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Abstract

In this paper, we study a class of high dimensional moment restriction panel data models with in-

teractive effects, where factors are unobserved and factor loadings are nonparametrically unknown

smooth functions of individual characteristics variables. We allow the dimension of the parame-

ter vector and the number of moment conditions to diverge with sample size. This is a very general

framework and includes many existing linear and nonlinear panel data models as special cases. In or-

der to estimate the unknown parameters, factors and factor loadings, we propose a sieve-based gen-

eralized method of moments estimation method and we show that under a set of simple identification

conditions, all those unknown quantities can be consistently estimated. Further we establish asymp-

totic distributions of the proposed estimators. In addition, we propose tests for over-identification,

specification of factor loading functions, and establish their large sample properties. Moreover, a

number of simulation studies are conducted to examine the performance of the proposed estimators

and test statistics in finite samples. An empirical example on stock return prediction is studied to

demonstrate the usefulness of the proposed framework and corresponding estimation methods and

testing procedures.
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1 Introduction

In this paper, we consider a class of high dimensional moment restriction panel data models with

interactive effects. Here, the high dimension relates to the dimension of regressors and the number

of restrictions; the factors are unobservable and the factor loadings are nonparametrically unknown

functions of individual characteristics. Such a setting is very general and includes many existing models

as special cases, for example, the linear panel data model with interactive effects in Bai (2009), Bai & Li

(2014), Moon & Weidner (2015), Lu & Su (2016), Bai & Liao (2017), Moon & Weidner (2017), nonlinear

panel data models with additive individual and time effects in Fernández-Val & Weidner (2016), dynamic

panel Logit models with fixed effects in Honoré & Weidner (2020), Kitazawa (2021) and nonlinear

panel data models with interactive effects in Chen et al. (2021). We propose the generalized method

of moments (GMM) coupled with a sieve approximation to estimate all unknown quantities in a large

dimensional moment vector.

Suppose that

E[m(Wi t , X ′i tβ ,λ(Vi)
′ ft)] = 0 (1)

for i = 1, · · · , N , t = 1, · · · , T , where m(·) is a q× 1 vector of known functions, Wi t contains the depen-

dent variable and possible instrumental variables, X i t is a p × 1 vector of regressors, β = (β1, · · · ,βp)′

is a p × 1 vector of unknown slope coefficients, ft is a r × 1 vector of unknown factors, and the fac-

tor loadings λ(Vi) = (λ1(Vi1), · · · ,λr(Vir))′ are unknown functions of individual characteristic variables

Vi = (Vi1, · · · , Vir)′, which are time invariant. The setting of factor loadings gives researchers and prac-

titioners the maximal flexibility and, on top of that, we shall discuss in Section 2 the case where the

characteristics are allowed to vary over time. The setting for the loading functions is also proposed in

Connor et al. (2012), Ma et al. (2021) and Dong, Gao & Peng (2021) etc. For example, Connor et al.

(2012) allow that factor betas in the Fama–French model to depend on security characteristics, such as

size, value, momentum and own-volatility factors. We follow their work by considering unobservable

factors due to popularity and wide applicability. Here we consider the case where both the dimension

of X i t , p, and the dimension of m(·), q, are large, that is, p = p(N , T )→∞ and q = q(N , T )→∞, as

N →∞ and T →∞. In addition, we also allow the number of factors r to be large. The dependence

of the dimensionality (q, p and r) on the sample size is suppressed for the sake of simplicity.

We are interested to estimate the unknown parameter β , unknown function λ(·) vector and ft given

(Wi t , X i t , Vi). To deal with the unknown functions we shall use the sieve method (Chen & Shen 1998,

Chen 2007). Our estimation strategy is to first use the sieve method to approximate the unknown func-

tion λ(Vi) by a linear combination of basis functions in some suitable function space; in this way, the

unknown quantities in (1) are fully parameterized. Then we are able to estimate β , λ(·) and ft simul-
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taneously. It is noteworthy that since factors are unobserved, a set of simple identification conditions

are proposed that is quite weak and general, and enables us to identify the factors and their loadings

from the estimation above.

Moreover, we propose a test for the over-identification in the GMM framework before the proposed

test is utilised for specification testing of loading functions against local deviations.

As is well known, a genesis of moment restrictions is conditional moment restrictions (Ai & Chen

2003, 2007, Chen & Pouzo 2012). To illustrate the usefulness of model (1), we give the following

examples, both of which are derived from conditional moment restrictions.

Example 1.1 (Conditional moment restrictions): Suppose that ρ(Wi t , X ′i tβ ,λ(Vi)′ ft) is a known

J-dimensional vector of generalized residual functions and Zi is a sub-vector of Vi . Then the unknown

quantities (β ,λ, f ) can be determined by a conditional moment restrictionE[ρ(Wi t , X ′i tβ ,λ(Vi)′ ft)|Zi] =

0, almost surely. In fact, the GMM estimation in Arellano & Carrasco (2003), Breitung & Lechner (1995)

and Breitung & Lechner (1998) are based on similar conditional moment conditions. Let Φk(z) be a se-

quence of vector of functions that can approximate any square integrable function of Z in some sense

arbitrarily as k →∞. Then the conditional restriction implies a set of unconditional moment restric-

tions E[ρ(Wi t , X ′i tβ ,λ(Vi)′ ft) ⊗ Φk(Zi)] = 0, where the symbol “⊗" denotes the Kronecker product.

Denote m(Wi t , Zi , X ′i tβ ,λ(Vi)′ ft) = ρ(Wi t , X ′i tβ ,λ(Vi)′ ft) ⊗ Φk(Zi). Notice that the dimension of m(·)

is Jk which increases with k. Therefore, (β ,λ, f ) can be solved from the above unconditional moment

conditions by GMM.

Example 1.2 (Binary Response Model): Let Yi t be a binary outcome assuming either 0 or 1. Suppose

we have a binary panel data model of the form,

P(Yi t = 1|X i t , Vi , ft) = F(β ′X i t +λ(Vi)
′ ft), i = 1, · · · , N , t = 1, · · · , T, (2)

where β , X i t ∈ Rp, Vi ∈ R and F(·) is a known cumulative distribution function, e.g., the standard

normal or standard logistic distribution. Model (2) includes Example 1 in Fernández-Val & Weidner

(2016) and Example 2 in Chen et al. (2021) as special cases. As mentioned in Fernández-Val & Weidner

(2016), in a labor economics application, Y can be an indicator for female labor force participation and

X can include fertility indicators and other socio-economic characteristics. A sieve-based GMM method

outlined below in Section 2 can be used to estimate the unknown loading function λ(v), factor ft , and

the parameter vector β . Suppose that the function λ(v) can be approximated arbitrarily in some sense

by a linear combination of k known functions denoted as eΦk(v), that is λ(v) − eΦk(v)′α goes to zero

in some sense as k →∞. Then under certain identification conditions, we can estimate β , α and ft

from the first order conditions for maximum likelihood estimation. We will consider this model in our

simulation study.
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The contributions of this paper can be summarized as follows. First, to the best of our knowledge,

this is probably among the first to consider high dimensional moment restriction panel data models

with interactive effects, which substantially generalizes the existing panel data models in the current

literature. Second, we propose sieve-based GMM estimators for unknown parameters, factors and load-

ings. First, we use a sieve method to approximate unknown loading functions and then apply a high–

dimensional GMM procedure. Third, we propose procedures to test the validity of moment conditions

as well as specifications of loading functions. Fourth, under a semiparametric factor structure setting,

our identification conditions fully employ the functional information. Last but not least, simulation and

empirical studies further demonstrate the advantages and usefulness of this new model in comparison

with some natural competitors.

The rest of the paper is organized as follows. Section 2 describes the estimation procedure. Sections

3 and 4 provide the asymptotic theories for the proposed estimators and test statistics. The simulation

results and empirical study are presented in Sections 5 and 6, respectively. Section 7 concludes. Ap-

pendix A lists the necessary lemmas before they are used in the proofs of the main theorems in Appendix

B. The proofs of the lemmas listed in Appendix A and that of Theorem 4.1 are given in an online supple-

mental document. Throughout this paper, ‖ · ‖ denotes Euclidean norm for a vector or Frobenius norm

for a matrix, or the norm in function space that would not arise any ambiguity in the context; Ir denotes

an identity matrix of dimension r; the operators→P and→D denote convergence in probability and in

distribution, respectively.

2 Assumptions and estimation

In this section, we first describe a Hilbert function space wherein the unknown loading function

λ(v) admits an infinite orthogonal series representation. Then with the help of certain identification

conditions, we develop a sieve-based GMM estimation procedure for unknown parameters and factors

and their loadings.

2.1 Sieve estimation for factor loadings

Let λ(v) = (λ1(v1), · · · ,λr(vr))′ be a vector of unknown functions, where λ`(v`), ` = 1,2, · · · , r,

are univariate functions defined on V, V ⊂ R. Let λ`(·) belong to a Hilbert space L2(V,π(w)) =
�

g(w) :
∫

V g2(w)π(w)dw<∞
	

, where π(w) is a user-chosen density function on V. As usual, we de-

fine the norm ‖g‖L2 =
�∫

V g2(w)π(w)dw
�1/2

and the inner product 〈g1, g2〉 =
∫

V g1(w)g2(w)π(w)dw

for functions in the space. Throughout this study, for the r-vector of functions λ(·), its norm is defined

as ‖λ‖L2 =
�∑r

`=1 ‖λ`‖
2
L2

�1/2
.
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A sequence {φ j(·), j ≥ 0} in Hilbert space is called orthogonal if 〈φi ,φ j〉 = 0 for all i 6= j, and

further orthonormal if ‖φi‖ = 1 for all i. A complete orthonormal sequence forms a basis in Hilbert

space; the theory about Hilbert space can be found in standard textbooks on functional analysis.

Assumption 2.1. Suppose that {φ j(·), j ≥ 0} is a basis for L2(V,π(w)), that is, 〈φi ,φ j〉 = δi j the Kro-

necker delta and {φ j(·), j ≥ 0} is complete.

The existence of orthonormal basis is guaranteed by the Hilbert theory that enables us to have an

infinite orthogonal series expansion for λ`(·) ∈ L2(V,π(w)):

λ`(v`) =
∞
∑

j=0

α` jφ j(v`), where α` j = 〈λ`,φ j〉, `= 1, · · · , r. (3)

By the Parsevel equality, ‖λ`(v`)‖2L2 =
∑∞

j=0α
2
` j , which implies the attenuation of the coefficients. For

a positive integer k, define the partial sum λ
(k)
`
(v`) =

∑k−1
j=0 α` jφ j(v`) = α′`Φk(v`) as a truncated series,

in which α` = (α`0, · · · ,α`,k−1)′ and Φk(v`) = (φ0(v`), · · · ,φk−1(v`))′.

Let λ(k)(v) = (λ(k)1 (v1), · · · ,λ(k)r (vr))′ = eΦk(v)′α, where eΦk(v) = diag(Φk(v1), · · · ,Φk(vr)) and α =

(α′1, · · · ,α′r)
′ is a kr × 1 vector, containing all the coefficients in the truncation series. Define γ(k)

`
(v`) =

∑∞
j=k α` jφ j(v`), the residue after truncation, and γ(k)(v) = (γ(k)1 (v1), · · · ,γ(k)r (vr))′. It is easy to see that

λ(v) = λ(k)(v) + γ(k)(v). It follows that λ(k)(v)→ λ(v) as k→∞, in some sense.

2.2 Sieve-based GMM estimation

When factors are unobserved, the lack of identification of factors ft and factor loadings λi is well

known in the literature as they enter the model in a multiplicative way (see for example Bai 2009, Bai

& Li 2014). In this paper, we impose the following identification conditions (IC):

Identification conditions (IC)

(1) λ`(v), `= 1, 2, · · · , r, has unitary norm;

(2) If φ0(v) = 1,
∫

Vλ`(v)φ0(v)π(v)dv = 0 for 2≤ `≤ r;

(3) ft` > 0 for `= 1,2, · · · , r and t = 1, · · · , T .

The first IC is common, which is also used by Connor et al. (2012) and Dong, Gao & Peng (2021). It

is intuitive and reasonable since the unknown function can be rescaled to have unitary norm. The second

IC is employed to normalize the additive terms such that the model can get rid of extra constants, which

is standard in additive model; see Assumption C.2 in Dong & Linton (2018) and references therein. The

third IC is not as restrictive as it appears, since the positivity of ft` can always be imposed using the

multiplicative factor structure. In contrast to the identifcation condition in Bai (2009), this set of IC is

simple and utilizes the proposed loading and factor structure to identify the factors and their loadings.
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The parameter space for model (1) is defined as

Θ = {(b, g`, st) : b ∈ Rp; g` ∈ L2(V,π(w)), 1≤ `≤ r; st ∈ Rr , 1≤ t ≤ T},

which contains the true parameter (β ,λ, F) as an interior point, where F = ( f1, · · · , fT ). For b ∈ Rp and

g ∈ L2(V,π(w)), we define

‖(b, g)‖=
�

‖b‖2 + ‖g‖2L2

�1/2
.

Assumption 2.2. Suppose that B1N and B2N are two sequences of positive numbers diverging with N, such

that β in model (1) is in Θ1N = {b ∈ Rp : ‖b‖ ≤ B1N} and for sufficiently large N, λ(k)(v)′ ft is included

in Θ2N = {Φr
k(v)

′dt : ‖dt‖ ≤ B2N}.

The assumption above, coupled with the sieve approach, approximates the parameter space Θ by

Θ1N⊗Θ2N as N , T →∞. The bounds on the parameters facilitate the solution of nonlinear optimization

defined below, while, on the other hand, B1N is necessary to take into account the divergency of the

dimension of β , and B2N may be mild divergent since the vector Φk(·) of basis functions has norm equal

to O(
p

k). See Dong, Linton & Peng (2021) for more details on the discussion on ‖Φk(·)‖.

Recall λ(v) = λ(k)(v)+γ(k)(v) in Section 2.1. Let f ′t λ
(k)(v) = f ′t eΦk(v)′α= Φr

k(v)
′Dt , where Φr

k(v) =

(Φk(v1)′, · · · ,Φk(vr)′)′ and Dt = ( ft1α
′
1, · · · , ft rα

′
r)
′. Then we rewrite the moment condition (1) as

E
�

m
�

Wi t , X ′i tβ ,Φr
k(Vi)

′Dt + f ′t γ
(k)(Vi)

��

= 0, (4)

in which γ(k)(Vi) is negligible for large values of k.

Our estimation strategy is that we first estimate β and Dt simultaneously for each given t, and then

we obtain the estimators of ft and α by virtue of the identification conditions, and finally estimate λ(v)

by bλ(v) = eΦk(v)′bα. Specifically, for each given t, we estimate β and Dt by

(bβt , bDt) = arg min
b∈Rp ,dt∈Rkr

‖MN t(b, dt)‖2, (5)

subject to ‖b‖ ≤ B1N and ‖dt‖ ≤ B2N ,

where MN t(b, dt) =
1p
q

1
N

∑N
i=1 m(Wi t , X ′i t b,Φr

k(Vi)′dt).

The reason for including q in the function MN t(b, dt) is to take into account the divergence of

the dimension of m(·). Note that the subscript t in bβt indicates that we only use the information at

time t to estimate β . This strategy localizes a global parameter. We then define an estimator for β by
bβ =

∑T
t=1 wt

bβt , where wt is a chosen weight. Here we simply set wt = 1/T and by simulation study, we

show that this works well numerically. The averaging converts the localized parameter back to global,

and more importantly this accelerates the rate as shown in Theorem 3.2, as if we estimate β using global

information.

Write bDt as bDt = (bD′t1, · · · , bD′t r)
′. Then it is easy to see that bDt`, for 1 ≤ ` ≤ r, is the estimator of
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ft`α`. When the truncation parameter k is large, we have ‖ ft`α`‖2 = f 2
t`(‖λ`(v`)‖

2 + o(1)) = f 2
t`(1+

o(1)), where the first equality is due to Parseval equality in Hilbert space and the second equality is

due to the identification condition that λ`(·) has unitary norm. Thus, by some regular conditions,

‖bDt`‖2− f 2
t` = oP(1). This implies that we can use ‖bDt`‖ as an estimator for | ft`| (and hence ft` under the

third IC). Consequently, we can further estimate α` by bαt` =
bDt`

‖bDt`‖
= S`bDt

‖S`bDt‖
, where S` denotes a selection

matrix drawing the corresponding sub–vectors from the parent vector. We define this estimator by bαt`

to indicate that it is obtained using the information at time t. Then, the estimators of ft` and λ`(v`),

for 1≤ `≤ r, are given by

bft` = ‖bDt`‖, bλ`(v`) = Φk(v`)
′ 1
T

T
∑

t=1

bαt`.

Also, we define bλt`(v`) = Φk(v`)′bαt` as the estimator of λ`(v`) where the subscript t indicates that we

only use the information at time t to estimate λ`(v`).

It should be noted that we can generalize the model by allowing the variable of characteristics Vi

to vary with time, that is, each of the factor loading is a function of Vi t . We may then use sieve method

to estimate λ(Vi t) by eΦk(Vi t)′α in a similar way, where α can be estimated using the same method as in

(5). For notational simplicity, we focus on the case where the variable of characteristics is only indexed

by i.

The notation used so far assumes a fully balanced panel data set. It should also be noted that in

applications the set of individuals may be allowed to vary over the time sample. For example, the set

of equities with full records over a reasonably long sample period is a small subset of the full data set.

In this case, we may assume that the observations are unbalanced in the sense that in time period t,

we only observe nt individuals. Then we replace the current definition of MN t(b, dt) by MN t(b, dt) =
1p
q

1
nt

∑nt
i=1 m(Wi t , X ′i t b,Φr

k(Vi)′dt) and the rest of the estimation procedures are similar to the balanced

case.

3 Asymptotic theory

In this section, we will establish the consistency and asymptotic normality for the estimators of β ,

factors ft and factor loading function λ(v).

3.1 Consistency

Before establishing the asymptotic theory, we first introduce some necessary assumptions.

Assumption 3.1. Suppose that
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(a) Denote Wt = (W1t , · · · , WN t)′ and X t = (X1t , · · · , XN t)′, and suppose that {(Wt , X t , ft), 1 ≤ t ≤ T}

is strictly stationary and α–mixing; denote similarly Wi = (Wi1, · · · , WiT )′ and X i = (X i1, · · · , X iT )′

and suppose that {(Wi , X i , Vi), 1≤ i ≤ N} is identically distributed across i.

Denote αi j(|t − s|) as the α-mixing coefficient between (Wi t , X i t , Vi , ft) and (Wjs, X js, Vj , fs). Let
∑N

i=1

∑N
j=1

∑∞
t=1

�

αi j(t)
�δ/(4+δ)

= O(N) and
∑N

i=1

∑N
j=1

�

αi j(0)
�δ/(4+δ)

= O(N), where δ > 0 is

chosen such that E
�

‖m(Wi t , X ′i tβ ,λ′i ft)‖2+δ/2
�

<∞, E
�

‖X i t‖2+δ/2
�

<∞ and E
�

‖ ft‖2+δ/2
�

<

∞.

(b) The density fV (v) of V1 satisfies cπ(v) ≤ fV (v) ≤ Cπ(v) on the support V of V1 for some constants

C ≥ c > 0, where π(v) is the density function involved in the Hilbert space at Section 2.1.

(c) The function m(·, ·, ·) is continuous in the second and third arguments.

(d) q(N , T )− p(N , T )≥ kr.

Assumption 3.2. Suppose that for each (N , t), there are unique (λ(·)′ ft and β ∈ Rp such that model (1)

is satisfied. In other words, for any δ > 0, there is an ε > 0 such that

inf
(b,dt )∈Θ,‖(b−β ,Φr

k(Vi)′dt−λ(Vi)′ ft )‖≥δ

1
q
‖Em(Wi t , X ′i t b,Φr

k(Vi)
′dt)‖2 > ε.

Assumption 3.3. Suppose that for each (N , T ), there is a measurable positive function A(W, X , V ) such

that

q−1/2‖m(W, X ′b1, g1(V )
′s1)−m(W, X ′b2, g2(V )

′s2)‖

≤A(W, X , V )
�

‖b1 − b2‖+ ‖g1(V )
′s1 − g2(V )

′s2‖
�

for any (b1, g1, s1), (b2, g2, s2) ∈ Θ, where (W, X , V ) is any realization of (Wi t , X i t , Vi) and the function A

satisfies that E[A2(Wi t , X i t , Vi)]<∞.

We have the following comments on the assumptions. Assumption 3.1(a) requires stationarity for

the data along time series dimension and identical distribution over cross sectional dimension. The iden-

tical distribution requirement here simplifies the presentation and some of the calculations, although

it is possible to relax it to allow heterogeneity in the cross section. We use the α-mixing coefficient to

measure the relationship between (Wi t , X i t , Vi , ft) and (Wjs, X js, Vj , fs), which can capture both cross-

sectional dependence and serial dependence. Particularly, αi j(0) only measures the cross-sectional de-

pendence between (Wi t , X i t , Vi , ft) and (Wj t , X j t , Vj , ft). This set-up is in the same spirit as Assumption

A2 of Chen et al. (2012) and Assumption C of Bai (2009), and the entire Assumption 3.1 (a) is quite

common in the literature, see Dong et al. (2015) and Liu (2020). The rest of the assumptions are simi-

lar to those in Dong, Gao & Linton (2021). Assumption 3.1 (b) is about the relation of the densities of
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the variable V and the function space, which is widely used in the literature. For the case of compact

support for V , we can simply set π(v) = 1 and the density fV (v) is bounded away from zero and above

from infinity. Here we also allow for unbounded support for V provided that the density π is chosen

appropriately. Assumption 3.1(c) imposes continuity condition on the m(·) function and commonly

used moment conditions satisfy this. Assumption 3.1 (d) allows for possible over-identification of the

parameter vector in the moment conditions.

Moreover, Assumption 3.2 is necessary as it assumes a uniqueness condition in GMM framework

for all unknown parameters. The involvement of q is due to the same reason as in the formulation

of MN t(b, dt), which takes into account the divergent dimension of m(·). Assumption 3.3 is a kind of

Lipschitz condition that guarantees the approximation m(Wi t , X ′i tβ , f ′t eΦk(Vi)′α) to m(Wi t , X ′i tβ ,λ(Vi)′ ft)

because

‖m(Wi t , X ′i tβ , f ′t eΦk(Vi)
′α)−m(Wi t , X ′i tβ ,λ(Vi)

′ ft)‖

≤ A(Wi t , X i t , Vi)
�

‖λ(Vi)− eΦk(Vi)
′α‖‖ ft‖

�

= OP(1)‖γ(k)(v)‖‖ ft‖= oP(1).

Moreover, since Em(Wi t , X ′i tβ ,λ(Vi)′ ft) = 0, we have ‖Em(Wi t , X ′i tβ , f ′t eΦk(Vi)′α)‖= o(1).

With the above assumptions, we establish the following theorem.

Theorem 3.1. (Consistency). Let Assumptions 2.1, 2.2, 3.1–3.3 hold and B2
1N + B2

2N = o(N). Then we

have

1. As (N , T )→ (∞,∞), ‖(bβ − β , bλ(v)−λ(v))‖ →P 0.

2. As N →∞, for any given t, ‖bft − ft‖ →P 0.

The proof of Theorem 3.1 is given in Appendix B.

3.2 Asymptotic normality

As the dimension of β diverges with the sample size (N , T ), we may not be able to establish a limit

distribution for bβ directly. Instead, we consider some finite dimensional transformations of β . See some

examples for the functionals in Dong, Gao & Linton (2021) and the reference therein.

LetL be a transformation from Rp 7→ Rη with η≥ 1 fixed. Here we consider the limit distributions

of L (bβ)−L (β), bλ(v) and bft . To this end, we impose the following assumptions.

Assumption 3.4. Suppose that each element function m j of the m(·, ·, ·) is differentiable with respect to

its second and third arguments up to the second order. The second derivative functions satisfy a Lipschitz

9



condition in a neighborhood of the (β ,λ′ f ):

|∂ (u)m j(W, X ′β ,λ(V )′ f )− ∂ (u)m j(W, X ′b, g(V )′s)| ≤ B j(W, X ′β ,λ(V )′ f )(‖b− β‖+ ‖λ′ f − g ′s‖)τ

for some τ ∈ (0,1], where u is two dimensional multiple index with |u| = 2, ∂ (u) stands for the partial

derivative of the function with respect to the second and third arguments and B j are positive functions such

that max1≤ j≤q E[B j(W, X ′β ,λ(V )′ f )2]<∞.

Let ∂
∂ u m(· · · ) and ∂

∂ w(· · · ) denote the partial derivatives of m(v, u, w) with respect to respectively

its arguments u and w.

Assumption 3.5. Suppose that for any i = 1,2, · · · , N, t = 1, 2, · · · , T,

(a) E‖m(Wi t , X ′i tβ ,λ(Vi)′ ft)‖2 = O(q), E‖X i t‖2 = O(p), E‖Φk(Vi)‖2 = O(k) and E‖ ft‖2 = O(r);

(b) E‖ ∂∂ u m(Wi t , X ′i tβ ,λ(Vi)′ ft)‖2 = O(q), and E‖ ∂∂ w m(Wi t , X ′i tβ ,λ(Vi)′ ft)‖2 = O(q);

(c) E‖ ∂∂ u m(Wi t , X ′i tβ ,λ(Vi)′ ft)⊗X i t‖2 = O(pq), andE‖ ∂∂ w m(Wi t , X ′i tβ ,λ(Vi)′ ft)⊗Φr
k(Vi)‖2 = O(krq);

(d) E‖ ∂
2

∂ u2 m(Wi t , X ′i tβ ,λ(Vi)′ ft)⊗ X i t X
′
i t‖

2 = O(p2q), and

E‖ ∂
2

∂ w2 m(Wi t , X ′i tβ ,λ(Vi)′ ft)⊗Φr
k(Vi)Φr

k(Vi)′)‖2 = O(k2r2q));

(e) E‖ ∂ 2

∂ u∂ w m(Wi t , X ′i tβ ,α′eΦk(Vi) ft)⊗ X i tΦ
r
k(Vi)′‖2 = O(pkrq).

Assumption 3.6. Suppose that

(a) ‖γ(k)(V )‖2p2 = o(1), (N T )−1p2q = o(1);

(b) ‖γ(k)(V )‖2k2r2 = o(1), (N T )−1k2r2q = o(1).

Assumption 3.7. The partial derivatives of m(v, u, w) satisfy

(a) q−
1
2 ‖ ∂∂ u m(W, X ′b1, g1(V )′s1) −

∂
∂ u m(W, X ′b2, g2(V )′s2)‖ ≤ A1(W, X , V )[‖b1 − b2‖ + ‖g1(V )′s1 −

g2(V )′s2‖], where E[A1(W, X , V )2]<∞ and E[A1(W, X , V )2‖X‖2] = O(p).

(b) q−
1
2 ‖ ∂∂ w m(W, X ′b1, g1(V )′s1) −

∂
∂ w m(W, X ′b2, g2(V )′s2)‖ ≤ A2(W, X , V )[‖b1 − b2‖ + ‖g1(V )′s1 −

g2(V )′s2‖], where E[A2(W, X , V )2]<∞ and E[A2(W, X , V )2‖Φr
k(V )‖

2] = O(kr).

Assumption 3.8. The transformation L possesses continuous second partial derivatives and the Hessian

matrix of each component L j of L has uniformly bounded eigenvalues in a neighborhood of β; moreover,

the first partial derivative of L at β , ∂L (β) has full rank.

10



Assumption 3.4 is a standard assumption on the smoothness of moment functions. We impose

the Lipschitz condition for the components of the m function to facilitate the approximation of the

Hessian matrix within a neighbourhood of the true parameter. Assumption 3.5 imposes conditions on

the second moments of the m(·) function. Since the dimension p of X is diverging and it is reasonable

to allow that the second moment diverges too. Similarly, we assume E‖ f1‖2 = O(r). E‖Φk(V )‖2 =

O(k) can be satisfied for many orthogonal sequences, such as the orthogonal trigonometric polynomials

and orthogonal algebraic polynomials on bounded interval with uniform density. We impose similar

conditions for the norm of the first partial derivatives of m(·) function. Assumption 3.6 imposes certain

conditions on the relation of truncation parameter k, dimension p of X , sample size N , T and the number

of factors r. This normally ensures that the orthogonal series expansions for the unknown functions of

the factor loading vector converge with certain rates. Assumption 3.7 is similar to Assumption 3.3 but

this is for partial derivatives. Assumption 3.8 guarantees that we can approximate L (bβ) by a linear

formL (β)+∂L (β)′(bβ −β). All Assumptions 3.4-3.8 are commonly encountered in the literature, see

Dong, Gao & Linton (2021).

Before we present the main theorem of asymptotic normality for our proposed estimators, we in-

troduce the following notation. Define

Ξm = E
�

m(Wi t , X ′i tβ ,λ(Vi)
′ ft)m(Wi t , X ′i tβ ,λ(Vi)

′ ft)
′� for any i = 1, 2 · · · , N , t = 1,2, · · · , T,

∆x = E
∂

∂ u
m(Wi t , X ′i tβ ,λ(Vi)

′ ft)
′ ⊗ X i t , for any i = 1, 2 · · · , N , t = 1, 2, · · · , T,

∆k = E
∂

∂ w
m(Wi t , X ′i tβ ,λ(Vi)

′ ft)
′ ⊗Φr

k(Vi), for any i = 1, 2 · · · , N , t = 1, 2, · · · , T,

Ξi j,ts = E
�

m(Wi t , X ′i tβ ,λ(Vi)
′ ft)m(Wjs, X ′jsβ ,λ(Vj)

′ fs)
′
�

.

Theorem 3.2. (Asymptotic normality). Let Assumptions 2.1, 2.2, 3.1–3.8 hold.

1. As N →∞, for any given t, we have
p

N
�

L (Òβt)−L (β)
�

→D N
�

0,Σβ0

�

, where

Σβ0
=∂L (β)′

�

∆x∆
′
x

�−1
∆xΞm∆

′
x

�

∆x∆
′
x

�−1
∂L (β)

+ lim
N

1
N

∑

i 6= j

∂L (β)′
�

∆x∆
′
x

�−1
∆xΞi j,11∆

′
x

�

∆x∆
′
x

�−1
∂L (β).

2. As (N , T )→ (∞,∞), we obtain
p

N T
�

L (bβ)−L (β)
�

→D N
�

0,Σβ
�

, where

Σβ = lim
N ,T

1
N T

∑

i, j,t,s

∂L (β)′
�

∆x∆
′
x

�−1
∆xΞi j,ts∆

′
x

�

∆x∆
′
x

�−1
∂L (β).
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3. As N →∞, for any given t and 1≤ `≤ r, we have
p

N
�

cft` − ft`

�

→D N
�

0,Σ f `

�

, where

Σ f ` =α
′
`S`
�

∆k∆
′
k

�−1
∆kΞm∆

′
k

�

∆k∆
′
k

�−1
S′`α`

+ lim
N

1
N

∑

i 6= j

α′`S`
�

∆k∆
′
k

�−1
∆kΞi j,11∆

′
k

�

∆k∆
′
k

�−1
S′`α`.

4. As N →∞, for any given t and 1≤ `≤ r, we have
p

N
||Φk(V )||

(bλt`(V )−λ`(V ))→D N
�

0,Σλ,t`

�

, where

Σλ,t` =
1

||Φk(V )||2 f 2
t`

�

Φ′k(V )S`
�

∆k∆
′
k

�−1
∆kΞm∆

′
k

�

∆k∆
′
k

�−1
S′`Φk(V )

+ lim
N

1
N

∑

i 6= j

Φ′k(V )S`
�

∆k∆
′
k

�−1
∆kΞi j,11∆

′
k

�

∆k∆
′
k

�−1
S′`Φk(V )

�

.

5. As (N , T )→ (∞,∞) and 1≤ `≤ r, we have
p

N T
||Φk(V )||

(bλ`(V )−λ`(V ))→D N (0,Σλ`), where

Σλ` = lim
N ,T

1
N T

∑

i, j,t,s

1
||Φk(V )||2 ft` fs`

Φ′k(V )S`
�

∆k∆
′
k

�−1
∆kΞi j,ts∆

′
k

�

∆k∆
′
k

�−1
S′`Φk(V ).

The proof of Theorem 3.2 is given in Appendix B. Note that in the special case where Ξi j,ts = 0

for either i 6= j or t 6= s, all the terms associated with the weak cross-sectional dependence and serial

correlations of error terms disappear. Thus, the covariance matrices involved in Theorem 3.2 reduce to

Σβ0
= ∂L (β)′

�

∆x∆
′
x

�−1
∆xΞm∆

′
x

�

∆x∆
′
x

�−1
∂L (β), Σβ = Σβ0

,

Σ f ` = α
′
`S`

�

∆k∆
′
k

�−1
∆kΞm∆

′
k

�

∆k∆
′
k

�−1
S′`α`,

Σλ,t` =
1

||Φk(V )||2 f 2
t`

Φ′k(V )S`
�

∆k∆
′
k

�−1
∆kΞm∆

′
k

�

∆k∆
′
k

�−1
S′`Φk(V ), Σλ` = lim

T

1
T

T
∑

t=1

Σλ,t`.

Here the estimatorsL (bβt) and bλt` have slow rates because they are constructed using information

only at t (see assertions 1 and 4); while after “globalization” (average over t), they enjoy fast rates (see

assertions 2 and 5). All these are comparable with the parametric and nonparametric literatures. For

example, the covariance matrix Σβ has the same form as those in standard GMM framework, except

that here we have transformation L , and ∆x and Ξi j,ts have diverging dimensions. From Theorem

3.2, we can see that the convergence rate of L (bβ) is (N T )−1/2, which is consistent with the literature

that bβ = OP((N T )−1/2) (Bai (2009)). On the other hand, the convergence rates of bλ`(V ) and cft` are

‖Φk(V )‖(N T )−1/2 and N−1/2, respectively, which are in line with the results from Dong, Gao & Peng

(2021).

To make statistical inference by Theorem 3.2, we need to provide a consistent estimator for each of

the above covariance matrices. Toward this end, let Òmi t ≡ m(Wi t , X ′i t
bβ , bλ(Vi)′ bft), Òmu,i t ≡ mu(Wi t , X ′i t

bβ , bλ(Vi)′ bft)⊗

X i t and Òmw,i t ≡ mw(Wi t , X ′i t
bβ , bλ(Vi)′ bft)⊗Φr

k(Vi), where mu(· · · ) and mw(· · · ) are the partial derivatives
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of m function m(v, u, w) with respect to respectively its arguments u and w. We propose to estimate∆x ,

∆k, Ξm, Ξ11,ts(i = j, t 6= s), Ξi j,11(i 6= j, t = s), respectively, by

Ò∆x =
1

N T

N
∑

i=1

T
∑

t=1

Òmu,i t , Ò∆k =
1

N T

N
∑

i=1

T
∑

t=1

Òmw,i t , bΞm =
1

N T

N
∑

i=1

T
∑

t=1

Òmi tÒm
′
i t ,

bΞ11,ts =
1
N

N
∑

i=1

Òmi tÒm
′
is, bΞi j,11 =

1
T

T
∑

t=1

Òmi tÒm
′
j t .

The estimation of Σβ0
suffers from heteroskedasticity and cross-sectional correlation (HAC), so that

its sample analog is not consistent. We are about to use Assumption 3.1(a) to estimate N−1
∑

i 6= j Ξi j,11.

To this end, we follow the spirit of Ma et al. (2021) to consider a kernel-based robust estimator that ac-

counts for HAC. Similar ideas have also been used in Phillips (1998) to accommodate serial correlations

in the residuals when constructing robust t ratios. Specifically, the quantity N−1
∑

i 6= j Ξi j,11 is estimated

by a kernel-based approach, and we thus have the estimator of Σβ0
as follows,

bΣβ0
=∂L (bβ)′

�

Ò∆xÒ∆
′
x

�−1
Ò∆x bΞmÒ∆

′
x

�

Ò∆xÒ∆
′
x

�−1
∂L (bβ)

+ ∂L (bβ)′
�

Ò∆xÒ∆
′
x

�−1
Ò∆x



lim
N

1
N

∑

i 6= j

K∗
�

i − j
M

�

bΞi j



Ò∆′x
�

Ò∆xÒ∆
′
x

�−1
∂L (bβ),

where M trims the sample autocovariances and acts as a truncation lag, K∗(u) is a symmetric kernel

weighting function satisfying K∗(0) = 1, and |K∗(u)| ≤ 1. As shown in Ma et al. (2021) and Kiefer

& Vogelsang (2005), the consistency of bΣβ0
can be obtained under the condition that M → ∞ and

M/N → 0 as N →∞.

Another key quantity to estimate is (N T )−1
∑

i, j,t,s Ξi j,ts, which is more complicated than that of

N−1
∑

i 6= j Ξi j,11. For notational simplicity, we let G = (N T )−1
∑

i, j,t,s Ξi j,ts. Following Thompson (2011),

we estimate G by

bG = Vunit + Vt ime,0 − Vwhite,0 +
LT
∑

τ=1

(Vt ime,τ + V ′t ime,τ)−
LT
∑

τ=1

(Vwhite,τ + V ′white,τ), (6)

where Vunit = (N T )−1
∑

i bcibc
′
i , Vt ime,τ = (N T )−1

∑

t bstbs
′
t+τ, Vwhite,τ = (N T )−1

∑

t

∑

i Òmi tÒm
′
i,t+τ, bci =

∑

t Òmi t andbst =
∑

i Òmi t . Due to the mixing condition imposed in Assumption 3.1, we use the information

from the observations where τ (i.e., |t − s|) is small and LT is a sequence diverging with T but with

a smaller order. It is also easy to see that Vwhite,0 = bΞm. To estimate Σλ`, we replace 1
ft` fs`
Ξi j,ts by

1
bft`
bfs`
Òmi tÒm

′
js.

We then estimate Σβ , Σ f `, Σλ,t` and Σλ` by bΣβ , bΣ f `, bΣλ,t`, bΣλ`, respectively, by replacing the

unknown quantities with their corresponding estimators.

Corollary 3.1. Under Assumptions 3.4-3.8, we have ∂L (bβ) = ∂L (β) + oP(1), Ò∆x =∆x + oP(1), Ò∆k =
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∆k + oP(1), bΞm = Ξm + oP(1), bΞ11,ts = Ξ11,ts + oP(1), and bΞi j,11 = Ξi j,11 + oP(1) as N , T → ∞.

Consequently, bΣβ = Σβ + oP(1), bΣ f ` = Σ f ` + oP(1), bΣλ,t` = Σλ,t` + oP(1), and bΣλ` = Σλ` + oP(1).

The proof of Corollary 3.1 is given in Appendix B.

4 Hypothesis testing

This section proposes two testing procedures with the first one being on over–identification test-

ing, while the second one on parametric specification testing for loading functions. Both test statistics

proposed make use of the deviation of the moment condition from the null to test against the alternative.

4.1 Test of over-identification

In this section, we aim to test the validity of the following moment conditions, which is crucial and

often called the test of over–identification in the GMM literature. The null and alternative hypotheses

are given as follows:

H01 : E[m(Wi t , X ′i tβ ,λ(Vi)
′ ft)] = 0 for some (β ,λ, F) ∈ Θ,

H11 : E[m(Wi t , X ′i t b, g(Vi)
′st)] 6= 0 for any (b, g, S) ∈ Θ,

where Θ is define in Section 2.

For b ∈ Rp, dt ∈ Rkr , d = (d ′1, · · · , d ′T )
′ and any c ∈ Rq such that ‖c‖= 1, define

LN T (b, d; c) =
1
p

T

T
∑

t=1

LN t(b, dt ; c),

where LN t(b, dt ; c) = 1
DN t (b,dt ;c)

∑N
i=1 c′m(Wi t , X ′i t b,Φr

k(Vi)′dt), in which

DN t(b, dt ; c) =

√

√

√

√

N
∑

i=1

[c′m(Wi t , X ′i t b,Φr
k(Vi)′dt)]2.

Recall that Dt = ( ft1α
′
1, · · · , ft rα

′
r)
′. Under H01, we can show that (bβ , bDt) are consistent estimators

of (β , Dt) by Theorem 3.1. Define bD = (bD′1, · · · , bD′T )
′. Then we can use the statistic LN T (bβ , bD; c) to

test H01 against H11 as shown below. To establish an asymptotic distribution for the statistic, we first

introduce some necessary assumptions.

Assumption 4.1. Let m∗N t(bβ , bDt ; c) = oP(1) when N →∞, where

m∗N t(b, dt ; c) =
1
p

N

N
∑

i=1

E[c′m(Wi t , X ′i t b,Φr
k(Vi)

′dt)]
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for (b, dt) ∈ Θ and c such that ‖c‖= 1.

Assumption 4.2. Let (i) p2q = o(N T ) and k2r2q = o(N); and (ii) ‖γ(k)(v)‖2 = o(q−1).

Due to the moment condition E[m(Wi t , X ′i tβ ,λ(Vi)′ ft)] = 0 and Assumption 3.3, for large values of

k, E[m(Wi t , X ′i tβ ,Φr
k(Vi)′Dt)] = o(1). So Assumption 4.1 requires that when (b, dt) approaches (β , Dt),

E[m(Wi t , X ′i t b,Φr
k(Vi)′dt)] goes to zero quickly. This assumption is in the same spirit as Assumption

3.2, but this is a sample version and the decay of the expectation needs a certain rate. Assumption 4.2

presents some technical requirements. Assumption 4.2 (i) requires a certain relationship between those

diverging parameters and Assumption 4.2 (ii) imposes a decay rate for the norm of residue ‖γ(k)(v)‖2,

which can be easily satisfied given a certain smoothness of loading functions.

Theorem 4.1. Suppose that there is no zero function in the vector m(·, ·, ·). Let Assumptions 2.1-2.2,

3.1-3.7 and 4.1-4.2 hold. For any c ∈ Rq such that ‖c‖= 1, under H01 we have as (N , T )→ (∞,∞)

LN T (bβ , bD; c)→D N(0, 1).

Theorem 4.1 establishes the asymptotic normality of the proposed test statistic which makes the

statistical inference feasible when factors are unobserved. The proof of Theorem 4.1 is given in Appendix

B.

Theorem 4.2. Suppose that the eigenvalues ofE[m(Wi t , X ′i t b, g(Vi)′st)m(Wi t , X ′i t b, g(Vi)′st)′] are bounded

away from zero and infinity uniformly in N , T and (b, g, S) ∈ Θ. Under H11, suppose further that there ex-

ists a positive sequence ζN T such that inf(b,g,S)∈Θ ‖E[m(Wi t , X ′i t b, g(Vi)′st)]‖ ≥ ζN T and lim infN ,T→∞
p

N TζN T =

∞. Then for any vectors b and d, there exists some c∗ ∈ Rq such that ‖c∗‖= 1 and LN T (b, d; c∗)→P ∞,

as (N , T )→ (∞,∞).

This theorem establishes the consistency of the proposed test statistic under very general conditions.

For example, in the special case of ζN T = ζ, the condition lim infN ,T→∞
p

N TζN T =∞ is automatically

satisfied. Here, we allow for ζN T → 0 with a rate slower than (N T )−1/2 that extends the literature where

ζN T = ζ a constant. Though the theorem only claims the existence of c∗, the proof given in Appendix B

shows that how c∗ is constructed.

4.2 Parametric specification for the loading functions

In practice, we are also interested in testing the parametric forms of loading functions. Therefore,

in this section, we consider the following null and alternative hypotheses

H02 : λ`(v`;θ0) = g`(v`,θ0) =
k0
∑

j=0

φ j(v`)θ` j,0 such that E[m(Wi t , X ′i tβ ,λ(Vi;θ0)
′ ft)] = 0,
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H12 : λ`(v`;θ1) = g`(v`,θ1) +∆N T,`(v`) such that E[m(Wi t , X ′i tβ ,λ(Vi)
′ ft)] 6= 0,

where θ0 =
�

θ ′1,0, · · · ,θ ′r,0
�′
∈ Rr(k0+1) where θ`,0 = (θ`0,0, · · · ,θ`k0,0)′ is a vector of unknown parame-

ters, `= 1, · · · , r, and k0 is a fixed positive integer, θ1 is defined similarly,φ j(v`) is the same orthonormal

sequence as defined in Section 2.1, ∆N T,`(v) is an unknown function going to zero for every v when

(N , T )→ (∞,∞) for us to study a sequence of local alternatives under H12.

It is noteworthy that the formulation of the above parametric form of g`(v`,θ0) is natural because

it belongs to a particular subspace in L2(V,π(v)). With this form of g`(v`,θ0), our estimation procedure

can be implemented directly without orthogonal expansion.

For b ∈ Rp, θ ∈ Rr(k0+1), eft ∈ Rr , and any c ∈ Rq such that ‖c‖= 1, define

lN T (b,θ , ef ; c) =
1
p

T

T
∑

t=1

lN t(b,θ , eft ; c),

where ef ≡ (ef1, · · · , efT )′, lN t(b,θ , eft ; c) = 1
DN t (b,θ ,eft ;c)

∑N
i=1 c′m(Wi t , X ′i t b,λ(Vi;θ )′ eft), θ is included in

λ(·), and DN t(b,θ , eft ; c) =
Ç

∑N
i=1[c′m(Wi t , X ′i t b,λ(Vi;θ )′ eft]2.

Under H02 we estimate (β ,θ , ft) by (bβ , bθ , bft) by the procedure in Section 2.2. We establish an

asymptotic normality under H02 in Theorem 4.3, and then establish an asymptotic consistency under

H12. To show the consistency of the proposed test statistic under H12, we impose the following assump-

tion on the local deviation ∆N T (v) = (∆N T,1(v), · · · ,∆N T,r(v)).

Assumption 4.3. Let ∆N T (v) = δN T∆(v), ∆(v) = (∆1(v), · · · ,∆r(v)), satisfy the following conditions:

(i) Suppose that min
eft∈A‖∆(v)

′
eft‖= cmin > 0, where A is a compact parameter set including all eft .

(ii) Let δN T → 0 and
p

N TεN T → ∞ as (N , T ) → (∞,∞), where εN T is given by Assumption 3.2

corresponding to cminδN T .

In Assumption 4.3 (i) the quantity cmin, together with δN T , signifies the strength of signal of the

moment condition under H12 deviated from that under H02. cmin can be obtained by further calculating

‖∆(v)′ eft‖2 = ef ′t

∫

∆(v)∆(v)′π(v)dv eft ≥ λmin(∆)‖eft‖2 ≥ λmin(∆)min
eft∈A
‖eft‖2.

Thus, a sufficient condition for the existence of cmin is that the matrix
∫

∆(v)∆(v)′π(v)dv has positive

minimum eigenvalue and the set A deviates from the origin with a certain distance.

Assumption 4.3 (ii) is a consequence of Assumption 3.2, viz., given the deviation of the argument

in moment function, cminδN T , the moment function in norm has infimum εN T and we require this can

not be too small to fulfil the detection.

We then have Theorem 4.3 below.
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Theorem 4.3. (i) Let Assumptions 2.1-2.2, 3.1-3.7 and 4.1-4.2(i) hold. Under H02, we have as (N , T )→

(∞,∞),

lN T (bβ , bθ , bft ; c)→D N(0,1)

for any q-vector c such that ‖c‖= 1.

(ii) If, in addition, Assumption 4.3 is satisfied, then under H12, for any vectors b,θ and eft , there exists

some c∗ ∈ Rq, ‖c∗‖= 1, such that lN T (b,θ , eft ; c∗)→P ∞, as (N , T )→ (∞,∞).

This theorem justifies the use of the test statistic lN T (bβ , bθ , bft ; c) for the specification testing of the

loading functions. We have now established the asymptotic normality and consistency of the proposed

test statistic under very general conditions. The proof of Theorem 4.3 are given in Appendix B.

5 Simulation results

In this section, we examine the finite sample performance of our proposed estimation procedure

and test statistics using the following linear and nonlinear examples.

5.1 In-sample estimation evaluation

Example 5.1: Linear model

Suppose that we have the following linear regression model, which is quite general and includes

many existing linear panel data models as special cases, such as the model considered by Bai (2009),

Moon & Weidner (2015) and Bai & Liao (2017). Specifically, we consider a model with the form of

Yi t = X ′i tβ +λ(Vi)
′ ft + ei t ,

where X i t are generated from a multivariate standard normal distribution X i t ∼ N(0, Ip), p is the di-

mension of X i t and ei t ∼ N(0, 1). Here we set β = (0.4,0.5, 0, · · · , 0)′ ∈ Rp. Assume that we have

two common factors, ft` for `= 1,2 and we generate ft` from Uniform(2, 3). The corresponding factor

loadings are λ(V ) = (λ1(V1),λ2(V2))′ with V` ∼ Uniform(0, 1). For simplicity, we let λ1(v) = λ2(v) =p
2cos(πv). It is easy to check that the above data generating process for factors and loadings satisfy

the identification conditions outlined in Section 2.2. Our objective is to estimate β , λ(·) and ft together

with our proposed sieve-based GMM estimation method.

Suppose that E[ei t |Vi] = 0. Let φ0(v) = 1, and for all j ≥ 0, φ j(v) =
p

2cos(π jv). Then

{φ j(v)} is an orthonormal basis in the Hilbert space L2[0,1]. Let m(Wi t , X ′i tβ ,λ(Vi)′ ft) = (Yi t −

X ′i tβ − λ(Vi)′ ft)Φq(Vi) where Wi t = (Yi t , Vi) and Φq(Vi) = (φ0(Vi),φ1(Vi), · · · ,φq−1(Vi))′. Then by
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law of iterated expectations, we have E[m(Wi t , X ′i tβ ,λ′(Vi) ft)] = 0. Note that the dimension of m

function is q which is diverging. Thus the parameters (β ,λ(·), ft) can be solved from the above uncon-

ditional moment restrictions using the estimation procedure outlined in Section 2. Specifically, define

(bβ , bDt) = arg min‖MN t(b, dt)‖2, where MN t(b, dt) =
1p
q

1
N

∑N
i=1 m(Wi t , X ′i t b,Φr

k(Vi)′dt). Then by the

identification conditions outlined in Section 2.2, we can get bft and bα separately from bDt . Further,
bλ1(V1) = Φk(V1)′bα1 and bλ2(V2) = Φk(V2)′bα2, where bα1 is the first k elements in bα and bα2 are the

remaining k elements in bα.

We consider different combinations of (N , T ) and for each pair of (N , T ), M = 100 replications

are executed. In this study, we assume the truncation parameter k = (N T )1/5, p = (N T )1/5, ν = 2,

q = p+ kr +ν. Note that the choices of these parameters may not be the optimal ones, but they satisfy

all the requirements of our assumptions.

To examine the performance of the estimator bβ (recall that bβ = 1
T

∑T
t=1

bβt), we compute bias and

median which are defined as follows.

Bias(β) = ‖β − bβ
∗
‖, Med(β) =median(‖β − bβ

1
‖, · · · ,‖β − bβ

M
‖), (7)

where the superscript s indicates the sth replication, bβ
∗

is the average of bβ
s

for s = 1,2, · · · , M over

Monte Carlo replications.

To examine the performance of the estimators of loading functions, bλ`(v`) (recall that bλ`(v`) =

Φk(v`)′
1
T

∑T
t=1 bαt`), we compute bias, standard deviation (Std), root mean squared errors (RMSE) as

follows.

Bias(λ`) =
1

MN

M
∑

s=1

N
∑

i=1

�

bλ
s

`(Vi)−λs
`(Vi)

�

, Std(λ`) =

�

1
MN

M
∑

s=1

N
∑

i=1

�

bλ
s

`(Vi)− bλ
∗

`(Vi)
�2
�1/2

RMSE(λ`) =

�

1
MN

M
∑

s=1

N
∑

i=1

�

bλ
s

`(Vi)−λs
`(Vi)

�2
�1/2

, (8)

where bλ
∗

`(Vi) is the average of bλ
s

`(Vi) over Monte Carlo replications.

Similarly, to examine the performance of bf`, `= 1,2, we compute

Bias( f`) =
1

M T

M
∑

s=1

T
∑

t=1

�

bf s
t` − f s

t`

�

, Std( f`) =

�

1
M T

M
∑

s=1

T
∑

t=1

�

bf s
t` − bf t`

�2
�1/2

RMSE( f`) =

�

1
M T

M
∑

s=1

T
∑

t=1

�

bf s
t` − f s

t`

�2
�1/2

, (9)

where bf t` is the average of bf s
t` over Monte Carlo replications.

The results are presented in Table 1. We can find that (1) the bias and median of bβ are reasonably
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small for all sample sizes. Note that due to the divergence of the dimension, it might not make sense

to compare the bias and median of bβ for different sample sizes; (2) with the increase of N , standard

deviations and root mean squared errors of bf` decreases while it does not change much with the increase

of T . This is consistent with our theory that the convergence rate of bf` is O(N−1/2); (3) with the increase

of N and T , root mean squared errors of bλ(v) decreases. However, we notice that root mean squared

errors of bλ(v) decrease much faster with the increase of N than with the increase of T . This is probably

due to the fact that the function λ(Vi) varies with i rather than t, so the increase of N could provide

more information for the estimation.

Example 5.2: Nonlinear model

In this example, we consider a nonlinear panel data model below.

Let εi t satisfy Yi t = I
�

X ′i tβ +λ(Vi)′ ft − εi t > 0
�

. We then define a binary panel data model of the

form:

P(Yi t = 1|X i t , Vi , ft) = F(X ′i tβ +λ(Vi)
′ ft), i = 1, · · · , N , t = 1, · · · , T, (10)

where β , X i t ∈ Rp, Vi ∈ R2, and F(u) = exp(u)/(1 + exp(u)) is the cumulative distribution function

of εi t . We assume that regressors X i t are generated from a standard multivariate normal distribution,

that is, X i t ∼ N(0, Ip). Here we set β = (0.4, 0.5,0, · · · , 0)′ ∈ Rp. Assume that we have two common

factors ft` for ` = 1, 2 and we generate ft` from Uniform(0.5,1.5). The corresponding factor loadings

are λ(V ) = (λ1(V1),λ2(V2))′ with Vi ∼ i.i.d.N(0r , Ir) and r = 2. For simplicity, we set λ1(v) = λ2(v) =p
2

π1/4 v exp(−v2/2). We can see that the generation of loadings and factors satisfies the identification

conditions in Section 2.2. The sieve-based GMM method outlined in Section 2 can be used to estimate

the unknown function λ(V ), unknown factor ft and the parameter vector β .

Based on model (10), we can get the log likelihood function

ln

� N
∏

i=1

T
∏

t=1

F Yi t (β ′X i t +λ(Vi)
′ ft)

�

1− F(β ′X i t +λ(Vi)
′ ft)

�1−Yi t

�

.

Let Φk(v) = (p0(v), · · · , pk−1(v))′, where {p j(x), j ≥ 0} is the sequence of Hermite functions that forms

an orthonormal basis in L2(R). By the sieve estimation of λ(v), we can approximate the log likelihood

function by the following quantity QN T defined as

QN T = ln
N
∏

i=1

T
∏

t=1

F Yi t (X ′i tβ + f ′t eΦk(Vi)
′α)

�

1− F(X ′i tβ + f ′t eΦk(Vi)
′α)
�1−Yi t ,

= ln
N
∏

i=1

T
∏

t=1

F Yi t (X ′i tβ +Φ
r
k(Vi)

′Dt)
�

1− F(X ′i tβ +Φ
r
k(Vi)

′Dt)
�1−Yi t =

T
∑

t=1

QN t ,

where QN t =
∑N

i=1 ln
�

F Yi t (X ′i tβ +Φ
r
k(Vi)′Dt)

�

1− F(X ′i tβ +Φ
r
k(Vi)′Dt)

�1−Yi t
�

.
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At each given t, to maximize QN t , we derive the first order conditions as follows.

∂QN t

∂ β
=

N
∑

i=1

(Yi t − F(X ′i tβ +Φ
r
k(Vi)′Dt))F (1)(X ′i tβ +Φ

r
k(Vi)′Dt)

F(X ′i tβ +Φ
r
k(Vi)′Dt)(1− F(X ′i tβ +Φ

r
k(Vi)′Dt))

X i t = 0

∂QN t

∂ Dt
=

N
∑

i=1

(Yi t − F(X ′i tβ +Φ
r
k(Vi)′Dt))F (1)(X ′i tβ +Φ

r
k(Vi)′Dt)

F(X ′i tβ +Φ
r
k(Vi)′Dt)(1− F(X ′i tβ +Φ

r
k(Vi)′Dt))

Φr
k(Vi) = 0,

where F (1)(u) = ∂ F(u)
∂ u . It is easy to see that the above first order conditions are equivalent as 1

N
∂QN t
∂ β = 0

and 1
N
∂QN t
∂ Dt

= 0. This can be regarded as the sample version of the following moment conditions with

m(·) = (m′1(·), m′2(·))
′:

E[m1(Yi t , X ′i tβ ,Φr
k(Vi)

′Dt)] = E

�

(Yi t − F(X ′i tβ +Φ
r
k(Vi)′Dt))F (1)(X ′i tβ +Φ

r
k(Vi)′Dt)

F(X ′i tβ +Φ
r
k(Vi)′Dt)(1− F(X ′i tβ +Φ

r
k(Vi)′Dt))

X i t

�

= 0,

E[m2(Yi t , X ′i tβ ,Φr
k(Vi)

′Dt)] = E

�

(Yi t − F(X ′i tβ +Φ
r
k(Vi)′Dt))F (1)(X ′i tβ +Φ

r
k(Vi)′Dt)

F(X ′i tβ +Φ
r
k(Vi)′Dt)(1− F(X ′i tβ +Φ

r
k(Vi)′Dt))

Φr
k(Vi)

�

= 0.

Accordingly, define MN t(β , Dt) =
�

1
N
∂QN t
∂ β ′ , 1

N
∂QN t
∂ D′t

�′
and (bβ , bDt) = arg min‖MN t(b, dt)‖2. Then by the

identification conditions outlined in Section 2.2, we can get bft and bα. Further, bλ1(V1) = Φk(V1)′bα1 and
bλ2(V2) = Φk(V2)′bα2, where bα1 is the first k elements in bα and bα2 are the remaining k elements in bα.

We explore different values of (N , T ) and for each pair of (N , T ), we do M = 100 replications.

In this study, we assume the truncation parameter k = (N T )1/5, p = (N T )1/5, q = p + kr (exactly

identified). To examine the performance of our estimators, we compute the bias and median for the

estimator of β given by (7). We also compute the bias, standard deviation, root mean squared errors

for the estimator of λ(V ) and ft given by (8) and (9), respectively.

The results are presented in Table 2 that reveals quite similar findings as Example 5.1. Namely, (1)

the bias and median of bβ are reasonably small for all sample sizes. Note that due to the divergence of

the dimension, it might not make sense to compare the bias and median of bβ for different sample sizes;

(2) with the increase of N , standard deviations and root mean squared errors of bf` decreases while it

does not change much with the increase of T , which is consistent with our theory that the convergence

rate of bf` is O(N−1/2); (3) with the increase of N and T , root mean squared errors of bλ(v) decreases.

However, we notice that root mean squared errors of bλ(v) decrease much faster with the increase of N

than with the increase of T .
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Table 1: Simulation results in Example 5.1.

(T, N)
bβ bλ1

bλ2
bf1 bf2

Bias Med Bias Std RMSE Bias Std RMSE Bias Std RMSE Bias Std RMSE

(50,50) 0.0027 0.0344 -0.0000 0.0089 0.0091 0.0002 0.0099 0.0101 0.0044 0.1528 0.1535 0.0068 0.1448 0.1454

(50,100) 0.0028 0.0234 -0.0000 0.0058 0.0059 0.0002 0.0070 0.0071 0.0038 0.1039 0.1045 0.0052 0.1083 0.1091

(50,200) 0.0020 0.0156 0.0001 0.0043 0.0044 0.0000 0.0040 0.0040 0.0038 0.0738 0.0743 0.0015 0.0736 0.0740

(100,50) 0.0025 0.0256 -0.0000 0.0055 0.0059 0.0002 0.0063 0.0066 0.0047 0.1536 0.1546 0.0067 0.1438 0.1448

(100,100) 0.0008 0.0165 0.0001 0.0041 0.0042 0.0002 0.0042 0.0044 0.0010 0.1030 0.1035 0.0024 0.1062 0.1068

(100,200) 0.0008 0.0117 0.0000 0.0028 0.0028 0.0000 0.0027 0.0028 0.0008 0.0748 0.0751 0.0011 0.0749 0.0752

(200,50) 0.0015 0.0168 -0.0000 0.0040 0.0044 0.0001 0.0044 0.0048 0.0038 0.1521 0.1529 0.0037 0.1418 0.1426

(200,100) 0.0011 0.0122 0.0000 0.0030 0.0032 0.0002 0.0027 0.0030 0.0017 0.1031 0.1036 0.0028 0.1078 0.1084

(200,200) 0.0009 0.0083 0.0001 0.0021 0.0022 0.0000 0.0020 0.0020 0.0012 0.0741 0.0745 0.0002 0.0748 0.0752

(50,50) 0.0027 0.0344 -0.0000 0.0089 0.0091 0.0002 0.0099 0.0101 0.0044 0.1528 0.1535 0.0068 0.1448 0.1454

(100,50) 0.0025 0.0256 -0.0000 0.0055 0.0059 0.0002 0.0063 0.0066 0.0047 0.1536 0.1546 0.0067 0.1438 0.1448

(200,50) 0.0015 0.0168 -0.0000 0.0040 0.0044 0.0001 0.0044 0.0048 0.0038 0.1521 0.1529 0.0037 0.1418 0.1426

(50,100) 0.0028 0.0234 -0.0000 0.0058 0.0059 0.0002 0.0070 0.0071 0.0038 0.1039 0.1045 0.0052 0.1083 0.1091

(100,100) 0.0008 0.0165 0.0001 0.0041 0.0042 0.0002 0.0042 0.0044 0.0010 0.1030 0.1035 0.0024 0.1062 0.1068

(200,100) 0.0011 0.0122 0.0000 0.0030 0.0032 0.0002 0.0027 0.0030 0.0017 0.1031 0.1036 0.0028 0.1078 0.1084

(50,200) 0.0020 0.0156 0.0001 0.0043 0.0044 0.0000 0.0040 0.0040 0.0038 0.0738 0.0743 0.0015 0.0736 0.0740

(100,200) 0.0008 0.0117 0.0000 0.0028 0.0028 0.0000 0.0027 0.0028 0.0008 0.0748 0.0751 0.0011 0.0749 0.0752

(200,200) 0.0009 0.0083 0.0001 0.0021 0.0022 0.0000 0.0020 0.0020 0.0012 0.0741 0.0745 0.0002 0.0748 0.0752
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Table 2: Simulation results in Example 5.2.

(T, N)
bβ bλ1

bλ2
bf1 bf2

Bias Med Bias Std RMSE Bias Std RMSE Bias Std RMSE Bias Std RMSE

(50,50) 0.1232 0.1386 0.0062 0.0441 0.1232 -0.0515 0.0355 0.1300 0.4992 0.6095 0.7900 0.4933 0.5744 0.7597

(50,100) 0.0778 0.0894 0.0125 0.0362 0.1013 -0.0272 0.0305 0.0720 0.2924 0.4445 0.5352 0.3066 0.4778 0.5695

(50,200) 0.0447 0.0557 0.0189 0.0263 0.0583 -0.0192 0.0244 0.0612 0.1829 0.3420 0.3901 0.1670 0.3392 0.3806

(100,50) 0.1245 0.1378 0.0039 0.0328 0.1286 -0.0487 0.0260 0.1183 0.4959 0.5865 0.7710 0.4711 0.5810 0.7506

(100,100) 0.0759 0.0820 0.0149 0.0244 0.0951 -0.0289 0.0237 0.0772 0.2882 0.4516 0.5391 0.3133 0.4737 0.5705

(100,200) 0.0429 0.0477 0.0211 0.0205 0.0587 -0.0189 0.0190 0.0603 0.1893 0.3473 0.3978 0.1618 0.3355 0.3752

(200,50) 0.1257 0.1307 0.0058 0.0217 0.1227 -0.0491 0.0178 0.1203 0.4977 0.5904 0.7750 0.4725 0.5693 0.7423

(200,100) 0.0802 0.0845 0.0138 0.0185 0.0914 -0.0287 0.0156 0.0726 0.2904 0.4475 0.5366 0.3136 0.4728 0.5695

(200,200) 0.0417 0.0443 0.0206 0.0140 0.0560 -0.0191 0.0128 0.0580 0.1881 0.3452 0.3955 0.1610 0.3416 0.3803

(50,50) 0.1232 0.1386 0.0062 0.0441 0.1232 -0.0515 0.0355 0.1300 0.4992 0.6095 0.7900 0.4933 0.5744 0.7597

(100,50) 0.1245 0.1378 0.0039 0.0328 0.1286 -0.0487 0.0260 0.1183 0.4959 0.5865 0.7710 0.4711 0.5810 0.7506

(200,50) 0.1257 0.1307 0.0058 0.0217 0.1227 -0.0491 0.0178 0.1203 0.4977 0.5904 0.7750 0.4725 0.5693 0.7423

(50,100) 0.0778 0.0894 0.0125 0.0362 0.1013 -0.0272 0.0305 0.0720 0.2924 0.4445 0.5352 0.3066 0.4778 0.5695

(100,100) 0.0759 0.0820 0.0149 0.0244 0.0951 -0.0289 0.0237 0.0772 0.2882 0.4516 0.5391 0.3133 0.4737 0.5705

(200,100) 0.0802 0.0845 0.0138 0.0185 0.0914 -0.0287 0.0156 0.0726 0.2904 0.4475 0.5366 0.3136 0.4728 0.5695

(50,200) 0.0447 0.0557 0.0189 0.0263 0.0583 -0.0192 0.0244 0.0612 0.1829 0.3420 0.3901 0.1670 0.3392 0.3806

(100,200) 0.0429 0.0477 0.0211 0.0205 0.0587 -0.0189 0.0190 0.0603 0.1893 0.3473 0.3978 0.1618 0.3355 0.3752

(200,200) 0.0417 0.0443 0.0206 0.0140 0.0560 -0.0191 0.0128 0.0580 0.1881 0.3452 0.3955 0.1610 0.3416 0.3803
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5.2 Finite sample evaluation of specification testing

Next, we examine the performance of the test statistic lN T for specification testing of loading func-

tions. We consider the following two examples that correspond to Examples 5.1 and 5.2, respectively.

Example 5.3: Linear model

We consider a model with the form of

Yi t = X ′i tβ +λ(Vi)
′ ft + ei t ,

where X i t are generated from a multivariate standard normal distribution X i t ∼ N(0, Ip), p = 3 is the

dimension of X i t and ei t ∼ N(0,1). Here we set β = (0.4,0.5, 0.3)′. Assume that we have two common

factors, ft` for ` = 1, 2 and we generate ft` from Uniform(2,3). The corresponding factor loadings are

λ(V ) = (λ1(V1),λ2(V2))′ with V` ∼ Uniform(0,1). We use the same moment conditions as Example 5.1

to estimate the unknown quantities.

In order to examine the size and power of the proposed statistic lN T for specification of loading

functions, we consider the following situations. For each situation, we calculate the percentage (or

rejecting frequency) for which the proposed test statistic lN T rejected the corresponding null hypothesis

at 1%, 5% and 10% nominal levels among 100 Monte Carlo simulations.

In Situation I, the null hypothesis is H0 : λ1(v) = λ2(v) = 0, and the alternative is H1 : λ1(v) =

λ2(v) = τ
Æ

log(N T )/
p

N T 1
1+v2 with τ taking values of 0.04, 0.05 and 0.1, respectively.

In Situation II, the null hypothesis is H0 : λ1(v) = λ2(v) = θ0 cos(πv) with θ0 =
p

2; and the

alternative is H1 : λ1(v) = λ2(v) = θ1 cos(πv) + τ
Æ

log(N T )/
p

N T 1
1+v2 with θ1 =

p
2 and τ taking

values of 0.04,0.05 and 0.1, respectively.

The sizes and power values for Situation I are reported in Table 3. From the first three columns

containing the size values, it is readily seen that almost all the sizes fluctuate reasonably around the

given significance levels. Overall, the actual sizes are quite close to the nominal sizes. From the rest

nine columns in the right, we can see that although the local departure function ∆N T (v) = δN T∆(v) is

asymptotically negligible as δN T approaches zero, the power values are quite satisfactory. It is clear that

in most cases the power increases as the sample size increases. Also as we expected, with the increase

of τ, the power increases rapidly. The sizes and power values for Situation II are reported in Table 4.

The observations are similar as those in Table 3.

Example 5.4 : Nonlinear model

In this example, we consider the same binary panel data model as Example 5.2, that is,

P(Yi t = 1|X i t , Vi , ft) = F(X ′i tβ +λ(Vi)
′ ft), i = 1, · · · , N , t = 1, · · · , T. (11)
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Table 3: Rejecting frequency in Situation I of Example 5.3 for testing the specification of loading func-
tions at 1%, 5% and 10% nominal levels.

Size Power

τ= 0.04 τ= 0.05 τ= 0.1

(N,T) 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

(50, 50) 0.10 0.07 0.01 0.48 0.31 0.13 0.55 0.48 0.24 0.99 0.98 0.85

(50, 100) 0.11 0.09 0.00 0.53 0.46 0.23 0.72 0.55 0.42 1.00 1.00 0.96

(50, 200) 0.07 0.03 0.00 0.78 0.71 0.45 0.91 0.85 0.68 1.00 1.00 1.00

(100, 50) 0.08 0.04 0.01 0.55 0.39 0.15 0.71 0.59 0.34 1.00 0.99 0.98

(100, 100) 0.11 0.03 0.01 0.70 0.61 0.41 0.84 0.78 0.59 1.00 1.00 1.00

(100, 200) 0.12 0.03 0.00 0.84 0.76 0.51 0.97 0.93 0.78 1.00 1.00 1.00

(200, 50) 0.11 0.05 0.02 0.71 0.52 0.32 0.86 0.72 0.47 1.00 1.00 0.99

(200, 100) 0.08 0.06 0.02 0.73 0.58 0.37 0.93 0.84 0.55 1.00 1.00 1.00

(200, 200) 0.11 0.03 0.00 0.91 0.85 0.61 0.98 0.96 0.86 1.00 1.00 1.00

Table 4: Rejecting frequency in Situation II of Example 5.3 for testing the specification of loading func-
tions at 1%, 5% and 10% nominal levels.

Size Power

τ= 0.04 τ= 0.05 τ= 0.1

(N,T) 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

(50,50) 0.07 0.02 0.01 0.36 0.23 0.10 0.55 0.38 0.16 0.99 0.96 0.86

(50,100) 0.05 0.02 0.00 0.60 0.41 0.18 0.71 0.66 0.32 1.00 1.00 0.99

(50,200) 0.03 0.00 0.00 0.75 0.62 0.37 0.88 0.85 0.57 1.00 1.00 1.00

(100,50) 0.03 0.01 0.00 0.54 0.43 0.17 0.71 0.59 0.37 1.00 1.00 0.99

(100,100) 0.08 0.03 0.00 0.77 0.65 0.42 0.91 0.85 0.63 1.00 1.00 1.00

(100,200) 0.02 0.01 0.00 0.86 0.76 0.56 1.00 0.97 0.78 1.00 1.00 1.00

(200,50) 0.09 0.04 0.00 0.78 0.63 0.30 0.92 0.84 0.56 1.00 1.00 1.00

(200,100) 0.07 0.05 0.00 0.87 0.74 0.47 0.95 0.92 0.75 1.00 1.00 1.00

(200,200) 0.07 0.01 0.00 0.96 0.91 0.78 1.00 1.00 0.94 1.00 1.00 1.00
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We assume that regressors X i t are generated from a standard multivariate normal distribution, that is,

X i t ∼ N(0, Ip). Here we set β = (0.4,0.5, 0.3)′. Assume that we have two common factors ft` for

` = 1,2 and we generate ft` from Uniform(0.5,1.5). The corresponding factor loadings are λ(V ) =

(λ1(V1),λ2(V2))′ with Vi ∼ i.i.d.N(0r , Ir) and r = 2. We estimate the unknown quantities based on the

same set of moment conditions as those in Example 5.2. In order to examine the size and power of the

proposed statistic lN T for specification of loading functions, we consider the following situations. For

each situation, we calculate the percentage (or rejecting frequency) for which the proposed test statistic

lN T rejected the corresponding null hypothesis at 1%, 5% and 10% nominal levels among 100 Monte

Carlo simulations.

In Situation I, the null hypothesis is H0 : λ1(v) = λ2(v) = 0, and the alternative is H1 : λ1(v) =

λ2(v) = τ
Æ

log(N T )/
p

N T 1
1+v2 with τ taking values of 0.15, 0.20 and 0.25, respectively.

In Situation II, the null hypothesis is H0 : λ1(v) = λ2(v) = θ0v exp(−v2/2)with θ0 =
p

2π−1/4; and

the alternative is H1 : λ1(v) = λ2(v) = θ1v exp(−v2/2) + τ
Æ

log(N T )/
p

N T 1
1+v2 with θ1 =

p
2π−1/4

and τ taking values of 0.15,0.20 and 0.25, respectively.

The sizes and power values for Situation I are reported in Table 5, while the corresponding results

for Situation II are presented in Table 6. We can find that for both situations, almost all the sizes

fluctuate reasonably around the given significance levels. Overall, the power increases as the sample

size increases. Also, consistent with our expectation, the power becomes larger when τ gets larger,

which indicates that power increases with the increase of local departures.

Table 5: Rejecting frequency in Situation I of Example 5.4 for testing the specification of loading func-
tions at 1%, 5% and 10% nominal levels.

Size Power

τ= 0.15 τ= 0.20 τ= 0.25

(N,T) 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

(50,50) 0.09 0.08 0.03 0.52 0.38 0.14 0.71 0.64 0.38 0.82 0.77 0.57

(50,100) 0.06 0.03 0.00 0.60 0.49 0.22 0.82 0.73 0.51 0.95 0.94 0.74

(50,200) 0.04 0.03 0.01 0.87 0.80 0.58 0.98 0.96 0.88 1.00 1.00 0.98

(100,50) 0.10 0.03 0.00 0.69 0.56 0.34 0.95 0.84 0.61 0.98 0.95 0.92

(100,100) 0.11 0.03 0.00 0.87 0.80 0.49 0.99 0.95 0.83 1.00 0.99 0.99

(100,200) 0.06 0.02 0.00 0.96 0.91 0.76 1.00 0.99 0.96 1.00 1.00 1.00

(200,50) 0.08 0.05 0.02 0.89 0.84 0.63 0.97 0.95 0.89 1.00 1.00 0.98

(200,100) 0.14 0.06 0.01 0.94 0.89 0.82 1.00 0.99 0.95 1.00 1.00 1.00

(200,200) 0.08 0.04 0.01 0.99 0.99 0.95 1.00 1.00 1.00 1.00 1.00 1.00
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Table 6: Rejecting frequency in Situation II of Example 5.4 for testing the specification of loading func-
tions at 1%, 5% and 10% nominal levels.

Size Power

τ= 0.15 τ= 0.20 τ= 0.25

(N,T) 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

(50,50) 0.15 0.06 0.01 0.40 0.34 0.10 0.66 0.52 0.29 0.79 0.68 0.47

(50,100) 0.12 0.04 0.02 0.53 0.43 0.13 0.78 0.64 0.40 0.91 0.84 0.61

(50,200) 0.37 0.13 0.01 0.80 0.64 0.41 0.97 0.86 0.66 1.00 1.00 0.88

(100,50) 0.07 0.05 0.00 0.72 0.57 0.33 0.86 0.82 0.61 0.99 0.95 0.82

(100,100) 0.18 0.07 0.01 0.80 0.72 0.50 0.94 0.88 0.77 1.00 0.99 0.94

(100,200) 0.18 0.11 0.02 0.95 0.90 0.75 1.00 0.98 0.92 1.00 1.00 1.00

(200,50) 0.09 0.04 0.00 0.84 0.72 0.44 0.97 0.95 0.82 1.00 0.99 0.98

(200,100) 0.15 0.07 0.00 0.93 0.87 0.68 0.98 0.96 0.94 1.00 1.00 0.99

(200,200) 0.15 0.08 0.01 0.99 0.97 0.90 1.00 1.00 0.99 1.00 1.00 1.00

6 Empirical study on stock return prediction

In this section, we apply our proposed sieve-based GMM estimation method to predict excess stock

return in U.S. In what follows, we first describe the data and then present the in-sample and out-of-

sample results.

6.1 Data and model

During the last three decades, a lot of research1 has been done on studying the relationship between

individual stock returns and security characteristics since the seminal studies of Fama & French (1992,

1We acknowledge that there is an emerging line of research using machine learning methods in asset pricing. To mention

a few, Fan et al. (2022) develop new structural nonparametric methods for estimating conditional asset pricing models using

deep neural networks. Gu et al. (2020) employ a comprehensive set of machine learning tools to predict monthly individual

stock returns using firm specific and common predictors. Chen et al. (2019) apply deep neural networks to estimate a nonlinear

asset pricing model for U.S. equity data. More relevant studies can also be found in Rossi (2018), Gu et al. (2021), Feng et al.

(2018), and Leippold et al. (2021). Here we do not attempt to beat those associated with machine learning methods in stock

return prediction. Instead, we show the empirical applicability and relevance of our proposed sieve-based GMM procedure in

real data.
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1993), who first use size and value factors to model excess stock returns. In addition to the Fama-

French size and value characteristics, Connor et al. (2012) and following-up studies (see Fan et al.

2016, Ma et al. 2021, for example) found that momentum and own-volatility characteristics are at least

as important as size and value in explaining equity return co-movements. Therefore, in this study, we

consider four characteristic variables, which are size, value, momentum and own-volatility. We use the

same method as described in Section 5.1 in Connor et al. (2012) to construct size, value, momentum

and own-volatility and following their paper, all four characteristics are standardized each month to

have zero mean and unit variance. Meanwhile, we follow Ando & Bai (2017) to include lagged returns

as regressors.

The data used in this section are from the Center for Research in Security Prices (CRSP), which

includes the complete monthly return records for 164 non-financial S&P 500 companies from 2000 to

2018. Throughout the empirical analysis, we use returns in excess of the risk-free return, treating the

monthly Treasury bill return from CRSP as the risk-free return.

Suppose that we have the following linear regression model

Yi t = X ′i tβ +λ(Vi)
′ ft + ei t , (12)

where Yi t denotes the excess return, X i t = (Yi,t−1, · · · , Yi,t−5)′, Vi = (Vi1, · · · , Vi4)′ denotes the time series

average of size, value, momentum and own-volatility characteristics. The loading function λ(Vi) =

(λ1(Vi1), · · · ,λ4(Vi4))′ and factors ft are unknown. The set up of factors and loading functions λ(Vi)′ ft

follows Connor et al. (2012). Here we assume that the loading function λ`(v) ∈ L2(R), for 1 ≤ ` ≤ 4.

Denote Φk(v) = (p0(v), · · · , pk−1(v))′, where {p j(v), j ≥ 0} be the sequence of Hermite functions that

forms an orthonormal basis in L2(R), which can be used to approximate the unknown loading functions.

It is easy to see that (β ,λ, f ) can be determined by a conditional moment restriction that E[ei t |Vi] =

0. By Example 1.1 in the introduction section and Example 5.1 in the simulation study, we know that

this conditional moment restriction implies that

E[m(Yi t , X ′i tβ ,λ′(Vi) ft)] = 0, (13)

where m(Yi t , X ′i tβ ,λ(Vi)′ ft) = (Yi t − X ′i tβ −λ(Vi)′ ft)Ψq(Vi) and Ψq(Vi) is a basis vector of multivariate

functions whose combinations can approximate any square integrable functions of V in some sense

arbitrarily as q → ∞. Precisely, as Vi is a 4-dimensional vector, we construct Ψq(Vi) by the tensor

product {p j1(Vi1)p j2(Vi2)p j3(Vi3)p j4(Vi4)} for j1, j2, j3, j4 = 0, · · · , q0, which is an orthogonal basis system

to expand any square integrable functions of V . In this study, we simply set q0 = 2 and consequently

q = (q0 + 1)4 = 81, which is a large number of moment conditions. Note that the choice of q0 satisfies

the theoretical requirement in preceding sections and it works satisfactorily well as shown by the in-

sample and out-of-sample forecasting results below. Therefore, by the estimation procedure in Section
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2.2, (β ,λ, f ) can be estimated from E[m(Yi t , X ′i tβ ,λ′(Vi) ft)] = 0 for i = 1, · · · , N and t = 1, · · · , T .

Specifically, for each given t, we first obtain estimates of (β , Dt) by minimizing the objective function

MN t(b, dt) =
1
p

q
1
N

N
∑

i=1

m(Yi t , X ′i t b,Φr
k(Vi)

′dt),

Then by our proposed identification conditions that loading functions have unit norm and factors are

assumed to be positive, we can get bα and bft separately from bDt . Further we regard bβ , bλ(Vi) = eΦk(Vi)′bα

and bft as the estimates of β ,λ(·) and ft , respectively.

For comparison purposes, we consider the following models:

• Traditional linear regression given by

Yi t = X ′i tβols + ei t , (14)

where we use ordinary least squares estimation method to estimate unknown parameters βols.

• Fama-French three factor models2

Yi t = αi + β1i MKTt + β2iSMBt + β3iHM Lt + ei t , (15)

where MKTt , SMBt , HM Lt denote the Fama-French three factors, which are the Market excess

return (MKT) factor, the Small-Minus-Big (SMB) size factor and the High-Minus-Low (HML) value

factor at time t, respectively.

We will evaluate the in-sample and out-of-sample performance of our method and these two com-

petitors below.

6.2 In-sample estimation and specification testing

In this section, we use the whole sample covering 2000:01-2018:12 to evaluate the in-sample per-

formance of (13), (14) and (15) in terms of mean squared errors given by

MSE=
1

N T

N
∑

i=1

T
∑

t=1

(yi t − byi t)
2,

where yi t is the observed excess return for stock i at time t and byi t is the corresponding estimate.

Before presenting the main results, a key issue for the implementation of the estimation procedure

is the determination of the truncation parameters in the orthogonal expansions. However, in practice,

2We also consider Fama-French-Carhart four factor model and the results are qualitatively similar. We omit the results for

brevity.
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there is no universal guide for the choice of such parameters. In this study, we shall choose the truncation

parameters by minimizing the commonly used leave-one-unit-out mean squared errors (MSE) criterion

defined below over a candidate set [2, 8].

ßMSE(k) =
1
N

N
∑

i=1

1
(N − 1)T

N
∑

j=1, j 6=i

T
∑

t=1

(y j t − by
(−i)
j t (k))

2,

where by(−i)
i t (k) is the prediction for yi t without using the information of stock i and with truncation

parameter being k. The results of ßMSE(k) are summarized in the following table, from which we can

find that the best choice is bk = 4.

Table 7: The results of ßMSE(k) when k is over the set [2,8].

k 2 3 4 5 6 7 8

ßMSE(×100) 0.5342 0.5264 0.5177 0.5262 0.5715 1.4380 1.5739

We further obtain the mean squared errors of models (13), (14) and (15), which are 0.0048, 0.0070

and 0.0050, respectively. We can see that the performance of (13) and (15) are similar, and both models

outperform the traditional linear regression (14). For example, by using our proposed sieve-based GMM

method, the accuracy has increased by almost 31% (i.e. (0.0070−0.0048)/0.0070) compared with (14)

in terms of the mean squared errors. The parameter estimates and the corresponding standard errors

are reported in Table 8,3 in which we find that the parameter estimates in models (13) and (14) are

quite different. This suggests that including loading functions and unobserved factors in the model is

very influential.

Table 8: Parameter estimates in models (13) and (14). The corresponding standard errors are shown
in parentheses.

Parameter estimates bβ in (13)

−0.0193 −0.0092 −0.0215 −0.0125 −0.0027

(0.0013) (0.0012) (0.0009) (0.0014) (0.0014)

Parameter estimates bβols in (14)

0.0079 −0.0269 0.0290 0.0349 0.0039

(0.0052) (0.0052) (0.0052) (0.0051) (0.0051)

We plot the estimated loading functions bλ`(v), 1≤ `≤ 4, along with the 95% confidence intervals

3Since the parameter estimates in Fama-French three factor model varies with stocks, so we did not report the results here.

29



in Figure 1, where the intervals are constructed based on the asymptotic variance in assertion 5 in

Theorem 3.2 and we replace the unknown quantities by corresponding estimators. We can see that the

loading functions or characteristic-beta functions of size and volatility show strong nonlinear pattern

while the characteristic-beta functions of value and momentum are close to linear. This illustrates the

advantage of the semiparametric approach we adopted.

Figure 1: The estimated loading functions and 95% confidence intervals. In each plot, the solid line
displays the estimated loading function and the dashed lines display the corresponding 95% confidence
interval.
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Moreover, we conduct the following tests for the specification of loading functions λ(v) using the

test statistic lN T (bβ , bθ , bft ; c) in Section 4.2. We first test whether all the four loading functions are jointly

zero, that is, we consider the null hypothesis

H0 : λ1(v) = λ2(v) = λ3(v) = λ4(v) = 0, for v ∈ V.

Under H0, our model (12) becomes a fully parametric model and the unknown parameter β can be

estimated by OLS. Then based on moment conditions (13), we obtain the test statistic, which is 5.4080.
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This indicates that at least one of the loading functions is significantly different with zero under 5%

level of significance.

Further, we consider the following four tests to separately check whether a given loading function

is zero.

H0` : λ`(v) = 0, for v ∈ V, versus H1` : λ`(v) 6= 0, for v ∈ V,

where ` = 1, 2,3, 4. For illustration, suppose that ` = 1, then under H01, we have λ1(v) = 0 and there

is no restrictions on the rest three loading functions. We employ the estimation procedure outlined in

Section 2.2 to estimate β , λ2(v), λ3(v), λ4(v) and the corresponding factors f2, f3 and f4. Then based

on moment conditions (13), we obtain the test statistic 2.3497. Similarly, following the same procedure,

under H0`, `= 2,3, 4, the test statistics are respectively, 2.1126, 2.0251 and 1.9941. The results suggest

that all the loading functions are significantly different with zero under 5% level of significance.

6.3 Out-of-sample prediction performance

In this study, we employ an expansive window scheme to conduct the out-of-sample evaluation

of (13), (14) and (15). The estimation sample always starts from the first observation and additional

observations are used as they become available. Specifically, for the first window, we estimate model

based on the observations {yi t}Ni=1
n
t=1. At the point xn, we predict {yi,n+1}Ni=1 with the estimated value

denoted as {byi,n+1}Ni=1. Then we expand the first window to include observations {yi t}Ni=1
n+1
t=1 to predict

{yi,n+2}Ni=1. Repeat the above procedure until the forecast for all the stocks at the last period (2018

December) is made. As the selection of out-of-sample period is always somewhat arbitrary, in this study,

we consider three out-of-sample periods,

• Period 1: 2005 June - 2018 December (a long out-of-sample period)

• Period 2: 2008 February - 2009 March (Global Financial Crisis).

• Period 3: 2010 June - 2018 December (a more recent out-of-sample period).

Regarding the choice of truncation parameters, we use the same criterion (i.e. leave-one-unit-out

mse) as that used in the above in-sample estimation. One may select the truncation parameters for each

expanding sample (because it may differ across different periods) to gain higher forecast accuracy, but

will be at the cost of a significant increase in computation time. We then evaluate the out-of-sample

performance of (13), (14) and (15) by computing the out-of-sample mean squared forecasting errors

defined as

MSFE=
1

NR

R
∑

r=1

N
∑

i=1

(yi,n+r − byi,n+r)
2

where byi,n+r is the predicted return for stock i in the r-th window, yi,n+r is the corresponding observed
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return, n is the initial window size and R is the total number of expansive windows.

Let MSFEgmm, MSFEols and MSFEF F3 denote the mean squared forecasting errors produced by

(13), (14) and (15), respectively. The results are presented in Table 9. Consistent with the in-sample

estimation results, models (13) and (15) have similar performance while in all three out-of-sample

periods, the mean squared forecasting errors produced by those two models are much smaller than

model (14) by ordinary least squares method.

To show the advantages of our model under this particular structure, we further compute the rela-

tive accuracy of our method against model (14), which we call “Efficiencygmm/ols" as follows.

Efficiencygmm/ols =
MSFEols −MSFEgmm

MSFEols
.

Table 9: Prediction results for three out-of-sample periods

OOS MSFEgmm MSFEols MSFEF F3 Efficiencygmm/ols

Period 1 0.0057 0.0060 0.0057 0.0483

Period 2 0.0148 0.0157 0.0127 0.0604

Period 3 0.0038 0.0045 0.0042 0.1569

7 Conclusions

In this paper, we have considered a class of high dimensional moment restriction panel data models

with interactive effects, where the dimension of parameter vector and the number of moment conditions

are diverging with sample size. We assume that the common factors are unobserved and the factor

loadings are unknown smooth functions of individual characteristic variables. Such model framework

is very general and includes many existing linear and nonlinear panel data models as special cases, such

as the linear panel data model with interactive effect and binary panel data models. We have proposed

a sieve-based generalized method of moments estimation to estimate the unknown parameters, factors

and loading functions. In addition, we have established asymptotic theory for the proposed estimators.

Moreover, we have proposed two test statistics for the over-identification, specification of loading

functions and established their large sample properties, respectively. Our simulation results further

showed that the proposed estimation methods and test procedures perform very well in finite samples.

Finally, we have demonstrated the advantages of the proposed method by applying it to forecast stock

return prediction.
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Appendix A: Lemmas

This section provides all technical lemmas and some notation used for the theoretical derivations,

while the proofs of these lemmas are postponed to the supplementary material of the paper.

Lemma A.1. Under Assumptions 2.1, 2.2, 3.1-3.3, for each given t, we have

(1) ‖MN t(β , Dt)‖2 = OP(‖γ(k)(v)‖2) +OP(N−1);

(2) Given B2
1N + B2

2N = o(N), sup‖b‖≤B1N ,‖dt‖≤B2N ,‖(b−β ,dt−Dt )‖>δ ‖MN t(b, dt)‖−2 = OP(1) for each δ > 0,

when N is large.

Denote m(v, u, w) = (m1(v, u, w), · · · , mq(v, u, w))′. To investigate the limiting distributions, we

denote the Score and Hessian functions as follows.

SN t(b, dt) =

 

S1N t(b, dt)

S2N t(b, dt)

!

:=

 

∂
∂ b
∂
∂ dt

!

‖MN t(b, dt)‖2,

HN t(b, dt) =

 

H11(b, dt) H12(b, dt)

H21(b, dt) H22(b, dt)

!

:=

 

∂ 2

∂ b∂ b′
∂ 2

∂ b∂ d ′t
∂ 2

∂ dt∂ b′
∂ 2

∂ dt∂ d ′t

!

‖MN t(b, dt)‖2.

Denote hN t(β ,λ′ ft) =
1
qΨN tΨ

′
N t and sN t(β ,λ′ ft) =

1
qΨN t

1
N

∑N
i=1 m(Wi t , X ′i tβ ,λ(Vi)′ ft), where

ΨN t = E

 

∂
∂ u m(Wi t , X ′i tβ ,λ(Vi)′ ft)′ ⊗ X i t
∂
∂ w m(Wi t , X ′i tβ ,λ(Vi)′ ft)′ ⊗Φr

k(Vi)

!

(p+kr)×q

.

Lemma A.2. Under Assumption 2.1, 2.2, 3.1, 3.3 and 3.5-3.7, (1) HN t(β , Dt) is asymptotically almost

surely positive definite; (2) as N →∞, we have ‖HN t(β , Dt)− hN t(β ,λ′ ft)‖= oP(1).

Lemma A.3. Under Assumptions 2.1, 2.2, 3.1,3.3, 3.5-3.7, as N →∞, we have

‖SN t(β , Dt)− sN t(β ,λ′ ft)‖= oP(1).
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Appendix B: Proofs of the main results

Proof of Theorem 3.1. By Lemma A.1, we have shown that

‖MN t(β , Dt)‖2 = oP(1) (16)

sup
‖b‖≤B1N ,‖dt‖≤B2N ,‖b−β ,dt−Dt‖>δ

‖MN t(b, dt)‖−2 = OP(1), for each δ > 0 (17)

Fix ε > 0 and δ > 0. Equation (17) means that there exists a large but fixed M such that

lim sup P

�

sup
‖b‖≤B1N ,‖dt‖≤B2N ,‖b−β ,dt−Dt‖>δ

‖MN t(b, dt)‖−2 > M

�

< ε,

and equation (16) implies that ‖MN t(bβt , bDt)‖2 = inf‖b‖≤B1N ,‖dt‖≤B2N
‖MN t(b, dt)‖2 ≤ ‖MN t(β , Dt)‖2 =

oP(1), which gives P(‖MN t(bβt , bDt)‖−2 > M)→ 1.

It follows that, with probability of at least 1− 2ε for N large enough,

‖MN t(bβt , bDt)‖−2 > M ≥ sup
‖b‖≤B1N ,‖dt‖≤B2N ,‖b−β ,dt−Dt‖>δ

‖MN t(b, dt)‖−2

Therefore, the event (bβt , bDt) ∈ {(b, dt) : ‖b‖ ≤ B1N ,‖dt‖ ≤ B2N ,‖b − β , dt − Dt‖ > δ} holds with

probability at most 2ε, lim sup P(‖(bβt − β , bDt − Dt)‖ > δ) < 2ε. As ε and δ are arbitrarily chosen, we

have ‖(bβt − β , bDt − Dt)‖ →P 0. Since bβt − β = oP(1) for any given t, it is straightforward to get that







bβ − β




=











1
T

T
∑

t=1

bβt − β











=
1
T

T
∑

t=1







bβt − β




≤ max
1≤t≤T







bβt − β




= oP(1) (18)

Meanwhile, we have, for 1≤ `≤ r,

|bft`| − | ft`|= ‖S`bDt‖ − ‖S`Dt‖ ≤ ‖S`(bDt − Dt)‖= oP(1)

bαt` −αt` =
S`bDt

‖S`bDt‖
−

S`Dt

‖S`Dt‖
= oP(1).

Therefore, ‖bft − ft‖2→P 0 and

‖bλ`(v)−λ`(v)‖2 =
∫

‖bλ`(v)−λ`(v)‖2π(v)dv =

∫

‖Φk(v)
′(bαt` −αt`) + γ

(k)
`
(v)‖2π(v)dv

= ‖bαt` −αt`‖2 + ‖γ
(k)
`
(v)‖2→P 0,

as N , k → ∞, by the orthogonality of the basis sequence. Thus it is straightforward to show that

‖bλ`(v)−λ`(v)‖2 = oP(1). The proof is finished.

Proof of Theorem 3.2.

(1) Write
p

N
�

L (Òβt)−L (β)
�
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=
p

N∂L (β)′(Òβt − β)

=−
p

N∂L (β)′h11(β ,λ′ ft)
−1s1N t(β ,λ′ ft) + oP(1)

=−
p

N∂L (β)′
�

1
q
∆x∆

′
x

�−1
�

1
q
∆x

1
N

N
∑

i=1

m(Wi t , X ′i tβ ,λ(Vi)
′ ft)

�

+ oP(1)

=− ∂L (β)′
�

∆x∆
′
x

�−1
∆x

1
p

N

N
∑

i=1

m(Wi t , X ′i tβ ,λ(Vi)
′ ft) + oP(1)

D
−→N

�

0,Σβ0

�

where the first equality is obtained by the linearity of Fréchet derivative and ignoring the higher order

term; second equality is based on the first order Taylor expansion and ignoring higher order terms and

further apply the results in Lemma A.2 and Lemma A.3; the last step follows from the standard central

limit theorem and

Σβ0
=∂L (β)′

�

∆x∆
′
x

�−1
∆xΞm∆

′
x

�

∆x∆
′
x

�−1
∂L (β)

+ lim
N

1
N

∑

i 6= j

∂L (β)′
�

∆x∆
′
x

�−1
∆xΞi j,11∆

′
x

�

∆x∆
′
x

�−1
∂L (β).

(2) Following similar procedure, we can obtain the asymptotic distribution for bβ by
p

N T
�

L (bβ)−L (β)
�

=
p

N T∂L (β)′(bβ − β)

=−
p

N T∂L (β)′
1
T

T
∑

t=1

(Òβt − β)

=−
p

N T∂L (β)′
1
T

T
∑

t=1

h11(β ,λ′ ft)
−1s1N t(β ,λ′ ft) + oP(1)

=−
p

N T∂L (β)′
�

∆x∆
′
x

�−1
∆x

1
N T

T
∑

t=1

N
∑

i=1

m(Wi t , X ′i tβ ,λ(Vi)
′ ft) + oP(1)

=− ∂L (β)′
�

∆x∆
′
x

�−1
∆x

1
p

N T

T
∑

t=1

N
∑

i=1

m(Wi t , X ′i tβ ,λ(Vi)
′ ft) + oP(1)

D
−→N

�

0,Σβ
�

,

where Σβ = limN ,T
1

N T

∑

i, j,t,s ∂L (β)
′
�

∆x∆
′
x

�−1
∆xΞi j,ts∆

′
x

�

∆x∆
′
x

�−1
∂L (β).

(3) We have
p

N
�

cft` − ft`

�

=
p

N
cft` + ft`

�

cft`
2
− f 2

t`

�
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=
p

N
cft` + ft`

�

||ÓDt`||2 − f 2
t`

�

=
p

N
cft` + ft`

�

||Dt`||2 + 2D′t`
�

ÓDt` − Dt`

�

− ft`
2
�

+ oP(1)

=
p

N
cft` + ft`

2 ft`α
′
`S`

�

cDt − Dt

�

+ oP(1)

=
p

Nα′`S`
�

cDt − Dt

�

+ oP(1)

=α′`S`
�

∆k∆
′
k

�−1
∆k

1
p

N

N
∑

i=1

m(Wi t , X ′i tβ ,λ(Vi)
′ ft) + oP(1)

D
−→N

�

0,Σ f `

�

,

where the last equality is obtained by using the first order Taylor expansion with ignoring higher order

terms and applying the results in Lemma A.2 and Lemma A.3; the last step follows from the standard

central limit theorem and

Σ f ` =α
′
`S`

�

∆k∆
′
k

�−1
∆kΞm∆

′
k

�

∆k∆
′
k

�−1
S′`α` + lim

N

1
N

∑

i 6= j

α′`S`
�

∆k∆
′
k

�−1
∆kΞi j,11∆

′
k

�

∆k∆
′
k

�−1
S′`α`.

(4) Write
p

N
||Φk(V )||

(bλt`(V )−λ`(V ))

=
p

N
||Φk(V )||

Φ′k(V )(bαt` −α`) + oP(1)

=
p

N
||Φk(V )||

Φ′k(V )

�

S`cDt

||S`cDt ||
−

S`Dt

||S`Dt ||

�

+ oP(1)

=
p

N
||Φk(V )||

Φ′k(V )

�

S`cDt

||S`cDt ||
−

S`Dt

||S`cDt ||
+

S`Dt

||S`cDt ||
−

S`Dt

||S`Dt ||

�

+ oP(1)

=
p

N
||Φk(V )||

Φ′k(V )
1

||S`cDt ||
S`(cDt − Dt) +

p
N

||Φk(V )||
Φ′k(V )

S`Dt(||S`Dt || − ||S`cDt ||)
||S`cDt ||||S`Dt ||

+ oP(1)

=
1

||Φk(V )|| ft`
p

N
Φ′k(V )S`

�

∆k∆
′
k

�−1
∆k

N
∑

i=1

m(Wi t , X ′i tβ ,λ(Vi)
′ ft) + oP(1)

D
−→N

�

0,Σλ,t`

�

where the second equality we use the identification condition, the rest steps are obtained by similar

procedure as those in (2) of this theorem and the covariance can be obtained by

Σλ,t` =
1

||Φk(V )||2 f 2
t`

Φ′k(V )S`
�

∆k∆
′
k

�−1
∆kΞm∆

′
k

�

∆k∆
′
k

�−1
S′`Φk(V )
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+ lim
N

1
N

∑

i 6= j

1

||Φk(V )||2 f 2
t`

Φ′k(V )S`
�

∆k∆
′
k

�−1
∆kΞi j,11∆

′
k

�

∆k∆
′
k

�−1
S′`Φk(V ).

(5) By similar procedure, we obtain the asymptotic distribution for bλ`(V ) = Φk(V )
�

1
T

∑T
t=1 bαt`

�

.
p

N T
||Φk(V )||

(bλ`(V )−λ`(V ))

=
p

N T
||Φk(V )||

Φ′k(V )(
1
T

T
∑

t=1

bαt` −α`) + oP(1)

=
p

N T
||Φk(V )||

Φ′k(V )
1
T

T
∑

t=1

�

S`cDt

||S`cDt ||
−

S`Dt

||S`Dt ||

�

+ oP(1)

=
p

N T
||Φk(V )||

Φ′k(V )
1
T

T
∑

t=1

�

S`cDt

||S`cDt ||
−

S`Dt

||S`cDt ||
+

S`Dt

||S`cDt ||
−

S`Dt

||S`Dt ||

�

+ oP(1)

=
p

N T
||Φk(V )||

Φ′k(V )
1
T

T
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t=1

1

||S`cDt ||
S`(cDt − Dt) +

p
N T

||Φk(V )||
Φ′k(V )

1
T

T
∑

t=1

S`Dt(||S`Dt || − ||S`cDt ||)
||S`cDt ||||S`Dt ||

+ oP(1)

=
1

||Φk(V )||
Φ′k(V )S`

�

∆k∆
′
k

�−1
∆k

1
p

N T

N
∑

i=1

T
∑

t=1

1
ft`

m(Wi t , X ′i tβ ,λ(Vi)
′ ft) + oP(1)

D
−→N (0,Σλ`) ,

where Σλ` = limN ,T
1

N T

∑

i, j,t,s
1

||Φk(V )||2 ft` fs`
Φ′k(V )S`

�

∆k∆
′
k

�−1
∆kΞi j,ts∆

′
k

�

∆k∆
′
k

�−1
S′
`
Φk(V ).

The proof is now finished.

Proof of Corollary 3.1. Since the dimension of ∂L (bβ)− ∂L (β) is fixed, the elementwise consistency

ensures the consistency of the vector. Observe that Assumption 3.8 stipulates the linearity of L (·).

Thus, it follows immediately from Theorem 3.2 that ∂L (bβ) = ∂L (β) + oP(1).

Similarly, due to Assumptions 3.4-3.7, Ò∆x = ∆x + oP(1), Ò∆k = ∆k + oP(1), bΞm = Ξm + oP(1),
bΞ11,ts = Ξ11,ts+ oP(1), and bΞi j,11 = Ξi j,11+ oP(1) as N , T →∞. We can also show the consistency of bG

following the steps outlined in Appendix A in Thompson (2011).

Thus, bΣβ = Σβ + oP(1), bΣ f ` = Σ f ` + oP(1), bΣλ,t` = Σλ,t` + oP(1), and bΣλ` = Σλ` + oP(1). holds

immediately.

Proof of Theorem 4.1. We will prove Theorem 4.1 in two steps. In the first step, we show that

LN t(bβ , bDt ; c) →D N(0,1) for a given t. In the second step, we show LN T (bβ , bD; c) →D N(0, 1) by con-

ventional central limit theorem.

By conventional central limit theorem, we have
� N
∑

i=1

[c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft)]

2

�− 1
2 N
∑

i=1

c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft)→D N(0,1),
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as N →∞ for any c ∈ Rq such that ‖c‖= 1.

Thus, to prove Theorem 4.1, it is sufficient to show

LN t(bβ , bDt ; c) =

� N
∑

i=1

[c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft)]

2

�− 1
2 N
∑

i=1

c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft) + op(1).

To this end, we will show

1
N

DN t(bβ , bDt ; c)2 −
1
N

N
∑

i=1

[c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft)]

2 = op(1),

1
p

N

N
∑

i=1

c′m(Wi t , X ′i t bβ ,Φr
k(Vi)

′
bDt)−

1
p

N

N
∑

i=1

c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft) = op(1).

The proof is lengthy and we leave the detailed proof in the supplementary material of the paper.

Proof of Theorem 4.2. It is easy to see that for any (b, dt) and c with ‖c‖= 1,

1
p

N
DN t(b, dt ; c) =

�

E[c′m(Wi t , X ′i t b,Φr
k(Vi)

′dt)]
2
�1/2
+ oP(1)

=
�

c′E[m(Wi t , X ′i t b,Φr
k(Vi)

′dt)m(Wi t , X ′i t b,Φr
k(Vi)

′dt)
′]c
�1/2
+ oP(1),

which is bounded away from zero and infinity in probability by our condition.

Therefore, to prove this theorem, it suffices to show that there exists some c∗ with ‖c∗‖ = 1 such

that
1
p

N T

N
∑

i=1

T
∑

t=1

c∗′m(Wi t , X ′i t b,Φr
k(Vi)

′dt)→P ∞

as N , T →∞ for any b ∈ Rp and dt ∈ Rkr .

By the law of large numbers, we have

1
p

N T

N
∑

i=1

T
∑

t=1

c∗′m(Wi t , X ′i t b,Φr
k(Vi)

′dt) =
p

N T
1

N T

N
∑

i=1

T
∑

t=1

c∗′m(Wi t , X ′i t b,Φr
k(Vi)

′dt)

=
p

N T
�

E[c∗′m(Wi t , X ′i t b,Φr
k(Vi)

′dt)] + oP(1)
�

.

Let c∗ = E[m(Wi t , X ′i t b,Φr
k(Vi)′dt)]/‖E[m(Wi t , X ′i t b,Φr

k(Vi)′dt)]‖. Then

1
p

N T

N
∑

i=1

T
∑

t=1

c∗′m(Wi t , X ′i t b,Φr
k(Vi)

′dt) =
p

N T
�

‖E[m(Wi t , X ′i t b,Φr
k(Vi)

′dt)]‖+ oP(1)
�

≥
p

N T
�

inf
(b,g,s)∈Θ

‖E[m(Wi t , X ′i t b, s′t g(Vi))]‖+ oP(1)
�

≥
p

N T (ζN T + oP(1))→P ∞,

as N , T →∞. Then we finish the proof of this theorem.
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Proof of Theorem 4.3. The asymptotic normality of lN T (bβ , bθ , bft ; c) in the first part follows similarly

from the proof of Theorem 4.1. The reason is straightforward. Here the null hypothesis is H02 : λ(v) =

g(v,θ0) = eΦk(v)′θ0. Thus, without orthogonal expansion, we have the parametric form of g(v,θ0) as a

combination of basis functions that allows to directly apply the estimation procedure outlined in Section

2.2 to estimate β , θ0 and ft .

Now, let’s prove the second part. Under H12, λ(Vi) = g(Vi ,θ1) +∆N T (Vi). Notice that
�

�

�

�

�

N
∑

i=1

{[c′m(Wi t , X ′i t b, g(Vi ,θ1)
′
eft +∆N T (Vi)

′
eft)]

2 − [c′m(Wi t , X ′i t b, g(Vi ,θ1)
′
eft)]

2}

�

�

�

�

�
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′
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′
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′
eft)|

× |c′[m(Wi t , X ′i t b, g(Vi ,θ1)
′
eft +∆N T (Vi)

′
eft) +m(Wi t , X ′i t b, g(Vi ,θ1)

′
eft)]|

≤q1/2
N
∑
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A(Wi t , X i t , Vi)|∆N T (Vi)
′
eft | × [2‖m(Wi t , X ′i t b, g(Vi ,θ1)

′
eft)‖+ q1/2A(Wi t , X i t , Vi)|∆N T (Vi)

′
eft |]

=q1/2δN T

N
∑

i=1

A(Wi t , X i t , Vi)|∆(Vi)
′
eft | × [2‖m(Wi t , X ′i t b, g(Vi ,θ1)

′
eft)‖+ q1/2δN T A(Wi t , X i t , Vi)‖∆(Vi)

′
eft‖]

=2q1/2δN T

N
∑

i=1

A(Wi t , X i t , Vi)‖m(Wi t , X ′i t b, g(Vi ,θ1)
′
eft)∆(Vi)

′
eft‖+ qδ2

N T

N
∑

i=1

A(Wi t , X i t , Vi)
2|∆(Vi)

′
eft |2

=O(qδN T N),

uniformly in t by Assumptions 3.1 and 3.3. Thus,

1
Nq

N
∑

i=1

[c′m(Wi t , X ′i t b, g(Vi ,θ1)
′
eft +∆N T (Vi)eft)]

2 =
1

Nq

N
∑

i=1

[c′m(Wi t , X ′i t b, g(Vi ,θ1)
′
eft)]

2 + oP(1),

uniformly in t, in view of δN T = o(1). This further gives DN t = OP(
p

Nq) uniformly in t.

Accordingly, to fulfill the proof, we need to show 1p
N Tq

∑T
t=1

∑N
i=1 c∗′m(Wi t , X ′i t b,λ(Vi)′ eft)→P ∞

for some c∗ : ‖c∗‖= 1 given any b ∈ Rp, θ ∈ eΘ, eft ∈ Rr .

Notice that

1
p

N Tq
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N
∑

i=1
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′
eft) =

p
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N
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N T
p
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[c′Em(Wi t , X ′i t b,λ(Vi)

′
eft) + oP(1)].

Let c∗ = Em(Wi t , X ′i t b,λ(Vi)′ eft)/‖Em(Wi t , X ′i t b,λ(Vi)′ eft)‖. Then,

1
p

N T
p

q

T
∑

t=1

N
∑

i=1

c∗′m(Wi t , X ′i t b,λ(Vi)
′
eft) =

p
N T
p

q
[‖Em(Wi t , X ′i t b,λ(Vi)

′
eft)‖+ oP(1)]
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Moreover, under H12 and by Assumption 4.3, ∆N T (v) = δN T∆(v) where δN T → 0 as N , T →∞.

Then by Assumption 3.2, we have

1
p

q
‖E[m(Wi t , X ′i t b,λ(Vi)

′
eft)]‖

=
1
p

q
‖E[m(Wi t , X ′i t b, g(Vi ,θ1)

′
eft +δN T∆(Vi)

′
eft)]‖

≥ inf
eft :‖[eλ(Vi)−λ(Vi)]′ eft‖≥δN T ‖∆(Vi)′ eft‖

1
p

q
‖E[m(Wi t , X ′i t b, eλ(Vi)

′
eft)]‖

≥ inf
b,eft :‖b−β‖+‖[eλ(Vi)−λ(Vi)]′ eft‖≥δN T cmin

1
p

q
‖E[m(Wi t , X ′i t b, eλ(Vi)

′
eft)]‖

≥εN T .

Thus, under H12 we have

1
p

N T
p

q

T
∑

t=1

N
∑

i=1

c∗′m(Wi t , X ′i t b,λ(Vi)
′
eft)

=
p

N T
p

q
[‖Em(Wi t , X ′i t b, g(Vi ,θ1)

′
eft +δN T∆(Vi)

′ ft)‖+ oP(1)]

≥
p

N T[εN T + oP(q
−1/2)]→P ∞,

when N , T →∞. Then we finish the proof of this theorem.
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Appendix C

This supplementary material contains the proofs of Lemmas A.1–A.3 and Theorem 4.1 in Appendix

C below.

Proof of Lemma A.1

(1) We have
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,

where m(·, ·, ·) = (m1(·, ·, ·), · · · , mq(·, ·, ·))′.

It is easy to show that

E
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where I1 =
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By Assumption 3.3, we can further show that
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Meanwhile, by applying Lemma A.1 in Gao (2007) and Assumption 3.1, we have
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Thus I2 = O(N), and ‖MN t(β , Dt)‖2 = OP(‖γ(k)(v)‖2) +OP(N−1).

(2) It is easy to see that
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Then we have that
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Further, by applying Lemma A.1 in Gao (2007), we have
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where by Assumptions 3.1 and 3.3, we have
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Then by the triangle inequality, we have that
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For any δ > 0, let N be large (so k is large) such that δ > ‖γ(k)(v)‖. Moreover, by Assumption 3.2,
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Then we finish the proof of Lemma A.1.

Proof of Lemma A.2

Write HN t(β , Dt) = eHN t(β , Dt)+∆N t(β , Dt), where eHN t(β , Dt) is a symmetric 2-by-2 block matrix
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∆N t(β , Dt) has blocks as follows.
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and ∆21(β , Dt) =∆12(β , Dt)′.

To prove that HN t(β , Dt) is almost surely positive definite, we shall show that (i) eHN t(β , Dt) is

almost surely positive definite; (ii) ‖∆(β , Dt)‖= oP(1).

To prove (i), for any vectors Q1 ∈ Rp and Q2 ∈ Rkr , where at least one of them is not zero, we have
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which is almost surely positive. Hence, eHN t(β , Dt) is almost surely positive definite.

To prove (ii), it suffices to prove the result for each block.

By the triangle inequality and Cauchy-Schwarz inequality, we have
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By Assumption 3.5, we have for any given t, 1
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The last equality is obtained by the same procedure as (1) combined with E‖X11‖2 = O(p) in Assump-

tion 3.5.

Then we have ‖∆11(β , Dt)‖2 = oP(1).

Similarly, we have

‖∆12(β , Dt)‖2 ≤ ‖MN t(β , Dt)‖2
1
q

q
∑

l=1











1
N

N
∑

j=1

∂ 2

∂ u∂ w
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)X j tΦ

r
k(Vj)

′











2

in which

1
q

q
∑

l=1

E











1
N

N
∑

j=1

∂ 2

∂ u∂ w
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)X j tΦ

r
k(Vj)

′











2

= O(pkr) +O(N−1pkr),

by the same procedure of (2). This implies that ‖∆12(β , Dt)‖2 = oP(1).

Similarly

‖∆22(β , Dt)‖2 ≤ ‖MN t(β , Dt)‖2
1
q

q
∑

l=1











1
N

N
∑

j=1

∂ 2

∂ w2
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)Φ

r
k(Vj)Φ

r
k(Vj)

′











2

,

where

1
q

q
∑

l=1

E











1
N

N
∑

j=1

∂ 2

∂ w2
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)Φ

r
k(Vj)Φ

r
k(Vj)

′











2

= O(k2r2) +O(N−1k2r2),

implying that ‖∆22(β , Dt)‖2 = oP(1).

Now we show the result (2) in Lemma A.2. Since ‖HN t(β , Dt)− hN t(β ,λ′ ft)‖ ≤ ‖∆N t(β , Dt)‖+

7



‖ eHN t(β , Dt)−hN t(β ,λ′ ft)‖= oP(1)+‖ eHN t(β , Dt)−hN t(β ,λ′ ft)‖. It is sufficient to show that ‖ eHN t(β , Dt)−

hN t(β ,λ′ ft)‖= oP(1). In what follows, we will show the results in block-sense.

eH11(β , Dt)− h11(β ,λ′ ft)

=
1
q

q
∑

l=1

 

1
N

N
∑

j=1

∂

∂ u
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)X j t

!

�

1
N

N
∑

i=1

∂

∂ u
ml(Wi t , X ′i tβ ,Φr

k(Vi)
′Dt)X i t

�′

−
1
q

q
∑

l=1

�

E
∂

∂ u
ml(Wi t , X ′i tβ ,λ(Vi)

′ ft)X i t

��

E
∂

∂ u
ml(Wi t , X ′i tβ ,λ(Vi)

′ ft)X i t

�′

=
1
q

q
∑

l=1

1
N

N
∑

j=1

�

∂

∂ u
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)X j t −E

∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)X j t

�

×

�

1
N

N
∑

i=1

∂

∂ u
ml(Wi t , X ′i tβ ,Φr

k(Vi)
′Dt)X i t

�′

+
1
q

q
∑

l=1

�

E
∂

∂ u
ml(Wi t , X ′i tβ ,λ(Vi)

′ ft)X i t

�

×
1
N

N
∑

i=1

�

∂

∂ u
ml(Wi t , X ′i tβ ,Φr

k(Vi)
′Dt)X i t −E

∂

∂ u
ml(Wi t , X ′i tβ ,λ(Vi)

′ ft)X i t

�′

= I1 + I2,

where

I1 =
1
q

q
∑

l=1

1
N

N
∑

j=1

�

∂

∂ u
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)X j t −

∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)X j t

�

×

�

1
N

N
∑

i=1

∂

∂ u
ml(Wi t , X ′i tβ ,Φr

k(Vi)
′Dt)X i t

�′

+
1
q

q
∑

l=1

1
N

N
∑

j=1

�

∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)X j t −E
∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)X j t

�

×

�

1
N

N
∑

i=1

∂

∂ u
ml(Wi t , X ′i tβ ,Φr

k(Vi)
′Dt)X i t

�′

.

By Cauchy-Schwarz inequality, we have

‖I1‖2 ≤
1
q

q
∑

l=1











1
N

N
∑

j=1

�

∂

∂ u
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)X j t −

∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)X j t

�











2

8



×
1
q

q
∑

l=1











1
N

N
∑

i=1

∂

∂ u
ml(Wi t , X ′i tβ ,Φr

k(Vi)
′Dt)X i t











2

+
1
q

q
∑

l=1











1
N

N
∑

j=1

�

∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)X j t −E
∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)X j t

�











2

×
1
q

q
∑

l=1











1
N

N
∑

i=1

∂

∂ u
ml(Wi t , X ′i tβ ,Φr

k(Vi)
′Dt)X i t











2

= I11 × I13 + I12 × I13.

Following the procedure of deriving (2), I11 has the same order in probability as

1
q

q
∑

l=1









E
�

∂

∂ u
ml(W11, X ′11β ,Φr

k(V1)
′D1)−

∂

∂ u
ml(W11, X ′11β ,λ(V1)

′ f1)
�

X11









2

=
1
q









E
�

∂

∂ u
m(W11, X ′11β ,Φr

k(V1)
′D1)−

∂

∂ u
m(W11, X ′11β ,λ(V1)

′ f1)
�

⊗ X11









2

≤ E
�

A(W11, X11, V1)
2‖X11‖2

�

E


γ(k)(V1)
2


= OP(‖γ(k)(V1)‖2p), (4)

by Assumption 3.5 and 3.7.

For I12, by Assumption 3.1, we have

E[I12] =
1
q

q
∑

l=1

E











1
N

N
∑

j=1

�

∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)X j t −E
∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)X j t

�











2

=
1
q

q
∑

l=1

1
N2
E











N
∑

j=1

�

∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)X j t −E
∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)X j t

�











2

=
1
q

q
∑

l=1

1
N2

N
∑

i=1

N
∑

j=1

cov
�

∂

∂ u
ml(Wi t , X ′i tβ ,λ(Vi)

′ ft)X i t ,
∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)X j t

�

= O(N−1p),

where the last equality is obtained by the same procedure as (1) combined with E‖X11‖2 = O(p) in

Assumption 3.5.

Moreover, following the procedure of deriving (2), I13 has the same order in probability as

1
q

q
∑

l=1









E
∂

∂ u
ml(Wi t , X ′i tβ ,λ(Vi)

′ ft)X i t









2

9



+
1
q

q
∑

l=1











1
N

N
∑

i=1

E
�

∂

∂ u
ml(Wi t , X ′i tβ ,Φr

k(Vi)
′Dt)−

∂

∂ u
ml(Wi t , X ′i tβ ,λ(Vi)

′ ft)
�

X i t











2

=
1
q









E
∂

∂ u
m(W11, X ′11β ,λ(V1)

′ f1)⊗ X11









2

+
1
q

q
∑

l=1









E
�

∂

∂ u
ml(W11, X ′11β ,Φr

k(V1)
′D1)−

∂

∂ u
ml(W11, X ′11β ,λ(V1)

′ f1)
�

X11









2

= O(p) +
1
q









E
�

∂

∂ u
m(W11, X ′11β ,Φr

k(V1)
′D1)−

∂

∂ u
m(W11, X ′11β ,λ(V1)

′ f1)
�

⊗ X11









2

= O(p) +
�

E[A(W11, X11, V1)|γ(k)(v)|‖X11‖]
�2
= O(p) +O

�

‖γ(k)(v)‖2p
�

,

which implying that ‖I1‖2 = OP(N−1p2) +OP

�

‖γ(k)(v)‖2p2
�

= oP(1).

Next, we consider I2. By Cauchy-Schwarz inequality, we have

‖I2‖2 ≤
1
q

q
∑

l=1









E
∂

∂ u
ml(Wi t , X ′i tβ ,λ(Vi)

′ ft)X i t









2

×
1
q

q
∑

l=1











1
N

N
∑

i=1

�

∂

∂ u
ml(Wi t , X ′i tβ ,Φr

k(Vi)
′Dt)X i t −E

∂

∂ u
ml(Wi t , X ′i tβ ,λ(Vi)

′ ft)X i t

�











2

≤ 2
1
q









E
∂

∂ u
m(Wi t , X ′i tβ ,λ(Vi)

′ ft)⊗ X i t









2

×
1
q











1
N

N
∑

i=1

�

∂

∂ u
m(Wi t , X ′i tβ ,Φr

k(Vi)
′Dt)−

∂

∂ u
m(Wi t , X ′i tβ ,λ(Vi)

′ ft)
�

⊗ X i t











2

+ 2
1
q









E
∂

∂ u
m(Wi t , X ′i tβ ,λ(Vi)

′ ft)⊗ X i t









2

×
1
q

q
∑

l=1











1
N

N
∑

i=1

�

∂

∂ u
ml(Wi t , X ′i tβ ,λ(Vi)

′ ft)X i t −E
∂

∂ u
ml(Wi t , X ′i tβ ,λ(Vi)

′ ft)X i t

�











2

= 2I21(I22 + I23).

By Assumption 3.5, I21 = O(p). Following the procedure of deriving (2), I22 has the same order in

probability as

1
q









E
�

∂

∂ u
m(W11, X ′11β ,Φr

k(V1)
′D1)−

∂

∂ u
m(W11, X ′11β ,λ(V1)

′ f1)
�

⊗ X11









2

≤
�

E[A(W11, X11, V1)‖γ(k)(V1)‖‖X11‖]
�2
= O(p)‖γ(k)(v)‖2,

10



using Assumptions 3.5 and 3.7. Meanwhile, by Assumption 3.1, we have

E[I23] =
1
q

q
∑

l=1

E











1
N

N
∑

i=1

�

∂

∂ u
ml(Wi t , X ′i tβ ,λ(Vi)

′ ft)X i t −E
∂

∂ u
ml(Wi t , X ′i tβ ,λ(Vi)

′ ft)X i t

�











2

=
1
q

q
∑

l=1

1
N2
E











N
∑

i=1

�

∂

∂ u
ml(Wi t , X ′i tβ ,λ(Vi)

′ ft)X i t −E
∂

∂ u
ml(Wi t , X ′i tβ ,λ(Vi)

′ ft)X i t

�











2

=
1
q

q
∑

l=1

1
N2

N
∑

i=1

N
∑

j=1

cov
�

∂

∂ u
ml(Wi t , X ′i tβ ,λ(Vi)

′ ft)X i t ,
∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)X j t

�

= O(N−1p). (5)

where the last equality is obtained by the same procedure as (1) combined with E‖X11‖2 = O(p) in

Assumption 3.5.

Therefore, ‖I2‖2 = OP(N−1p2)+OP(‖γ(k)(v)‖2p2) = oP(1). Thus eH11(β , Dt)−h11(β ,λ′ ft) = oP(1).

In addition,

eH12(β , Dt)− h12(β ,λ′ ft)

=
1
q

q
∑

l=1

 

1
N

N
∑

j=1

∂

∂ u
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)X j t

!

�

1
N

N
∑

i=1

∂

∂ w
ml(Wi t , X ′i tβ ,Φr

k(Vi)
′Dt)Φ

r
k(Vi)

�′

−
1
q

q
∑

l=1

�

E
∂

∂ w
ml(W11, X ′11β ,λ(V1)

′ f1)X11

��

E
∂

∂ u
ml(W11, X ′11β ,λ(V1)

′ f1)Φ
r
k(V1)

�′

=
1
q

q
∑

l=1

 

1
N

N
∑

j=1

∂

∂ u
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)X j t −E

∂

∂ w
ml(W11, X ′11β ,λ(V1)

′ f1)X11

!

×

�

1
N

N
∑

i=1

∂

∂ w
ml(Wi t , X ′i tβ ,Φr

k(Vi)
′Dt)Φ

r
k(Vi)

�′

+
1
q

q
∑

l=1

�

E
∂

∂ w
ml(W11, X ′11β ,λ(V1)

′ f1)X11

�

×

�

1
N

N
∑

i=1

∂

∂ w
ml(Wi t , X ′i tβ ,Φr

k(Vi)
′Dt)Φ

r
k(Vi)−E

∂

∂ u
ml(W11, X ′11β ,λ(V1)

′ f1)Φ
r
k(V1)

�′

= I3 + I4.

Similar to I1, we have ‖I3‖2 = OP(N−1pkr) +OP(‖γ(k)(v)‖2pkr) = oP(1) and ‖I4‖2 = OP(N−1pkr) +
OP(‖γ(k)(v)‖2pkr) = oP(1). We then have eH12(β , Dt)− h12(β ,λ′ ft) = oP(1).

eH22(β , Dt)− h22(β ,λ′ ft)

=
1
q

q
∑

l=1

�

1
N

N
∑

j=1

∂

∂ w
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)Φ

r
k(Vj

��

1
N

N
∑

i=1

∂

∂ w
ml(Wi t , X ′i tβ ,Φr

k(Vi)
′Dt)Φ

r
k(Vi)

�′

11



−
1
q

q
∑

l=1

�

E
∂

∂ w
ml(W11, X ′11β ,λ(V1)

′ f1)Φ
r
k(V1)

��

E
∂

∂ w
ml(W11, X ′11β ,λ(V1)

′ f1)Φ
r
k(V1)

�′

=
1
q

q
∑

l=1

�

1
N

N
∑

j=1

∂

∂ w
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)Φ

r
k(Vj)−E

∂

∂ w
ml(W11, X ′11β ,λ(V1)

′ f1)Φ
r
k(V1)

�

×

�

1
N

N
∑

i=1

∂

∂ w
ml(Wi t , X ′i tβ ,Φr

k(Vi)
′Dt)Φ

r
k(Vi)

�′

+
1
q

q
∑

l=1

�

E
∂

∂ w
ml(W11, X ′11β ,λ(V1)

′ f1)Φ
r
k(V1)

�

×

�

1
N

N
∑

i=1

∂

∂ w
ml(Wi t , X ′i tβ ,Φr

k(Vi)
′Dt)Φ

r
k(Vi)−E

∂

∂ w
ml(W11, X ′11β ,λ(V1)

′ f1)Φ
r
k(V1)

�′

= I5 + I6.

Similar to I1, we have ‖I5‖2 = OP(N−1k2r2)+OP(‖γ(k)(v)‖2k2r2) = oP(1) and ‖I6‖2 = OP(N−1k2r2)+

OP(‖γ(k)(v)‖2k2r2) = oP(1) by Assumption 3.6. We then have eH22(β , Dt)− h22(β ,λ′ ft) = oP(1).

This finishes the proof of Lemma A.2.

Denote sN t(β ,λ′ ft) = (s1N t(β ,λ′ ft)′, s2N t(β ,λ′ ft)′)′, where

s1N t(β ,λ′ ft) =
1
q

1
N

q
∑

l=1

N
∑

i=1

ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)E

∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vi)

′ ft)X j t

=
�

1
q
E
�

∂

∂ u
m(Wi t , X ′i tβ ,λ(Vi)

′ ft)
′ ⊗ X i t

��

1
N

N
∑

i=1

m(Wi t , X ′i tβ ,λ(Vi)
′ ft),

s2N t(βλ
′ ft) =

1
q

1
N

q
∑

l=1

N
∑

i=1

ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)E

∂

∂ w
ml(Wj t , X ′j tβ ,λ(Vi)

′ ft)Φ
r
k(Vj)

=
�

1
q
E
�

∂

∂ w
m(Wi t , X ′i tβ ,λ(Vi)

′ ft)
′ ⊗Φr

k(Vi)
��

1
N

N
∑

i=1

m(Wi t , X ′i tβ ,λ(Vi)
′ ft).

Hence, we have sN t(β ,λ′ ft) =
1
qΨN t

1
N

∑N
i=1 m(Wi t , X ′i tβ ,λ(Vi)′ ft), where

ΨN t = E

 

∂
∂ u m(Wi t , X ′i tβ ,λ(Vi)′ ft)′ ⊗ X i t
∂
∂ w m(Wi t , X ′i tβ ,λ(Vi)′ ft)′ ⊗Φr

k(Vi)

!

(p+kr)×q

. (6)

Proof of Lemma A.3

To prove the Lemma A.3, it is sufficient to show that ‖S1N t(β , Dt) − s1N t(β ,λ′ ft)‖ = oP(1) and

‖S2N t(β , Dt)− s2N t(β ,λ′ ft)‖= oP(1).

S1N t(β , Dt)− s1N t(β ,λ′ ft)

12



=
1
q

1
N

q
∑

l=1

N
∑

i=1

�

ml(Wi t , X ′i tβ ,Φr
k(Vi)

′Dt)−ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)

�

×
1
N

N
∑

j=1

∂

∂ u
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)X j t

+
1
q

1
N

q
∑

l=1

N
∑

i=1

ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)

×
1
N

N
∑

j=1

�

∂

∂ u
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)−

∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vi)

′ ft)
�

X j t

+
1
q

1
N

q
∑

l=1

N
∑

i=1

ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)

×
1
N

N
∑

j=1

�

∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vi)

′ ft)X j t −E
∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vi)

′ ft)X j t

�

= I1 + I2 + I3,

where

‖I1‖2 ≤
1
q

q
∑

l=1

�

1
N

N
∑

i=1

�

ml(Wi t , X ′i tβ ,Φr
k(Vi)

′Dt)−ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)

�

�2

×
1
q

q
∑

l=1











1
N

N
∑

j=1

∂

∂ u
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)X j t











2

= I11 × I12. (7)

Following the procedure of deriving (2), we can observe that I11 has the same order in probability as

1
q

q
∑

l=1

E
��

ml(Wi t , X ′i tβ ,Φr
k(Vi)

′Dt)−ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)

��2

=
1
q
E




�

ml(Wi t , X ′i tβ ,Φr
k(Vi)

′Dt)−ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)

�



2

≤ E|A(W11, X11, V1)|2‖γ(k)(V1)‖2‖ f1‖2

= O(‖γ(k)(V1)‖2).

Similarly, I12 has the same order in probability as

1
q
E








∂

∂ u
m(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)⊗ X j t









2

= O(p).
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Hence, I1 = oP(1) by Assumption 3.6.

For I2, we have

‖I2‖2 ≤
1
q

q
∑

l=1

�

1
N

N
∑

i=1

ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)

�2

×
1
q

q
∑

l=1











1
N

N
∑

j=1

�

∂

∂ u
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)X j t −

∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vi)

′ ft)X j t

�











2

= I21 × I22.

By Assumption 3.1 and moment condition (1), we have

E‖I21‖=
1
q

q
∑

l=1

E

�

1
N

N
∑

i=1

ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)

�2

=
1
q

q
∑

l=1

1
N2

N
∑

i=1

N
∑

j=1

E
�

ml(Wi t , X ′i tβ ,λ(Vi)
′ ft), ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)
�

=
1
q

q
∑

l=1

1
N2

N
∑

i=1

N
∑

j=1

cov
�

ml(Wi t , X ′i tβ ,λ(Vi)
′ ft), ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)
�

= O(N−1), (8)

where the last equality is obtained by the same procedure as (1).

Meanwhile, by (4), we have I22 = O(‖γ(k)(V1)‖2p). Therefore I2 = oP(1).

By (5) and (8), it is obvious that

‖I3‖2 ≤
1
q

q
∑

l=1

�

1
N

N
∑

i=1

ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)

�2

×
1
q

q
∑

l=1











1
N

N
∑

j=1

�

∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vi)

′ ft)X j t −E
∂

∂ u
ml(Wj t , X ′j tβ ,λ(Vi)

′ ft)X j t

�











2

= OP(N
−1)OP(N

−1p) = oP(1).

This finished the proof of ‖S1N t(β , Dt)− s1N t(β ,λ′ ft)‖= oP(1).

Next, we show that ‖S2N t(β , Dt)− s2N t(β ,λ′ ft)‖= oP(1).

S2N t(β , Dt)− s2N t(β ,λ′ ft)

14



=
1
q

1
N2

q
∑

l=1

N
∑

i=1

ml(Wi t , X ′i tβ ,Φr
k(Vi)

′Dt)

×
N
∑

j=1

∂

∂ w
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)Φ

r
k(Vj)

−
1
q

1
N

q
∑

l=1

N
∑

i=1

ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)E

∂

∂ w
ml(Wj t , X ′j tβ ,λ(Vi)

′ ft)Φ
r
k(Vj)

=
1
q

1
N2

q
∑

l=1

N
∑

i=1

�

ml(Wi t , X ′i tβ ,Φr
k(Vi)

′Dt)−ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)

�

×
N
∑

j=1

∂

∂ w
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)Φ

r
k(Vj)

+
1
q

1
N2

q
∑

l=1

N
∑

i=1

ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)

×
N
∑

j=1

�

∂

∂ w
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)−

∂

∂ w
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)
�

Φr
k(Vj)

+
1
q

1
N

q
∑

l=1

N
∑

i=1

ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)

×

 

N
∑

j=1

∂

∂ w
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)Φ
r
k(Vj)−E

∂

∂ w
ml(Wj t , X ′j tβ ,λ(Vi)

′ ft)Φ
r
k(Vj)

!

= I4 + I5 + I6.

By Cauchy-Schwarz inequality, we have

‖I4‖2 ≤
1
q

q
∑

l=1

�

1
N

N
∑

i=1

�

ml(Wi t , X ′i tβ ,Φr
k(Vi)

′Dt)−ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)

�

�2

×
1
q

q
∑

l=1











1
N

N
∑

j=1

∂

∂ w
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)Φ

r
k(Vj)











2

≤ 2
1
q

q
∑

l=1

�

1
N

N
∑

i=1

�

ml(Wi t , X ′i tβ ,Φr
k(Vi)

′Dt)−ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)

�

�2

×
1
q

q
∑

l=1











1
N

N
∑

j=1

�

∂

∂ w
ml(Wj t , X ′j tβ ,Φr

k(Vj)
′Dt)−

∂

∂ w
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)
�

Φr
k(Vj)











2

+ 2
1
q

q
∑

l=1

�

1
N

N
∑

i=1

�

ml(Wi t , X ′i tβ ,Φr
k(Vi)

′Dt)−ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)

�

�2
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×
1
q

q
∑

l=1











1
N

N
∑

j=1

∂

∂ w
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)Φk(Vj)











2

,

which by Assumption 3.7, the second term is the leading term and following the procedure of deriving

(2), it has the same order as

1
q

q
∑

l=1

�

E
�

ml(Wi t , X ′i tβ ,Φr
k(Vi)

′Dt)−ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)

��2

×
1
q

q
∑

l=1









E
∂

∂ w
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)Φ
r
k(Vj)









2

=
1
q

�

E
�

m(Wi t , X ′i tβ ,Φr
k(Vi)

′Dt)−m(Wi t , X ′i tβ ,λ(Vi)
′ ft)

��2

×
1
q









E
∂

∂ w
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)Φ
r
k(Vj)









2

≤
�

�E[A(W11, X11, V1)γ
(k)(V1)]

�

�

2
O(kr)≤ OP(‖γ(k)(V )‖2kr) = oP(1),

by Assumptions 3.6 and 3.7 as N →∞.

It is straightforward to see that I5 = oP(1) by Assumptions 3.6 and 3.7. Next, we have

‖I6‖2 ≤
1
q

q
∑

l=1

�

1
N

N
∑

i=1

ml(Wi t , X ′i tβ ,λ(Vi)
′ ft)

�2

×
1
q

q
∑

l=1











1
N

N
∑

j=1

∂

∂ w
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)Φ
r
k(Vj)−E

∂

∂ w
ml(Wj t , X ′j tβ ,λ(Vi)

′ ft)Φ
r
k(Vj)











2

= I61 × I62,

where I61 = I21 = O(N−1) and

E[I62] =
1
q

q
∑

l=1

1
N 2
E











N
∑

j=1

∂

∂ w
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)Φ
r
k(Vj)−E

∂

∂ w
ml(Wj t , X ′j tβ ,λ(Vi)

′ ft)Φ
r
k(Vj)











2

=
1
q

q
∑

l=1

1
N 2

N
∑

i=1

N
∑

j=1

cov
�

∂

∂ w
ml(Wi t , X ′i tβ ,λ(Vi)

′ ft)Φk(Vi),
∂

∂ w
ml(Wj t , X ′j tβ ,λ(Vj)

′ ft)Φ
r
k(Vj)

�

= O(N−1kr),

where the last equality is obtained by the same procedure as (1) combined with E‖Φk(V1)‖2 = O(k)

and E‖ f1‖2 = O(r) in Assumption 3.5. Then by Assumption 3.6, ‖I6‖2 = oP(N−1kr) = oP(1).

This finished the proof of Lemma A.3.

Proof of Theorem 4.1.
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We will prove Theorem 4.1 in two steps. In the first step, we show that LN t(bβ , bDt ; c)→D N(0,1) for

a given t. In the second step, we show LN T (bβ , bD; c)→D N(0,1) by conventional central limit theorem.

By conventional central limit theorem, we have

� N
∑

i=1

[c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft)]

2

�− 1
2 N
∑

i=1

c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft)→D N(0,1),

as N →∞ for any c ∈ Rq such that ‖c‖= 1.

Thus, to prove Theorem 4.1, it is sufficient to show

LN t(bβ , bDt ; c) =

� N
∑

i=1

[c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft)]

2

�− 1
2 N
∑

i=1

c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft) + op(1).

To this end, we will show

1
N

DN t(bβ , bDt ; c)2 −
1
N

N
∑

i=1

[c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft)]

2 = op(1), and

1
p

N

N
∑

i=1

c′m(Wi t , X ′i t bβ ,Φr
k(Vi)

′
bDt)−

1
p

N

N
∑

i=1

c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft) = op(1).

Notice that

1
N

DN t(bβ , bDt ; c)2 =
1
N

N
∑

i=1

[c′m(Wi t , X ′i t bβ ,Φr
k(Vi)

′
bDt)]

2

=
1
N

N
∑

i=1

[c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft)]

2

+
1
N

N
∑

i=1

n

[c′m(Wi t , X ′i t bβ ,Φr
k(Vi)

′
bDt)]

2 − [c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft)]

2
o

.

We will show that the second term is oP(1).

From Theorem 3.2, it is easy to see that ‖bβ − β‖2 = OP(p/N T ) and ‖bDt − Dt‖2 = OP(kr/N).

By the first order Taylor expansion, Cauchy-Schwarz inequality, Assumption 3.5 and Assumption

4.2, we have that

1
N

N
∑

i=1

�

�

�[c′m(Wi t , X ′i t bβ ,Φr
k(Vi)

′
bDt)]

2 − [c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft)]

2
�

�

�

17



≤
1
N

N
∑

i=1

|c′[m(Wi t , X ′i t bβ ,Φr
k(Vi)

′
bDt)−m(Wi t , X ′i tβ ,λ(Vi)

′ ft)]|2

+ 2
1
N

N
∑

i=1

|c′[m(Wi t , X ′i t bβ ,Φr
k(Vi)

′
bDt)−m(Wi t , X ′i tβ ,λ(Vi)

′ ft)]||c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft)|

≤
2
N

N
∑

i=1

�

�

�

�

c′
∂m(Wi t , X ′i tβ ,λ(Vi)′ ft)

∂ u
(bβ − β)′X i t

�

�

�

�

2

+
2
N

N
∑

i=1

�

�

�

�

c′
∂m(Wi t , X ′i tβ ,λ(Vi)′ ft)

∂ w
(Φr

k(Vi)
′
bDt −λ(Vi)

′ ft)

�

�

�

�

2

+
2
N

N
∑

i=1

�

�

�

�

c′
∂m(Wi t , X ′i tβ ,λ(Vi)′ ft)

∂ u
(bβ − β)′X i t

�

�

�

�

|c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft)|

+
2
N

N
∑

i=1

�

�

�

�

c′
∂m(Wi t , X ′i tβ ,λ(Vi)′ ft)

∂ w
(Φr

k(Vi)
′
bDt −λ(Vi)

′ ft)

�

�

�

�

|c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft)|

≤ ‖bβ − β‖2
2
N

N
∑

i=1









∂m(Wi t , X ′i tβ ,λ(Vi)′ ft)

∂ u
⊗ X i t









2

+ ‖bDt − Dt‖2
4
N

N
∑

i=1









∂m(Wi t , X ′i tβ ,λ(Vi)′ ft)

∂ w
⊗Φr

k(Vi)









2

+
4
N

N
∑

i=1









∂m(Wi t , X ′i tβ ,λ(Vi)′ ft)

∂ w









2

‖γ(k)(Vi)‖2‖ ft‖2

+ 2‖bβ − β‖

�

1
N

N
∑

i=1









∂m(Wi t , X ′i tβ ,λ(Vi)′ ft)

∂ u
⊗ X i t









2�
1
2

×

�

c′
1
N

N
∑

i=1

m((Wi t , X ′i tβ ,λ(Vi)
′ ft)m((Wi t , X ′i tβ ,λ(Vi)

′ ft)
′c

�

1
2

+ 2

�

1
N

N
∑

i=1

�

�

�

�

c′
∂m(Wi t , X ′i tβ ,λ(Vi)′ ft)

∂ w

�

�

�

�

2

(Φr
k(Vi)

′
bDt −λ(Vi)

′ ft)
2

�1/2

×

�

c′
1
N

N
∑

i=1

m((Wi t , X ′i tβ ,λ(Vi)
′ ft)m((Wi t , X ′i tβ ,λ(Vi)

′ ft)
′c

�

1
2

= ‖bβ − β‖2Op(qp) + ‖bDt − Dt‖2Op(qkr) + sup
v
‖γ(k)(v)‖2Op(q)

+ ‖bβ − β‖Op(
p

qp) + ‖bDt − Dt‖Op(
p

qkr) + sup
v
‖γ(k)(v)‖Op(

p
q) = op(1).

Define νN t(b, g, s; c) = 1p
N

∑N
i=1 c′(m(Wi t , X ′i t b, g(Vi)′st)−E[m(Wi t , X ′i t b, g(Vi)′st)]) for any c ∈ Rq

such that ‖c‖= 1 and (b, g, s) ∈ Θ.

Given Theorem 3.2, we will show that νN t(bβ , bλ, bf ; c)− νN t(β ,λ, f ; c) = oP(1).
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By the first order Taylor expansion, we have that

m(Wi t , X ′i t b, g(Vi)
′st)−m(Wi t , X ′i tβ ,λ(Vi)

′ ft)

=
∂m(Wi t , X ′i tβ ,λ(Vi)′ ft)

∂ u
(b− β)′X i t +

∂m(Wi t , X ′i tβ ,λ(Vi)′ ft)

∂ w
(g(Vi)

′st −λ(Vi)
′ ft) (9)

for all (b, g, s) in the neighborhood of (β ,λ, f ), where g has the form eΦk(V )′a.

Therefore,

P

�

sup
‖(b,g,s)−(β ,λ, f )‖<δ

|νN t(b, g, s; c)− νN t(β ,λ, f ; c)|> η
�

≤ P

�

sup
‖(b,g,s)−(β ,λ, f )‖<δ

�

�

�

�

�

1
p

N

N
∑

i=1

c′
�

∂m
∂ u
(b− β)′X i t −E

∂m
∂ u
(b− β)′X i t

�

�

�

�

�

�

>
η

2

�

+ P

�

sup
‖(b,g,s)−(β ,λ, f )‖<δ

�

�

�

�

�

1
p

N

N
∑

i=1

c′
�

∂m
∂ w
(g(Vi)

′st −λ(Vi)
′ ft)−E

∂m
∂ w
(g(Vi)

′st −λ(Vi)
′ ft)

�

�

�

�

�

�

>
η

2

�

≤ P

�

sup
‖(b,g,s)−(β ,λ, f )‖<δ

�

�

�

�

�

1
p

N

N
∑

i=1

[c′
∂m
∂ u

X i t −Ec′
∂m
∂ u

X i t]
′(b− β)

�

�

�

�

�

>
η

2

�

+ P

�

sup
‖(b,g,s)−(β ,λ, f )‖<δ

�

�

�

�

�

1
p

N

N
∑

i=1

[c′
∂m
∂ w
Φr

k(Vi)−Ec′
∂m
∂ w
Φr

k(Vi)]
′(dt − Dt)

�

�

�

�

�

>
η

4

�

+ P

�

sup
‖(b,g,s)−(β ,λ, f )‖<δ

�

�

�

�

�

1
p

N

N
∑

i=1

[c′
∂m
∂ w

f ′t γ
(k)(Vi)−Ec′

∂m
∂ w

f ′t γ
(k)(Vi)]

�

�

�

�

�

>
η

4

�

≤ P

�

sup
‖(b,g,s)−(β ,λ, f )‖<δ











1
p

N p

N
∑

i=1

[c′
∂m
∂ u

X i t −Ec′
∂m
∂ u

X i t]











‖pp(b− β)‖>
η

2

�

+ P

�

sup
‖(b,g,s)−(β ,λ, f )‖<δ











1
p

Nkr

N
∑

i=1

[c′
∂m
∂ w
Φr

k(Vi)−Ec′
∂m
∂ w
Φr

k(Vi)]











‖
p

kr(dt − Dt)‖>
η

4

�

+ P

�

sup
‖(b,g,s)−(β ,λ, f )‖<δ

�

�

�

�

�

1
p

N

N
∑

i=1

[c′
∂m
∂ w

f ′t γ
(k)(Vi)−Ec′

∂m
∂ w

f ′t γ
(k)(Vi)]

�

�

�

�

�

>
η

4

�

= I1N t + I2N t + I3N t .

By central limit theorem, we have

1
p

N p

N
∑

i=1

�

c′
∂m
∂ u

X i t −Ec′
∂m
∂ u

X i t

�

= Op(1),

1
p

Nkr

N
∑

i=1

�

c′
∂m
∂ w
Φr

k(Vi)−Ec′
∂m
∂ w
Φr

k(Vi)
�

= Op(1).

19



If ‖pp(b − β)‖ and ‖
p

kr(dt − Dt)‖ are sufficiently small, then I1N t <
ε
3 and I2N t <

ε
3 . Meanwhile, by

Assumption 4.2, we have
p

q supv ‖γ(k)(v)‖= o(1), we have I3N t <
ε
3 .

Therefore, when N are large, for a given t, we have P(|νN t(bβ , bλ, bf ; c)−νN t(β ,λ, f ; c)|> η)< ε for

any given ε,η > 0. Recall that bλ(Vi)bft = Φr
k(Vi)′bDt , thus m(Wi t , X ′i t

bβ , bλ(Vi)bft) = m(Wi t , X ′i t
bβ ,Φr

k(Vi)′bDt).

Furthermore,

1
p

N

N
∑

i=1

c′[m(Wi t , X ′i t bβ ,Φr
k(Vi)

′
bDt)−m(Wi t , X ′i tβ ,λ(Vi)

′ ft)]

=νN T (bβ , bλ, bf ; c)− νN T (β ,λ, f ; c) +m∗N T (bβ , bDt ; c).

By Assumption 4.1, we have

1
p

N

N
∑

i=1

c′m(Wi t , X ′i t bβ ,Φr
k(Vi)

′
bDt)−

1
p

N

N
∑

i=1

c′m(Wi t , X ′i tβ ,λ(Vi)
′ ft) = op(1).

Then we finish the proof.
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