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Abstract

Most stock markets are open for 6-8 hours per trading day. The Asian, European
and American stock markets are separated in time by time-zone differences. We
propose a statistical dynamic factor model for a large number of daily returns across
multiple time zones. Our model has a common global factor as well as continental
factors. Under a mild fixed-signs assumption, our model is identified and has a
structural interpretation. We propose several estimators of the model: the maxi-
mum likelihood estimator-one day (MLE-one day), the quasi-maximum likelihood
estimator (QMLE), an improved estimator from QMLE (QMLE-md), the QMLE-
res (similar to MLE-one day), and a Bayesian estimator (Gibbs sampling). We
establish consistency, the rates of convergence and the asymptotic distributions of
the QMLE and the QMLE-md. We next provide a heuristic procedure for conduct-
ing inference for the MLE-one day and the QMLE-res. Monte Carlo simulations
reveal that the MLE-one day, the QMLE-res and the QMLE-md work well. We
then apply our model to two real data sets: (1) equity portfolio returns from Japan,
Europe and the US; (2) MSCI equity indices of 41 developed and emerging markets.
Some new insights about linkages among different markets are drawn.

Keywords: Daily Global Stock Market Returns; Time-Zone Differences; Struc-
tural Dynamic Factor Model; Quasi Maximum Likelihood; Minimum Dis-
tance; Expectation Maximization Algorithm.

JEL classification C55; C58; G15.

1 Introduction

The world’s stock markets are separated in time by substantial time-zone differences, to
the extent that for example the US and Chinese markets do no overlap. Nevertheless, it is
a common belief that they are becoming more and more connected through international
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trade and cross border investments. Linkages between different markets were particu-
larly evident during stressful times like the financial crisis in 2008 and the COVID-19
outbreak in 2020. The last three decades have witnessed a heightening interest in mea-
suring and modelling such linkages, whether dubbed as the stock market integration,
international return spillovers, cross-market contagions etc. Gagnon and Karolyi (2006)
and Sharma and Seth (2012) have carefully reviewed the literature and categorized these
studies according to methodologies, data sets and findings.

All the existing studies either examined a small number of entities such as a few
market indices, or ignored the time-zone differences whenever using daily data. The
use of daily closing prices while ignoring the time-zone differences causes the so-called
stale-price problem (Martens and Poon (2001), Connor, Goldberg, and Korajczyk (2010,
p.42-44)). The standard approach is to include the lead and lagged covariances to correct
for the stale pricing effect. This approach does not allow one to identify the source of
variation or its relative impacts.

When studying a large number of entities, it is common practice to aggregate in-
formation. We provide a framework to model the correlations of daily stock returns in
different markets across multiple time zones. The machinery will be a statistical dynamic
factor model (first proposed by Forni, Hallin, Lippi, and Reichlin (2000)), which enables
us to work with a large number of stocks. To make the framework tractable, we make
the following modelling assumption: All the markets belong to one of three continents:
Asia (A), Europe (E) and America (U). Within a calendar day, the Asian markets close
first, followed by the European and then American markets. We suppose that observed
logarithmic 24-hr returns (determined as the close-to-close returns) in each continent fol-
low a dynamic factor model with both global and continental factors. This model reflects
a situation in which new global information represented by the global factor affects all
three continents simultaneously, but is only revealed in the observed returns in the three
continents sequentially as their markets open in turn and trade on the new information
(Koch and Koch (1991, p.235)). New information represented by a continental factor
accumulated since the last closure of that continent’s markets will also have an impact
on the upcoming observed logarithmic 24-hr returns of those markets.

The approach of having global and continental factors, in some respects, resembles
the GVAR modeling approach (Pesaran, Schuermann, and Weiner (2004)), which was
developed to model world low-frequency macroeconomic series. Here we do not have so
many relevant variables beyond the prices themselves and hence our model is in terms of
unobserved factors. Our approach is also closely related to the nowcasting framework (Gi-
annone, Reichlin, and Small (2008), Banbura, Giannone, Modugno, and Reichlin (2013),
Aruoba, Diebold, and Scotti (2009) etc). In the nowcasting literature, researchers use
factor models to extract the information contained in the data at higher frequencies than
the target variable in order to forecast the target variable. Here, if we make additional as-
sumptions on the data generating processes of the unobserved logarithmic 24-hr returns,
we could also obtain their corresponding nowcasts; this is the similarity. The difference is
that, as we shall point out in Section 2, model (2.3) is identified under a mild fixed-signs
assumption (Assumption 2.2) and hence has a structural interpretation, whereas in the
nowcasting literature, identification of factor models is usually not addressed, and factor
models are mere dimension-reducing tools with no structural interpretations. In some
sense, our model belongs to the class of structural dynamic factor models (Stock and
Watson (2016)).

On the theoretical side, research about estimation of large factor models via the

2



likelihood approach has matured over the last decade. The likelihood approach enjoys
several advantages such as efficiency compared to the principal components method (Ban-
bura et al. (2013, p.204)). Doz, Giannone, and Reichlin (2012) established an average
rate of convergence of the estimated factors using a quasi-maximum likelihood estimator
(QMLE) via the Kalman smoother. However, there is a rotation matrix attached to the
estimated factors as the authors did not address identification of factor models. Also they
did not derive consistency for the estimated factor loadings, or the limiting distributions
of any estimate.

Bai and Li (2012) took a different approach to study large exact factor models. They
treated factors as fixed parameters instead of random vectors. One nice thing about this
approach is that the theoretical results obtained hold for any dynamic pattern of factors.
Bai and Li (2012) obtained consistency, the rates of convergence and the limiting distri-
butions of the maximum likelihood estimators (MLE) of the factor loadings, idiosyncratic
variances, and sample covariance matrix of factors. In fact, Bai and Li (2012) called their
estimators the QMLE instead of the MLE. We decided to re-label them as the MLE
since we shall reserve the phrase QMLE for another purpose to be made specific shortly.
Factors are then estimated via a generalised least squares (GLS) method. Bai and Li
(2016) generalised the results of Bai and Li (2012) to large approximate factor models.

In practice, instead of maximising a likelihood and finding the MLE, people usually
use the EM algorithm together with the Kalman smoother to estimate the model (Watson
and Engle (1983), Quah and Sargent (1992), Doz et al. (2012), Bai and Li (2012), Bai
and Li (2016) etc). Since the EM algorithm runs only for a finite number of iterations,
strictly speaking the estimate obtained by the EM algorithm is only an approximation to
the MLE. However, in a breakthrough study Barigozzi and Luciani (2022) showed that
the estimate obtained by the EM algorithm converges to the MLE sufficiently fast, so it
has the same asymptotic distribution as the MLE.

We propose several estimators of our model (2.3): the MLE-one day, the QMLE-res,
the QMLE, the QMLE-md, and the Bayesian. The MLE-one day estimator is the usual
MLE estimator of our model. The QMLE-res estimator is the MLE estimator of the two-
day representation of our model while maintaining the working independence hypothesis
(see Section 2.2); in this article we shall refer a likelihood-based estimator obtained under
the working independence hypothesis as the QMLE rather than the MLE. The QMLE
estimator differs from the QMLE-res in the sense that only a specific subset of restrictions
implied by our model is imposed. Since the QMLE is inefficient, we propose an improved
estimator, the QMLE-md, which uses the QMLE in the first step and incorporates ad-
ditional finite number of restrictions implied by our model via the minimum distance
method in the second step. Last, the Bayesian estimator uses the Gibbs sampling to
estimate the model (2.3). However, the Gibbs sampling is computationally intensive and
feasible only for a small number of entities.

The large sample results of the aforementioned studies are not directly applicable
to our model because the proofs of these results are identification-scheme dependent.
In particular, Bai and Li (2012), Bai and Li (2016) established their results under five
popular identification schemes, none of which is consistent with our model. In order to
have an identification scheme consistent with our model and at the same time utilise the
theories of Bai and Li (2012), we could only impose some, not all, of the restrictions
implied by our model to derive the first-order conditions (FOC) of the log-likelihood. It
took us a considerable amount of work to derive the corresponding large sample results
of our QMLE estimator. That is, consistency, the rate of convergence and the asymp-
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totic distribution of the QMLE are established. Then the asymptotic distribution of the
QMLE-md could be derived as well. The large sample theories of the MLE-one day and
the QMLE-res are beyond the scope of this article, and we leave them for future research.
Nevertheless, we provide a heuristic procedure to approximate the standard errors of the
MLE-one day and the QMLE-res.

We then conduct some Monte Carlo simulations to evaluate the MLE-one day, the
QMLE-res and the QMLE-md in terms of the root mean square errors, average of the
standard errors across the Monte Carlo samples, and the coverage probability of the
constructed confidence interval. Indeed, these three estimators perform well.

Last, we apply our model to two real data sets. The first data set consists of equity
portfolio returns from Japan, Europe and the US; that is, one market per continent.
Our methodology quantifies how much the global factor loaded on the returns during a
particular fraction of a calendar day, as well as the relative importance of the global and
continental factors. We also uncover some interesting time-series patterns. The second
data set is MSCI equity indices of the 41 developed and emerging markets. Taking the
Asian-Pacific continent as an example, we find that Mainland China and Hong Kong
have particularly high loadings on the global factor during the US trading time. Japan
has high loadings on the continental factor but small idiosyncratic variances, while other
Asian-Pacific markets have statistically insignificant loadings on the continental factor.

We contribute to methodology by providing a new modelling framework for daily
global stock market returns. Our framework could easily handle a large number of stocks
and at the same time take into account the time-zone differences. Under a mild fixed-
signs assumption, our model is identified and has a structural interpretation. We also
contribute to theory by deriving the asymptotic results of the QMLE and the QMLE-
md. The machinery is based on the theoretical results of Bai and Li (2012), but we
demonstrate how one could obtain their results for almost any identified dynamic factor
model. This is an important contribution as many dynamic factor models, like ours,
are motivated by different economic theories and might not be compatible with the five
identification schemes of Bai and Li (2012). We last contribute to the applied literature
by proposing several practically usable estimators and validate their performances in the
Monte Carlo simulations. When applying our model to two real data sets, we draw some
new insights about linkages among different stock markets.

The rest of the article is structured as follows. In Section 2 we explain our model and
discuss identification while in Section 3 we introduce our estimators. Section 4 presents
the large sample theories of the QMLE and the QMLE-md. Section 6 conducts the
Monte Carlo simulations to assess those advocated estimators, and Section 7 presents two
empirical applications of our model. Section 8 concludes. Major proofs and explanations
are to be found in Appendix; secondary materials are put in Supplementary Material
(SM in what follows).

1.1 Notation

Let Rn and Z+ denote the n-dimensional Euclidean space and set of non-negative integers,
respectively. For x ∈ Rn, let ∥x∥2 :=

√∑n
i=1 x

2
i and ∥x∥∞ := max1≤i≤n |xi| denote the

Euclidean (ℓ2) and element-wise maximum (ℓ∞) norms, respectively. Let A be an m× n
matrix. Let vecA denote the vector obtained by stacking columns of A one underneath
the other. Let unvec denote the reverse operation of vec.

The commutation matrix Km,n is an mn × mn orthogonal matrix which translates
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vecA to vec(A⊺), i.e., vec(A⊺) = Km,n vec(A). If A is a symmetric n × n matrix, its
n(n− 1)/2 supradiagonal elements are redundant in the sense that they can be deduced
from symmetry. If we eliminate these redundant elements from vecA, we obtain a new
n(n + 1)/2 × 1 vector, denoted vechA. They are related by the full-column-rank, n2 ×
n(n + 1)/2 duplication matrix Dn: vecA = Dn vechA. Conversely, vechA = D+

n vecA,
where D+

n is n(n+ 1)/2× n2 and the Moore-Penrose generalized inverse of Dn.
Given a vector v, diag(v) creates a diagonal matrix whose diagonal elements are

elements of v. We use p(·) to denote the (asymptotic) probability density function. ⌊x⌋
denotes the greatest integer strictly less than x ∈ R and ⌈x⌉ denotes the smallest integer
greater than or equal to x ∈ R. Landau (order) notation in this article, unless otherwise
stated, should be interpreted in the sense that N, T → ∞ jointly, where N and T are
the cross-sectional and temporal dimensions, respectively. We use C or C with number
subscripts to denote absolute positive constants (i.e., constants independent of anything
which is a function of N and/or T ); identities of such Cs might change from one place to
another.

2 The Model

Our model is based on the closing prices of the stock markets on the three continents,
which occur at different calendar times. We suppose that the closing times are ordered
as follows:

A E U A E U A · · ·
t = 1 2 3 4 5 6 7 · · ·

Note that the unit of t is not a day, but a fraction of a day. This framework could be
applied to three markets only (i.e., one market in each continent), or to the case where
some continent contains several markets. Let pci,t denote the logarithmic closing price
of stock i in continent c at time t for c = A,E, U . We shall assume that there are no
weekends as is the prevalent assumption in single market analysis. Nevertheless, we allow
that pci,t is not observed in two scenarios:

(i) Missing because of non-synchronized trading. That is, t might not correspond to
the closing times of continent c. For example, we do not observe pEi,3 for any stock
i in the European continent.

(ii) Missing because of some specific reasons. The reasons could be continent-specific
(e.g., Chinese New Year, Christmas), market-specific (e.g., national holidays), or
stock-specific (e.g., general meetings of shareholders).

We shall rule out scenario (ii) for the time being and address it to some extent in SM
B.1. We next define our model.

Define the logarithmic 24-hr return yci,t := pci,t − pci,t−3 for c = A,E, U , and TA :=
{1, 4, 7, . . . , T − 2}, TE := {2, 5, 8, . . . , T − 1} and TU := {3, 6, 9, . . . , T}, where T is a
multiple of 3. We assume that the observed logarithmic 24-hr returns follow the dynamic
system: For c = A,E, U ,

yci,t = zci (L)fg,t + z̃ci (L)fc,t + eci,t, i = 1, . . . , Nc, t ∈ Tc (2.1)
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where fg,t and fc,t are the scalar unobserved global and continental factors, respectively,
while

zci (L)fg,t :=
∑
j∈Z+

zci,jfg,t−j, z̃ci (L)fc,t :=
∑
j∈Z+

z̃ci,jfc,t−3j

for c = A,E, U , where L is the lag operator Lxt = xt−1. The model is dynamic in the
sense that

ϕg(L)fg,t+1 = ηg,t, t = 0, 1, . . . , T − 1

ϕc(L)fc,t+1 = ηc,t, t+ 1 ∈ Tc

where

ϕg(L)fg,t+1 :=
∑
j∈Z+

ϕg,jfg,t+1−j, ϕc(L)fc,t+1 :=
∑
j∈Z+

ϕc,jfg,t+1−3j

for c = A,E, U . Note that at every t we only observe the logarithmic 24-hr returns for
one continent. The lag polynomials acting on fc,t are autoregressive in terms of periods
in Tc as we cannot extract fc,t for t /∈ Tc without additional assumptions.

Although some of the aforementioned studies allow dynamics of factors, say, factors
following an AR(1) process, strictly speaking those factor models are not dynamic factor
models in the sense that the lagged factors are not allowed to enter the equation relating
factors to the observed series (see Bai and Wang (2015)). Exceptions are Forni et al.
(2000) and Barigozzi and Luciani (2022).

2.1 A Particular Form of (2.1) and Its State Space Form

For the rest of the article, we shall focus on a specific form of (2.1) for simplicity: For
c = A,E, U , zci (L)fg,t =

∑2
j=0 z

c
i,jfg,t−j, z̃

c
i (L)fc,t = z̃ci,0fc,t, ϕg(L)fg,t+1 = fg,t+1 − ϕfg,t

(|ϕ| < 1), and ϕc(L)fc,t+1 = fc,t+1, so that (2.1) becomes

yci,t =
2∑
j=0

zci,jfg,t−j + z̃ci,0fc,t + eci,t, i = 1, . . . , Nc, t ∈ Tc

fg,t+1 = ϕfg,t + ηg,t, |ϕ| < 1, t = 0, 1, . . . , T − 1 (2.2)

fc,t+1 = ηc,t t+ 1 ∈ Tc

Model (2.2) is natural for our framework in the sense that all the new information repre-
sented by the global and continental factors accumulated since the last closure of continent
c will have an impact on the upcoming observed logarithmic 24-hr returns of continent c.
For the case of several markets in some continent, the presence of ϕ in (2.2) allows one to
capture the effect caused by the fact that some markets in the same continent might have
different closing times. However, for the case of one market per continent, the efficient
market hypothesis (along with a time invariant risk premium) predicts that ϕ = 0.

Stacking all the stocks in continent c, we have

yct = Zcαt + ect , t ∈ Tc,
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where

yct :=

 yc1,t
...

ycNc,t

 , ect :=

 ec1,t
...

ecNc,t

 αt :=


fg,t
fg,t−1

fg,t−2

fC,t


Zc :=

 zc1,0 zc1,1 zc1,2 zc1,3
...

...
...

...
zcNc,0

zcNc,1
zcNc,2

zcNc,3

 =:
[
zc0 zc1 zc2 zc3

]
,

where fC,t := fc,t if t ∈ Tc, z
c
i,3 := z̃ci,0, and fg,t, fC,t := 0 for t ≤ 0. We compress

fA,t, fE,t, fU,t into a ”single” continental factor fC,t for the purpose of reducing the number
of state variables. Note that yct , e

c
t are Nc × 1 vectors, αt is 4× 1, and Zc is Nc × 4. We

make the following assumptions:

Assumption 2.1. (i) The idiosyncratic components are i.i.d. across time: {ect}t∈Tc
i.i.d.∼

N(0,Σc), where Σc := diag(σ2
c,1, . . . , σ

2
c,Nc

) for c = A,E, U . Moreover, eAi,t, e
E
i,t, e

U
i,t

are mutually independent for all possible i and t. Moreover, E[(eci,t)4] ≤ C for all i,
t and c.

(ii) Assume that ηt := (ηg,t, ηC,t)
⊺ i.i.d.∼ N(0, I2) for t = 0, 1, . . . , T − 1, where ηC,t := ηc,t

if t ∈ Tc. Moreover, {ηt}T−1
t=1 are independent of {ect}t∈Tc for c = A,E, U .

Assumption 2.1(i) is the same as Assumption B of Bai and Li (2012). We make the
assumption of diagonality of Σc for simplicity as our model is already quite involved so
we refrain from complicating the model unnecessarily. Assumption 2.1(ii) is a white-noise
assumption on the innovations of the factors.

We now cast model (2.2) in the state space form

yt = Ztαt + εt, εt ∼ N(0,Σt), t = 1, . . . , T, (2.3)

αt+1 =


ϕ 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0

αt +


1 0
0 0
0 0
0 1

ηt =: T αt +Rηt, t = 0, 1, . . . , T − 1,

where yt = yct , Zt = Zc, εt = ect ,Σt = Σc if t ∈ Tc, for c = A,E, U . This is a non-standard
dynamic factor model. The non-standard features are: (1) The factor loading matrix Zt
is switching among three states {ZA, ZE, ZU}. (2) The column dimensions of yt, Zt, εt
are switching among {NA, NE, NU}. (3) The covariance matrix of εt is switching among
{ΣA,ΣE,ΣU}.

In general for a static factor model, say, yt = Zαt + εt, further identification re-
strictions are needed in order to separately identify Z and αt from the term Zαt. In
particular, Zαt = Z̊α̊t for any 4 × 4 invertible matrix C such that Z̊ := ZC−1 and
α̊t := Cαt; we need 42 identification restrictions so that the only admissible C is an
identity matrix. A classical reference on this issue would be Anderson and Rubin (1956).
These restrictions have been ubiquitous in the literature (e.g., Bai and Li (2012), Bai
and Li (2016)). One exception is Bai and Wang (2015); Bai and Wang (2015) pointed
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out that by relying on the dynamic equation of fg,t, such as (2.2), one could use far
less identification restrictions to identify the model. In our case, we shall only make the
following mild fixed-signs assumption to identify the model.

Assumption 2.2. Estimators of zA0 , z
A
1 , z

A
2 , z

A
3 , z

E
3 , z

U
3 have the same column signs as

zA0 , z
A
1 , z

A
2 , z

A
3 , z

E
3 , z

U
3 .

Bai and Li (2012) have made similar assumption as an implicit part of their identifi-
cation schemes (IC2, IC3 and IC5) (see Bai and Li (2012, p.445, p.463)).

Lemma 2.1. The parameters of the dynamic factor model (2.3) are identified under
Assumption 2.2.

Our model (2.3) has a structural interpretation under Assumption 2.2, because one
could not freely insert a rotation matrix between Zt and αt. In other words, under
Assumption 2.2 we are not estimating the rotations of Zt or αt; we are estimating the
true Zt and αt of the data generating process. This is a novel feature of our model.

2.2 The Two-Day Representation

The representation of the model in state space form is of course not unique. For simplicity,
assume N := NA = NE = NU hereafter. We re-write our model (2.3) in the following
two-day representation:

ẙt︸︷︷︸
6N×1

= Λ︸︷︷︸
6N×14

f t︸︷︷︸
14×1

+ et︸︷︷︸
6N×1

(2.4)

for t = 1, 2, . . . , T/6 =: Tf , where we define ℓ := 6(t− 1) + 1,

ẙt :=



yAℓ
yEℓ+1

yUℓ+2

yAℓ+3

yEℓ+4

yUℓ+5


et :=



eAℓ
eEℓ+1

eUℓ+2

eAℓ+3

eEℓ+4

eUℓ+5


f t :=



fg,ℓ+5

fg,ℓ+4

fg,ℓ+3

fg,ℓ+2

fg,ℓ+1

fg,ℓ
fg,ℓ−1

fg,ℓ−2

fC,ℓ+5

fC,ℓ+4

fC,ℓ+3

fC,ℓ+2

fC,ℓ+1

fC,ℓ



Λ :=



0 0 0 0 0 zA0 zA1 zA2 0 0 0 0 0 zA3
0 0 0 0 zE0 zE1 zE2 0 0 0 0 0 zE3 0
0 0 0 zU0 zU1 zU2 0 0 0 0 0 zU3 0 0
0 0 zA0 zA1 zA2 0 0 0 0 0 zA3 0 0 0
0 zE0 zE1 zE2 0 0 0 0 0 zE3 0 0 0 0
zU0 zU1 zU2 0 0 0 0 0 zU3 0 0 0 0 0


, (2.5)
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with zck being N × 1 for k = 0, 1, 2, 3 and c = A,E, U , while

Σee := E[ete⊺
t ]

= diag(σ2
A,1, . . . , σ

2
A,N , σ

2
E,1, . . . , σ

2
E,N , σ

2
U,1, . . . , σ

2
U,N , σ

2
A,1, . . . , σ

2
A,N , σ

2
E,1, . . . , σ

2
E,N , σ

2
U,1, . . . , σ

2
U,N)

=: diag(σ2
1,1, . . . , σ

2
1,N , σ

2
2,1, . . . , σ

2
2,N , σ

2
3,1, . . . , σ

2
3,N , σ

2
4,1, . . . , σ

2
4,N , σ

2
5,1, . . . , σ

2
5,N , σ

2
6,1, . . . , σ

2
6,N).

Note that Λ consists of six row blocks of dimension N × 14. Let λ⊺
k,j denote the jth row

of the kth row block of Λ. In other words, λ⊺
1,j refers to the factor loadings for the jth

Asian stock in day one, while λ⊺
5,j refers to the factor loadings for the jth European stock

in day two.
The reason for doing so is that we could rely on the information contained in the

covariance matrix M := E[f tf
⊺
t ] to estimate ϕ, while treating {f t} as i.i.d. across

t when setting up the likelihood. Then we are able to use the theoretical results of
Bai and Li (2012) to establish the large-sample theories of the QMLE estimator of this
representation. Treating {f t} as i.i.d. when setting up the likelihood, albeit incorrectly,
will not destroy consistency or the asymptotic normality of the QMLE. This is the idea
of working independence (Pan and Connett (2002)).

3 Estimation

In this section, we shall outline several different estimation methods applicable for our
model (2.3). The estimators start from different formulations of the state space model and
impose different subsets of the available parameter restrictions. The reason we consider
these different estimators is because of the difficulty of deriving the distribution theory
in some cases and the different numerical performance we have uncovered. The different
estimators also provide an understanding of the theoretical issues we face.

MLE-one day. This is the MLE estimator of the likelihood function {yt}Tt=1, where
yt = Ztαt+εt. Estimation is done by the EM algorithm (to be explained in Section 3.1).

MLE-two day. This is the MLE estimator of the likelihood function {ẙt}
Tf
t=1, where

ẙt = Λf t + et. All the restrictions implied by Λ and M , and implied by autocorrelation
between f t and f t−1 will be taken into account. This is equivalent to the MLE-one
day. This estimator is not used in this article, but will help readers understand the
relationships among various estimators. Estimation is done by the EM algorithm.

QMLE-res. This is the QMLE estimator of the likelihood of {ẙt}
Tf
t=1, where ẙt =

Λf t + et. All the restrictions implied by Λ and M are taken into account. However,

autocorrelation between f t and f t−1 is ignored, and {f t}
Tf
t=1 are assumed as i.i.d over t

when setting up the likelihood. Estimation is done by the EM algorithm (to be explained
in Section 3.4).

QMLE. This is the QMLE estimator of the likelihood of {ẙt}
Tf
t=1, where ẙt = Λf t+et.

A specific set of 142 restrictions implied by Λ and M is employed. Autocorrelation

between f t and f t−1 is ignored, and {f t}
Tf
t=1 are assumed as i.i.d over t when setting up

the likelihood. This estimator is explained in Section 3.2. Estimation is done by the EM
algorithm (see Appendix A.13).
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Bai and Li (2012)’s QMLE. These are the QMLE estimators of the likelihood of

{ẙt}
Tf
t=1, where ẙt = Λf t + et with five specific sets of 142 restrictions consistent with

the five identification schemes of Bai and Li (2012). Autocorrelation between f t and

f t−1 is ignored, and {f t}
Tf
t=1 are assumed i.i.d over t when setting up the likelihood.

Unfortunately, our model is not consistent with any one of the five identification schemes.

QMLE-md. Use the QMLE as the first-step estimator and incorporate additional finite
number of restrictions implied by our model to obtain an improved estimator via the
minimum distance method. This estimator is explained in Section 3.3.

Bayesian. Use the Gibbs sampling to estimate yt = Ztαt + εt. This estimator is
explained in Appendix A.2. This estimator is computationally intensive and feasible only
for not so large N .

3.1 MLE-one day

Define θ := {ϕ, Zc,Σc, c = A,E, U}, Ξ := (α1, . . . ,αT )
⊺ and Y1:T := {y⊺

1, . . . ,y
⊺
T}⊺. The

log-likelihoods of Ξ and Y1:T |Ξ are

ℓ(Ξ;θ) = −T log(2π)− 1

2

T−1∑
t=0

[
(fg,t+1 − ϕfg,t)

2 + f 2
C,t+1

]
(3.1)

ℓ(Y1:T |Ξ;θ) = −TN
2

log(2π)− 1

2

T∑
t=1

log |Σt| −
1

2

T∑
t=1

(yt − Ztαt)
⊺Σ−1

t (yt − Ztαt).

The complete log-likelihood function of model (2.3), i.e., based on an observed state
vector, is hence (omitting constant)

ℓ(Ξ, Y1:T ;θ) = ℓ(Y1:T |Ξ;θ) + ℓ(Ξ;θ)

= −1

2

T∑
t=1

(
log |Σt|+ ε⊺tΣ

−1
t εt

)
− 1

2

T∑
t=1

η2g,t−1 =: −1

2

T∑
t=1

(
ℓ1,t + ℓ2,t

)
where ℓ1,t := log |Σt|+ tr

(
εtε

⊺
tΣ

−1
t

)
and ℓ2,t := η2g,t−1.

The EM algorithm consists of an E-step and an M-step.1 In the E-step, we evaluate a
conditional expectation of the complete log-likelihood function given the observed data,
while in the M-step we maximize it with respect to parameters. To give the starting
values of parameters in the EM algorithm, we first use the MLE to estimate a restricted
version of model (2.3). Take the Asian continent as an example. All the elements of
zA0 , z

A
1 , z

A
2 are set to one scalar, all the elements of zA3 are set to one scalar, and all the

diagonal elements of ΣA are set to one scalar. This will give reasonably good starting
values. We do not use the Principal Component (PC) estimator as the starting values
because in finite samples the PC estimator will not ensure that α̂PC

t,1 = α̂PC
t+1,2 for all t,

where α̂PC
t is the PC estimator of αt.

1Motivation of the EM algorithm is reviewed in SM B.2
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3.1.1 E-Step

Let Ẽ denote the expectation with respect to the conditional density p(Ξ|Y1:T ; θ̃
(i)
) at

θ̃
(i)
, where θ̃

(i)
is the estimate of θ from the ith iteration of the EM algorithm. Taking

such expectation on both sides of the preceding display, we hence have

Ẽ
[
ℓ(Ξ, Y1:T ;θ)

]
= constant− 1

2

(
Ẽ

T∑
t=1

ℓ1,t + Ẽ
T∑
t=1

ℓ2,t

)
.

This is the so-called ”E” step of the EM algorithm. Ẽ[·] could be computed using the
Kalman smoother (KS; see Section A.3 for formulas of the KS).

3.1.2 M-Step

The M step involves maximising Ẽ
[
ℓ(Ξ, Y1:T ;θ)

]
with respect to θ. This is usually done

by computing
∂Ẽ
[
ℓ(Ξ, Y1:T ;θ)

]
∂θ

and setting the preceding display to zero to obtain the estimate θ̃
(i+1)

of θ for the (i+1)th
iteration of the EM algorithm.

M-Step of Zt and Σt We now find values of Zt and Σt to minimize Ẽ
∑T

t=1 ℓ1,t. Recall
that Zt = Zc,Σt = Σc if t ∈ Tc for c = A,E, U . Without loss of generality, we shall use
the Asian continent to illustrate the procedure. We now find values of ZA and ΣA to
minimise Ẽ

∑
t∈TA ℓ1,t. Since εt = yt − Ztαt and ηt = R⊺(αt+1 − T αt) (see (2.3)), we

have ∑
t∈TA

ℓ1,t =
T

3
log |ΣA|+

∑
t∈TA

tr

([
yty

⊺
t − 2ZAαty

⊺
t + ZAαtα

⊺
tZ

A⊺
]
Σ−1
A

)
and hence

Ẽ
∑
t∈TA

ℓ1,t =
T

3
log |ΣA|+

∑
t∈TA

tr

([
yty

⊺
t − 2ZAẼ[αt]y

⊺
t + ZAẼ[αtα

⊺
t ]Z

A⊺
]
Σ−1
A

)
(3.2)

We now consider ZA, and take differential of (3.2) with respect to ZA:

dẼ
∑
t∈TA

ℓ1,t =
∑
t∈TA

tr

([
−2dZAẼ[αt]y

⊺
t + 2dZAẼ[αtα

⊺
t ]Z

A⊺
]
Σ−1
A

)
= −2

∑
t∈TA

tr

(
dZA

[
Ẽ[αt]y

⊺
t − Ẽ[αtα

⊺
t ]Z

A⊺
]
Σ−1
A

)
,

whence we have

Z̃A =
∑
t∈TA

Ẽ[ytα
⊺
t ]

(∑
t∈TA

Ẽ[αtα
⊺
t ]

)−1

. (3.3)
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We next consider ΣA. Define

CA :=
∑
t∈TA

[
yty

⊺
t − 2ZAẼ[αt]y

⊺
t + ZAẼ[αtα

⊺
t ]Z

A⊺
]

C̃A :=
∑
t∈TA

[
yty

⊺
t − 2Z̃AẼ[αt]y

⊺
t + Z̃AẼ[αtα

⊺
t ]Z̃

A⊺
]

Then (3.2) can be written as

Ẽ
∑
t∈TA

ℓ1,t =
T

3
log |ΣA|+ tr(CAΣ

−1
A )

Take the differential of Ẽ
∑

t∈TA ℓ1,t with respect to ΣA

dẼ
∑
t∈TA

ℓ1,t =
T

3
tr(Σ−1

A dΣA)− tr(Σ−1
A CAΣ

−1
A dΣA) = tr

(
Σ−1
A

[
T

3
ΣA − CA

]
Σ−1
A dΣA

)
whence we have, recognising the diagonality of ΣA,

∂Ẽ
∑

t∈TA ℓ1,t

∂ΣA

= Σ−1
A

[
T

3
ΣA − CA

]
Σ−1
A ◦ INA

where ◦ denotes the Hadamard product. The first-order condition of ΣA is

Σ̃A =
3

T
(C̃A ◦ IN).

M-Step of ϕ We now find value of ϕ to minimize Ẽ
∑T

t=1 ℓ2,t. We have

Ẽ
T∑
t=1

ℓ2,t =
T∑
t=1

Ẽη2g,t−1 =
T∑
t=1

(
Ẽ[f 2

g,t]− 2ϕẼ[fg,tfg,t−1] + ϕ2Ẽ[f 2
g,t−1]

)
,

whence the first order condition of ϕ gives

ϕ̃ =

( T∑
t=1

Ẽ[f 2
g,t−1]

)−1 T∑
t=1

Ẽ[fg,tfg,t−1]. (3.4)

Remark 3.1. As mentioned before, our model is perfectly geared for the scenario of
missing observations due to non-synchronized trading (scenario (i)). In SM B.1, we
discuss how to alter the EM algorithm if we include the scenario of missing observations
due to continent-specific reasons such as continent-wide public holidays (e.g., Chinese
New Year). That is, both scenario (i) and a specific form of scenario (ii) are present in
the data. We do not consider other forms of scenario (ii) - missing observations due to
market-specific, stock-specific reasons - in this article.
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3.2 QMLE

We work with the two-day representation (2.4). We define the following quantities:

Syy :=
1

Tf

Tf∑
t=1

ẙtẙ
⊺
t , Σyy := ΛMΛ⊺ + Σee,

where M := E[f tf
⊺
t ] and Tf := T/6. It can be seen that the 14× 14 matrix M and the

8× 8 matrix Φ are as follows:

M =

[
Φ 0
0 I6

]
, Φ :=

1

1− ϕ2



1 ϕ ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7

ϕ 1 ϕ ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

ϕ2 ϕ 1 ϕ ϕ2 ϕ3 ϕ4 ϕ5

ϕ3 ϕ2 ϕ 1 ϕ ϕ2 ϕ3 ϕ4

ϕ4 ϕ3 ϕ2 ϕ 1 ϕ ϕ2 ϕ3

ϕ5 ϕ4 ϕ3 ϕ2 ϕ 1 ϕ ϕ2

ϕ6 ϕ5 ϕ4 ϕ3 ϕ2 ϕ 1 ϕ
ϕ7 ϕ6 ϕ5 ϕ4 ϕ3 ϕ2 ϕ 1


. (3.5)

Given the assumption of |ϕ| < 1 in (2.2), we have M = O(1) and M−1 = O(1).

Treating {f t}
Tf
t=1 as i.i.d over t, we can write down the log-likelihood of {ẙt}

Tf
t=1 (scaled

by 1/(NTf )):

1

NTf
ℓ
(
{ẙt}

Tf
t=1;θ

)
= −3 log(2π)− 1

2N
log |Σyy| −

1

2N
tr(SyyΣ

−1
yy ). (3.6)

We shall only utilise the information that M is symmetric, positive definite and that
Σee is diagonal to derive the generic first-order conditions (FOCs).2 In Appendix A.4,
we derive such FOCs and identify the QMLE estimators Λ̂, M̂ , Σ̂ee after imposing 142

identification restrictions. The QMLE estimators Λ̂, M̂ , Σ̂ee satisfy the equations

Λ̂⊺Σ̂−1
yy (Syy − Σ̂yy) = 0

diag(Σ̂−1
yy ) = diag(Σ̂−1

yy SyyΣ̂
−1
yy ), (3.7)

where Σ̂yy := Λ̂M̂ Λ̂⊺ + Σ̂ee. Display (3.7) is the same as (2.7) and (2.8) of Bai and
Li (2012). Bai and Li (2012) considered five identification schemes, none of which is
consistent with Λ and M defined in (2.5) and (3.5), respectively. Actually Λ and M
imply more than 142 restrictions, but in order to have a solution for the generic FOCs,
we could only impose 142 restrictions on Λ̂ and M̂ . We call the resulting estimators

the QMLE rather than the MLE because {f t}
Tf
t=1 are assumed i.i.d over t when setting

up the likelihood. How to select these 142 restrictions from those implied by Λ and M
are crucial because we cannot afford imposing a restriction which is not instrumental for
establishing large-sample theories later. We painstakingly explain our procedure in the
proofs of Proposition 4.1 and Theorems 4.1, 4.3. Our procedure is quite ingenious and
does not exist in the proofs of Bai and Li (2012).

2The word generic means that specific forms of Λ given by (2.5) and of M given by (3.5) are not
utilised to derive the FOCs.
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3.3 QMLE-md

The QMLE estimator we defined above only used 142 restrictions and there are addi-
tional restrictions implied by our model ((2.3), (2.2)). In this subsection, we propose an
improved estimator (the QMLE-md) by including some of these additional restrictions
via the minimum distance method. Recall that λ⊺

k,j denote the jth row of the kth row

block of Λ, so we can also use {λ̂k,j, σ̂k,j, M̂ : k = 1, . . . , 6, j = 1, . . . , N} to denote the
QMLE estimator. Suppose that we take a finite number c1 of elements of the QMLE to
form a column vector ĥ. Note that the QMLE ĥ is estimating h(θm), where θm ⊂ θ is
of finite-dimension c2 (c2 < c1) and h(·) : Rc2 → Rc1 .

Example 3.1. As an illustration, one could take

ĥ︸︷︷︸
59×1

= (λ̂
⊺

1,2, λ̂
⊺

4,2, λ̂
⊺

3,5, λ̂
⊺

6,5, M̂1,1, M̂2,1, σ̂
2
1,5)

⊺,

θm︸︷︷︸
10×1

= (zA2,0, z
A
2,1, z

A
2,2, z

A
2,3, z

U
5,0, z

U
5,1, z

U
5,2, z

U
5,3, ϕ, σ

2
1,5)

⊺,

h(θm)︸ ︷︷ ︸
59×1

= (λ⊺
1,2,λ

⊺
4,2,λ

⊺
3,5,λ

⊺
6,5,M1,1,M2,1, σ

2
1,5)

⊺

The expression of the 59× 10 derivative matrix ∂h(θm)/∂θm is given in SM B.3.

Let W denote a c1 × c1 symmetric, positive definite weighting matrix and define the
minimum distance estimator

θ̌m := arg min
b∈Rc2

[
ĥ− h(b)

]⊺
W
[
ĥ− h(b)

]
. (3.8)

3.4 QMLE-res

In this subsection, we propose to estimate the two-day representation of our model via
the EM algorithm. We shall incorporate all the restrictions implied by Λ and M defined

in (2.5) and (3.5), respectively, but assume the working independence hypothesis: {f t}
Tf
t=1

are assumed as i.i.d. when setting up the likelihood. We call this the QMLE-res estimator.

The log-likelihoods of {ẙt}
Tf
t=1|{f t}

Tf
t=1 and {f t}

Tf
t=1 are, respectively,

ℓ
(
{ẙt}

Tf
t=1|{f t}

Tf
t=1;θ

)
= −Tf (6N)

2
log(2π)− Tf

2
log |Σee| −

1

2

T∑
t=1

(ẙt − Λf t)
⊺Σ−1

ee (ẙt − Λf t)

ℓ
(
{f t}

Tf
t=1;θ

)
= −Tf14

2
log(2π)− Tf

2
log |M | − 1

2

Tf∑
t=1

f⊺
tM

−1f t.

The complete log-likelihood function of the two-day representation of our model is hence
(omitting constant)

ℓ
(
{ẙt}

Tf
t=1, {f t}

Tf
t=1;θ

)
= ℓ

(
{ẙt}

Tf
t=1|{f t}

Tf
t=1;θ

)
+ ℓ
(
{f t}

Tf
t=1;θ

)
= −Tf

2
log |Σee| −

1

2

T∑
t=1

(ẙt − Λf t)
⊺Σ−1

ee (ẙt − Λf t)−
Tf
2

log |M | − 1

2

Tf∑
t=1

f⊺
tM

−1f t

=: −1

2

( Tf∑
t=1

ℓ⃗1,t +

Tf∑
t=1

ℓ⃗2,t

)
(3.9)
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where

Tf∑
t=1

ℓ⃗1,t := Tf log |Σee|+
T∑
t=1

tr
[
(ẙt − Λf t)(ẙt − Λf t)

⊺Σ−1
ee

]
Tf∑
t=1

ℓ⃗2,t := Tf log |M |+
Tf∑
t=1

tr
[
f tf

⊺
tM

−1
]
.

Let E⃗ denote the expectation with respect to the conditional density p
(
{f t}

Tf
t=1|{ẙt}

Tf
t=1; θ⃗

(i))
at θ⃗

(i)
, where θ⃗

(i)
is the estimate of θ from the ith iteration of the EM algorithm. Taking

such an expectation on both sides of (3.9), we hence have

E⃗
[
ℓ
(
{ẙt}

Tf
t=1, {f t}

Tf
t=1;θ

)]
= −1

2

(
E⃗

Tf∑
t=1

ℓ⃗1,t + E⃗
Tf∑
t=1

ℓ⃗2,t

)
.

This is the E-step. We now find values of Zc to minimise E⃗
∑Tf

t=1 ℓ⃗1,t. We will illustrate
the procedure using the first row of ZA, denoted (ZA)1. Define the 4 × 14 selection
matrices L1 and L4, so that λ⊺

1,1 = (ZA)1L1 and λ⊺
4,1 = (ZA)1L4. One can show that

E⃗
Tf∑
t=1

ℓ⃗1,t ∝
Tf∑
t=1

[
−2(ZA)1L1E⃗[f tẙ1,1]/σ

2
1,1 + (ZA)1L1E⃗[f tf

⊺
t ]L

⊺
1(Z

A)⊺1/σ
2
1,1

]

+

Tf∑
t=1

[
−2(ZA)1L4E⃗[f tẙ1,3N+1]/σ

2
1,1 + (ZA)1L4E⃗[f tf

⊺
t ]L

⊺
4(Z

A)⊺1/σ
2
1,1

]
.

Taking the differential with respect to (ZA)1, recognising the derivative and setting that
to zero, we have

(Z⃗A)⊺1 =

 Tf∑
t=1

(
L1E⃗[f tf

⊺
t ]L

⊺
1 + L4E⃗[f tf

⊺
t ]L

⊺
4

)−1  Tf∑
t=1

(
L1E⃗[f tẙ1,1] + L4E⃗[f tẙ1,3N+1]

) .
In a similar way, we can obtain the QMLE-res for other factor loadings.

We now find values of Σee to minimise E⃗
∑Tf

t=1 ℓ⃗1,t. We can show that

E⃗
Tf∑
t=1

ℓ⃗1,t ∝ Tf log |Σee|+ tr
[
CeΣ

−1
ee

]
= Tf

3N∑
k=1

2 log σ2
k +

3N∑
k=1

Ce,k,k + Ce,3N+k,3N+k

σ2
k

where Ce :=
∑Tf

t=1

(
ẙtẙ

⊺
t − 2ΛE⃗[f tẙ

⊺
t ] + ΛE⃗[f tf

⊺
t ]Λ

⊺
)
, and the single-index σ2

k is defined
as σ2

k := σ2
⌈ k
N
⌉,k−⌊ k

N
⌋N .

3 Taking the derivative with respect to σ2
k and setting that to zero,

we have

σ⃗2
k =

1

Tf

Ce,k,k + Ce,3N+k,3N+k

2
.

We provide the formulas for E⃗[f tf
⊺
t ] and E⃗[f tẙ

⊺
t ] in Appendix A.12.

Next, we find values of ϕ to minimise E⃗
∑Tf

t=1 ℓ⃗2,t. It is difficult to derive the analytical

solution for ϕ⃗ so we will obtain ϕ⃗ in a numerical way.

3Note that k 7→ (⌈ k
N ⌉, k − ⌊ k

N ⌋N) is a bijection from {1, ..., 6N} to {1, ..., 6} × {1, ..., N}.
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4 Large Sample Theories

4.1 QMLE

We now present the large sample theories of the QMLE. The idea of the proof is based
on that of Bai and Li (2012), but is considerably more involved because our identification
scheme is non-standard. Hence, we provide a recipe for obtaining results similar to those
of Bai and Li (2012) for almost any identified dynamic factor model. This does have a
practical importance because many dynamic factor models, like ours, are coming from
different economic theories and might not conform to the five identification schemes of
Bai and Li (2012).

Recall that we could use {λ̂k,j, σ̂k,j, M̂ : k = 1, . . . , 6, j = 1, . . . , N} to denote the
QMLE. We make the following assumption.

Assumption 4.1. (i) The factor loadings {λk,j} satisfy ∥λk,j∥2 ≤ C for all k and j.

(ii) Assume C−1 ≤ σ2
k,j ≤ C for all k and j. Also σ̂2

k,j is restricted to a compact set
[C−1, C] for all k and j.

(iii) M̂ is restricted to be in a set consisting of all positive definite matrices with all the
elements bounded in the interval [C−1, C].

(iv) Suppose that Q := limN→∞
1
N
Λ⊺Σ−1

ee Λ is a positive definite matrix.

Assumption 4.1 is standard in the literature of factor models and has been taken from
the assumptions of Bai and Li (2012).

Proposition 4.1. Suppose that Assumptions 2.1, 4.1 hold. When N, Tf → ∞, with
the identification condition outlined in the proof of this proposition (i.e., 142 particular
restrictions imposed on Λ̂ and M̂), and the requirement that Λ̂ and Λ have the same
column signs, we have

λ̂k,j − λk,j = op(1) (4.1)

1

6N

6∑
k=1

N∑
j=1

(σ̂2
k,j − σ2

k,j)
2 = op(1) (4.2)

M̂ −M = op(1). (4.3)

for k = 1, . . . , 6, j = 1, . . . , N .

Display (4.1) and (4.3) establish consistency for the individual loading estimator λ̂k,j
and M̂ , respectively, while display (4.2) establishes some average consistency for {σ̂2

k,j}.

Theorem 4.1. Under the assumptions of Proposition 4.1, we have

∥λ̂k,j − λk,j∥22 = Op(T
−1
f ) (4.4)

1

6N

6∑
k=1

N∑
j=1

(σ̂2
k,j − σ2

k,j)
2 = Op(T

−1
f ) (4.5)

M̂ −M = Op(T
−1/2
f ). (4.6)

for k = 1, . . . , 6, j = 1, . . . , N .
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Theorem 4.1 resembles Theorem 5.1 of Bai and Li (2012) and establishes the rate of
convergence for the QMLE. The only difference is while Bai and Li (2012) only established
an average rate of convergence for {λ̂k,j}, we managed to establish a rate of convergence

for the individual loading estimator λ̂k,j.

Theorem 4.2. Under the assumptions of Proposition 4.1, we have, for k = 1, . . . , 6, j =
1, . . . , N ,

(i)

σ̂2
k,j − σ2

k,j =
1

Tf

Tf∑
t=1

(
e2(k−1)N+j,t − σ2

k,j

)
+ op(T

−1/2
f ),

where e(k−1)N+j,t is the [(k − 1)N + j]th element of et.

(ii) As N, Tf → ∞, √
Tf (σ̂

2
k,j − σ2

k,j)
d−→ N(0, 2σ4

k,j).

Theorem 4.2(i) gives the asymptotic representation of σ̂2
k,j. Theorem 4.2(ii) is the

same as Theorem 5.4 of Bai and Li (2012) and establishes the asymptotic distribution of
σ̂2
k,j.

Theorem 4.3. Suppose that the assumptions of Proposition 4.1 hold.

(i) For k = 1, . . . , 6, j = 1, . . . , N , we have

√
Tf (λ̂k,j − λk,j) = (λ⊺

k,j ⊗ I14)Γ
1√
Tf

Tf∑
t=1

(
e†
t ⊗ f t

)
+M−1 1√

Tf

Tf∑
t=1

f te(k−1)N+j,t + op(1),

where e†
t is a 24×1 vector consisting of e(p−1)N+q,t for p = 1, . . . , 6 and q = 1, . . . , 4,

and Γ is a 196 × 336 matrix, whose elements are known (but complicated) linear
functions of elements of (inverted) submatrices of Λ and M , satisfying

vecA = Γ× 1

Tf

Tf∑
t=1

(
e†
t ⊗ f t

)
+ op(T

−1/2
f ), A := (Λ̂− Λ)⊺Σ̂−1

ee Λ̂(Λ̂
⊺Σ̂−1

ee Λ̂)
−1.

(ii) As N, Tf → ∞, for k = 1, . . . , 6, j = 5, . . . , N , we have√
Tf (λ̂k,j − λk,j)

d−→ N
(
0, (λ⊺

k,j ⊗ I14)Γ(Σ
†
ee ⊗M)Γ⊺(λk,j ⊗ I14) +M−1σ2

k,j

)
,

and for k = 1, . . . , 6, j = 1, . . . , 4, we have√
Tf (λ̂k,j − λk,j)

d−→ N
(
0, (λ⊺

k,j ⊗ I14)Γ(Σ
†
ee ⊗M)Γ⊺(λk,j ⊗ I14) +M−1σ2

k,j + covk,j + cov⊺k,j

)
,

where Σ†
ee is a 24 × 24 diagonal matrix whose [4(p − 1) + q]th diagonal element is

σ2
p,q for p = 1, . . . , 6 and q = 1, . . . , 4. The 14× 14 matrix covk,j is defined as

covk,j := (λ⊺
k,j ⊗ I14)Γ

[
ιk,j ⊗ I14

]
σ2
k,j,

where ιk,j is a 24× 1 zero vector with its [4(k − 1) + j]th element replaced by one.
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Theorem 4.3 presents the asymptotic representation and distribution of the QMLE of
the factor loadings. The idea of the proof is inspired by that for the fourth identification
scheme (i.e., IC4) in Theorem 5.2 of Bai and Li (2012). Note that the asymptotic variance
of λ̂k,j depends on Γ and Σ†

ee. The matrix Σ†
ee contains the idiosyncratic variances of the

first four assets in each continent. When computing Γ, we often need to invert submatrices
of the factor loadings of the first four assets in each continent (see (A.47) for example).
Thus, ordering assets, with smaller idiosyncratic variances and less multicollinearity of
the factor loadings, as the first four assets in each continent results in a λ̂k,j with smaller
asymptotic variances.

Theorem 4.4. Suppose that the assumptions of Proposition 4.1 hold.

(i)

√
Tf vech(M̂ −M) = −2D+

14(I14 ⊗M)Γ
1√
Tf

Tf∑
t=1

(
e†
t ⊗ f t

)
+ op(1),

where D+
14 is defined in Section 1.1.

(ii) As N, Tf → ∞, √
Tf vech(M̂ −M)

d−→ N
(
0,M

)
where M is 105× 105 and defined as

M := 4D+
14(I14 ⊗M)Γ(Σ†

ee ⊗M)Γ⊺(I14 ⊗M)D+⊺
14 .

Theorem 4.4 presents the asymptotic representation and distribution of the QMLE of
M ; it is similar to Theorem 5.3 of Bai and Li (2012).

We could estimate f t by the generalized least squares (GLS), as Bai and Li (2012)
have done in their Theorem 6.1:

f̂ t =
(
Λ̂⊺Σ̂−1

ee Λ̂
)−1

Λ̂⊺Σ̂−1
ee ẙt.

Theorem 4.5. Suppose that the assumptions of Proposition 4.1 hold and
√
N/Tf → 0,

N/Tf → ∆ ∈ [0,∞). Then we have

(i)

√
N(f̂ t − f t) = −

√
∆(f⊺

t ⊗ I14)K14,14Γ
1√
Tf

Tf∑
t=1

(
e†
t ⊗ f t

)
+Q−1 1√

N
Λ⊺Σ−1

ee et + op(1),

where K14,14 is the commutation matrix.

(ii)
√
N(f̂ t − f t)|f t

d−→ N
(
0,∆(f⊺

t ⊗ I14)K14,14Γ(Σ
†
ee ⊗M)Γ⊺K14,14(f t ⊗ I14) +Q−1

)
,

where Q is defined in Assumption 4.1.

Theorem 4.5 gives the asymptotic representation and conditional distribution of the
GLS f̂ t. Unlike Theorem 6.1 of Bai and Li (2012), since we treat f t as random, the
asymptotic normal distribution in Theorem 4.5(ii) is for

√
N(f̂ t − f t) conditioning on

f t.
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4.2 QMLE-md

We then present the large sample theories of the QMLE-md. Recall that ĥ is a vector of
finite length of the QMLE estimator {λ̂k,j, σ̂k,j, M̂ : k = 1, . . . , 6, j = 1, . . . , N}. Relying
on the asymptotic representations of the QMLE (Theorems 4.2, 4.3, 4.4), one could easily
establish the asymptotic distribution of ĥ, say,√

Tf (ĥ− h(θm))
d−→ N(0,H).

Since the choice of ĥ varies, we omit the formula for H.

Theorem 4.6. Suppose that the assumptions of Proposition 4.1 hold. Then we have√
Tf (θ̌m − θm)

d−→ N(0,O),

where

O :=

[
∂h(θm)

∂θ⊺
m

W
∂h(θm)

∂θm

]−1
∂h(θm)

∂θ⊺
m

WHW ∂h(θm)

∂θm

[
∂h(θm)

∂θ⊺
m

W
∂h(θm)

∂θm

]−1

.

In the preceding theorem, choosing W = H−1 gives the most efficient minimum dis-

tance estimator. In that case, O is reduced to
[∂h(θm)

∂θ⊺
m

H−1 ∂h(θm)
∂θm

]−1
.

5 Inference Procedures for the MLE-one day and the

QMLE-res

In classical factor analysis (i.e., fixed N large Tf ), the asymptotic variances of the MLE-
one day and the QMLE-res defined in Section 3 could be approximated using the nu-
merical Hessian method as researchers have shown that the MLE of a standard factor
model is asymptotically normal but has very complicated expressions for the asymptotic
covariance matrices (Anderson (2003, p.583)). The large sample theories of the MLE-one
day and the QMLE-res in the large N large Tf case remain as a formidable, if not impos-
sible, task to be completed in the future research. In this section, we provide a heuristic
procedure to approximate the standard errors of the MLE-one day and the QMLE-res in
the large N large Tf case.

5.1 MLE-one day

5.1.1 For ϕ̃

By relying on the first-order condition of the MLE with respect to ϕ, we propose a
parametric bootstrap to approximate the sampling distribution of ϕ̃ defined in (3.4). It
can be shown that the first-order condition of the MLE with respect to ϕ is

∂ 1
NTf

ℓ
(
{ẙt}

Tf
t=1;θ

)
∂ϕ

=
1

2N
tr
[
Λ⊺(Σ−1

yy SyyΣ
−1
yy − Σ−1

yy )ΛK(ϕ)
]
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where K(ϕ) is the 14× 14 derivative matrix ∂M/∂ϕ. Given the MLE-one day estimator
{Z̃c, Σ̃c, ϕ̃ : c = A,E, U}, in each bootstrap replication, simulate {yt} and hence calculate
Syy. Then use the numeric means to find ϕ̃b which solves

1

2N
tr
[
Λ̃⊺
b(Σ̃

−1
yy,bSyyΣ̃

−1
yy,b − Σ̃−1

yy,b)Λ̃bK(ϕ̃b)
]
= 0.

where Λ̃b and Σ̃yy,b are estimates of Λ and Σyy computed using {Z̃c, Σ̃c : c = A,E, U}
and ϕ̃b. If we have B parametric bootstrap replications, then the standard deviation of
{ϕ̃b}Bb=1 could be used as the approximation for the standard error of ϕ̃.

5.1.2 For Z̃c

We now approximate the standard errors of Z̃c for c = A,E, U defined in (3.3). The
idea is to use all the restrictions implied by Λ defined in (2.5) to reduce the standard
error of the QMLE. Since the reduced standard error has incorporated all the information
contained in Λ, it should approximate that of Z̃c. The machinery which we shall employ
is Bayes theorem.

In the proof of Theorem 4.3, we show that (see (A.53))

√
Tf (λ̂k,j − λk,j) = (λ⊺

k,j ⊗ I14)Γ
1√
Tf

Tf∑
t=1

(
e†
t ⊗ f t

)
+M−1 1√

Tf

Tf∑
t=1

f te(k−1)N+j,t + op(1)

=: a∗ +M−1 1√
Tf

Tf∑
t=1

f te(k−1)N+j,t + op(1).

Repeating the arguments in (A.54), we have for k = 1, 2, 3,

√
Tf

(
λ̂k,j − λk,j

λ̂k+3,j − λk+3,j

)∣∣∣∣∣∣a∗ d−→ N

[ a∗

a∗

]
,

[
σ2
k,jM

−1 0
0 σ2

k,jM
−1

] (5.1)

a∗ d−→ N(0,Wa) (5.2)

where
Wa := (λ⊺

k,j ⊗ I14)Γ(Σ
†
ee ⊗M)Γ⊺(λk,j ⊗ I14).

Define

Gk︸︷︷︸
24×28

:=

 Sk,z 0
0 Sk+3,z

Sk,nz −Sk+3,nz

 ,

where {Sk,nz}6k=1 are 4× 14 with Sk,nz being the 7− k, 8− k, 9− k, 15− kth rows of I14
for k = 1, . . . , 6, and {Sk,z}6k=1 are 10 × 14 with Sk,z being the submatrix of I14 after
deleting its 7−k, 8−k, 9−k, 15−kth rows for k = 1, . . . , 6. In other words, Sk,z denotes
the 10× 14 selection matrix which extracts out the 10 zero elements of λk,j, while Sk,nz
denotes the 4 × 14 selection matrix that extracts out the 4 non-zero elements of λk,j.
Note that Gk(λ

⊺
k,j,λ

⊺
k+3,j)

⊺ = 0. Let

ω̂k,j :=
√
Tf

(
λ̂k,j
λ̂k+3,j

)
.
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We hence have

Gkω̂k,j

∣∣a∗ = Gk

√
Tf

(
λ̂k,j − λk,j

λ̂k+3,j − λk+3,j

)∣∣∣∣∣∣a∗ d−→ N

Gk

[
a∗

a∗

]
, σ2

k,jGk(I2 ⊗M−1)G⊺
k

 .

Recall that p(·) denotes the asymptotic density function. Then we have

p
(
a∗) ∝ exp

(
−1

2
a∗⊺W−1

a a∗
)

p(Gkω̂k,j|a∗) = (2π)−
24
2

∣∣σ2
k,jGk(I2 ⊗M−1)G⊺

k

∣∣−1/2×

exp

{
−1

2

(
Gkω̂k,j −Gk

[
a∗

a∗

])⊺

σ−2
k,j

[
Gk(I2 ⊗M−1)G⊺

k

]−1
(
Gkω̂k,j −Gk

[
a∗

a∗

])}

∝ exp

{
−1

2

(
Gkω̂k,j −Gk

[
a∗

a∗

])⊺

σ−2
k,j

[
Gk(I2 ⊗M−1)G⊺

k

]−1
(
Gkω̂k,j −Gk

[
a∗

a∗

])}
.

Note that {Gkω̂k,j}k=3,j=N
k=1,j=1 are conditionally (given a∗) asymptotically independent across

k and j because of the asymptotic normality and uncorrelatedness by Assumption 2.1.
Then we have

p
(
{Gkω̂k,j}k=3,j=N

k=1,j=1 |a
∗
)
=

3∏
k=1

N∏
j=1

p
(
Gkω̂k,j|a∗

)
∝

exp

{
−1

2

∑
k,j

(
Gkω̂k,j −Gk

[
I14
I14

]
a∗
)⊺

σ−2
k,j

[
Gk(I2 ⊗M−1)G⊺

k

]−1
(
Gkω̂k,j −Gk

[
I14
I14

]
a∗
)}

.

Thus the asymptotic posterior distribution of a∗ given {Gkω̂k,j}k=3,j=N
k=1,j=1 is

p
(
a∗|{Gkω̂k,j}k=3,j=N

k=1,j=1

)
∝ p

(
{Gkω̂k,j}k=3,j=N

k=1,j=1 |a
∗
)
p
(
a∗)

∝ exp

(
−1

2
a∗⊺W−1

a a∗
)
×

exp

{
−1

2

∑
k,j

(
Gkω̂k,j −Gk

[
I14
I14

]
a∗
)⊺

σ−2
k,j

[
Gk(I2 ⊗M−1)G⊺

k

]−1
(
Gkω̂k,j −Gk

[
I14
I14

]
a∗
)}

∝ exp

(
Ψ1a

∗ − 1

2
a∗⊺Ψ2a

∗
)

(5.3)

where

Ψ1 :=
3∑

k=1

N∑
j=1

(Gkω̂k,j)
⊺σ−2

k,j

[
Gk(I2 ⊗M−1)G⊺

k

]−1
Gk

[
I14
I14

]

Ψ2 :=

W−1
a +

3∑
k=1

N∑
j=1

[
I14
I14

]⊺
G⊺
kσ

−2
k,j

[
Gk(I2 ⊗M−1)G⊺

k

]−1
Gk

[
I14
I14

] .

Thus (5.3) implies that a∗|{Gkω̂k,j}k=3,j=N
k=1,j=1 is asymptotically distributed asN

(
Ψ1Ψ

−1
2 ,Ψ−1

2

)
.

In particular, a∗|{Gkω̂k,j = 0}k=3,j=N
k=1,j=1 is asymptotically distributed as N

(
0,Ψ−1

2

)
. We
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know that for ℓ > 4, say, the asymptotic variance of T
1/2
f (λ̂k,ℓ − λk,ℓ) is the asymp-

totic variance of a∗ plus σ2
k,ℓM

−1. Conditioning on {Gkω̂k,j = 0}k=3,j=N
k=1,j=1 , the asymptotic

variance of a∗ is reduced to Ψ−1
2 . Thus the square roots of the diagonal elements of

Ψ−1
2 + σ2

k,ℓM
−1, whose positions correspond to the non-zero elements of λk,ℓ, could be

used as approximations of the standard errors of the MLE-one day estimators of those
loadings.

5.1.3 For Σ̃c

We shall approximate the standard error of σ̃2
c,j by σ̃

2
c,j

√
2/Tf (see Theorem 4.2). This

is because the QMLE of Σc has already incorporated diagonality of Σc for c = A,E, U ,
so the standard error of the QMLE of σ2

c,j should approximate that of the corresponding
MLE-one day estimator reasonably well.

5.2 QMLE-res

The standard errors of the QMLE-res are calculated in the same way as those of the
MLE-one day. The idea is that since the QMLE-res has incorporated all the restrictions
implied by Λ and M , its standard errors should be close to those of the MLE-one day.

6 Monte Carlo Simulations

In this section, we shall conduct Monte Carlo simulations to evaluate the performances of
our proposed estimators. We specify the following values for the parameters: N = 50, 200;
T = 750 (around one year’s trading data), 1500, 2250; ϕ = 0.3. For c = A,E, U , Σc,ii are
drawn from uniform[0.2, 2] for i = 1, . . . , N , and

zci,j = 0.6ac,i,j + 0.6dc,j − 0.2

where {ac,i,j}i=N,j=3
i=1,j=0 and {dc,j}3j=0 are all drawn from uniform[0, 1]. For each continent,

we put the assets with the smallest four idiosyncratic variances as the first four assets.
After the logarithmic 24-hr returns are generated, the econometrician only observes those
logarithmic 24-hr returns whose ts correspond to the closing times of their belonging
continents. The econometrician is aware of the structure of the true model (2.3), but
does not know the values of those parameters. In particular, he is aware of diagonality
of Σc.

We estimate the model using the MLE-one day, the QMLE-res and the QMLE-md.
To initialize the EM algorithm for the MLE-one day and the QMLE-res, the start-
ing values of the parameters are estimated according to the procedure mentioned in
Section 3.1. We now briefly explain how to select ĥ for the QMLE-md. Take the
factor loading of Asia’s jth asset (i.e., zAj,0, z

A
j,1, z

A
j,2, z

A
j,3) as an example: Select ĥ =

(λ̂
⊺

1,j, λ̂
⊺

4,j, λ̂
⊺

2,1, λ̂
⊺

5,1, λ̂
⊺

2,5, λ̂
⊺

5,5, λ̂
⊺

3,1, λ̂
⊺

6,1, λ̂
⊺

3,5, λ̂
⊺

6,5)
⊺. For ϕ: Select

ĥ = (λ̂
⊺

1,1, λ̂
⊺

4,1, λ̂
⊺

2,1, λ̂
⊺

5,1, λ̂
⊺

3,1, λ̂
⊺

6,1, (vechM)⊺)⊺.

For σ2
k,j, set its QMLE-md to the QMLE.

The number of the Monte Carlo samples is chosen to be 200. From these 200 Monte
Carlo samples, we calculate the following three quantities for evaluation:
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(i) the root mean square errors (RMSE),

(ii) the average of the standard errors (Ave.se) across the Monte Carlo samples.

(iii) the coverage probability (Cove) of the confidence interval formed by the point esti-
mate ± 1.96×the standard error. The standard errors differ across the Monte Carlo
samples.

For a particular j and c, it is impossible to present a evaluation criterion of zci,j for all
i, so we only report the average value for the vector zcj. Likewise, we report the average
value for the three diagonals of {Σc : c = A,E, U}. Tables 1 and 2 report these results.
To save space, we only present the results for T = 750, 2250 (the results for T = 1500
are available upon request). We see that the MLE-one day and QMLE-res estimators are
very similar in terms of the three evaluation criteria. In terms of RMSE, the MLE-one
day and the QMLE-res are better than the QMLE-md, but the gap quickly narrows when
N or T increases. In terms of Ave.se, the QMLE-md has slightly larger standard errors
than those of the MLE-one day or the QMLE-res. This is probably because the QMLE,
the first-step estimator in the QMLE-md, has large standard errors. When N and T
increase, we obtain smaller RMSE, smaller Ave.se, and better coverage in general for all
estimators.

7 Empirical Work

In this section, we present two empirical applications of our model. Section 7.1 is about
modelling equity portfolio returns from Japan, Europe and the US. That is, one market
per continent. Section 7.2 studies MSCI equity indices of the developed and emerging
markets (41 markets across three continents). We first list the trading hours of the
world’s top ten stock exchanges in terms of market capitalisation in Table 3. This shows
the overlaps and lack of overlaps.

7.1 An Empirical Study of Three Markets

We now apply our model to equity portfolios of three continents/markets: Japan, Eu-
rope and the US. Take Japan as an example. First, we consider six equity portfolios
constructed by intersections of 2 size groups (small (S) and big (B)) and 3 book-to-
market equity ratio (B/M) groups (growth (G), neutral (N) and value (V)), in the spirit
of Fama and French (1993); we denote the six portfolios SG, SN, SV, BG, BN and BV.
Second, in a similar manner we consider six equity portfolios constructed by intersections
of 2 size groups (small (S) and big (B)) and 3 momentum groups (loser (L), neutral
(N) and winner (W)); we denote these six portfolios SL, SN, SW, BL, BN and BW.
We downloaded the daily value-weighted portfolio returns (in percentage points) from
Kenneth R. French’s website.4 Note that these returns are not logarithmic returns, so
strictly speaking our model does not apply. Moreover we demeaned and standardised the
daily value-weighted portfolio returns so that the returns have sample variances of one.
In SM B.4, we show that our model could still be applied by making some innocuous
approximations. Since we do not have so many assets in this application, we shall use the

4https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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N=50, T=750
MLE-one day QMLE-res QMLE-md

RMSE Ave.se Cove RMSE Ave.se Cove RMSE Ave.se Cove

zA0 0.0811 0.1072 0.9868 0.0864 0.1062 0.9802 0.2665 0.1532 0.7663
zA1 0.0869 0.1078 0.9845 0.0907 0.1073 0.9799 0.3885 0.1641 0.7805
zA2 0.0789 0.1016 0.9869 0.0871 0.1020 0.9757 0.3600 0.1396 0.7708
zA3 0.0985 0.1010 0.9562 0.1038 0.1011 0.9466 0.2775 0.1204 0.6615
zE0 0.0909 0.1052 0.9746 0.0938 0.1052 0.9698 0.2889 0.1440 0.8072
zE1 0.0946 0.1076 0.9704 0.0998 0.1063 0.9596 0.2999 0.1640 0.7806
zE2 0.0855 0.1049 0.9806 0.0879 0.1045 0.9768 0.4058 0.1473 0.7735
zE3 0.0833 0.0975 0.9751 0.0848 0.0976 0.9710 0.1820 0.0942 0.7001
zU0 0.0881 0.1044 0.9761 0.0985 0.1044 0.9545 0.3451 0.1854 0.7926
zU1 0.0981 0.1067 0.9643 0.1040 0.1069 0.9508 0.5039 0.2274 0.8087
zU2 0.0937 0.1067 0.9682 0.1007 0.1049 0.9549 0.3402 0.1980 0.7924
zU3 0.0812 0.0960 0.9759 0.0831 0.0959 0.9727 0.2253 0.1368 0.7623
Σc 0.1143 0.1062 0.9114 0.1149 0.1060 0.9070 0.2417 0.1294 0.6342
ϕ 0.0447 0.0386 0.9400 0.0542 0.0387 0.8750 0.0491 0.0474 0.9500

N=50, T=2250
MLE-one day QMLE-res QMLE-md

RMSE Ave.se Cove RMSE Ave.se Cove RMSE Ave.se Cove

zA0 0.0465 0.0619 0.9894 0.0484 0.0614 0.9845 0.1244 0.0869 0.8519
zA1 0.0495 0.0626 0.9835 0.0514 0.0622 0.9806 0.2010 0.0984 0.8516
zA2 0.0446 0.0595 0.9908 0.0489 0.0595 0.9818 0.1510 0.0852 0.8396
zA3 0.0531 0.0589 0.9682 0.0542 0.0589 0.9636 0.1273 0.0767 0.7390
zE0 0.0513 0.0623 0.9783 0.0527 0.0619 0.9739 0.1459 0.0916 0.8564
zE1 0.0544 0.0633 0.9723 0.0576 0.0627 0.9618 0.1462 0.0952 0.8580
zE2 0.0499 0.0614 0.9811 0.0511 0.0609 0.9788 0.2176 0.0834 0.8533
zE3 0.0467 0.0571 0.9814 0.0473 0.0571 0.9802 0.0850 0.0558 0.8043
zU0 0.0513 0.0610 0.9765 0.0568 0.0605 0.9578 0.1707 0.1215 0.8618
zU1 0.0572 0.0636 0.9697 0.0596 0.0630 0.9614 0.2290 0.1386 0.8660
zU2 0.0540 0.0625 0.9742 0.0571 0.0617 0.9602 0.1600 0.1069 0.8592
zU3 0.0462 0.0560 0.9816 0.0472 0.0559 0.9771 0.1048 0.0804 0.8483
Σc 0.0649 0.0624 0.9215 0.0651 0.0624 0.9189 0.1115 0.0842 0.8253
ϕ 0.0238 0.0216 0.9100 0.0277 0.0218 0.8450 0.0283 0.0223 0.8900

Table 1: RMSE, Ave.se and Cove stand for the root mean square errors, the average of the

standard errors across the Monte Carlo samples, and the coverage probability of the confidence

interval formed by the point estimate ± 1.96×the standard error, respectively.
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N=200, T=750
MLE-one day QMLE-res QMLE-md

RMSE Ave.se Cove RMSE Ave.se Cove RMSE Ave.se Cove

zA0 0.0823 0.0924 0.9635 0.0860 0.0923 0.9538 0.1638 0.1435 0.9278
zA1 0.0835 0.0933 0.9660 0.0859 0.0932 0.9592 0.2047 0.2034 0.9291
zA2 0.0796 0.0897 0.9672 0.0837 0.0896 0.9561 0.1680 0.1586 0.9325
zA3 0.0715 0.0884 0.9807 0.0724 0.0884 0.9791 0.1244 0.1080 0.9120
zE0 0.0817 0.0916 0.9637 0.0829 0.0915 0.9604 0.1714 0.1570 0.9322
zE1 0.0843 0.0925 0.9588 0.0888 0.0924 0.9484 0.1737 0.1749 0.9497
zE2 0.0816 0.0916 0.9630 0.0829 0.0916 0.9592 0.1435 0.1322 0.9345
zE3 0.0694 0.0872 0.9823 0.0696 0.0872 0.9819 0.1169 0.1043 0.9147
zU0 0.0806 0.0957 0.9745 0.0839 0.0955 0.9678 0.1733 0.1646 0.9455
zU1 0.0834 0.0964 0.9714 0.0866 0.0964 0.9644 0.2480 0.2438 0.9392
zU2 0.0785 0.0969 0.9812 0.0825 0.0968 0.9734 0.1809 0.2050 0.9569
zU3 0.0717 0.0916 0.9852 0.0747 0.0916 0.9798 0.1570 0.1432 0.9232
Σc 0.0953 0.0924 0.9444 0.0954 0.0924 0.9437 0.1777 0.1173 0.7849
ϕ 0.0392 0.0322 0.8800 0.0413 0.0321 0.8850 0.0411 0.0419 0.9500

N=200, T=2250
MLE-one day QMLE-res QMLE-md

RMSE Ave.se Cove RMSE Ave.se Cove RMSE Ave.se Cove

zA0 0.0465 0.0539 0.9703 0.0502 0.0538 0.9550 0.0874 0.0842 0.9481
zA1 0.0477 0.0545 0.9691 0.0493 0.0543 0.9624 0.1119 0.1177 0.9471
zA2 0.0447 0.0523 0.9723 0.0469 0.0523 0.9656 0.0911 0.0963 0.9508
zA3 0.0408 0.0516 0.9836 0.0410 0.0516 0.9831 0.0659 0.0651 0.9377
zE0 0.0473 0.0532 0.9660 0.0480 0.0531 0.9613 0.0932 0.0966 0.9517
zE1 0.0495 0.0539 0.9568 0.0546 0.0538 0.9329 0.0907 0.1026 0.9677
zE2 0.0448 0.0533 0.9749 0.0460 0.0531 0.9706 0.0744 0.0806 0.9600
zE3 0.0405 0.0505 0.9823 0.0406 0.0505 0.9819 0.0620 0.0630 0.9419
zU0 0.0451 0.0557 0.9810 0.0471 0.0555 0.9750 0.0914 0.0999 0.9662
zU1 0.0482 0.0563 0.9723 0.0502 0.0561 0.9648 0.1352 0.1531 0.9576
zU2 0.0457 0.0564 0.9800 0.0488 0.0562 0.9694 0.0943 0.1131 0.9726
zU3 0.0410 0.0532 0.9874 0.0423 0.0532 0.9845 0.0810 0.0845 0.9515
Σc 0.0547 0.0540 0.9523 0.0547 0.0540 0.9519 0.0860 0.0738 0.9088
ϕ 0.0216 0.0225 0.9650 0.0223 0.0225 0.9450 0.0232 0.0230 0.9550

Table 2: RMSE, Ave.se and Cove stand for the root mean square errors, the average of the

standard errors across the Monte Carlo samples, and the coverage probability of the confidence

interval formed by the point estimate ± 1.96×the standard error, respectively.
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Market Market Cap Trading Hours Country
(US trillions) (Beijing Time)

1 New York S.E. $26.91 21:30-04:00 (+1)† US
2 NASDAQ S.E. $23.46 21:30-04:00 (+1)† US
3 Shanghai S.E. $7.69 09:30-11:30, 13:00-15:00 China
4 Tokyo S.E. $6.79 08:00-10:30, 11:30-14:00 Japan
5 Hong Kong S.E. $6.02 10:00-12:30, 14:30-16:00 China
6 Shenzhen S.E. $5.74 09:30-11:30, 13:00-15:00 China
7 London S.E. $3.83 15:00-19:00, 19:02-23:30† UK
8 India National S.E. $3.4 11:45-18:00 India
9 Toronto S.E. $3.18 21:30-04:00 (+1)† Canada
10 Frankfurt S.E. $2.63 15:00-23:30† Germany

Table 3: S.E. stands for Stock Exchange. Market Capitalisations were measured on

October 29th 2021. (+1) indicates +one day. † means summer time; its corre-

sponding winter trading hours are summer trading hours plus one hour. Data source:

https://www.tradinghours.com/markets.

MLE-one day estimator with its standard errors approximated by the numerical Hessian
method.

We next discuss how to interpret the factor loadings of our model. Let ẏci,t denote the
standardised return of portfolio i of market c on period t. Recall that

ẏci,t =
2∑
j=0

zci,jfg,t−j + zci,3fC,t + eci,t,

where var(fg,t) = (1 − ϕ2)−1 and var fC,t = 1. Thus an additional standard-deviation

increase in fg,t−1 predicts zci,1/
√

1− ϕ2 standard-deviation increase in the standardised
return ẏci,t, while an additional standard-deviation increase in fC,t predicts z

c
i,3 standard-

deviation increase in the standardised return ẏci,t.
We then give a formula for variance decomposition. Recall (2.3): αt+1 = T αt +Rηt,

ηt ∼ N(0, I2). We first calculate the unconditional variance of αt; it can be shown that

var(αt) = unvec
{
[I16 − T ⊗ T ]−1(R⊗R) vec(I2)

}
=


1

1−ϕ2
ϕ

1−ϕ2
ϕ2

1−ϕ2 0
ϕ

1−ϕ2
1

1−ϕ2
ϕ

1−ϕ2 0
ϕ2

1−ϕ2
ϕ

1−ϕ2
1

1−ϕ2 0

0 0 0 1

 .
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Since ẏci,t =
[
zci,0 zci,1 zci,2 zci,3

]
αt + eci,t, we have

var(ẏci,t) =
[
zci,0 zci,1 zci,2 zci,3

]


1
1−ϕ2

ϕ
1−ϕ2

ϕ2

1−ϕ2 0
ϕ

1−ϕ2
1

1−ϕ2
ϕ

1−ϕ2 0
ϕ2

1−ϕ2
ϕ

1−ϕ2
1

1−ϕ2 0

0 0 0 1



zci,0
zci,1
zci,2
zci,3

+ var(eci,t)

=
1

1− ϕ2

[
zc,2i,0 + zc,2i,1 + zc,2i,2 + 2ϕzci,1z

c
i,0 + 2ϕzci,1z

c
i,2 + 2ϕ2zci,2z

c
i,0

]
︸ ︷︷ ︸

variance due to the global factor

+ zc,2i,3︸︷︷︸
variance due to the continental factor

+ σ2
c,i︸︷︷︸

variance due to the idiosyncratic error

. (7.1)

For fixed var(ẏci,t) and σ2
c,i, a small zc,2i,3 means that the variance of the return is largely

explained by the global factor.

7.1.1 Two Periods of Five-Year Data

We estimate our model twice using two periods of data (20110103-20151231; 20160104-
20201231). We take care of the missing returns due to the continent-specific reasons using
the technique outlined in Section B.1. The starting values of the parameters for the EM
algorithm are estimated according to Section 3.

The MLE-one day estimates of the factor loading matrices are reported in Table 4. We
first examine the six portfolios constructed by intersections of size and book-to-market
equity ratio (B/M) groups. In 2016-2020 the Japanese standardised returns were more
likely to be affected by the global factor during the US trading time (zA1 ) and less likely
to be affected by the global factor during the European trading time (zA2 ) than they were
in 2011-2015. Take the Japanese SG portfolio as an example. In 2011-2015, an additional
standard-deviation increase in fg,t−1 predicts 0.24/

√
1− 0.16542 = 0.2424 standard-

deviation increase in the standardised return ẏASG,t, while an additional standard-deviation

increase in fA,t−2 predicts 0.51/
√
1− 0.16542 = 0.5171 standard-deviation increase in

the standardised return ẏASG,t. In 2016-2020, an additional standard-deviation increase

in fg,t−1 predicts 0.71/
√
1− 0.23232 = 0.73 standard-deviation increase in the stan-

dardised return ẏASG,t, while an additional standard-deviation increase in fA,t−2 predicts

0.26/
√
1− 0.23232 = 0.2673 standard-deviation increase in the standardised return ẏASG,t.

In 2011-2015, an additional standard-deviation increase in fC,t predicts 0.75 standard-
deviation increase in the standardised return, while in 2016-2020, an additional standard-
deviation increase in fC,t only predicts 0.63 standard-deviation increase in the standard-
ised return.

For the European portfolios, the standardised returns were less likely to be affected
by the global factor during the European and US trading times (zE0 , z

E
2 ), and more likely

to be affected by the continental factor (zE3 ) than they were in 2011-2015. Because of the
much larger continental loadings in 2016-2020, one could argue that the European portfo-
lios became less integrated into the global market than they were in 2011-2015. Take the
European BG portfolio as an example. In 2011-2015, an additional standard-deviation
increase in fg,t predicts 0.47/

√
1− 0.16542 = 0.4766 standard-deviation increase in the

standardised return. In 2016-2020, an additional standard-deviation increase in fg,t pre-
dicts 0.18/

√
1− 0.23232 = 0.1851 standard-deviation increase in the standardised return.
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Size and B/M portfolios in 2011-2015
zA0 zA1 zA2 zA3 zE0 zE1 zE2 zE3 zU0 zU1 zU2 zU3

SG 0.16 0.24 0.51 0.75 0.43 0.54 0.57 0.48 0.45 0.46 0.49 0.48
SN 0.18 0.30 0.63 0.73 0.44 0.54 0.57 0.52 0.47 0.48 0.52 0.48
SV 0.17 0.31 0.66 0.68 0.43 0.53 0.57 0.48 0.47 0.48 0.52 0.46
BG 0.20 0.39 0.85 0.34 0.47 0.58 0.70 0.16 0.41 0.56 0.66 0.15
BN 0.18 0.38 0.89 0.31 0.50 0.60 0.71 0.17 0.41 0.58 0.72 0.09
BV 0.18 0.37 0.85 0.34 0.51 0.56 0.65 0.20 0.42 0.55 0.63 0.18

Size and B/M portfolios in 2016-2020
zA0 zA1 zA2 zA3 zE0 zE1 zE2 zE3 zU0 zU1 zU2 zU3

SG 0.30 0.71 0.26 0.63 0.23 0.53 0.26 0.77 0.50 0.29 0.60 0.42
SN 0.31 0.82 0.47 0.55 0.34 0.54 0.24 0.78 0.40 0.50 0.64 0.47
SV 0.30 0.83 0.56 0.46 0.42 0.55 0.23 0.73 0.30 0.62 0.64 0.42
BG 0.33 0.88 0.36 0.34 0.18 0.54 0.21 0.68 0.55 0.18 0.72 0.01†

BN 0.35 0.92 0.57 0.20 0.36 0.58 0.18 0.68 0.41 0.54 0.74 0.12
BV 0.33 0.85 0.70 0.08 0.52 0.57 0.16 0.60 0.30 0.71 0.72 0.12

Size and momentum portfolios in 2011-2015
zA0 zA1 zA2 zA3 zE0 zE1 zE2 zE3 zU0 zU1 zU2 zU3

SL 0.08 0.27 0.27 0.89 0.37 0.53 0.72 0.26 0.37 0.41 0.69 0.42
SN 0.06 0.25 0.27 0.91 0.42 0.44 0.79 0.16 0.39 0.53 0.53 0.46
SW 0.05♣ 0.22 0.26 0.87 0.47 0.34 0.80 0.06♣ 0.43 0.59 0.35 0.55
BL 0.12 0.28 0.33 0.79 0.39 0.57 0.64 0.14 0.30 0.48 0.74 0.15
BN 0.08 0.27 0.36 0.81 0.49 0.47 0.71 -0.05† 0.34 0.74 0.49 0.12
BW 0.05 0.26 0.36 0.78 0.55 0.31 0.75 -0.24 0.38 0.77 0.25 0.28

Size and momentum portfolios in 2016-2020
zA0 zA1 zA2 zA3 zE0 zE1 zE2 zE3 zU0 zU1 zU2 zU3

SL 0.23 0.47 0.34 0.84 0.63 0.85 0.35 -0.19 0.52 0.75 0.37 0.43
SN 0.21 0.47 0.24 0.88 0.41 0.95 0.44 -0.25 0.59 0.60 0.42 0.47
SW 0.23 0.45 0.07 0.84 0.24 0.94 0.47 -0.20 0.65 0.34 0.43 0.44
BL 0.19 0.46 0.44 0.73 0.68 0.84 0.28 0.05 0.56 0.83 0.35 0.22
BN 0.22 0.50 0.29 0.80 0.44 0.97 0.41 0.17 0.71 0.66 0.40 0.16
BW 0.21 0.49 0.04† 0.77 0.14 0.94 0.45 0.11 0.87 0.25 0.34 0.01†

Table 4: The MLE-one day of the factor loadings. To save space, we do not report the standard

errors, which are around 0.02, with a minimum 0.0084 and maximum 0.0404. Almost all the

estimates are significant at 1% significance level. Entries with ♣ are significant only at 5%

significance level; entries with † are insignificant at 10%.
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In 2011-2015, an additional standard-deviation increase in fC,t predicts 0.16 standard-
deviation increase in the standardised return, while in 2016-2020 an additional standard-
deviation increase in fC,t predicts 0.68 standard-deviation increase in the standardised
return.

For the US portfolios, the standardised returns in 2015-2020 to a large extent be-
came slightly less affected by the global factor during the US trading time (zU0 ), and
became slightly more affected by the global factor during the Asian trading time (zU1 )
than they were in 2011-2015. Take the US SN portfolio as an example. In 2011-2015,
an additional standard-deviation increase in fg,t predicts 0.47/

√
1− 0.16542 = 0.4766

standard-deviation increase in the standardised return, while an additional standard-
deviation increase in fg,t−2 predicts 0.52/

√
1− 0.16542 = 0.5273 standard-deviation in-

crease in the standardised return. In 2016-2020, an additional standard-deviation in-
crease in fg,t predicts 0.40/

√
1− 0.23232 = 0.4113 standard-deviation increase in the

standardised return, while an additional standard-deviation increase in fg,t−2 predicts
0.64/

√
1− 0.23232 = 0.6580 standard-deviation increase in the standardised return. For

the US portfolios, the loadings for the continental factor have decreased slightly; in par-
ticular the continental loading of the BG portfolio has decreased from 0.15 to something
statistically insignificant.

Over the two periods of five years, a few general patterns emerge. First, within the
same B/M ratio category, the big portfolio has much smaller loadings for the continental
factor but larger loadings for the global factor than the small portfolio. In particular, the
variances of the standardised returns of the US big portfolios could largely be explained
by the global factor in light of (7.1). Second, within the same size category, the value
portfolio is more affected by the global factor during the European trading time than the
growth portfolio across the three continents.

We next examine the six portfolios constructed by intersections of size and momentum
groups. The Japanese portfolios in general were more affected by the global factor during
the Asian trading time (zA0 ) than they were in 2011-2015. The effect of the global
factor during the US trading time on the Japanese portfolios (zA1 ) has almost doubled
in 2016-2020. For example, in 2011-2015 an additional standard-deviation increase in
fg,t−1 predicts 0.27 standard-deviation increase in the standardised return of the Japanese
BN portfolio, while in 2016-2020, the same increase predicts 0.5/

√
1− 0.30792 = 0.5255

standard-deviation increase in the standardised return.
For the European portfolios, the standardised returns in 2015-2020 became more af-

fected by the global factor during the Asian trading time (zE1 ), and became less affected by
the global factor during the US trading time (zE2 ) than they were in 2011-2015. Take the
European BW portfolio as an example. In 2011-2015, an additional standard-deviation
increase in fg,t−1 predicts 0.31 standard-deviation increase in the standardised return,
while an additional standard-deviation increase in fg,t−2 predicts 0.75 standard-deviation
increase in the standardised return. In 2016-2020, an additional standard-deviation in-
crease in fg,t−1 predicts 0.94/

√
1− 0.30792 = 0.9880 standard-deviation increase in the

standardised return, while an additional standard-deviation increase in fg,t−2 predicts
0.45/

√
1− 0.30792 = 0.4730 standard-deviation increase in the standardised return.

For the US portfolios, the standardised returns in 2015-2020 became more affected
by the global factor during the US trading time (zU0 ). Take the US BL portfolio as
an example. In 2011-2015, an additional standard-deviation increase in fg,t predicts
0.30 standard-deviation increase in the standardised return, while in 2016-2020 the same
increase predicts 0.56/

√
1− 0.30792 = 0.5886 standard-deviation increase in the stan-
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Size and B/M Size and momentum
2011-2015 2016-2020 2011-2015 2016-2020

ϕ̃ -0.1654 -0.2323 0.0051 -0.3079
(0.0266) (0.0219) (0.0273) (0.0229)

Table 5: The MLE-one day. The standard errors are in parentheses.

dardised return.
For the size-momentum portfolios, one consistent pattern across the three continents

is that in 2011-2015 within the same size category, the winner (W) portfolio was less
affected by the global factor during the Asian trading time than the loser (L) portfolio.
In 2016-2020, again within the same size category, the winner portfolio was less affected
by the global factor during the European trading time than the loser portfolio.

The ϕ̃ in the application of size-B/M portfolios is significantly negative in both five-
year periods. The value is -0.1654 with a standard error of 0.0266 in 2011-2015, and
-0.2323 with a standard error of 0.0219 in 2016-2020. The ϕ̃ in the application of size-
momentum portfolios is statistically insignificant with a point estimate of 0.0051 in 2011-
2015, and significantly negative in 2016-2020, with a value of -0.3079 and a standard error
of 0.0229.

7.1.2 Time Series Patterns

In this subsection, we estimate the model using twenty periods of one-year data (1991-
2020). For simplicity, we only consider the size-B/M portfolios. The detailed point
estimates and their standard errors are available upon request; here we only discuss the
main findings.

First, across the three continents, the big portfolios tended to have smaller loadings for
the continental factor but larger loadings for the global factor than the small portfolios.
The Japanese idiosyncratic variances are in general larger than those of the US and Eu-
rope. This is especially so in 1999-2001 and 2019-2020. These observations are consistent
with the observations based on five-year data reported in the previous subsection.

Second, we discuss some year-specific patterns:

(i) In 1998, the Japanese portfolios have particularly large loadings for the global factor
during the Asian trading time, but small loadings for the global factor during the
US trading time. This could be interpreted as the effect of the Asian financial crisis.

(ii) During the 2007-2008 financial crisis, the Japanese portfolios have large loadings for
the global factors during the European trading time. The European portfolios have
small loadings for the continental factor but large loadings for the global factor
during the US trading time. This could be interpreted as the spread of the US
subprime mortgage crisis.

(iii) In 2017-2018, the Japanese portfolios have large loadings for the global factor during
the US trading time but small loadings for the continental factor. The US portfolios
have large loadings for the global factor during the Asian trading time. The Euro-
pean portfolios have large loadings for the continental factor but small loadings for
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Figure 1: Variance decomposition.

the global factor during the Asian and US trading times. This could be interpreted
as Japan and US markets being more integrated during this period but not so for
the Europe. This could be due to the Sino-US trade war.

(iv) In 2020, the European portfolios have quite small loadings for the continental fac-
tor. Compared with the Japanese and European portfolios, the US portfolios have
relatively constant loadings for the global factor during the three trading periods of
a day.

Last, we re-estimate the model using fifteen periods of two-year data (1991-2020)
and compute the variance decomposition using (7.1). The decompositions are plotted in
Figure 1. The blue solid and red dashed lines depict the variance proportions of the global
and continental factors, respectively. The magenta dotted lines represent the realized
volatilities computed using the standardised portfolio returns (divided by two for a better
layout). We find that the continental factor accounts for a decreasing share of variance
of the US BV standardised portfolio returns in the past 30 years. In the 1990s, the
global factor only accounted for small shares of variances of the US standardized portfolio
returns. During the turbulent years such as the 2008 financial crisis, the global factor
tended to account for larger shares of variances of the European and US standardized
portfolio returns.

7.2 An Empirical Study of Many Markets

We now apply our model to MSCI equity indices of the developed and emerging markets
(41 markets in total). The daily indices are obtained from https://www.msci.com/end-
of-day-data-search. There are 6 indices for each market: Large-Growth, Mid-Growth,
Small-Growth, Large-Value, Mid-Value, and Small-Value, all in USD currency. According
to the closing time of each market, we categorize these markets into 3 continents: Asia-
Pacific, Europe and America. Since the closing time of the Israeli market is both far
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away from Asia-Pacific and Europe, we exclude it from our sample. We use the data of
the period from January 1st 2018 to February 21st 2022. Indices starting after January
1st 2018 are excluded. We estimate the model using the QMLE-md, with choices of ĥ
similar to those mentioned in Section 6.5 The estimated ϕ is 0.338 with a standard error
0.0262.

Table 6 reports the estimates of the factor loadings and idiosyncratic variances for the
Asian-Pacific continent. We present all the indices for Mainland China, Hong Kong and
Japan, but only Middle-Value and Middle-Growth indices for other Asian-Pacific markets
in the interest of space. There are several findings. First, Mainland China and Hong Kong
have particularly high loadings on the global factors during the US trading time (i.e, zA1 ).
Second, Japan has high loadings on the continental factor (i.e, zA3 ) but small idiosyncratic
variances. Third, the growth indices in general have larger idiosyncratic variances than
the value indices. Fourth, most other Asian-Pacific markets have large loadings on the
global factor during the US trading time (i.e, zA1 ), but small and insignificant loadings
on the continental factor (i.e, zA3 ).

Table 7 reports the estimates of the factor loadings and idiosyncratic variances for
the European continent. We present all the indices for the UK, but only Mid-Value and
Mid-Growth indices for other European markets in the interest of space. Most European
markets have the largest loadings on the global factor during the Asian trading time (i.e.,
zE1 ). The developed European markets have large and positive loadings on the continental
factor (i.e., zE3 ), but the emerging European markets have small or negative loadings on
the continental factor (i.e., zE3 ).

Table 8 reports the estimates of the factor loadings and idiosyncratic variance for the
American continent. The US and Canada have statistically insignificant factor loadings on
the continental factor (i.e., zU3 ), while Brazil has large factor loadings on the continental
factor (i.e., zU3 with point estimates greater than 1). Moreover, some emerging American
markets (e.g., Mexico) have higher loadings on the global factor during the Asian trading
time (i.e., zU2 ) but small (and possibly insignificant) loadings on the global factor during
the American and European trading times (i.e., zU0 , z

U
1 ), while this pattern does not hold

for the US market.

8 Conclusion

In this article we propose a new framework of using a statistical dynamic factor model
to model a large number of daily stock returns across different time zones. The presence
of global and continental factors describes a situation in which all the new information
represented by the global and continental factors accumulated since the last closure of a
continent will have an impact on the upcoming observed logarithmic 24-hr returns of that
continent. Our model is identified under a mild fixed-signs assumption and hence has a
structural interpretation. Several estimator are outlined: the MLE-one day, the QMLE-
res, the QMLE, the QMLE-md and the Bayesian. The asymptotic theories of the QMLE
and the QMLE-md are carefully derived. In addition, we propose a way to approximate
the standard errors of the MLE-one day and the QMLE-res. Monte Carlo simulations
show good performance of the MLE-one day, the QMLE-res and the QMLE-md. Last,

5We also estimate the model using the MLE-one day (results available upon request). Its point
estimates are close to those of the QMLE-md; its standard errors are slightly smaller than those of the
QMLE-md.
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zA0 zA1 zA2 zA3 σ2
A,i

JAPAN LG 0.167 (0.118) 0.658 (0.216) 0.179 (0.125) 0.620 (0.054) 0.119 (0.010)
JAPAN LV 0.037 (0.075) 0.520 (0.198) 0.107 (0.103) 0.724 (0.032) 0.086 (0.008)
JAPAN MG 0.133 (0.121) 0.689 (0.232) 0.204 (0.130) 0.725 (0.051) 0.089 (0.008)
JAPAN MV 0.070 (0.084) 0.495 (0.206) 0.125 (0.109) 0.740 (0.034) 0.042 (0.004)
JAPAN SG 0.099 (0.118) 0.699 (0.239) 0.248 (0.132) 0.776 (0.050) 0.121 (0.011)
JAPAN SV 0.039 (0.077) 0.502 (0.209) 0.154 (0.109) 0.789 (0.031) 0.048 (0.004)
CHINA (Mainland) LG 0.486 (0.612) 1.014 (0.229) -0.362 (0.234) -0.406 (0.277) 0.592 (0.052)
CHINA (Mainland) LV 0.300 (0.595) 0.984 (0.222) -0.586 (0.218) -0.249 (0.252) 0.188 (0.016)
CHINA (Mainland) MG 0.294 (0.676) 1.229 (0.254) -0.452 (0.254) -0.305 (0.304) 1.060 (0.093)
CHINA (Mainland) MV 0.664 (0.688) 0.993 (0.253) -0.269 (0.273) 0.003 (0.317) 0.343 (0.030)
CHINA (Mainland) SG 0.426 (0.578) 0.943 (0.212) -0.359 (0.215) -0.203 (0.249) 0.280 (0.025)
CHINA (Mainland) SV 0.491 (0.539) 0.816 (0.198) -0.231 (0.213) -0.007 (0.245) 0.156 (0.014)
HONG KONG LG 0.435 (0.706) 1.049 (0.258) -0.282 (0.267) 0.008 (0.325) 0.423 (0.037)
HONG KONG LV 0.336 (0.444) 0.730 (0.167) -0.420 (0.163) -0.120 (0.192) 0.283 (0.025)
HONG KONG MG 0.408 (0.551) 0.872 (0.206) -0.453 (0.220) -0.008 (0.263) 0.508 (0.044)
HONG KONG MV 0.214 (0.422) 0.695 (0.159) -0.345 (0.158) 0.006 (0.183) 0.274 (0.024)
HONG KONG SG 0.518 (0.582) 0.836 (0.216) -0.196 (0.224) 0.052 (0.259) 0.256 (0.022)
HONG KONG SV 0.359 (0.441) 0.640 (0.162) -0.101 (0.173) 0.038 (0.201) 0.163 (0.014)

AUSTRALIA MG 0.501 (0.102) 0.174 (0.105) 0.086 (0.102) 0.080 (0.072) 0.450 (0.039)
NEW ZEALAND MG 0.434 (0.185) 0.314 (0.120) 0.152 (0.126) -0.099 (0.106) 1.101 (0.096)
SINGAPORE MG 0.450 (0.299) 0.474 (0.119) -0.221 (0.143) -0.056 (0.155) 0.484 (0.042)
INDIA MG -0.055 (0.107) 0.168 (0.082) 0.035 (0.089) 0.164 (0.092) 2.322 (0.203)
INDONESIA MG 0.217 (0.137) 0.057 (0.128) 0.140 (0.131) -0.381 (0.130) 6.538 (0.572)
KOREA MG 0.181 (0.156) 0.081 (0.102) -0.010 (0.112) 0.109 (0.120) 3.503 (0.307)
MALAYSIA MG 0.023 (0.126) 0.200 (0.083) 0.078 (0.087) 0.066 (0.085) 1.460 (0.128)
PHILIPPINES MG 0.245 (0.280) 0.437 (0.126) -0.120 (0.131) -0.131 (0.137) 2.259 (0.198)
TAIWAN MG 0.500 (0.457) 0.840 (0.190) 0.046 (0.213) 0.004 (0.220) 0.737 (0.065)
THAILAND MG 0.323 (0.163) 0.213 (0.078) -0.169 (0.093) 0.033 (0.103) 0.855 (0.075)

AUSTRALIA MV 0.411 (0.107) 0.226 (0.090) -0.025 (0.095) 0.059 (0.076) 0.550 (0.048)
NEW ZEALAND MV 0.296 (0.056) 0.065 (0.060) 0.102 (0.060) -0.026 (0.052) 0.886 (0.078)
SINGAPORE MV 0.413 (0.210) 0.403 (0.091) -0.217 (0.107) -0.124 (0.110) 0.307 (0.027)
INDIA MV 0.456 (0.221) 0.309 (0.114) -0.199 (0.126) 0.103 (0.141) 1.651 (0.145)
INDONESIA MV 0.447 (0.368) 0.718 (0.164) -0.537 (0.185) -0.110 (0.195) 1.854 (0.162)
KOREA MV 0.398 (0.405) 0.810 (0.181) -0.433 (0.178) 0.099 (0.189) 0.817 (0.072)
MALAYSIA MV 0.296 (0.241) 0.373 (0.111) -0.067 (0.125) 0.163 (0.125) 0.729 (0.064)
PHILIPPINES MV 0.224 (0.237) 0.388 (0.104) 0.018 (0.105) -0.168 (0.106) 1.338 (0.117)
TAIWAN MV 0.366 (0.346) 0.651 (0.141) 0.019 (0.154) -0.050 (0.159) 0.254 (0.022)
THAILAND MV 0.325 (0.163) 0.270 (0.076) -0.231 (0.093) 0.020 (0.099) 0.620 (0.054)

Table 6: Selected QMLE-md estimates of the factor loadings and idiosyncratic variances. LV, LG,

MV, MG, SV, SG stand for Large-Value, Large-Growth, Middle-Value, Middle-Growth, Small-Value

and Small-Growth, respectively. The standard errors are in parentheses. The zA
0 , z

A
1 and zA

2 stand for

the factor loadings on the global factor during the Asian-Pacific, American, and European trading times,

respectively. The zA
3 stands for the factor loadings on the Asian-Pacific continental factor.
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zE
0 zE

1 zE
2 zE

3 σ2
E,i

U.K. LG 0.100 (0.039) 0.264 (0.091) 0.218 (0.055) 0.308 (0.031) 0.277 (0.024)
U.K. LV 0.101 (0.046) 0.251 (0.128) 0.101 (0.080) 0.357 (0.045) 0.222 (0.019)
U.K. MG 0.218 (0.055) 0.486 (0.158) 0.269 (0.085) 0.508 (0.034) 0.173 (0.015)
U.K. MV 0.040 (0.057) 0.477 (0.131) 0.176 (0.079) 0.552 (0.042) 0.441 (0.039)
U.K. SG 0.171 (0.054) 0.479 (0.161) 0.255 (0.086) 0.472 (0.035) 0.310 (0.027)
U.K. SV 0.055 (0.054) 0.519 (0.124) 0.138 (0.074) 0.494 (0.039) 0.357 (0.031)

AUSTRIA MG 0.142 (0.074) 0.661 (0.103) 0.083 (0.084) 0.373 (0.065) 1.512 (0.132)
BELGIUM MG 0.222 (0.079) 0.905 (0.105) -0.138 (0.089) 0.395 (0.067) 0.890 (0.078)
DENMARK MG 0.238 (0.056) 0.452 (0.109) 0.140 (0.069) 0.369 (0.041) 0.487 (0.043)
FINLAND MG 0.228 (0.072) 0.699 (0.130) 0.048 (0.088) 0.417 (0.055) 0.668 (0.058)
FRANCE MG 0.293 (0.057) 0.579 (0.143) 0.162 (0.079) 0.499 (0.033) 0.113 (0.010)
GERMANY MG 0.280 (0.061) 0.640 (0.125) 0.082 (0.075) 0.501 (0.039) 0.173 (0.015)
IRELAND MG 0.158 (0.059) 0.521 (0.111) 0.099 (0.074) 0.223 (0.050) 0.753 (0.066)
ITALY MG 0.228 (0.077) 0.782 (0.154) 0.088 (0.092) 0.548 (0.049) 0.461 (0.040)
NETHERLANDS MG 0.059 (0.047) 0.460 (0.071) 0.120 (0.054) 0.323 (0.038) 0.360 (0.032)
NORWAY MG 0.142 (0.060) 0.791 (0.097) 0.037 (0.078) 0.236 (0.056) 0.605 (0.053)
PORTUGAL MG 0.043 (0.060) 0.823 (0.082) -0.120 (0.075) 0.250 (0.059) 0.745 (0.065)
SPAIN MG 0.227 (0.066) 0.471 (0.121) 0.173 (0.078) 0.495 (0.050) 0.893 (0.078)
SWEDEN MG 0.195 (0.062) 0.736 (0.167) 0.234 (0.096) 0.471 (0.045) 0.337 (0.030)
SWITZERLAND MG 0.216 (0.048) 0.454 (0.128) 0.239 (0.072) 0.378 (0.032) 0.157 (0.014)
GREECE MG -0.022 (0.081) 0.894 (0.139) -0.061 (0.101) 0.086 (0.083) 1.971 (0.173)
POLAND MG 0.060 (0.066) 1.116 (0.162) 0.151 (0.097) -0.082 (0.073) 1.132 (0.099)
RUSSIA MG -0.128 (0.063) 0.860 (0.071) -0.091 (0.073) -0.264 (0.070) 1.096 (0.096)
SOUTH AFRICA MG -0.192 (0.095) 1.557 (0.117) 0.128 (0.114) -0.367 (0.106) 1.140 (0.100)
TURKEY MG -0.229 (0.107) 1.465 (0.157) -0.510 (0.123) -0.635 (0.116) 2.982 (0.261)

AUSTRIA MV 0.058 (0.073) 1.002 (0.114) -0.114 (0.093) 0.362 (0.068) 0.975 (0.085)
BELGIUM MV -0.030 (0.047) 0.519 (0.091) 0.044 (0.062) 0.391 (0.039) 0.284 (0.025)
DENMARK MV -0.037 (0.094) 0.588 (0.109) -0.084 (0.099) 0.280 (0.090) 3.513 (0.308)
FINLAND MV 0.161 (0.067) 0.700 (0.143) 0.101 (0.091) 0.399 (0.055) 1.007 (0.088)
FRANCE MV 0.049 (0.049) 0.587 (0.092) -0.022 (0.062) 0.397 (0.037) 0.234 (0.020)
GERMANY MV 0.110 (0.051) 0.520 (0.086) 0.034 (0.060) 0.438 (0.037) 0.204 (0.018)
IRELAND MV 0.003 (0.087) 0.619 (0.112) -0.036 (0.089) 0.746 (0.068) 1.823 (0.160)
ITALY MV -0.021 (0.067) 0.685 (0.081) -0.056 (0.069) 0.582 (0.051) 0.489 (0.043)
NETHERLANDS MV 0.157 (0.061) 0.593 (0.117) 0.072 (0.075) 0.454 (0.043) 0.256 (0.022)
NORWAY MV 0.103 (0.062) 0.800 (0.085) -0.063 (0.075) 0.256 (0.058) 0.807 (0.071)
SPAIN MV -0.057 (0.058) 0.686 (0.075) -0.097 (0.062) 0.534 (0.043) 0.272 (0.024)
SWEDEN MV 0.132 (0.059) 0.573 (0.122) 0.126 (0.077) 0.467 (0.045) 0.457 (0.040)
SWITZERLAND MV 0.024 (0.042) 0.387 (0.099) 0.191 (0.060) 0.442 (0.031) 0.212 (0.019)
CZECH MV -0.093 (0.048) 0.456 (0.069) 0.080 (0.057) 0.059 (0.050) 0.796 (0.070)
EGYPT MV 0.176 (0.083) -0.244 (0.168) 0.380 (0.097) 0.121 (0.083) 2.634 (0.231)
GREECE MV -0.091 (0.085) 0.867 (0.158) -0.036 (0.110) 0.329 (0.083) 2.448 (0.214)
POLAND MV -0.077 (0.070) 0.907 (0.094) -0.002 (0.083) -0.095 (0.076) 1.366 (0.120)
RUSSIA MV -0.199 (0.067) 0.862 (0.074) -0.111 (0.075) -0.227 (0.072) 1.329 (0.116)
SOUTH AFRICA MV -0.130 (0.076) 1.430 (0.105) 0.234 (0.098) -0.293 (0.090) 0.709 (0.062)
TURKEY MV -0.474 (0.148) 1.894 (0.243) -0.863 (0.169) -0.835 (0.156) 5.356 (0.469)

Table 7: Selected QMLE-md estimates of the factor loadings and idiosyncratic variances. LV, LG,

MV, MG, SV, SG stand for Large-Value, Large-Growth, Middle-Value, Middle-Growth, Small-Value

and Small-Growth, respectively. The standard errors are in parentheses. The zE
0 , z

E
1 and zE

2 stand for

the factor loadings on the global factor during the European, Asian-Pacific and American trading times,

respectively. The zE
3 stands for the factor loadings on the European continental factor.
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zU0 zU1 zU2 zU3 σ2
U,i

USA LG 0.117 (0.231) 0.809 (0.131) 0.174 (0.097) 0.051 (0.136) 0.135 (0.012)
USA LV -0.232 (0.165) 0.380 (0.093) 0.348 (0.085) -0.186 (0.116) 0.079 (0.007)
USA MG 0.238 (0.182) 0.780 (0.121) 0.141 (0.090) 0.082 (0.131) 0.060 (0.005)
USA MV -0.083 (0.166) 0.496 (0.099) 0.297 (0.076) -0.125 (0.106) 0.066 (0.006)
USA SG -0.154 (0.225) 0.673 (0.148) 0.550 (0.189) -0.271 (0.217) 0.080 (0.007)
USA SV 0.084 (0.150) 0.374 (0.114) 0.367 (0.146) -0.177 (0.174) 0.101 (0.009)
CANADA LG -0.133 (0.104) 0.312 (0.060) 0.474 (0.074) 0.001 (0.116) 0.192 (0.017)
CANADA LV -0.122 (0.094) 0.208 (0.062) 0.517 (0.085) -0.032 (0.087) 0.175 (0.015)
CANADA MG 0.002 (0.121) 0.369 (0.075) 0.370 (0.075) 0.193 (0.107) 0.271 (0.024)
CANADA MV -0.081 (0.128) 0.333 (0.080) 0.602 (0.095) 0.148 (0.140) 0.364 (0.032)
CANADA SG -0.051 (0.097) 0.248 (0.064) 0.406 (0.075) 0.102 (0.105) 0.334 (0.029)
CANADA SV -0.162 (0.078) 0.186 (0.051) 0.483 (0.066) 0.177 (0.093) 0.264 (0.023)
BRAZIL SG -0.138 (0.130) 0.502 (0.269) 0.364 (0.180) 1.480 (0.108) 0.333 (0.029)
BRAZIL SV -0.161 (0.141) 0.542 (0.273) 0.421 (0.175) 1.374 (0.126) 0.131 (0.011)
BRAZIL MV -0.072 (0.124) 0.241 (0.224) 0.311 (0.166) 1.512 (0.105) 0.413 (0.036)
BRAZIL MG -0.011 (0.110) 0.227 (0.202) 0.369 (0.152) 1.327 (0.094) 0.256 (0.022)
BRAZIL LG -0.000 (0.121) 0.333 (0.215) 0.451 (0.159) 1.348 (0.107) 0.354 (0.031)
BRAZIL LV -0.050 (0.151) 0.335 (0.262) 0.521 (0.182) 1.538 (0.135) 0.731 (0.064)
MEXICO SG 0.039 (0.105) 0.211 (0.096) 0.571 (0.082) 0.426 (0.110) 0.696 (0.061)
MEXICO SV 0.083 (0.116) 0.317 (0.106) 0.564 (0.087) 0.355 (0.112) 0.726 (0.064)
MEXICO MV 0.038 (0.106) 0.223 (0.101) 0.664 (0.086) 0.421 (0.115) 0.726 (0.064)
MEXICO MG 0.047 (0.097) -0.151 (0.096) 0.169 (0.092) 0.213 (0.105) 3.153 (0.276)
MEXICO LG -0.013 (0.118) 0.248 (0.108) 0.678 (0.091) 0.414 (0.120) 0.815 (0.071)
MEXICO LV -0.021 (0.125) 0.268 (0.115) 0.781 (0.099) 0.349 (0.133) 0.866 (0.076)
CHILE SG -0.125 (0.097) -0.031 (0.087) 0.875 (0.099) 0.319 (0.151) 0.864 (0.076)
CHILE SV -0.122 (0.116) 0.065 (0.097) 0.918 (0.102) 0.300 (0.157) 1.058 (0.093)
CHILE MV -0.051 (0.101) 0.043 (0.092) 0.842 (0.089) 0.233 (0.137) 0.799 (0.070)
CHILE MG -0.010 (0.110) 0.188 (0.104) 0.759 (0.093) 0.112 (0.138) 1.478 (0.129)
CHILE LG 0.072 (0.122) 0.319 (0.111) 0.767 (0.097) 0.301 (0.136) 0.984 (0.086)
CHILE LV 0.042 (0.114) 0.249 (0.102) 0.697 (0.091) 0.204 (0.129) 0.822 (0.072)
COLOMBIA SG -0.027 (0.119) 0.416 (0.110) 0.418 (0.090) 0.179 (0.115) 1.551 (0.136)
COLOMBIA SV -0.065 (0.126) 0.200 (0.106) 0.480 (0.089) 0.138 (0.124) 1.653 (0.145)
COLOMBIA LG -0.482 (0.158) 0.267 (0.104) 0.691 (0.129) 0.617 (0.175) 1.800 (0.158)
COLOMBIA LV -0.095 (0.134) 0.359 (0.104) 0.716 (0.093) 0.257 (0.136) 0.873 (0.076)

Table 8: Selected QMLE-md estimates of the factor loadings and idiosyncratic variances. LV, LG,

MV, MG, SV, SG stand for Large-Value, Large-Growth, Middle-Value, Middle-Growth, Small-Value

and Small-Growth, respectively. The standard errors are in parentheses. The zU
0 , z

U
1 and zU

2 stand for

the factor loadings on the global factor during the American, European and Asian-Pacific trading times,

respectively. The zU
3 stands for the factor loadings on the American continental factor.
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we present two empirical applications of our model. One future research direction is to
work out the asymptotic theories of the MLE-one day and the QMLE-res in the large N
large Tf case. Perhaps one could try to adapt the results of Barigozzi and Luciani (2022).

A Appendix

A.1 Proof of Lemma 2.1

Proof of Lemma 2.1. This proof is inspired by that of Bai and Wang (2015). Suppose
that Assumption 2.2 hold. Fix a particular t. Recall (2.3):

yt = Zt


fg,t
fg,t−1

fg,t−2

fC,t

+ εt fg,t+1 = ϕfg,t + ηg,t fC,t+1 = ηC,t.

Note that

fg,t = ϕ3fg,t−3 + ϕ2ηg,t−3 + ϕηg,t−2 + ηg,t−1

fg,t−1 = ϕ2fg,t−3 + ϕηg,t−3 + ηg,t−2

fg,t−2 = ϕfg,t−3 + ηg,t−3.

Since Zt assumes one of {ZA, ZE, ZU}, we need to consider three 4× 4 rotation matrices
represented by:

∆1 :=


A1 B1 C1 O1

D1 E1 F1 P1

G1 H1 I1 Q1

R1 S1 T1 W1

 ,∆2 :=


A2 B2 C2 O2

D2 E2 F2 P2

G2 H2 I2 Q2

R2 S2 T2 W2

 ,∆3 :=


A3 B3 C3 O3

D3 E3 F3 P3

G3 H3 I3 Q3

R3 S3 T3 W3

 .
Consider 

A1 B1 C1 O1

D1 E1 F1 P1

G1 H1 I1 Q1

R1 S1 T1 W1




fg,t
fg,t−1

fg,t−2

fC,t

 =


f̃g,t
f̃g,t−1

f̃g,t−2

f̃C,t

 (A.1)


A3 B3 C3 O3

D3 E3 F3 P3

G3 H3 I3 Q3

R3 S3 T3 W3



fg,t−1

fg,t−2

fg,t−3

fC,t−1

 =


f̃g,t−1

f̃g,t−2

f̃g,t−3

f̃C,t−1

 (A.2)


A2 B2 C2 O2

D2 E2 F2 P2

G2 H2 I2 Q2

R2 S2 T2 W2



fg,t−2

fg,t−3

fg,t−4

fC,t−2

 =


f̃g,t−2

f̃g,t−3

f̃g,t−4

f̃C,t−2

 . (A.3)

Considering (A.1) and (A.2), we have

f̃g,t−1 = D1fg,t + E1fg,t−1 + F1fg,t−2 + P1fC,t = A3fg,t−1 +B3fg,t−2 + C3fg,t−3 +O3fC,t−1
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whence we have

0 =
[
D1ϕ

3 + (E1 − A3)ϕ
2 + (F1 −B3)ϕ− C3

]
fg,t−3 +

[
D1ϕ

2 + (E1 − A3)ϕ+ (F1 −B3)
]
ηg,t−3

+
[
D1ϕ+ (E1 − A3)

]
ηg,t−2 +D1ηg,t−1 + P1ηC,t−1 −O3ηC,t−2.

Note that each of ηg,t−1, ηC,t−1, ηC,t−2 is uncorrelated with any other term on the right
hand side of the preceding display. We necessarily have D1ηg,t−1 = 0, P1ηC,t−1 = 0 and
O3ηC,t−2 = 0 because of the non-zero variance. Equivalently, we have D1 = P1 = O3 = 0.
Likewise, we deduce that E1 = A3, F1 = B3 and C3 = 0. Next, note that

f̃g,t−2 = G1fg,t +H1fg,t−1 + I1fg,t−2 +Q1fC,t = D3fg,t−1 + E3fg,t−2 + F3fg,t−3 + P3fC,t−1

whence we have

0 =
[
G1ϕ

3 + (H1 −D3)ϕ
2 + (I1 − E3)ϕ− F3

]
fg,t−3 +

[
G1ϕ

2 + (H1 −D3)ϕ+ (I1 − E3)
]
ηg,t−3[

G1ϕ+ (H1 −D3)
]
ηg,t−2 +G1ηg,t−1 +Q1ηC,t−1 − P3ηC,t−2.

Using a similar trick, we deduce that

G1 = Q1 = P3 = 0, H1 = D3 = 0, I1 = E3, F3 = 0.

The rotation matrices ∆1,∆3 are deduced to

∆1 :=


A1 B1 C1 O1

0 E1 F1 0
0 H1 I1 0
R1 S1 T1 W1

 (A.4)

∆3 :=


E1 F1 0 0
H1 I1 0 0
G3 H3 I3 Q3

R3 S3 T3 W3

 . (A.5)

Applying the trick to (A.2) and (A.3), we deduce

∆3 :=


A3 B3 C3 O3

0 E3 F3 0
0 H3 I3 0
R3 S3 T3 W3

 (A.6)

∆2 :=


E3 F3 0 0
H3 I3 0 0
G2 H2 I2 Q2

R2 S2 T2 W2

 . (A.7)
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Applying the trick to (A.3) and (A.1), we deduce

∆2 :=


A2 B2 C2 O2

0 E2 F2 0
0 H2 I2 0
R2 S2 T2 W2

 (A.8)

∆1 :=


E2 F2 0 0
H2 I2 0 0
G1 H1 I1 Q1

R1 S1 T1 W1

 . (A.9)

Comparing (A.4) and (A.9), we have

A1 = E2, B1 = F2, H2 = 0, I2 = E1, G1 = 0, F1 = 0.

Comparing (A.5) and (A.6), we have

H1 = 0, F3 = 0, I3 = E2 = A1.

Comparing (A.7) and (A.8), we have

A2 = E3 = I1, B2 = F3 = 0, E2 = A1, I2 = E1, H3 = 0, F2 = 0.

Thus the rotation matrices ∆1,∆2,∆3 are reduced to

∆1 :=


A1 0 0 0
0 E1 0 0
0 0 I1 0
R1 S1 T1 W1

 ,∆2 :=


I1 0 0 0
0 A1 0 0
0 0 E1 0
R2 S2 T2 W2

 ,∆3 :=


E1 0 0 0
0 I1 0 0
0 0 A1 0
R3 S3 T3 W3

 .
Note that

R1fg,t + S1fg,t−1 + T1fg,t−2 +W1fC,t = f̃c,t,

whence we have(
R1ϕ

3 + S1ϕ
2 + T1ϕ

)
fg,t−3 +

(
R1ϕ

2 + S1ϕ+ T1
)
ηg,t−3 + (R1ϕ+ S1)ηg,t−2 +R1ηg,t−1 +W1ηC,t−1

= η̃c,t−1.

Since ηg,t and ηC,t are uncorrelated, we have R1 = S1 = T1 = 0. Then ∆1 is reduced to

∆1 =


A1 0 0 0
0 E1 0 0
0 0 I1 0
0 0 0 W1

 .
Applying the similar trick, we have

∆2 :=


I1 0 0 0
0 A1 0 0
0 0 E1 0
0 0 0 W2

 , ∆3 :=


E1 0 0 0
0 I1 0 0
0 0 A1 0
0 0 0 W3

 .
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We have

f̃g,t = A1fg,t = A1(ϕfg,t−1 + ηg,t−1) = A1ϕfg,t−1 + A1ηg,t−1 var(A1ηg,t−1) = 1

f̃g,t−1 = E1fg,t−1 = E1(ϕfg,t−2 + ηg,t−2) = E1ϕfg,t−2 + E1ηg,t−2 var(E1ηg,t−2) = 1

f̃g,t−2 = I1fg,t−2 = I1(ϕfg,t−3 + ηg,t−3) = I1ϕfg,t−3 + I1ηg,t−3 var(I1ηg,t−3) = 1

f̃c,t = W1fC,t = W1ηC,t−1 var(W1ηC,t−1) = 1

f̃c,t−1 = W3fC,t−1 = W3ηC,t−2 var(W3ηC,t−2) = 1

f̃c,t−2 = W2fC,t−2 = W2ηC,t−3 var(W2ηC,t−3) = 1

We hence deduce that A1 = ±1, E1 = ±1, I1 = ±1 and Wi = ±1 for i = 1, 2, 3.
Requiring that estimators of zA0 , z

A
1 , z

A
2 , z

A
3 , z

E
3 , z

U
3 have the same column signs as those

of zA0 , z
A
1 , z

A
2 , z

A
3 , z

E
3 , z

U
3 ensures that A1 = 1, E1 = 1, I1 = 1 and Wi = 1 for i = 1, 2, 3.

Thus ∆1,∆2,∆3 are reduced to identity matrices. Note that the proof works for both
ϕ = 0 and ϕ ̸= 0.

A.2 Bayesian Estimation Using the Gibbs Sampling

In this subsection, we outline a Bayesian procedure (i.e., the Gibbs sampling) to estimate
the factor model (2.3). The Gibbs sampling consists of the following steps:

1. Get the starting values of the model parameters for the Gibbs sampling.

2. Conditional on the model parameters and the observed data, draw the factors.

3. Conditional on the factors and the observed data, draw the model parameters.

4. Return to step 2.

After a large number of steps, the collection of drawn factors will give the posterior
distribution of the factors given the data, while the collection of drawn parameters will
give the posterior distribution of the parameters given the data. We shall now explain
steps 2-3 in detail.

A.2.1 Step 2

Let Y1:t := {y⊺
t , . . . ,y

⊺
1}⊺ and Y0 = ∅. For

αt =


fg,t
fg,t−1

fg,t−2

fC,t

 , αt+1 :=


fg,t+1

fg,t
fg,t−1

fC,t+1

 ,
only the last 2 elements of αt are unknown, i.e., fg,t−2, fC,t, once αt+1 is given. We want
to sample αt from the joint distribution

p(αT ,αT−1, . . . ,α1|Y1:T )
= p(αT |Y1:T )p(αT−1|αT , Y1:T )p(αT−2|αT−1,αT , Y1:T ) · · · p(α1|α2, . . . ,αT , Y1:T )

= p(αT |Y1:T )
T−1∏
t=1

p(αt|αt+1, . . . ,αT , Y1:T ) = p(αT |Y1:T )
T−1∏
t=1

p(αt|αt+1, Y1:t)
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where the last equality is due to the Markov structure of the state space system (Carter
and Kohn (1994) Lemma 2.1).

We first sample

αT |Y1:T ∼ N(aT |T , PT |T )

where aT |T := E[αT |Y1:T ] and PT |T := var(αT |Y1:T ). These are obtained from Kalman fil-
ter (please refer to Section A.3 for details). Then we may sample αt from p(αt|αt+1, Y1:t),
t = T − 1, . . . , 3. Given αt+1, only the last 2 elements of αt, i.e., fg,t−2, fC,t, are random,
which can be drawn from p(fg,t−2, fC,t|αt+1, Y1:t) for t = T − 1, . . . , 3. The conditional
density p(fg,t−2, fC,t|αt+1, Y1:t) can be written as

p(fg,t−2, fC,t|αt+1, Y1:t) = p(fg,t−2, fC,t|fg,t+1, fg,t, fg,t−1, fC,t+1, Y1:t)

= p(fg,t−2|fC,t, fg,t+1, fg,t, fg,t−1, fC,t+1, Y1:t)p(fC,t|fg,t+1, fg,t, fg,t−1, fC,t+1, Y1:t). (A.10)

We consider the first term of (A.10).

p(fg,t−2|fC,t, fg,t+1, fg,t, fg,t−1, fC,t+1, Y1:t) =
p(fg,t−2, fg,t+1|fC,t, fg,t, fg,t−1, fC,t+1, Y1:t)

p(fg,t+1|fC,t, fg,t, fg,t−1, fC,t+1, Y1:t)

∝ p(fg,t−2, fg,t+1|fC,t, fg,t, fg,t−1, fC,t+1, Y1:t)

= p(fg,t+1|fg,t−2, fC,t, fg,t, fg,t−1, fC,t+1, Y1:t)p(fg,t−2|fC,t, fg,t, fg,t−1, fC,t+1, Y1:t) (A.11)

Consider the second term of (A.11) first.

p(fg,t−2|fC,t, fg,t, fg,t−1, fC,t+1, Y1:t) = p(fg,t−2|fC,t, fg,t, fg,t−1, Y1:t).

Note that we can obtain the distribution αt|Y1:t via Kalman filter:
fg,t
fg,t−1

fg,t−2

fC,t


∣∣∣∣∣∣∣∣∣
Y1:t

= αt|Y1:t ∼ N(at|t, Pt|t) =: N



at|t,1
at|t,2
at|t,3
at|t,4



Pt|t,11 Pt|t,12 Pt|t,13 Pt|t,14
Pt|t,21 Pt|t,22 Pt|t,23 Pt|t,24
Pt|t,31 Pt|t,32 Pt|t,33 Pt|t,34
Pt|t,41 Pt|t,42 Pt|t,43 Pt|t,44


 ,

for t = T − 1, . . . , 3. Reshuffle the elements of αt a little bit:
fC,t
fg,t
fg,t−1

fg,t−2


∣∣∣∣∣∣∣∣∣
Y1:t

∼ N(Peat|t, PePt|tP
⊺
e ) = N



at|t,4
at|t,1
at|t,2
at|t,3



Pt|t,44 Pt|t,41 Pt|t,42 Pt|t,43
Pt|t,14 Pt|t,11 Pt|t,12 Pt|t,13
Pt|t,24 Pt|t,21 Pt|t,22 Pt|t,23
Pt|t,34 Pt|t,31 Pt|t,32 Pt|t,33


 ,

(A.12)

where Pe is a permutation matrix

Pe =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .
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Partition (A.12) accordingly:
fC,t
fg,t
fg,t−1

fg,t−2


∣∣∣∣∣∣∣∣∣
Y1:t

∼ N

( at|t,a
at|t,b

)[
Pt|t,aa Pt|t,ab
Pt|t,ba Pt|t,bb

]
where at|t,a := (at|t,4, at|t,1, at|t,2)

⊺, at|t,b := at|t,3, Pt|t,bb := Pt|t,33, Pt|t,ab := (Pt|t,43, Pt|t,13, Pt|t,23)
⊺,

Pt|t,ba = P ⊺
t|t,ab and

Pt|t,aa :=

 Pt|t,44 Pt|t,41 Pt|t,42
Pt|t,14 Pt|t,11 Pt|t,12
Pt|t,24 Pt|t,21 Pt|t,22

 .

Then

fg,t−2|fC,t, fg,t, fg,t−1, Y1:t ∼ N(ct, Ct) t = T − 1, . . . , 3

where

ct = at|t,b + Pt|t,baP
−1
t|t,aa


 fC,t

fg,t
fg,t−1

− at|t,a


Ct = Pt|t,bb − Pt|t,baP

−1
t|t,aaPt|t,ab.

We now consider the first term of (A.11). Note that fg,t+1 = ϕfg,t+ηg,t, ηg,t ∼ N(0, 1).
We hence have fg,t+1|fg,t−2, fC,t, fg,t, fg,t−1, fC,t+1, Y1:t ∼ N(ϕfg,t, 1), which is independent
of fg,t−2. We hence have

p(fg,t−2|fC,t, fg,t+1, fg,t, fg,t−1, fC,t+1, Y1:t) ∝ N(ct, Ct). (A.13)

Consider the second term of (A.10).

p(fC,t|fg,t+1, fg,t, fg,t−1, fC,t+1, Y1:t) = p(fC,t|fg,t+1, fg,t, fg,t−1, Y1:t) = p(fC,t|fg,t, fg,t−1, Y1:t).

Using (A.12), we have fC,t
fg,t
fg,t−1


∣∣∣∣∣∣∣
Y1:t

∼ N


 at|t,4
at|t,1
at|t,2


 Pt|t,44 Pt|t,41 Pt|t,42
Pt|t,14 Pt|t,11 Pt|t,12
Pt|t,24 Pt|t,21 Pt|t,22


 =: N

( at|t,c
at|t,d

)[
Pt|t,cc Pt|t,cd
Pt|t,dc Pt|t,dd

] ,

where at|t,c = at|t,4, at|t,d := (at|t,1, at|t,2)
⊺, Pt|t,cc := Pt|t,44, Pt|t,cd := (Pt|t,41, Pt|t,42), Pt|t,dc =

P ⊺
t|t,cd, and

Pt|t,dd :=

(
Pt|t,11 Pt|t,12
Pt|t,21 Pt|t,22

)
.
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Then

fC,t|fg,t, fg,t−1, Y1:t ∼ N(dt, Dt) t = T − 1, . . . , 3 (A.14)

where

dt = at|t,c + Pt|t,cdP
−1
t|t,dd

( fg,t
fg,t−1

)
− at|t,d


Dt = Pt|t,cc − Pt|t,cdP

−1
t|t,ddPt|t,dc.

In sum, conditional on the model’s parameters, the following recursion describes how
to draw from p(αT ,αT−1, . . . ,α1|Y1:T ):

(a) We first sample

αT |Y1:T ∼ N(aT |T , PT |T )

where aT |T := E[αT |Y1:T ] and PT |T := var(αT |Y1:T ).

(b) Consider t = T−1, . . . , 3. For each fixed t, first draw fC,t from N(dt, Dt) as in (A.14),
and then draw fg,t−2 from N(ct, Ct) as in (A.13).

(c) For t = 2, draw fC,2 from N(d2, D2) as in (A.14).

(d) For t = 1, note that[
fC,1
fg,1

]∣∣∣∣∣∣
Y1

∼ N

( a1|1,4
a1|1,1

)[
P1|1,44 P1|1,41
P1|1,14 P1|1,11

] ,

whence we have

fC,1|fg,1, fg,0, Y1 = fC,1|fg,1, Y1 ∼ N(d1, D1),

where

d1 = a1|1,4 + P1|1,41P
−1
1|1,11(fg,1 − a1|1,1)

D1 = P1|1,44 − P1|1,41P
−1
1|1,11P1|1,14.

Thus draw fC,1 from N(d1, D1).

Steps (a)-(d) finish one round of sampling from p(αT ,αT−1, . . . ,α1|Y1:T ).

A.2.2 Step 3

In this subsubsection, we consider how to draw model parameters conditional on the
factors and observed data. We first provide two auxiliary results.

Lemma A.1.
tr(Z⊺BZC) = (vecZ)⊺(C⊺ ⊗B)vecZ.
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Proposition A.1. If a positive random variable X has a density that is proportional to

x−a−1e−
1
bx ,

then X ∼ inverse-gamma(a, b) and Y := 1/X ∼ gamma(a, b). The matlab syntax is
y = random(’Gamma’,a,b)
x = 1/y

Draw ZA, ZE, ZU ,ΣA,ΣE,ΣU We first consider how to draw ZA, ZE, ZU ,ΣA,ΣE,ΣU .
Consider

yAt︸︷︷︸
NA×1

= Ztαt + eAt = ZAαt + eAt t ∈ TA (A.15)

yEt = Ztαt + eEt = ZEαt + eEt t ∈ TE

yUt = Ztαt + eUt = ZUαt + eUt t ∈ TU .

We shall use (A.15) to illustrate the procedure. We assume that little is known a priori
about ZA and ΣA. We hence use Jeffrey’s priors:

p(ZA) = constant p(ΣA) ∝ |ΣA|−1.

Moreover, we assume that ZA and ΣA are independent, so

p(ZA,ΣA) = p(ZA)p(ΣA) ∝ |ΣA|−1

p(ZA|ΣA) ∝ 1.

Stacking (A.15), we have

Y A︸︷︷︸
T
3
×NA

=


yA⊺1

yA⊺4

yA⊺7
...

yA⊺T−2

 =


α⊺

1

α⊺
4

α⊺
7
...

α⊺
T−2

ZA⊺ +


eA⊺1

eA⊺4

eA⊺7
...

eA⊺T−2

 =: ΞA︸︷︷︸
T
3
×4

ZA⊺︸︷︷︸
4×NA

+ EA︸︷︷︸
T
3
×NA

(A.16)

Suppose that we observe {αt}Tt=1. How do we estimate ZA⊺? The OLS estimate would
be

Z̈A⊺ =

(∑
t∈TA

αtα
⊺
t

)−1 ∑
t∈TA

αty
A⊺
t = (Ξ⊺

AΞA)
−1Ξ⊺

AY
A.

We can calculate

p(Y A|ΞA, ZA,ΣA) =
∏
t∈TA

1

(2π)
NA
2 |ΣA|1/2

exp

[
−1

2
(yAt − ZAαt)

⊺Σ−1
A (yAt − ZAαt)

]
= (2π)−

NAT

6 |ΣA|−
T
6 exp

[
−1

2
tr

(∑
t∈TA

(yAt − ZAαt)(y
A
t − ZAαt)

⊺Σ−1
A

)]
= (2π)−

NAT

6 |ΣA|−
T
6 exp

[
−1

2
tr

(∑
t∈TA

(yAt − Z̈Aαt)(y
A
t − Z̈Aαt)

⊺Σ−1
A

)]
· exp

[
−1

2
tr

(
(Z̈A − ZA)Ξ⊺

AΞA(Z̈
A − ZA)⊺Σ−1

A

)]
= (2π)−

NAT

6 |ΣA|−
T
6 exp

[
−1

2
tr
(
SAΣ

−1
A

)]
· exp

[
−1

2
tr

(
(Z̈A − ZA)Ξ⊺

AΞA(Z̈
A − ZA)⊺Σ−1

A

)]
,
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where

SA :=
∑
t∈TA

(yAt − Z̈Aαt)(y
A
t − Z̈Aαt)

⊺ = Ë⊺
AËA = (Y A − ΞAZ̈

A⊺)⊺(Y A − ΞAZ̈
A⊺).

We can hence calculate the posterior

p(ZA,ΣA|Y A,ΞA) ∝ p(ZA,ΣA, Y
A|ΞA) = p(ZA,ΣA|ΞA)p(Y A|ZA,ΣA,ΞA)

∝ p(ZA,ΣA)p(Y
A|ZA,ΣA,ΞA)

∝ |ΣA|−
T/3+2

2 exp

[
−1

2
tr
(
SAΣ

−1
A

)]
· exp

[
−1

2
tr

(
(Z̈A − ZA)Ξ⊺

AΞA(Z̈
A − ZA)⊺Σ−1

A

)]
,

where the second ∝ is due to that knowing ΞA does not shed any information on ZA,ΣA.
Viewing the preceding display as a prior probability density function (pdf), we see

that it factors into a normal part for ZA given ΣA and a marginal pdf for ΣA:
6

p(ZA|ΣA, Y
A,ΞA) ∝ |ΣA|−

4
2 exp

[
−1

2
tr

(
(Z̈A − ZA)Ξ⊺

AΞA(Z̈
A − ZA)⊺Σ−1

A

)]
= |ΣA|−

4
2 exp

[
−1

2

[
vec(Z̈A⊺ − ZA⊺)

]⊺
(Σ−1

A ⊗ Ξ⊺
AΞA)

[
vec(Z̈A⊺ − ZA⊺)

]]
via Lemma A.1 and

p(ΣA|Y A,ΞA) ∝ |ΣA|−
T/3+2−4

2 exp

[
−1

2
tr
(
SAΣ

−1
A

)]
=

NA∏
i=1

(σ2
A,i)

−T/3+2−4
2 exp

[
−1

2

SA,ii
σ2
A,i

]

=

NA∏
i=1

(σ2
A,i)

−T/3−4
2

−1 exp

[
− 1

σ2
A,i · (2/SA,ii)

]
whence we have

vec(ZA⊺)|ΣA, Y
A,ΞA ∼ N

(
vec(Z̈A⊺),ΣA ⊗ (Ξ⊺

AΞA)
−1
)

p(σ2
A,i|Y A,ΞA) ∝ (σ2

A,i)
−T/3−4

2
−1 exp

[
− 1

σ2
A,i(2/SA,ii)

]

for i = 1, . . . , NA. Thus,

σ2
A,i|Y A,ΞA ∼ inverse-gamma

(
T/3− 4

2
,

2

SA,ii

)
σ−2
A,i|Y

A,ΞA ∼ gamma

(
T/3− 4

2
,

2

SA,ii

)
.

via Proposition A.1.

6To see why the exponent of |ΣA| in p(ZA|ΣA, Y
A,ΞA) is −4/2: The covariance matrix of vec(ZA⊺)

is ΣA ⊗ (Ξ⊺
AΞA)

−1. When calculating p(ZA|ΣA, Y
A,ΞA), we have a term:

1∣∣ΣA ⊗ (Ξ⊺
AΞA)−1

∣∣ 12 =
∣∣ΣA ⊗ (Ξ⊺

AΞA)
−1
∣∣− 1

2 ∝ |ΣA|−
4
2 .
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Draw ϕ We now consider how to draw ϕ conditional on the factors and observed data.
Recall (2.2): fg,t+1 = ϕfg,t + ηg,t. Define

ϕ̈ :=

(T−1∑
t=1

f 2
g,t

)−1 T−1∑
t=1

fg,tfg,t+1.

Recalling (3.1), we have

p(Ξ|ϕ) ∝
T−1∏
t=0

1√
2π

exp

[
−(fg,t+1 − ϕfg,t)

2

2

]
= (2π)−

T
2 exp

[
−1

2
Sf,g

]
exp

[
−1

2
(ϕ̈− ϕ)2

T−1∑
t=0

f 2
g,t

]
,

where Sf,g :=
∑T−1

t=0 (fg,t+1 − ϕ̈fg,t)
2, and the last equality is due to the identity:

T−1∑
t=0

(fg,t+1 − ϕfg,t)
2 =

T−1∑
t=0

(fg,t+1 − ϕ̈fg,t)
2 +

T−1∑
t=0

(ϕ̈− ϕ)2f 2
g,t.

Assume that p(ϕ) = constant. We can calculate

p(ϕ,Ξ) ∝ p(Ξ|ϕ) ∝ (2π)−
T
2 exp

[
−1

2
Sf,g

]
exp

[
−1

2
(ϕ̈− ϕ)2

T−1∑
t=0

f 2
g,t

]
∝ exp

[
−1

2
· (ϕ̈− ϕ)2

1/
∑T−1

t=0 f
2
g,t

]
,

whence we have

ϕ|Ξ ∼ N

(
ϕ̈,

1∑T−1
t=0 f

2
g,t

)
.

We will discard the draw if the stationarity condition |ϕ| < 1 is not satisfied and re-draw
from the preceding display until we obtain a draw satisfying the stationarity condition.

A.2.3 An Application

The Bayesian approach is computationally intensive and feasible only for small Nc. In
some unreported Monte Carlo simulations, we found that the proposed Bayesian estimator
works well for Nc = 20 but not so well for Nc = 200 for c = A,E, U .

Here we use the proposed Bayesian estimator to re-estimate the model for the em-
pirical study in Section 7.1. The starting values of the model parameters for the Gibbs
sampling are set to those of the EM algorithm. The length of the Markov chain is chosen
to be 50,000 with a burn-in period of 40,000. After the burn-in period, we store the every
10th draw; the posterior distributions are formed based on these stored 1000 draws. The
results are reported in Tables 9 and 10. One can see that these results are similar to
those obtained by the MLE-one day in Section 7.1. The only major difference is that
the Bayesian estimator gives a significant -0.1495 for ϕ for size-momentum portfolios in
2011-2015 (see Table 10). However, it is important to stress that two valid estimation
procedures cannot produce identical results in the finite samples.
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Size and B/M portfolios in 2011-2015
zA0 zA1 zA2 zA3 zE0 zE1 zE2 zE3 zU0 zU1 zU2 zU3

SG 0.26 0.23 0.58 0.73 0.53 0.73 0.25 0.45 0.56 0.45 0.59 0.50
SN 0.29 0.27 0.69 0.71 0.54 0.74 0.24 0.49 0.57 0.48 0.63 0.49
SV 0.28 0.28 0.73 0.65 0.53 0.73 0.23 0.45 0.57 0.48 0.62 0.48
BG 0.31 0.35 0.89 0.31 0.60 0.83 0.30 0.11 0.65 0.53 0.64 0.16
BN 0.28 0.34 0.94 0.27 0.63 0.85 0.28 0.12 0.69 0.53 0.68 0.10
BV 0.28 0.33 0.90 0.30 0.63 0.79 0.24 0.16 0.62 0.52 0.64 0.19

Size and B/M portfolios in 2016-2020
zA0 zA1 zA2 zA3 zE0 zE1 zE2 zE3 zU0 zU1 zU2 zU3

SG 0.22 0.47 0.12 0.76 0.22 0.62 0.20 0.74 0.16 0.26 0.84 0.33
SN 0.24 0.56 0.33 0.75 0.34 0.61 0.20 0.75 0.08 0.49 0.85 0.35
SV 0.23 0.56 0.42 0.69 0.43 0.59 0.20 0.71 0.02♣ 0.62 0.80 0.31
BG 0.26 0.74 0.22 0.49 0.17 0.65 0.18 0.63 0.21 0.14 0.89 -0.06
BN 0.29 0.80 0.46 0.39 0.36 0.68 0.16 0.63 0.11 0.49 0.89 -0.01♣

BV 0.27 0.67 0.60 0.36 0.53 0.62 0.15 0.56 0.05 0.68 0.81 0.01♣

Size and momentum portfolios in 2011-2015
zA0 zA1 zA2 zA3 zE0 zE1 zE2 zE3 zU0 zU1 zU2 zU3

SL 0.09 0.16 0.35 0.89 0.54 0.53 0.48 0.45 0.26 0.78 0.48 0.40
SN 0.07 0.16 0.33 0.92 0.54 0.42 0.52 0.53 0.28 0.83 0.32 0.43
SW 0.04♣ 0.13 0.30 0.89 0.57 0.29 0.51 0.49 0.29 0.84 0.13 0.47
BL 0.12 0.20 0.42 0.78 0.57 0.58 0.56 0.20 0.24 0.81 0.57 0.11
BN 0.08 0.20 0.42 0.81 0.62 0.45 0.67 0.17 0.29 0.94 0.29 0.08
BW 0.03♣ 0.18 0.40 0.79 0.63 0.24 0.62 0.23 0.29 0.92 0.01♣ 0.17

Size and momentum portfolios in 2016-2020
zA0 zA1 zA2 zA3 zE0 zE1 zE2 zE3 zU0 zU1 zU2 zU3

SL 0.23 0.39 0.29 0.86 0.65 0.83 0.32 -0.20 0.58 0.74 0.40 0.27
SN 0.22 0.39 0.18 0.90 0.43 0.94 0.39 -0.26 0.65 0.59 0.48 0.25
SW 0.24 0.37 0.02♣ 0.86 0.24 0.95 0.41 -0.23 0.64 0.31 0.53 0.31
BL 0.19 0.37 0.39 0.76 0.70 0.82 0.27 0.04 0.56 0.79 0.41 0.02♣

BN 0.23 0.41 0.23 0.82 0.44 0.97 0.37 0.16 0.68 0.59 0.50 -0.12
BW 0.22 0.38 -0.04♣ 0.80 0.13 0.96 0.39 0.08 0.65 0.15 0.52 -0.07

Table 9: The factor loadings estimated by the Bayesian posterior means. To save space, we

do not report the standard deviations of the posterior distributions, with a mean 0.0151, a

minimum 2.0699× 10−6 and a maximum 0.0359. An entry with superscript ♣ means that zero

is within the interval of this entry (i.e., the posterior mean) ±1.96×the standard deviation of

the posterior distribution.
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Size and B/M Size and momentum
2011-2015 2016-2020 2011-2015 2016-2020

ϕ -0.1599 -0.1492 -0.1495 -0.2399
(0.0178) (0.0238) (0.0367) (0.0209)

Table 10: Parameter ϕ estimated by the Bayesian posterior means. The standard deviations

of the posterior distributions are in parentheses.

A.3 Formulas for the Kalman Filter and Smoother

In this subsection, we shall give the recursive formulas for the Kalman filter and smoother,
which will be used in the Bayesian estimation and EM algorithm, respectively.

A.3.1 The Kalman Filter

Recall the model (2.3). Let Y1:t := {y⊺
t , . . . ,y

⊺
1}⊺ and Y0 = ∅. Define

αt|t−1 := E[αt|Y1:t−1] Pt|t−1 := var(αt|Y1:t−1)

αt|t := E[αt|Y1:t] Pt|t := var(αt|Y1:t).

Given that α0 = 0, it can be calculated that

α1|0 = 0 P1|0 = RR⊺.

Define

vt := yt − E[yt|Y1:t−1] = yt − Ztαt|t−1 = Zt(αt −αt|t−1) + εt.

That is, vt is the one-step ahead forecast error of yt given Y1:t−1. When Y1:t−1 and vt are
fixed, then Y1:t is fixed. When Y1:t is fixed, then Y1:t−1 and vt are fixed. Thus

αt|t = E[αt|Y1:t] = E[αt|Y1:t−1,vt]

αt+1|t = E[αt+1|Y1:t−1,vt]

E[vt|Y1:t−1] = E
[
Zt(αt −αt|t−1) + εt|Y1:t−1

]
= 0.

We have

αt

vt

∣∣∣∣∣
Y1:t−1

∼ N

( αt|t−1

0

)
,

(
Pt cov(αt,vt|Y1:t−1)

cov(αt,vt|Y1:t−1)
⊺ Ft

)
where

Ft := var(vt|Y1:t−1) = var
(
Zt(αt −αt|t−1) + εt|Y1:t−1

)
= ZtPtZ

⊺
t + Σt

cov(αt,vt|Y1:t−1) = E
[
αtv

⊺
t |Y1:t−1

]
= E

[
αt

(
Zt(αt −αt|t−1) + εt

)⊺ |Y1:t−1

]
= PtZ

⊺
t .

Thus invoking a lemma on multivariate normal, we have

αt|t = αt|t−1 + PtZ
⊺
t F

−1
t vt

Pt|t = Pt − PtZ
⊺
t F

−1
t ZtPt. (A.17)
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We now develop the recursions for αt+1|t and Pt+1.

αt+1|t = E[αt+1|Y1:t] = E[T αt +Rηt|Y1:t] = T αt|t

Pt+1 = var(αt+1|Y1:t) = var(T αt +Rηt|Y1:t) = T Pt|tT ⊺ +RR⊺

for t = 1, . . . , T − 1.

A.3.2 The Kalman Smoother

We present the formulas for the Kalman smoother here. For the derivations, see Durbin
and Koopman (2012).

Lt := T − (T PtZ⊺
t F

−1
t )Zt

ς t−1 := Z⊺
t F

−1
t vt + L⊺

t ς t

Nt−1 := Z⊺
t F

−1
t Zt + L⊺

tNtLt

αt|T := E[αt|Y1:T ] = αt|t−1 + Ptς t−1

Pt|T := var(αt|Y1:T ) = Pt − PtNt−1Pt

cov(αt,αt+1|Y1:T ) = PtL
⊺
t (I4 −NtPt+1);

for t = T, . . . , 1, initialised with ςT = 0 and NT = 0.

A.4 First-Order Conditions of (3.6)

In this subsection, we derive (3.7). Note that we only utilise information that M is
symmetric, positive definite and that Σee is diagonal to derive the first-order conditions;
no specific knowledge of Λ or M is utilised to derive the first-order conditions. Cholesky
decompose M : M = LL⊺, where L is the unique lower triangular matrix with positive
diagonal entries. Thus

Σyy = ΛMΛ⊺ + Σee = ΛLL⊺Λ⊺ + Σee = BB⊺ + Σee, (A.18)

where B := ΛL. Recall the log-likelihood function (3.6) omitting the constant:

− 1

2N
log |Σyy| −

1

2N
tr(SyyΣ

−1
yy ) = − 1

2N
log |BB⊺ + Σee| −

1

2N
tr
(
Syy
[
BB⊺ + Σee

]−1
)
.

Take the derivatives of the preceding display with respect to B and Σee. The FOC of Σee

is:

diag(Σ̂−1
yy ) = diag(Σ̂−1

yy SyyΣ̂
−1
yy ), (A.19)

where Σ̂yy := B̂B̂⊺ + Σ̂ee. The FOC of B is

B̂⊺Σ̂−1
yy (Syy − Σ̂yy) = 0. (A.20)

Note that (A.19, A.20) has 6N(14+1) equations, while B,Σee has 6N(14+1) parameters.
Thus B̂, Σ̂ee can be uniquely solved. Then we need identification conditions to kick in.
Even though we could uniquely determine B̂, we cannot uniquely determine Λ̂, M̂ . This
is because

B̂B̂⊺ = Λ̃M̃ Λ̃⊺ = Λ̊M̊ Λ̊⊺ = Λ̃CC−1M̃(C−1)⊺C⊺Λ̃⊺
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where Λ̊ := Λ̃C and M̊ := C−1M̃(C−1)⊺ for any 14 × 14 invertible C.7 We hence
need to impose 142 identification restrictions on the estimates of Λ and M to rule out
the rotational indeterminacy. After imposing the 142 restrictions, we obtain the unique
estimates, say, Λ̂, M̂ (and hence L̂). Substituting B̂ = Λ̂L̂ into (A.20), we have

Λ̂⊺Σ̂−1
yy (Syy − Σ̂yy) = 0.

A.5 Proof of Proposition 4.1

As Bai and Li (2012) did, we use a superscript ”*” to denote the true parameters,
Λ∗,Σ∗

ee,M
∗ etc. The parameters without the superscript ”*” denote the generic pa-

rameters in the likelihood function. Note that the proof of (4.2) is exactly the same as
that of Bai and Li (2012), so we omit the details here.

Define

Ĥ := (Λ̂⊺Σ̂−1
ee Λ̂)

−1

A := (Λ̂− Λ∗)⊺Σ̂−1
ee Λ̂Ĥ (A.21)

K := M̂−1(MA− A⊺MA).

Our assumptions satisfy those of Bai and Li (2012), so (A17) of Bai and Li (2012) still
holds (in our notation):

λ̂k,j − λ∗
k,j = Kλ∗

k,j + op(1), (A.22)

for k = 1, . . . , 6 and j = 1, . . . , N . As mentioned before, Λ∗ (i.e., {λ∗
k,j : k = 1, . . . , 6, j =

1, . . . , N}) defined (2.5) gives more than 142 restrictions, but in order to utilise the theo-
ries of Bai and Li (2012) we shall only impose 142 restrictions on {λ̂k,j : k = 1, . . . , 6, j =
1, . . . , N}. How to select these 142 restrictions from those implied by {λ∗

k,j} are crucial
because we cannot afford imposing a restriction which is not instrumental for the proofs
later. The idea is that one restriction should pin down one free parameter in K. We shall
now explain our procedure. Write (A.22) in matrix form:

Λ̂k − Λ∗
k = KΛ∗

k + op(1), (A.23)

where Λ̂k := (λ̂k,1, . . . , λ̂k,N) and Λ∗
k := (λ∗

k,1, . . . ,λ
∗
k,N) are 14×N matrices. For a generic

matrix C, let Cx,y denote the matrix obtained by intersecting the rows and columns whose
indices are in x and y, respectively; let Cx,• denote the matrix obtained by extracting
the rows whose indices are in x while C•,y denote the matrix obtained by extracting the
columns whose indices are in y.

A.5.1 Step I Impose Some Zero Restrictions in {Λ∗
k}6k=1

Let a ⊂ {1, 2, . . . , 14} and c ⊂ {1, . . . , N} be two vectors of indices, whose identities vary
from place to place. From (A.23), we have(
Λ̂k − Λ∗

k

)
a,c

= Ka,•Λ
∗
k,•,c + op(1) = Ka,bΛ

∗
k,b,c +Ka,−bΛ

∗
k,−b,c + op(1) = Ka,bΛ

∗
k,b,c + op(1)

= Ka,b1Λ
∗
k,b1,c

+Ka,b2Λ
∗
k,b2,c

+ op(1) (A.24)

7Note that we could find at least one pair (Λ̃, M̃) satisfying B̂B̂⊺ = Λ̃M̃ Λ̃⊺: Λ̃ = B̂ and M̃ = I14.
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Step k c a b1 b2

I.1 1 {1,2,3,4} {1,2,3,4,5,9,10,11,12,13} ∅ {6, 7, 8, 14}
I.2 6 {1,2,3,4} {4,5,6,7,8,10,11,12,13,14} ∅ {1,2,3,9}
I.3 4 {1,2,3} {6,7,8,10,12,13,14} 3 {4,5,11}
I.4 4 {1,2,3,4} {1,2,9} ∅ {3,4,5,11}
I.5 3 {1,2,3} 3 6 {4,5,12}
I.6 3 {1,2} {7,8,14} {4,5} {6,12}
I.7 2 {1,2} {4,11} {6,7} {5,13}
I.8 2 {1,2} {8,14} {5,6} {7,13}
I.9 5 {1,2} {1,9} {3,4} {2,10}
I.10 5 {1,2} {5} {2,3} {4,10}
I.11 5 {1,2} {11} {2,3} {4,10}
I.12 5 1 {6,7,8,12,13,14} {2,3,4} 10
I.13 3 1 {1,2,9,10,11,13} {4,5,6} 12
I.14 2 1 {1,2,3,9,10,12} {5,6,7} 13

Table 11: Step I.

where b ⊂ {1, 2, . . . , 14} is chosen in such a way such that Λ∗
k,−b,c = 0 for each of the steps

below, −b denotes the complement of b, and b1 ∪ b2 = b with the cardinality of b2 equal
to the cardinality of c.

In each of the sub-step of step I, we shall impose Λ̂k,a,c = 0. Step I is detailed in Table

11, and we shall use step I.1 to illustrate. For step I.1, Λ̂k,a,c = 0 means
λ̂

⊺

1,1

λ̂
⊺

1,2

λ̂
⊺

1,3

λ̂
⊺

1,4

 =


0 0 0 0 0 − − − 0 0 0 0 0 −
0 0 0 0 0 − − − 0 0 0 0 0 −
0 0 0 0 0 − − − 0 0 0 0 0 −
0 0 0 0 0 − − − 0 0 0 0 0 −

 .
This means (A.24) holds with LHS being

(
Λ̂k − Λ∗

k

)
a,c

= 0, where

k = 1, c = {1, 2, 3, 4}, a = {1, 2, 3, 4, 5, 9, 10, 11, 12, 13}, b1 = ∅, b2 = {6, 7, 8, 14}.

Note that c = {1, 2, 3, 4} is arbitrary and could be replaced with any other c ⊂ {1, . . . , N}
with cardinality being 4. The crucial point is that c needs to be chosen such that Λ∗

k,b2,c

is invertible. This is an innocuous requirement given large N , so we shall make this
assumption implicitly for the rest of the article. Solving (A.24) gives Ka,b2 = op(1).

A.5.2 Step II Impose Some Equality Restrictions in {Λ∗
k}6k=1

(II.1) Note that (A.23) implies

Λ̂6,9,c − Λ∗
6,9,c = K9,xΛ

∗
6,x,c + op(1) = K9,1Λ

∗
6,1,c +K9,9Λ

∗
6,9,c + op(1) x = {1, 2, 3, 9}

Λ̂3,12,c − Λ∗
3,12,c = K12,yΛ

∗
3,y,c + op(1) = K12,12Λ

∗
3,12,c + op(1) y = {4, 5, 6, 12}.

We then impose Λ̂6,9,c = Λ̂3,12,c for c = {1, 2}. The preceding display implies

K9,1Λ
∗
6,1,c +

(
K9,9 −K12,12

)
Λ∗

6,9,c = op(1)
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whence we have K9,1 = op(1) and K9,9 −K12,12 = op(1).

(II.2) We impose Λ̂4,11,c = Λ̂1,14,c for c = {1, 2}. Repeating the procedure in step II.1,
we have K14,8 = op(1) and K11,11 −K14,14 = op(1) in the same way.

(II.3) We impose Λ̂6,1,c = Λ̂3,4,c for c = {1, 2}, and haveK1,1−K4,4 = op(1), K1,9−K4,12 =
op(1).

(II.4) We impose Λ̂6,2,c = Λ̂3,5,c for c = {1, 2, 3}, and have K2,1 = op(1), K2,2 − K5,5 =
op(1), K2,9 −K5,12 = op(1).

(II.5) We impose Λ̂6,3,c = Λ̂3,6,c for c = {1, 2, 3, 4}, and have K3,1 = op(1), K3,2 =
op(1), K3,3 −K6,6 = op(1), K3,9 −K6,12 = op(1).

(II.6) We impose Λ̂1,8,c = Λ̂4,5,c for c = {1, 2}, and have K8,8 − K5,5 = op(1), K8,14 −
K5,11 = op(1).

(II.7) We impose Λ̂1,7,c = Λ̂4,4,c for c = {1, 2, 3}, and have K7,8 = op(1), K7,7 − K4,4 =
op(1), K7,14 −K4,11 = op(1).

(II.8) We impose Λ̂1,6,c = Λ̂4,3,c for c = {1, 2, 3}, and have K6,7 = op(1), K6,8 =
op(1), K6,14 −K3,11 = op(1).

A.5.3 Step III Impose Some Restrictions in M∗

After steps I and II, K is reduced to

K =

[
K11 K12

0 K22

]
+ op(1),

where

K11 =



K1,1 0 0 0 0 0 0 0
0 K2,2 0 0 0 0 0 0
0 0 K3,3 0 0 0 0 0
0 0 0 K1,1 0 0 0 0
0 0 0 0 K2,2 0 0 0
0 0 0 0 0 K3,3 0 0
0 0 0 0 0 0 K1,1 0
0 0 0 0 0 0 0 K2,2


(A.25)

K12 =



K4,12 0 0 0 0 0
K5,12 K2,10 0 0 0 0
K6,12 K3,10 K3,11 0 0 0
0 K4,10 K4,11 K4,12 0 0
0 0 K5,11 K5,12 K5,13 0
0 0 0 K6,12 K6,13 K3,11

0 0 0 0 K7,13 K4,11

0 0 0 0 0 K5,11


,K22 =


K12,12 0 0 0 0 0

0 K10,10 0 0 0 0
0 0 K11,11 0 0 0
0 0 0 K12,12 0 0
0 0 0 0 K13,13 0
0 0 0 0 0 K11,11

 .
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In the paragraph above (A16) of Bai and Li (2012), they showed A = Op(1). Given
Assumption 4.1(iii), we have K = Op(1). Next, (A16) of Bai and Li (2012) still holds
and could be written as

M̂ − (I14 − A⊺)M∗(I14 − A) = op(1). (A.26)

Since M∗ and M̂∗ are of full rank (Assumption 4.1(iii)), (A.26) implies that I14 −A is of
full rank. Write (A.26) as

M̂(K + I14)− (I14 − A⊺)M∗ = op(1).

As Bai and Li (2012) did in their (A20), we could premultiply the preceding display by[
(I14 − A⊺)M∗]−1

to arrive at (after some algebra and relying on (A.26)):

(I14 − A)(K + I14)− I14 = op(1). (A.27)

Likewise, partition A into 8× 8, 8× 6, 6× 8 and 6× 6 submatrices:

A =

[
A11 A12

A21 A22

]
.

Then (A.27) could be written into

(I8 − A11)(K11 + I8)− I8 = op(1) (A.28)

(I8 − A11)K12 − A12(K22 + I6) = op(1) (A.29)

−A21(K11 + I8) = op(1) (A.30)

−A21K12 + (I6 − A22)(K22 + I6)− I6 = op(1). (A.31)

Consider (A.28) first. Since I8 +K11 is diagonal, we deduce that the diagonal elements
of I8 +K11 could not converge to 0, and A11 converges to a diagonal matrix. Using the
fact that the diagonal elements of I8 +K11 could not converge to 0, (A.30) implies

A21 = op(1),

and A21K12 = op(1)Op(1) = op(1). Then (A.31) is reduced to

(I6 − A22)(K22 + I6)− I6 = op(1).

Since K22 + I6 is diagonal, we deduce that the diagonal elements of K22 + I6 could not
converge to 0, and A22 should converge to a diagonal matrix as well. To sum up

I8 +K11 I8 − A11 I6 +K22 I6 − A22

are diagonal or diagonal in the limit, and invertible in the limit (i.e., none of the diagonal
elements is zero in the limit). Moreover, (A.28) implies

(I8 +K11)
−1 = (I8 − A11) + op(1). (A.32)

Via (A.27), (A.26) implies

(I14 +K⊺)M̂(I14 +K)−M∗ = op(1). (A.33)
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Partition M̂ into 8× 8, 8× 6, 6× 8 and 6× 6 submatrices:

M̂ =

 M̂11 M̂12

M̂21 M̂22

 .
Then (A.33) could be written as

(I8 +K11)M̂11(I8 +K11)− Φ∗ = op(1) (A.34)

(I8 +K11)M̂11K12 + (I8 +K11)M̂12(I6 +K22) = op(1) (A.35)[
K

⊺
12M̂11 + (I6 +K22)M̂21

]
(K11 + I8) = op(1) (A.36)

K
⊺
12

(
M̂12(I6 +K22) + M̂11K12

)
+ (I6 +K22)

(
M̂22(I6 +K22) + M̂21K12

)
− I6 = op(1).

(A.37)

Step III.1 Considering (A.34), we have

(1 +K3,3)
2M̂6,6 =

1

1− ϕ∗,2 + op(1)

(1 +K1,1)
2M̂4,4 =

1

1− ϕ∗,2 + op(1)

(1 +K2,2)
2M̂5,5 =

1

1− ϕ∗,2 + op(1).

Imposing M̂4,4 = M̂6,6, we have

M̂4,4

[
(1 +K1,1)

2 − (1 +K3,3)
2
]
= op(1).

Since (A.34) implies that M̂4,4 ̸= op(1). The preceding display implies

K3,3 = K1,1 + op(1), or 1 +K3,3 = −(1 +K1,1) + op(1).

Likewise, imposing M̂4,4 = M̂5,5, we have

K2,2 = K1,1 + op(1), or 1 +K2,2 = −(1 +K1,1) + op(1).

Thus, there are four cases:

(a) K2,2 = K1,1 + op(1) and K3,3 = K1,1 + op(1)

(b) K2,2 = K1,1 + op(1) and 1 +K3,3 = −(1 +K1,1) + op(1)

(c) 1 +K2,2 = −(1 +K1,1) + op(1) and K3,3 = K1,1 + op(1)

(d) 1 +K2,2 = −(1 +K1,1) + op(1) and 1 +K3,3 = −(1 +K1,1) + op(1).

Irrespective of case, (A.34) is reduced to (1+K1,1)
2M̂11 = Φ∗+op(1), whence we have

(1 +K1,1)
2M̂4,4 =

1

1− ϕ∗,2 + op(1)

(1 +K1,1)
2M̂6,4 =

ϕ∗,2

1− ϕ∗,2 + op(1).
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Imposing M̂4,4 − M̂6,4 = 1, we have

(1 +K1,1)
2 = 1 + op(1)

whence we haveK1,1 = op(1) or 1+K1,1 = −1+op(1). Suppose that 1+K1,1 = −1+op(1).
Then (A.32) implies (A11)1,1 = 2 + op(1). Note that the identification scheme which we
employ in Proposition 4.1 only identifies Λ∗ up to a column sign change. Thus by assuming
that Λ̂ and Λ∗ have the same column signs, we can rule out the case (A11)1,1 = 2+ op(1)
(Bai and Li (2012, p.445, p.463)). Thus we have K1,1 = op(1) and hence rule out cases
(b)-(d). To sum up, we have

K1,1 = op(1), K11 = op(1), M̂11 = Φ∗ + op(1), A11 = op(1).

Step III.2 Now (A.35) is reduced to

M̂12(I6 +K22) = −Φ∗K12 + op(1)

Impose three more restrictions: Assume the 4th-6th elements of the fourth column of

M̂12 are zero; that is M̂4,12 = M̂5,12 = M̂6,12 = 0. This implies that the corresponding
three elements of Φ∗

12K are op(1):

1

1− ϕ∗2

 K4,12 + ϕ∗K5,12 + ϕ∗2K6,12

ϕ∗K4,12 +K5,12 + ϕ∗K6,12

ϕ∗2K4,12 + ϕ∗K5,12 +K6,12

 = op(1)

whence we have K4,12 = K5,12 = K6,12 = op(1). Similarly, assuming the 2nd-4th elements

of the second column of M̂12 are zero, we could deduce thatK2,10 = K3,10 = K4,10 = op(1);

assuming the 3rd-5th elements of the third column of M̂12 are zero, we could deduce that
K3,11 = K4,11 = K5,11 = op(1); assuming M̂5,13 = M̂6,13 = M̂7,13 = 0,we could deduce that
K5,13 = K6,13 = K7,13 = op(1). We hence obtain

K12 = op(1).

Step III.3 With K12 = op(1), (A.37) is reduced to

(I6 +K22)M̂22(I6 +K22)− I6 = op(1).

Since I6 + K22 is diagonal, M̂22 is asymptotically diagonal. Imposing that the 2nd-5th

diagonal elements of M̂22 are 1 (i.e., M̂j,j = 1 for j = 10, 11, 12, 13), we have

(1 +K10,10)
2 − 1 = op(1)

(1 +K11,11)
2 − 1 = op(1)

(1 +K12,12)
2 − 1 = op(1)

(1 +K13,13)
2 − 1 = op(1)

whence we have Kj,j = op(1) or 1+Kj,j = −1+ op(1) for j = 10, 11, 12, 13. Likewise, the
case 1 +Kj,j = −1 + op(1) is ruled out. Thus

K22 = op(1), A22 = op(1), M̂22 = I6 + op(1).
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Then (A.35) and (A.36) imply M̂12 = op(1) and M̂21 = op(1), respectively. Also (A.29)
implies A12 = op(1). To sum up, we have

K = op(1), A = op(1), M̂ =M∗ + op(1).

Substituting K = op(1) into (A.22), we have

λ̂k,j − λ∗
k,j = op(1),

for k = 1, . . . , 6 and j = 1, . . . , N .

A.6 Proof of Theorem 4.1

Given consistency, we can drop the superscript from the true parameters for simplicity.
The proof of Theorem 4.1 resembles that of Theorem 5.1 of Bai and Li (2012). Most of
the proof of Theorem 5.1 of Bai and Li (2012) is insensitive to the identification condition;
the only exception is their Lemma B5. Thus we only need to prove the result of their
Lemma B5 under our identification condition. That is, we want to prove

MA = Op(T
−1/2
f ) +Op

([
1

6N

6∑
k=1

N∑
j=1

(σ̂2
k,j − σ2

k,j)
2

]1/2)
=: Op(♢). (A.38)

Following the approach of Bai and Li (2012) and using their Lemmas B1, B2, B3, one
could show that

λ̂k,j − λk,j = Kλk,j +Op(♢).

Using the same approach we adopted in the proof of Proposition 4.1, we arrive at

K =

[
K11 K12

0 K22

]
+Op(♢),

where K11, K12, K22 are defined in (A.25), and

M̂ − (I14 − A⊺)M(I14 − A) = Op(♢) (A.39)

(I14 − A)(K + I14)− I14 = Op(♢) (A.40)

Note that
√

1 +Op(♢) = 1 +Op(♢) and (1 + Op(♢))−1 = 1 + Op(♢) because of the gen-
eralised Binomial theorem and that Op(♢) = op(1). Then one could repeat the argument
in the proof of Proposition 4.1 to arrive at

K = Op(♢), A = Op(♢), M̂ =M +Op(♢) (A.41)

λ̂k,j − λk,j = Op(♢), MA = Op(♢) (A.42)

for k = 1, . . . , 6 and j = 1, . . . , N .
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A.7 Proof of Theorem 4.2

Equation (C4) of the supplement of Bai and Li (2012) still holds in our case since its
derivation does not involve identification conditions (page 17 of the supplement of Bai
and Li (2012)); in our notation it is

σ̂2
m − σ2

m =
1

Tf

Tf∑
t=1

(e2m,t − σ2
m) + op(T

−1/2
f )

for m = 1, . . . , 6N , where the single-index σ2
m is defined as σ2

m := σ2
⌈m
N
⌉,m−⌊m

N
⌋N ; interpret

σ̂2
m, em,t similarly. Thus theorem 4.2 follows.

A.8 Proof of Theorem 4.3

Pre-multiply M̂ to (A14) of Bai and Li (2012) and write in our notation:

M̂
(
λ̂k,j − λk,j

)
=M(Λ̂− Λ)⊺Σ̂−1

ee Λ̂Ĥλk,j

− ĤΛ̂⊺Σ̂−1
ee (Λ̂− Λ)M(Λ̂− Λ)⊺Σ̂−1

ee Λ̂Ĥλk,j

− ĤΛ̂⊺Σ̂−1
ee Λ

(
1

Tf

Tf∑
t=1

f te
⊺
t

)
Σ̂−1
ee Λ̂Ĥλk,j

− ĤΛ̂⊺Σ̂−1
ee

(
1

Tf

Tf∑
t=1

etf
⊺
t

)
Λ⊺Σ̂−1

ee Λ̂Ĥλk,j

− Ĥ

( 6N∑
m=1

6N∑
ℓ=1

1

σ̂2
mσ̂

2
ℓ

λ̂mλ̂
⊺
ℓ

1

Tf

Tf∑
t=1

[
em,teℓ,t − E(em,teℓ,t)

])
Ĥλk,j

+ Ĥ

( 6N∑
m=1

1

σ̂4
m

λ̂mλ̂
⊺
m(σ̂

2
m − σ2

m)

)
Ĥλk,j

+ ĤΛ̂⊺Σ̂−1
ee

(
1

Tf

Tf∑
t=1

etf
⊺
t

)
λk,j + ĤΛ̂⊺Σ̂−1

ee Λ

(
1

Tf

Tf∑
t=1

f te(k−1)N+j,t

)

+ Ĥ

( 6N∑
i=1

1

σ̂2
m

λ̂m
1

Tf

Tf∑
t=1

[
em,te(k−1)N+j,t − E(em,te(k−1)N+j,t)

])
− Ĥλ̂k,j

1

σ̂2
k,j

(σ̂2
k,j − σ2

k,j),

(A.43)

where ei,t denotes the ith element of et, the single-index λm is defined as λm := λ⌈m
N
⌉,m−⌊m

N
⌋N ;

interpret λ̂m, σ
2
m, σ̂

2
m similarly.

Consider the right hand side of (A.43). The third and fourth terms are op(T
−1/2
f )

by Lemma C1(e) of Bai and Li (2012). The fifth term is op(T
−1/2
f ) by Lemma C1(d)

of Bai and Li (2012). The six term is op(T
−1/2
f ) by Lemma C1(f) of Bai and Li (2012).

The seventh term is op(T
−1/2
f ) by Lemma C1(e) of Bai and Li (2012). The ninth term is

op(T
−1/2
f ) by Lemma C1(c) of Bai and Li (2012). The tenth term is op(T

−1/2
f ) by Theorem

4.2. Thus (A.43) becomes

M̂
(
λ̂k,j − λk,j

)
=MAλk,j − A⊺MAλk,j + ĤΛ̂⊺Σ̂−1

ee Λ

(
1

Tf

Tf∑
t=1

f te(k−1)N+j,t

)
+ op(T

−1/2
f ).
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Substituting (4.5) into (A.38), we have Op(♢) = Op(T
−1/2
f ). Thus A = Op(T

−1/2
f ) via

(A.42). The preceding display hence becomes

λ̂k,j − λk,j = M̂−1MAλk,j + M̂−1ĤΛ̂⊺Σ̂−1
ee Λ

(
1

Tf

Tf∑
t=1

f te(k−1)N+j,t

)
+ op(T

−1/2
f ).

(A.44)

Note that

ĤΛ̂⊺Σ̂−1
ee Λ = (Λ̂⊺Σ̂−1

ee Λ̂)
−1Λ̂⊺Σ̂−1

ee Λ = (Λ̂⊺Σ̂−1
ee Λ̂)

−1
[
Λ̂⊺Σ̂−1

ee Λ̂ + Λ̂⊺Σ̂−1
ee (Λ− Λ̂)

]
= I14 + (Λ̂⊺Σ̂−1

ee Λ̂)
−1Λ̂⊺Σ̂−1

ee (Λ− Λ̂) = I14 + ĤΛ̂⊺Σ̂−1
ee (Λ− Λ̂) = I14 +Op(T

−1/2
f )

where the last equality is due to Lemma C1(a) of Bai and Li (2012). Substituting the
preceding display into (A.44), we have

λ̂k,j − λk,j

= M̂−1MAλk,j + M̂−1

(
1

Tf

Tf∑
t=1

f te(k−1)N+j,t

)
+ M̂−1Op(T

−1/2
f )

(
1

Tf

Tf∑
t=1

f te(k−1)N+j,t

)
+ op(T

−1/2
f )

= Aλk,j + (M̂−1 −M−1)MAλk,j +M−1

(
1

Tf

Tf∑
t=1

f te(k−1)N+j,t

)

+ (M̂−1 −M−1)

(
1

Tf

Tf∑
t=1

f te(k−1)N+j,t

)
+ M̂−1Op(T

−1
f ) + op(T

−1/2
f ).

Given M−1 = O(1) and M̂ −M = Op(T
−1/2
f ), we have M̂−1 −M−1 = Op(T

−1/2
f ) and

M̂−1 = Op(1) (Lemma B4 of Linton and Tang (2021)). Hence the preceding display
becomes

λ̂k,j − λk,j = Aλk,j +M−1

(
1

Tf

Tf∑
t=1

f te(k−1)N+j,t

)
+ op(T

−1/2
f ).

Write in matrix form:

Λ̂k − Λk = AΛk + Fk + op(T
−1/2
f ), (A.45)

where Λ̂k := (λ̂k,1, . . . , λ̂k,N), Λk := (λk,1, . . . , λk,N) and

Fk :=M−1 1

Tf

Tf∑
t=1

f t
[
e(k−1)N+1,t, e(k−1)N+2,t, . . . , ekN,t

]
are 14 × N matrices. We are going to solve (A.45) for A in terms of known elements.
The idea is exactly the same as that of the proof of Proposition 4.1.

A.8.1 Step I Impose Some Zero Restrictions in {Λk}6k=1

Let a ⊂ {1, 2, . . . , 14} and c ⊂ {1, . . . , N} be two vectors of indices, whose identities vary
from place to place. From (A.45), we have(

Λ̂k − Λk
)
a,c

= Aa,•Λk,•,c + Fk,a,c + op(T
−1/2
f ) = Aa,bΛk,b,c + Aa,−bΛk,−b,c + Fk,a,c + op(T

−1/2
f )

= Aa,bΛk,b,c + Fk,a,c + op(T
−1/2
f ) = Aa,b1Λk,b1,c + Aa,b2Λk,b2,c + Fk,a,c + op(T

−1/2
f ) (A.46)
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where b ⊂ {1, 2, . . . , 14} is chosen in such a way such that Λk,−b,c = 0 for each of the
sub-steps of Step I, −b denotes the complement of b, and b1 ∪ b2 = b with the cardinality
of b2 equal to the cardinality of c and Aa,b1 containing solved elements for each of the

sub-steps of Step I. Step I is again detailed in Table 11. Imposing
(
Λ̂k
)
a,c

= 0 and solving

(A.46) gives

Aa,b2 = −
(
Aa,b1Λk,b1,c + Fk,a,c

)
Λ−1
k,b2,c

+ op(T
−1/2
f ). (A.47)

A.8.2 Step II Impose M̂j,j = 1 for j = 10, 11, 12, 13

Consider (A13) of Bai and Li (2012) and write in our notation:

M̂ −M = −ĤΛ̂⊺Σ̂−1
ee (Λ̂− Λ)M −M(Λ̂− Λ)⊺Σ̂−1

ee Λ̂Ĥ

+ ĤΛ̂⊺Σ̂−1
ee (Λ̂− Λ)M(Λ̂− Λ)⊺Σ̂−1

ee Λ̂Ĥ

+ ĤΛ̂⊺Σ̂−1
ee Λ

(
1

Tf

Tf∑
t=1

f te
⊺
t

)
Σ̂−1
ee Λ̂Ĥ

+ ĤΛ̂⊺Σ̂−1
ee

(
1

Tf

Tf∑
t=1

etf
⊺
t

)
Λ⊺Σ̂−1

ee Λ̂Ĥ

+ Ĥ

( 6N∑
m=1

6N∑
ℓ=1

1

σ̂2
mσ̂

2
ℓ

λ̂mλ̂
⊺
ℓ

1

Tf

Tf∑
t=1

[
em,teℓ,t − E(em,teℓ,t)

])
Ĥ

− Ĥ

( 6N∑
m=1

1

σ̂4
m

λ̂mλ̂
⊺
m(σ̂

2
m − σ2

m)

)
Ĥ. (A.48)

In the paragraph following (A.43), we already showed that the last four terms of the

right hand side of the preceding display are op(T
−1/2
f ). Since A = Op(T

−1/2
f ), A⊺MA =

op(T
−1/2
f ). Thus, (A.48) becomes

M̂ −M + A⊺M +MA = op(T
−1/2
f ). (A.49)

Imposing M̂10,10 = 1, the (10, 10)th element of the preceding display satisfies

op(T
−1/2
f ) = M̂10,10 − 1 +M10,•A•,10 +

(
A•,10

)⊺
M•,10 = 2A10,10

whence A10,10 = op(T
−1/2
f ). In the similar way, imposing M̂11,11, M̂12,12, M̂13,13 = 1, we

could deduce that A11,11, A12,12, A13,13 = op(T
−1/2
f ).

A.8.3 Step III Impose Some Equality Restrictions in {Λk}6k=1

(III.1) Note that (A.45) implies

Λ̂6,9,c − Λ6,9,c = A9,xΛ6,x,c + F6,9,c + op(T
−1/2
f ) x = {1, 2, 3, 9}

= A9,[1,9]Λ6,[1,9],c + A9,[2,3]Λ6,[2,3],c + F6,9,c + op(T
−1/2
f )

Λ̂3,12,c − Λ3,12,c = A12,yΛ3,y,c + F3,12,c + op(T
−1/2
f ) y = {4, 5, 6, 12}.
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We then impose Λ̂6,9,c = Λ̂3,12,c for c = {1, 2}; that is, the loadings of the continent factor
on day one and day two are the same for the first two American assets. The preceding
display implies

A9,[1,9]Λ6,[1,9],c = A12,yΛ3,y,c + F3,12,c − A9,[2,3]Λ6,[2,3],c − F6,9,c + op(T
−1/2
f )

whence we have

A9,[1,9] =
(
A12,yΛ3,y,c + F3,12,c − A9,[2,3]Λ6,[2,3],c − F6,9,c

)
Λ−1

6,[1,9],c + op(T
−1/2
f ).

(III.2) Note that (A.45) implies

(Λ̂1 − Λ1)14,c = A14,xΛ1,x,c + F1,14,c + op(T
−1/2
f ) x = {6, 7, 8, 14}

= A14,[8,14]Λ1,[8,14],c + A14,[6,7]Λ1,[6,7],c + F1,14,c + op(T
−1/2
f )

(Λ̂4 − Λ4)11,c = A11,yΛ4,y,c + F4,11,c + op(T
−1/2
f ) y = {3, 4, 5, 11}.

We then impose Λ̂1,14,c = Λ̂4,11,c for c = {1, 2}; that is, the loadings of the continent
factor on day one and day two are the same for the first two Asian assets. The preceding
display implies

A14,[8,14]Λ1,[8,14],c = A11,yΛ4,y,c + F4,11,c − A14,[6,7]Λ1,[6,7],c − F1,14,c + op(T
−1/2
f )

whence we have

A14,[8,14] =
(
A11,yΛ4,y,c + F4,11,c − A14,[6,7]Λ1,[6,7],c − F1,14,c

)
Λ−1

1,[8,14],c + op(T
−1/2
f )

A.8.4 Step IV Impose Some Restrictions in M

Impose M̂4,12 = M̂5,12 = M̂6,12 = 0. Considering the (4, 12)th, (5, 12)th and (6, 12)th
elements of the left hand side of (A.49), we have

M4,•A•,12 + A12,4 = op(T
−1/2
f )

M5,•A•,12 + A12,5 = op(T
−1/2
f )

M6,•A•,12 + A12,6 = op(T
−1/2
f )

with the only unknown elements A4,12, A5,12 and A6,12. The preceding display could be
written as

Ma,aAa,12 +Ma,bAb,12 + (A12,a)
⊺ = op(T

−1/2
f ),

where a := {4, 5, 6}, b := {1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14}. Thus, we obtain

Aa,12 = −(Ma,a)
−1
(
Ma,bAb,12 + (A12,a)

⊺
)

Similarly, imposing M̂2,10 = M̂3,10 = M̂4,10 = 0, we could solve A[2,3,4],10. Imposing

M̂3,11 = M̂4,11 = M̂5,11 = 0, we could solve A[3,4,5],11. Imposing M̂5,13 = M̂6,13 = M̂7,13 = 0,
we could solve A[5,6,7],13.
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A.8.5 Step V Impose Some Restrictions in M

(V.1) Consider the (4, 4)th and (6, 6)th elements of (A.49):

M̂4,4 − 1/(1− ϕ2) + 2M4,4A4,4 + 2M4,−4A−4,4 = op(T
−1/2
f )

M̂6,6 − 1/(1− ϕ2) + 2M6,6A6,6 + 2M6,−6A−6,6 = op(T
−1/2
f )

Imposing M̂4,4 = M̂6,6, we could arrange the preceding display into

M4,4A4,4 +M4,−4A−4,4 =M6,6A6,6 +M6,−6A−6,6 + op(T
−1/2
f ). (A.50)

Next, consider the (4, 4)th and (6, 4)th elements of (A.49):

M̂4,4 − 1/(1− ϕ2) + 2M4,4A4,4 + 2M4,−4A−4,4 = op(T
−1/2
f )

M̂6,4 − ϕ2/(1− ϕ2) +M6,•A•,4 + (A•,6)
⊺M•,4 = op(T

−1/2
f ).

Imposing M̂4,4 − M̂6,4 = 1, we could arrange the preceding display into

2M4,4A4,4 + 2M4,−4A−4,4 =M6,•A•,4 + (A•,6)
⊺M•,4 + op(T

−1/2
f ). (A.51)

Since there are only two unknown elements in (A.50) and (A.51) (i.e., A4,4 and A6,6), we
could thus solve them. Write (A.50) and (A.51) in matrix(

M4,4 −M6,6

2M4,4 −M6,4 −M4,6

)(
A4,4

A6,6

)
=

(
M6,−6A−6,6 −M4,−4A−4,4

M4,−6A−6,6 −
(
2M4,−4 −M6,−4

)
A−4,4

)
.

That is,(
A4,4

A6,6

)
=

(
M4,4 −M6,6

2M4,4 −M6,4 −M4,6

)−1(
M6,−6A−6,6 −M4,−4A−4,4

M4,−6A−6,6 −
(
2M4,−4 −M6,−4

)
A−4,4

)
.

(V.2) Consider the (4, 4)th and (5, 5)th elements of (A.49):

M̂4,4 − 1/(1− ϕ2) + 2M4,•A•,4 = op(T
−1/2
f )

M̂5,5 − 1/(1− ϕ2) + 2M5,5A5,5 + 2M5,−5A−5,5 = op(T
−1/2
f )

Imposing M̂4,4 = M̂5,5, we could solve the preceding display for A5,5:

A5,5 =
(
M4,•A•,4 −M5,−5A−5,5

)
/M5,5 + op(T

−1/2
f )

A.8.6 Step VI Impose Some Equality Restrictions in {Λk}6k=1

(VI.1) Note that (A.45) implies

(Λ̂6 − Λ6)1,c = A1,xΛ6,x,c + F6,1,c + op(T
−1/2
f ) x = {1, 2, 3, 9}

= A1,[1,9]Λ6,[1,9],c + A1,[2,3]Λ6,[2,3],c + F6,1,c + op(T
−1/2
f )

(Λ̂3 − Λ3)4,c = A4,yΛ3,y,c + F3,4,c + op(T
−1/2
f ) y = {4, 5, 6, 12}.
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We then impose Λ̂6,1,c = Λ̂3,4,c for c = {1, 2}; that is, the loadings of the continent factor
on day one and day two are the same for the first two American assets. The preceding
display implies

A1,[1,9]Λ6,[1,9],c = A4,yΛ3,y,c + F3,4,c − A1,[2,3]Λ6,[2,3],c − F6,1,c + op(T
−1/2
f )

whence we have

A1,[1,9] =
(
A4,yΛ3,y,c + F3,4,c − A1,[2,3]Λ6,[2,3],c − F6,1,c

)
Λ−1

6,[1,9],c + op(T
−1/2
f ).

(VI.2) Note that (A.45) implies

(Λ̂6 − Λ6)2,c = A2,xΛ6,x,c + F6,2,c + op(T
−1/2
f ) x = {1, 2, 3, 9}

= A2,[1,2,9]Λ6,[1,2,9],c + A2,3Λ6,3,c + F6,2,c + op(T
−1/2
f )

(Λ̂3 − Λ3)5,c = A5,yΛ3,y,c + F3,5,c + op(T
−1/2
f ) y = {4, 5, 6, 12}.

We then impose Λ̂6,2,c = Λ̂3,5,c for c = {1, 2, 3}; that is, the first lagged loadings of the
global factor on day one and day two are the same for the first two American assets. The
preceding display implies

A2,[1,2,9]Λ6,[1,2,9],c = A5,yΛ3,y,c + F3,5,c − A2,3Λ6,3,c − F6,2,c + op(T
−1/2
f )

whence we have

A2,[1,2,9] =
(
A5,yΛ3,y,c + F3,5,c − A2,3Λ6,3,c − F6,2,c

)
Λ−1

6,[1,2,9],c + op(T
−1/2
f ).

(VI.3) Note that (A.45) implies

(Λ̂6 − Λ6)2,c = A2,xΛ6,x,c + F6,2,c + op(T
−1/2
f ) x = {1, 2, 3, 9}

= A2,[1,2,9]Λ6,[1,2,9],c + A2,3Λ6,3,c + F6,2,c + op(T
−1/2
f )

(Λ̂3 − Λ3)5,c = A5,yΛ3,y,c + F3,5,c + op(T
−1/2
f ) y = {4, 5, 6, 12}.

We then impose Λ̂6,2,c = Λ̂3,5,c for c = {1, 2, 3}; that is, the first lagged loadings of the
global factor on day one and day two are the same for the first three American assets.
The preceding display implies

A2,[1,2,9]Λ6,[1,2,9],c = A5,yΛ3,y,c + F3,5,c − A2,3Λ6,3,c − F6,2,c + op(T
−1/2
f )

whence we have

A2,[1,2,9] =
(
A5,yΛ3,y,c + F3,5,c − A2,3Λ6,3,c − F6,2,c

)
Λ−1

6,[1,2,9],c + op(T
−1/2
f ).

(VI.4) Note that (A.45) implies

(Λ̂6 − Λ6)3,c = A3,xΛ6,x,c + F6,3,c + op(T
−1/2
f ) x = {1, 2, 3, 9}

(Λ̂3 − Λ3)6,c = A6,yΛ3,y,c + F3,6,c + op(T
−1/2
f ) y = {4, 5, 6, 12}.
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We then impose Λ̂6,3,c = Λ̂3,6,c for c = {1, 2, 3, 4}; that is, the second lagged loadings of
the global factor on day one and day two are the same for the first four American assets.
The preceding display implies

A3,xΛ6,x,c = A6,yΛ3,y,c + F3,6,c − F6,3,c + op(T
−1/2
f )

whence we have

A3,x =
(
A6,yΛ3,y,c + F3,6,c − F6,3,c

)
Λ−1

6,x,c + op(T
−1/2
f )

(VI.5) Note that (A.45) implies

(Λ̂1 − Λ1)8,c = A8,xΛ1,x,c + F1,8,c + op(T
−1/2
f ) x = {6, 7, 8, 14}

= A8,[8,14]Λ1,[8,14],c + A8,[6,7]Λ1,[6,7],c + F1,8,c + op(T
−1/2
f )

(Λ̂4 − Λ4)5,c = A5,yΛ4,y,c + F4,5,c + op(T
−1/2
f ) y = {3, 4, 5, 11}.

We then impose Λ̂1,8,c = Λ̂4,5,c for c = {1, 2}; that is, the second lagged loadings of the
global factor on day one and day two are the same for the first two Asian assets. The
preceding display implies

A8,[8,14]Λ1,[8,14],c = A5,yΛ4,y,c + F4,5,c − A8,[6,7]Λ1,[6,7],c − F1,8,c + op(T
−1/2
f )

whence we have

A8,[8,14] =
(
A5,yΛ4,y,c + F4,5,c − A8,[6,7]Λ1,[6,7],c − F1,8,c

)
Λ−1

1,[8,14],c + op(T
−1/2
f ).

(VI.6) Note that (A.45) implies

(Λ̂1 − Λ1)7,c = A7,xΛ1,x,c + F1,7,c + op(T
−1/2
f ) x = {6, 7, 8, 14}

= A7,[7,8,14]Λ1,[7,8,14],c + A7,6Λ1,6,c + F1,7,c + op(T
−1/2
f )

(Λ̂4 − Λ4)4,c = A4,yΛ4,y,c + F4,4,c + op(T
−1/2
f ) y = {3, 4, 5, 11}.

We then impose Λ̂1,7,c = Λ̂4,4,c for c = {1, 2, 3}; that is, the first lagged loadings of the
global factor on day one and day two are the same for the first three Asian assets. The
preceding display implies

A7,[7,8,14]Λ1,[7,8,14],c = A4,yΛ4,y,c + F4,4,c − A7,6Λ1,6,c − F1,7,c + op(T
−1/2
f )

whence we have

A7,[7,8,14] =
(
A4,yΛ4,y,c + F4,4,c − A7,6Λ1,6,c − F1,7,c

)
Λ−1

1,[7,8,14],c + op(T
−1/2
f ).

(VI.7) Note that (A.45) implies

(Λ̂1 − Λ1)6,c = A6,xΛ1,x,c + F1,6,c + op(T
−1/2
f ) x = {6, 7, 8, 14}

= A6,[7,8,14]Λ1,[7,8,14],c + A6,6Λ1,6,c + F1,6,c + op(T
−1/2
f )

(Λ̂4 − Λ4)3,c = A3,yΛ4,y,c + F4,3,c + op(T
−1/2
f ) y = {3, 4, 5, 11}.
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We then impose Λ̂1,6,c = Λ̂4,3,c for c = {1, 2, 3}; that is, the contemporaneous loadings of
the global factor on day one and day two are the same for the first three Asian assets.
The preceding display implies

A6,[7,8,14]Λ1,[7,8,14],c = A3,yΛ4,y,c + F4,3,c − A6,6Λ1,6,c − F1,6,c + op(T
−1/2
f )

whence we have

A6,[7,8,14] =
(
A3,yΛ4,y,c + F4,3,c − A6,6Λ1,6,c − F1,6,c

)
Λ−1

1,[7,8,14],c + op(T
−1/2
f )

A.8.7 To Sum Up

Recall that (A.45) implies that for k = 1, . . . , 6, j = 1, . . . , N ,

√
Tf (λ̂k,j − λk,j) =

√
TfAλk,j +M−1 1√

Tf

Tf∑
t=1

f te(k−1)N+j,t + op(1). (A.52)

We have just shown that each element of the 14 × 14 matrix A could be expressed into
some known (but complicated) linear function involving elements of the following six
matrices:

M−1 1

Tf

Tf∑
t=1

f t
[
e(k−1)N+1,t, e(k−1)N+2,t, e(k−1)N+3,t, e(k−1)N+4,t

]
for k = 1, . . . , 6, plus op(T

−1/2
f ). That is, there exists a 196×336 matrix Γ, whose elements

are known (but complicated) linear functions of elements of (inverted) submatrices of Λ
and M , satisfying

vecA = Γ× 1

Tf

Tf∑
t=1

(
e†
t ⊗ f t

)
+ op(T

−1/2
f ),

where e†
t is a 24×1 vector consisting of e(p−1)N+q,t for p = 1, . . . , 6 and q = 1, . . . , 4. Thus

(A.52) could be written as√
Tf (λ̂k,j − λk,j)

=
√
Tf (λ

⊺
k,j ⊗ I14) vecA+M−1 1√

Tf

Tf∑
t=1

f te(k−1)N+j,t + op(1)

= (λ⊺
k,j ⊗ I14)Γ

1√
Tf

Tf∑
t=1

(
e†
t ⊗ f t

)
+M−1 1√

Tf

Tf∑
t=1

f te(k−1)N+j,t + op(1). (A.53)

In SM B.5, we show that

1√
Tf

Tf∑
t=1

[
(λ⊺

k,j ⊗ I14)Γ(e
†
t ⊗ f t)

M−1f te(k−1)N+j,t

]
d−→

N

[ 0
0

][
(λ⊺

k,j ⊗ I14)Γ(Σ
†
ee ⊗M)Γ⊺(λk,j ⊗ I14) covk,j
covk,j M−1σ2

k,j

] (A.54)

63



where Σ†
ee := E[e†

te
†⊺
t ] and covk,j is an 14× 14 matrix defined as

covk,j := cov
(
(λ⊺

k,j ⊗ I14)Γ(e
†
t ⊗ f t), e(k−1)N+j,tf

⊺
tM

−1
)
.

By Assumption 2.1, we have covk,j = 0 for j > 4, and

covk,j = (λ⊺
k,j ⊗ I14)ΓE

[
e†
te(k−1)N+j,t ⊗ f tf

⊺
t

]
M−1 = (λ⊺

k,j ⊗ I14)Γ
[
σ2
k,jιk,j ⊗M

]
M−1

= (λ⊺
k,j ⊗ I14)Γ

[
ιk,j ⊗ I14

]
σ2
k,j,

for j ≤ 4, where ιk,j is a 24× 1 zero vector with its [4(k − 1) + j]th element replaced by
one. Thus for j > 4, we have√

Tf (λ̂k,j − λk,j)
d−→ N

(
0, (λ⊺

k,j ⊗ I14)Γ(Σ
†
ee ⊗M)Γ⊺(λk,j ⊗ I14) +M−1σ2

k,j

)
.

For j ≤ 4, we have√
Tf (λ̂k,j − λk,j)

d−→ N
(
0, (λ⊺

k,j ⊗ I14)Γ(Σ
†
ee ⊗M)Γ⊺(λk,j ⊗ I14) +M−1σ2

k,j + covk,j + cov⊺k,j

)
.

A.9 Proof of Theorem 4.4

From (A.49), we have√
Tf (M̂ −M) = −

√
Tf
(
A⊺M +MA

)
+ op(1).

whence we have√
Tf vech(M̂ −M) = −

√
Tf vech

(
A⊺M +MA

)
+ op(1) = −

√
TfD

+
14 vec

(
A⊺M +MA

)
+ op(1)

= −
√
TfD

+
14

[
(M ⊗ I14) vec(A

⊺) + (I14 ⊗M) vecA
]
+ op(1)

= −
√
TfD

+
14

[
(M ⊗ I14)K14,14 vecA+ (I14 ⊗M) vecA

]
+ op(1)

= −
√
TfD

+
14

[
K14,14(I14 ⊗M) vecA+ (I14 ⊗M) vecA

]
+ op(1)

= −
√
TfD

+
14(K14,14 + I142)(I14 ⊗M) vecA+ op(1) = −2

√
TfD

+
14D14D

+
14(I14 ⊗M) vecA+ op(1)

= −2D+
14(I14 ⊗M)Γ

1√
Tf

Tf∑
t=1

(
e†
t ⊗ f t

)
+ op(1)

where the second equality is due to symmetry of A⊺M +MA, and the fifth and seventh
equalities are due to properties of K14,14. Thus we have√

Tf vech(M̂ −M)
d−→ N

(
0,M

)
where M is 105× 105 and defined

M := 4D+
14(I14 ⊗M)Γ(Σ†

ee ⊗M)Γ⊺(I14 ⊗M)D+⊺
14 .

A.10 Proof of Theorem 4.5

√
N(f̂ t − f t) = −

√
N
(
Λ̂⊺Σ̂−1

ee Λ̂
)−1

Λ̂⊺Σ̂−1
ee (Λ̂− Λ)f t +

√
N
(
Λ̂⊺Σ̂−1

ee Λ̂
)−1

Λ̂⊺Σ̂−1
ee et

= −

√
N

Tf

√
TfA

⊺f t +
√
N

(
1

N
Λ̂⊺Σ̂−1

ee Λ̂

)−1
1

N
Λ̂⊺Σ̂−1

ee et. (A.55)
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Lemma D1 of Bai and Li (2012) still holds in our setting and it reads, in our notation:

1

N
Λ̂⊺Σ̂−1

ee et =
1

N
Λ⊺Σ−1

ee et +Op

(
N−1/2T

−1/2
f

)
+Op(T

−1
f ). (A.56)

(
1

N
Λ̂⊺Σ̂−1

ee Λ̂

)−1

= Q−1 + op(1). (A.57)

Substituting (A.56) and (A.57) into (A.55), we have
√
N(f̂ t − f t)

= −

√
N

Tf

√
TfA

⊺f t +
√
N
(
Q−1 + op(1)

) [ 1

N
Λ⊺Σ−1

ee et +Op

(
N−1/2T

−1/2
f

)
+Op(T

−1
f )

]

= −

√
N

Tf

√
TfA

⊺f t +
(
Q−1 + op(1)

) [ 1√
N
Λ⊺Σ−1

ee et +Op

(
T

−1/2
f

)
+Op(

√
NT−1

f )

]
= −

√
∆
√
TfA

⊺f t +
(
Q−1 + op(1)

) [ 1√
N
Λ⊺Σ−1

ee et +Op

(
T

−1/2
f

)
+ op(1)

]
= −

√
∆
√
TfA

⊺f t +Q−1 1√
N
Λ⊺Σ−1

ee et + op(1)

= −
√
∆(f⊺

t ⊗ I14)K14,14Γ
1√
Tf

Tf∑
t=1

(
e†
t ⊗ f t

)
+Q−1 1√

N
Λ⊺Σ−1

ee et + op(1) (A.58)

where the third equality is due to
√
N/Tf → 0, N/Tf → ∆ and

√
TfA

⊺f t = Op(1), and

the fourth equality uses the fact that Q−1 = Op(1) and N−1/2Λ⊺Σ−1
ee et = Op(1) by the

central limit theorem.
The first two terms on the right side of (A.58), conditioning on f t, are asymptotically

normal and asymptotically independent. The former uses the central limit theorem over
the time dimension (only depends on the first 4 assets in each continent) and the latter
uses the central limit theorem over the cross-sectional dimension. In particular, −

√
∆(f⊺

t ⊗ I14)K14,14Γ
1√
Tf

∑Tf
t=1

(
e†
t ⊗ f t

)
Q−1 1√

N
Λ⊺Σ−1

ee et

∣∣∣∣∣∣f t d−→ N

[ 0
0

][
✠ 0
0 Q−1

]
where

✠ := ∆(f⊺
t ⊗ I14)K14,14Γ(Σ

†
ee ⊗M)Γ⊺K14,14(f t ⊗ I14).

Then the result of the theorem follows.

A.11 Proof of Theorem 4.6

Proof of Theorem 4.6. Recall (3.8)

θ̌m := arg min
b∈Rc2

[
ĥ− h(b)

]⊺
W
[
ĥ− h(b)

]
.

The minimum distance estimator θ̌m satisfies the first-order condition:

∂h(θ̌m)

∂θ⊺
m

W
[
ĥ− h(θ̌m)

]
= 0. (A.59)

65



Do a Taylor expansion

h(θ̌m) = h(θm) +
∂h(θ̇m)

∂θm
(θ̌m − θm),

where θ̇m is a mid-point between θ̌m and θm. Substituting the preceding display into
(A.59), we have

∂h(θ̌m)

∂θ⊺
m

W

[
ĥ− h(θm)−

∂h(θ̇m)

∂θm
(θ̌m − θm)

]
= 0

whence we have

√
Tf (θ̌m − θm) =

[
∂h(θ̌m)

∂θ⊺
m

W
∂h(θ̇m)

∂θm

]−1
∂h(θ̌m)

∂θ⊺
m

W

[
ĥ− h(θm)

]
d−→
[
∂h(θm)

∂θ⊺
m

W
∂h(θm)

∂θm

]−1
∂h(θm)

∂θ⊺
m

WN
(
0,H

)
,

where the convergence in distribution follows from consistency of θ̌m (i.e., θ̌m
p−→ θm).

The proof of consistency of θ̌m is given in SM B.6. Then we have√
Tf (θ̌m − θm)

d−→ N
(
0,O

)
.

A.12 Formulas for E⃗[f tf
⊺
t ] and E⃗[f tẙ

⊺
t ]

In this subsection, we give the formulas for E⃗[f tf
⊺
t ] and E⃗[f tẙ

⊺
t ] defined in Section 3.4.

We know that (
f t
ẙt

)
∼ N

( 0
0

)(
M MΛ⊺

ΛM Σyy

) .

Recall that in Section 3.4 we treat {f t}
Tf
t=1 as i.i.d. Thus, according to the conditional

distribution of the multivariate normal, we have

E[f t|{ẙt}
Tf
t=1; θ⃗

(i)
] =MΛ⊺Σ−1

yy ẙt

var[f t|{ẙt}
Tf
t=1; θ⃗

(i)
] =M −MΛ⊺Σ−1

yy ΛM = E[f tf
⊺
t |{ẙt}

Tf
t=1; θ⃗

(i)
]− E[f t|{ẙt}

Tf
t=1; θ⃗

(i)
]E[f⊺

t |{ẙt}
Tf
t=1; θ⃗

(i)
].

We then can show that

1

Tf

Tf∑
t=1

E⃗[̊ytf
⊺
t ] = SyyΣ

−1
yy ΛM

1

Tf

Tf∑
t=1

E⃗[f tf
⊺
t ] =M −MΛ⊺Σ−1

yy ΛM +MΛ⊺Σ−1
yy SyyΣ

−1
yy ΛM. (A.60)
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A.13 Computation of the QMLE

In this subsection, we provide a way to compute the QMLE defined in Section 3.2. Again
we will rely on the EM algorithm.

(i) In the E step, calculate T−1
f

∑Tf
t=1 E⃗[̊ytf

⊺
t ] and T

−1
f

∑Tf
t=1 E⃗[f tf

⊺
t ] as in (A.60).

(ii) In the M step, obtain the factor loading estimates similar to those of the QMLE-res
by imposing the factor loading restrictions within the 142 restrictions. We only have
to change the selection matrices, say, L1 and L4 defined in Section 3.4, accordingly.

(iii) Iterate steps (i) and (ii) until the estimates Λ̂, Σ̂ee, M̂ satisfy (3.7) reasonably well.

(iv) Rotate the converged Λ̂ and M̂ so that the rotated Λ̂ and M̂ satisfy all the 142

restrictions. This could only be done numerically. In particular, we define a distance
function which measures the distance between the restricted elements in Λ and M
and the corresponding elements in the rotated Λ̂ and M̂ .

B Supplementary Materials

B.1 Missing Because of Continent-Specific Reasons

In this subsection, we discuss how to alter the EM algorithm if we include the scenario
of missing observations due to continent-specific reasons such as continent-wide public
holidays (e.g., Chinese New Year).

Suppose that continent c last traded at t = t1 − 3, did not open for trading at
t = t1, t1 + 3, . . . , t1 + 3(τ − 1), and re-opened for trading at t1 + 3τ , where τ is some
integer ≥ 1. There are actually four statuses for this continent at a particular t: Trade,
NA, Closure and Re-open. Status Trade means that the stock market opens normally
(e.g., t = t1 − 3), while status NA means that it is a time when the stock market closes
because of non-synchronised trading (e.g., t = t1 − 2); status Closure means that the
stock market does not open for trading because of public holidays (e.g., t = t1), while
status Re-open means the stock market re-opens after public holidays (e.g., t = t1 + 3τ).
Define y∗

t such that

y∗
t =


yt if Statust = Trade or NA
ε∗t if Statust = Closure∑τ

i=0 yt1+3i if Statust = Re-open
(B.1)

where ε∗t is to be defined shortly. The idea is that y∗
t1+3τ is the actual observed returns on

t = t1+3τ . We now give a concrete example to illustrate this. Suppose that the European
continent did not open for trading on t = 32, 35 because of some public holiday. Then
the values of y∗

t are given in Table 12.
Recall (2.3):

yt = Ztαt + εt, εt ∼ N(0,Σt)

αt+1 = T αt +Rηt, ηt ∼ N(0, I2).
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E U A E U A E U A E U
t = 29 30 31 32 33 34 35 36 37 38 39

Statust Trade NA NA Closure NA NA Closure NA NA Re-open NA
y∗
t = y29 y30 y31 ε∗32 y33 y34 ε∗35 y36 y37 y32 + y35 + y38 y39

Table 12: Letters A,E,U denote the times when we should theoretically observe the closing

prices of stocks of in the Asian continent (A), European continent (E), and American continent

(U), respectively. Status Trade means that the stock market opens normally, while status NA

means that it is a time when the stock market closes because of non-synchronised trading; status

Closure means that the stock market does not open for trading because of public holidays, while

status Re-open means the stock market re-opens after public holidays.

We now write down the sate space model for y∗
t .

y∗
t = Z∗

tα
∗
t + ε∗t , εt ∼ N(0,Σ∗

t )

α∗
t+1 = T ∗

t α
∗
t +R∗

tηt, ηt ∼ N(0, I2). (B.2)

Parameters Z∗
t ,α

∗
t ,Σ

∗
t , T ∗

t , R
∗
t should be chosen in such a way that (B.2) is consistent

with (B.1). In our example, Z∗
t ,α

∗
t ,Σ

∗
t , T ∗

t , R
∗
t take the following values:

α∗
t = αt t = 29, 30, 31, 32, 39

α∗
33 =


α33

04×1

α32

04×1

 ,α∗
34 =


α34

04×1

α32

04×1

 ,α∗
35 =


α35

04×1

α32

04×1



α∗
36 =


α36

04×1

α32 +α35

04×1

 ,α∗
37 =


α37

04×1

α32 +α35

04×1

 ,α∗
38 =


α38

04×1

α32 +α35

04×1

 .

Z∗
t =



Zt t = 29, 30, 31, 39
0NE×4 t = 32
0NE×16 t = 35[
Zt 04×12

]
t = 33, 34, 36, 37[

Zt 04×4 Zt 04×4

]
t = 38

T ∗
32 =


T
0
I4
0

 , T ∗
t =


T 0 0 0
0 I4 0 0
0 0 I4 0
0 0 0 I4

 , t = 33, 34, 36, 37

T ∗
35 =


T 0 0 0
0 I4 0 0
I4 0 I4 0
0 0 0 I4

 , T ∗
38 =

[
T 0 0 0

]
.
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Σ∗
t =


Σt t /∈ {32, 35, 38}
0.01 t ∈ {32, 35}
3Σt t = 38

R∗
t =


R t /∈ {32, 33, . . . , 37}[
R

012×4

]
t ∈ {32, 33, . . . , 37} .

The main idea of the sate space representation for y∗
t is to extend the state variable

from dimension 4 to dimension 16 when needed. The first 4 elements of α∗
t are αt, while

the other elements of α∗
t are used to store the states that accumulated during the public

holiday.8

We are now ready to write down the general formulas for Z∗
t ,α

∗
t ,Σ

∗
t , T ∗

t , R
∗
t . Define

the dummy variable ϖt = 1 if Statust = Closure and ϖt = 0 if otherwise. In addition,
define

vt =


(
1 0 0

)
t ∈ TA(

0 1 0
)

t ∈ TE(
0 0 1

)
t ∈ TU

.

We shall write Z∗
t = ZtAt, where

At =



[
04×4 04×12

∑3
j=1ϖt−j

]
if Statust = Closure[

I4 vt ⊗ I4

]
if Statust = Re-open[

Zt 04×12

]
if Statust = NA and

(
ϖt−1 = 1 or ϖt−2 = 1

)
I4 otherwise

.

Similarly, we have

Σ∗
t =


Σt Statust ∈ {NA, Trade}
0.01 Statust = Closure
3Σt Statust = Re-open

R∗
t =



[ R
012×4

]
if Statust = Closure[ R

012×4

]
if Statust = NA and

(
ϖt−1 = 1 or ϖt−2 = 1

)
R otherwise

T ∗
t =

[
T 04×12·

∑3
j=1ϖt−j

ϖt · v⊺
t ⊗ I4·

∑2
j=0ϖt−j

I4·
∑2

j=0ϖt−j×12·
∑3

j=1ϖt−j

]
.

The EM algorithm outlined before could then be applied to the state space model of
y∗
t . The principle remains unchanged. Again we use the European continent to illustrate

8The three continents in our model may have different but overlapping periods of public holidays.
One alternative way is to set the dimension of α∗

t to 16 for all t. We could then use the 5th -8th, 9th
- 12th, 13th - 16th elements of α∗

t to store the Asian, European, and American accumulated states,
respectively for the whole sample. The disadvantage of this treatment is that the KF and KS will be
inefficient since the last 12 elements of α∗

t would often be zero. Hence, instead of keeping the dimension
of α∗

t to be 16 for all t, we only extend the dimension to 16 when needed.
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and suppose that its stock market does not open for τ + 1 days because of some public
holiday. Equation (3.2) takes the following form:

Ẽ
∑
t∈TE
ϖt=0

ℓ1,t =
∑
t∈TE
ϖt=0

log |Σ∗
t |+

∑
t∈TE
ϖt=0

tr

([
y∗
ty

∗⊺
t − 2Z∗

t Ẽ[α∗
t ]y

∗⊺
t + Z∗

t Ẽ[α∗
tα

∗⊺
t ]Z∗⊺

t

]
Σ∗−1
t

)

=
∑
t∈TE
ϖt=0

{
log |Σt(τt + 1)|+ tr

([
y∗
ty

∗⊺
t − 2ZtAtẼ[α∗

t ]y
∗⊺
t + ZtAtẼ[α∗

tα
∗⊺
t ]A⊺

tZ
⊺
t

] Σ−1
t

(τt + 1)

)}

=
∑
t∈TE

tr

([
y∗
ty

∗⊺
t

(1−ϖt)

(τt + 1)
− 2ZtAtẼ[α∗

t ]y
∗⊺
t

(1−ϖt)

(τt + 1)
+ ZtAtẼ[α∗

tα
∗⊺
t ]A⊺

tZ
⊺
t

(1−ϖt)

(τt + 1)

]
Σ−1
t

)

+

(∑
t∈TE

(1−ϖt) log |Σt|
)
+ constant,

where τt = τ if Statust = Re-open and τt = 0 if otherwise, and τ is the number of days of
the closure due to the public holiday. That is, the terms yty

⊺
t , Ẽ[αt]y

⊺
t , Ẽ[αtα

⊺
t ], T/3 in

(3.2) are replaced by y∗
ty

∗⊺
t

(1−ϖt)
(τt+1)

, AtẼ[α∗
t ]y

∗⊺
t

(1−ϖt)
(τt+1)

, and AtẼ[α∗
tα

∗⊺
t ]A⊺

t
(1−ϖt)
(τt+1)

,
∑

t∈TE(1−
ϖt) respectively. Hence, we have

Z̃E =
∑
t∈TE

(
Ẽ[y∗

tα
∗⊺
t ]A⊺

t

1−ϖt

τt + 1

)(∑
t∈TE

AtẼ[α∗
tα

∗⊺
t ]A⊺

t

1−ϖt

τt + 1

)−1

C̃E :=
∑
t∈TE

1−ϖt

τt + 1

[
y∗
ty

∗⊺
t − 2Z̃EAtẼ[α∗

t ]y
∗⊺
t + Z̃EAtẼ[α∗

tα
∗⊺
t ]A⊺

t Z̃
E⊺

]
Σ̃E =

1∑
t∈TE(1−ϖt)

(C̃E ◦ INE
).

The formula of ϕ̃ in (3.4) remains unchanged, since Ẽ
∑T

t=1 ℓ2,t remains unchanged.

B.2 Motivation of the EM Algorithm

In this subsection, we shall review the motivation of the EM algorithm. The log-likelihood
of Y1:T is

ℓ(Y1:T ;θ) = log p(Y1:T ;θ) = log

∫
p(Y1:T |Ξ;θ)p(Ξ;θ)dΞ.

Given θ̃
(i)
, we could compute

ℓ(Y1:T ;θ)− ℓ(Y1:T ; θ̃
(i)
) = log

∫ (
p(Ξ|Y1:T , θ̃

(i)
)
p(Y1:T |Ξ;θ)p(Ξ;θ)

p(Ξ|Y1:T , θ̃
(i)
)

)
dΞ− log p(Y1:T ; θ̃

(i)
)

= log Ẽ
[
p(Y1:T |Ξ;θ)p(Ξ;θ)

p(Ξ|Y1:T , θ̃
(i)
)

]
− log p(Y1:T ; θ̃

(i)
) = log Ẽ

[
p(Y1:T |Ξ;θ)p(Ξ;θ)

p(Ξ|Y1:T , θ̃
(i)
)

]
− Ẽ

[
log p(Y1:T ; θ̃

(i)
)
]

≥ Ẽ
[
log

p(Y1:T |Ξ;θ)p(Ξ;θ)

p(Ξ|Y1:T , θ̃
(i)
)

]
− Ẽ

[
log p(Y1:T ; θ̃

(i)
)
]
= Ẽ

[
log

p(Y1:T |Ξ;θ)p(Ξ;θ)

p(Ξ|Y1:T , θ̃
(i)
)p(Y1:T ; θ̃

(i)
)

]
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whence we have

ℓ(Y1:T ;θ) ≥ ℓ(Y1:T ; θ̃
(i)
) + Ẽ

[
log

p(Y1:T |Ξ;θ)p(Ξ;θ)

p(Ξ|Y1:T , θ̃
(i)
)p(Y1:T ; θ̃

(i)
)

]
=: B(θ, θ̃

(i)
).

We see that B(θ, θ̃
(i)
) is a lower bound for ℓ(Y1:T ;θ), and ℓ(Y1:T ; θ̃

(i)
) = B(θ̃

(i)
, θ̃

(i)
).

Thus we would like to choose θ to maximise B(θ, θ̃
(i)
):

θ̃
(i+1)

= argmax
θ

B(θ, θ̃
(i)
) = argmax

θ
Ẽ
[
ℓ(Y1:T ,Ξ;θ)

]
.

B.3 The Expression for ∂h(θm)/∂θm

Let 0a denote an a× 1 zero vector.

∂h(θm)

∂θm︸ ︷︷ ︸
59×10

=



05 05 05 05 05 05 05 05 05 05

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
05 05 05 05 05 05 05 05 05 05

0 0 0 1 0 0 0 0 0 0
02 02 02 02 02 02 02 02 02 02

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
05 05 05 05 05 05 05 05 05 05

0 0 0 1 0 0 0 0 0 0
06 06 06 06 06 06 06 06 06 06

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
05 05 05 05 05 05 05 05 05 05

0 0 0 0 0 0 0 1 0 0
02 02 02 02 02 02 02 02 02 02

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
05 05 05 05 05 05 05 05 05 05

0 0 0 0 0 0 0 1 0 0
05 05 05 05 05 05 05 05 05 05

0 0 0 0 0 0 0 0 2ϕ
(1−ϕ2)2 0

0 0 0 0 0 0 0 0 1+ϕ2

(1−ϕ2)2 0

0 0 0 0 0 0 0 0 0 1


B.4 Validity of Applying Our Model to Standardised Portfolio

Returns

In this subsection, we discuss the validity of applying our model to standardised portfolio
returns. The daily value-weighted portfolio return Rt on day t is calculated using the
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following formula:

Rt =
n∑
i=1

wi,t−1
Pi,t − Pi,t−1

Pi,t−1

≈
n∑
i=1

wi,t−1 log
Pi,t
Pi,t−1

= log

(∏n
i=1 P

wi,t−1

i,t∏n
i=1 P

wi,t−1

i,t−1

)
= log

( n∏
i=1

P
wi,t−1

i,t

)
− log

( n∏
i=1

P
wi,t−1

i,t−1

)
≈ log

( n∏
i=1

P
wi,t−1

i,t

)
− log

( n∏
i=1

P
wi,t−2

i,t−1

)
where Pi,t denotes the closing price of stock i on day t, wi,t−1 denotes the market capital-
isation of stock i divided by the market capitalisation of the portfolio on day t− 1, and n
denotes the number of the stocks in the portfolio. The first approximation sign will hold
on the assumption that daily returns are often small, and the second approximation sign
will hold on the assumption that weights do not change much over a day. The preceding
display shows that log

(∏n
i=1 P

wi,t−1

i,t

)
could be interpreted as the log closing price of the

portfolio on day t, and we could hence fit Rt with our model:

Rt = µ+
2∑
j=0

zjfg,t−j + z3fc,t + et

where zj are scalars, and et is a random variable. Let R̄ := T−1
∑T

t=1Rt and se(R) :=[
T−1

∑T
t=1(Rt − R̄)2

]1/2
. Thus

Rt − R̄

se(Rt)
≈

2∑
j=0

zj
se(Rt)

fg,t−j +
z3

se(Rt)
fc,t +

et
se(Rt)

=:
2∑
j=0

z∗j fg,t−j + z∗3fc,t + e∗t .

We hence see that our model could be applied to standardised portfolio returns in practice
by relying a few innocuous approximations.

B.5 Proof of (A.54)

We first state a central limit theorem for the martingale difference array.

Theorem B.1 (McLeish (1974)). Let {Xn,i, i = 1, ..., kn} be a martingale difference array
with respect to the triangular array of σ-algebras {Fn,i, i = 0, ..., kn} (i.e., Xn,i is Fn,i-
measurable and E[Xn,i|Fn,i−1] = 0 almost surely for all n and i) satisfying Fn,i−1 ⊂ Fn,i

for all n ≥ 1. Assume,

(i) maxi≤kn |Xn,i| is uniformly (in n) bounded in L2 norm,

(ii) maxi≤kn |Xn,i|
p−→ 0, and

(iii)
∑kn

i=1X
2
n,i

p−→ 1.

Then, Sn =
∑kn

i=1Xn,i
d−→ N(0, 1) as n→ ∞.

We now show (A.54). Note that (A.54) is equivalent to

1√
Tf

Tf∑
t=1

ρ⊺

[
(λ⊺

k,j ⊗ I14)Γ(e
†
t ⊗ f t)

M−1f te(k−1)N+j,t

]
d−→

N

0, ρ⊺

[
(λ⊺

k,j ⊗ I14)Γ(Σ
†
ee ⊗M)Γ⊺(λk,j ⊗ I14) covk,j
covk,j M−1σ2

k,j

]
ρ

 =: N(0, ρ⊺Vaρ) (B.3)
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where ρ is a 24× 1 non-zero vector with ∥ρ∥2 = 1. Define

ut := T
−1/2
f ρ⊺

[
(λ⊺

k,j ⊗ I14)Γ(e
†
t ⊗ f t)

M−1f te(k−1)N+j,t

]
/
√
ρ⊺Vaρ.

Define the filtration Ft := σ(f t, et,f t−1, et−1, . . . ,f 1, e1) and F0 := {∅, ∅c}. It is easy
to show that ut is Ft-measurable. We now show that {ut,Ft} is a martingale difference
sequence (i.e., E[ut|Ft−1] = 0). It suffices to show E[et ⊗ f t|Ft−1] = 0. Write f t =
T †f t−1 + η†

t , where T † is a 14 × 14 matrix consisting of ϕ, and η†
t is a 14 × 1 vector

consisting of {ηt}. Then we have

E[et ⊗ f t|Ft−1] = E
[
et ⊗ (T †f t−1 + η†

t)|Ft−1

]
= 0+ E

[
et ⊗ η†

t |Ft−1

]
= E

[
et|Ft−1

]
⊗ E

[
η†
t |Ft−1

]
= 0.

where we have used Assumption 2.1. We now check conditions (i)-(iii) of Theorem B.1.
We first investigate at what rate the denominator

√
ρ⊺Vaρ goes to zero. Since

ρ⊺Vaρ ≥ λmax(Va) > 0,

where the last inequality is due to Assumption 4.1, we have 1/
√
ρ⊺Vaρ = O(1). Hence, it

is easy to show that

|ut| = O

(
1√
Tf

)
∥e†

t ⊗ f t∥2 +O

(
1√
Tf

)
∥f te(k−1)N+j,t∥2 = O

(
1√
Tf

)
∥et ⊗ f t∥2

= O

(
1√
Tf

)
∥et ⊗ f t∥∞.

We now verify (i) and (ii) of Theorem B.1. We shall use Orlicz norms as defined
in van der Vaart and Wellner (1996): Let ψ : R+ → R+ be a non-decreasing, convex
function with ψ(0) = 0 and limx→∞ ψ(x) = ∞, where R+ denotes the set of nonnegative
real numbers. Then, the Orlicz norm of a random variable X is given by

∥X∥ψ = inf
{
C > 0 : Eψ

(
|X|/C

)
≤ 1
}
,

where inf ∅ = ∞. We shall use Orlicz norms for ψ(x) = ψp(x) = ex
p − 1 for p = 1 in this

article. Consider∥∥∥et ⊗ f t∥∞
∥∥
ψ1

=
∥∥max

i,j
|ei,t[f t]j|

∥∥
ψ1

≤ Cmax
i,j

∥ei,t[f t]j∥ψ1

where ei,t is the ith element of et, [f t]j is the jth element of f t, and the inequality is
due to Lemma 2.2.2 in van der Vaart and Wellner (1996). Since ei,t, [f t]j are normal, it
follows from Lemma 2.2.1 in van der Vaart and Wellner (1996) that ∥ei,t[f t]j∥ψ1 = O(1)
for all i, j, t. Thus∥∥max

t
|ut|
∥∥
ψ1

≤ log(1 + Tf )max
t

∥ut∥ψ1 = O

(
log Tf√
Tf

)
max
t

∥∥∥et ⊗ f t∥∞
∥∥
ψ1

= O

(
log Tf√
Tf

)
= o(1).

Since ∥U∥Lr ≤ r!∥U∥ψ1 for any random variable U (van der Vaart and Wellner (1996),
p95), we conclude that (i) and (ii) of Theorem B.1 are satisfied. We now verify condition
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(iii) of Theorem B.1. Since we have already shown that ρ⊺Vaρ is bounded away from zero
by an absolute constant, it suffices to show

1

Tf

Tf∑
t=1

ρ⊺
[

(λ⊺
k,j ⊗ I14)Γ(e

†
t ⊗ f t)

M−1f te(k−1)N+j,t

]
2

− ρ⊺Vaρ = op(1).

This just follows from Ergodic theorem (Theorem 3.34 of White (2001)) by recognising
that {ut} is strictly stationary and ergodic because {et} and {ηt} are strictly stationary
and ergodic (Theorem 3.35 of White (2001)). Thus, condition (iii) of Theorem B.1 is
verified and (B.3) is proved.

B.6 Proof of Consistency of θ̌m

In this subsection, we give a proof for θ̌m
p−→ θm. Define

OBTf (b) := −
[
ĥ− h(b)

]⊺
W
[
ĥ− h(b)

]
OB(b) := −

[
h(θm)− h(b)

]⊺
W
[
h(θm)− h(b)

]
.

It is easy to see that

sup
b

∣∣OBTf (b)−OB(b)
∣∣ = op(1)

sup
b:∥b−θm∥2≥ϵ

OB(b) < OB(θm)

for every ϵ > 0. By Theorem 5.7 of van der Vaart (1998), we have θ̌m
p−→ θm.
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