpe2218
	CWPE2218Coversheet
	BLLW-16-March-2022
	Introduction
	Estimation with noise-free data
	Estimation with contaminated high-frequency data
	Estimation of the spot volatility matrix
	Estimation of the time-varying noise volatility matrix

	Discussion and extension
	Estimation of the spot precision matrix
	The asynchronicity issue

	Monte-Carlo simulation studies
	The simulation setup
	Volatility matrix estimation
	Simulation results

	Conclusion



