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1 Introduction

Three prominent consumption-based asset pricing models - the Bansal-Yaron, Campbell-
Cochrane and Cecchetti-Lam-Mark models - cannot explain the own-history predictabil-
ity structure of the US market return. The Bansal-Yaron and Campbell-Cochrane models
are designed to explain the level of stock market returns, in particular to simultaneously
resolve the equity premium and risk-free rate puzzles. Yet, whether these models can
explain the degree of predictability in stock returns is of interest too, especially if in-
vestors want to time or beat the market. In this sense, the dynamics (second moment)
of returns are important separately to their level (first moment). This is recognised by
Cecchetti et al. (1990). The Cecchetti-Lam-Mark was developed specifically to explain
return dynamics, rather than to price assets per se. Since own-history predictability is
the most basic kind of predictability, this is what we consider.

Our tests of whether the three models can explain own-history predictability amount
to testing whether the difference between the model-implied ex-ante expected market
return and the realised market return - the residual - is a martingale difference sequence
(MDS). Since the residuals are not MDS, there is some own-history predictability left
over in realised returns not captured by the models. To construct the expected returns
and residuals, we first estimate the models by GMM. Our testing procedures account for
this estimation step.

We base our tests of the null that the residuals are MDS on serial correlation, quantile
hits, the rescaled range and the generalised spectrum (Hong, 1999). The asymptotic
distribution of the serial correlation and generalised spectrum-based tests accounts for the
initial estimation step, while we use a bootstrap procedure to account for the estimation
step in the quantile hits and rescaled range-based tests. We use a battery of tests since
tests of the MDS null can suffer locally low power against certain alternatives (Poterba
and Summers, 1988).

Our finding that none of the three models can explain the own-history predictability
properties of the market return is robust to the empirical choices we make. It does not
matter whether we use the optimal GMM weight matrix, or the identity matrix; whether
we use size/book-to-market or industry portfolios to estimate the models; or whether we
use quarterly, instead of annual, data. The only apparent hope comes from estimating
the Cecchetti-Lam-Mark model using size/book-to-market portfolios and the identity
GMM weight matrix at the quarterly frequency. However, using a quarterly sample gives
a much larger number of observations and allows us to consider the robustness of our
results over time by splitting the sample into two equal-length sub-samples. When we do
this, we clearly reject the null that the Cecchetti-Lam-Mark residuals are MDS in both
sub-samples.

In each of the robustness check cases, we consider only models that provide credible
expected returns. Many of the robustness check specifications do not give plausible
expected returns series. This is less surprising than it might seem given the difficulties in
identifying the parameters of asset pricing models (Cheng et al., 2022). There is no point
checking the second moment of a model that fits poorly in terms of the first moment, as
one would not use it to price assets anyway. Moreover, the centred second moment (e.g.
serial correlation coefficient) is a function of the first moment.

We also consider semi-parametric tests of whether the degree of own-history pre-
dictability in returns is consistent with the state variables of the three models being
correctly specified. Unlike the residual-based tests, these tests do not depend on the
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functional form of the stochastic discount factor being correctly specified. They require
only that the state variables be correctly specified.

Our first state-variable test is an adaptation of the Huang and Zhou (2017) test. We
test whether the R2 from a predictive regression of returns on their lagged values exceeds a
theoretical upper bound, R̄2. R̄2 depends on the state variables of the stochastic discount
factor (i.e. the state variables which explain stock returns).

Our second state-variable test comes from the Merton (1973) intertemporal CAPM
(ICAPM). Merton shows that, if the ICAPM holds (for any risk-averse von Neumann-
Morgenstern utility function), returns at t+ 1, rt+1, can be predicted by both Vart(rt+1),
the variance of rt+1 conditional on information at t, and Covt(ωt+1, rt+1), the time-t condi-
tional covariance of rt+1 and the state variables describing the investment opportunity set,
ωt+1. In all of the three models, all the information required to compute Covt(ωt+1, rt+1)
is contained in some potentially non-linear function of ωt. We therefore test whether
some non-linear function of the state variables at t can predict returns once Vart(rt+1)
is accounted for, using a MIDAS approach to estimate Vart(rt+1). The null is that the
non-linear function of ωt cannot predict rt+1 once Vart(rt+1) is accounted for.

The Bansal-Yaron state variables cannot explain the predictability of returns. We
find statistically significant excess predictability (excessively high R2 significantly greater
than R̄2) at four out of nine horizons using annual data and six out of nine horizons using
quarterly data. The MIDAS-based test also fails to reject in favour of the Bansal-Yaron
state variables using either annual or quarterly data.

While there is superficially more hope for the Cecchetti-Lam-Mark model state vari-
able, this turns out not to be robust. There is statistically significant excess predictability
at only one of the nine horizons considered for the Cecchetti-Lam-Mark state variable in
our main results using both annual and quarterly data. However, there are many vio-
lations in each sub-sample when we split the sample into two equal-length sub-samples,
and the ability of the Cecchetti-Lam-Mark state variable to explain return predictability
is not robust over time. Moreover, the MIDAS-based test fails to reject in favour of the
Cecchetti-Lam-Mark state variable using either annual or quarterly data.

The only model whose state variable may explain the predictability of returns is
the Campbell-Cochrane model. With annual data, there is little evidence of excess
predictability and the MIDAS-based test borderline rejects in favour of the Campbell-
Cochrane state variable. Using quarterly data, the MIDAS-based test continues to reject
in favour of the Campbell-Cochrane state variable, altohugh there is clear evidence of
significant excess predictability. Overall, the picture is mixed.

Apart from the question of how well these models explain own-history predictability in
asset returns being interesting in its own right, testing this property leads us naturally to
residual-based testing. This is a standard time-series specification test, although not one
that is commonly used in the context of consumption-based asset pricing models. In this
setting, GMM estimation and an accompanying J-test is more common. The advantage
of testing the residuals, in this case from the market return, is that it allows us to test
models which are estimated in “stages” - i.e. where the estimation is not done in one
single GMM implementation. Both the Campbell-Cochrane and Cecchetti-Lam-Mark
models are estimated in stages in this way.

The Bansal-Yaron and Campbell-Cochrane models are two of the most prominent
models designed to simultaneously explain the equity premium (Mehra and Prescott,
1985) and risk-free rate (Weil, 1989) puzzles. Assuming a standard endowment economy
with a representative investor who has constant relative risk aversion (CRRA) preferences,
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the observed difference between stock returns and low-risk bond yields requires extremely
high levels of risk aversion to explain. This is the equity premium puzzle. The risk-free
rate puzzle compounds the equity premium puzzle. If CRRA investors are indeed as risk
averse as they would need to be to justify the equity premium, low-risk bond yields are
far too low. As a result, researchers such as Bansal and Yaron (2004) and Campbell and
Cochrane (1999) have sought to modify the standard CRRA set-up in order to account
for these puzzles. In terms of explaining the equity premium and risk-free rate puzzles
simultaneously, these models do reasonably well. But they are yet to be examined in
terms of their ability to capture the predictability of stock returns in any great detail.

Huang and Zhou (2017) is the main study of how well the Bansal-Yaron and Campbell-
Cochrane models explain return predictability. They develop the R2 bound test described
above, but in the context of one-step-ahead predictability of the market return with re-
spect to several well known predictors (the book-to-market ratio, term spread, CAY ,
investment-to-capital ratio, new-orders-to-shipments ratio, output gap and credit expan-
sion).1 Huang and Zhou use Constantinides and Ghosh’s (2011) inversion of the Bansal-
Yaron model which renders the state variables observable. For the Campbell-Cochrane
model, the state variable is unobserved and Huang and Zhou extract it as per Campbell
and Cochrane’s (1999) calibration. They do not estimate the model first, but condition
on the extracted state variable. Huang and Zhou show that the degree of predictability in
the market return is greater than can be explained by the Bansal-Yaron and Campbell-
Cochrane models’ state variables.

Our residual-based approach is potentially more powerful, since it can detect situa-
tions where the asset pricing model suggests too little predictability. In addition, our
residual-based tests have the advantage of accounting explicitly for any initial estimation
of the model or its state variables. While the Bansal-Yaron model can be inverted so that
its state variables are a function of observables, this inversion is not generally possible
for other asset pricing models (e.g. the Campbell-Cochrane model).

There has been little recent work on explaining own-history stock return predictability
in the context of consumption-based asset pricing models. Kandel and Stambaugh (1989)
propose a model with a representative CRRA investor and where consumption growth is
lognormally distributed with time-varying mean and variance. The mean and variance
of consumption growth follow a nine-state Markov-switching process and exhibit positive
serial correlation. Kandel and Stambaugh’s calibration exercise shows that the model
produces the “U” shaped autocorrelation function observed in stock returns. However,
the model is not able to replicate the observed pattern of small positive autocorrelations at
short horizons followed by larger negative autocorrelations at longer horizons. Kandel and
Stambaugh speculate that this is because their model is overly restrictive. In particular,
current news only affects the conditional distribution of consumption one period in the
future. Nonetheless, their model broadly matches the observed pattern of autocorrelations
at horizons greater than 12 months.

Cecchetti et al. (1990) use a similar specification to Kandel and Stambaugh. Cecchetti
et al. use a Markov-switching log endowment level and a more parsimonious two-state
specification. They find that popular measures of serial correlation always lie within a
60% confidence interval of data simulated from the model. The Cecchetti et al. model
has the same problem of not being able to generate negative autocorrelations at short
horizons as the Kandel and Stambaugh model.

We update the Cecchetti et al. (1990) evidence in two ways. First, we formally

1Our adaptation is to adapt the test for q-period-ahead predictability with respect to lagged returns.
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estimate their model. This also allows for the development of asymptotic theory for
the hypothesis tests used. Second, the Cecchetti et al. (1990) model rests on CRRA
preferences. As discussed above, these have been much criticised on an empirical basis,
in particular because of the equity premium and risk-free rate puzzles. We test more
recent models that can potentially accommodate these two puzzles. However, we also
include the Cecchetti-Lam-Mark model in our results as a benchmark, since it is a model
explicitly designed to explain serial correlation in returns.

Other attempts have been made to explain own-history predictability in a risk-based
framework. Kim et al. (2001) proxy risk by volatility and use a volatility feedback model
(where an unexpected change in volatility has an immediate impact on stock prices) with
volatility following a two-state Markov-switching process. Risk adjusting returns in this
way accounts for the serial correlation observed in returns. We focus on consumption-
based models, which micro-found their risk factors from the start, rather than more ad
hoc risk adjustments.

More recently, Barroso et al. (2017) consider how conditional predictability of the
short-run equity premium varies with economic and risk conditions.2 They model the
equity risk premium as a function of economic state variables. The extent to which these
state variables forecast both the equity risk premium and consumption growth varies
with time. When a state variable predicts consumption growth more strongly, it also
contributes more to the equity premium. This is consistent with the intertemporal CAPM
(Barroso et al., 2017). A consumption-based asset pricing model is capable of explaining
short-term conditional predictability, although no specific specification is tested.

This paper proceeds as follows. Section 2 outlines the three asset pricing models tested
and their estimation. Section 3 discusses the tests we use and how we modify them to
account for parameter estimation. Section 4 briefly describes the data and reports the
estimation of the asset pricing models. Section 5 presents our empirical results regarding
the predictability of the model residuals and Section 6 our robustness analysis. Section
7 concludes.

2 The models and their estimation

2.1 Bansal-Yaron model

The Bansal and Yaron (2004) model is as follows:

Vt =

[
(1− δ)C

1− 1
ψ

t + δ
(
Et

[
V 1−γ
t+1

]) 1− 1
ψ

1−γ

] 1

1− 1
ψ

(1)

xt+1 = ρxxt + ψxσt εt+1 (2)

∆ct+1 = µc + xt + σtηt+1 (3)

∆dt+1 = µd + φxt + ϕσtut+1 (4)

σ2
t+1 = σ2 + ν(σ2

t − σ2) + σwwt+1 (5)

εt, ηt, ut, wt ∼ NID(0, 1),

where Vt is the representative investor’s value function, δ the subjective discount factor,
γ > 0 the risk-aversion coefficient, ψ > 0 the elasticity of intertemporal substitution

2There are also non-risk based explanations for return predictability. These are beyond the scope of
this paper.
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(EIS), Ct consumption, Dt dividends, Et the expectation conditional on information at
time t and lower-case variables denote logs of upper-case variables.

The model has three key ingredients. First, it has recursive preferences (1) à la
Epstein and Zin (1989) and Weil (1989). These allow EIS and risk aversion to differ,
unlike standard CRRA preferences. This is an advantage: risk aversion and intertemporal
substitution are different concepts. EIS reflects the extent to which consumers are willing
to smooth certain consumption through time, while risk aversion relates to the extent
to which consumers are willing to smooth consumption across uncertain states of nature
(Cochrane, 2008).

Second, consumption growth (3) has a small predictable component (the long-run
risk, xt). Consumption news in the present affects expectations of future consumption
growth, increasing the impact of current consumption news on long-run consumption and
therefore the difference between present discounted values (PDVs) of dividend streams
which drives returns.

Third, there is time-varying economic volatility (5) in consumption growth. This
reflects time-varying economic uncertainty and is a further source of investor uncertainty
and risk.

In the Bansal and Yaron (2004) calibration, the model justifies the equity premium,
risk-free rate and the volatilities of the market return, risk-free rate and price-dividend
ratio.

When Constantinides and Ghosh (2011) estimate the Bansal-Yaron model by GMM,
the results are mixed. Simulating through the model with the estimated parameter
values, the model is able to justify the market return in all specifications considered. The
mean risk-free rate can be a little high, although this too is justified when the model
is estimated using the identity weight matrix. Meanwhile, the J-statistic p-value is less
than 0.03 in all specifications considered. However, the estimated model still generates
reasonable market returns in Constantinides and Ghosh’s simulations and the model may
therefore still be of interest from an asset pricing point-of-view.

To estimate the model, Constantinides and Ghosh (2011) show that the log-linearised
version of the Bansal-Yaron model can be inverted, allowing the unobserved state vari-
ables to be written as a linear combination of observables as follows.

xt = α0 + α1rf,t + α2zm,t (6)

σ2
t = β0 + β1rf,t + β2zm,t (7)

where α0, . . . , β2 are functions of Bansal-Yaron model parameters, as detailed in Appendix
A.1, and rf,t the (log) risk-free rate. This allows them to express the Bansal-Yaron Euler
equation for a general asset as

Et

[
exp

{
a1 + a2∆ct+1 + a3

(
rf,t+1 −

1

κ1
rf,t

)
+ a4

(
zm,t+1 −

1

κ1
zm,t

)
+ rt+1

}]
− 1 = 0,

where rt is the log asset return and a1, . . . , a4, κ1 are functions of the Bansal-Yaron model
parameters, also given in Appendix A.1.

In addition, they derive eight unconditional moment restrictions for continuously com-
pounded consumption and dividend growth, which are given in Appendix A.2. These mo-
ment conditions are derived from Bansal and Yaron’s (2004) specification of consumption
and dividend growth, the long-run risk and its conditional variance.

The model has 12 parameters to estimate and we use 15 moment conditions to allow
for an overidentification test. Our set of moment conditions comprises an Euler equation
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for each of seven assets (the market index and six size and book-to-market double sorted
portfolios, taken from Kenneth French’s website), and the eight time-series restrictions.

Constantinides and Ghosh (2011) show that

Et rm,t+1 = B0 +B1xt +B2σ
2
t

where rm,t is the market return and B0, . . . , B2 are non-linear combinations of the 12
model parameters provided in Appendix A.3. This yields a plug-in estimator of Et rm,t+1,
which we use as the ex-ante expected market return.

2.2 Campbell-Cochrane model

Campbell and Cochrane’s (1999) model adds a slow-moving external habit to the standard
power utility function. The representative agent’s utility function is

Ut(C) = Et

∞∑
s=0

δs
(Ct+s −Ht+s)

1−γ − 1

1− γ
,

where δ is the subjective discount factor, γ the utility curvature and Ht the habit level of
consumption. Defining St ≡ (Ct−Ht)/Ct and st ≡ ln(St), the habit evolves according to

st+1 = (1− φ)s̄+ φst + λ(st)νt+1, (8)

where s̄ is the steady-state s, S̄ = σν
√
γ/(1− φ) and λ(st) is a sensitivity function given

by

λ(st) =

{
(1/S̄)

√
1− 2(st − s̄)− 1, if st ≤ smax

0, otherwise,
(9)

with smax ≡ s̄ + 1
2
(1 − S̄2). Campbell and Cochrane set φ to be equal to the first-order

autocorrelation coefficient of the log market price-dividend ratio, zm,t.
Consumption and dividends satisfy

∆ct = ḡ + νt

∆dt = ḡ + wt
(10)

with ∆ being the first difference operator and(
νt
wt

)
∼ NID

((
0
0

)
,

(
σ2
ν σνw

σνw σ2
w

))
, (11)

where NID indicates normally and independently and identically distributed through
time.

Campbell and Cochrane (1999) calibrate their model to match the annualised uncon-
ditional equity premium using monthly US data. When given actual data, the model
replicates the main movements observed in stock prices. In simulations, the model is able
to justify the means and standard deviations of excess returns and the price-dividend
ratio, and the existence of a short-run and long-run equity premium. Moreover, this is
achieved without a risk-free rate puzzle by construction: the habit is specified such that
the risk-free rate remains constant and the model is calibrated such that the log risk-free
rate is equal to its sample mean.3

3Campbell and Cochrane (1999) argue this is realistic as the risk-free rate varies relatively little and
does not vary cyclically.
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In Garcia et al.’s (2004) GMM estimation of the Campbell-Cochrane model, the esti-
mated γ is significantly greater than 0 and the δ significantly less than 1. The J-statistic
p-value exceeds 0.2, although this does condition on earlier estimates of time-series pa-
rameters in the manner described below.

We estimate the Campbell-Cochrane model using a GMM procedure similar to Garcia
et al. (2004). The procedure has three steps. First, we estimate the time-series parameters
ḡ, σ2

ν and σ2
w in (10) by GMM. Second, we estimate α and φ from the linear regression

zm,t+1 = α + φzm,t + et+1.

Based on these estimates, we generate the series st. We do so by initialising the series
at s0 = s̄ = ln(σν

√
γ/(1− φ)), using the estimates of the relevant time-series moments

from above and assuming an initial γ of 2. This allows the series st to be generated as
per (8) and (9).

We can then proceed to the third step: estimating the preference parameters δ and γ
from the Euler equation

Et

[
δ

(
St+1

St

Ct+1

Ct

)−γ
(1 +Rt)

]
− 1 = 0, (12)

using an Euler equation for each of our seven assets. We use this new estimate of γ to
generate a new st series, and re-estimate (12) based on this new st series. We iterate
this procedure until the estimates of δ and γ converge. The J-statistic p-values of Garcia
et al. (2004) come from their final iteration of this third step, but do not account for the
initial estimation steps.

We obtain Et rm,t+1 from the Campbell-Cochrane model as follows. We use the fact
that 1 + Rt = (Pt + Dt)/Pt−1, where Pt is the price of the asset and Dt its dividend.
Iterating the Euler equation forwards, we have

Pt =
∞∑
j=1

δj Et

[(
St+j
St

Ct+j
Ct

)−γ
Dt+j

]
(13)

when we impose the no-bubble condition

lim
j→∞

δj Et

[(
St+j
St

Ct+j
Ct

)−γ
Pt+j

]
= 0.

Therefore,

Et(1 +Rt+1) =
Et

∑∞
j=1 δ

j
(
St+1+j

St+1

Ct+1+j

Ct+1

)−γ
Dt+1+j

Et

∑∞
j=1 δ

j
(
St+j
St

Ct+j
Ct

)−γ
Dt+j

. (14)

We estimate (14) for the market return by simulation. We simulate the series νt+1, νt+2,
νt+3, . . . and wt+1, wt+2, wt+3, . . . according to (11). Based on these series, we compute
the series st+1, st+2, st+3, . . ., ct+1, ct+2, ct+3, . . . and dt+1, dt+2, dt+3, . . . conditional on st,
ct and dt. We repeat this procedure 200 times, where each simulated νt+1 and wt+1 series
is of length 100. We then compute the expectation on the right-hand side of (14) as the
mean of the 200 simulated realisations of the fraction inside that expectation.
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2.3 Cecchetti-Lam-Mark model

Cecchetti et al.’s (1990) model attempts to explain return autocorrelation in a rational
framework. The model is an endowment economy where the representative consumer has
CRRA preferences:

Ut(C) = Et

∞∑
s=0

δs
C1−γ
t+s − 1

1− γ
.

Here, δ denotes the subjective discount factor and γ the coefficient of relative risk aversion.
Taking (log) consumption as the appropriate endowment process,

∆ct+1 = α0 + α1yt + εt+1 . (15)

yt ∈ {0, 1} is a first-order Markov process and εt ∼ NID(0, σ2). yt = 1 denotes a bad
state, so α1 is restricted to be less than zero.

Cecchetti et al. (1990) find that, using either risk-neutral (γ = 0) or risk-averse
(γ = 1.7) preferences, serial correlation in the observed market return always lies within
a 60% confidence interval of serial correlation in the market return generated by the
model. The confidence intervals come from Monte Carlo distributions of the serial cor-
relation statistics, obtained by simulating the model. The medians of the Monte Carlo
distributions of the serial correlation statistics obtained using γ = 1.7 are closer to the
observed serial correlation than the medians of the distributions using γ = 0, so Cecchetti
et al. prefer the risk-averse specification. Cecchetti et al. measure serial correlation using
variance ratios and Fama and French (1988) regression coefficients4 using annual US/S&P
data over 2-10 year horizons.

There is no guarantee that this model would simultaneously explain the equity pre-
mium and risk-free rate puzzles. Given the CRRA preferences, it probably would not.
However, given the model’s success in explaining market serial correlation, it is a useful
benchmark for our analysis.

We use GMM to estimate δ and γ. The moment conditions comprise an Euler equation
for each of our seven assets of the form

Et

[
δ

(
Ct+1

Ct

)−γ
(1 +Rt)

]
− 1 = 0. (16)

We estimate the Markov switching endowment process by maximum likelihood following
Hamilton (1989). In a slight deviation from Cecchetti et al. (1990), we estimate a Markov-
switching process where the consumption innovation εt+1 |yt ∼ N(0, σ2

yt), since this is
more numerically stable.

Et rm,t+1 ≈ Et [ln(1 +Rm,t+1)] and Cecchetti et al. (1990) show that

Et [ln(1 +Rm,t+1)] = Et

[
ln

(
1 + κ(yt+1)

κ(yt)

)
+ (α0 + α1yt)

]
(17)

where κ(yt) is a non-linear function of model parameters defined in Appendix B. Since
yt is a binary variable and the distribution the expectation in (17) is straightforward to
compute.

4Fama and French (1988) regression coefficients are the slope coefficient from a regression of the
q-period return from t to t+ q on the q-period return from t− q to t.
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3 Tests

To test whether the asset-pricing models discussed above capture the predictability of
stock returns, we note that rational expectations imply

rm,t+1 = Et rm,t+1 + ξt+1, (18)

where expectations are formed under the model in question and ξt+1 is unforecastable at
t. If the model accurately captures own-history predictability, ξt should be MDS. If not,
there is clearly something in the own-history predictability structure of rt not captured
by Et−1 rt.

We denote by θ the parameters in the model in question and define Et rm,t+1 = µt+1(θ),
to make clear the dependence of the expected returns on θ. We estimate (18) using plug-
in estimators, µt(θ̂), of Et rt+1. We base our tests on the resulting residual ξt(θ̂) and
denote

ξ̄ = T−1
T∑
t=1

ξt(θ̂), ŝ2 = T−1
T∑
t=1

(ξt(θ̂)− ξ̄)2.

We consider tests of linear and non-linear predictability in ξt(θ̂), as well as a rescaled
range test. In each case, we adapt the test to cope with the fact that µt(θ) ≡ Et−1 rm,t
is estimated and this estimate, µt(θ̂), is a function of a parameter vector estimated by
GMM. It is well known that this estimation can both affect the limiting distribution
of the statistics considered and induce serial dependence in the estimated residuals not
present in the population.

In light of Poterba and Summers’s (1988) argument that tests of the MDS null can
have locally low power against certain alternatives, we use a battery of tests. Different
tests have different power properties against different (local) alternatives. It therefore
seems prudent to cover all bases and consider several tests. This approach bears fruit.
Throughout the results, there are examples where one test fails to reject while all the
others reject. It is not the case that the same test keeps failing to reject.

3.1 Linear predictability

A natural place to start with testing whether or not the residuals are MDS is a test based
on the residuals’ autocorrelations. Since the MDS null implies that all autocorrelations
are zero, it makes sense to use a test statistic that incorporates autocorrelations from
more than one lag. We use a weighted correlogram, of the form

C(q) =

q−1∑
j=1

(
1− j

q

)
ρ(j), (19)

where ρ(j) is the jth order serial correlation coefficient of ξt. C(q) is a weighted sum
of serial correlations. If C(q) > 0, positive autocorrelation predominates at horizon
q. C(q) < 0 is evidence that negative autocorrelation predominates at horizon q. We
consider q ∈ {2, 3, . . . , 10} years.

We use a test of the form (19) as it is a linear transformation of the variance ratio
statistic. The variance ratio V R(q) is the variance of the sum of q residuals divided by q
times the variance of the residuals. That is V R(q) = Var(ξt+1+ξt+2+. . .+ξt+q)/qVar(ξt).
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Since under the MDS null the residuals ξt and ξt+j (j 6= 0) are uncorrelated, the variance
ratio is equal to one under the null. Cochrane (1988) shows we can write V R(q) =
1 + 2C(q), hence the connection between (19) and V R(q). Poterba and Summers (1988)
and Lo and MacKinlay (1989) show variance ratio tests are generally more powerful
tests of the martingale difference hypothesis than unit root and autoregressive tests.
The correlogram arises as a natural choice of test statistic from the Cochrane (1988)
representation of the variance ratio.

In terms of estimating C(q), we cannot simply treat the estimated residuals ξt(θ̂) as if
they are the population residuals ξt(θ). The estimation of θ̂ affects the limiting distribu-
tion of ρ̂(j) under the MDS null (Delgado and Velasco, 2011). We therefore use Delgado
and Velasco’s (2011) transformation of the residual sample serial correlations. We denote
the transformed autocorrelations by ρ̄(j). Delgado and Velasco start by standardising
the autocorrelations so that they have a unit variance. To do this, they define the matrix
Am such that

(Am)−1/2ρ̂m ∼ N(0, Im),

with ρ̂m = [ρ̂(1), . . . , ρ̂(m)]. To make the transformation feasible, Delgado and Velasco
(2011) use Lobato et al.’s (2002) estimate of Am

Âm =
1

T ŝ4

[
gm(0) +

`−1∑
j=1

(
1− j

`

)
{gm(j) + gm(j)′}

]

where gm(j) = T−1
∑T

t=1+j w
m
t w

m′
t−j, w

m
t = (w1,t, . . . , wm,t)

′, wk,t =
(
ξ̂t(θ̂)− ξ̄

)(
ξ̂t−j(θ̂)− ξ̄

)
and ` is a bandwidth parameter. We use ` =

⌈
T 1/3

⌉
.

Delgado and Velasco (2011) rid the estimated serial correlations collected in ρ̂m of
their dependence on θ̂ by projecting them onto the derivatives of ξ̂t(θ̂). First, define

ζ̂m =
[
ζ̂(1)′, . . . , ζ̂(m)′

]′
ζ̂(j) =

1

T ŝ2

T∑
t=j+1

ξ̇t(θ̂)
(
ξ̂t−j(θ̂)− ξ̄

)
+

1

T ŝ2

T∑
t=j+1

ξ̇t−j(θ̂)
(
ξ̂t(θ̂)− ξ̄

)
ξ̇t(θ) =

∂

∂θ
ξt(θ)

Then, let ξ̃m =
(
Âm
)−1/2

ζ̂m and ρ̃m =
(
Âm
)−1/2

ρ̂m. Finally, let

ρ̄m(j) =
ρ̌m(j)

šm(j)

ρ̌m(j) = ρ̃m(j)− ζ̃(j)′

(
m∑

k=j+1

ζ̃(k)ζ̃(k)′

)−1 m∑
k=j+1

ζ̃(k)ρ̃m(j)

šm(j)2 = 1 + ζ̃(j)′

(
m∑

k=j+1

ζ̃(k)ζ̃(k)′

)−1 m∑
k=j+1

ζ̃(k)

Delgado and Velasco (2011) show that

ρ̄m
d→ N(0, Im−d) (20)
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where d = dim(θ), ρ̄m = (ρ̄(1), . . . , ρ̄(m−d))′ and
d→ denotes convergence in distribution.

Notice that the projections sacrifice d degrees of freedom, so that only the first m−d can
be transformed.

Based on (20), we estimate the weighted correlogram in (19) by

C̄(q) =

q−1∑
j=1

(
1− j

q

)
ρ̄q−1+d(j).

Because of the degrees of freedom sacrificed in the projections, we must estimate q−1+d
autocorrelations in order to transform the first q − 1 autocorrelations. It follows from
(20) that

C̄(q)
d→ N

(
0,

[
q−1∑
j=1

(
1− j

q

)2
])

under the MDS null.

3.2 Non-linear predictability

The weighted correlogram statistic is a function of the sample autocorrelations of ξ̂t =
ξt(θ̂) and therefore does not exploit the full hypothesised MDS structure of ξt = ξt(θ). In
particular it neglects non-linear predictability. We test for non-linear predictability using
Linton and Whang’s (2007) quantilogram, which is based on the correlation of quantile
hits. If ξt is MDS, the probability ξt+k is in the α quantile given ξt is in the α quantile
should remain α. The quantile hits are uncorrelated. The quantilogram is a more general
version of Wright’s (2000) sign tests, which focus on whichever quantile zero is in.

In our test statistic, we weight the quantilogram estimates analogously to the variance
ratios. This gives

Ŵα(q) =

q−1∑
j=1

(
1− j

q

)
ρ̂α(j), (21)

where

ρ̂α(j) =

∑T−j
t=1 ψα(ξ̂t − µ̂α)ψα(ξ̂t+j − µ̂α)√∑T−j

t=1 ψ
2
α(ξ̂t − µ̂α)

√∑T−j
t=1 ψ

2
α(ξ̂t+j − µ̂α)

ψα(·) = α− 1(· < 0)

µ̂α = argmin
m∈R

T∑
t=1

(ξ̂t −m)× ψα(ξ̂t −m).

and 1(·) is the indicator function. We evaluate (21) over the same q as in the correlograms
and over a range of both extreme and moderate quantiles, namely α ∈ {0.01, 0.05, 0.1,
0.25, 0.5, 0.75, 0.9, 0.95, 0.99}.

We use a wild bootstrap for inference. This allows us to account for the estimation
step involved in constructing ξ̂t. ξ̂t is pre-multiplied by ι∗t at each t, where E(ι∗t ) = 0 and
Var(ι∗t ) = 1. We use Mammen’s (1993) two-point distribution for ι∗t .

5 Then, we use the

5ι∗t is iid through time and has probability mass function

fI(ι∗t ) =

{√
5+1

2
√
5
, ι∗t = 1−

√
5

2√
5−1
2
√
5
, ι∗t = 1+

√
5

2
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bootstrapped residuals to extract a pseudo-sample of returns r∗m,t by the relationship

r∗m,t = µt(θ̂) + ι∗t ξ̂t.

We use r∗m,t to generate a new series for the market value and therefore obtain the pseudo-
sample of the log price-dividend ratio, z∗m,t. We then re-estimate the asset pricing model
parameters using the modified data, generating a pseudo-sample of expected returns and
thus a (new) pseudo-sample of residuals.

The empirical distribution of the weighted quantilograms thus obtained is used for
inference and the bootstrap procedure is repeated 200 times.6 Notice that our procedure
conditions on consumption and dividends.

3.3 Hong-Lee generalised spectral test

The Hong and Lee (2005) generalised spectral test can detect both linear and non-linear
predictability. We add it to our battery of MDS tests because the known low power
problems of MDS tests (Poterba and Summers, 1988) mean it is useful to have additional
tests. The test is based on the Hong (1999) generalised spectrum, corrected for the
estimation of the parameters of the residual series in a way that yields a test statistic
which has a nuisance parameter-free limiting distribution.

The test statistic is

Ĝ(q) =

∑q−1
j=1

(
1− j

q

)2
(T − j)

∫ 3

−3 |ς̂
(1,0)
j (0, v)|2dW (v)− D̂(q)√

Ê(q)

where

D̂(q) =

q−1∑
j=1

(
1− j

q

)2
1

T − j

T−1∑
t=j+1

ξ̂2t

∫ 3

−3
|π̂t−j(v)|2dW (v)

Ê(q) = 2
T−2∑
j=1

T−2∑
k=1

(
1− j

q

)2(
1− k

q

)2 ∫ 3

−3

∫ 3

−3

∣∣∣∣ 1

T −max{j, k}

×
T∑

t=max{j,k}+1

ξ̂2t π̂t−j(v)π̂t−k(v
′)

∣∣∣∣2dW (v)dW (v′)

W (·) is the standard Normal distribution truncated on the interval [−3, 3], π̂(v) = eivξ̂t−
T−1

∑T
t=1 e

ivξ̂t , i =
√
−1, and

ς̂
(1,0)
j (0, v) =

∂

∂u
ς̂j(u, v)|u=0

ς̂j(u, v) = $̂j(u, v)− $̂j(u, 0)$̂j(0, v)

$̂j(u, v) =
1

T − |j|

T∑
t=|j|+1

eiuξ̂t+ivξ̂t−|j| .

6While 200 repetitions is a fairly low number, we are constrained by computational power in our
ability to do more since the simulations for the Campbell-Cochrane expected returns each involve 200
repetitions themselves at each point in time in each bootstrap repetition.
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Under the MDS null and the technical conditions laid out in Hong and Lee (2005, p.p.
509-510), Hong and Lee show that

Ĝ(q)
d→ N(0, 1).

3.4 Rescaled range

We also consider a rescaled range test. We do so as the rescaled range can be more
powerful than other MDS tests in the presence of long-range dependence (Lo, 1991). The
rescaled range is

Q̂ =
1

ŝ
√
T

[
max
k≤j≤T

j∑
t=k

(
ξt(θ̂)− ξ̄

)
− min

k≤j≤T

j∑
t=1

(
ξt(θ̂)− ξ̄

)]
.

ŝ2 is a consistent estimator of Var(ξt(θ)). Given the issue of the estimation of θ̂ distort-
ing the limiting distribution of the statistic, we conduct inference using the same wild
bootstrap procedure as for the quantilogram.

3.5 Maximal predictability

Huang and Zhou (2017) develop a Wald test of whether the predictability of excess market
returns, r̃m,t+1 = rm,t+1− rf,t+1, is too large. Predictability is measured with respect to a

forecasting variable, ft. “Too large” is defined as too large to be consistent with M̃t, the
stochastic discount factor (SDF) normalised such that E M̃t+1 = 1, being a function of a
given set of state variables ωt.

7 The test is semi-parametric in that the functional form of
the SDF need not be known. The Wald statistic tests whether theoretical upper bound
on R2 implied by the state variables is exceeded by the empirical R2 from the univariate
one-step-ahead predictive regression of r̃t+1 on ft.

It is straightforward to verify that this test applies almost directly to the q-step-ahead
predictive regression

r̃t+q = α + βft + εt+q .

In this context, when bounding R2 with SR(rm), the market Sharpe ratio, the bound
becomes

R2 ≤ R̄2 = φ2
ω,rfh

2SR2(rm),

where

φ2
ω,rf = ρ2ω,rf

Var[r̃t+q(r̃t − µf )]
Var(r̃t+q) Var(ft)

ρ2ω,rf =
Cov[ωt+q, r̃t+q(ft − µf )]′Var−1(ωt+q) Cov[ωt+q, r̃t+q(ft − µf )]

Var[r̃t+q(ft − µf )]
,

and µf = E(ft). h is a parameter chosen by the marginal investor. We follow Cochrane
and Saá-Requejo (2000) in using h = 2. This bound requires ω to have an elliptical
distribution, which it does in all models.8

7Our other tests relate to actual, not excess returns. However, rf,t is substantially smaller and less
variable than rm,t and the dynamic properties of r̃m,t are driven by rm,t.

8The state variables for the Bansal-Yaron and Campbell-Cochrane models are conditionally lognormal,
and the Cecchetti-Lam-Mark state variable has a binomial distribution.

14



Huang and Zhou’s (2017) test exploits the asymptotic normality of standard esti-
mators of the mean and covariance matrix of (rt+q, ft, rt+qft, ω

′
t+q)

′. These means and
covariances, which comprise θSR, are all that is required to calculate the empirical R2

and its bound. We follow Huang and Zhou and estimate θSR by GMM.
Testing whether R2 exceeds R̄2 is equivalent to a one-sided test of the null f(θSR) ≡

R2− R̄2 = 0 against the alternative that f(θSR) ≡ R2− R̄2 > 0 (Huang and Zhou, 2017).
The Wald statistic for this test is

WRA = Tf(θ̂SR)

[
df

dθSR
Var(θ̂SR)

df

dθSR

]−1
f(θ̂SR)

d→ χ2(1).

This procedure can then be applied to the predictive regression Fama and French
(1988) use to test for serial correlation in the market return

r̃m,t+q(q) = αq + βqr̃t,m(q) + εt+q, (22)

albeit, with the regression specified in terms of excess, rather than actual, returns.
For the Campbell-Cochrane and Cecchetti-Lam-Mark models, this test requires us

to condition on our estimated state variables. The state variable for the Campbell-
Cochrane model is st, which we extract as explained in Section 2.2. The state variable
for the Cecchetti-Lam-Mark model is yt, which we extract by estimating the Markov-
switching model for consumption and taking yt = 1 if the estimated smoothed probability
Pr(yt = 1|Ft+1) ≥ 1

2
, where Ft is information available at t. The state variables for the

Bansal-Yaron model are ∆ct, xt and σ2
t . Since we extract xt and σ2

t as a linear function
of rf,t and zm,t, we take ∆ct, rf,t and zm,t to be the three Bansal-Yaron state variables,
so that the results are not dependent on the estimation of the model.

3.6 MIDAS-based tests

A second test based of whether the models’ state variables can explain the dynamics
of the expected return equation comes from the Merton (1973) intertemporal CAPM
(ICAPM). The ICAPM is a standard representative agent set-up where the representative
investor has an increasing, concave von Neumann-Morgenstern utility function. Merton
shows that, when the investment opportunity set remains constant over time, the ICAPM
implies that

rm,t+1 = π0 + π1 Vart(rm,t+1) + ut+1

where ut+1 is MDS. Merton further shows that, when the investment opportunity set
varies over time, the ICAPM implies that

rm,t+1 = π0 + π1 Vart(rm,t+1) + κ′Covt(rm,t+1, ωt+1) + vt+1 (23)

where ωt is the vector of state variables which describe the investment opportunity set.
As already discussed, the three models we consider each suggest different state variables
for the investment opportunity set. For the Bansal-Yaron model, it’s the risk-free interest
rate, rf,t and the log market price-dividend ratio zm,t. For the Campbell-Cochrane model,
the state variable is the log surplus consumption ratio st, while, for the Cecchetti-Lam-
Mark model, the state variable is the good/bad state indicator, yt.

If a model’s state variables are correctly specified, they will be priced. That is, κ 6= 0.
A natural test of whether the model’s state variables are correctly specified, then, is to
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test the null that κ = 0 in (23) against the two-sided alternative. In order for such a
test to be feasible, a number of quantities other than the regression parameters of (23)
need to be estimated. The first is Vart(rm,t+1). We follow Ghysels et al. (2005) in using a
MIDAS approach to estimate the conditional variance. We use monthly data to estimate
the annual market return variance and set

Vart(rm,t+1) = 12
12∑
d=1

wd(r
m
m,t−d − r̄m,t)2

r̄m,t =
1

12

12∑
d=1

rmm,t−d

wd =
exp{π2d+ π3d

2}∑12
i=1 exp{π2i+ π3i2}

,

where rmm,t−d denotes the monthly returns in month t−d. Since the estimate of Vart(rm,t+1)
depends entirely on returns prior to t, this is another test of whether the predictability of
returns with respect to their own past hisotry is consistent with the asset pricing models
considered.

Second, we need to estimate the unobserved state variables st (for the Campbell-
Cochrane model) and yt (for the Cecchetti-Lam-Mark model). We do this as in the
maximal predictability test and, as per the maximal predictability test, we condition on
our estimates of st and yt in the tests that follow.

Finally, we need to estimate Covt(rm,t+1, ωt+1). From the Constantinides and Ghosh
(2011) inversion, we know that (rf,t+1, zm,t+1) is an AR(1) process in (rf,t, zm,t), since
both xt and σ2

t are separate AR(1) processes and xt and σ2
t are shown to be linear in rf,t

and zm,t. Therefore, for the Bansal-Yaron model, we can estimate

rm,t+1 = π0 + π1 Vart(rm,t+1) + κ1rf,t + κ3zm,t + vt+1 (24)

and test the joint null that κ1 = κ2 = 0. We estimate (24) by quasi-maximum likelihood,
following Ghysels et al. (2005), and then use an asymptotic Wald test based on a HAC
residual covariance matrix estimator. We call this test the linear MIDAS test and denote
the resulting test statistic Ŵ .

Things are more complicated for the Campbell-Cochrane and Cecchetti-Lam-Mark
models. While st and yt both have the Markov property, st+1 is not linear in st and nor is
yt+1 linear in yt. We must therefore use a semi-parametric approach, where (23) becomes
the partially linear model

rm,t+1 = π1 Vart(rm,t+1) + f(ωt) + vt+1,

and the constant is dropped as it would not be identified. Note that the semi-parametric
approach goes beyond testing the asset pricing model in question but instead tests
whether its state variables are relevant. A rejection of the null that the state variables
are not relevant is, strictly speaking, evidence in favour of the model’s state variables
rather than the model itself, as the restrictions the model implies on the functional form
of the relationship between rm,t+1 and ωt are not imposed.

Our test of the asset pricing model in question becomes a test of whether the f(ωt)
term has any explanatory power over rm,t+1 once Vart(rm,t+1) is accounted for, where
ωt = st for the Campbell-Cochrane model and ωt = yt for the Cecchetti-Lam-Mark model.
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To test whether f(ωt) term has any explanatory power over rm,t+1 once Vart(rm,t+1) is
accounted for, we test the null that

E(ut+1|ωt) = 0 almost surely,

where ut+1 is the regression error from (3.6). We do this using the Hsiao et al. (2007)
consistent model specification test. The test statistic is given by

Î =
1

(T − 1)(T − 2)

T−1∑
t=1

T−1∑
t=1,s 6=t

ût+1ûs+1K(ωt, ωs),

where K is the generalised product kernel described in Hsiao et al. (2007) and ût is the
estimated regression error from (23). As per Hsiao et al. (2007), we use the studentised

version of this test, Ĵ , and a wild bootstrap with a Rademacher distribution and 399
repetitions to compute the distribution under the null and p-values. We call this test
the semi-parametric MIDAS test. We also compute the semi-parametric (SP) MIDAS
test with ωt = (rf,t, zm,t) for the Bansal-Yaron state variables. This tests whether the
Bansal-Yaron state variables, but not necessarily the functional form, are correct.

4 Data

Data for our main results are from the US from 1930 to 2016. The time period is
annual and, as is standard in the asset pricing literature, the agent’s decision interval is
assumed to be the time horizon considered. We consider whether results are robust to
using quarterly data and a quarterly decision interval instead as a robustness check (see
Section 6.3).

The market index is the value-weighted CRSP index, obtained from WRDS. The
risk-free rate is the US one-month Treasury bill, from Ibbotson Associates via French’s
website. The set of assets used to estimate the asset pricing models also includes the six
double-sorted size/book-to-market portfolios from Ken French’s website. In our robust-
ness checks, we consider replacing the six double-sorted size/book-to-market portfolios
with the five industry portfolios, also from Ken French’s website, in the estimation of the
models (see Section 6.2).

Consumption is seasonally adjusted per-capita non-durables and services personal
consumption expenditures from the BEA. We deflate nominal data by the BEA’s con-
sumption deflator. Table 1 summarises the data.

4.1 Model estimation

Our main results relate to when the asset pricing models are estimated at the annual fre-
quency where the set of assets used to estimate the Euler equations comprises the market
return, the risk-free rate and the size double-sorted size/book-to-market portfolios and
we use the optimal weight matrix in the GMM estimation of the Campbell-Cochrane and
Cecchetti-Lam-Mark models and the identity weight matrix in the GMM estimation of
the Bansal-Yaron model. These specifications give the most reasonable expected returns
series across the board (Section 6 gives details of the residuals for other specifications;
because actual returns are the sum of the expected return and the residual, only models
with reasonable residual series will have reasonable expected returns).
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Table 1: Data summary statistics

Mean Median Std dev ρ̂(1)

rm 0.063 0.105 0.194 -0.024
rf 0.005 0.008 0.037 0.762
∆c 0.020 0.023 0.022 0.466
∆d 0.017 0.023 0.111 0.192
zm 3.409 3.393 0.455 0.885

Descriptive statistics for our key variables at the annual frequency over the period 1930-2016. rm denotes
the log market return, rf the quarterly log risk-free rate (the rolled over 1 month US T-bill), ∆c log
consumption growth, ∆d log dividend growth and zm the log price-dividend ratio. “Std dev” denotes
standard deviation and “ρ̂(1)” estimated first-order serial correlation.

Table 2: Bansal-Yaron model estimates

µc µd φ ϕ ρx ψx σ ν σw δ ψ γ

0.015 0.015 3.857 5.722 0.814 1.007 0.011 0.234 10−5 1.000 1.960 7.896
(0.003) (0.013) (1.059) (4.664) (0.310) (1.146) (0.006) (10.37) (0.005) (0.190) (28.73) (25.58)

0.000 0.272 0.000 0.220 0.009 0.379 0.051 0.982 1.000 0.000 0.946 0.758

J-stat 43.31 p-value 0.000

Estimates of the Bansal-Yaron model parameters using annual US data 1930-2016. Point estimates are
displayed in the first row, standard errors (in parentheses) in the second and p-values in the third. All
p-values are asymptotic.

Many of the other specifications do not give reasonable expected returns series. This
is less surprising than it might seem given the challenges of identifying asset pricing
models using GMM, as emphasised by Cheng et al. (2022). We look only at specifications
where the expected returns are plausible. As much as our focus is on the dynamics of
returns, rather than the levels, the first and second moments are related. Serial correlation
(a centred second moment) depends on the first moment. But, even if we only used
uncentred second moments, there is no reason to think that a model that fails to fit the
first moment would fit the second. Even if it did, it would be of little practical relevance
for pricing assets. While we focus on the specification that generally gives the most
reasonable expected returns, our results are robust to considering other specifications
giving reasonable expected returns.

Table 2 suggests the Bansal-Yaron model may be mis-specified. The J-statistic has a
vanishingly small p-value. Table 5 shows the Bansal-Yaron model has the highest absolute
mean residual (4.1% per year), but the median is only 0.4% per year.

As we see in Table 3, there was some difficulty in estimating the Campbell-Cochrane
Euler equations. In order to generate an st series, we constrain the estimate of γ to be no
less than 10−7 and this constraint binds. Not imposing this constraint gives γ̂ = −0.078
with a standard error of 0.753, so the estimates are not very different relative to their
standard errors. The subjective discount factor is significantly less than one. The J-
test rejects the model’s Euler equations. Nonetheless, this is only indicative of how well
specified the Euler equations are. The Euler equation estimation conditions on earlier
estimates of time-series parameters (ḡ, Var(∆c), Var(∆d), Cov(∆c,∆d), α and φ), yet the
over-identification test in the third panel of Table 3 does not account for this estimation.
We cannot firmly reject the model on this basis. Table 5 shows that the mean residual is
close to zero, just 0.7%. The Campbell-Cochrane model therefore seems to give reasonable
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Table 3: Campbell-Cochrane model estimates

ḡ Var(∆c) Var(∆d) Cov(∆c,∆d) α φ δ γ

0.021 4.07× 10−4 0.012 0.001 0.424 0.879 0.926 10−7

(0.003) (1.68× 10−4) (0.004) (6.93× 10−4) (0.173) (0.050) (0.016) (0.322)

0.000 0.015 0.001 0.070 0.017 0.000 0.000 1.000

J-stat 0.068 R2 0.783 J-stat 38.37
p-value 0.795 p-value 3.18× 10−7

Estimates of the Campbell-Cochrane model parameters using annual US data 1930-2016. Each panel
(set of columns) refers to a separate estimation. The estimates of δ and γ, and the associated p-values,
condition on the estimates in the first two panels. Point estimates are displayed in the first row, standard
errors (in parentheses) in the second and p-values in the third. All p-values are asymptotic.

Table 4: Cecchetti-Lam-Mark model estimates
(a) Consumption model

α0 α1 p q σ2
0 σ2

1

0.023 -0.016 0.956 0.876 0.012 0.040

(b) Preference parameters

δ γ

0.966 2.431
(0.290) (15.38)

0.001 0.874

J-stat 37.18
p-value 6× 10−7

Estimates of the Cecchetti-Lam-Mark model parameters, estimated using annual US data 1930-2016.
Panel (a) presents point estimates only. In panel (b), point estimates are displayed in the first row,
standard errors (in parentheses) in the second and p-values in the third. All p-values are asymptotic.

Table 5: Properties of ξ̂t

Model Mean Median Std dev ρ̂(1)

Bansal-Yaron 0.041 0.004 0.515 0.630
Campbell-Cochrane 0.007 -0.012 0.210 -0.115
Cecchetti-Lam-Mark -0.017 0.014 0.191 -0.080

Summary statistics for the model-implied ex-ante residuals. “Std dev” denotes standard deviation and
“ρ̂(1)” estimated first-order serial correlation. The models are estimated and residuals computed using
annual US data over the period 1930-2016.
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Figure 1: Market and model autocorrelation functions
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Autocorrelation functions for the market return and the model-implied ex-ante expected returns. Serial
correlation is computed up to lag 10. The models are estimated and expected returns computed over 1930-
2016. These estimates of the model-implied autocorrelation functions are biased due to the estimation of
the parameters of the expected returns and it is therefore difficult to draw many firm conclusions from
this figure, which is provided for illustrative purposes only.

expected returns, despite the issue of the estimation constraint binding.
Table 4 shows that the Cecchetti-Lam-Mark model preference parameter estimates are

also generally reasonable. The subjective discount factor is less than one and the utility
curvature greater than zero. The Euler equations are rejected by the J-test, but this test
does not enforce the Markov-switching structure on consumption growth. Enforcing this
structure may still yield reasonable expected returns. Table 5 suggests this is indeed the
case. The mean residual for the Cecchetti-Lam-Mark model is fairly low at around -1.7%
a year.

Figure 1 shows the autocorrelation functions of the observed market return and the
model-implied ex-ante expected returns. This graph is only indicative. We must be mind-
ful of the distortions in the model-implied autocorrelation functions induced by parameter
estimation. In the graph, the Bansal-Yaron is a long way from matching the market auto-
correlation function. The Campbell-Cochrane and Cecchetti-Lam-Mark model expected
return autocorrelations are fairly close to the observed market autocorrelations.

To remove the effect of estimation in the autocorrelations of the expected returns, we
can apply the Delgado and Velasco (2011) procedure to them. Note that the Delgado
and Velasco procedure transforms the standardised autocorrelations ρ̃m = (Âm)1/2ρ̂m.
It transforms the autocorrelations divided by their standard errors. So, in order to see
the effect of the transformation, we need to consider the (untransformed) standardised
autocorrelations and the transformed standardised autocorrelations. These are shown in
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Figure 2: Market and model standardised autocorrelation functions
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(a) Unadjusted standardised autocorrelation function (ρ̃)
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(b) Adjusted standardised autocorrelation function (ρ̄)

Transformed and untransformed standardised (divided by standard error) autocorrelation for the model-
implied ex-ante expected returns compared to (untransformed) standardised autocorrelation for the
market. Serial correlation is computed up to lag 10. The models are estimated and expected returns
computed over 1930-2016.
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panel (a) of Figure 2, where m = 10+d for each model. Panel (b) shows the transformed
standardised autocorrelations, ρ̄m. The market autocorrelation in panel (b) remains ρ̃m,
since there is no adjustment needed.

We can see that, both with and without the Delgado and Velasco (2011) adjustment,
the Bansal-Yaron model’s standardised autocorrelations are the furthest from the mar-
ket’s. Oddly, the Campbell-Cochrane standardised autocorrelations appear to be closer
to those of the market before applying the adjustment. This would imply that the bias
in the autocorrelation function of the Campbell-Cochrane expected returns arising from
the estimation of the model parameters was making the Campbell-Cochrane autocorrela-
tions artificially close to the market’s autocorrelations. The adjustment does not appear
to impact how close the Cecchetti-Lam-Mark autocorrelations are to the market auto-
correlations: they seem to be close in both cases. The adjustment appears to make the
Bansal-Yaron autocorrelations closer to those of the market.

5 Serial dependence in the model residuals

Our results for the Bansal-Yaron model are in Table 6. We clearly reject the null that
the Bansal-Yaron residuals are MDS, with the null being rejected by the rescaled range
test, at every lag considered in the Hong-Lee test and by the majority of the weighted
quantilograms. The weighted correlogram does not reject the MDS null at any lag, which
shows the value of not relying on just one test. In addition, the linear MIDAS test fails
to reject the null that the Bansal-Yaron state variables are not relevant for the expected
return, conditioning on Vart(rm,t+1).

The semi-parametric MIDAS test finds that the Bansal-Yaron state variables are not
relevant for the expected return, conditioning on Vart(rm,t+1), too. Moreover, the max-
imal predictability results suggest that the Bansal-Yaron state variables do not explain
observed predictability, either. Changing the functional form of the SDF would not enable
a model based on the Bansal-Yaron state variables to explain the dynamics of returns.
There are extremely significant exceedences of the R2 bound, R̄2, at four horizons: four,
five, six and seven years.

However, we express some caution regarding these maximal predictability results for
two reasons. First, R̄2 is, for the Bansal-Yaron model, almost always either less than
zero or greater than one for the holding periods considered. So either any degree of
predictability is consistent with consumption growth, the long-run risk and time-varying
economic volatility being risk factors in the stochastic discount factor or no predictability
is consistent with these risk factors. Second, the parameters of R2 and R̄2 are jointly
estimated using GMM. The R2 does not come directly from a regression themselves.
The methods ought to be equivalent but it is not computationally possible to satisfy the
moment conditions exactly here, despite the system being exactly identified. Therefore
the methods are not equivalent in a finite sample. Because of this, the reported R2 for
the predictive regression for a given horizon is not the same for the Bansal-Yaron model
as it is for the Campbell-Cochrane and Cecchetti-Lam-Mark models, even though it
should be. These discrepancies highlight the numerical challenges of the GMM estimation
undertaken to compute the tests. However, these numerical issues do not affect the
maximal predictability tests for the Campbell-Cochrane or Cecchetti-Lam-Mark models
so may simply be a further reflection of the mis-specification of the Bansal-Yaron state
variables. Overall, the best available evidence is that the state variables of the Bansal-
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Table 6: Bansal-Yaron model results
(a) Correlogram

q 2 3 4 5 6 7 8 9 10

C̄(q) -0.012 -0.043 0.019 0.022 0.047 0.093 0.098 0.105 0.168
(Std Err) (0.054) (0.080) (0.101) (0.118) (0.133) (0.147) (0.159) (0.171) (0.182)

p-value 0.828 0.589 0.850 0.852 0.725 0.528 0.538 0.538 0.357

(b) Quantilogram

α ↓/q → 2 3 4 5 6 7 8 9 10

0.01 -0.003 -0.006 -0.009 -0.013 -0.016 -0.020 -0.024 -0.028 -0.032
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.05 -0.022 -0.044 -0.067 -0.090 -0.060 -0.022 0.001 0.012 0.017
0.41 0.10 0.07 0.07 0.06 0.06 0.06 0.05 0.05

0.1 0.145 0.248 0.375 0.498 0.583 0.650 0.695 0.716 0.739
0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.25 0.164 0.271 0.376 0.501 0.592 0.683 0.765 0.829 0.878
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.5 0.185 0.310 0.413 0.509 0.604 0.676 0.754 0.811 0.856
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.75 0.224 0.391 0.563 0.744 0.900 1.018 1.112 1.180 1.231
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.9 0.091 0.146 0.179 0.227 0.242 0.255 0.252 0.265 0.277
0.11 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.95 0.095 0.111 0.172 0.202 0.216 0.220 0.218 0.213 0.205
0.64 0.29 0.14 0.13 0.10 0.06 0.03 0.02 0.03

0.99 0.195 0.255 0.284 0.300 0.310 0.316 0.320 0.323 0.324
0.18 0.38 0.50 0.55 0.62 0.72 0.83 0.95 0.88

(c) Hong-Lee tests

q 2 3 4 5 6 7 8 9 10

Ĝ(q) 6.746 6.798 6.841 6.880 6.917 6.952 6.987 7.024 7.062
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(d) Rescaled range

Q̂ 1.569
p-value 0.00

(e) Linear MIDAS test

Ŵ 2.593
p-value 0.273

(f) SP MIDAS test

Ĵ -0.573
p-value 0.190

Panels (a)-(d) report tests of the MDS null for the Bansal-Yaron residuals, over the period 1930-2016.

C̄(q) denotes the estimated transformed weighted correlogram statistic,
∑q−1

j=1(1− j/q)ρ̄(q). Its standard
error and asymptotic p-value are given underneath. In Panel (b), the estimated weighted quantilogram is
given in larger font for the appropriate (α, q) combination. Its bootstrapped p-value is given underneath

in smaller font. Ĝ(q) denotes the Hong-Lee generalised spectral statistic. Its asymptotic p-value is given

beneath. Q̂ denotes the estimated rescaled range. Its bootstrapped p-value is given beneath. Ŵ denotes
the MIDAS Wald statistic and its asymptotic p-value is given beneath. Ĵ is the estimated Hsiao et al.
(2007) consistent model specification statistic from the semi-parametric MIDAS model. Its bootstrapped
p-value is given beneath.
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Table 6: Bansal-Yaron model results
(g) Maximal predictability

q 2 3 4 5 6 7 8 9 10

R2 0.100 0.044 0.462 0.002 0.038 0.043 0.125 0.028 0.000
R̄2 21.68 0.122 -12.29 -59.18 -0.725 -2.738 1993 67.57 1.058

Wald stat - - 42.19 54.06 50.13 5.156 - - -
p-value - - 0.000 0.000 0.000 0.023 - - -

Panel (e) reports tests of the null that the market return is no more predictable than implied by the
Bansal-Yaron model state variables (i.e. R2 ≤ R̄2), estimated over the period 1930-2016. The Wald
statistic and its asymptotic p-value are reported.

Yaron model cannot explain the predictability of market returns.
Our main results regarding the Campbell-Cochrane model are in Table 7. We reject

the null that the Campbell-Cochrane residuals are MDS: the correlogram rejects the MDS
null at all lags considered. However, the Hong-Lee test and rescaled range provide no
rejections and only three of the 81 quantilograms reject the MDS null at the 10% level,
again showing the value of not relying on only one test statistic.

Turning to our state variable tests, the semi-parametric MIDAS test borderline rejects
the null that the Campbell-Cochrane state variables are relevant for expected returns,
once the conditional return variance is accounted for. Moreover, there is only one sig-
nificant exceedence of the R2 bound in the maximal predictability test. On the basis of
annual data, it therefore appears possible that a model based on the surplus consumption
state variable but with a different functional form of the SDF could explain the dynamics
of returns. This conclusion, however, is not robust to using quarterly data (see Section
6.3) as, while the semi-parametric MIDAS results are robust, there are many more sig-
nificant violations of the R2 bound. The picture is therefore more mixed with quarterly
data.

Table 8 shows the results for the Cecchetti-Lam-Mark model. The residuals are clearly
not MDS. The correlogram rejects the MDS null from q = 5 onwards and the rescaled
range also rejects the MDS null. Both rejections suggest negative serial dependence: that
higher values are followed by lower ones. Neither the quantilogram nor the Hong-Lee
tests provide any rejections of the MDS null. This serves to further illustrate the power
issues of MDS tests and justify our approach of considering multiple different tests.

The semi-parametric MIDAS test does not reject the null that the Cecchetti-Lam-
Mark state variable is not relevant for expected returns once Vart(rm,t+1) is accounted
for. However, there is only one significant exceedence of the R2 bound in the maximal pre-
dictability tests, at q = 2. This apparent conflict is resolved using quarterly data, where
the semi-parametric MIDAS test continues to fail to reject in favour of the Cecchetti-Lam-
Mark state variable and the maximal predictability does reject the Cecchetti-Lam-Mark
state variable (see Section 6.3).

6 Robustness

We consider the robustness of our results to (i) using the identity weight matrix in GMM
estimation rather than the optimal weight matrix, (ii) using the five Fama-French industry
portfolios in place of the six Fama-French size/value portfolios when estimating the asset
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Table 7: Campbell-Cochrane model results
(a) Correlogram

q 2 3 4 5 6 7 8 9 10

C̄(q) -0.117 -0.170 -0.196 -0.239 -0.304 -0.341 -0.430 -0.442 -0.452
(Std err) (0.054) (0.080) (0.101) (0.118) (0.133) (0.147) (0.159) (0.171) (0.182)

p-value 0.030 0.035 0.052 0.043 0.022 0.020 0.007 0.010 0.013

(b) Quantilogram

α ↓/q → 2 3 4 5 6 7 8 9 10

0.01 -0.003 -0.006 -0.009 -0.013 -0.016 -0.020 -0.024 -0.028 0.004
0.02 0.09 0.21 0.25 0.45 0.45 0.51 0.52 0.47

0.05 -0.014 -0.028 -0.043 -0.058 -0.073 -0.042 -0.001 0.029 0.052
0.47 0.83 0.88 0.92 0.97 1.00 0.96 0.98 0.7

0.1 0.017 -0.012 -0.052 -0.070 -0.101 -0.099 -0.092 -0.098 -0.113
0.67 0.81 0.74 0.76 0.82 0.86 0.81 0.82 0.97

0.25 0.026 -0.020 -0.086 -0.140 -0.183 -0.217 -0.234 -0.230 -0.212
0.67 0.56 0.61 0.67 0.76 0.78 0.78 0.76 0.95

0.5 -0.006 -0.080 -0.114 -0.150 -0.179 -0.186 -0.190 -0.201 -0.198
0.80 0.79 0.85 0.85 0.87 0.92 0.92 0.94 0.92

0.75 -0.059 -0.120 -0.132 -0.141 -0.157 -0.150 -0.141 -0.143 -0.142
0.77 0.64 0.76 0.81 0.86 0.87 0.93 0.90 0.98

0.9 -0.064 -0.088 -0.129 -0.137 -0.163 -0.160 -0.173 -0.197 -0.222
0.82 0.89 0.93 0.90 0.90 0.88 0.87 0.86 0.99

0.95 -0.030 0.024 0.038 0.037 0.029 0.015 -0.001 -0.020 -0.040
0.42 0.97 0.98 0.99 0.95 0.88 0.91 0.91 0.85

0.99 -0.009 -0.018 -0.026 -0.035 -0.044 -0.053 -0.062 -0.071 -0.080
0.01 0.23 0.28 0.31 0.35 0.44 0.48 0.53 0.48

(c) Hong-Lee tests

q 2 3 4 5 6 7 8 9 10

Ĝ(q) 0.381 0.386 0.388 0.386 0.383 0.379 0.373 0.365 0.345
p-value 0.703 0.699 0.698 0.699 0.702 0.705 0.709 0.715 0.730

(d) Rescaled range

Q̂ 0.911
p-value 0.28

(e) SP MIDAS test

Ĵ -0.466
p-value 0.063

Panels (a)-(d) report tests of the MDS null for the Bansal-Yaron residuals, over the period 1930-2016.

C̄(q) denotes the estimated transformed weighted correlogram statistic,
∑q−1

j=1(1− j/q)ρ̄(q). Its standard
error and asymptotic p-value are given underneath. In Panel (b), the estimated weighted quantilogram is
given in larger font for the appropriate (α, q) combination. Its bootstrapped p-value is given underneath

in smaller font. Ĝ(q) denotes the Hong-Lee generalised spectral statistic. Its asymptotic p-value is given

beneath. Q̂ denotes the estimated rescaled range. Its bootstrapped p-value is given beneath. Ĵ is the
estimated Hsiao et al. (2007) consistent model specification statistic from the semi-parametric MIDAS
model. Its bootstrapped p-value is given beneath.
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Table 7: Campbell-Cochrane model results
(f) Maximal predictability

q 2 3 4 5 6 7 8 9 10

R2 0.057 0.022 0.012 0.000 0.029 0.035 0.039 0.020 0.002
R̄2 0.092 0.000 0.004 0.074 0.079 0.009 0.057 0.085 0.076

Wald stat - 27.35 0.604 - - 2.194 - - -
p-value - 0.000 0.437 - - 0.139 - - -

Panel (e) reports tests of the null that the market return is no more predictable than implied by the
Campbell-Cochrane model state variables (i.e. R2 ≤ R̄2), estimated over the period 1930-2016. The
Wald statistic and its asymptotic p-value are reported.

pricing models and (iii) using quarterly data instead of annual data. Overall, we find
that, where the models produce reasonable residual and expected returns series, they
cannot explain return dynamics.

In terms of the state variable tests, the finding that the maximal predictability tests
reject the Bansal-Yaron state variables is robust to using quarterly data. However, the
semi-parametric MIDAS test suggests more promise for the Bansal-Yaron state variables.
That the Campbell-Cochrane state variables may be able to explain expected returns
conditional on Vart(rm,t+1) is a finding robust to using quarterly data. Nonetheless, the
finding that the Campbell-Cochrane state variable may be able to explain the predictabil-
ity of returns is not robust to using quarterly data. The finding that the Cecchetti-Lam-
Mark model may be able to explain the predictability of returns survives switching to
quarterly data in the whole sample, but this finding is not robust over time. When we
split the sample period into two equal-length sub-samples, we get many more significant
R2 bound exceedences in both sub-samples than in the whole sample. The failure of the
nonparametric MIDAS test to reject in favour of the Cecchetti-Lam-Mark state variable
is completely robust.

We consider the robustness of the residual-based tests (i.e. the correlogram, quan-
tilogram, Hong-Lee tests and rescaled range) only in scenarios where the model provides
credible residuals, and therefore credible expected returns. There is no point checking
the second moment of a model that fits poorly in terms of the first moment, as one would
not use it to price assets anyway. Moreover, the centred second moment (e.g. serial
correlation coefficient) is a function of the first moment.

For the robustness of the state variable tests, note that the state variables in the
Bansal-Yaron and Cecchetti-Lam-Mark are independent of the asset sets or GMM weight-
ing matrices used. As such, the maximal predictability results for these models depend
only on the data frequency and sample period. The extraction of the Campbell-Cochrane
state variable depends on, amongst other things, the estimated utility curvature. There-
fore, the (estimated) state variable does depend on the asset set and GMM weighting
matrix. As a result, we consider the robustness of the Campbell-Cochrane maximal
predictability tests in each of the scenarios set out above.

6.1 Identity weight matrix

Table 9 shows that only the Cecchetti-Lam-Mark model gives rise to a credible expected
returns series: the mean residual of 3.8% implies a mean expected market return of 10%
a year. The Campbell-Cochrane model’s average residual of -20.4% coupled with the
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Table 8: Cecchetti-Lam-Mark model results
(a) Correlogram

q 2 3 4 5 6 7 8 9 10

C̄(q) 0.043 -0.087 -0.201 -0.275 -0.342 -0.361 -0.428 -0.455 -0.526
(Std err) (0.054) (0.080) (0.101) (0.118) (0.133) (0.147) (0.159) (0.171) (0.182)

p-value 0.425 0.278 0.047 0.020 0.010 0.014 0.007 0.008 0.004

(b) Quantilogram

α ↓/q → 2 3 4 5 6 7 8 9 10

0.01 -0.009 0.018 0.080 0.165 0.262 0.359 0.448 0.526 0.587
0.39 0.77 0.98 0.78 0.74 0.67 0.67 0.66 0.71

0.05 -0.006 -0.017 -0.036 -0.053 -0.070 -0.090 -0.104 -0.116 -0.126
0.72 0.78 0.72 0.66 0.61 0.57 0.57 0.58 0.47

0.1 -0.004 -0.014 -0.030 -0.047 -0.063 -0.084 -0.099 -0.116 -0.132
0.76 0.67 0.62 0.60 0.53 0.51 0.47 0.45 0.39

0.25 0.015 0.004 -0.005 -0.016 -0.026 -0.039 -0.053 -0.072 -0.094
0.86 0.75 0.70 0.67 0.60 0.57 0.53 0.48 0.42

0.5 0.031 0.028 0.032 0.035 0.029 0.016 0.000 -0.021 -0.045
0.99 0.95 0.87 0.85 0.78 0.73 0.72 0.70 0.59

0.75 0.089 0.115 0.147 0.170 0.179 0.178 0.167 0.145 0.120
0.97 0.87 0.87 0.85 0.81 0.77 0.77 0.73 0.66

0.9 0.069 0.081 0.082 0.082 0.076 0.063 0.049 0.030 0.009
0.98 0.92 0.88 0.86 0.86 0.80 0.76 0.73 0.60

0.95 0.009 0.009 -0.004 -0.018 -0.035 -0.055 -0.075 -0.098 -0.119
0.91 0.84 0.75 0.74 0.69 0.67 0.64 0.63 0.49

0.99 -0.009 -0.025 -0.051 -0.100 -0.170 -0.259 -0.367 -0.495 -0.650
0.41 0.45 0.47 0.49 0.52 0.51 0.52 0.53 0.48

(c) Hong-Lee tests

q 2 3 4 5 6 7 8 9 10

Ĝ(q) 0.884 0.897 0.904 0.907 0.907 0.903 0.894 0.882 0.867
p-value 0.377 0.370 0.366 0.364 0.364 0.367 0.371 0.378 0.386

(d) Rescaled range

Q̂ 0.698
p-value 0.02

(e) SP MIDAS test

Ĵ -0.725
p-value 0.602

Panels (a)-(d) report tests of the MDS null for the Bansal-Yaron residuals, over the period 1930-2016.

C̄(q) denotes the estimated transformed weighted correlogram statistic,
∑q−1

j=1(1− j/q)ρ̄(q). Its standard
error and asymptotic p-value are given underneath. In Panel (b), the estimated weighted quantilogram is
given in larger font for the appropriate (α, q) combination. Its bootstrapped p-value is given underneath

in smaller font. Ĝ(q) denotes the Hong-Lee generalised spectral statistic. Its asymptotic p-value is given

beneath. Q̂ denotes the estimated rescaled range. Its bootstrapped p-value is given beneath. Ĵ is the
estimated Hsiao et al. (2007) consistent model specification statistic from the semi-parametric MIDAS
model. Its bootstrapped p-value is given beneath.
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Table 8: Cecchetti-Lam-Mark model results
(f) Maximal predictability

q 2 3 4 5 6 7 8 9 10

R2 0.057 0.022 0.012 0.000 0.029 0.035 0.039 0.020 0.002
R̄2 0.006 0.026 0.033 0.160 0.194 0.026 0.050 0.362 0.346

Wald stat 134.1 - - - - 0.189 - - -
p-value 0.000 - - - - 0.664 - - -

Panel (e) reports tests of the null that the market return is no more predictable than implied by the
Cecchetti-Lam-Mark model state variables (i.e. R2 ≤ R̄2), estimated over the period 1930-2016. The
Wald statistic and its asymptotic p-value are reported.

Table 9: Properties of ξ̂t - Identity matrix

Model Mean Median Std dev ρ̂(1)

Campbell-Cochrane -0.204 -0.228 0.206 -0.126
Cecchetti-Lam-Mark -0.038 -0.040 0.191 -0.088

Summary statistics for the model-implied ex-ante residuals. “Std dev” denotes standard deviation and
“ρ̂(1)” estimated first-order serial correlation. The models are estimated and residuals computed using
annual US data over the period 1930-2016.

mean market return of 6.3% implies a mean expected market return of almost 30% a
year under the Campbell-Cochrane model. This is almost five times the actual value,
and the expected returns do not form a credible financial time series. As noted earlier,
the main results for the Bansal-Yaron model already use the identity weight matrix since
the estimates using an optimal weight matrix do not converge.

The results of the MDS tests for the Cecchetti-Lam-Mark residuals when the model
is estimated with the identity weight matrix are shown in Table 10. They paint a similar
picture to the results with the optimal weight matrix: the correlograms reject the MDS
null (at the 5% level) from q = 5 onwards and the rescaled range rejects the MDS null
too. Again, both tests imply anti-persistence in the residuals, while the quantilogram
and Hong-Lee tests do not reject the null.

Notice that the choice of weight matrix does not affect the extraction of the Bansal-
Yaron or Cecchetti-Lam-Mark state variables, so these MIDAS and maximal predictabil-
ity test results are unchanged. The GMM estimation for R2 and R̄2 using the extracted
Campbell-Cochrane state variable did not converge, so maximal predictability results are
not available. The semi-parametric MIDAS test is available for the Campbell-Cochrane
and now gives a slightly stronger rejection of in favour of the Campbell-Cochrane state
variable (Ĵ = −0.466, p-value = 0.040).

6.2 Industry portfolios

Table 11 shows summary statistics of the residuals where we replace the six Fama-French
size/value portfolios with the five Fama-French industry portfolios in the set of assets
used to estimate the asset pricing models. As when using the size/value portfolios,
GMM estimation of the Bansal-Yaron model does not converege when using the optimal
weight matrix. Only the Campbell-Cochrane model estimated with the identity weight
matrix produces a credible residual, and therefore expected return, series. With a mean
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Table 10: Cecchetti-Lam-Mark model results - Identity matrix
(a) Correlogram

q 2 3 4 5 6 7 8 9 10

C̄(q) 0.026 -0.122 -0.190 -0.260 -0.300 -0.311 -0.351 -0.381 -0.390
(Std err) (0.054) (0.080) (0.101) (0.118) (0.133) (0.147) (0.159) (0.171) (0.182)

p-value 0.633 0.129 0.059 0.028 0.025 0.034 0.028 0.026 0.032

(b) Quantilogram

α ↓/q → 2 3 4 5 6 7 8 9 10

0.01 -0.003 -0.006 -0.009 -0.013 -0.016 -0.020 -0.024 -0.028 0.004
0.40 0.75 0.99 0.83 0.80 0.70 0.70 0.69 0.76

0.05 -0.014 -0.028 -0.043 -0.058 -0.073 -0.042 -0.022 -0.007 0.004
0.74 0.80 0.78 0.70 0.69 0.65 0.61 0.59 0.47

0.1 0.017 0.011 -0.018 -0.003 0.012 0.047 0.060 0.067 0.063
0.68 0.66 0.54 0.55 0.51 0.49 0.46 0.45 0.38

0.25 0.026 -0.053 -0.111 -0.111 -0.136 -0.157 -0.154 -0.146 -0.147
0.74 0.70 0.60 0.54 0.53 0.49 0.47 0.41 0.37

0.5 -0.030 -0.136 -0.162 -0.192 -0.260 -0.301 -0.318 -0.337 -0.350
0.70 0.66 0.60 0.48 0.46 0.44 0.35 0.33 0.25

0.75 -0.059 -0.100 -0.140 -0.134 -0.140 -0.119 -0.126 -0.130 -0.137
0.64 0.62 0.56 0.50 0.46 0.47 0.44 0.39 0.30

0.9 -0.003 0.034 0.084 0.139 0.199 0.227 0.251 0.275 0.310
0.76 0.79 0.65 0.57 0.49 0.44 0.42 0.36 0.26

0.95 -0.030 0.024 0.070 0.137 0.197 0.234 0.258 0.272 0.280
0.79 0.68 0.58 0.56 0.49 0.45 0.40 0.38 0.33

0.99 -0.009 -0.018 -0.024 -0.030 -0.036 -0.041 -0.047 -0.052 -0.057
0.31 0.38 0.40 0.35 0.37 0.39 0.38 0.40 0.34

(c) Hong-Lee tests

q 2 3 4 5 6 7 8 9 10

Ĝ(q) 0.782 0.795 0.801 0.803 0.803 0.800 0.793 0.783 0.770
p-value 0.434 0.427 0.423 0.422 0.422 0.424 0.428 0.434 0.441

(d) Rescaled range

Q̂ 0.694
p-value 0.01

Panels (a)-(d) report tests of the MDS null for the Cecchetti-Lam-Mark model residuals, estimated
over the period 1930-2016. C̄(q) denotes the estimated transformed weighted correlogram statistic,∑q−1

j=1(1 − j/q)ρ̄(q). Its standard error and asymptotic p-value are given underneath. In Panel (b),
the estimated weighted quantilogram is given in larger font for the appropriate (α, q) combination.

Its bootstrapped p-value is given underneath in smaller font. Ĝ(q) denotes the Hong-Lee generalised

spectral statistic. Its asymptotic p-value is given beneath. Q̂ denotes the estimated rescaled range. Its
bootstrapped p-value is given beneath.
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Table 11: Properties of ξ̂t - Industry portfolios

Model Mean Median Std dev ρ̂(1)

Optimal weight matrix

Bansal-Yaron - - - -
Campbell-Cochrane -0.250 -0.279 0.232 -0.045
Cecchetti-Lam-Mark -0.185 -0.158 0.194 -0.041

Identity weight matrix

Bansal-Yaron 0.740 0.721 0.397 0.533
Campbell-Cochrane -0.115 -0.130 0.257 -0.126
Cecchetti-Lam-Mark -0.242 -0.098 0.376 0.567

Summary statistics for the model-implied ex-ante residuals. “Std dev” denotes standard deviation and
“ρ̂(1)” estimated first-order serial correlation. The models are estimated and residuals computed using
annual US data over the period 1930-2016.

residual of -11.5% and a mean market return of 6.3%, the mean expected market return
is 17.8%. Even this may be stretching the bounds of credibility. But there is little harm
in considering the robustness of the residual-based tests in this scenario in any case.

The Campbell-Cochrane model results when estimating the model using the industry
portfolios and the identity weight matrix are shown in Table 12. We resoundingly reject
the null that the residuals are MDS. The correlogram test produces two rejections at the
5% level, at the two shortest horizons considered. There are 72 rejections of the MDS null
out of 81 quantilogram tests. The 99th percentile is the only one where we do not reject
the MDS null. While the Hong-Lee test produces no rejections, the rescaled range test
also rejects the MDS null. Whether or not one considers the residuals to be a plausible
financial time series, they are not MDS and the model is again rejected.

Turning to the state variable tests, note again that the Bansal-Yaron and (extracted)
Cecchetti-Lam-Mark state variables are unaffected by the change in the assets set, as well
as the change in weight matrix. The Campbell-Cochrane state variable is, however, af-
fected. While the semi-parametric MIDAS results are very similar to when the size/value
portfolios are used (p-values between 0.05 and 0.06, depending on whether the optimal or
identity weight matrix is used), there are some differences in the maximal predictability
results.

The GMM estimation of R2 and R̄2 does not converge for the Campbell-Cochrane
state variable extracted based on parameter estimates using the optimal weight matrix
to estimate the model. The estimation does converge, though, when the identity weight
matrix is used in the Campbell-Cochrane model estimation. These maximal predictability
results are in Table 13. There is more evidence here that the Campbell-Cochrane state
variable is unable to explain the own-history predictability of returns than in our main
results from earlier. There are two significant exceedences of the R2 bound at the three
and six-year horizons.

6.3 Quarterly data

Returning to using the six size/value portfolios in the set of assets for estimating the
models, rather the five industry portfolios, we consider the robustness of our results
when estimating the models at the quarterly frequency. Quarterly data is only available
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Table 12: Campbell-Cochrane model results - Industry portfolios and identity matrix
(a) Correlogram

q 2 3 4 5 6 7 8 9 10

C̄(q) -0.142 -0.220 0.028 -0.040 0.039 -0.149 0.179 0.303 0.318
(Std err) (0.054) (0.080) (0.101) (0.118) (0.133) (0.147) (0.159) (0.171) (0.182)

p-value 0.009 0.006 0.782 0.733 0.768 0.310 0.261 0.076 0.080

(b) Quantilogram

α ↓/q → 2 3 4 5 6 7 8 9 10

0.01 -0.003 -0.006 -0.009 -0.009 -0.006 -0.003 0.001 0.006 0.010
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.05 -0.014 -0.028 0.078 0.138 0.176 0.224 0.259 0.285 0.305
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.017 0.011 0.083 0.135 0.155 0.194 0.246 0.278 0.311
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.25 -0.022 -0.037 -0.027 -0.058 -0.082 -0.069 -0.065 -0.057 -0.064
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.5 -0.065 -0.111 -0.113 -0.158 -0.195 -0.210 -0.207 -0.208 -0.212
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.75 -0.029 -0.090 -0.121 -0.151 -0.154 -0.133 -0.113 -0.115 -0.116
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.9 -0.034 -0.047 -0.083 -0.099 -0.130 -0.148 -0.160 -0.183 -0.199
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.95 -0.030 -0.059 -0.086 -0.080 -0.083 -0.092 -0.106 -0.121 -0.139
0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.99 -0.009 -0.018 -0.026 -0.041 -0.059 -0.079 -0.099 -0.121 -0.144
0.62 0.47 0.47 0.47 0.44 0.42 0.42 0.42 0.42

(c) Hong-Lee tests

q 2 3 4 5 6 7 8 9 10

Ĝ(q) 0.491 0.511 0.527 0.539 0.548 0.556 0.562 0.568 0.575
p-value 0.624 0.609 0.598 0.590 0.584 0.579 0.574 0.570 0.566

(d) Rescaled range

Q̂ 0.946
p-value 0.00

Panels (a)-(d) report tests of the MDS null for the Campbell-Cochrane model residuals, estimated over

the period 1930-2016. C̄(q) denotes the estimated transformed weighted correlogram statistic,
∑q−1

j=1(1−
j/q)ρ̄(q). Its standard error and asymptotic p-value are given underneath. In Panel (b), the estimated
weighted quantilogram is given in larger font for the appropriate (α, q) combination. Its bootstrapped

p-value is given underneath in smaller font. Ĝ(q) denotes the Hong-Lee generalised spectral statistic. Its

asymptotic p-value is given beneath. Q̂ denotes the estimated rescaled range. Its bootstrapped p-value
is given beneath.
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Table 13: Campbell-Cochrane maximal predictability - Industry portfolios and identity
weight matrix

q 2 3 4 5 6 7 8 9 10

R2 0.057 0.022 0.012 0.000 0.029 0.035 0.039 0.020 0.002
R̄2 0.130 0.000 0.050 0.000 0.007 0.046 0.010 0.028 0.029

Wald stat - 25.34 - - 6.015 - 3.572 - -
p-value - 4.8×10−7 - - 0.014 - 0.059 - -

Tests of the null that the market return is no more predictable than implied by the Campbell-Cochrane
model state variables (i.e. R2 ≤ R̄2), estimated over the period 1930-2016. The Wald statistic and its
asymptotic p-value are reported.

Table 14: Quarterly data summary statistics

Mean Median Std dev ρ̂(1)

rm 0.018 0.029 0.081 0.077
rf 0.002 0.003 0.007 0.745
∆c 0.005 0.006 0.005 0.279
∆d 0.007 0.001 0.148 0.584
zm 4.871 4.851 0.426 0.937

Descriptive statistics for our key variables at the quarterly frequency over the period 1947Q1-2017Q1.
rm denotes the log market return, rf the quarterly log risk-free rate (the rolled over 1 month US T-bill),
∆c log consumption growth, ∆d log dividend growth and zm the log price-dividend ratio.

from 1947Q1 and our sample period becomes 1947Q1-2017Q1. In this case, the summary
statistics for our data are altered, as shown in Table 14 (note that none of the figures
presented in this subsection are annualised). In particular, the mean market return is
slightly higher, at around 1.8% per quarter (or 7.2% a year).

In addition, we must change the definitions of Vart(rm,t+1) and r̄m,t to reflect the fact
we are using quarterly data. These become

Vart(rm,t+1) = 3
12∑
d=1

wd(r
m
m,t−d − r̄m,t)2; r̄m,t =

1

3

3∑
d=1

rmm,t−d.

The definition of wd remains the same and we continue to use 12 months of data to
compute the conditional variance.

We estimate the models using both the optimal and identity weight matrices. Sum-
mary statistics for the residuals are shown in Table 15. Note that these are quarterly
figures (one could annualise them by multiplying them by four). As we can see in Table
15, only the Cecchetti-Lam-Mark model estimated with the identity matrix provides a
credible residual series and therefore a credible expected return series, with a mean resid-
ual of -0.8% per quarter. The Bansal-Yaron model certainly does not provide credible
residual series: it has mean quarterly residuals of -8900% per quarter with the identity
weight matrix and the GMM estimation does not converge with the optimal weight ma-
trix. The Campbell-Cochrane model generates mean residuals of -35% per quarter with
the optimal weight matrix and -20% per quarter with the identity weight matrix.

The MDS results for the Cecchetti-Lam-Mark model estimated at the quarterly fre-
quency with the identity weight matrix are in Table 16. We also include the maximal
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Table 15: Properties of ξ̂t - Quarterly

Model Mean Median Std dev ρ̂(1)

Optimal weight matrix

Bansal-Yaron - - - -
Campbell-Cochrane -0.351 -0.341 0.091 0.264
Cecchetti-Lam-Mark -0.389 -0.886 0.726 0.871

Identity weight matrix

Bansal-Yaron -8.863 -8.869 0.233 0.806
Campbell-Cochrane -0.203 -0.186 0.094 0.318
Cecchetti-Lam-Mark -0.008 0.003 0.081 0.074

Summary statistics for the model-implied ex-ante residuals. “Std dev” denotes standard deviation and
“ρ̂(1)” first-order serial correlation. The models are estimated and residuals computed using quarterly
US data over the period 1947Q1-2017Q1.

predictability results in Table 16, since the Cecchetti-Lam-Mark state variable is af-
fected by the change of data frequency. Note that q indicates the horizon in quarters.
The choice of q = 8, 12, 16, 20, 24, 28, 32, 36, 40 quarters aligns with the earlier choice of
q = 2, 3, 4, 5, 6, 7, 8, 9, 10 years. There are no rejections of the MDS null for the residu-
als, which would suggest the model does explain the dynamics of returns. In addition,
the maximal predictability results only show one significant exceedence of the R2 bound.
Note, however, that the R2 bound exceeds one on three occasions, which may be a symp-
tom of numerical issues in computing the bounds. Moreover, the semi-parametric MIDAS
test fails to reject in favour of the Cecchetti-Lam-Mark state variable.

The findings that the Cecchetti-Lam-Mark model and its state variable can explain
return dynamics, however, are not themselves robust. Having a larger sample allows us
to look at performance in sub-samples. We divide our sample in two with the break in the
middle of the sample, so that our sub-samples are 1947Q1-1982Q1 and 1982Q2-2017Q1.
Dividing the sample into two in this way ensures a sample size in excess of 120 (i.e.
3 × max{q}) in each sub-sample, which helps ensure the accuracy of the long-horizon
serial correlation estimates.

In addition, we can examine robustness to dealing with look-ahead bias in the second
sub-sample. In the above results, the parameters of the ex-ante (t− 1) expectations are
estimated over future data, which could induce a finite-sample bias in the test statistics
even when the test statistics are asymptotically valid. Note that these concerns apply only
to the correlogram and Hong-Lee tests. The quantilogram and rescaled range bootstrap
procedures explicitly account for the estimation method and the finite sample. The
maximum predictability test conditions on the parameter estimates in any case. We
evaluate the robustness of our correlogram and Hong-Lee results to using past data only
to estimate the parameters of the model residuals. We compute residuals for the second
sub-sample which are formed using parameters estimated over an expanding window.
The expanding window begins at the first observation in the whole sample (1947Q1) and
ends at the (t− 1)th observation when computing the t− 1 expectations of returns at t.
We compare these results to those obtained for the second sub-sample above to evaluate
the effect of restricting the data sample to past data only.

Looking at the Cecchetti-Lam-Mark residuals estimated with the identity matrix in
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Table 16: Cecchetti-Lam-Mark model - quarterly results with identity weight matrix
(a) Correlogram

q 8 12 16 20 24 28 32 36 40

C̄(q) -0.029 -0.095 -0.068 -0.007 -0.017 -0.073 -0.038 -0.040 -0.055
(Std err) (0.089) (0.112) (0.132) (0.149) (0.164) (0.178) (0.191) (0.203) (0.215)

p-value 0.739 0.396 0.607 0.965 0.916 0.682 0.840 0.843 0.796

(b) Quantilogram

α ↓/q → 8 12 16 20 24 28 32 36 40

0.01 0.007 0.003 -0.003 -0.008 -0.014 -0.020 -0.025 -0.030 -0.036
0.57 0.78 0.85 0.95 0.78 0.66 0.48 0.39 0.35

0.05 0.044 0.054 0.054 0.049 0.038 0.024 0.013 0.006 0.000
0.37 0.37 0.35 0.37 0.38 0.33 0.30 0.29 0.27

0.1 0.054 0.061 0.059 0.054 0.041 0.023 0.010 0.001 -0.006
0.46 0.40 0.33 0.33 0.36 0.36 0.35 0.35 0.32

0.25 0.043 0.048 0.045 0.043 0.035 0.018 0.003 -0.006 -0.014
0.42 0.41 0.41 0.39 0.36 0.32 0.34 0.36 0.33

0.5 0.008 0.009 0.005 0.001 -0.004 -0.008 -0.014 -0.020 -0.025
0.62 0.56 0.59 0.60 0.51 0.48 0.45 0.41 0.38

0.75 0.033 0.034 0.032 0.026 0.014 -0.003 -0.019 -0.029 -0.036
0.49 0.46 0.41 0.39 0.41 0.43 0.40 0.37 0.30

0.9 0.042 0.041 0.034 0.024 0.009 -0.011 -0.028 -0.041 -0.052
0.43 0.45 0.44 0.46 0.53 0.53 0.55 0.49 0.43

0.95 0.045 0.049 0.044 0.034 0.020 0.004 -0.009 -0.018 -0.027
0.43 0.36 0.38 0.37 0.37 0.39 0.41 0.37 0.33

0.99 0.007 0.007 0.004 0.000 -0.008 -0.018 -0.025 -0.030 -0.035
0.77 0.99 0.90 0.73 0.66 0.62 0.53 0.46 0.39

(c) Hong-Lee tests

q 8 12 16 20 24 28 32 36 40

Ĝ(q) 0.002 -0.211 -0.367 -0.468 -0.542 -0.603 -0.682 -0.731 -0.769
p-value 0.998 0.833 0.714 0.640 0.588 0.547 0.495 0.465 0.442

(d) Rescaled range

Q̂ 1.076
p-value 0.87

(e) SP MIDAS test

Ĵ -0.725
p-value 0.602

Panels (a)-(d) report tests of the MDS null for the Bansal-Yaron residuals, over the period 1930-2016.

C̄(q) denotes the estimated transformed weighted correlogram statistic,
∑q−1

j=1(1− j/q)ρ̄(q). Its standard
error and asymptotic p-value are given underneath. In Panel (b), the estimated weighted quantilogram is
given in larger font for the appropriate (α, q) combination. Its bootstrapped p-value is given underneath

in smaller font. Ĝ(q) denotes the Hong-Lee generalised spectral statistic. Its asymptotic p-value is given

beneath. Q̂ denotes the estimated rescaled range. Its bootstrapped p-value is given beneath. Ĵ is the
estimated Hsiao et al. (2007) consistent model specification statistic from the semi-parametric MIDAS
model. Its bootstrapped p-value is given beneath.
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Table 16: Cecchetti-Lam-Mark model - quarterly results with identity weight matrix
(f) Maximal predictability

q 8 12 16 20 24 28 32 36 40

R2 0.367 0.011 0.105 0.005 0.001 0.099 0.012 0.023 0.072
R̄2 1.298 0.347 0.411 3.858 5.6× 10−7 0.499 3.071 3.196 0.861

Wald stat - - - - 10.95 - - - -
p-value - - - - 0.001 - - - -

Panel (e) reports tests of the null that the market return is no more predictable than implied by the
Cecchetti-Lam-Mark model state variables (i.e. R2 ≤ R̄2), estimated over the period 1947Q1-2017Q1.
The Wald statistic and its asymptotic p-value are reported.

the sub-samples in this way, we see that the MDS null is rejected in both sub-samples
and when we account for look-ahead bias. The MDS null is clearly rejected by the
quantilograms in the first sub-sample (Table 17a): 37 of the 81 weighted quantilograms
are significant at the 10% level and 25 of those are significant at the 5% level. Untabulated
results show that this is the only test to reject the null in the first sub-sample, re-
iterating why it is important to consider a battery of test statistics. Looking at the
second sub-sample (Table 17b), the MDS null is easily rejected by the Hong-Lee tests.
When accounting for look-ahead bias in the estimation (Table 17c), the MDS null remains
strongly rejected, this time by the weighted correlograms.

Moreover, there are now three significant exceedences of the R2 bound in each sub-
sample, although not necessarily at the same horizons. The R2 bound is significantly
exceeded at q = 28 in both sub-samples, but not the whole sample. The ability of the
Cecchetti-Lam-Mark model state variable to explain the dynamics of returns also appears
not to be robust. In addition, the semi-parametric MIDAS test fails to reject in favour
of the Cecchetti-Lam-Mark state variable in either sub-sample.

We lastly consider the robustness of the Bansal-Yaron and Campbell-Cochrane state
variable test results to using quarterly data. Note that the Bansal-Yaron state variables
do not depend on whether we estimate the Bansal-Yaron model using the identity or
optimal weight matrix, but the Campbell-Cochrane state variables do depend on the
weight matrix used.

Table 18 shows the results of the semi-parametric MIDAS test robustness checks,
while Table 19 shows the results of the maximal predictability robustness checks. For
the Bansal-Yaron model we see a borderline rejection of the null that the state variables
are not relevant for expected returns conditioning on Vart(rm,t+1) in the semi-parametric
MIDAS test. However, the maximal predictability tests give similar results to when
using the annual data, suggesting that the model’s state variables cannot explain the
own-history predictability of returns. So the picture is mixed.

For the Campbell-Cochrane model, things look a little more hopeful. The semi-
parametric MIDAS test clearly rejects in favour of the Campbell-Cochrane state variable.
Moreover, there are two significant exceedences of the R2 bound using the optimal weight
matrix and three using the identity weight matrix at the lag lengths considered. However,
untabulated results show a number further rejections at horizons q < 8 in both cases.
Using the optimal weight matrix, the R2 bound is exceeded for q = 3, 4, 5 and 6 quarters
and these exceedences are significant at the 1% level. Using the identity weight matrix,
there are exceedences for q = 1 and 6 quarters. Again, the quarterly data give a mixed
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Table 17: Cecchetti-Lam-Mark model quarterly sub-sample results using identity weight
matrix

(a) Quantilogram - sub-sample 1: 1947Q1-1982Q1

α ↓/q → 8 12 16 20 24 28 32 36 40

0.01 0.050 0.076 0.100 0.122 0.142 0.163 0.193 0.337 0.589
0.02 0.02 0.02 0.06 0.07 0.09 0.09 0.65 0.62

0.05 0.092 0.093 0.075 0.076 0.065 0.042 0.010 -0.009 -0.036
0.82 0.97 0.86 0.75 0.62 0.48 0.33 0.24 0.19

0.1 0.008 -0.002 -0.017 0.002 0.004 -0.006 -0.012 -0.007 -0.018
0.52 0.41 0.40 0.49 0.45 0.42 0.35 0.35 0.29

0.25 -0.095 -0.147 -0.181 -0.189 -0.198 -0.212 -0.226 -0.239 -0.244
0.06 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.01

0.5 -0.052 -0.133 -0.191 -0.207 -0.200 -0.203 -0.221 -0.236 -0.232
0.30 0.10 0.07 0.05 0.04 0.04 0.03 0.02 0.02

0.75 0.036 -0.049 -0.111 -0.136 -0.161 -0.195 -0.227 -0.234 -0.225
0.84 0.26 0.10 0.07 0.04 0.03 0.01 0.01 0.01

0.9 0.063 0.060 0.043 0.013 -0.039 -0.095 -0.140 -0.167 -0.186
0.97 0.75 0.59 0.38 0.23 0.16 0.11 0.09 0.08

0.95 0.008 0.011 -0.002 -0.025 -0.066 -0.107 -0.142 -0.166 -0.183
0.57 0.49 0.41 0.33 0.22 0.19 0.17 0.12 0.09

0.99 -0.029 -0.046 -0.059 -0.073 -0.091 -0.108 -0.128 -0.153 -0.184
0.16 0.17 0.17 0.18 0.17 0.07 0.01 0.00 0.00

(b) Hong-Lee tests - sub-sample 2: 1982Q2-2017Q1

q 8 12 16 20 24 28 32 36 40

Ĝ(q) 20.29 19.83 19.52 19.30 19.08 18.78 18.46 18.15 17.87
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(c) Correlogram - sub-sample 2: 1982Q2-2017Q1, accounting for look-ahead bias

q 8 12 16 20 24 28 32 36 40

C̄(q) -3.548 -11.02 -26.13 -35.71 196.3 -39.16 -38.37 -13.32 21.03
(Std err) 0.251 0.318 0.373 0.422 0.465 0.504 0.541 0.575 0.608

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Panel (a) reports the quantilogram tests of the MDS null for the Cecchetti-Lam-Mark model residuals
estimated with the identity weight matrix, over the first sub-sample 1947Q1-1982Q1. The estimated
weighted quantilogram is given in larger font for the appropriate (α, q) combination. Its bootstrapped
p-value is given underneath in smaller font. Panel (b) gives the Hong-Lee tests for the residuals from

the second sub-sample 1982Q2-2017Q1. Ĝ(q) denotes the Hong-Lee generalised spectral statistic. Its
asymptotic p-value is given beneath. Panel (c) reports the weighted correlogram tests for the second
sub-sample where estimation uses the identity weight matrix but also accounts for possible look-ahead
bias. C̄(q) denotes the estimated transformed weighted correlogram statistic,

∑q−1
j=1(1 − j/q)ρ̄(q). Its

standard error and asymptotic p-value are given underneath.
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Table 17: Cecchetti-Lam-Mark model quarterly sub-sample results using identity weight
matrix

(d) Maximal predictability

q 8 12 16 20 24 28 32 36 40

Sub-sample 1: 1947Q1-1982Q1

R2 0.072 0.072 0.137 0.228 0.106 0.153 0.276 0.630 0.416
R̄2 0.467 0.107 1.658 0.666 0.009 0.044 0.136 14.81 2.064

Wald stat - - - - 494.3 806.1 553.0 - -
p-value - - - - 0.000 0.000 0.000 - -

Sub-sample 2: 1982Q2-2017Q1

R2 0.023 0.156 0.262 0.161 0.071 0.076 0.546 0.792 0.519
R̄2 0.084 0.126 0.002 0.010 0.409 0.009 17.462 2.665 0.204

Wald stat - 0.771 442.1 167.2 - 924.5 - - 13078
p-value - 0.380 0.000 0.000 - 0.000 - - 0.000

Panel (d) reports tests of the null that the market return is no more predictable than implied by the
Cecchetti-Lam-Mark model state variables (i.e. R2 ≤ R̄2) in each of the two sub-samples. The Wald
statistic and its asymptotic p-value are reported.

Table 18: Quarterly semi-parametric MIDAS results

Model Ĵ p-value

Bansal-Yaron 1.471 0.048
Campbell-Cochrane

Optimal weight matrix 0.559 0.018
Identity weight matrix 0.851 0.018

Ĵ is the estimated Hsiao et al. (2007) consistent model specification statistic from the semi-parametric
MIDAS regression for the asset pricing model and estimation method specified. Its bootstrapped p-value
is given in the final column. The Bansal-Yaron model is estimated using the identity weight matrix.
Both models are estimated using quarterly data over the period 1947Q1-2017Q1.
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Table 19: Quarterly maximal predictability results

q 8 12 16 20 24 28 32 36 40

Bansal-Yaron model

R2 0.057 0.018 10−8 0.069 0.025 0.012 0.119 0.011 0.159
R̄2 -0.217 -11.357 5.508 -3.740 -0.282 0.303 -10.089 -6.736 6.579

Wald stat 216041 148018 - 267587 416715 - 593143 1307207 -
p-value 0.000 0.000 - 0.000 0.000 - 0.000 0.000 -

Campbell-Cochrane model - optimal weight matrix

R2 0.029 0.041 0.059 1.2× 10−4 0.001 0.005 1.4× 10−4 0.006 0.082
R̄2 0.003 0.018 0.421 0.039 0.006 0.556 0.352 1.505 0.689

Wald stat 462.1 7.954 - - - - - - -
p-value 0.000 0.005 - - - - - - -

Campbell-Cochrane model - identity weight matrix

R2 -30.42 0.022 0.034 0.445 0.082 0.085 1.5×10−6 0.025 1.000
R̄2 1225 0.622 4.4×10−4 0.300 0.903 7.0× 10−5 0.831 0.335 9.772

Wald stat - - 25.26 8.190 - 197.0 - - -
p-value - - 5.0×10−7 0.004 - 0.000 - - -

Tests of the null that the market return is no more predictable than implied by the Bansal-
Yaron/Campbell-Cochrane model state variables (i.e. R2 ≤ R̄2), estimated over the period 1947Q1-
2017Q1. The Wald statistic and its asymptotic p-value are reported.

picture on the Campbell-Cochrane state variable.
We take these maximal predictability results with a little caution, however. Table

19 shows that there are numerical difficulties in estimating the R2 and R̄2 parameters.
These are estimated jointly by GMM (no regression is run to obtain R2). As a result,
even though the R2 for the predictive regressions should be the same for both models
and whether the optimal or identity weight matrix is used to estimate the model, this is
not the case. Moreover, we see some R2 and R̄2 which are either greater than one or less
than zero. These numerical issues may be a function of the mis-specification of the state
variables in terms of being able to explain own-history predictability of returns. Or they
may reflect more general numerical issues.

7 Conclusion

We show that three consumption-based asset pricing models - the Bansal-Yaron, Campbell-
Cochrane and Cecchetti-Lam-Mark models - cannot explain the own-history predictabil-
ity structure of the US market return. We focus on how well the three models explain
stock return predictability because, from an investor’s point of view, it is a key characteris-
tic of returns. It has received relatively little attention in the context of the Bansal-Yaron
and Campbell-Cochrane models, two of the leading models in explaining the equity pre-
mium puzzle. Within predictability, we focus on own-history predictability as it is the
most basic form of predictability.

In order to test whether the three models can explain the own-history predictability
properties of the US market return, we first estimate the models’ parameters by GMM
before computing model implied ex-ante expected returns. If the model can capture the
own-history predictability of the market, the difference between the realised market return
and the model implied ex-ante expected return will be MDS due to rational expectations.
We test whether these residuals are MDS, ensuring that our tests account for the initial
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estimation step. In this sense, our tests can be interpreted as a time-series specification
test of the models. However, unlike a J-test, our procedure allows us to test models
which are not estimated in single GMM implementation, such as the Campbell-Cochrane
and Cecchetti-Lam-Mark models here.

We find that the Bansal-Yaron, Campbell-Cochrane and Cecchetti-Lam-Mark model
residuals are not MDS. This finding is robust to the choice of GMM weight matrix, using
quarterly in instead of annual data and using industry instead of size/book-to-market
portfolios to estimate the models. There appears to be some hope, in that we cannot
reject the null that the Cecchetti-Lam-Mark residuals are MDS using quarterly data,
the identity weight matrix and size/book-to-market portfolios to estimate the model.
However, this non-rejection of the MDS null is not robust over time. When we divide the
sample period into two equal-length sub-samples, we clearly reject the MDS null in both
sub-samples.

We also test whether the degree of return predictability is consistent with the state
variables of the three models being correctly specified. These tests show that neither
the Bansal-Yaron nor Cecchetti-Lam-Mark models’ state variables are correctly spec-
ified. The evidence is more mixed for the Campbell-Cochrane state variable. While
Campbell-Cochrane state variable seems reasonable for annual data, we find significant
excess predictability of returns with quarterly data. That said, the MIDAS-based test
rejects in favour of the Campbell-Cochrane state variable at the quarterly horizon. As
our two tests point in different directions, it is difficult to draw a conclusion either way
using quarterly data.

The failure of the models considered to capture the own-history predictability of stock
returns has several different interpretations. The first is that perhaps some auxiliary
assumption in the models has failed. For example, the assumed joint normality of con-
sumption and dividend growth in the Campbell-Cochrane model (used to derive expected
returns) or the assumed joint normality of consumption growth, dividend growth, the
long-run risk and economic volatility in the Bansal-Yaron model (used by Constantinides
and Ghosh (2011) to invert the model and derive the moment conditions to estimate it).
Note that these normality assumptions are used when backing out the state variables for
the maximal predictability and MIDAS tests too, so both the residual-based and maximal
predictability tests would be affected in this scenario. In this interpretation, the models
are basically correct, but the auxiliary assumptions need to be relaxed in future empirical
work.

A second interpretation in which the models are basically correct is to say that the
models presented are equilibrium models, but that financial markets are often out of
equilibrium. Therefore, to model market dynamics, it is necessary to consider a framework
in which markets adjust to a (possibly time-varying) equilibrium. Adam et al. (2016)
present such a model. They have an agent with CRRA preferences who knows the risk-
adjusted stock price is a random walk (a result due to Samuelson, 1965) but who observes
the risk-adjusted price plus mean-zero noise. Optimal updating of beliefs under subjective
expected utility maximisation produces a feedback loop: expectations affect prices, as in
the classical model, but prices also affect expectations, due to updating. This feedback
imparts serial correlation and excess volatility upon the returns, even when the estimated
prior uncertainty (noise variance) is small. In general, this model is able to match many
facts about asset prices, including the long-horizon predictability of excess returns with
respect to the price-dividend ratio. However, rather like the standard CRRA model,
it cannot account for the equity premium and risk-free rate puzzles. Nonetheless, it is
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possible that by applying this framework to, say, the Campbell-Cochrane model would
account for these puzzles.

Finally, it may simply be that the model state variables are mis-specified: that more
state variables need to be considered or some of those considered need to be dropped. Or,
given that the models here are strictly rational models of investor behaviour, it may be
that an “outright” behavioural model (going beyond, say, rational learning) is required.

Appendices

A Bansal-Yaron model estimation

A.1 Inversion and stochastic discount factor coefficients

Constantinides and Ghosh (2011) show that

xt = α0 + α1rf,t + α2zm,t

σ2
t = β0 + β1rf,t + β2zm,t,

where

α0 =
A2,mA0,f − A0,mA2,f

A1,mA2,f − A2,mA1,f

α1 =
−A2,m

A1,mA2,f − A2,mA1,f

α2 =
A2,f

A1,mA2,f − A2,mA1,f

β0 =
A0,mA1,f − A1,mA0,f

A1,mA2,f − A2,mA1,f

β1 =
A1,m

A1,mA2,f − A2,mA1,f

β2 =
−A1,f

A1,mA2,f − A2,mA1,f

.
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The expressions for the A0, . . . , A2,f coefficients are given by

A1 =
1− 1

ψ

1− κ1ρx

A2 =

1
2

[(
− θ
ψ

+ θ
)2

+ (θκ1A1ψx)
2

]
θ(1− κ1ν)

A0 =
ln(δ) +

(
1− 1

ψ

)
µc + κ0 + κ1A2σ

2(1− ν) + 1
2
θκ21A

2
2σ

2
w

1− κ1

A1,m =
φ− 1

ψ

1− κ1,mρx

A2,m =
(1− θ)A2(1− κ1ν) + 1

2

[
γ2 + ϕ2 + ((θ − 1)κ1A1 + κ1,mA1,m)2 ψ2

x

]
1− κ1,mν

A0,m =
θ ln(δ) +

(
− θ
ψ

+ θ − 1
)
µc + (θ − 1)κ0 + (θ − 1)(κ1 − 1)A0 + (θ − 1)κ1A2σ

2(1− ν)

1− κ1,m

+
κ0,m + µd + κ1,mA2,mσ

2(1− ν) + 1
2

[(θ − 1)κ1A2 + κ1,mA2,m]2 σ2
w

1− κ1,m

A0,f = −θ ln(δ)−
(
− θ
ψ

+ θ − 1

)
µc − (θ − 1)κ0 − (θ − 1)(κ1 − 1)A0 − (θ − 1)κ1A2(1− ν)σ2

− 0.5(θ − 1)2κ21A
2
2σ

2
w

A1,f = −
[(

θ

ψ
+ θ − 1

)
+ (θ − 1)(κ1ρx − 1)A1

]
A2,f = −

[
(θ − 1)(κ1ν − 1)A2 +

1

2

((
− θ
ψ

+ θ − 1

)2

+ (θ − 1)2κ21A
2
1ψ

2
x

)]
.

In the stochastic discount factor

exp

{
a1 + a2∆ct+1 + a3

(
rf,t+1 −

1

κ1
rf,t

)
+ a4

(
zm,t+1 −

1

κ1
zm,t

)}
,

we have:

a1 = θ ln(δ) + (θ − 1)[κ0 + (κ1 − 1)(A0 + A1α0 + A2β0)]

a2 = − θ
ψ

+ (θ − 1)

a3 = (θ − 1)κ1[A1α1 + A2β1]

a4 = (θ − 1)κ1[A1α2 + A2β2].

The linearisation constants κ0 and κ1 derive from applying the Campbell and Shiller
(1988) log-linearisation procedure to the returns to the consumption claim and market
portfolio (Bansal and Yaron, 2004). These constants satisfy

κ1 =
exp{z̄}

1 + exp{z̄}
κ0 = ln(1 + exp{z̄})− κ1z̄,
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where zt is the log price/dividend ratio of an asset whose dividend stream is identical to
consumption. Similar expressions are obtained for κ0,m and κ1,m when z is replaced by zm.
These are identified under the assumption that z̄ and z̄m are equal to the unconditional
expectation of zt and zm,t respectively.

A.2 Time-series moment conditions

The nine time-series moment conditions derived by Constantinides and Ghosh (2011) are:

E(∆ct) = µc

Var(∆ct) =
ϕ2
xσ

2

1− ρ2x
+ σ2

Cov(∆ct,∆ct+1) = ρx
ϕ2
xσ

2

1− ρ2x
E(∆dt) = µd

Var(∆dt) = φ2 ϕ
2
xσ

2

1− ρ2x
+ σ2ϕ2

u

Cov(∆dt,∆dt+1) = φ2ρx
ϕ2
xσ

2

1− ρ2x

Cov(∆ct,∆dt) = φ
ϕ2
xσ

2

1− ρ2x

Var
[
(∆ct)

2
]

=
3ϕ4

xσ
2
w(1 + νρ2x)

(1− ρ4x)(1− ν2)(1− νρ2x)
+

1

1− ρ4x

[
2σ4 +

4ρ2xϕ
4
xσ

4

1− ρ2x

]
+ 2σ4

+
3σ2

w

1− ν2
+ 4µ2

c

ϕ2
xσ

2

1− ρ2x
+

6ϕ2
xσ

2
wν

(1− ν2)(1− νρ2x)
+

4ϕ2
xσ

4

1− ρ2x
+ 4µ2

cσ
2

Var
[
(∆dt)

2
]

= φ4

[
3ϕ4

xσ
2
w(1 + νρ2x)

(1− ρ4x)(1− ν2)(1− νρ2x)
+

2σ4

1− ρ4x
+

4ρ2xϕ
4
xσ

4

(1− ρ4x)(1− ρ2x)

]
+

3σ2
wϕ

4
u

1− ν2
+ 4µ2

c

ϕ2
xσ

2

1− ρ2x
φ2 +

6ϕ2
xσ

2
wνφ

2ϕ2
u

(1− ν2)(1− νρ2x)
+

4ϕ2
xσ

4

1− ρ2x
φ2ϕ2

u

+ 2σ4ϕ4
u + 4µ2

dϕ
2
uσ

2.

A.3 Expected return coefficients

The expected market return in the Bansal-Yaron model is

Et rm,t+1 = B0 +B1xt +B2σ
2
t ,

where

B0 = κ0,m + (κ1,m − 1)A0,m + µd + κ1,mA2,m(1− ν)σ2 − 3κ1,m

B1 = A1,m(κ1,mρx − 1) + φ

B2 = A2,m(κ1,mν − 1).

42



B Cecchetti-Lam-Mark κ(yt)

κ(yt) =

{
δ̃(1− δ̃α̃1(p+ q − 1))/∆ , yt = 0

δ̃α̃1(1− δ̃(p+ q − 1))/∆ , yt = 1,

where

δ̃ = δ exp{α0(1− γ) + (1− γ)2σ2
yt/2}

α̃1 = exp{α1(1− γ)}
∆ = 1− δ̃(pα̃1 + q) + δ̃2α̃1(p+ q − 1).
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