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Abstract

In this paper, we consider a panel data model which allows for heterogeneous time
trends at different locations. We propose a new estimation method for the panel data
model before we establish an asymptotic theory for the proposed estimation method.
For inferential purposes, we develop a bootstrap method for the case where weak
correlation presents in both dimensions of the error terms. We examine the finite–
sample properties of the proposed model and estimation method through extensive
simulated studies. Finally, we use the newly proposed model and method to inves-
tigate rainfall, temperature and sunshine data of U.K. respectively. Overall, we find
the weather of winter has changed dramatically over the past fifty years. Changes
may vary with respect to locations for the other seasons.
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1 Introduction

Time series analysis of climate data has become a big part of statistics and econometrics

(e.g., Vogelsang & Franses 2005, Kaufmann et al. 2017 and reference therein); many con-

ferences have been organized on the topic and top journals have published special issues

(e.g., Hillebrand et al. 2020, Phillips et al. 2020). Many different methods have been used

to identify trends in the presence of seasonal variation over time and spatial comovement

based on panel data of outcome variables. We propose a nonparametric panel data model

that captures the trend, seasonal, and spatial variation aspect of climate data. Our model

allows the trends to vary by location and season and to be of general functional form.

In what follows, we use

{yit | i ∈ [N ], t ∈ [T ]}, (1.1)

to represent the climate measure recorded by different locations at different times, where

[L] = {1, . . . , L} for any positive integer L, different locations are indexed by i, and time

periods are indexed by t. Moreover, there are J + 1 periods1 in the entire time span, so we

group the indices over time as follows.

∪J+1
j=1Sj = [T ] and Sj ∩ Sj∗ = ∅ for j 6= j∗.

As a data-driven study, J is fixed throughout the paper, and Sj’s are known. Our goal is to

fit the climate data of (1.1) in a suitable panel data model, so that some useful information

can be recovered.

We allow the trends of the outcome variable to vary with respect to locations and

season, and we introduce the following heterogeneous time-varying functions:

1Depending on the data availability, we may let J = 3 or J = 11 to capture seasonality at different

frequency.
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{mij(τt) | i ∈ [N ], t ∈ [T ]}, (1.2)

where τt = t/T is the rescaled time point, and j indexes the group. The weather mea-

surements at different locations are usually more or less connected, and more often than

not, are driven by the same heat/cold wave from time to time. Therefore, we turn to

the so-called common factor structure (or interactive fixed effects) to mimic these common

features. Mathematically, it is written as

{γ>i ft | i ∈ [N ], t ∈ [T ]}, (1.3)

where both γi and ft are df × 1 unobservable vectors, and are to be determined by the

data. In (1.3), df is a non-negative finite integer. In what follows, we first assume df is

known in Sections 2.1 and 2.2 for simplicity, and shall work on its estimation in Section

2.3.

In view of the aforementioned arguments, we specifically consider the following non-

parametric panel data model:

yit = mi0(τt) +
J∑
j=1

Djtmij(τt) + γ>i ft + εit, (1.4)

where Djt = I(t ∈ Sj) with I(·) being the indicator function, mi0(·) stands for the global

trend2 of the ith unit, and mij(·) with j ≥ 1 includes the jth periodic trend of the ith unit.

We are interested in estimating the trending functions, and in establishing valid inference

for the case where weak correlation presents over both dimensions of εit. In addition, we

also work on the estimation of the factor structure, and pay attention to the selection of

the number of factors (i.e., df ). Once disentangling the information of the dataset, we are

able to understand whether the following equation holds for ∀i, j.
2Strictly speaking, mi0(·) stands for the global trend plus the trend of the reference group.
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mij(τ
∗
2 )−mij(τ

∗
1 ) = 0,

in which 0 ≤ τ ∗1 < τ ∗2 ≤ 1 are two given time points of interest over which we suspect the

change has occurred. For example, we may set τ ∗1 = 0 and τ ∗2 = 1 in order to compare the

present and the past. Notably, this is different from a constancy test such as those in Chen

& Hong (2012) and Zhang & Wu (2012), but it provides certain flexibility when looking

at the dataset spanned over a long time horizon. We acknowledge the vast literature of

parameter stability tests, and refer interested readers to Gao & Hawthorne (2006), Chen

& Hong (2012), Zhang & Wu (2012), Su & Wang (2017), and among others for extensive

studies.

We next review the literature of panel data models with interactive fixed effects. Since

the seminal works of Pesaran (2006) and Bai (2009), a variety of panel data models with

interactive fixed effects have been proposed and studied. Among them, a large group con-

cerning heterogeneous coefficients relies on the common correlated effects (CCE) approach,

e.g., Pesaran & Tosetti (2011), Su & Jin (2012), Boneva & Linton (2017), to name a few.

Some common limitations shared by these studies are: (1) a factor structure is always

imposed on the regressors; (2) the usual rank limitation inherent in the CCE approach

applies; (3) the CCE approach deals with the coefficients of the regressors only while the

estimation of the factor structure is always left behind. Recently, another strand of litera-

ture starts to extend the principal component analysis (PCA) approach and the maximum

likelihood approach of Bai (2009) and Bai & Li (2014) by incorporating heterogeneous

coefficients, e.g., Huang et al. (2021), Li et al. (2020), Liu (2020), etc. By doing so, the

unobservable factor structure together with the heterogeneous coefficients can be unveiled

simultaneously. Among these studies, however, majority work focuses on parametric mod-

els, with two exceptions by Su & Jin (2012) and Liu (2020) that concern heterogeneous
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functions using sieve and kernel methods, respectively. Although asymptotic distributions

are well established for the functions of interest in both papers, how to get some valid

inference remains unclear if the unobservable error terms admit weak correlation over both

dimensions.

Our contributions to the literature are four-fold. First, we consider a panel data model

that allows for heterogeneous time trends at different locations. The newly proposed frame-

work suits our empirical dataset. Second, we establish an asymptotic theory for the pro-

posed estimation method, and develop a nonparametric dependent wild bootstrap (DWB)

method to obtain valid inference for the case where weak correlation is present in both di-

mensions of the error terms. Third, we examine our theoretical findings through extensive

simulations. Finally, we use the newly proposed model and method to investigate U.K.

rainfall data. We find that overall, the rainfall in Autumn and Winter indeed increases

over the past sixty years, however, there is no significant change in Spring and Summer.

Notably, for Spring, Summer and Autumn, the majority of the stations show no significant

change in rainfall data, which also implies that the increasing rainfall in Autumn is driven

by a small number of locations on the west coast of the country.

The structure of this paper is as follows. Section 2 proposes the estimation method

and the corresponding asymptotic theory. Specifically, we establish the asymptotic dis-

tributions of the proposed estimators in Section 2.1, develop the corresponding theory of

the nonparametric DWB method in Section 2.2, and finally consider the estimation of the

number of factors in Section 2.3. Section 3 conducts extensive simulation studies to exam-

ine the finite–sample .properties of the proposed model and methods. Using the proposed

model and method, Section 4 studies the rainfall data of U.K. We conclude in Section 5.

The proofs are regulated in the online supplementary appendix.
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Before proceeding further, we introduce some notations to facilitate the development.

→P and →D stand for convergence in probability and convergence in distribution respec-

tively; K(·) and h respectively stand for the kernel function and the bandwidth of the

nonparametric regression; Kh(·) = K(·/h)/h; for a matrix A with full column rank, let

MA = I − A(A>A)−1A>; for a matrix A, let ‖A‖ and ‖A‖2 be the Frobenius norm and

the Spectral norm respectively; for two matrices A and B having the same dimensions, let

A◦B stand for the Hadamard product of A and B; for two random variables a and b, a � b

stands for a = OP (b) and b = OP (a).

2 Estimation Method and Theory

In this section, we first present the estimation method, and establish the corresponding

asymptotic properties. Specifically, assuming df is known, we derive the asymptotic dis-

tributions of the estimators in Section 2.1, and provide the bootstrap inference in Section

2.2. Finally, we consider the estimation of the number of factors in Section 2.3.

Remark 2.1. Before proceeding further, we comment on an identification issue associated

with the heterogeneous coefficients. For simplicity, suppose that ft is independent and

identically distributed (i.i.d.), and can be written as

ft = f + ξt,

in which f = E[ft] and E[ξt] = 0. In this case, we can rewrite the model (1.4) as

yit = m∗i0(τt) +
J∑
j=1

Djtmij(τt) + γ>i ξt + εit,

where m∗i0(τt) = mi0(τt) + f>γi. It is now clear that one can only identify mi0(τt) up to an

unknown constant. Throughout the paper, we assume E[ft] = 0 for simplicity, and refer
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interested readers to, for example, Linton (1997), Sperlich et al. (2002), Connor et al.

(2012) and many references therein for extensive discussions on similar matters.

We now proceed, and write (1.4) in a vector form as follows:

Yi = DMi + Fγi + Ei, (2.1)

where D = (IT , D1, . . . , DJ), Dj = diag{Dj1, . . . , DjT} for j ∈ [J ], Mi = (M>
i0 , . . . ,M

>
iJ)>,

and Mi` = (mi`(τ1), . . . ,mi`(τT ))> for ` ∈ 0 ∪ [J ]. In (2.1), the definitions of Yi, F and Ei

are obvious, they thus are omitted.

To recover mij(·)’s, we briefly introduce the local linear method. The idea is that when

τt is close to τ ,

mij(τt) ≈ z>t m̃ij(τ), (2.2)

where zt = (1, τt−τ
h

)> and m̃ij(τ) = (mij(τ), h ·m(1)
ij (τ))>. Thus, (2.1) can be parametrized

as follows:

KτYi ≈ KτZm̃i(τ) +KτFγi +KτEi, (2.3)

where Kτ = diag{
√
Kh(τ1 − τ), . . . ,

√
Kh(τT − τ)}, m̃i(τ) = (m̃i0(τ)>, . . . , m̃iJ(τ)>)>, and

Z = D(IJ+1⊗ (z1, . . . , zT )>). In addition, let K(·) be a boundary adjusted kernel (Hong &

Li 2005) in order to avoid an extra constant term in the limit when τ is sufficiently close

to 0 and 1:

K

(
τt − τ
h

)
=


K
(
τt−τ
h

)
/
∫ 1

−τ/hK(w)dw, τ ∈ [0, h),

K
(
τt−τ
h

)
, τ ∈ [h, 1− h],

K
(
τt−τ
h

)
/
∫ (1−τ)/h
−1 K(w)dw, τ ∈ (1− h, 1],

(2.4)

where K(w) is a typical kernel function (say, the Epanechnikov kernel). The use of (2.2)

and (2.4) together ensures that the bias of the kernel estimation is the same magnitude

everywhere on [0, 1] (Connor et al. 2012, Section 3.2).

7



In view of (2.3), for τ ∈ [0, 1], we define the following objective function:

Qτ (B,F) =
N∑
i=1

(Yi − Zβi)>KτMFKτ (Yi − Zβi), (2.5)

where B = (β1, . . . , βN)> with each βi = m̃i(τ) being a 2(J+1)×1–dimensional vector, F is

a T×df matrix, andMF = I−F(F>F)−1F>. A commonly used assumption accompanied the

local linear method is that the functions (i.e., mij(·)’s) are twice continuously differentiable

on [0, 1]. Therefore, it is reasonable to assume maxi ‖βi‖ < ∞ (e.g., Li & Racine 2007).

For F, we suppose that 1
T
F>F = Idf for the purpose of identification, which is well adopted

in the literature of PCA (e.g., Jolliffe 2012). Therefore, to minimise (2.5), we introduce the

following two sets:

SB = {B = (β1, . . . , βN)> | max
i
‖βi‖ <∞} and SF =

{
F | 1

T
F>F = Idf

}
. (2.6)

With (2.5) and (2.6) in hand, for ∀τ ∈ [0, 1], the estimators are defined as follows:

(B̂τ , F̂τ ) = argmin
B∈SB ,F∈SF

Qτ (B,F), (2.7)

in which B̂τ = (β̂τ,1, . . . , β̂τ,N)>. Moreover, (2.7) admits the following expressions:

β̂τ,i =
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τKτYi, (2.8)

for i = 1, . . . , N , and

F̂τ V̂τ = Kτ Σ̂(B̂τ )Kτ F̂τ , (2.9)

where Σ̂(B) = 1
NT

∑N
i=1(Yi − Zβi)(Yi − Zβi)>, and V̂τ = diag{λ̂τ,1, . . . , λ̂τ,df} is formed by

the largest df eigenvalues of Kτ Σ̂τ (B̂τ )Kτ arranged in descending order. Consequently, for

∀i ∈ [N ] and ∀j ∈ 0 ∪ [J ], the estimator of mij(τ) is defined by

m̂ij(τ) = Smj β̂τ,i, (2.10)
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where Smj ’s are the selection matrices defined in an obvious manner.

Up to this point, we have presented the model and the estimation strategy. In what

follows, we establish the corresponding asymptotic properties.

2.1 Asymptotic theory

In order to derive the asymptotic properties, we impose the following conditions to facilitate

the development.

Assumption 1.

1. All of mij(·)’s are twice continuously differentiable on [0, 1].

2. K(·) involved in (2.4) is a positive kernel function, is Lipschitz continuous on [−1, 1],

and
∫ 1

−1K(w)dw = 1. Also, (T ∧N)h→∞.

3. (a). Let ‖E‖2 = OP (
√
N ∨
√
T ), where E = (E1, . . . , EN)>.

(b). 1
N

Γ>Γ = Σγ +OP

(
1√
N

)
, where Γ = (γ1, . . . , γN)>. Also, maxi≥1E‖γi‖4 <∞.

(c). Suppose that {ft} is a stationary process such that E[f1] = 0, E[f1f
>
1 ] = Σf ,∑∞

t=1E|f>1 f1+t| = O(1), and E‖f1‖4 <∞.

Assumptions 1.1 and 1.2 are standard conditions, which are widely used in the literature

of nonparametric regression (e.g., Linton 1997, Sperlich et al. 2002). Due to the involvement

of panel dataset, we have to require both quantities Nh and Th to diverge. Assumption

1.3(a) allows for cross–sectional dependence. The restrictions in Assumption 1.3(b)(c) are

commonly used in the relevant literature of factor analysis.

Using Assumption 1, we present the first asymptotic result of this paper below.

Lemma 2.1. Under Assumption 1, as (N, T )→ (∞,∞),
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1. supτ∈[0,1] ‖PKτF − PF̂τ‖ = oP (1),

2. supτ∈[0,1]
1√
N
‖M̂j(τ)−Mj(τ)‖ = oP (1) for j ∈ 0 ∪ [J ],

3. supτ∈[0,1](‖V̂τ‖2 + ‖V̂ −1τ ‖2) = OP (1),

where Mj(τ) = (m1j(τ), . . . ,mNj(τ))> and M̂j(τ) = (m̂1j(τ), . . . , m̂Nj(τ))>.

Lemma 2.1 establishes results on uniform convergence. The first result of Lemma 2.1

indicates that F̂τ can successfully recover the space spanned by KτF , which also has full

column rank in view of the fact that

sup
τ∈[0,1]

∥∥∥ 1

T
F>K2

τF − Σf

∥∥∥ = oP (1).

In addition, the above equation infers that the asymptotic eigenvalues associated with

1
T
F>K2

τF are identical to those yielded by 1
T
F>F . From the signal-noise ratio viewpoint,

the PCA step (2.9) involved in our nonparametric regression yields a signal which is asymp-

totically equivalent to the situation when no nonparametric kernel involved. The second

result of Lemma 2.1 establishes the consistency for the estimators of the functions, which

should be expected. The third result of this lemma basically says that when studying

(2.9), the eigenvalues of Kτ Σ̂(B̂τ )Kτ are bounded from both below and above uniformly in

τ ∈ [0, 1]. It is worth mentioning that the establishment of Lemma 2.1 only requires very

limited restrictions.

To establish asymptotic distributions, we impose the following conditions in Assumption

2.

Assumption 2.

1. Let {εit} be independent of {ft} and {γi}, and be stationary over t for each i. More-

over, E[εi1] = 0, maxi≥1
∑∞

t=1E|εi1εi,t+1| = O(1), and maxi≥1E|εi1|δ <∞ for δ ≥ 4.
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2. supτ∈[0,1]
1
NT
‖
∑N

i=1(Z, F )>K2
τEi‖ = OP

(√
log(NT )
√
NTh

)
.

3. For ∀τ ∈ [0, 1], let 1√
Th

Z>K2
τEi →D N(0,Σ2i,τ ), where Σ2i,τ = limT

h
T
Z>K2

τE[EiE>i ]K2
τZ.

Assumption 2 requires εit to be stationary over time for each i, and allows for het-

eroskedasticity along the cross-sectional dimension. Assumption 2.2 can be simply justified

if more conditions are imposed along the cross-sectional dimension of {εit}. We refer inter-

ested readers to (B.6) of Chen et al. (2012) for a detailed development, and to discussions

for Assumption A.4 of Su & Wang (2017) on a similar matter. Assumption 2.3 requires

a central limit theory to hold for each i. It is noteworthy that F̂τ depends on the esti-

mators of mij(τ)’s in (2.9). After aggregating the information over i, the variables of the

factor structure will completely vanish when establishing an asymptotic distribution for

√
Th(m̂ij(τ)−mij(τ)). That is why Assumption 2.3 only involves Z and Ei.

Using Assumptions 1 and 2, we present the following theorem.

Theorem 2.1. Let Assumptions 1 and 2 hold. If, in addition, Th5 → c ∈ [0,∞), we have

as (N, T )→ (∞,∞), for ∀i ∈ [N ], ∀j ∈ 0 ∪ [J ], and ∀τ ∈ [0, 1],

√
Th(m̂ij(τ)−mij(τ) +OP (h2))→D N(0,Σij(τ)),

where Σij(τ) = SmjΣ
−1
1,τΣ2i,τΣ

−1
1,τS

>
mj

, in which Σ1,τ = limT
1
T
Z>K2

τZ and Smj is the same

as in (2.10).

It is worth mentioning that the term OP (h2) is also related to other estimates of mi∗j(τ)

with i∗ 6= i. It is not hard to see that each individual m̂ij(τ) of (2.8) depends on F̂τ , however,

as explained above, F̂τ of (2.9) further depends on all of m̂ij(τ)’s. As a consequence, it is

theoretically challenging to decompose the bias terms for each individual. In addition to

solving the bias term issue, we develop a nonparametric DWB method in Section 2.2 below
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to deal with the infeasibility of Σij(τ) as the variance component of Theorem 2.1 for valid

inference.

Now, recall that we are interested in the difference between mij(τ
∗
1 ) and mij(τ

∗
2 ). Thus,

consider ∆Mij(τ
∗
2 , τ

∗
1 ) = m̂ij(τ

∗
2 )− m̂ij(τ

∗
1 ).

Corollary 2.1. Let the conditions of Theorem 2.2 hold. If, in addition, Th5 → 0, we have

as (N, T )→ (∞,∞), for ∀i ∈ [N ], ∀j ∈ 0 ∪ [J ],

√
Th [∆Mij(τ

∗
2 , τ

∗
1 )− (mij(τ

∗
2 )−mij(τ

∗
1 ))]→D N(0,SmjΣτ∗1 ,τ

∗
2
S >
mj

),

where Στ∗1 ,τ
∗
2

= Σ−11,τ∗1
Σ2i,τ∗1

Σ−11,τ∗1
+ Σ−11,τ∗2

Σ2i,τ∗2
Σ−11,τ∗2

.

The corollary is a direct application of Theorem 2.1. In what follows, we consider how

to conduct the hypothesis testing based on a bootstrap procedure.

2.2 Bootstrap Inference

In this subsection, we develop a nonparametric DWB method for our panel data analysis.

We briefly review the relevant literature before proceeding. The original DWB method is

initially introduced in Shao (2010), wherein a comprehensive comparison between the DWB

and some existing bootstrap methods can be found. The moving block bootstrap (MBB)

approach for panel data models of Gonçalves (2011) shares a motivation very similar to

what to be investigated below. By shuffling the sample along the time dimension randomly,

the MBB method preserves the information of the cross-sectional dimension well. However,

it destroys the time trends in the bootstrap draws. Therefore, we propose to extend the

DWB method developed in Gao et al. (2022) for parametric panel data models for our

nonparametric panel data regression model analysis.

By Section 2.1, we are able to obtain m̂ij(τt) for all (i, j, t), which yields
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ûit = yit − m̂i0(τt)−
J∑
j=1

Djtm̂ij(τt).

Let Û = {ûit}N×T , which serves as an estimate of ΓF> + E .

We are now ready to introduce the following DWB method to our nonparametric panel

data framework:

(i). Let ξ = (ξ1, . . . , ξT )> be an `-dependent time series for each bootstrap draw, and let

ξ satisfy that

E[ξt] = 0, E|ξt|2 = 1, E|ξt|δ <∞, E[ξtξs] = a

(
t− s
`

)
, (2.11)

where ` → ∞ and `√
Th
→ 0, δ is the same as that in Assumption 2.1, and a(·)

is a symmetric kernel defined on [−1, 1] satisfying that a(0) = 1 and Ka(x) =∫
R a(u)e−iuxdu ≥ 0 for x ∈ R.

(ii). For ∀τ , construct a new set of dependent variables by Y ∗i = Zβ̂τ,i + Ûi ◦ ξ, where ◦

defines the Hadamard product, and Ûi is the ith column of Û. Accordingly, the new

estimates of m̂∗ij(τ)’s are obtained using

β̂∗τ,i =
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τKτY
∗
i . (2.12)

(iii). We repeat the above procedure L times.

In practice, one can always generate ξ from N(0,Σξ), where Σξ = {a
(
t−s
`

)
}T×T . Al-

though the normal distribution is not really necessary in theory, it fulfils every aforemen-

tioned requirement. The restrictions imposed on a(·) are satisfied by a few commonly used

kernels, such as the Bartlett and Parzen kernels. A variety of kernel functions satisfying

(2.11) can be found in Andrews (1991) and Shao (2010) for example. In practice, one may

simply adopt the Bartlett kernel as in Bai et al. (2020).
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The above procedure provides a flexible way to construct the confidence interval, and

also handles the correlation arose with {εit}. Formally, we summarize the asymptotic

property of the DWB procedure in the following theorem.

Theorem 2.2. Let the conditions of Theorem 2.1 hold. If, in addition, suppose (2.11) holds

and Th5 → 0, we then have as (N, T )→ (∞,∞), for ∀τ ∈ [0, 1], ∀i ∈ [N ], ∀j ∈ 0 ∪ [J ],

sup
w∈R

∣∣∣Pr
(√

Th(m̂ij(τ)−mij(τ)) ≤ w
)
− Pr

(√
Th(m̂∗ij(τ)− m̂ij(τ)) ≤ w

)∣∣∣ = oP (1),

where m̂∗ij(τ) has been defined in the above bootstrap procedure.

Recall that we are interested in the following test for ∀i ∈ [N ] and ∀j ∈ 0 ∪ [J ] at the

given time points τ ∗1 and τ ∗2 :

H0 : mij(τ
∗
2 )−mij(τ

∗
1 ) = 0.

A simple way of testing this hypothesis is, for each generated ξ, calculating

∆M∗
ij(τ

∗
2 , τ

∗
1 ) = m̂∗ij(τ

∗
2 )− m̂∗ij(τ ∗1 )

using the bootstrap draws. Accordingly, we reject the null at the 5% significance level, if

the corresponding confidence interval from the bootstrap procedure does not include 0.

2.3 Selection of the Number of Factors

To close our theoretical investigation, we finally consider the selection of the factor number.

To facilitate the development, we define a new set

S∗F =

{
F | 1

T
F>F = Idmax

}
,

where dmax (≥ df ) is a user-specified large constant. Accordingly, we define
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(B̃τ , F̃τ ) = argmin
B∈SB ,F∈S∗F

Qτ (B,F), (2.13)

Although the number of factors is over-specified in (2.13), we still achieve a slow rate

of convergence without imposing many assumptions. Specifically, we summarize the con-

clusion in the following corollary.

Corollary 2.2. Under Assumption 1, as (N, T )→ (∞,∞),

sup
τ∈[0,1]

1√
N
‖M̃j(τ)−Mj(τ)‖ = OP

(
h2 +

1√
(N ∧ T )h

)
,

in which M̃j(τ) is defined in the same way as M̂j(τ) in Lemma 2.1 but using B̃τ .

To select the number of factors, we consider the covariance matrix Kτ Σ̂τ (B̃τ )Kτ , where

Σ̂τ (B) has been defined in (2.9). Further we define a mock eigenvalue λτ,0 ≡ 1 in order to

cover the case with df = 0. Finally, we estimate df by

d̂f = sup
τ∈[0,1]

argmin
0≤`≤dmax

{
λτ,`+1

λτ,`
· I(λτ,` ≥ εNT ) + I(λτ,` < εNT )

}
, (2.14)

where εNT = {log(Nh ∨ Th)}−1, and λτ,1, . . . , λτ,dmax are the largest dmax eigenvalues of

Kτ Σ̂τ (B̃τ )Kτ arranged in descending order.

In (2.14), the reason of having indicators function is to bypass a difficulty raised by

Lam & Yao (2012), in which the authors point out the challenge of studying the term
λτ,`+1

λτ,`

for ` > df , and conjecture
λτ,`+1

λτ,`
� 1 when ` > df . In other words, whether simply using

λτ,`+1

λτ,`
for ` ∈ [dmax] in (2.14) guarantees a U-shape objective function remains unknown

in theory. Therefore, to account for feasibility, we introduce the indicator function so that

the modified objective function has a U-shape.

Theorem 2.3. Under Assumption 1, as (N, T )→ (∞,∞), Pr(d̂f = df )→ 1.

In Section 3, we examine the finite sample performance of the proposed estimation

methods.
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2.4 Further Discussions

Of interest, another possible test to be conducted is evaluating the overall change across

all stations. One way of doing it is to rewrite the model as follows:

yit = m0(τt) +
J∑
j=1

Djtmj(τt) + γ>i ft + εit, (2.15)

in which we no longer have heterogeneous coefficients. We then conduct the hypothesis for

each:

H0 : mj(τ
∗
2 )−mj(τ

∗
1 ) = 0. (2.16)

By doing so, we automatically aggregate the information over both dimensions using the

homogeneity design. The development of (2.15) will be similar to the online supplementary

Appendix B of Dong et al. (2021), so we omit the details.

In what follows, we take another route by assuming ∀j ∈ 0 ∪ [J ]

mij(τ) = mj(τ) + νij, (2.17)

which is widely adopted in the literature, such as, Pesaran (2006, Eq. (13)), Fan et al.

(2016, Eq. (1.3)), Boneva & Linton (2017, Eq. (6)), to name a few. In (2.17), νij models

the randomness associated with each individual station at the period j. Specifically, we

require the following assumption to hold.

Assumption 3. Suppose that for each j, νij is independent and identically distributed over

i, and satisfies that E[νij] = 0 and E[ν2ij] = σ2
ν,j.

Under (3), we test (2.16), and construct the following statistic

∆Mj(τ
∗
2 , τ

∗
1 ) =

1

N

N∑
i=1

[m̂ij(τ
∗
2 )− m̂ij(τ

∗
1 )]. (2.18)

By the development of Theorem 2.1, the following corollary hold immediately.
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Corollary 2.3. Under the conditions of Theorem 2.2, suppose further that Nh4 → 0 and

log(NT )
Th

→ 0. As (N, T )→ (∞,∞), ∀j ∈ 0 ∪ [J ],

√
N [∆Mj(τ

∗
2 , τ

∗
1 )− (mj(τ

∗
2 )−mj(τ

∗
1 ))]→D N(0, 2σ2

ν,j).

Given J does not diverge, we can further average ∆Mj(τ
∗
2 , τ

∗
1 ) over j. The limiting

distribution is obvious in view of Lemma A.3. The asymptotic distribution can be obtained

by taking average over i using the bootstrap draws of Section 2.2.

Finally, to close the theoretical investigation, we address one practical issue — the

unbalanceness of the dataset. In our dataset, the available observations of each station

actually start from different time periods, and a few stations do not have observations in

very recent years. Therefore, we actually observe

y∗it =


yit t ∈ [T i, T i]

0 otherwise

, (2.19)

where yit is defined in (1.4), and maxi T i = T . Suppose that T i/T and T i/T converge to

τ i and τ i respectively. Then it is easy to know that if∑N
i=1 T i + T − T i

NT
' h2, (2.20)

the aforementioned results will still be valid by restricting τ on the set [τ i, τ i] wherever

necessary.

Notably, if we restrict our study on the time period [maxi T i,mini T i], it will be some-

what similar to the analysis on the so-call “Tall” (or “Wide”) matrix in Bai & Ng (2021).

The difference is that in our dataset, we do not need to rotate the data to generate the

“Tall” (or “Wide”) matrix, and Bai & Ng (2021) focus on the case when missing happens in

a random fashion. In another paper, Jin et al. (2021) also discuss how to use EM algorithm

to tackle the issue with random missing, which does not suit our dataset.
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3 Simulation

We now examine the finite–sample performance of the proposed estimation and DWB meth-

ods of Section 2. Before proceeding further, we comment on the numerical implementation.

Throughout the paper, K(·) is always set as the Epanechnikov kernel. As we require under-

smoothing (i.e., Th5 → 0) in Theorem 2.2, let h = T−1/4 for simplicity in what follows.

To examine the sensitivity of the numerical procedure, we also consider hL = 0.8T−1/4 and

hR = 1.2T−1/4 below. One may also follow Section 5.2 of Connor et al. (2012) or Section

5.2 of Su & Wang (2017) for alternative choices of the bandwidth. In general, we find the

results are not sensitive to the bandwidth. For the DWB procedure, we adopt the Bartlett

kernel, and the bandwidth ` is set as d1.75(Th)1/3e following Palm et al. (2011). It is worth

mentioning that Shao (2010) and Gao et al. (2022) discuss the optimal bandwidth ` under

different settings in length. In summary, when the Bartlett kernel involved, the optimal

bandwidth ` is at the order (Th)1/3 up to an unknown constant for our nonparametric

regression. In addition, Gao et al. (2022) conduct extensive simulations to show the DWB

procedure is not sensitive to the choice of ` and the function form of a(·), so we will not

further extend the following simulation studies along this line of research.

The data generating process is as follows:

yit = mi0(τt) +
J∑
j=1

Djtmij(τt) + γ>i ft + εit,

where ft ∼ N(0, Idf ), γi ∼ 0.5+N(0, Idf ), Djt = I(mod(t, J+1) = j), and mod(·, ·) defines

the modulo operation. Without loss of generality, we let df = 2 and J = 3, so there are 4

periods in the simulated data. To introduce weak correlation over both dimensions of εit,

we let

Et = 0.5Et−1 +N(0,Σε),
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where Et = (ε1t, . . . , εNt)
> and Σε = {0.2|i−j|}N×N . Finally, for the trending functions, we

consider two cases:

Case 1: mij(τ) = i
N

+ j
J+1

,

Case 2: mij(τ) = i
N

+ j
J+1

+ exp(τ),

where j ∈ 0 ∪ [J ]. Case 1 is designed to demonstrate the aforementioned procedure works

for the model with constant coefficients as well. Also, it helps us examine the size of

H0 : mij(τ
∗
2 )−mij(τ

∗
1 ) = 0. Case 2 introduces a smooth evolvement for each (i, j) over the

entire period, so is designed to reflect the power of rejecting H0 : mij(τ
∗
2 )−mij(τ

∗
1 ) = 0.

For each generated dataset, we implement the following procedure:

1. Assuming df is known, we conduct the estimation on the unknown functions for

the points τ ∈ {0, 0.1, 0.2, . . . , 1}. For each point, we also conduct 199 bootstrap

replications in order to obtain a 95% confidence interval. Then we can evaluate the

results of Sections 2.1 and 2.2.

2. Assuming df is unknown, we implement the procedure of Section 2.3 to estiamte df

in order to evaluate the result of Section 2.3.

We repeat the above procedure 500 times3.

To evaluate the performance, we introduce the following measures. First, we examine

the estimates of the unknown functions, and define the following root mean squared errors

for ∀j ∈ 0 ∪ [J ]:

3One certainly can increase the number of bootstrap replications and the number of Monte Carlo

simulation replications. However, we have to bear with the amount of time cost due to the availability of

the computational power. The current settings are sufficient to examine the theoretical findings of Section

2.

19



RMSEj =

{
1

500

500∑
r=1

1

11 ·N

N∑
i=1

10∑
s=0

(m̂
(r)
ij (τs)−mij(τs))

2

}1/2

,

where j ∈ 0 ∪ [J ], and m̂
(r)
ij (τs) stands for the estimate of mij(τs) at the rth simulation

replication. Second, we report the coverage rate of the bootstrap procedure:

CRj =
1

500

500∑
r=1

1

11 ·N

N∑
i=1

10∑
s=0

I(m̂(r)
ij (τs)−mij(τs) ∈ CI

(r)
ijs),

where j ∈ 0∪ [J ], and CI
(r)
ijs stands for the 95% confidence interval yielded by the bootstrap

procedure for the quantity m̂
∗,(r)
ij (τs) − m̂(r)

ij (τs) at the rth simulation replication. Finally,

to examine the estimate of the number of factors, we let

NF =
1

500

500∑
r=1

I(d̂(r)f = df ),

where d̂
(r)
f is the estimate of df at the rth simulation replication.

We summarize the results of RMSE and CR in Table 1. A few facts emerge. First, we

comment on RMSEj’s. As shown in both panels of Table 1, the RMSEj’s decrease as T

goes up. The pattern is pretty consistent over j. It is not supervising that RMSE0 is always

smaller than RMSEj with j ≥ 1, as the available observations of each periodic trend are

only a fraction of the entire dataset. The value of N has no impacts on RMSEj’s, which

is also consistent with the theoretical findings and the construction of RMSEj’s. Overall,

the results of RMSEj’s are not sensitive to the choice of bandwidth.

Second, we comment on the coverage rate. Although the simulated data have weak

cross-sectional dependence and time series autocorrelation due to the DGP of εit, in both

tables, the values of CRj’s are approaching the nominal rate (i.e., 95%) as T increases.

Notably, the proposed bootstrap method tends to generate a narrower confidence interval

when the value T is relative small. That is why the values of CRj’s are always lower than

the nominal rate (i.e., 95%). The results are fairly acceptable in view of the facts that a)
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Table 1: Results of RMSE and CR for Cases 1 & 2

Case 1 Case 2
RMSE CR RMSE CR

j hL h hR hL h hR hL h hR hL h hR
N = 50 T = 100 0 0.958 0.880 0.817 0.803 0.822 0.837 0.959 0.876 0.813 0.809 0.830 0.843

1 1.211 1.106 1.029 0.840 0.858 0.869 1.225 1.111 1.031 0.843 0.862 0.874
2 1.244 1.126 1.046 0.841 0.859 0.872 1.221 1.110 1.036 0.848 0.865 0.877
3 1.185 1.086 1.010 0.842 0.859 0.871 1.198 1.090 1.014 0.844 0.862 0.874

T = 200 0 0.719 0.652 0.607 0.858 0.871 0.881 0.727 0.660 0.613 0.862 0.874 0.882
1 0.916 0.829 0.769 0.883 0.893 0.902 0.913 0.831 0.771 0.884 0.895 0.902
2 0.932 0.845 0.789 0.886 0.897 0.904 0.939 0.849 0.786 0.891 0.902 0.909
3 0.910 0.825 0.763 0.887 0.899 0.907 0.905 0.821 0.762 0.889 0.900 0.907

T = 400 0 0.551 0.499 0.463 0.894 0.902 0.903 0.547 0.496 0.460 0.899 0.906 0.908
1 0.691 0.625 0.577 0.914 0.921 0.920 0.684 0.618 0.573 0.920 0.926 0.926
2 0.719 0.652 0.604 0.911 0.918 0.917 0.706 0.640 0.593 0.916 0.923 0.922
3 0.687 0.623 0.579 0.916 0.922 0.920 0.678 0.615 0.571 0.916 0.923 0.922

T = 600 0 0.472 0.425 0.394 0.903 0.910 0.912 0.471 0.426 0.394 0.909 0.915 0.917
1 0.599 0.540 0.499 0.916 0.922 0.922 0.590 0.535 0.496 0.922 0.928 0.928
2 0.609 0.550 0.510 0.921 0.926 0.926 0.604 0.543 0.502 0.924 0.929 0.929
3 0.585 0.527 0.488 0.923 0.928 0.928 0.591 0.538 0.497 0.921 0.926 0.926

N = 100 T = 100 0 0.976 0.889 0.824 0.799 0.821 0.835 0.964 0.878 0.811 0.812 0.833 0.846
1 1.241 1.128 1.049 0.837 0.854 0.866 1.213 1.104 1.026 0.845 0.862 0.873
2 1.241 1.127 1.052 0.838 0.856 0.868 1.243 1.128 1.042 0.844 0.863 0.876
3 1.224 1.113 1.036 0.838 0.855 0.868 1.213 1.105 1.021 0.844 0.861 0.872

T = 200 0 0.720 0.651 0.605 0.853 0.868 0.878 0.734 0.668 0.622 0.861 0.874 0.882
1 0.925 0.838 0.777 0.875 0.887 0.896 0.940 0.854 0.796 0.883 0.894 0.900
2 0.944 0.855 0.795 0.877 0.889 0.897 0.955 0.865 0.807 0.884 0.894 0.900
3 0.892 0.810 0.754 0.878 0.890 0.899 0.915 0.834 0.775 0.887 0.897 0.904

T = 400 0 0.556 0.502 0.464 0.893 0.903 0.908 0.549 0.497 0.461 0.897 0.906 0.907
1 0.696 0.628 0.580 0.910 0.918 0.922 0.696 0.626 0.579 0.916 0.923 0.921
2 0.714 0.645 0.597 0.913 0.920 0.924 0.711 0.641 0.594 0.915 0.922 0.921
3 0.695 0.628 0.584 0.913 0.920 0.922 0.680 0.613 0.569 0.917 0.924 0.924

T = 600 0 0.467 0.424 0.393 0.909 0.913 0.916 0.472 0.428 0.396 0.907 0.912 0.914
1 0.596 0.539 0.500 0.922 0.924 0.926 0.595 0.537 0.495 0.921 0.926 0.927
2 0.608 0.550 0.510 0.926 0.928 0.929 0.602 0.545 0.505 0.922 0.927 0.927
3 0.588 0.531 0.490 0.927 0.928 0.930 0.584 0.526 0.487 0.921 0.927 0.927

N = 200 T = 100 0 0.977 0.890 0.822 0.803 0.824 0.838 0.968 0.888 0.819 0.805 0.825 0.839
1 1.233 1.117 1.037 0.838 0.855 0.866 1.220 1.111 1.028 0.845 0.862 0.875
2 1.264 1.147 1.062 0.836 0.854 0.867 1.235 1.128 1.050 0.842 0.859 0.870
3 1.230 1.115 1.028 0.840 0.859 0.871 1.215 1.111 1.028 0.842 0.860 0.871

T = 200 0 0.729 0.664 0.618 0.851 0.865 0.875 0.718 0.654 0.610 0.866 0.879 0.887
1 0.916 0.835 0.775 0.874 0.885 0.894 0.919 0.832 0.773 0.885 0.897 0.903
2 0.948 0.862 0.802 0.874 0.886 0.895 0.938 0.854 0.796 0.889 0.899 0.906
3 0.909 0.826 0.765 0.878 0.890 0.897 0.902 0.822 0.764 0.889 0.900 0.907

T = 400 0 0.542 0.490 0.454 0.894 0.903 0.907 0.555 0.504 0.469 0.896 0.903 0.904
1 0.676 0.608 0.563 0.914 0.921 0.924 0.700 0.634 0.588 0.913 0.920 0.918
2 0.703 0.635 0.589 0.913 0.919 0.922 0.708 0.644 0.598 0.916 0.922 0.920
3 0.684 0.618 0.573 0.912 0.919 0.922 0.688 0.625 0.582 0.915 0.921 0.919

T = 600 0 0.470 0.425 0.393 0.907 0.912 0.914 0.470 0.425 0.393 0.910 0.915 0.917
1 0.586 0.529 0.489 0.924 0.926 0.928 0.586 0.529 0.489 0.927 0.929 0.930
2 0.602 0.546 0.504 0.927 0.929 0.929 0.602 0.546 0.504 0.928 0.930 0.931
3 0.585 0.528 0.488 0.926 0.929 0.930 0.585 0.528 0.488 0.927 0.929 0.931
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for nonparametric regression the effective sample size is at order Th, and b) the proposed

bootstrap methods needs to further truncate the effective sample using a bandwidth `.

Finally, the results are very similar for both Cases 1 and 2, so it infers a good size and

power for the hypothesis test H0 : mij(τ
∗
2 )−mij(τ

∗
1 ) = 0 in practice.

Finally, we comment on the results of the estimation on the number of factors. In Table

2, the results are accurate overall. Two exceptions are the cases when (N, T ) = (50, 100). It

seems to suggest that the proposed method is less sensitive to the choice of bandwidth when

the sample size is relatively large. Traditionally, when estimating the number of factors,

one may start from T = 25 (e.g., Lam & Yao 2012), so the value of NF can be much

lower than 1 for small T . Due to the nonparametric nature of the proposed framework,

we do not explore the cases with T less than 100, which is also consistent the simulation

setup of Su & Wang (2017). As discussed under Lemma 2.1, from the signal-noise ratio

viewpoint, the PCA step (2.9) involved in our nonparametric regression yields a signal

which is asymptotically equivalent to the situation when no nonparametric kernel involved.

That is why Table 2 is filled with 1’s when we estimate the number of factors.

Table 2: Results of NF for Case 1 and Case 2

Case 1 Case 2
hL h hR hL h hR

N = 50 T = 100 1 1 1 1 0.98 0.98
T = 200 1 1 1 1 1 1
T = 400 1 1 1 1 1 1
T = 600 1 1 1 1 1 1

N = 100 T = 100 1 1 1 1 1 1
T = 200 1 1 1 1 1 1
T = 400 1 1 1 1 1 1
T = 600 1 1 1 1 1 1

N = 200 T = 100 1 1 1 1 1 1
T = 200 1 1 1 1 1 1
T = 400 1 1 1 1 1 1
T = 600 1 1 1 1 1 1
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4 An Empirical Study

In this section, we demonstrate the usefulness of the newly proposed framework using

rainfall, temperature and sunshine data of U.K. respectively. Most climate studies are

concerned with temperature and conclude that there has been an increasing trend in global

and regional temperature. Rather less has been written about precipitation, but the U.K.

Meteorological Office recently writes (UKMet 2021)

Are we experiencing more heavy rainfall and flooding events ? Several indicators in

the latest U.K. State of the Climate report show that the U.K.’s climate is becoming

wetter. For example the highest rainfall totals over a five day period are 4% higher

during the most recent decade (2008-2017) compared to 1961-1990. Furthermore, the

amount of rain from extremely wet days has increased by 17% when comparing the

same time periods. In addition, there is a slight increase in the longest sequence of

consecutive wet days for the U.K. The change in rainfall depends on your location —

for example, changes are largest for Scotland and not significant for most southern

and eastern areas of England.

It is our purpose to investigate whether these claims are satisfied. The data collected

from U.K. Meteorological Office include 37 stations (i.e., N = 37). Figure 1 presents the

geographic locations of these stations. Clearly, they are widely spread out across U.K.

4.1 Data Cleaning

The monthly data cover the period from January of 1853 to July of 2021. In the original

dataset, temperature is recorded as min and max temperature for each month, so we take

a simple average as the final observation. The units for rainfall, temperature and sunshine

are mm, celsius, and hours respectively.
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Figure 1: The Geographic Locations of 37 Stations

Although the first record from Oxford dates back to January of 1853, for majority of

stations, data are not available until early 1900s. Therefore, we have to throw away some

information to ensure the unbalanceness does not create serious biases for our analysis.

We pick a year within the range of 1853-1970 as the initial year of our analysis. Simple

calculation shows that T = 2023 for the period from January of 1853 to July of 2021, while

T = 619 for the period from January of 1970 to July of 2021. In view of our simulation

study, a sample size within the range is large enough to ensure reliable results, if missing

values are only a small proportion as mentioned in Section 2.4. To better present the data

availability, we plot Figure 2. In what follows, we consider two cases4 below using 1950

and 1955 as the initial year respectively. Therefore, T = 859 and 799.

Once we set the starting year, we standardize each time series (for the period with

observations). Notably, the standardization does not alter the properties of the time series

4The choices of 1950 and 1955 are arbitrary. Certainly, other options can be further explored to show

the robustness of the results. Due to space limit, we no longer explore these choices further.
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Figure 2: Data availability. The left panel plots the years with observations for each station,
and the right panel plots the percentages of missing values using different initial year.

fundamentally, and also ensures the numbers used for regression are unit free. Such a

procedure is commonly adopted in the literature (e.g., Stock & Watson 2005, Fan et al.

2013). For the purpose of demonstration, we plot the original data (using 1950 as the initial

year) and the standardized data in Figure 3 to show the range of observations before and

after standardization.

Note that the U.K. Meteorological Office defines the four seasons as follows: Spring in-

cludes March, April, May; Summer includes June, July, August; Autumn includes Septem-

ber, October, November; and Winter includes December, January, February. Therefore,

we let J = 3 below in our analysis. By doing so, we are not only able to investigate the

quarterly effects, but also can look into the monthly effects5.

5One may also let J = 11 in order to simply investigate the monthly effects. Due to space limit, we do

not explore this option. Also, by increasing the value of J , the number of observations included in each
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Figure 3: Original and standardized data. The left panel plots the original data, and the
right panel plots the standardised data.

4.2 Empirical Results

The first result that we note is the number of factors is always one, although we explore

two different initial years and three different datasets. We will not mention it again below.

To quantify the changes over the past half a century in each climate dataset, we specif-

ically test the differences6 between Mar-1970 to Feb-1971 and Mar-2020 to Feb-2021 for

each station at each season (or month) using Corollary 2.1, and also test the averaged

change using Corollary 2.3. The results are summarized in Table 3-5 below.

period will decrease. As a result, the results may become less significant.
6We use the estimates of recent year to minus the estimates of early year. The tests are all one-tail

tests and carried on at the 5% significance level.
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Overall, we do find that the temperature has gone up as indicated by majority of

previous studies. The only difference is that the temperature of September and November

does not have significant change over the past fifty years. For the rainfall data, Winter

indeed becomes wetter, however, there is no significant change in the other seasons. When

looking at the sunshine data, U.K. actually gets more sunshine during spring and winter,

but receives less sunshine over the summer. To sum up, it seems that winter has changed

significantly over the past half a century. For the other seasons, changes may vary with

respect to locations. For the sake of space, we plot the estimated trends in the online

supplementary appendix.

Table 3: Differences from Rainfall data. The third, fourth, seventh, and eighth columns

report the percentages of stations getting drier and wetter over the past fifty years.

Initial Year Season Drier Wetter Overall Drier Wetter Overall

1950

Spring 0.2432 0.1892
Mar 0.1081 0.0811
Apr 0.1892 0.1081
May 0.1081 0.0811

Summer 0.0541 0.2703
Jun 0.0270 0.0541
Jul 0.0000 0.0541

Aug 0.0270 0.0541

Autumn 0.1081 0.2162
Sep 0.1081 0.0541
Oct 0.1081 0.0541
Nov 0.1081 0.0000

Winter 0.0811 0.7027 Wetter
Dec 0.0811 0.4324 Wetter
Jan 0.0541 0.4324 Wetter
Feb 0.0811 0.4324 Wetter

1955

Spring 0.2432 0.1892
Mar 0.1351 0.0811
Apr 0.1351 0.0811
May 0.1081 0.0811

Summer 0.0541 0.2703
Jun 0.0000 0.0541
Jul 0.0000 0.0541

Aug 0.0000 0.0541

Autumn 0.1081 0.2432
Sep 0.1081 0.0541
Oct 0.1081 0.0541
Nov 0.1081 0.0000

Winter 0.0811 0.7297 Wetter
Dec 0.0811 0.3784 Wetter
Jan 0.0811 0.4324 Wetter
Feb 0.0811 0.4865 Wetter
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Table 4: Differences from Temperature data. The third, fourth, seventh, and eighth

columns report the percentages of stations getting colder and warmer over the past fifty

years.

Initial Year Season Colder Warmer Overall Colder Warmer Overall

1950

Spring 0.0541 0.8649 Warmer
Mar 0.0541 0.8378 Warmer
Apr 0.0541 0.8378 Warmer
May 0.0541 0.7568 Warmer

Summer 0.0811 0.9189 Warmer
Jun 0.0811 0.9189 Warmer
Jul 0.0811 0.9189 Warmer

Aug 0.0811 0.9189 Warmer

Autumn 0.0811 0.7568 Warmer
Sep 0.0811 0.4595
Oct 0.0811 0.5676 Warmer
Nov 0.0811 0.4324

Winter 0.1351 0.8649 Warmer
Dec 0.1351 0.8108 Warmer
Jan 0.1351 0.8378 Warmer
Feb 0.1351 0.7838 Warmer

1955

Spring 0.0541 0.8649 Warmer
Mar 0.0541 0.8649 Warmer
Apr 0.0541 0.8378 Warmer
May 0.0541 0.8649 Warmer

Summer 0.0811 0.9189 Warmer
Jun 0.0811 0.9189 Warmer
Jul 0.0811 0.9189 Warmer

Aug 0.0811 0.9189 Warmer

Autumn 0.0811 0.7297 Warmer
Sep 0.0811 0.4595
Oct 0.0811 0.5135 Warmer
Nov 0.0811 0.4324

Winter 0.1351 0.8649 Warmer
Dec 0.1351 0.8378 Warmer
Jan 0.1351 0.8108 Warmer
Feb 0.1351 0.7297 Warmer

5 Conclusion

In this paper, we have considered a panel data model which allows for heterogeneous time

trends at different locations. The framework suits the climate data well. Accordingly, we

have established the asymptotic theory of the proposed estimation method. We have also

developed the corresponding theory for the proposed nonparametric DWB method for valid

inference in the case where weak correlation presents in both dimensions of the error terms.

We have examined the finite–sample properties of the proposed methods through extensive

simulated studies. Finally, we have examined the applicability of the model and methods
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Table 5: Differences from Sunshine data. The third, fourth, seventh, and eighth columns

report the percentages of stations getting less and more sunshine over the past fifty years.

Initial Year Season Less More Overall Less More Overall

1950

Spring 0.3243 0.5676 More
Mar 0.3243 0.3784
Apr 0.3243 0.3784
May 0.3243 0.3784

Summer 0.5135 0.2162 Less
Jun 0.3784 0.1892 Less
Jul 0.4054 0.1892 Less

Aug 0.3784 0.1622 Less

Autumn 0.2703 0.4595
Sep 0.1892 0.3784
Oct 0.1892 0.3514
Nov 0.1892 0.3784

Winter 0.2162 0.6757 More
Dec 0.1622 0.5405 More
Jan 0.1622 0.5405 More
Feb 0.1622 0.5405 More

1955

Spring 0.3243 0.5405 More
Mar 0.3243 0.3784
Apr 0.3243 0.3784
May 0.3243 0.3784

Summer 0.5135 0.2162 Less
Jun 0.3784 0.1622 Less
Jul 0.4054 0.1892 Less

Aug 0.3784 0.1892 Less

Autumn 0.2703 0.4324
Sep 0.1892 0.3514
Oct 0.1892 0.3243
Nov 0.1892 0.3243

Winter 0.1892 0.6216 More
Dec 0.1622 0.5405 More
Jan 0.1622 0.5405 More
Feb 0.1622 0.5405 More

in the investigation of rainfall, temperature and sunshine data of U.K. Overall, we have

found the weather of winter has changed dramatically over the past fifty years. For the

other seasons, changes may vary with respect to locations.
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In this appendix, Appendix A.1 presents the omitted plots of the main text; Appendix

A.2 states some preliminary lemmas; Appendix A.3 includes the proofs of the theoretical

results. In what follows, O(1) always stands for a constant, and may be different at each

appearance.

A.1 Omitted Plots

In this section, we plot the trends1 using 1950 as the initial year for our analysis. Specifi-

cally, Figures A.1-A.12 plot the trends associated with each station for four seasons using

three datasets (i.e., rainfall, temperature and sunshine), and also present the averaged

trend2, which is presented at the bottom right in each figure.

1When conducting estimation, we use Winter as the reference group. After estimation, we sum up the

global trend with each seasonal trend to recover the real trend of each season.
2The average is taken across stations.
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A.2 Preliminary Lemmas

Lemma A.1. Suppose that A and A + E are n × n symmetric matrices and that Q =

(Q1, Q2), where Q1 is n × r and Q2 is n × (n − r), is an orthogonal matrix such that

span(Q1) is an invariant subspace for A. Decompose Q>AQ and Q>EQ as Q>AQ =

diag(D1, D2) and Q>EQ = {Eij}2×2. Let sep(D1, D2) = minλ1∈λ(D1), λ2∈λ(D2) |λ1 − λ2|. If

sep(D1, D2) > 0 and ‖E‖2 ≤ sep(D1, D2)/5, then there exists a (n− r)× r matrix P with

‖P‖2 ≤ 4‖E21‖2/sep(D1, D2), such that the columns of Q0
1 = (Q1 + Q2P )(Ir + P>P )−1/2

define an orthonormal basis for a subspace that is invariant for A+ E.

Lemma A.2. Suppose that {xi,Fi} is an Lr mixingale for r > 1 such that there exist

nonnegative constants {ci : i ≥ 1} and {ψm : m ≥ 0} satisfying that (a). ψm → 0 as

m → ∞, (b).
∑∞

k=1 ψk < ∞, (c). for all i ≥ 0 and m ≥ 0, ‖E[xi | Fi−m]‖r ≤ ciψm, and

‖xi − E[xi | Fi+m]‖r ≤ ciψm+1. Then there exists some K < ∞ such that for all n ≥ 1,

‖maxj≤n |
∑j

i=1 xi|‖r ≤ K
∑∞

k=−∞ (
∑n

i=1 c
2
i )

1/2
.

Lemma A.3. Under Assumptions ?? and ??, as (N, T )→ (∞,∞)

1. supτ∈[0,1]

∥∥∥ 1
N

∑N
i=1(β̂τ,i − m̃i(τ))

∥∥∥
2

= OP

(
h2 +

√
log(NT )
√
NTh

)
,

2. supτ∈[0,1] ‖β̂τ,i − m̃i(τ)−∆τ,i‖ = OP

(
h2 +

√
log(NT )
√
NTh

)
,

where ∆τ,i :=
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τKτEi.

A.3 Proofs

Proof of Lemma A.1:

The proof is given in Theorem 8.1.10 of Golub & Van Loan (2013), and is therefore

omitted. �

Proof of Lemma A.1:

The proof is given in Lemma 2 of Hansen (1991), and is therefore omitted. �

As the proof of Lemma ?? is quite lengthy, we divide it into two parts. First, we show

the first two results of Lemma ?? hold.

Proof of Lemma ??.1 and ??.2:

Observe that

Qτ (B,F) =
N∑
i=1

(DMi − Zβi)>KτMFKτ (DMi − Zβi)

14



+
N∑
i=1

γ>i F
>KτMFKτFγi +

N∑
i=1

E>i KτMFKτEi

+2
N∑
i=1

(DMi − Zβi)>KτMFKτFγi + 2
N∑
i=1

(DMi − Zβi)>KτMFKτEi

+2
N∑
i=1

γ>i F
>KτMFKτEi

:= A1 + A2 + A3 + 2A4 + 2A5 + 2A6, (A.1)

where the definitions of A1 to A6 are obvious. Below, we consider the terms on the right

hand side of (A.1) one by one.

Start with A1.

1

NT
A1 =

1

NT

N∑
i=1

(DMi − Zm̃i(τ))>KτMFKτ (DMi − Zm̃i(τ))

+
1

NT

N∑
i=1

(m̃i(τ)− βi)>Z>KτMFKτZ(m̃i(τ)− βi)

+
2

NT

N∑
i=1

(DMi − Zm̃i(τ))>KτMFKτZ(m̃i(τ)− βi)

:=
1

NT
A11 +

1

NT
A12 +

2

NT
A13,

where the definitions of A11, A12 and A13 are obvious.

For A11, we write

sup
τ∈[0,1]

1

NT
A11 ≤ sup

τ∈[0,1]

1

NT

N∑
i=1

(DMi − Zm̃i(τ))>K2
τ (DMi − Zm̃i(τ))

= sup
τ∈[0,1]

1

NTh

J∑
j=1

N∑
i=1

T∑
t=1

(mij(τt)− z>t m̃i(τ))2K

(
τt − τ
h

)

= sup
τ∈[0,1]

(1 + o(1))

Nh

J∑
j=1

N∑
i=1

∫ 1

0

(
mij(w)−mij(τ)−m(1)

i (τ)(w − τ)
)2

K

(
w − τ
h

)
dw

= sup
τ∈[0,1]

(1 + o(1))

N

J∑
j=1

N∑
i=1

∫ (1−τ)/h

−τ/h

(
mij(τ + wh)

−mij(τ)−m(1)
ij (τ)(τ + wh− τ)

)2

K(w)dw

= sup
τ∈[0,1]

(1 + o(1))

N

J∑
j=1

N∑
i=1

∫ (1−τ)/h

−τ/h

(
1

2
m

(2)
ij (τ̃)(wh)2

)2

K(w)dw · (1 + o(1))

= O(h4), (A.2)
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where τ̃ lies between τ and τ + wh, the second equality follows from the definition of

Riemann integral, and the fourth equality follows from the fact that mij(·)’s are twice

continuously differentiable on [0, 1] of Assumption ??.

For A13, write

sup
τ∈[0,1]

1

NT
|A13| = sup

τ∈[0,1]

1

NT

∣∣∣∣∣
N∑
i=1

(DMi − Zm̃i(τ))>KτMFKτZ(m̃i(τ)− βi)

∣∣∣∣∣
≤ sup

τ∈[0,1]

{
1

NT

N∑
i=1

(DMi − Zm̃i(τ))>K2
τ (DMi − Zm̃i(τ))

}1/2

·

{
1

NT

N∑
i=1

(m̃i(τ)− βi)>Z>K2
τZ(m̃i(τ)− βi)

}1/2

≤ OP (h2) · sup
τ∈[0,1]

{
1

N

N∑
i=1

‖m̃i(τ)− βi‖2 · 1

T
‖Z>K2

τZ‖

}1/2

= OP (h2), (A.3)

where the first inequality follows from Cauchy-Schwarz inequality and ‖MF‖2 = 1, the

second inequality follows from (A.2), and the last line follows from maxi ‖βi‖ <∞.

By (A.2) and (A.3), we can conclude that

sup
τ∈[0,1]

1

NT
|A1 − A12| = O(h2).

For A3, we write

A3 =
N∑
i=1

E>i KτMFKτEi =
N∑
i=1

E>i K2
τEi +

N∑
i=1

E>i KτPFKτEi

:= A31 + A32,

where the definitions of A31 and A32 are obvious. We skip the term A31 for now, as it will

be cancelled automatically in the following development. Thus, consider A32 and write

sup
τ∈[0,1]

1

NT
|A32| = sup

τ∈[0,1]

1

NT

N∑
i=1

E>i KτPFKτEi = sup
τ∈[0,1]

1

NT
Tr
{
KτPFKτE>E

}
≤ sup

τ∈[0,1]

O(1)
1

NTh
‖E‖2

2 = OP

(
1

(N ∧ T )h

)
,

where the inequality follows from |Tr{A}| ≤ rank(A)‖A‖2 and the facts that K(·) is uni-

formly bounded on [−1, 1] and ‖PF‖2 = 1, and the last equality follows from ‖E‖2 =

OP (
√
N ∨
√
T ) of Assumption ??.

For A5, we write
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A5 =
N∑
i=1

(DMi − Zβi)>KτMFKτEi

=
N∑
i=1

(DMi − Zm̃i(τ))>KτMFKτEi +
N∑
i=1

(m̃i(τ)− βi)>Z>KτMFKτEi

:= A51 + A52,

where the definitions of A51 and A52 are obvious.

Using a development similar to (A.3), we obtain

sup
τ∈[0,1]

1

NT
|A51| = OP (h2).

For A52, we can write

sup
τ∈[0,1]

1

NT

∣∣∣∣∣
N∑
i=1

(m̃i(τ)− βi)>Z>KτMFKτEi

∣∣∣∣∣
= sup

τ∈[0,1]

1

NT
|Tr{Z>KτMFKτE>(B− B0,τ )}|

≤ OP (1) sup
τ∈[0,1]

1√
NT
‖Z>Kτ‖2 · ‖Kτ‖2 · ‖E‖2

= OP

(
1√

(N ∧ T )h

)
, (A.4)

where B0,τ = (m̃1(τ), . . . , m̃N(τ))>, the first inequality follows from |Tr{A}| ≤ rank(A)‖A‖2

and the fact that maxi ‖βi‖ < ∞, and the last line follows from supτ∈[0,1]
1√
T
‖ZKτ‖2 =

OP (1), ‖Kr‖2 = O( 1√
h
), and ‖E‖2 = OP (

√
N ∨
√
T ) of Assumption ??.

By the results associated with A51 and A52, we can conclude that

sup
τ∈[0,1]

1

NT
|A5| = OP

(
h2 +

1√
(N ∧ T )h

)
.

Similar to (A.4), we can also conclude that

sup
τ∈[0,1]

1

NT
|A6| = OP

(
1√

(N ∧ T )h

)
.

Up to this point, we know that to investigate Qτ (B,F), we need only to focus on A12,

A2, A31 and A4 in what follows. We consider Qτ (B,F) − Qτ (B0,τ , KτF ), in which taking

the difference further eliminates A31, and B0,τ has been defined in (A.4).

1

NT
(Qτ (B,F)−Qτ (B0,τ , KτF ))

=
1

NT

N∑
i=1

(Z(m̃i(τ)− βi) + Fγi)
>KτMFKτ (Z(m̃i(τ)− βi) + Fγi)

17



+OP

(
h2 +

1√
Nh
∨ 1√

Th

)
=

1

NT

N∑
i=1

[
(m̃i(τ)− βi)>Aτ,F(m̃i(τ)− βi) + η>F BηF + (m∗i (τ)− βi)>C>i,τ,FηF

]
+OP

(
h2 +

1√
Nh
∨ 1√

Th

)
, (A.5)

where the second equality follows from Assumption ??.3.b, Aτ,F = Z>KτMFKτZ, B =

Σγ ⊗ IT , Ci,τ,F = γi ⊗ (MFKτZ), and ηF = vec(MFKτF ).

Note that if supτ∈[0,1]
1√
T
‖ηF̂τ‖ = oP (1), we can obtain that

oP (1) = sup
τ∈[0,1]

1

T
‖F>KτMF̂τKτF‖ = sup

τ∈[0,1]

∥∥∥∥ 1

T
F>K2

τF −
1

T
F>Kτ

1

T
F̂τ F̂>τ KτF

∥∥∥∥ ,
which further yields that

oP (1) = sup
τ∈[0,1]

∥∥∥∥∥2 Tr

(
I − F̂>τ PKτF F̂τ

T

)∥∥∥∥∥ = sup
τ∈[0,1]

‖2 Tr(Idf )− 2 Tr(PKτFPF̂τ )‖

= sup
τ∈[0,1]

Tr((PKτF − PF̂τ )
2) = sup

τ∈[0,1]

‖PKτF − PF̂τ‖
2.

Then the first result of this lemma is proved.

That said, we now show that if 1√
T
‖ηF̂τ‖ 6= oP (1) for some given τ , then

0 ≥ Qτ (B̂, F̂τ )−Qτ (B0,τ , KτF ) (A.6)

can not be fulfilled with probability one. This can be done by considering the cases: (i).

supτ∈[0,1]
1
N
‖B̂ − B0,τ‖2 = oP (1), and (ii). supτ∈[0,1]

1
N
‖B̂ − B0,τ‖2 6= oP (1) respectively as

follows.

Consider Case (i) first. In this case, it is easy to show that (A.5) can be simplified as

1

NT
(Qτ (B,F)−Qτ (B0,τ , KτF )) =

1

T
η>F BηF + oP (1),

which is contradictory to (A.6).

Consider Case (ii). Without loss of generality, we suppose that E[γi] ≡ γ below. Denote

γ∗i = γi − γ. Using (A.5), we have

1

NT
(Qτ (B,F)−Qτ (B0,τ , KτF ))

=
1

NT

N∑
i=1

(Z(m̃i(τ)− βi) + Fγ)>KτMFKτ (Z(m̃i(τ)− βi) + Fγ)

+
1

NT

N∑
i=1

γ∗>i F>KτMFKτFγ
∗
i +OP

(
h2 +

1√
(N ∧ T )h

)
,

18



where the equality follows from the fact that maxi ‖βi‖ < ∞. Then it is obvious that the

right hand side is contradictory to (A.6).

Thus, we conclude that supτ∈[0,1] ‖PKτF −PF̂τ‖ = oP (1), which in connection with (A.5)

yields that supτ∈[0,1]
1
N
‖B̂−B0,τ‖2 = oP (1). The proof of the first two results of Lemma ??

is now completed.

In fact, (A.5) further indicates that

sup
τ∈[0,1]

1√
N
‖B̂− B0,τ‖ = OP

(
h2 +

1√
(N ∧ T )h

)
, (A.7)

which will be used later. �

Proof of Lemma ??.3:

Write

F̂τ V̂τ =
1

NT

N∑
i=1

Kτ (DMi − Zβ̂i)(DMi − Zβ̂i)>Kτ F̂τ

+
1

NT

N∑
i=1

Kτ (DMi − Zβ̂i)γ>i F>Kτ F̂τ +
1

NT

N∑
i=1

KτFγi(DMi − Zβ̂i)>Kτ F̂τ

+
1

NT

N∑
i=1

Kτ (DMi − Zβ̂i)E>i Kτ F̂τ +
1

NT

N∑
i=1

KτEi(DMi − Zβ̂i)>Kτ F̂τ

+
1

NT

N∑
i=1

KτFγiγ
>
i F

>Kτ F̂τ +
1

NT

N∑
i=1

KτFγiE>i Kτ F̂τ

+
1

NT

N∑
i=1

KτEiγ>i F>Kτ F̂τ +
1

NT

N∑
i=1

KτEiE>i Kτ F̂τ

:= A1(τ) + · · ·+ A9(τ), (A.8)

where the definitions of A1(τ) to A9(τ) are obvious. Below, we investigate the terms on

the right hand side of (A.8) one by one.

For A1(τ), write

sup
τ∈[0,1]

1√
T
‖A1(τ)‖2 =

1√
T

∥∥∥∥∥ 1

NT

N∑
i=1

Kτ (DMi − Zβ̂i)(DMi − Zβ̂i)>Kτ F̂τ

∥∥∥∥∥
2

≤ O(1)
1

NT

N∑
i=1

(DMi − Zβ̂i)>K2
τ (DMi − Zβ̂i)

= OP

(
1

N
‖B̂− B0,τ‖2 + h4

)
, (A.9)

where the first inequality follows from the fact that 1
T
F̂>τ F̂τ = Idf , and the second equality

follows from (A.2).
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Using the Cauchy-Schwarz inequality and (A.9), it is easy to show that

sup
τ∈[0,1]

1√
T
‖A`(τ)‖2 = OP

(
1√
N
‖B̂− B0,τ‖+ h2

)
for ` = 2, 3, 4, 5.

For A7(τ), write

sup
τ∈[0,1]

1√
T
‖A7(τ)‖2 = sup

τ∈[0,1]

1√
T

∥∥∥∥∥ 1

NT

N∑
i=1

KτFγiE>i Kτ F̂τ

∥∥∥∥∥
2

≤ O(1) sup
τ∈[0,1]

1

NT
‖KτFΓ>EKτ‖2

≤ O sup
τ∈[0,1]

1

NT
‖KτF‖2‖Γ‖2‖Kτ‖2‖E‖2

≤ OP (1) sup
τ∈[0,1]

1

NT

√
T
√
N

1√
h

(
√
N ∨
√
T )

≤ OP

(
1√

(N ∧ T )h

)
,

where the first inequality follows from the fact that 1
T
F̂>τ F̂τ = Idf , the third inequality

follows from supτ∈[0,1]
1√
T
‖KτF‖2 = OP (1), ‖Γ‖2 = OP (

√
N) and ‖E‖2 = OP (

√
N ∨

√
T )

of Assumption ??. Similarly, we obtain that

sup
τ∈[0,1]

1√
T
‖A8(τ)‖2 = OP

(
1√

(N ∧ T )h

)
,

sup
τ∈[0,1]

1√
T
‖A9(τ)‖2 ≤ O(1)

1

NTh
‖E‖2

2 = OP

(
1

(N ∧ T )h

)
.

Collecting the above results, we immediately obtain that

sup
τ∈[0,1]

∥∥∥∥∥V̂τ − F̂>τ KτF

T
· Γ>Γ

N
· FKτ F̂τ

T

∥∥∥∥∥
2

= OP

(
1√
N
‖B̂− B0,τ‖+ h2 +

1√
(N ∧ T )h

)
. (A.10)

Note that by Assumption ??,

1

N
Γ>Γ = Σγ + oP (1),

and

sup
τ∈[0,1]

1

T
‖F̂>τ KτF‖2 ≤ sup

τ∈[0,1]

1√
T
‖F̂τ‖ ·

1√
T
‖KτF‖2 = OP (1),
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which in connection with (A.10) immediately yields that supτ∈[0,1] ‖V̂τ‖ = OP (1).

Note further that

λmin

(
F̂>τ KτF

T
· Γ>Γ

N
· FKτ F̂τ

T

)
� λmin

(
F̂>τ KτF

T
· FKτ F̂τ

T

)

� λmin

(
FKτ F̂τ
T

· F̂
>
τ KτF

T

)

� λmin

(
F>K2

τF

T

)
� λmin(Σf ).

Similarly, we have

λmax

(
F̂>τ KτF

T
· Γ>Γ

N
· FKτ F̂τ

T

)
� λmax

(
F>K2

τF

T

)
� λmax(Σf ).

Thus, using (A.10), we conclude that supτ∈[0,1] ‖V̂ −1
τ ‖2 = OP (1). The proof of Lemma ??.3

is now complete. �

Proof of Lemma A.3:

(1). We now take a look at the term 1
N

∑N
i=1(β̂τ,i − m̃i(τ)), which is an important part

when analysing β̂τ,i:

β̂τ,i =
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τKτYi

= m̃i(τ) +
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τKτ (DMi − Zm̃i(τ))

+
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τ (KτF − F̂τΠ−1
τ )γi

+
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τKτEi
:= m̃i(τ) +Bi,1 +Bi,2 +Bi,3, (A.11)

where the definitions of Bi,1, Bi,2 and Bi,3 are obvious, Πτ = GNGτ V̂
−1
τ , GN = Γ>Γ

N
, and

Gτ = F>Kτ F̂τ
T

. Taking average across i, we obtain

1

N

N∑
i=1

(β̂τ,i − m̃i(τ)) =
1

N

N∑
i=1

Bi,1 +
1

N

N∑
i=1

Bi,2 +
1

N

N∑
i=1

Bi,3. (A.12)

Similarly to (A.2), it is easy to know that

sup
τ∈[0,1]

∥∥∥∥∥ 1

N

N∑
i=1

Bi,1

∥∥∥∥∥ = O(h2).

Below, we focus on 1
N

∑N
i=1Bi,2. Note that

1

N

N∑
i=1

Bi,2 = − 1

N

N∑
i=1

(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τ (F̂τΠ
−1
τ −KτF )γi
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= −
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τA1(τ)Ξτγ

− · · · −
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τA5(τ)Ξτγ

−
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τA7(τ)Ξτγ

− · · · −
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τA9(τ)Ξτγ

:= −B21 · · · −B28, (A.13)

where γ = 1
N

∑N
i=1 γi, Ξτ = G−1

τ G−1
N , Aj(τ)’s have been defined in the proof of Lemma

??.3, and the definitions of B2j’s are obvious. In addition, by the development of Lemma

??.3, it is easy to know that

sup
τ∈[0,1]

(‖Πτ‖2 + ‖Π−1
τ ‖2) = OP (1).

We now proceed and examine the terms on the right hand side of (A.13). In view of

the development of B22 below, it is easy to know that B21 is negligible. Thus, we start with

B22, and write

1

T
Z>KτMF̂τA2(τ)Π−1

τ γ =
1

NT
Z>KτMF̂τ

N∑
`=1

Kτ (DM` − Zm̃`(τ))γ>` G
−1
N γ

+
1

NT
Z>KτMF̂τ

N∑
`=1

KτZ(m̃`(τ)− β̂`)γ>` G−1
N γ

:= B221 +B222,

where the first equality follows from the definition of Π−1
τ . Note that

sup
τ∈[0,1]

‖B221‖2 ≤ OP (1) sup
τ∈[0,1]

∥∥∥∥∥ 1

NT

N∑
`=1

Z>KτMF̂τKτ (DM` − Zm̃`(τ))γ>`

∥∥∥∥∥
2

= OP (h2),

where the first inequality follows from G−1
N = OP (1) and γ = OP (1), and the last step

follows from the Cauchy-Schwarz inequality and the development similar to (A.3).

The term B222 can be rearranged as follows.

−
(
Z>KτMF̂τKτZ

)−1
TB222

= −
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τKτZ ·
1

N

N∑
`=1

(m̃`(τ)− β̂`)γ>` G−1
N γ

=
1

N

N∑
`=1

(β̂` − m̃`(τ))γ>` G
−1
N γ. (A.14)

For notational simplicity, we suppose that E[γ`] = γ for all `, so moving (A.14) to the left

hand side of (A.12) yields that
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1

N

N∑
`=1

(β̂` − m̃`(τ))− 1

N

N∑
`=1

(β̂` − m̃`(τ))γ>` G
−1
N γ

=
1

N

N∑
`=1

(β̂` − m̃`(τ))(1− γ>` G−1
N γ)

=
1

N

N∑
`=1

(β̂` − m̃`(τ))(1− γ>G−1
N γ) · (1 + oP (1)),

where the second equality follows in an obvious manner.

For B23 write,

sup
τ∈[0,1]

‖B23‖2 = sup
τ∈[0,1]

‖
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τA3(τ)Ξτγ‖2

= sup
τ∈[0,1]

∥∥∥∥∥(Z>KτMF̂τKτZ
)−1 Z>KτMF̂τ (KτF − F̂τΠ−1

τ )
1

NT

N∑
i=1

γi(DMi − Zβ̂i)>Kτ F̂τΞτγ

∥∥∥∥∥
2

= oP

(
1√
T
‖MF̂τ (KτF − F̂τΠ−1

τ )‖
)
,

where the last line follows from Lemma ??.2, and the development similar to (A.3).

For B24, write

‖B24‖2 = ‖
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τA4(τ)Ξτγ‖2

=

∥∥∥∥∥(Z>KτMF̂τKτZ
)−1 Z>KτMF̂τ

1

NT

N∑
i=1

Kτ (DMi − Zβ̂i)E>i Kτ F̂τΞτγ

∥∥∥∥∥
2

≤

∥∥∥∥∥(Z>KτMF̂τKτZ
)−1 Z>KτMF̂τ

1

NT

N∑
i=1

Kτ (DMi − Zβ̂i)E>i K2
τFΠτΞτγ

∥∥∥∥∥
2

+

∥∥∥∥∥(Z>KτMF̂τKτZ
)−1 Z>KτMF̂τ

1

NT

N∑
i=1

Kτ (DMi − Zβ̂i)E>i Kτ (F̂τ −KτFΠτ )Ξτγ

∥∥∥∥∥
2

:= B241 +B242,

where the definitions of B241 and B242 are obvious. For B241, we can write

sup
τ∈[0,1]

∥∥∥∥∥ 1

T
Z>KτMF̂τ

1

NT

N∑
i=1

Kτ (DMi − Zβ̂i)E>i K2
τFΠτΞτγ

∥∥∥∥∥
2

≤ OP (1) sup
τ∈[0,1]

∥∥∥∥∥ 1

T
Z>KτMF̂τ

1

NT

N∑
i=1

Kτ (DMi − Zm̃i(τ))E>i K2
τF

∥∥∥∥∥
2

+OP (1) sup
τ∈[0,1]

∥∥∥∥∥ 1

T
Z>KτMF̂τKτZ

1

NT

N∑
i=1

(m̃i(τ)− β̂i)E>i K2
τF

∥∥∥∥∥
2

≤ oP (h2) +OP (1) sup
τ∈[0,1]

1

NT
‖(B̂− B0,τ )

>EK2
τF‖2
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≤ oP (h2) +OP (1) sup
τ∈[0,1]

1√
N
‖B̂− B0,τ‖

√
N ∨
√
T√

NTh

= oP
(
h2
)

+OP

(
1

(N ∧ T )h

)
,

where the term oP (h2) follows from a development similar to (A.3) and Assumption ??.1,

the third inequality follows from ‖E‖2 = OP (
√
N ∨
√
T ) and supτ∈[0,1]

1√
T
‖KτF‖2 = OP (1)

of Assumption ??, and the last equality follows from (A.7). Thus, we conclude that

sup
τ∈[0,1]

B241 = oP
(
h2
)

+OP

(
1

(N ∧ T )h

)
.

Similarly, we can show that supτ∈[0,1]B242 = oP (h2) in view of the fact that 1√
T
‖F̂τ −

KτFΠτ‖2 = oP (1). Thus,

sup
τ∈[0,1]

‖B24‖2 = oP
(
h2
)

+OP

(
1

(N ∧ T )h

)
.

Following the development similar to B24 and B23 respectively, we can show that

sup
τ∈[0,1]

‖B25‖2 = oP
(
h2
)

+OP

(
1

(N ∧ T )h

)
,

sup
τ∈[0,1]

‖B26‖2 = oP

(
1√
T
‖MF̂τ (KτF − F̂τΠ−1

τ )‖
)
.

We will consider B27 later together with 1
N

∑N
i=1Bi,3. Thus, we now move on to B28.

sup
τ∈[0,1]

1

T
‖Z>KτMF̂τA9(τ)Ξτγ‖2

≤ OP (1) sup
τ∈[0,1]

1

T

∥∥∥∥∥Z>KτMF̂τ
1

NT

N∑
i=1

KτEiE>i Kτ F̂τ

∥∥∥∥∥
2

≤ OP (1)
1

T
√
h
· 1

N
‖E‖2

2 · sup
τ∈[0,1]

√
h

T
λmax

(
Z>KτMF̂τK

2
τMF̂τKτZ

)√ 1

T
λmax(F̂>τ K2

τ F̂τ )

≤ OP (1)
1

Th
· 1

N
‖E‖2

2 · sup
τ∈[0,1]

√
1

T
λmax(Z>K2

τZ)

√
1

T
λmax(F̂>τ F̂τ )

= OP

(
1

(N ∧ T )h

)
, (A.15)

where the last line follows from ‖E‖2 = OP (
√
N ∨
√
T ) of Assumption ??. Thus, we have

sup
τ∈[0,1]

‖B28‖2 = OP

(
1

(N ∧ T )h

)
.

Collecting the above results, we obtain
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1

N

N∑
`=1

(β̂` − m̃`(τ))(1− γ>G−1
N γ)

=
1

N

N∑
i=1

Bi,3 +OP

(
h2 +

1

(N ∧ T )h

)
−B27,

where

B27 =
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τ
1

NT

N∑
i=1

KτEiγ>i F>Kτ F̂τΞτγ

=
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τ
1

N

N∑
i=1

KτEiγ>i G−1
N γ.

We now invoke Assumption ??.2 to obtain the following result

sup
τ∈[0,1]

∥∥∥∥∥ 1

N

N∑
`=1

(β̂` − m̃`(τ))

∥∥∥∥∥
2

= OP

(
h2 +

√
log(NT )√
NTh

)
.

The proof of the first result is now completed.

(2). Consider β̂i, and recall that we have decomposed it in (A.11). Similar to (A.3), we

have

sup
τ∈[0,1]

‖Bi,1‖ = O(h2).

We focus on Bi,2 below, and recall that Ξτ and Πτ have been defined in the proof of

this lemma.

Bi,2 = −
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τ (F̂τΠ
−1
τ −KτF )γi

= −
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τ (A1(τ) + · · ·+ A5(τ) + A7(τ) + · · ·+ A9(τ))Ξτγi

:= −Bi,21 − · · · −Bi,28.

In view of the development of Bi,22 below, it is easy to know that Bi,21 is negligible.

Thus, we start our development with Bi,22, and write

1

T
Z>KτMF̂τA2(τ)Ξτγi

=
1

NT 2
Z>KτMF̂τ

N∑
`=1

Kτ (DM` − Zm̃`(τ))(Fγ`)
>Kτ F̂τΞτγi

+
1

NT 2
Z>KτMF̂τ

N∑
`=1

KτZ(m̃`(τ)− β̂`)(Fγ`)>Kτ F̂τΞτγi

=
1

NT 2
Z>KτMF̂τ

N∑
`=1

Kτ (DM` − Zm̃`(τ))γ>` G
−1
N γi
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+
1

NT 2
Z>KτMF̂τ

N∑
`=1

KτZ(m̃`(τ)− β̂`)γ>` G−1
N γi

:= Bi,221 +Bi,222.

Note that

‖Bi,222‖ ≤

∥∥∥∥∥ 1

NT 2
Z>KτMF̂τ

N∑
`=1

KτZ(m̃`(τ)− β̂`)(γ` − E[γ`])
>G−1

N γi

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

NT 2
Z>KτMF̂τ

N∑
`=1

KτZ(m̃`(τ)− β̂`)E[γ`]
>G−1

N γi

∥∥∥∥∥
2

= OP

(
h2 +

√
log(NT )√
NTh

)
,

where the equality follows from the first result of this lemma.

For Bi,23-Bi,26, using procedures similar to those given for B23-B26 in the proof of the

first result of this lemma, we know that they are negligible. Also, following the proof of

(A.15), we know that

sup
τ∈[0,1]

‖Bi,28‖2 = OP

(
1

Th
∨ 1

Nh

)
.

Collecting the above results, we obtain that

sup
τ∈[0,1]

‖β̂i − m̃i(τ)−Bi,3‖ = OP

(
h2 +

√
log(NT )√
NTh

)
,

which completes the proof. �

Proof of Theorem ??:

By the second result of Lemma A.3, the result follows from Assumption ??.3 and

Assumption ??.3. �

Proof of Theorem ??:

Write

β̂∗τ,i = β̂τ,i +
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τKτ (Ûi ◦ ξ)

= β̂τ,i +
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τKτ (Ei ◦ ξ)

+
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τKτ [D(Mi − M̂i) ◦ ξ]

+
(
Z>KτMF̂τKτZ

)−1 Z>KτMF̂τKτ [(Fγi) ◦ ξ]

:= β̂τ,i +B1 +B2 +B3, (A.16)
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where M̂i is the estimated version of Mi, and the definitions of B1, B2 and B3 are obvious.

Next, we focus on the terms on the right hand side of (A.16). We start with B1, and

write

E∗

(√Th
T

Z>KτMF̂τKτ (Ei ◦ ξ)

)(√
Th

T
Z>KτMF̂τKτ (Ei ◦ ξ)

)>
=
h

T
Z>KτMF̂τKτE

∗[(Ei ◦ ξ)(Ei ◦ ξ)>]KτMF̂τKτZ

=
h

T
Z>KτMF̂τKτ (EiE>i )KτMF̂τKτZ

+
h

T
Z>KτMF̂τKτ [(EiE>i ) ◦ (E[ξξ>]− 1T1>T )]KτMF̂τKτZ,

where the first term of the right hand is exactly the leading term when deriving the asymp-

totic distribution in Theorem ??. Below, we show∣∣∣∣ hT Z>KτMF̂τKτ [(EiE>i ) ◦ (E[ξξ>]− 1T1>T )]KτMF̂τKτZ
∣∣∣∣ = oP (1), (A.17)

so we can conclude that

√
ThB1 ·

√
ThB>1 →P Σ−1

1,τΣ2i,τΣ
−1
1,τ (A.18)

in connection with the facts that E[ft] = 0, and {ft} and {εit} are independent.

First, we write

h

T
Z>KτMF̂τKτ [(EiE>i ) ◦ (E[ξξ>]− 1T1>T )]KτMF̂τKτZ

=
h

T
Z>K2

τ [(EiE>i ) ◦ (E[ξξ>]− 1T1>T )]K2
τZ + oP (1),

in which the equality follows from the facts that E[ft] = 0, and {ft} and {εit} are indepen-

dent. Also, note that

E

∣∣∣∣ hT Z>K2
τ [(EiE>i ) ◦ (E[ξξ>]− 1T1>T )]K2

τZ
∣∣∣∣

= E

∣∣∣∣∣ 1

Th

dT∑
t=1

T−t∑
s=1

ztzs+tKh(τs − τ)Kh(τs+t − τ)εisεi,s+t

[
a

(
t

`

)
− 1

]∣∣∣∣∣
+E

∣∣∣∣∣ 1

Th

T∑
t=dT+1

T−t∑
s=1

ztzs+tKh(τs − τ)Kh(τs+t − τ)εisεi,s+t

[
a

(
t

`

)
− 1

]∣∣∣∣∣
≤ O(1)

dT∑
t=1

∣∣∣∣a( t`
)
− a(0)

∣∣∣∣+O(1) max
i≥1

T∑
t=dT+1

E|εi0εi,t|

≤ O(1)
d2
T

`
+O(1) max

i≥1

T∑
t=dT+1

E|εi0εi,t| = o(1),
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where the inequality follows from a(w) being Lipschitz continuous on [−1, 1], and the last

equality holds by letting d2
T/`→ 0 and dT →∞. Therefore, we have proved (A.17), which

further yields (A.18).

Similarly, we can show that

E∗

(√Th
T

Z>KτMF̂τKτ (Fγi ◦ ξ)

)(√
Th

T
Z>KτMF̂τKτ (Fγi ◦ ξ)

)>
=
h

T
Z>KτMF̂τKτ (Fγiγ

>
i F

>)KτMF̂τKτZ + oP (1) = oP (1).

Now, we consider B2, and write

E∗
∥∥∥∥ 1√

Th
Z>KτMF̂τKτ [D(Mi − M̂i) ◦ ξ]

∥∥∥∥2

≤ max
bT (τ−h)c≤t≤bT (τ+h)c

‖∆M,it‖2E∗
∥∥∥∥ 1√

Th
Z>KτMF̂τKτξ

∥∥∥∥2

= OP

(
(h4 +

1

Th
) · `
)

= oP (1),

where ∆M,it stands for the tth row of D(Mi − M̂i), and the first equality follows from

Theorem ?? and the construction of ξ, and the last lines follows from `√
Th
→ 0 and

Th5 → 0.

To conclude the result, all we need is to show that

B∗1 ≡
1√
Th

Z>K2
τ (Ei ◦ ξ)→D∗ N(0,Σ2i,τ ),

which can be done by verifying the Lindeberg condition using the large-block and the

small-block technique. Using the Cramér-Wold device, let η be a 2(J + 1) × 1 vector and

‖η‖ = 1. Thus, for ∀i, we consider

B̃∗1 ≡ η>B∗1 =

√
h√
T
η>Z>K2

τ (Ei ◦ ξ). (A.19)

The goal is to show that

B̃∗1 →D∗ N(0, η>Σ2i,τη), (A.20)

which in connection with Assumption ??.3 immediately yields the result.

We now rewrite B̃∗1 as follows.

B̃∗1 =
K∑
j=1

ν∗j +
K∑
j=1

$∗j , (A.21)

where
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ν∗j =

Bj+r1∑
t=Bj+1

√
h√
T
zη,tεitξtKh(τt − τ) and $∗j =

Bj+r1+r2∑
t=Bj+r1+1

√
h√
T
zη,tεitξtKh(τt − τ).

where zη,t ≡ η>zt. Moreover, Bj = (j − 1)(r1 + r2), and without loss of generality we

suppose that K = T/(r1 + r2) is an integer for simplicity. Otherwise, one needs to include

the remaining terms in (A.21) which are negligible for an obvious reason. In addition, we

let

(r1, r2)→ (∞,∞),

(
r2

r1

,
r1

Th

)
→ (0, 0), r1 ≥ `, (A.22)

so the blocks $∗j ’s are mutually independent by the construction of ξt’s. Note that by
r2
r1
→ 0 of (A.22),

Kr2

T
→ 0 and

Kr1

T
→ 1. (A.23)

We now write

EE∗

( K∑
j=1

$∗j

)2
 =

K∑
j=1

EE∗[($∗j )
2]

≤ h

T

r2−1∑
s=−r2+1

a
(s
`

)
· |zη,tzη,t+s| · E|εitεi,t+s|

K∑
j=1

Bj+r1+r2−|s|∑
t=Bj+r1+1

Kh(τt − τ)Kh(τt+|s| − τ)

≤ O(1)
1

Th
max

0≤s≤r2−1

K∑
j=1

Bj+r1+r2−|s|∑
t=Bj+r1+1

K

(
τt − τ
h

)
K

(
τt+|s| − τ

h

)
≤ O(1)

Kr2

T
= o(1),

where the second inequality follows from a(·) being bounded on [−1, 1], and Assumption

??.1. Therefore, the term
∑K

j=1 $
∗
j of (A.21) is negligible.

Next, we employ the Lindeberg CLT to establish the asymptotic normality of
∑K

j=1 ν
∗
j .

Recall that we have shown that (B̃∗1)2 = η>Σ2i,τη + oP (1) and
∑K

j=1$
∗
j of (A.21) is negli-

gible, so it is easy to know that

E∗(
K∑
j=1

ν∗j )2 = η>Σ2i,τη + oP (1).

Similar arguments can be seen in (A.8)-(A.9) of Chen et al. (2012). That said, we just

need to verify that for ∀ε > 0

K∑
j=1

E∗
[
(ν∗j )2 · I

(
|ν∗j | > ε

)]
= oP (1). (A.24)
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Before proceeding further, we point out that the series
√
h√
T
zη,tεitξtKh(τt − τ) is in

fact a mixingale sequence mentioned in Definition 1 of Hansen (1991), where the term

|
√
h√
T
zη,tεitKh(τt − τ)| is equivalent to ci in the notation of Hansen (1991). This is not hard

to justify given {ξt} is an `-dependent series. When m in the notation of Hansen (1991)

is greater than `, all the requirements of Definition 1 of Hansen (1991) are fulfilled. Thus,

it allows us to invoke the asymptotic properties associated to the mixingale sequence (i.e.,

Lemma A.2 of this paper) in the following development.

Write

K∑
j=1

E∗[(ν∗j )2 · I(|ν∗j | > ε)]

≤
K∑
j=1

{E∗|(ν∗j )2|δ/2}2/δ · {E∗[I(|ν∗j | > ε)]}(δ−2)/δ ≤
K∑
j=1

{E∗|(ν∗j )2|δ/2}2/δ

{
E∗|ν∗j |δ

εδ

}(δ−2)/δ

= εδ−2

K∑
j=1

E∗|ν∗j |δ = εδ−2

K∑
j=1

E∗

 Bj+r1∑
t=Bj+1

√
h√
T
zη,tεitξtKh(τt − τ)

δ



1
δ
·δ

≤ O(1)εδ−2

K∑
j=1


Bj+r1∑
t=Bj+1

(√
h√
T
zη,tεitKh(τt − τ)

)2


1
2
·δ

≤ O(1)εδ−2

K∑
j=1

r
δ/2−1
1

Bj+r1∑
t=Bj+1

(√
h√
T
zη,tεitKh(τt − τ)

)δ

≤ O(1)εδ−2 r
δ/2−1
1

(Th)δ/2−1
· 1

Th

T∑
t=1

(
zη,tεitK

(
τt − τ
h

))δ
= O(1)

r
δ/2−1
1

(Th)δ/2−1
= o(1), (A.25)

where the first inequality follows from the Hölder inequality, the second inequality follows

from the Chebyshev’s inequality, the third inequality follows from Lemma 2 of Hansen

(1991), and the last equality follows from r1/(Th)→ 0 and δ > 2. Thus, we can conclude

the validity of (A.24).

Based on the above development, we are readily to conclude that (A.20) holds. The

proof is now completed. �

Proof of Corollary ??:

The proof follows from a procedure very much similar to (A.7), we thus omit the details.

�

Proof of Theorem ??:

Similar to (A.10), we can show that
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sup
τ∈[0,1]

∥∥∥∥∥Ṽτ − F̃>τ KτF

T
· Γ>Γ

N
· FKτ F̃τ

T

∥∥∥∥∥
2

= OP

(
1√
N
‖B̃− B0,τ‖+ h2 +

1√
(N ∧ T )h

)

= OP

(
h2 +

1√
(N ∧ T )h

)
,

where Ṽτ = diag{λτ,1, . . . , λτ,dmax}, and the second equality follows from Corollary ??.

To proceed further, we define a few notations. Decompose F̃τ as F̃τ = (F̃τ,1, . . . , F̃τ,dmax).

Let Π̃` be the `th column of Γ>Γ
N
· FKτ F̃τ

T
· Ṽ −1

τ,1:df
, where Ṽτ,1:df is the leading df ×df principal

sub-matrix of Ṽτ . Further we let

Στ =
1

NT
KτFΓ>ΓF>Kτ .

In what follows, we consider F̃τ,` for ` ∈ [df ] first. Following the proof similar to Lemma

??.3, we obtain that for ` ∈ [df ]

sup
τ∈[0,1]

1√
T
‖F̃τ,` −KτF Π̃τ,`‖ = OP

(
h2 +

1√
(N ∧ T )h

)
.

For ` ∈ [df ], we are now ready to write

sup
τ∈[0,1]

∣∣λτ,` − λ∗τ,`∣∣ = sup
τ∈[0,1]

∣∣∣∣ 1

T
F̃>τ,`Kτ Σ̂(B̃τ )Kτ F̃τ,` −

1

T
(KτF Π̃τ,`)

>ΣτKτF Π̃τ,`

∣∣∣∣
= sup

τ∈[0,1]

1

T
|(F̃τ,` −KτF Π̃τ,` +KτF Π̃τ,`)

>(Kτ Σ̂(B̃τ )Kτ − Στ + Στ )(F̃τ,` −KτF Π̃τ,` +KτF Π̃τ,`)

−(KτF Π̃τ,`)
>ΣτKτF Π̃τ,`|

= sup
τ∈[0,1]

1

T
|(F̃τ,` −KτF Π̃τ,`)

>(Kτ Σ̂(B̃τ )Kτ − Στ )(F̃τ,` −KτF Π̃τ,`)|

+ sup
τ∈[0,1]

2

T
|(F̃τ,` −KτF Π̃τ,`)

>(Kτ Σ̂(B̃τ )Kτ − Στ )KτF Π̃τ,`|

+ sup
τ∈[0,1]

1

T
|(F̃τ,` −KτF Π̃τ,`)

>Στ (F̃τ,` −KτF Π̃τ,`)|

+ sup
τ∈[0,1]

2

T
|(F̃τ,` −KτF Π̃τ,`)

>ΣτKτF Π̃τ,`|

+ sup
τ∈[0,1]

1

T
|(KτF Π̃τ,`)

>(Kτ Σ̂(B̃τ )Kτ − Στ )KτF Π̃τ,`|

:= A1 + 2A2 + A3 + 2A4 + A5.

Note that |A1| = oP (|A5|), |A2| = oP (|A5|), and |A3| = oP (|A4|). Thus, we focus on

the leading terms A4 and A5 below. Simple algebra shows that

|A4| ≤ sup
τ∈[0,1]

1√
T
‖F̃τ,` −KτF Π̃τ,`‖2 ·

1√
T
‖ΣτKτF Π̃τ,`‖2 = OP

(
h2 +

1√
(N ∧ T )h

)
,
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|A5| = OP (1) sup
τ∈[0,1]

‖Kτ Σ̂(B̃τ )Kτ − Στ‖ = OP

(
h2 +

1√
(N ∧ T )h

)
,

where the development of A4 and A5 follow from (A.10).

Next, we consider λτ,` for ` = df + 1, . . . , T . Let F ∗ be a T × (T − df ) matrix such that

1

T
(F ∗, KτFD)>(F ∗, KτFD) =

(
IT−r 0

0 Ir

)
,

where D is an df × df rotation matrix such that 1
T
D>F>K2

τFD = Idf . Additionally, let

Kτ Σ̂(B̃τ )Kτ = Στ + (Kτ Σ̂(B̃τ )Kτ − Στ ) := Στ + ∆Στ .

Having introduced the above variables, we are now ready to proceed further. Note that

F ∗, KτFD, Στ and ∆Στ are corresponding to Q1, Q2, A and E of Lemma A.1. Thus, using

Lemma A.1, we obtain that

F̃ ∗ :=
1√
T

(F ∗ +KτFDP ) (IT−df + P>P )−1/2,

which is corresponding Q0
1 of Lemma A.1. Moreover,

sup
τ∈[0,1]

‖P‖2 ≤ sup
τ∈[0,1]

4

sep(0, 1
T
F>KτΣτKτF )

· ‖∆Στ‖ ≤ OP (1) sup
τ∈[0,1]

‖∆Στ‖

= OP

(
h2 +

1√
(N ∧ T )h

)
.

Since F̃ ∗ is an orthonormal basis for a subspace that is invariant for Στ + ∆Στ =

Kτ Σ̂(B̃τ )Kτ , studying λ` for ` = df + 1, . . . , T is equivalent to investigating F̃ ∗. Then we

write

sup
τ∈[0,1]

∥∥∥∥F̃ ∗ − 1√
T
F ∗
∥∥∥∥

2

= sup
τ∈[0,1]

1√
T
‖[F ∗ +KτFDP − F ∗(IT−df + P>P )1/2](IT−df + P>P )−1/2‖2

≤ sup
τ∈[0,1]

1√
T
‖F ∗(IT−df − (IT−df + P>P )1/2)(IT−df + P>P )−1/2‖2

+ sup
τ∈[0,1]

1√
T
‖KτFDP (IT−df + P>P )−1/2‖2

≤ sup
τ∈[0,1]

‖(IT−df − (IT−df + P>P )1/2)(IT−df + P>P )−1/2‖2

+ sup
τ∈[0,1]

‖P (IT−df + P>P )−1/2‖2

≤ sup
δ∈[0,1]

‖IT−df − (IT−df + P>P )1/2‖2 + sup
τ∈[0,1]

‖P‖2 ≤ 2 sup
τ∈[0,1]

‖P‖2
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= OP

(
h2 +

1√
Nh
∨ 1√

Th

)
, (A.26)

where the third and fourth inequalities follow from Exercise 1 of page 231 of Magnus &

Neudecker (2007).

Thus for ` = 1, . . . , T − df , we write

sup
τ∈[0,1]

|λτ,df+`| = sup
δ∈[0,1]

F̃ ∗>` Kτ Σ̂(B̃τ )Kτ F̃
∗
`

= sup
τ∈[0,1]

(
F̃ ∗ − 1√

T
F ∗ +

1√
T
F ∗
)>

(Kτ Σ̂(B̃τ )Kτ − Στ + Στ )

(
F̃ ∗ − 1√

T
F ∗ +

1√
T
F ∗
)

= sup
τ∈[0,1]

∣∣∣∣∣
(
F̃ ∗ − 1√

T
F ∗
)>

(Kτ Σ̂(B̃τ )Kτ − Στ )

(
F̃ ∗ − 1√

T
F ∗
)∣∣∣∣∣

+2 sup
τ∈[0,1]

∣∣∣∣∣
(
F̃ ∗ − 1√

T
F ∗
)>

(Kτ Σ̂(B̃τ )Kτ − Στ ) ·
1√
T
F ∗

∣∣∣∣∣
+ sup

δ∈[0,1]

(
F̃ ∗ − 1√

T
F ∗
)>

Στ

(
F̃ ∗ − 1√

T
F ∗
)

= OP

(
h4 +

1√
(N ∧ T )h

)
, (A.27)

where F̃ ∗` and F ∗` stand for the `th columns of F̃ ∗ and F ∗ respectively, and the last equality

follows from (A.26) and the development of (A.10).

Up to this point, we can conclude that

sup
τ∈[0,1]

λτ,1
λτ,0
� 1,

sup
τ∈[0,1]

λτ,`+1

λτ,`
� 1 for ` = 1, . . . , df − 1,

sup
δ∈[0,1]

λτ,df+1

λτ,df
= OP

(
h4 +

1

(N ∧ T )h

)
,

which in connection with (A.27) and the construction of εNT immediately yields the result.

The proof is now completed. �
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