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Abstract

Subjects observe a private signal and make an initial guess; they then observe their neighbors’
guesses and update their own guess, and so forth. We study learning dynamics in three large-
scale networks capturing features of real-world social networks: Erdös-Rényi, Stochastic Block
(reflecting network homophily) and Royal Family (that accommodates both highly connected
celebrities and local interactions). We find that the Royal Family network is more likely to
sustain incorrect consensus and that the Stochastic Block network is more likely to persist with
diverse beliefs. These patterns are consistent with the predictions of DeGroot updating. It lends
support to the notion that the use of simple heuristics in information aggregation is prevalent
in large and complex networks.
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1 Introduction

There is great interest in understanding the role of social networks in shaping opinion formation and
behaviour. Research has highlighted two features of real-world social networks: (i) deep inequalities
in the number of connections where the average is small but the variance is very large, and (ii)
network homophily — tendency of people with similar traits to form links with each other (Barabási
and Albert, 1999, Newman, 2010, McPherson et al., 2001, Currarini et al., 2009). The theory of
social learning shows that these network features have powerful effects on opinions and behaviour
(Bala and Goyal (1998), Bala and Goyal (2001), DeMarzo et al. (2003), Mossel et al. (2014) and
Golub and Jackson (2010)); for a survey of this research see Golub and Sadler (2016) and Goyal
(2022). This paper aims to experimentally test these theoretical predictions in large networks that
are rich and complex and that reflect inequality and homophily.

We consider a model taken from Gale and Kariv (2003) in which individuals receive noisy signals
about the true state of the world and make a guess repeatedly over time. We consider a binary state
setting with a binary guess where the optimal guess is to match the true state. Individuals also
observe the guesses of their neighbours, which in principle allows information to flow across paths
of the social network. We examine how the network shapes the long-run process of information
dissemination and what updating rule is used by human subjects in the setting with large and
complex networks.

We study learning in three networks capturing different features of real-world social networks:
Erdös-Rényi (a baseline for connections among homogeneous individuals), Stochastic Block (reflect-
ing network homophily) and Royal Family network (that accommodates ‘influential individuals’
along with local interactions). Figure 1 presents these three networks and Figures 2a and 2b present
the learning dynamics under DeGroot updating (DeGroot, 1974): at any period t, an individual
guesses the state that corresponds to the majority guess in her neighbourhood in the previous period
t− 1. These dynamics suggest three hypotheses: (i) individual behaviour converges; (ii) homophily
leads to the persistence of diverse opinions/guesses; (iii) influential individuals lead to incorrect
consensus and sub-optimal behaviour.

We test these predictions in a laboratory experiment with tight controls for the identification of
network effects.1 Our experiments yield three findings. First, learning occurs in all the networks so
rapidly that most of the consensus level achieved happens early. Second, breakdown of consensus
and persistence of diverse opinions is more likely in the Stochastic Block network as compared to the
other two networks. Third, incorrect consensus is much more likely in the Royal Family network as

1With observational data, it would be difficult to test these theoretical predictions about network effects because
of identification issues. One reason is that network structures are often endogenous and a second reason is that
network structures are rarely fully observable in real life; this creates the possibility that there is a gap between what
players observe in a network and what a researcher observes. Thus it would be difficult to attribute the change in
behaviours to a learning process in a network. Given these concerns with observational data, we resort to controlled
laboratory experiments with large-scale networks.

1



compared to the other two networks. Finally, we show that the vast majority of individual guesses
are consistent with DeGroot updating rule.

Related Literature. Our paper is a contribution to the study of influence dynamics and opinion
formation in networks. Early contributions include Choi et al. (2005), Mobius et al. (2015), Kearns
et al. (2012). For a survey of the experimental research in economics see Choi et al. (2016), Breza
(2016). The empirical literature on networks has highlighted their complex and rich structures and
brought out the salience of homophily and great inequality in network connections (Newman (2018),
Currarini et al. (2009) and McPherson et al. (2001). These empirical properties lead us to study
three networks: Erdös-Rényi representing a baseline of decentralized contacts (Newman (2018)),
Stochastic Block network representing network homophily (see McPherson et al. (2001), Newman
(2018)) and Royal Family network capturing highly influential nodes together with local influence
(Acemoglu et al. (2011), Bala and Goyal (1998), Mossel et al. (2014)).

Our paper is closest to two recent papers by Grimm and Mengel (2020) and Chandrasekhar et al.
(2020) who use a model of binary states and repeated guessing. Their experiments use stylized small
networks to disentangle the updating rules of subjects. They find that subjects’ behaviour is close
to that predicted by DeGroot updating. Whether their findings in stylized small networks can be
generalized in large networks remain open in the literature. Our paper builds on these two papers
and examines larger and more realistic networks – they consider networks with 7 subjects, while
we consider networks with 40 subjects. In addition, the networks we consider mirror key properties
of homophily and hubs (as described above). The theoretical predictions concerning aggregate
outcomes of learning under the DeGroot updating rule are different across these networks and we
find that subjects’ behaviour is close to DeGroot predictions in the vast majority of the cases and
therefore that aggregate learning outcomes are consistent with DeGroot predictions.

We would also like to draw attention to other experimental work on learning in networks. Frey
and Van de Rijt (2021) consider social influence in a sequential learning environment and show
that the nature of learning task matters. Becker et al. (2019) consider a homogeneous network
(with partisan political beliefs), Becker et al. (2017) consider a hub-spoke network, and Agranov
et al. (2020) consider a star and a core-periphery network. In a binary state and signal setting,
DeGroot updating would lead to complete consensus on the truth in these networks. Thus for our
theoretical setting these networks would not have different learning outcomes. By contrast, in our
binary state and signal setting, the learning predictions are different for the networks we consider:
diverse guesses persist in the Stochastic Block network and incorrect consensus obtains in the Royal
Family network. These theoretical effects of network structure are supported by empirical evidence
from our experiments.

Moreover, although the experiments conducted by Becker et al. (2017, 2019), Frey and Van de
Rijt (2021) consider large networks of similar scale to our study, a distinctive feature lies in that
their subjects are not informed about the structure of their network. By contrast, our experiment
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provides complete information about the network structure to subjects as well as their positions
in it. The choice of such a richer environment is important as it may induce different individual
behavior. Indeed, it is not clear whether the DeGroot updating rule will emerge in this context as it
requires subjects to ignore all network information. Subjects may instead choose to exploit all the
information available to them and follow some more sophisticated reasoning. While Bayesian learn-
ing is likely too complex to be applied in large groups, subjects may however be disproportionately
influenced by “information dominant” individuals that can be more easily identified. Alternatively,
the complex environment in which subjects evolve may lead them to exhibit noisier behavior as
a result of information overload. Our experimental results, which provide supporting evidence in
favour of the simple DeGroot updating rule, indicate that subjects globally manage to navigate the
complex environment and filter the information available to them.

2 Theory and Hypotheses

We use a model with two states, two signals, and two guesses that is taken from Gale and Kariv
(2003). There is a set of individuals N = {1, 2, ..., n}, with n ≥ 2. There are two possible states of
the world, ω ∈ {0, 1}, which individuals believe to be equally likely a priori.

Time is discrete and proceeds as t = 0, 1, 2.... In period 0, individuals observe a noisy but
informative signal on the true state: individual i receives a binary signal si ∈ {0, 1}. The probability
of receiving the correct signal corresponding to the true state is p ∈ (1/2, 1]. From period t ≥ 1, an
individual chooses a binary guess ai,t ∈ {0, 1}. Guessing the true state correctly yields a payoff of
1, and guessing incorrectly yields 0. Thus upon receiving a signal of si = 1, the expected payoff of
an individual guessing ai,t = 1 is p and the payoff from guessing ai,t = 0 is 1− p. Individuals follow
their signal in period 1 (note that this guess is also optimal for a myopic individual who seeks to
maximise one period payoff).

Individuals are located in an information network, g. We allow for both directed and undirected
networks. A link gij ∈ {0, 1} reflects information access. If gij = 1 then individual i observes
the guesses of individual j. gii = 0 by convention. The neighbours of individual i are given by
Ni(g) = {j|gij = 1}. We will suppose that an individual i gets to observe the guesses of everyone
in her neighbourhood. In particular, at time t, individual i observes the guesses of her neighbours
from period 1 until period t−1. These observations on neighbours’ guesses and the signal in period
0 are inputs into individual i’s belief at time t about the likelihood of state ω = 1, denoted as µi,t.

In principle, in period 2, an individual can infer a signal from the first period guess of a neighbour;
moreover, in subsequent periods, she can also potentially make inferences on the signals of the
neighbours of neighbours, and so forth. These inferences are challenging even in simple situations,
but in complex networks, they appear to be even less plausible. With these concerns in mind,
building on the literature on majority dynamics (Benjamini et al., 2016) and DeGroot updating
(DeGroot, 1974), we propose the following simple rule of thumb for individuals: In period t = 1,

3



individual i makes a guess that mimics her signal si; in subsequent periods t ≥ 2, she guesses ai,t

that corresponds to the majority guess in her neighbourhood in the previous period (which includes
her last period guess ai,t−1). To facilitate learning, let us suppose that individuals randomize (with
equal probability) between the two states in case of no majority (Grimm and Mengel, 2020). To
summarize, an individual i updates her guess ai,t at time t in the following way:

ai,t =


1 if µi,t >

1
2 ,

0 if µi,t <
1
2 ,

{0, 1} if µi,t =
1
2

(1)

where µi,t =
1

|Ni(g)|+ 1
{

n∑
j=1

aj,t−1 · gij + ai,t−1}.

We shall refer to this rule as DeGroot updating in the rest of the paper.
We study the learning dynamics and long-run outcomes in three networks: i) the Erdös-Rényi

network, that represent a baseline for decentralized information sharing and learning; ii) the Stochas-
tic Block network, that reflects network homophily; and iii) the Royal Family network, that rep-
resents networks with hub individuals and an overlapping community structure. Figure 1 presents
examples of these three networks and Appendix A.1 explains how these networks were generated.
Here we briefly note some aspects of the network creation process. The Erdös-Rényi network is
generated randomly (using standard packages). Out of a hundred generated networks, the network
with network statistics (average degree, distance and clustering) closest to the averages across all
generated networks is selected. The Stochastic Block network is selected by the same method. Note
that the average degree of the networks chosen is 4 and that all the networks are connected. The
Royal Family network is created as follows: we first place 40 players in a directed ring (player 40
observes player 1 who then observes player 2 and so on). Then players 1,2,3 are selected to be
members of the ‘Royal Family’ where all individuals observe them. As a result every individual has
an out-degree of 4 (except for player 1 and 2 who have out-degree of 2, and player 3 and 40 who
have out-degree of 3). Thus the Royal Family network also has an average degree close to 4 and is
connected.

To formulate our learning hypotheses, we ran simulations of DeGroot updating rule on 1000 sets
of signals for each network. The signals are drawn i.i.d. for 40 players with signal quality p = 0.7.
Players then update their beliefs and guesses under the DeGroot updating rule. We organize the
simulation results by defining a variable ct:

ct =

(nt − n0)/(n− n0) if nt ≥ n0,

(nt − n0)/n0 if nt < n0,
(2)
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(c) Stochastic Block network

Figure 1: Networks

where n0 denotes the number of correct signals received at time 0 and nt denotes the number of
correct guesses made at time t. To account for variations in n0 (as signals are randomly selected with
quality p = 0.7), ct measures the extent to which the average guess at time t move toward correct
consensus (nt ≥ n0) or towards incorrect consensus (nt < n0) relative to the initial assignment
of signals. Note that the potential amount of learning towards incorrect consensus is much larger
than correct consensus. So the extent of learning is normalized by the maximum margin of learning
towards correct consensus (n − n0) or towards incorrect consensus (n0 − 0). Together, ct ranges
between -1 (incorrect consensus) and 1 (correct consensus) with ct = 0 representing no learning.

Figure 2a shows that learning occurs rapidly and the consensus is achieved within the first few
periods of the game. This is also reflected in the frequency of switching behaviour: Figure 2b shows
that roughly 25% of the individuals switch their guesses in period 2 after observing the guesses of
their neighbours. This frequency falls to less than 5% by period 4 and becomes negligible eventually.

We next note that the network has powerful effects on consensus levels. The Royal Family
network achieves complete consensus (ct = 1 or − 1) by period 4 in almost all simulation runs. By
contrast, the Stochastic Block network attains only 60% of potential learning by period 4 and then
remains at that level afterwards. Learning in the Erdös-Rényi network continues for longer: the
network attains 87% of potential learning by period 7. To separate learning towards correct from
learning toward incorrect consensus, Figure 2c presents the distribution of ct averaged across periods
7-12. In the Erdös-Rényi network, correct consensus obtains in 61% of the cases. In the Royal Family
network, consensus obtains in all cases: 79% on correct consensus and 21% on incorrect consensus.
In the Stochastic Block model, correct consensus obtains only in 31% of the cases. We obtain similar
predictions if we consider variations of the DeGroot updating rule (see Appendix A.3). We note
that these simulations for learning in the binary action model are consistent with the theoretical
results for the continuous version of the DeGroot model in networks obtained by (Golub and Jackson
(2010) and Golub and Jackson (2012)).
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Figure 2: DeGroot simulations. (a) In period 1, |ct| equals 0 because all individuals guess their signal. By
period 4, RF (green) achieves |ct| = 100% in almost all cases. SB (blue) attains |ct| = 60%. ER (red) attains
|ct| = 87% by period 7. (b) After period 4, less than 5% of individuals switch their guesses from the previous
period. By period 7, this frequency is negligible. (c) In periods 7-12, ER network reaches correct consensus
in 61% of cases, RF in 79% of cases, and SB in 31% of cases. Almost all remaining cases yield breakdown
of consensus in ER and SB (39% and 69%, respectively) or incorrect consensus in RF (21%) (n=1000 per
network).
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Building on the simulations and the theoretical results we formulate three hypotheses:
H.1 Individual guesses converge to a limit guess in all networks.
H.2 The breakdown of consensus is more likely in the Stochastic Block network as compared to

the Erdös-Rényi and Royal Family network.
H.3 Incorrect consensus is more likely in the Royal Family network as compared to the Erdös-Rényi

and Stochastic Block network.
Let us provide some intuition underlying these hypotheses. The Stochastic Block network is

comprised of smaller communities that have a greater density of ties within and fewer ties across
them. Since a community is smaller in size than the whole network and has access to fewer signals,
it is less likely to reach the correct consensus independently. To illustrate this, consider a scenario
where the entire network guesses 1 except for a community that guesses 0. Suppose there is only one
link between an individual X (in the community) and the rest of the network, let us say that this link
is with individual Y (outside the community). Since X observes herself and other members of her
community, she observes a majority guess of 0, while Y observes a majority guess of 1. Under the
DeGroot updating rule, X’s community therefore agrees upon an incorrect consensus and cannot
learn about the external majority (Chandrasekhar et al., 2020). This insulation of communities
is more likely in the Stochastic Block than the Erdös-Rényi network because of higher network
homophily.

We next discuss why the rate of convergence is higher and why incorrect consensus is so common
in the Royal Family network. Observe that, in this network, the 3 members of the ‘royal family’ (i)
constitute a clique among themselves with only one source of information from the outside world,
(ii) are observed by everyone in the network, and (iii) constitute a majority in the neighbourhood
of everyone. The first property means that the ‘royal family’ converge to the same guess by period
2. The second and third properties taken together with the DeGroot updating rule imply that
everyone outside the ‘royal family’ imitates the guesses of the ‘Royal Family’ clique thereby leading
to a quick convergence. However, if the majority of the ‘Royal Family’ happen to get incorrect
signals then the consensus will be on the wrong guess.

3 Experimental Design

We recruited 480 participants from the Laboratory for Research in Experimental and Behavioral
Economics (LINEEX) at the University of Valencia to take part in a learning game. Subjects
were randomized to one of three experimental conditions, each associated with a distinct network
structure: Erdös-Rényi, Stochastic Block, and Royal Family network. We ran a total of 12 sessions,
4 sessions for each experimental condition. Each session consisted of a group of 40 subjects on a
social network who played 6 rounds of the learning game. No subject participated in more than one
session (sample instructions are reported in Appendix E).

In each round of the game, subjects were randomly assigned a position in a social network.
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Subjects’ positions were reshuffled after each round to reduce potential repeated game effects during
the experiment (subjects could not keep track of a participant’s position across rounds). Subjects
in the same session saw the network structure along with different IDs associated with different
nodes. Because subjects in the network conditions were not statistically independent, all analyses
of collective estimates in the network conditions were conducted at the round level such that each
network provided 24 observations. Moreover, because each session completed multiple rounds of the
learning game within an experimental trial, we cluster our main analysis at the session level (see
Fréchette (2012) for the discussion on dealing with session effects in the laboratory).

Subjects were informed about a bag containing 10 balls. They were told that the bag contains
either 7 Red and 3 Green balls (we will refer to this as the RED bag) or 7 Green and 3 Red balls
(the GREEN bag). Each of these two combinations is a priori equally likely. At the start of a
round, each subject drew a ball from the bag and saw its colour. There was a 70% chance of
getting the ‘correctly’ coloured ball (representing the signal) corresponding to the colour of the bag
(representing the true state).

For 12 periods, subjects were asked to guess whether the bag was RED or GREEN. At period
t = 1, subjects’ guess was based on their prior and the colour of the ball initially drawn by them.
From period t ≥ 2 until t = 12, subjects also observed guesses of neighbours in previous periods from
which they could update their beliefs and revise their guesses. At the end of the round, one period
(from 1 to 12) was picked at random to determine actual payoffs in the round: subjects earned 3
euros if their guess matched the colour of the bag (GREEN or RED), and 0 euro otherwise. Total
earnings for a subject corresponded to the sum of earnings in each round and a 5 euro show-up fee.

The experiment lasted approximately 1.5 hrs. The average payment per subject was 19.3 euros
(including the 5 euro show-up fee). The details of the experimental procedures, including sample
instructions, are presented in Appendix D and Appendix E.

4 Findings

We start with a presentation of the learning dynamics. We then compare the level of correct and
incorrect consensus and the breakdown of consensus achieved by each network. Lastly, we study
whether subjects’ behaviour matches various updating rules.

Dynamics of Learning

We begin by discussing the dynamics of learning and the stability of long-run behaviour. Figures 3a
and 3b summarize the data. In line with the DeGroot simulation, most of the learning occurs in
the early phase of the dynamics: More than three-quarters of the final consensus achieved by period
12 is attained by period 4. In particular, the Royal Family and Stochastic Block networks have
more rapid learning than the Erdös-Rényi network. The rapid convergence is also supported by
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Figure 3: Learning and consensus building. (a) For ER, RF and SB, by period 4, the average |ct| equals 35%,
58% and 22% respectively. By period 12, ER, RF, and SB, average |ct| equals 44%, 63%, 30%, respectively.
(b) Roughly 20% of subjects switch their guesses in period 2; switching reduces to 10% by period 12. (c)
Distribution of ct is almost uniform between 0 and 1 for ER, bimodal around 1 and -0.7 for RF, and modal
around 0 for SB. (n=72: 24 per network).
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Figure 4: Network effects on consensus. Error bars display standard 95% confidence interval around the
mean. Compared to ER: (i) Breakdown of consensus is 25 pp (percentage points) more likely under SB
(n=48, 95% CI [0.17,0.33], p-value<0.01), and 25 pp less likely under RF (n=48, 95% CI [-0.47,-0.03], p-
value<0.05); (ii) Incorrect consensus is 17 pp more likely under RF (n=48, 95% CI [0.01,0.32], p-value<0.05),
and 4 pp less likely under SB (n=48, 95% CI [-0.11,0.03]); (iii) Correct consensus is 21 pp less likely under
SB (n=48, 95% CI [-0.35,-0.07], p-value<0.01), and 8 pp more likely under RF (n=48, 95% CI [-0.23,0.39]).

evidence on switching frequency: 20% of subjects switched their guess in period 2 after observing
the first-period guess of their neighbours; this switching frequency falls to 10% in period 12. In
addition, due to large learning effects across rounds, this switching probability falls further after
subjects play more rounds — only 5% of subjects switched their guess in period 12 in the last
three rounds (Appendix Figure 11). This evidence supports our first hypothesis: individual guesses
converge in all networks.

Turning to consensus, we note that the level of consensus attained in the experiment is lower than
the theoretical prediction (we examine these factors more closely in the Updating Rule section below
and in the Appendix). However, the ranking of consensus dynamics across networks is consistent
with the DeGroot simulation: the Royal Family network achieves the highest level of consensus from
period 2 onward; the Stochastic Block network attains consistently the lowest level of consensus;
the Erdös-Rényi network attains level of consensus in between the other two networks.

Consensus Outcomes

We examine the character of long-run outcomes through the measurement of ct for each network
averaged over the last 6 periods, i.e. between periods 7-12, averaged across all rounds and the
4 sessions (similar patterns are obtained if we consider fewer periods or rounds, see Appendix
Figure 13). In line with the DeGroot simulation reported in Figure 2c, Figure 3c shows that the
distribution in the Royal Family network is bi-modal near ct = 1 and ct = −1, with a higher
likelihood on ct = 1 representing correct consensus. The Stochastic Block network has a mode
around ct = 0, indicating a greater likelihood of no learning and hence the persistence of diverse
opinions. The Erdös-Rényi network leads to a fairly uniform spread of ct between 0 and 1.
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To make a statistical evaluation of the effects of networks on consensus, we proceed as follows:
for each round, we average ct across the last 6 periods. Thus for each network, there are a total of 24
data points (4 sessions with 6 rounds each). Then we categorize each round by whether the averaged
ct is above k (indicating the round achieving correct consensus), below −k (incorrect consensus),
or between k and −k (breakdown of consensus). For concreteness, we choose k to be 0.3, so correct
consensus is defined as the round achieving more than 30% of the maximum possible learning. Our
main findings are robust to different widths k and an alternative, continuous, definition of consensus
(Appendix B.2).

In Figure 4, we report the proportion of rounds that achieve correct or incorrect consensus or
exhibit a breakdown of consensus for each network (and the corresponding 95% confidence interval).
The estimates are derived from the following regression model: for group g in round r,

ycorrectg,r = β0 + 1RF
g β1 + 1SBg β2 + ϵg,r

where 1RF
g is an indicator function of whether the group g is playing on the Royal Family network.

ycorrectg,r is an indicator function of whether the round r achieved correct consensus: 1
6

∑12
t=6 cg,r,t > k.

To account for session effects, we cluster the analysis at the session level (see Fréchette (2012) for the
discussion on dealing with session-effects in the laboratory). β0 can be interpreted as the proportion
of Erdös-Rényi networks that reaches correct consensus, whereas β1 (β2) can be interpreted as the
difference in proportion of networks that reaches correct consensus between Royal Family and Erdös-
Rényi network (Stochastic Block and Erdös-Rényi network). Regression results are presented in the
Appendix (Table 7).

First, we find that breakdown of consensus is more likely in the Stochastic Block network than
the Erdös-Rényi network (n=48, p-value<0.01), whereas it is less likely in the Royal Family network
(n=48, p-value<0.05). The Stochastic Block network achieves breakdown of consensus in 14 rounds
(out of 24) as compared to 6 rounds in Erdös-Rényi and 2 rounds in Royal Family network. Recall
that there are 8 communities (consisting of 5 individuals each) in the Stochastic Block network.
In period 12, 52% of the communities obtain consensus in the Stochastic Block network. This
suggests that the disagreement across communities is the important source of the breakdown in
consensus in the Stochastic Block network. This is illustrated in 1 round of the Stochastic Block
network where more than 7 communities reach complete consensus (5 out of 5 subjects agree) and
yet there is breakdown of consensus in the society as a whole. These observations support our second
hypothesis: network homophily leads to breakdown of consensus by sustaining diverse opinions in a
network.

Second, we find that incorrect consensus is more likely in the Royal Family network than in
the Erdös-Rényi network and Stochastic Block network (n=48, p-value<0.05). The Royal Family
network achieves incorrect consensus in 5 rounds (out of 24) as compared to 1 round in Erdös-Rényi
and 0 round in Stochastic Block network. To appreciate the impact of the ‘royal family’, note
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that when 70% of the network receives the correct signal, incorrect consensus is defined as more
than half the network guessing incorrectly. This supports our third hypothesis: the presence of
highly influential individuals reflected in the Royal Family network, raises the likelihood of incorrect
consensus.

Lastly, we note that correct consensus is less likely in the Stochastic Block network than in
Erdös-Rényi (n=48, p-value<0.01) and Royal Family network. Our estimation results are robust to
alternative model specifications such as the logit model (Appendix Table 9).

Updating Rule

The environment faced by individuals is complex, so individuals may use different and possibly
time-varying updating rules.

We start by estimating the fraction of guesses that are random. About 10% of subjects fail to
(correctly) guess their signal in period 1 and follow their local majority in period 2. Theoretically,
under both DeGroot and Bayesian updating rule, this fraction equals 0%. Thus, we estimate that
about 20% of guesses are made randomly. Indeed, across the networks, the level of consensus
achieved in the experiment is similar to the consensus attained if every decision made by subjects
follows DeGroot updating rule with a 20% probability of random choice (or 10% probability guessing
against DeGroot prediction) (see Appendix Figure 17a).

Next, we examine how closely individual behaviour matches DeGroot updating. At every period
t ≥ 1, DeGroot updating predictions are made based on guesses in period t− 1. We define a binary
variable for ‘matching DeGroot prediction’: it equals 1 when the subject i’s guess in period t coin-
cides with the DeGroot prediction, and 0 otherwise. In the case of DeGroot predicting indifference,
the variable equals 1 regardless.

Consider a baseline scenario where all subjects guess only their signal. Simulations show that
75% of these pseudo subjects’ guesses would match with DeGroot. By contrast, on average, 88% of
guesses in our experiment match with the DeGroot rule (n=11,520 per network). Figure 5a shows
that this fraction is consistently higher than the baseline for all three networks (see Appendix B.4
for detailed comparison). In the case when subjects’ guesses do not match with DeGroot, about
70% of the guesses follow their signals. Taken together, DeGroot and persisting with own signal
explain more than 95% of the variation in guesses.

Furthermore, the fraction of guesses that matches DeGroot predictions is increasing across
rounds (see Figure 5b). This improvement in matching suggests that there is learning across rounds,
potentially towards DeGroot updating. In particular, as subjects play more rounds, they are more
likely to guess their signal in period 1, and they are less likely to persist with their signal in later
periods (see Appendix Table 13).

We next turn to heterogeneity in updating rules across subjects. The percentage of guesses
matching the DeGroot prediction at the subject level is presented in Appendix Figure 18. We see
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that a substantial fraction of subjects in each network follows DeGroot rule. For instance, 80%
of subjects in the Erdös-Rényi network match with DeGroot predictions at least 80% of the time;
these fractions are 72% in the Royal Family network and 76% in the Stochastic Block network,
respectively. This is again higher than the baseline of how well guessing solely based on own signal
would match with the DeGroot predictions. Our simulations show that only 44% of pseudo subjects
(based on own signal) in the Erdös-Rényi network match with DeGroot predictions at least 80% of
the time (these numbers are 37% in the Royal Family network, and 41% in the Stochastic Block
network).

Testing how data matches with other learning rules is generally difficult in large networks.
Here we briefly comment on Bayesian learning (for a discussion of variants of DeGroot and other
updating rules see Chandrasekhar et al. (2020) and Grimm and Mengel (2020)). As Bayesian rules
cannot be computed for large networks, following Chandrasekhar et al. (2020), we consider the
role of information dominant players. We shall say that Ann is an information dominant leader of
Ben if Ann observes Ben and all his neighbours. If both players are Bayesian, Ben should imitate
Ann in all periods (while Ann should ignore Ben’s guesses after period 1). In our experiment, when
DeGroot prediction conflicts with the information leader’s guess, only around 10% of subjects follow
Bayesian prediction (n=1,870. ER:10%, RF:4%, SB:14%) while the rest follow DeGroot prediction.
Similarly, when the DeGroot prediction contradicts the signal received, less than 30% of subjects
follow their signal (n=9366. ER:25%, RF:29%, SB:29%), while the rest follow DeGroot. Regression
estimates are presented in the Appendix Tables 12 and 13. To sum up, the vast majority of guesses
are consistent with the predictions of the DeGroot updating rule.

5 Conclusion

Our experimental findings are globally consistent with the theoretical predictions based on the
deterministic DeGroot updating rule. More precisely, our results encourage the formation of decen-
tralized social networks with no influential individual and no homophily to distribute information
efficiently. Although the emergence of central hubs with disproportionate influence can significantly
improve the likelihood to reach a consensus, it can induce the entire population to hold wrong be-
liefs. Similarly, overly represented homophilous interactions can result in the emergence of tightly
connected yet somewhat isolated communities, where members of the same community often reach
consensus, but different communities may disagree with each other. Social networks with such a
property therefore open the doors to local polarization, which can be exploited by malicious actors
wishing to spread misinformation.

We explain our results through a consistent use of the DeGroot updating rule among subjects,
in spite of the complex decision making environment and some rich information available about the
network structure, which they eventually choose to ignore. We believe this experimental setting
realistically mimics the decisions made in actual social networks (e.g., online social media) where
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Figure 5: Comparing actual guesses with DeGroot prediction. (a) 88% of guesses match with DeGroot
prediction and 6∼10% match with signal. Together they explain 95% of variation in guesses. (b) 80∼85% of
guesses match with DeGroot prediction in round 1; this increases to 88∼92% by round 6 (n=34,560: 11,520
per network).

individuals do have access to information (though imperfectly) about their network structure. How-
ever, our experiment also reveals some persisting gap between the theoretical predictions and human
behavior. Indeed, we observe significantly more inefficiencies in our experiment (in terms of incor-
rect consensus or breakdown of consensus) than predicted. This observation suggests that even
rare, occasional deviations from the deterministic DeGroot rule (10-15% of the time in our data)
can have significant negative consequences on collective outcomes. Formally identifying the sources
of such individual deviations represents an interesting question worth being investigated in future
work.
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Appendix: For Online Publication

A Simulation

A.1 Network generation & selection

There are 3 networks of interest: Erdös-Rényi (ER), Stochastic Block (SB), and Royal Family (RF)
network. All networks have 40 nodes, n = 40. In order to control for the average information
received of each node, the networks have an average outdegree of 4 (excluding self links).

The generation process of each network type is as follows. The parameter specifications in the
network generation process were selected to ensure strong connectedness in the networks generated.

• Erdös-Rényi networks are generated according to the Erdös-Rényi model (using the “er-
dos.renyi.game” function from the igraph package). We specify the number of nodes as n

and total number of edges as 2n.
• Stochastic Block networks are generated according to the Trait-based random generation (us-

ing “sample_pref” function from the igraph package). We specify the number of nodes as
n and the size of each community as 5. So there are n/5 communities where the probabil-
ity of linking within a community is pii = 0.85 and between communities is pij = pii/60.
(These parameter specifications were selected to ensure strong connectedness in the networks
generated)

• Royal Family networks are created by first placing n players in a directed ring (player n
observes player 1 who then observes player 2 and so on). Then players 1,2,3 are selected to
be the hub where all players observe them. All players have outdegree of 4 (except for player
1 and 2 with outdegree of 2, and player 3 and n with outdegree of 3).

For each network treatment, we randomly generated 100 networks that are (strongly) connected
— every node can be reached through a path from every other node. Then we computed network
measures such as outdegree, diameter, average path length, clustering for each network. The average
statistics for each network type are presented in Table 1.

Out of the 100 randomly generated networks, a network with measures closest to the average
statistics is then used in the experiment. Table 2 presents the network statistics of these networks
and Figure 6 presents the network graphs. Note that the Royal Family network is not generated
randomly.

A.2 Signal generation & selection

We randomly select 24 sets of signals for the experiment. For each network treatment, there are 4
groups of players each playing 6 rounds. So group 1 in round 1 uses the first set of signals while
group 4 in round 6 uses the 24th set. Therefore, the same collection of signals are used across all
networks.
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Figure 6: Network graph of n=40 with average outdegree 4
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Table 1: Averages network statistics of 100 randomly generated networks

n=40 avg. outdegree diameter avg path length clustering
ER 4.00 5.63 2.73 0.10
SB 3.98 9.15 4.12 0.57
RF 3.85 38.00 12.72 0.26

Table 2: Network statistics of the networks used in the experiments
n=40 avg. outdegree diameter avg path length clustering
ER 4.00 5 2.73 0.10
SB 4.00 9 3.85 0.57
RF 3.85 38 12.72 0.26

We perform two checks to ensure that the 24 sets of signals are representative. First, we note that
the distribution of the 24 sets of signals is bell-shaped around the mean 0.7 where 1 represents the
correct state (Figure 7a). Second, we confirm that the simulated guesses following these 24 sets of
signals (Figure 7b) have the same properties as the simulations of the 1000 sets of signals (presented
in Figure 2c, see main text). The regression on network effects with respect to ‘Correct consensus’,
‘Incorrect consensus’ and ‘Breakdown of consensus’ (as defined in the Consensus Outcomes section
in the main text) confirms the main hypotheses (Table 3).
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Figure 7: Signal distribution and simulation results using the 24 sets of signals for the experiment. (a)
Distribution of signals used for all networks in the experiment with mean 0.70, standard deviation 0.06,
1st quartile 0.675, 2nd quartile 0.70 and 3rd quartile 0.75. (n=24) (b) Distribution of ct under DeGroot
simulation using experiment signals. The hypotheses from the simulation of 1000 runs are confirmed: 1)
There is more breakdown of consensus in the Stochastic Block network than in the Erdös-Rényi and Royal
Family network; 2) There is more incorrect consensus in the Royal Family network than in the Erdös-Rényi
and Stochastic Block network.
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Table 3: OLS regression of simulated data, network size 40, k = 0.3

OLS - Correct Consensus OLS - Incorrect Consensus OLS - Breakdown

(Intercept) 0.88∗∗∗ 0.04 0.08
(0.09) (0.05) (0.07)

typeRF −0.08 0.17∗∗ −0.08
(0.12) (0.08) (0.10)

typeSB −0.37∗∗∗ −0.04 0.42∗∗∗

(0.12) (0.08) (0.10)

R2 0.13 0.11 0.31
Adj. R2 0.10 0.08 0.29
Num. obs. 72 72 72
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

A.3 Variations on DeGroot updating rule

All network effects identified in the simulations are robust to alternative variations on DeGroot
updating rule.
Deterministic DeGroot. In the case of indifference, suppose an individual persists with her last
period’s guess. Formally, we say:

ai,t =


1 if µi,t >

1
2 ,

0 if µi,t <
1
2 ,

ai,t−1 if µi,t =
1
2

(3)

Simulations of this variant of the DeGroot are presented in Figure 8.
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Figure 8: Distribution of ct under Deterministic DeGroot simulation using experiment signals.

DeGroot with Trembling. Suppose an individual observes a majority guess of Red: if we use
DeGroot updating rule with 10% trembling, that means she would guess Green 10% of the time and
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Red 90% of the time. Figure 9 shows that the networks effects identified with the original DeGroot
(as in Figure 2c in the main text) are robust.

A.4 Welfare

To compare welfare performances across networks, we use a simple measure of welfare improvement:
wt = (nt−n0)/(n−n0), i.e., the first part of ct in eq. (2), applied to the entire range. The measure
ranges from 1 (maximum gain in welfare) to −n0/(n−n0) (maximum loss in welfare). The simulation
shows that, in the limit, Erdös-Rényi has the highest average welfare improvement, followed by
Stochastic Block, and Royal Family comes last (Figure 10). The reason for the poor showing
of the Royal Family network is the high frequency of incorrect consensus outcomes. Stochastic
Block network achieves lower welfare improvement than Erdös-Rényi network because it has more
breakdowns of correct consensus.
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Figure 9: Distribution of ct under simulation with trembling.
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Figure 10: Evolution of welfare improvement wt in the simulation: In period 12, ER achieved 88% of the
possible welfare improvement, 58% for SB and 34% for RF.

B Findings

B.1 Convergence

The rapid convergence of guesses in the experiment is supported by evidence on switching frequency:
20% of individuals switched their guesses at period 2 after observing the first period guesses of their
neighbors, this switching frequency falls to 10% toward the end of the experiment in period 12. The
switching probability falls significantly as subjects learn across rounds: as a result, it is only 5%
in the last three rounds (Figure 11). We argue that the residual switching in guesses in the final
periods are not due to further learning by subjects, but due to random guessing.
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Figure 11: Percentage of subjects switching guesses per period. (a) In the first three rounds, percentage of
switching falls from 20% in period 2 to 10∼15% in period 12. (b) In the last three rounds, percentage of
switching falls from around 20% in period 2 to 5∼8% in period 12. Therefore, adjusting for learning across
rounds, there is less than 8% of subjects switching guesses by period 12.
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We estimate that 10% of the guesses are random in the experiment, using the following technique:
Irrespective of whether a myopic player follows Bayesian or DeGroot learning rule, in period 1, it
is optimal to guess her initial signal. In period 2, both (myopic) Bayesian and DeGroot learning
rules predict that player should follow the majority guess in her neighbourhood in period 1. Table 4
shows that about 10% of guesses do not follow subjects’ initial signals in period 1 and contradict
both learning rules in period 2. This suggests that about 10% of guesses ignore information.

Table 4: Fraction of guesses against Bayesian and DeGroot prediction, network size 40

Guess against majority in period 1,2

OLS (Bayesian, DeGroot predicts 0) Logit

(Intercept) 0.10∗∗∗ −2.24∗∗∗

(0.01) (0.08)
typesizeRF_40 0.02∗ 0.24∗

(0.01) (0.13)
typesizeSB_40 0.02∗∗∗ 0.25∗∗∗

(0.01) (0.08)

R2 0.00
Adj. R2 0.00
Num. obs. 5760 5760
AIC 4029.57
BIC 4049.54
Log Likelihood −2011.78
Deviance 4023.57
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

24



B.2 Consensus

The simulations lead us to propose two hypotheses: One, the breakdown of consensus is most
likely in the Stochastic Block network, followed by the Erdös-Rényi network and lastly the Royal
Family network; Two, the Royal Family network leads to the wrong consensus more often than
the Erdös-Rényi network. Figure 12a presents the evolution of consensus across periods across all
networks, while Figure 12b presents the evolution of ct partitioned by ‘good’ and ‘bad’ signals. Under
DeGroot updating simulation, the set of ‘good’ signals would lead to ct ≥ 0 (correct consensus),
while the ‘bad’ signals would lead to ct < 0 (incorrect consensus). They show that the rankings
in the hypotheses are maintained across all periods. The regression Table 7 shows the statistical
significance of the estimates (presented in Figure 4 in the main text), supporting our hypotheses.
The estimate of ‘incorrect consensus‘ on ‘typeRF’ represents the difference in fraction of incorrect
consensus achieved between the Royal Family network and the Erdös-Rényi network.
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Figure 12: Evolution of |ct| and partitioned ct. (a) In period 12, RF, ER, SB reach 63%, 44%, 30% of
consensus, respectively. (b) We partitioned ct averaged across all games by ‘good’ and ‘bad’ signals. The
ranking of correct and incorrect consensus reached is preserved across most periods.

A similar distribution of ct obtains if we consider fewer periods (periods 10-12) or rounds (rounds
4-6) (Figure 13).

Recall, we defined binary variables of correct consensus (if ct > k), incorrect consensus (if
ct < −k), and breakdown of consensus (if −k ≤ ct ≤ k) based on the value of ct. Our main findings
are robust to 1) different widths k (Tables 6 to 8), 2) an alternative model specification such as the
logit model (Table 9), and 3) a continuous definition of consensus outcomes (Table 10).

A continuous variation on the definition of consensus would be as follows: Consensus is defined
as the absolute value of ct, |ct|; correct consensus is defined as censoring negative values of ct to
0; incorrect consensus censors positive values of ct to 0; breakdown is defined as the negative of
consensus, −|ct|.
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(a) Distribution of averaged ct, between period 7-12, round 1-6 (n=24 per network)
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(b) Distribution of averaged ct, between period 10-12, round 1-6 (n=24 per network)
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Figure 13: Distribution of averaged ct robust over period and round selections.
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For the Stochastic Block network, we show that communities are more likely to reach consensus
compared to Erdös-Rényi network despite the networks being less likely to reach consensus. The
subset of subjects in each block of the Stochastic Block model may be seen as constituting a
‘community’. Given the network generation methods in the Stochastic Block model, subjects with
location id 1 − 5 is a community while id 6 − 10 is another community, and so on. So in all three
networks, we define a community by the same location ids. We define community consensus as 1
when all 5 subjects in a community reaches complete consensus, and 0 otherwise.

Table 5 shows that 52% of communities reach consensus in the Stochastic Block network which
is 14% point higher than in Erdös-Rényi network. We next look closer at the dispersion of average
guesses of communities. The maximum difference in average guesses of communities is equal to
1: when there exists one community with correct consensus and one with incorrect consensus.
Figure 14 shows that 75% of rounds in the Stochastic Block network have large dispersion in
community guesses (greater than 0.7) while only 50% in Erdös-Rényi network and 46% in Royal
Family network. This implies that disagreements between communities are the principal source of
the consensus breakdown in the Stochastic Block network.

B.3 Welfare

We examine the implications of learning outcomes on welfare by using the welfare improvement
measure wt. In line with the DeGroot simulation, the Erdös-Rényi network has higher welfare
improvement than the Stochastic Block network (Table 11). We find that the Erdös-Rényi network
achieves the average welfare improvement of 0.30, while only 0.18 for the Stochastic Block network.
We do not find any significant difference in welfare improvement between the Erdös-Rényi network
and the Royal Family network. This is probably due to the large variation in welfare improvement
and deterioration among the Royal Family networks.
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Table 5: Regression of community consensus on network treatment

OLS - Community Consensus Logit - Community Consensus

(Intercept) 0.38∗∗∗ −0.49∗∗∗

(0.03) (0.15)
typeRF 0.16∗ 0.66∗

(0.09) (0.37)
typeSB 0.14∗∗∗ 0.55∗∗∗

(0.04) (0.16)

R2 0.02
Adj. R2 0.02
Num. obs. 576 576
AIC 791.85
BIC 804.92
Log Likelihood −392.93
Deviance 785.85
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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Figure 14: Distribution of the maximum dispersion in average guesses between communities for each network.
75% of rounds in the SB have more than 0.7 dispersion in average guesses between communities, 50% in ER
and 46% in RF (n=24 per network).
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Table 6: OLS regression ct, k=0.2, n=40

OLS - Correct Consensus OLS - Incorrect Consensus OLS - Breakdown

(Intercept) 0.71∗∗∗ 0.04 0.25∗∗∗

(0.07) (0.04) (0.04)
typeRF −0.00 0.17∗∗ −0.17∗

(0.15) (0.08) (0.09)
typeSB −0.33∗∗∗ −0.00 0.33∗∗∗

(0.08) (0.05) (0.06)

R2 0.10 0.07 0.20
Adj. R2 0.08 0.04 0.18
Num. obs. 72 72 72
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 7: OLS regression ct, k=0.3, n=40

OLS - Correct Consensus OLS - Incorrect Consensus OLS - Breakdown

(Intercept) 0.54∗∗∗ 0.04 0.42∗∗∗

(0.07) (0.04) (0.04)
typeRF 0.08 0.17∗∗ −0.25∗∗

(0.16) (0.08) (0.11)
typeSB −0.21∗∗∗ −0.04 0.25∗∗∗

(0.07) (0.04) (0.04)

R2 0.06 0.11 0.17
Adj. R2 0.03 0.08 0.15
Num. obs. 72 72 72
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 8: OLS regression ct, k=0.4, n=40

OLS - Correct Consensus OLS - Incorrect Consensus OLS - Breakdown

(Intercept) 0.46∗∗∗ 0.04 0.50∗∗∗

(0.09) (0.04) (0.06)
typeRF 0.04 0.12∗ −0.17

(0.18) (0.07) (0.12)
typeSB −0.25∗∗ −0.04 0.29∗∗∗

(0.12) (0.04) (0.09)

R2 0.07 0.08 0.14
Adj. R2 0.04 0.05 0.12
Num. obs. 72 72 72
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

29



Table 9: Logistic regression ct, k=0.3, n=40

Logit - Correct Consensus Logit - Incorrect Consensus Logit - Breakdown

(Intercept) 0.17 −3.14∗∗∗ −0.34∗

(0.28) (0.92) (0.17)
typeRF 0.34 1.80∗ −1.27∗

(0.66) (1.01) (0.77)
typeSB −0.86∗∗∗ −16.43∗∗∗ 1.03∗∗∗

(0.28) (1.05) (0.17)

AIC 101.41 38.88 90.78
BIC 108.24 45.71 97.61
Log Likelihood −47.71 −16.44 −42.39
Deviance 95.41 32.88 84.78
Num. obs. 72 72 72
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 10: OLS regression ct censored, n=40

OLS - Correct Consensus OLS - Incorrect Consensus OLS - Breakdown

(Intercept) 0.36∗∗∗ 0.02 0.62∗∗∗

(0.03) (0.02) (0.01)
typeRF 0.07 0.08∗∗ −0.15∗

(0.10) (0.04) (0.08)
typeSB −0.14∗∗∗ −0.02 0.16∗∗∗

(0.04) (0.02) (0.02)

R2 0.08 0.09 0.19
Adj. R2 0.06 0.06 0.17
Num. obs. 72 72 72
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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Table 11: OLS regression of welfare wt on network
treatment

OLS - Welfare

(Intercept) 0.30∗∗∗

(0.07)
typeRF −0.12

(0.17)
typeSB −0.18∗∗

(0.08)

R2 0.02
Adj. R2 0.01
Num. obs. 432
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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Figure 15: Evolution of welfare improvement wt

in the experiment. In the experiment, in the last
period, ER achieved 30% of the possible welfare
improvement, 18% for SB and 22% for RF.

B.4 Updating rule
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Figure 16: The percentage of guesses matching DeGroot prediction across periods. Across all networks
at least 90% of first guesses matched with the DeGroot prediction (i.e., guess follows the signal). This
percentage falls to 80%∼85% in the second period and then steadily increases until it reaches 85%∼90% in
later periods.

On average, 88% of guesses match with the DeGroot rule. This is higher than the baseline of
how well guessing randomly matches with DeGroot predictions: simulations show that on average
60% pseudo subjects’ random guesses match with DeGroot. This is also higher than the baseline of
how well guessing signal matches with DeGroot predictions: simulations show that on average 75%
guesses of pseudo subjects (if guessing only signal) match with DeGroot (Figure 18a).

Suppose that 10% of guesses are randomly made. We show that the level of consensus attained
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in the experiment is comparable the simulation under 10% trembling for Erdös-Rényi (Figure 17a)
and 15% trembling for Stochastic Block and Royal Family network (Figure 17b).

We next delve deeper by looking at subject level match with DeGroot. Because each subject
plays a total of 6 rounds and 12 periods per round and their guesses are not statistically independent,
we treat each subject as a data point. Figure 18 presents the histogram of how well a subject’s
guesses match with DeGroot predictions. For all networks, there are significantly more subjects
whose guesses match with DeGroot than pseudo subjects who guess their signals or randomly.
Bayesian learning: Information Leader. When DeGroot prediction contradicts with informa-
tion leader’s guess, a Bayesian player should follow their information leader while a DeGroot player
should follow the majority of their neighbours. Table 12 show that when the two are in conflict,
only around 10% of subjects follow Bayesian prediction (ER:10%, RF:4%, SB:14%), while the rest
follow DeGroot. Note that this percentage is decreasing in rounds which suggests subjects’ learning
behaviour towards DeGroot updating rule.
No learning: Stubborn players that only follow their signal. Similarly, when DeGroot
prediction contradicts goes against initial signal received, a stubborn player should only follow their
own signal. Table 13 show that around 25% of subjects follow initial signal (ER:25%, RF:29%,
SB:29%) while the rest follow DeGroot. As before, we show that there is significant learning across
rounds. More interestingly, increases in periods also decreases stubbornness. This could be due to
increasing availability of information and therefore less weight is put on initial signals.
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(a) DeGroot simulation with 10% trembling
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Figure 17: Consensus achieved under DeGroot simulation with trembling.
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Figure 18: Percentage of guesses/subjects match with the DeGroot rule. Guesses matching DeGroot predic-
tion are in orange; (Simulation) Guessing signal matching DeGroot prediction are in dark grey; (Simulation)
Guessing randomly matching DeGroot prediction are in light grey. (a) Roughly 88% of guesses match
with DeGroot predictions, significantly higher than the other two baselines of 75% and 60% respectively.
(n=46,080: 11,520 per network) (b) 80% of subjects in ER match with DeGroot predictions at least 80% of
the time; these fractions are 72% in the RF and 76% in the SB. This is again compared to the baseline of how
well guessing signal matches with DeGroot predictions: Only 44% of pseudo subjects’ guesses (if guessing
only signal) in ER match with DeGroot predictions at least 80% of the time (37% in RF, and 41% in SB);
A negligible fraction of pseudo subjects’ guesses (if guessing randomly) match with DeGroot predictions at
least 80% of the time. (n=960: 240 per network)

34



Table 12: Fraction of guesses imitate leader against DeGroot prediction

Correctly follow leader

OLS (Bayesian predicts 1) Logit OLS OLS

(Intercept) 0.10∗∗∗ −2.20∗∗∗ 0.18∗∗∗ 0.18∗∗∗

(0.02) (0.18) (0.03) (0.02)
RF_40 −0.06∗∗∗ −0.91∗∗

(0.02) (0.39)
SB_40 0.04∗∗ 0.41∗

(0.02) (0.21)
period −0.01∗∗∗

(0.00)
round −0.02∗∗∗

(0.01)

R2 0.01 0.01 0.01
Adj. R2 0.01 0.00 0.01
Num. obs. 1870 1870 1870 1870
AIC 1388.23
BIC 1404.83
Log Likelihood −691.12
∗∗∗p < 0.01; ∗∗p < 0.05;∗p < 0.1

Table 13: Fraction of guesses following signal against DeGroot prediction

Always follow signal

OLS (Stubbornness predicts 1) Logit OLS OLS

(Intercept) 0.25∗∗∗ −1.07∗∗∗ 0.35∗∗∗ 0.40∗∗∗

(0.01) (0.07) (0.02) (0.02)
RF_40 0.04 0.21

(0.04) (0.21)
SB_40 0.04∗ 0.22∗

(0.02) (0.12)
period −0.01∗∗∗

(0.00)
round −0.03∗∗∗

(0.01)

R2 0.00 0.00 0.01
Adj. R2 0.00 0.00 0.01
Num. obs. 9366 9366 9366 9366
AIC 11185.38
BIC 11206.81
Log Likelihood −5589.69
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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C Related experiments
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Figure 19: RGG graph of n=40 with average outdegree 4

In a recent paper, Chandrasekhar et al. (2020) looked at the mixture model of Random Geometric
Graphs and Erdös-Rényi Graphs. We denote it as the RGG network from this point forward. This
model captures the idea of sparse and clustered networks from the real world where the share of
‘clans’ — a set of nodes that are more connected among themselves than to those outside — is non-
vanishing as n grows. This feature of inward-looking clans is also present in the 5-player communities
within the Stochastic Block network. Under DeGroot updating rule, ‘clans’ being inward-looking
facilitates the breakdown of consensus.

The network generation process is as follows: These exists a Poisson point process on the latent
space Ω = [0, 1]2 ⊂ R2, which determines the latent location of n nodes, with uniform intensity
λ > 0. For any subset A ⊂ Ω, nA ∼ Poisson(νa), where νa := λ

´
A dy. If the Euclidean distance

between two nodes i and j are at most r = 0.2, then i and j are linked with probability α = 0.95.
Otherwise, they are linked with probability β = α/(3n) < α. These parameter specifications were
selected to ensure strong connectedness in the networks generated. Figure 19 presents an example
of the RGG network which is also used in the experiment.

Figure 20a presents the simulation results of DeGroot updating rule on the RGG network and
compares it with the Erdös-Rényi, Royal Family and Stochastic Block network. These simulations
suggest that the RGG “lies between” the Erdös-Rényi and Stochastic Block network. The quartiles
and the mean of the distribution of simulated ct confirm this (Table 14). We observe the same
results in the experiment (Figure 20b).

The Erdös-Rényi and Stochastic Block networks are canonical networks. Given the simulations
and the experimental findings noted above, for expositional reasons, we felt it was best to present
the Erdös-Rényi and Stochastic Block networks in the main text and move the RGG network to
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Table 14: Quartile and Mean of ct under DeGroot simulation.

type 1st quartile 2nd quartile 3rd quartile mean
RF 1 1 1 0.792
ER 0.95 1 1 0.953
RGG 0.825 0.925 1 0.882
SB 0.75 0.875 1 0.864

this Appendix.
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(b) Distribution of averaged ct from experimental data (with RGG)

Figure 20: Distribution of averaged ct. (a) The simulation of 1000 sets of signals shows that the distribution
of consensus achieved by RGG lies between ER and SB. (b) Our experiment confirms the results from the
simulation. (n=24 per network)
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D Experimental Design

The experiment took place at the Laboratory for Research in Experimental and Behavioral Eco-
nomics (LINEEX) at the University of Valencia. Subjects were recruited through the online recruit-
ment system of LINEEX. All subjects who participated in this study provided informed consent at
the LINEEX laboratory, and the procedure of this study was approved by the Institutional Review
Board of the University of Valencia. In the experiment, subjects interacted through computer ter-
minals in the LINEEX laboratory, and the experimental software was programmed in HTML, PHP,
Javascript, and SQL.

Upon starting an experimental session, subjects read the paper-based instructions, which were
also read aloud by an experimenter to guarantee that everyone received the same information
(Supplementary Materials). The subjects were then provided with a step-by-step interactive tutorial
on their computer screen, which allowed them to get familiarized with the software interface and
the game (Figure 21). To clarify possible consequences of guesses in different periods of a round,
subjects were shown a sample network (with only 10 players but with similar features as the network
used in the actual game, depending on the experimental condition) highlighting what guesses would
be observed by subjects as a decision maker from their neighbours, and their neighbours’ neighbours.

Details about the decision screens were also provided to subjects: during any period of the game,
each subject was shown the colour of the ball initially drawn, and guesses made by neighbours in
the network during the previous period (Figure 23). Subjects also had the ability to view guesses
made by those individuals (and themselves) in earlier periods of the game through a slider button.
At the end of a round, a feedback screen revealed information about the payoff effective period that
has been randomly selected, the guesses made by the subject and all others in thin period, the bag
actually selected, and consequently the payoffs received by the subject in this round (0 or 3 euros
depending on whether the guess matches the bag) (Figure 24). Prior to starting the first round of
the game, all subjects also filled up a short questionnaire (4 questions) about their comprehension of
the decision screens (Figure 22). Correct answers were shown after each guess made by the subjects.

To prevent long inactivity during the game, subjects were asked to make all guesses within 30
seconds (in any period of any round). If no guess was made before this time limit, a guess was
made automatically, replicating the most recent guess or choosing at random in the first period.
Throughout the experiment, all guesses, with no exception, were made by subjects within this time
limit.
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Figure 21: Tutorials from the experiment
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Figure 22: Questionnaires from the experiment
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Figure 23: Screenshots from the experiment during the game
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E Sample Instructions

[The following instructions were used across all treatments.]

Please read the following instructions carefully. These instructions are the same for all the
participants. The instructions state everything you need to know to participate in the experiment.

In addition to the 5 euro show up fee that you are guaranteed to receive if you complete the ex-
periment, you can earn money based on your choices during the experiment. The other participants
will not see how much you earn in the experiment.

There are 6 independent rounds. A round consists of 12 decision periods.
At the very start, before round one, you will be grouped with 39 other participants: there are

40 participants in your group. The composition of the group remains unchanged throughout the 6
rounds.

At the beginning of a round, participants in your group will be randomly assigned to one of
40 positions in a network. A line segment between any two positions represents that they are
connected: Participants in these connected positions observe each other’s decision.
Your position in the network is labelled “Me” and other participants are labelled “P1” to “P39”.
Your neighbours are participants connected to your position. This assignment remains fixed across
the 12 periods of a round.

The tutorials in your computer present the network that is used in this experiment. Please go
over the tutorials to familiarize yourself with the network.

The assignment of positions in the network depends solely upon chance and is drawn afresh at
the start of a round. That is, in each round, every participant is equally likely to be assigned to
any position in the network.

A round

At the beginning of a round, one of these two bags is randomly selected with equal
probability.

The green bag contains 7 green balls and 3 red balls; the red bag contains 3 green balls and 7
red balls. In each of the 12 periods, all participants make a guess of the colour of bag picked.
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To help participants make the correct guess, every participant draws one ball from the bag at
random. After each draw, the ball will be returned to the bag before making the next private draw.
The colour of the ball drawn for a participant is only observed by that participant and is not shared
with anyone else. On top of the computer screen, you will be informed of whether the ball drawn
by the computer for you is green or red.

In the first period, after observing his/her private draw, every participant is asked to guess the
colour of the bag (green or red). When ready, you use the mouse to click on the G(reen) button
or the R(ed) button. You are given up to 30 seconds to make your guess.

After all decisions are made, everyone will get to see the choices of their neighbours in the
network, i.e., participants to whom s/he is connected in network. In order to explain the process of
getting information and making decisions over periods, consider the following stylized network.

After everyone makes a decision in the first period,
• You observe the guesses of P1 and P2
• Your neighbour P1 observes the guesses of you (labelled Me), and P3
• Your neighbour P2 observes the guesses of you and P4
• P3 observes the guesses of P1 and . . .
• P4 observes the guesses of P2 and . . .
As explained in the tutorials, guesses of your neighbours in the previous period are shown

through the colours of their node (green or red).
Next, in period 2, you are asked to guess the colour of the bag, based on your initial private

draw and your observation of the guesses made by your neighbours in period 1.
When all participants make their guess in the second period,
• You observe the revised guesses of P1 and P2
• Your neighbour P1 observes the revised guesses of you and P3
• Your neighbour P2 observes the revised guesses of you and P4
• P3 observes the revised guesses of P1 and . . .
• P4 observes the revised guesses of P2 and . . .
In period 3, you are again asked to guess the colour of the bag. This process is repeated until

12 decision periods are completed.
In every period, you need to make a choice within 30 seconds. If you do not make any guess

within 30 seconds:
• In the first period: the computer will guess randomly for you (green or red with 50% proba-

bility).
• In other periods: the computer will carry the guess you made in the previous period.
Note that you will receive no earnings for guesses made by the computer.
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Recall that the bag chosen in the beginning of a round remains unchanged across the 12 periods
of that round. When the first round ends, the computer informs all participants of the bag that
was actually chosen. After letting you observe the results of the first round, the second round will
start by having the computer randomly assigning network positions to participants in your group
and randomly selecting a bag.

This process will be repeated until all 6 independent rounds are completed. At the end of the
last round, you will be informed that the experiment has ended.

Earnings and feedback

At the end of each round, one of the 12 periods is randomly picked to determine your earnings
for that round. You earn

• 3 Euros if your guess in that period matches the bag picked;
• 0 Euros for an incorrect guess or if you did not make a guess in that period. On the feedback

screen, you are provided information on:
• The actual colour of the bag selected;
• Your private draw of a ball from the selected bag;
• The period randomly selected for payment;
• Your guess as well as everyone’s guess in the selected period;
• Your earnings.
Your final earnings in the experiment will consist of the sum of earnings across the 6 rounds

plus a show-up fee of 5 Euros.

F Raw data

Figures 25 to 27 present the evolution of the average guesses of each network treatment (ER, SB,
RF), group (1-4), and round (1-6) from the experiment.
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Figure 24: Feedback screen from the experiment during the game
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Figure 25: Experimental results — Development of guesses n=40
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Figure 26: Experimental results — Development of guesses n=40
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Figure 27: Experimental results — Development of guesses n=40
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